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Abstract 

With the rapid increase and complexity of cyber-attacks, there is a need to analyze and 

understand software programs, not only the source code, but also the binary executable. We 

might encounter situations where source code and debugging symbols are not available, thus 

we need to analyze low-level executables. The variable types, function parameters and indirect 

memory access provide the fundamental semantics of a program. Generally, when we compile 

an executable, the critical information related to variables, types and parameters is lost. This 

leads to conservative static analysis at the binary-level. A large amount of research has been 

carried out for decades on binary code type inference, a challenging task that aims to infer 

typed variables [1]. 

 

 To improve our ability to perform static and dynamic analysis, the goal of this thesis is to 

develop a novel algorithm for finding the parameters of a function, the local variables of a 

function, and the parameter used as a pointer. The purpose of this algorithm is to explore 

applications in the context of program understanding and to provide useful information about 

function parameters, even in the absence of debugging information [2]. The approach is not 

fully sound, which means that there could be false positives or false negatives. The designed 

algorithm is a step towards determining critical information of any function. The algorithm has 

been tested over 444 functions in total for GCC and 200 for Clang from stripped binaries 

compiled on both Intel 32-bit and 64-bit with both O0 and O2 optimizations levels with a 

success rate of approx. 100% for finding the parameters, 78% and 66% for local variables and 

85.5% and 77% for finding parameters as pointers in both GCC and Clang, respectively. We 

developed it on both 32-bit and 64-bit with O0 and O2 optimization levels. Based on the current 

development and analysis, we conclude with suggestions for future work and provide some 

insight into some preliminary ideas to solve such problems. 
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Chapter 1 : Introduction 

With the rapid increase and complexity of cyber-attacks, there is a need to analyze and 

understand software programs, not only the source code, but also the binary executable. We 

might encounter situations where source code and debugging symbols are not available, thus 

we need to analyze low-level executable. The variable types, function parameters and indirect 

memory access provide the fundamental semantics of a program. Generally, when we compile 

an executable, the critical information related to variables, types and parameters is lost. This 

leads to conservative static analysis at the binary-level. A large amount of research has been 

carried out for decades on binary code type inference, a challenging task that aims to infer 

typed variables [1]. 

 

Source-level vulnerability analysis is only possible when we have source code available. 

As a part of development, often new products are built by using third-party libraries. This may 

lead to security vulnerabilities as the integration of third-party software does not always come 

with source code and developers may not fully understand the integrated software. Also, 

scaling up such products normally leads to threats because full analysis cannot be performed 

on the complex systems. Further, the non-availability of source code also hampers other 

analysis paradigms, such as fuzzing and symbolic execution, because even these techniques 

benefit from the ability to compile, rather than retrofit, instrumentation into the analysis target 

[10]. Although many software vulnerability analysis tools are out there in the market, most of 

them dealt with the analysis of source code written in a high-level language. 

 

Over the past decades, efforts have been made towards static analysis of a binary code [4, 

5, 6] to develop tools to find bugs and security vulnerabilities. Many techniques have been 

proposed to improve the recovery of data types [10, 11, 12], code structure [10, 13, 14, 15] and 

even exact syntactic identity [10, 16]. Usually, static analysis is done without any execution. 

This could be on source code, intermediate representations (IR), assembly code, or even binary 

code [3]. From the perspective of cyber security binary analysis is one of the reliable method 

to recover the lost variables, inference type and understand the control flow within a function 

in detail. There are two steps in static binary analysis: disassembly of the binary code and static 
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analysis of the resulting assembly code [7]. Thus, binary analysis plays a key role in reverse 

engineering where a system is analyzed to identify its objects and their interrelationships which 

helps us to create representations of the system at a high level of abstraction. 

 

The most widely-used microprocessor architecture is the Intel x86 family of processors, our 

primary focus is on the ELF binary format executable [9] where our approach is more intuitive 

and heuristic. The objective of this research is to develop a novel algorithm to find a number 

of parameters used in a function, its type equivalence and parameters used as a pointer or an 

array. The primary language used is Python 3.x and tested over 444 functions in total for GCC 

and 200 for Clang from stripped binaries compiled on both Intel 32-bit and 64-bit with both 

O0 and O2 optimizations levels. The JIL file of the JIMA tool developed by CSDS of the 

University of Idaho is used as an input for the algorithm which is demonstrated in detail in 

later sections. The algorithm has used reaching definition analysis and iterative algorithm by 

Principles of Program analysis [8]. 

 

In the remainder of this chapter, Section 1.1 walks through basic concepts, the need for 

analyzing binary executables, history, and recent developments related to binary analysis and 

reverse engineering. Section 1.2 introduces the challenges and problems related to binary 

analysis as well as the details of the initiative done to resolve that. The Scope and motivation 

of this research are presented in Sections 1.3 and 1.4 respectively. Section 1.5 concludes with 

an overview of the organization of the thesis. 

 

1.1 Need for Analyzing Binary Executables 

Static binary analysis helps in program analysis and compiler optimizations without running 

the programs [3]. This process is being more widely used due to several factors, including: 

➢ Integrating software trusted code with third-party libraries/application untrusted code. 

For example, Firefox browser relies on Adobe Reader for viewing and printing Adobe 

Portable Document Format (PDF) files and Adobe Flash Player to deliver Adobe Flash 

experiences by playing Adobe Flash content on web pages [17]. 
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➢ Module-based software development for productivity and cost control. It is important 

to have fault isolation among the modules from different vendors to build an entire 

system for robustness [3]. 

 

1.1.1 Overview 

Many tools like ATOM [27], EEL [27], Vulcan [29], and Phoenix [28] evaluate executables 

with the help of symbol-table or debugging information. As a result, in the absence of 

debugging information, these tools cannot be used for analyzing viruses, worms, or other 

malicious software, or for analyzing linked third-party libraries. Therefore, binary static 

analysis paves the way for all possible states a program reaches during execution without 

compiling the program. 

 

Disassemblers and debuggers are helpful as they separate the raw bytes of code from the 

data in an executable. Disassemblers, like IDAPro, are good at recovering control-flow data 

and call graphs that show relationships among each function from an executable [25]. 

However, disassemblers are not very helpful regarding information about the contents of 

memory for every instruction and dataflow between instructions that access memory in an 

executable. Further, when indirect jumps and calls are made, disassemblers cannot always 

recover control-flow information. So many techniques have been proposed to find high-level 

dataflow information, but it is possible only through the help of the registers. To further drill 

it down, using static analysis and heuristics in combination with disassemblers is more feasible 

and reliable than solely relying on disassemblers and debuggers. In general, we need binary-

level static analysis due to many factors: 

➢ The source code is either unavailable or unreliable (non-trusting third-party software) 

for evaluating malicious code such as viruses, worms, botnets, Trojan horses, and 

extensions such as browser plug-ins, database add-ons, etc. 

 

➢ Modern compilers inadvertently produce imprecise code by optimizing the code. As a 

result, the semantics of binary code is different from that of source code, which is not  
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Figure 1.1: A source-code fragment to show how some compilers can do aggressive 

optimizations 

 

built to support semantics for security [2,23]. Hence, compliant compilers lack the 

necessary knowledge to uphold the level of security that the programmer intended. 

 

➢ Security analysts attempt to detect certain machine instructions and dynamic security 

checks into the binary code shortly before them in order to safeguard the subject code. 

Security engineers place a dynamic security checks immediately before the indirect 

jump, call, and return instructions, for instance, is done to make sure that a program's 

execution pathways always adhere to a predetermined control flow graph [18, 19]. 

Software Fault Isolation (SFI) also ensures that untrusted code does not visit disallowed 

data regions by dynamic checking instructions right before each indirect memory 

visiting instruction [20]. But often compiler optimizations discard SFI by changing the 

order of instructions. The dynamic instructions which were used to isolate the 

potentially unsafe software code are not executed effectively before the memory 

accessing instruction. Therefore, binary-level static analysis is useful as it is done after 

compiling the code. 

 

➢ To enhance runtime performance, some binary-level optimizations can be made. Also, 

if numerous modules are statically linked together, some global information is typically 

available at the binary level. This can enable some optimizations that are not possible 

in a compiler without whole program optimization due to the requirement to support 

separate compilation. Optimizers can employ binary code to determine undetected 

features of some programming languages, like the order in which arguments are 

evaluated in C. 

 

➢ The ability to reuse the binary code directly might be helpful when the source code is 

int *pwd = (int*)malloc(sizeof(int)*length); 
read_pwd(pwd,length); 
process(pwd,length); 
memset(pwd,0,length); 
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lost, inaccessible, or is no longer supported by the original authors [21]. For example, 

Trojan horses hide themselves by encrypting or compressing internet traffic. The 

breach would be discovered quickly with improved security if a firewall can extract the 

decryption and uncompressed functions in binary code directly for decrypting the data. 

 

Consider the code fragment shown in Figure 1.1, is taken from a login program, which 

temporarily stores the user password in a dynamically allocated buffer pointed to by ‘pwd’ 

variable. To shorten the life time of sensitive information, which is password in this case, the 

programmer zeroes-out the buffer pointed to by password before returning it to the heap while 

the optimizing compiler such as Microsoft Visual C++ .NET optimizes it away by wiping out 

the array used by ‘memset’ operation to improve runtime efficiency. Hence, this causes a 

security vulnerability because the residual value in the password array might be read later by 

adversaries [2]. This also means that sensitive information is exposed in the heap. A similar 

type of issue was found in the Windows security push in 2002 [2, 22] which could not be 

discovered by source code. It could be identified only by analyzing the binary level code 

obtained from an optimized compiler. Yang et al. also reported that some bugs are producing 

imprecise code after being compiled even with the correct input [3, 23]. 

 

1.1.2 Advantages 

Due to the very low-level and complex nature of binary code, binary-level static analysis is 

highly challenging. Yet, as explained, there are advantages of doing static analysis on binary 

code over source code. 

➢ Binary analysis has the potential of finding security vulnerabilities regardless of source 

code availability. Many software are open source projects and due to the protection of 

intellectual property, owners do not release their source code. Often, source code is not 

supported by the original developers. Since binary-level analysis requires binary code 

only, source-level analysis is not possible in the absence of source code [30]. 

 

➢ Analyzing programs at statement or a block of statements, such as loops, switch 

statements, etc., might lead to higher false-positive rates as data flow information  
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Figure 1.2: An example for global information (Above image is referred from [3]) 

 

would be incorrect. This is taken care of in binary analysis as code is analyzed after 

being executed in the presence of compiler switches, exact control flow modelling is 

automatic; for instance, buffer checks need not be matched [30]. Static detection 

techniques have been applied to viruses, polymorphic worms detection, rootkit tool 

detection and spyware-like behavior [32, 33, 34, 9]. 

 

➢ Since modern compilers optimize and manipulate the code either by dead code 

elimination or changing the sequence of instructions, analysis of the code after 

compilation does not seem to be easy or precise. However, these optimizations can be 

understood at a low level as binary code is the final product generated in the last phase. 

Further, sometimes program written in high-level language has embedded inline 

assembly which is usually possible to understand by binary analysis. Some other 

optimizations like removing memory clearing of cryptographic keys can also be 

detected with the help of static analysis and automated tools. This is accomplished by 

statically analyzing the code and locating any potential bugs using a variety of methods, 

including disassembly, decompilation, and symbolic execution. This analysis, for 

instance, may reveal code lines where memory cleaning instructions are conditional or 

may be removed by the compiler for optimization. Additionally, binary-level defects 

linked to memory clearing of cryptographic keys can be found via pattern matching, 

heuristics, rule-based analysis, etc. with the aid of automated tools and software 

analysis frameworks [30]. 

 

 

int internal(int val1) { 
   if(val1 >= 0) 
        return 1; 
    else return 0; 
} 
 
 
internal.c 

extern int internal(int val2); 
int external(int val2) 
{ 
    int val3 = val2 * val2; 
    return internal(val3); 
} 

                                       
external.c 
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➢ Binary code is generated by linking separate object files together which have global 

information. Usually, this information is difficult to get before compilation. Some 

compilers have the tendency to compile one module at a time which makes it hard to 

analyze other modules during compilation. Thus, static analyzers use a conservative 

approach and make assumptions regarding the functions of other modules at the source 

level and intermediate representation level which again gives incorrect results. 

However, there are some less common compilers such as LLVM which support whole 

program optimizations. Let us consider two files ‘internal.c' and ‘external.c’, as shown 

in Figure 1.2, that have an internal function and an external function, respectively. The 

external function from file ‘external.c’ calls the ‘internal’ function which returns either 

0 or 1. And since val3 will always be greater than or equal to zero, the output of the 

‘external’ function will always be the integer value 1. If compiling both files separately, 

the compiler will not be able to obtain this information as there is no link between both 

files. However, with a linked binary file generated from both of the files, static 

analyzers could obtain this information in advance and, therefore, determine that 

function ‘external’ will always return 1 as the output. Thus, global information which 

is not present during compilation can be found in a binary file which helps in 

optimization too [3]. 

 

➢ Sometimes, it is not possible to predict the behavior of a compiler. Many compilers can 

accept a call made to a function with fewer parameters than what is required. For a 

compiler this unsafe code is easy to compile as the remaining parameters at the call site 

will be overwritten by the default values in the function being called. The analysis of 

these fewer or extra parameters can be obtained from an executable [31] whereas source 

analysis will not make a proper approximation.  

 

➢ There are numerous programming languages, but none of them is appropriate for all 

types of jobs. Nowadays, developers are using hybrid programming to overcome the 

shortcomings of each language. There are several examples, such as Java interfaced 

with C or C++ via the Java Native Interface (JNI) to access legacy libraries, inline 

assembly embedded with C++/C/Java, and so on. As a result, binary-level static 
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analyzers are more efficient because they only need to analyze in machine language, 

whereas source-level static analyzers must support multiple languages, which can lead 

to errors [3]. 

 

1.1.3 Recent Developments 

As discussed previously, a lot of effort has been made towards analyzing applications written 

in high-level languages such as Java, C, or PHP [9]. This has resulted in a variety of approaches 

to finding security flaws. The static analysis techniques are safe and computationally feasible 

for the set of values, or behaviors, during run-time [35]. These techniques are useful as they 

provide information without actually running the program and thus prevent any transformation 

or optimization (injecting malicious code) that a compiler might generate. Table 1.1 (adapted 

from [7]) shows the comparison of some prevalent tools which are used for static binary code 

analysis. Static analysis follows a logical order of steps that are applied to low-level language. 

Most of the analysis work has been done on accessing memory conservatively. Static binary 

code analysis is a two-step process, disassembly and analysis.  

Disassembly refers to the process of statically decomposing an executable into its 

corresponding assembly code by several processes [7]. 

➢ Linear Sweep: A Linear disassembler works by assuming that an executable is made 

up of numerous portions of sequential streams of binary code. However, instructions 

are not always sequential and could be broken up by data which might be mistakenly 

treated as instructions. Also, compilers may insert NOPs or other filler bytes to help 

align instructions to certain byte boundaries. 

 

➢ Travelling recursively: In this technique, for each control transfer command, an attempt 

is made to find all potential target addresses. The disassembler takes into account the 

target and the fall-through (the instruction following a conditional jump instruction) 

addresses any instruction. 

 

➢ Recovering Indirect Jump Table (IJT): As an optimization, compilers will create tables 

of addresses for switch case statements the addresses in these tables are used though 
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Table 1.1: Comparison of tools for binary-level analysis. 
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limited 
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✓ 

obj-dump  ✓  ✓  Linear 
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✓ 
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Figure 1.3: Sample assembly code in AT&T syntax 

 

indirect jump instructions. Normally, it is not feasible to recover the IJT table. However, 

Cifuentes and Van Emmerik[58], made it possible by performing intraprocedural 

slicing to extract the related instructions for any indirect jump by determining the 

ranges using the program’s use-def chains. But, they did not track values that are not 

in registers. 

 

Static Analysis of Assembly Code: There are various techniques to perform static analysis: 

 

➢ Analysis of control flow: A control flow graph maps the connection between sets of 

sequential blocks. It is prepared by examining the control statements like conditional 

jump, calling other functions, etc. After identifying all call sites and targets, nodes and 

edges were constructed which represent basic blocks and execution flow between the 

blocks, respectively. 

 

➢ Data flow: This technique gives information about the possible set of values at every 

instruction in a program by using the classic reaching definition algorithm. Using 

control flow analysis, it determines all the valid paths that reach that point and how 

data traverses those paths. In the research and development of our approach, a similar 

reaching definition algorithm was used which is elaborated in detail in Section 3.2.1. 

Consider the code snippet in Figure 1.3. A reaching definition analysis states that the 

value stored in register ‘%eax’ at d1 is a reaching definition to the value stored in stack 

location ‘-0x4(%ebp)’ at d2 which is used in d3. 

 

➢ Alias Analysis: An alias means that the same memory location gets accessed by two 

different references. For example, if two pointers are referring to the same memory  

d1: movl 0x10(%ebp), %eax 
d2: %eax, -0x4(%ebp) 
d3:-0x4(%ebp), %eax 
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Figure 1.4: A Generalized Flow Diagram of processes of static binary tools. 

location, then both are aliases of each other. Obtaining the precise memory location 

using alias analysis is challenging. Researchers such as Balakrishnan and Reps have 

proposed the implementation of value sets approximation techniques where the values 

of memory locations using strided intervals are calculated [31]; Debray et al. proposed 

approximating memory ranges stored in each register using address descriptors [36], 

etc. 

 

➢ Symbolic execution: It is feasible to assess the values of variables and valid constraints 

by replacing the definitions of variables with symbols using backward or forward 

propagation along with a data flow analysis without even executing the program [7]. A 

tool called IntScope detects integer overflow vulnerabilities by symbolic evaluation 

[37]. 

 

➢ Slicing of Program: A program sliced at a node ‘n’ is represented by the sequence of 

statements that may get impacted if the slicing was made at forward or backward 

sequences. An interprocedural slicing method was proposed by Kiss et al. [38] where 

CFG (control flow graph) and CDG (control dependency graph) were combined into a 
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program dependence graph (PDG). All the PDGs were then integrated into a System 

Dependence Graph (SDG) and the slice was computed. 

 

A lot of work towards disassembly and static binary analysis has been done in addition to the 

ones discussed earlier. A few attempts have been made toward indirectly accessing the 

memory. Amme et al. created an algorithm for data-dependence analysis [39] and Guo et al. 

proposed a low-level intermediate representation for pointer analysis which tracks registers in 

a flow-sensitive manner [40]. Scharwz et al. combined linear sweep and recursive traversal 

techniques and created a hybrid algorithm where they tested the output of both disassembler 

techniques to determine if they were correct by matching them [42]. Orso et al. created a 

disassembly method for use on obfuscated code [43] which relied on CFG checks to verify 

disassembly correctness. If there is any branch to the middle of an instruction then it indicates 

an error. Figure 1.4 shows the flow diagram of the process of static binary tools. 

 

1.2 Challenges Encountered in Analyzing a Binary Executable 

Analyzing an executable is advantageous, however, it presents some major issues such as 

robustness of analysis, data mixed with code, indirect control flow, deliberate code 

obfuscation, no run-time information and a high false-positive rate as it becomes difficult to 

identify the relevant properties of data and its objects which leads to poor accuracy. Modified 

binary becomes, thus, more challenging to understand or deconstruct. The remainder of this 

section discusses some of these challenges in more detail. 

 

1.2.1 Debug/Symbol Information is Not Present 

The debugging or symbol information is completely absent in cases of stripped binaries and 

potentially malicious programs including viruses, worms, etc. In these situations, we need to 

find the entry point, tracking of memory and register at all instructions. This led to the 

development of a few techniques where data and its objects were recovered from Intermediate 

Representation. However, these techniques have certain disadvantages. For example, EEL 

operates on SPARC binaries [41] cannot identify functions that are called by indirect control  
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Figure 1.5: Source code fragment of function in C 

 

transfer and does not work for variable-length ISA. An example of function identification 

which is still very common is ‘ebp’ based stack unwinding in x86 in a heuristic fashion. 

Nowadays, it is not valid anymore as call frame information (CFI) forms the basis of a modern 

stack and the records of the same are embedded in the majority of commercial off-the-shelf 

binaries. Experiments demonstrate that CFI is difficult to comprehend, and even when a case 

study is performed, the results were not reliable. Some commercial tools are being utilized for 

obfuscation to prevent attacks. In order to protect the author's intellectual property, proprietary 

algorithms, and license from getting tampered with, various program modifications are made 

in order to retain the semantics of the original program. Thus, commercial tools are used for 

obfuscation which is one of the reasons for missing information about transformed data. 

Additionally, malicious code is frequently obfuscated to thwart detection and analysis. 

Statically, attackers encrypt the code, decrypt it at runtime and get destroyed after execution. 

In order to prevent code from being examined, or even decompiled, adversaries can reorder 

the blocks or instructions and introduce effect-free instructions like ‘nop’ or trash bytes that 

are almost never executed. Sometimes, a call to a single branch function is redirected from 

many function’s calls to insert the junk bytes just after the call instruction to avoid 

disassembling [43]. According to Moser et al., static analysis alone is not enough for detecting 

malware since opaque constant primitives are used in challenging ways [44]. 

 

1.2.2 Absence of Data-Flow Tracking 

Unlike source code analysis, information about data flow is not explicitly present in binary  

void displayString(char str[]) 
{ 
int i = 0; 
printf("String: "); 
while (str[i] != '\0') { 
printf("%c", str[i]); 
i++; 
} 
printf("\n"); 
} 
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Figure 1.6: Disassembly of compiled function from Figure 1.5 in AT&T syntax. 

 

code. The variables provide a surface-level abstraction of the program's memory address space 

which is tracked by tools for source code analysis. Hence, it is difficult to track the flow of 

data through memory as source code analysis do not make use of use-def chains or def-use 

sets. A def-use chain represents the flow of a variable's value from its definition to its uses 

while a use-def chain while a use-def chain represents the flow of a variable's value from its 

uses back to its definition. However, data flow information gets exposed by data analysis and 

other ways. For example, Value Set Analysis (VSA) [2] is a dataflow analysis algorithm used 

to access memory locations. 

 

0000000000001189 <displayString>: 
1189:endbr64  
118d:pushq  %rbp 
118e:movq   %rsp,%rbp 
1191:subq   $0x20,%rsp 
1195:movq   %rdi,-0x18(%rbp)       // char str[] 
1199:movl   $0x0,-0x4(%rbp)         // i=0 
11a0:leaq   0xe5d(%rip),%rdi #2004 <_IO_stdin_used+0x4> 
11a7:movl   $0x0,%eax           
11ac:callq  1090 <printf@plt>     //printf("String: ") 
11b1:jmp    11d1 <displayString+0x48> //loop starts 
11b3:movl   -0x4(%rbp),%eax 
11b6:movslq %eax,%rdx 
11b9:movq   -0x18(%rbp),%rax 
11bd:addq   %rdx,%rax 
11c0:movzbl (%rax),%eax 
11c3:movsbl %al,%eax 
11c6:movl   %eax,%edi 
11c8:callq  1070 <putchar@plt>  //printf("%c", str[i]) 
11cd:addl   $0x1,-0x4(%rbp)     //i++ 
11d1:movl   -0x4(%rbp),%eax 
11d4:movslq %eax,%rdx 
11d7:movq   -0x18(%rbp),%rax //accessing array start addr 
11db:addq   %rdx,%rax  //getting addr of ith element 
11de:movzbl (%rax),%eax // reading ith element 
11e1:testb  %al,%al                
11e3:jne    11b3 <displayString+0x2a> //(str[i]!='\0') loop to 11b3 
11e5:movl   $0xa,%edi 
11ea:callq  1070 <putchar@plt> //printf("\n") 
11ef:nop 
11f0:leaveq  
11f1:retq 
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Example 1.2.2 The code fragment shown in Figure 1.5 and Figure 1.6 is used to demonstrate 

how memory locations get accessed. The function displays the string (character array) by 

looping through the array. It is compiled at O0 optimization level with GCC compiler for 64-

bit Intel ISA. For Intel 64-bit, parameters are passed by using registers, ‘%rdi’ being the first 

parameter. At index ‘1195’, a pointer to the character array (a parameter of function 

‘displayString’) is now stored in the local variable on the stack at the location ‘-0x18(%rbp)’. 

The value of another local variable ‘i’, stored on stack at ‘-0x4(%rbp)’ location used as a 

counter is set to zero initially as stated at index ‘1199’.  The program contains a ‘while’ loop 

from the index ‘11b1’ to ‘11e3’ traversing through each element by ith index. Inside the loop, 

a call is made to a function ‘putchar@plt’ to display the content of that element and then the 

counter is incremented by 1 at ‘11cd’. From ‘11d7’ to ‘11de’, ‘%rax’ is used to access the first 

element’s address and then add the current address of ith to the value in ‘%rax’ to finally fetch 

the content of the character array at ith value. This is done at index ‘11de’. The comparison is 

being done at ‘11e1’ to check the exit condition of the loop. 

 

As shown in this example, memory is accessed either through specifying an absolute 

address (directly) or by reference of an address expression of the [𝑏𝑎𝑠𝑒 ± (𝑖𝑛𝑑𝑒𝑥 ×

𝑠𝑐𝑎𝑙𝑒) + 𝑜𝑓𝑓𝑠𝑒𝑡] (Intel format) indirectly. The base and index are registers, and scale and 

offset are integer constants with the scale as a factor of 1, 2, 4, or 8. Therefore, tracking the 

contents of every memory location in the program could be an alternative for retaining the 

data-flow information. Additionally, values at local variables are stored on stack and copied 

back and forth to registers, unlike source code that uses the variable name. However, it is hard 

to keep track of contents at each memory location statically as the size of address spaces is 

quite large in modern machines [2]. Hence, information regarding data flow and data-objects 

could be only deduced in the case of stripped binaries. 

 

1.2.3 Lack of Structure Information and Memory-Access Expressions 

Binary code lack’s structure and does not have a defined control flow graph and not a single 

instruction is guaranteed to be unique because two instructions in an x86 program could 

overlap. Indirect call and jump instructions make it very challenging to create an accurate and 
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comprehensive control flow graph from binary code. Direct branch and call instructions are 

relatively easy to recover the branch targets and call targets as they are encoded in the 

instructions themselves. Thus, it is imperative to make approximate assumptions 

conservatively. As first stated in the prototype of CFI [18, 19], any function could have been 

called by an indirect call when the address is known. Further, the only information present in 

any binary code is ‘byte’ as a structure along with ‘register’ and ‘memory location’ as high– 

level types. Other high-level type information like data types (integer, float, etc.) and data 

structures (such as pointers, arrays, user-defined struct, etc.) get lost during the compilation of 

the program. Even worse, there is no function boundary or procedure defined in binary code 

[3]. It is quite challenging to say where the function starts or ends. Additionally, it is impossible 

to find whether code and data are coiled together or entirely separate from each other in the 

code section. 

 

Many techniques have been used to obtain information about memory-access expressions. 

The methods proposed are generally approximate assumptions or unsound. Let us try to 

determine the dependence of data between instructions of an executable. Considering example 

1.2.2 and Figures 1.5 and 1.6. Let us name instruction at index ‘1199’ as i1, at index ‘11cd’ as 

i2 and at ‘11d1’ as i3. Instruction i1 is data dependent on instruction i2 as the instruction i1 has 

written value 0 to local variable -0x4(%rbp) which is read and incremented by 1 at i2. However, 

i2 is not dependent on i3 at index ‘11d1’ where the value of -0x4(%rbp) is being read but not 

written in the loop. Debray et al. [36] proposed an algorithm of alias-analysis stating that any 

memory written by any instruction could affect the memory read operation for any other 

instruction. This led to the inference that i2 is dependent on both i1 and i3 which is a poor 

overly-conservative approach gives high false positive rates. Kiss et al. [38] proposed that two 

memory locations are aliases of each other by heuristics which may fail to classify any data 

dependency between two instructions like i1 and i2. A few of the many reasons why memory-

access expressions are difficult to identify are [2]: 

 

➢ Word-sized address values could be constructed from improperly aligned reads and 

writes as memory accesses are not required to be symmetric. 
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Figure 1.7:  A code fragment explaining the absence of implicit features in some compilers for 

x86 ISA. 

 

➢ Manipulations done on memory addresses are a bit complicated. For example, 

instruction at index ‘1195’ in Figure 1.6, some arithmetic operations must be performed 

to dereference the actual value of a local variable to get a memory location. Added 

expressions on indirect memory addressing makes it difficult to comprehend. 

 

➢ At the hardware level, there is no way to differentiate between a memory address and 

a normal integer value as types are not well defined. 

 
➢ There is no information about the heap as it is changing dynamically, which is a 

shortcoming for static analysis. Abstractions of the heap where the assumption is to 

have one summary node per malloc site does not give useful information in binaries. 

And, due to scalability issues, complex abstractions are not applied.  

 

1.2.4 Complex Architecture and Self-Modifying Code 

Intel x86 is the most prevalent ISA (Instruction Set Architecture) of the Complex Instruction 

Set Computing (CISC) family. These instructions range between one to fifteen bytes in length 

with opcodes of one, two or three bytes long having up to four prefixes, each taking one byte. 

Consider an instruction prefetchnta 0x56e58955. The hexadecimal encoding for this is 0x0f 18 

05 55 89 e5 56 of which 0x55 represents push ‘%ebp’ in hexadecimal notation. Further, 0x89 

e5 is a two-byte encoding of ‘mov %esp, %ebp’ and ‘push %esi’ is denoted as ‘0x56’ in the 

hexadecimal form. Overall, this means that depending on the start byte we can interpret this in 

many ways or even execute different instructions based on the start address. The fourth byte 

of that instruction can assume to be a typical start of any function in an executable [3], which 

can affect static function detection. Hence, the ISA itself is very complicated to start with. 

add 3, %edx 

shl %eax, %ecx 

jg  label1 
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Some compilers do not take care of some features of a processor like implicit definitions of 

the flag register in x86 as they are very complicated and expensive to simulate. This may cause 

issues in data flow analysis in modern microprocessors. People who work with static analysis 

tools where a particular family of compiler does not consider some important features of the 

processor architecture that are used by other compiler families. In x86, arithmetic and logical 

instructions set these flags implicitly. Consider the instructions ‘add and ‘shl’ as shown in 

Figure 1.8. Instructions like ‘add’, ‘sub’, ‘shl’, etc., generally have six flags - SF, ZF, AF, PF, 

CF and OF [45]. The first instruction ‘add’ adds  3 to %edx (following AT&T syntax) and then 

‘shl’ shifts the value in %ecx to left by %eax bits. ‘jg’ jumps to label1 if ZF=0 and OF=SF 

[45]. Depending on the contents of %eax, these Instruction Flags are set. If the content of the 

%eax register is zero, there is no effect on any flags except for OF which is affected by 1-bit 

shifts. Thus, we can see some unmodeled effects [3]. 

 

Sometimes during execution, code either gets modified or a new code is generated. So, we 

cannot consider binary code complete, as we do not have knowledge of some code prior to 

program execution. As this type of self-modifying code is not present until runtime, static 

analysis cannot be performed since this is all dynamic in nature. It has been observed that 

untrusted code can hide and generate malicious code at runtime which destroys the actual code 

after the execution. Hence, we need dynamic analysis in addition to static. The untrusted code 

can be run on a simulator to get fed into static analyzers later. Yet again, dynamic code only 

opts for a single flow of instruction during execution which again limits the scope of analyzing 

any executable [3]. 

 

1.2.5 Finding function parameters and local variables for 32-bit and 64-bit 

Analyzing the parameters of a function is an important step towards extracting semantics 

accurately and perfectly from binaries. First, parameters are examined at function and indirect 

call-sites. Targets of indirect calls can be reduced if we keep the count of arguments generated 

before call-sites and consumed by functions. Incorrect transfers at call-sites can be limited by 

having the knowledge of counts of parameters. Getting the semantics correct requires the 

reaching definition analysis of every instruction to track the direct or indirect calls. Sometimes, 
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as we have seen, the architecture of x86 and x64 is very complex and is instruction oriented. 

Therefore, the process of finding the parameters can sometimes lead to false positive results 

too. Also, since modern compilers optimize the code in many ways, this may confuse the 

typical pattern of instructions and then the recovery of data from registers and memory location 

from binary executables gets aggravated.  

 

Based on a given architecture's calling conventions, it may be statically possible to find the 

actual number of parameters/arguments and local variables used in a particular function. This 

process initially aimed at a given processor (Intel [45]) can be generalized later and is higher 

in performance compared to other approaches. Since every ISA has different set of instructions 

and optimization levels depending on the compiler, finding parameters can be challenging at  

times. Thus, the algorithm presented in this thesis is not complete but is an approach we believe 

can work for all ISA’s. The logic for this algorithm is the memory locations accessed directly 

in the stack without any assignment of value are considered to be a parameter. In AT&T syntax, 

the first value in the instruction is the source followed by a destination. Hence, keeping track 

of all the sources and destinations and verifying whether the source is already used in the 

destination at every instruction might give us the memory location of those parameters. In a 

32-bit GCC compiler, the number of arguments is the references to EBP + (n>=8) within a 

given function. In 64-bit GCC, we get the values from the registers used directly as the source. 

However, for the Clang compiler, the logic changes drastically as the parameters are defined 

with respect to the stack depth. Generally, in 32-bit Clang, we consider parameters as the 

memory locations used directly as a source on the stack of the form ESP+ (n>stack depth). 

However, in 64-bit Clang, registers are used directly, and the values are stored at the memory 

locations of the form ESP- (n<= stack depth). Thus, it is quite challenging to create a general 

algorithm which deals with different compiling techniques.  

 

Further, for the local variables also, both the compilers follow different strategies like the 

arguments. In GCC, the negative offset to all references of EBP can be stated as local variables 

i.e. EBP – (n>=8). And in Clang, usually all the memory locations of the form ESP- (n<= stack 

depth) is considered to be the locations where the local variables are stored. We can look for 

values onto the stack, as these values are often function parameters. The rationale behind this 
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Figure 1.8: An example showing the form a parameter in a binary 

 

theory is explained further in section 2.2. Also, we can check for the instructions that use the 

stack pointer (ESP) or base pointer (EBP) to access the function parameters. However, these 

strategies present certain limitations and challenges which are discussed in Chapter 5. 

 

1.2.6 Finding function parameters used as pointers for 32-bit and 64-bit 

Analyzing memory access to find the contents of the memory location is one of the most 

challenging tasks since low-level instructions use explicit memory address and indirect 

addressing to manipulate data. Further, in stack manipulation a function may manipulate the 

stack in complex ways, such as by pushing and popping values to save and restore registers or 

directly modifying the stack pointer. This can make it difficult to identify the location of 

function parameters on the stack. Sometimes, calling or returning target values out of the 

function bounds makes it hard to keep track of the flow. The way function arguments and 

return values are passed between functions is governed by calling conventions. Different 

compilers and platforms may use different calling conventions, which can make it difficult to 

identify the location of function parameters in the code. Obtaining the semantics precisely can 

be divided among inter-procedural, IR, and constructing SDG. This is done by creating a set 

of reaching definitions at every instruction and inspecting the source and destination by 

dereferencing the pointer and checking whether it is a parameter or not. To obtain the signature 

of subroutines, Cristina [46] developed an inter-procedural analysis method which identifies 

the set as the actual call parameters and calculates the data set containing the live data locations 

at each call site.  

 

As discussed in section 1.2.5, after fetching formal parameters, we need to check for the 

instructions that access the memory pointed to by the pointer parameter. Consider an example 

shown in Figure 1.8 which states that if the function takes a single pointer parameter, it might 

push ebp 

mov ebp, esp 

mov eax, [ebp+8] ; load pointer parameter from stack into eax 
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be of the form [ebp+8]. In this example, the value of the pointer parameter is loaded from the 

stack into the EAX register. However, the exact details of how function parameters are passed 

and accessed can vary depending on the calling convention used by the compiler, so we may 

need to consult the documentation for the specific compiler and architecture. 

 

1.3 The Scope of Our Work 

As we have seen previously, analyzing a stripped binary executable is quite hard and 

challenging, we have designed a novel approach or a basic algorithm which finds the formal 

parameters, local variables and parameters used as pointers in a function. The approach is : 

 

➢ It uses the static analysis tool, JIMA and the formatted file called JIMA Intermediate 

Language (JIL), the actual binary tool which does the analysis by linear sweep, 

recursive traversal, heuristic approaches, jump table lookup, Intermediate 

Representation, value set analysis for jump table, limited symbolic execution, 

exception block detection, etc. techniques. This algorithm is developed as an additional 

functionality for the JIMA tool. It starts off by finding a set of target addresses at each 

instruction through reaching definition analysis explained in Chapter 3.  

 

➢ For 32-bit compiler O0 for both GCC and Clang, we assume parameters are passed 

directly on the stack and referenced using ‘%ebp’ register. We use EBP + (n>=8) as 

formal parameters and the reference of the form EBP - (n>=4) as local variables. At 

every instruction from the start of the function, we add all the sources and destinations 

until we reach the target. 

 

➢ For 64-bit O0 for both GCC and Clang, the values are directly fetched from the registers 

instead of passing the value onto the stack as it has enough memory. Generally, the 

value from the registers gets stored in the memory locations where local variables are 

stored of the form EBP - (n>=4) for later use. Again, at every instruction, by keeping 

track of sources and destinations up till that instruction and finally, find the unique 

sources by checking if any source is there in the destination or not. If it is not present 

in the destination, then we consider it a parameter. 
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➢ For 32-bit O2 for both GCC and Clang, the parameters are not referenced by the use of 

%ebp base register rather via the stack pointer %esp with respect to the memory 

locations that lesser than the stack depth. As we know, the stack makes space by the 

instruction ‘subl $0x20, %esp’. This means any memory location of the form 

‘%0xn(esp)’< stack depth will a local variable. Thus, any memory address greater than 

the stack depth will likely to be a parameter. Also, sometimes, it deals with the registers 

directly where it pushes ‘%ebx’ to store some value which might get used later in the 

function. At the O2 level, there are other possible scenarios too, we handled them by 

taking them case by case and we are still incorporating that into our algorithm. 

 

➢ Similarly, for 64-bit O2 for both GCC and Clang, we followed the heuristics where 

registers are used directly to get the values which are stored in local variables to be 

used later. The process of finding the parameters is similar to O0. However, there are 

differences in how the local variables are obtained since in the O2, the values from 

registers are first moved to a register and from there to a local variable. Hence, we 

sometimes get extra registers as parameters and extra local variables. O2 is difficult to 

handle as the compiler optimizes the code and sometimes these heuristics do not 

work. 

 

➢ The algorithm can work on any program compiled from a high-level language or 

assembly. Even with the compiler optimizations, the success rate is quite high. 

Additionally, the approach mentioned above is able to work on the executable that 

modifies the code section on-the-fly, i.e., self-modifying code. This algorithm also 

handles obfuscations like memory-access reordering, instruction reordering, junk-byte 

insertion, register renaming, etc. 

 

➢ Finding the parameters and local variables leads to the analysis of the parameters used 

as pointers. The first step of the analysis is to dereference every source and destination 

and finally compare both with the parameters. If the source or destination is a parameter 

then it is a parameter used as a pointer. If it does not matches then it traverses back 

through the backward analysis which means tracing backwards and knowing from 
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where the value is coming in the current pointer. If the pointer is pointing to the value 

which is either coming from a register or a local variable where the register saved its 

value for later use, then that pointer is pointing to a parameter. This means that it is 

again a parameter used as a pointer. If it is coming from the local variable, then we 

ignore that pointer. 

 
➢ In order to understand how to find local variables and pointer used as a parameter, we 

need to understand the workflow, reaching definition and iterative algorithm. They are 

explained in detail in Chapter 3. 

 

1.4 Motivation and Contributions 

The thesis is focused on the development of an algorithm to find the number of 

parameters/arguments and local variables in a function. Also, the algorithm finds parameters 

used as pointers in functions. This can be further extended to check for arrays passed as 

parameters. The ultimate goal behind this research is to statically recover the signature of a 

functions data types - integer, unsigned, signed; arrays; user-defined structures, etc. from 

stripped binaries. The approach presented in this thesis is an added functionality for the tool 

JIMA and uses the format JIMA Intermediate Language (JIL) built and distributed by the 

University of Idaho under the Center for Secure and Dependable Systems. JIMA is an open 

source software tool designed for the analysis of binary executables. It has been tested for over 

650 functions from stripped binutils, coreutils and findutils binaries including O0 and O2 levels 

compiled with both GCC and Clang and are matched with the ground truth. The algorithm 

works on the ‘Executable and Linkable format’ (ELF) which is a popular file format and 

currently works on Intel [45] ISA 32-bit and 64-bit. Sometimes, if a binary is being compiled 

on 32-bit and a 64-bit parameter was passed, the parameter was broken into two 32-bit 

parameters. On other occasions, only two parameters were actually used in the function 

definition despite the function declaration where three were passed. These were the times when 

it broke or found the ground truth depending on the scenario. Since the compilation techniques 

are different for GCC and Clang, we observed a few abnormalities in Clang too where every 

‘struct’ or ‘array element’ is considered as a local variable. Apart from these, there are other 
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limitations and discrepancies which is discussed in detail in Chapter 5. The algorithm uses a 

reaching definition algorithm and iterative algorithm which is explained in section 3.1 along 

with the examples. 

 

1.5 Thesis Overview 

The organization of the remainder of the thesis is summarized as follows. Chapter 2 provides 

background on the concept of the binary executable, assembly language, and stack memory 

management. It also focuses on the work contributed by others in this field. It introduces the 

University of Idaho’s static tool for binary analysis called JIMA and how it is being used in 

the development of the algorithm. Chapter 3 introduces the algorithm developed in detail. The 

approach includes reaching definition analysis (RDA) and iterative algorithm which is 

explained in detail with the approach, actual implementation and examples along with the 

dataflow diagrams. It states how RDA and iterative algorithm integrated in the algorithm. 

Chapter 4 presents all the experiments and test cases run on stripped binaries and showcased 

the results with the success rate defined in terms of precision, recall and F1 score for both GCC 

and Clang. There were around 650 test cases out of which some gave false results due to the 

limitations and compiling techniques. Chapter 5 draws attention to the challenges, limitations 

and drawbacks of analyzing indirect memory locations statically. In this chapter, the 

shortcomings of the algorithm have been discussed for how and why the algorithm presented 

is not complete. Finally, chapter 6 provides a conclusion, research contribution and what can 

be done for future work and the ways to tackle it.  
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Chapter 2 : Background 

A file containing a machine or low-level code that can be run directly by a computer's processor 

is called a binary executable. It is sometimes referred to as an executable file or a binary file. 

A compiler or an assembler transforms source code into a computer executable machine code. 

An executable could be a group of many files or libraries merged and linked together by a 

linker that creates a final executable. Binary executables are used to run applications, operating 

systems, and other software on a computer. Additionally, there are binary data files, which are 

collections of bytes, words, or even arrays. When a binary executable is executed, the 

computer's processor reads and interprets the machine code in the file and executes the 

instructions. Binary files are different from text files as they are not available for human 

reading whereas text files are specific to the character set. Also, binary executables are usually 

platform-specific, meaning they are compiled for a particular type of computer or operating 

system. For example, due to compatibility issues, an executable file which is compiled for 

Windows will not run on a Mac or Linux computer without some kind of portability layer or 

virtual machine. However, binary files can have text strings which could be either ASCII or 

Unicode. Generally, some programs or files with extensions such as .bin or .exe are identified 

as executable.  

 

2.1 Fundamental Concepts of Binary Executable 

Executables are a sequence of bytes of data written in low-level code. Although programs 

written in high-level languages are convenient to read for humans, the binary executable is 

fastest in interacting with the hardware as it is in the binary digit form, ones and zeroes. These 

files are often stored in a container format like ‘Executable and Linkable format’ (ELF) or 

‘Portable Executable’ (PE). An executable is generally divided into sections - .text (executable 

code), .data (initialized global and static variables), and .rodata (read-only data, such as 

constants and strings) as shown in Figure 2.1. They are essential for system calls and tasks 

which are necessary at runtime. 
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Figure 2.1: An example of a binary file (ELF format).  

From high-level source code, machine-level instructions can be generated which are often 

referred to as assembly language. Often, dynamically, there is only a single execution path 

which does not cover all the dataflow. Let us walk through the importance of reverse 

engineering and static binary analysis in detail. 

 

2.1.1 Reverse Engineering and Static Binary Analysis  

Reverse engineering is the process of analyzing, dissecting and comprehending how a program 

or application works by looking at its parts, functions, and design. In software, reverse 

engineering often involves examining compiled code to understand how a program works or 

to modify it for a specific purpose. It can also involve analyzing malware or other software to 

understand how it functions and how it can be defended against. Reverse engineering is an 

important process, as shown in Figure 2.2, for understanding complex systems, improving 

products, identifying security vulnerabilities, and protecting intellectual property. There are 

several reasons why reverse engineering is necessary: 

➢ Understanding complex systems: Reverse engineering can be used to understand 

complex systems that are difficult to comprehend by simply examining their external 

behavior. This is especially useful when working with legacy systems or when trying 

to integrate different systems together.  

 

Product design and improvement: By reverse engineering a product or system, 

engineers can gain insight into the design choices made by the original creators which 

paves the way for innovative design.  
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Figure 2.2: Basic process of reverse engineering. 

 

➢ Security analysis: Reverse engineering can be used to identify vulnerabilities and 

weaknesses in software and hardware systems. It can be applied to identify 

security issues with a product. Instead of learning about these flaws at the distribution 

phase, reverse engineering allows for the detection of all such problems during the 

research process itself. This is important for protecting systems against attacks, as it 

allows developers to understand how an attacker might try to exploit a system. 

 

➢ Intellectual property protection: Reverse engineering can also be used to identify 

intellectual property violations, such as copying of software designs.  

 

Static binary analysis is a type of reverse engineering and software analysis that involves 

examining the binary code of a program without actually running it. In static binary analysis, 

the binary code is analyzed using specialized tools and techniques that are designed to detect 

and identify certain types of issues, such as buffer overflows, race conditions, and other types 

of bugs. This analysis can also help identify areas of the code that might be susceptible to 

exploitation by attackers or that could pose a risk to the security of the system. Some of the 

tools used in the static binary analysis include disassemblers, decompilers, and debuggers, as 

well as more specialized tools for analyzing specific types of vulnerabilities or code structures. 

The results of the analysis can then be used to improve the security of the software, to identify 

areas for optimization and performance improvements, or to provide insights into the inner 

workings of the program. Some of the static binary tools are JIMA [59], IDAPro [25], etc. In 

both static binary analysis and reverse engineering, the goal is to understand the behavior of 

compiled code. Reverse engineering often involves static binary analysis as a critical step in 

the process of reconstructing the original source code or design specifications. Similarly, static 
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binary analysis often involves reverse engineering techniques to identify and understand the 

behavior of compiled code, including analyzing its control flow, data flow, and calling 

conventions. 

 

2.1.2 Basics of Assembly Language 

Since static binary analysis requires knowledge of low-level or assembly language, this section 

talks about the assembly language required for understanding the stack memory management 

and analysis of a function for finding the parameters in detail. Since our algorithm works for 

Intel 32-bit and 64-bit executables, this section is based on understanding that the Intel ISA 

[45] has a specific instruction set. Assembly languages frequently act as bridges, enabling the 

development of more complicated programming languages, which can increase a developer's 

efficiency. For the development and testing of the algorithm, we have used ‘C’ and ‘C++’ as a 

high-level language converted into a binary executable and stripped binaries as binutils, 

findutils and coreutils to work on. The components are described in the coming sections. 

 

2.1.2.1 Registers 

Intel processors are backwards compatible and thus from 32-bit and 64-bit, the bits were added. 

With prefix ‘E’ in 32-bit, EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are the core eight 

general purpose registers. Similarly, having ‘R’ as a prefix in 64-bit, the eight registers are 

named as RAX, RBX, etc. The other eight are named numerically r8 through r15. The 

summary of Intel register naming convention is given in Figure 2.3. 

 

2.1.2.2 Memory and Addressing Modes 

Declaration of Static Data Region: Data declarations should be preceded by 

the .DATA directive and have the locations labeled with names for later reference like 

variables. For example, 

Z DD 1, 2, 3 ; Declare three 4-byte values, initialized to 1, 2, and 3. The value 

of location Z + 8 will be 3. 

str DB 'hi',0 ; Declare 2 bytes starting at the address str, initialized to the 

ASCII character values for ‘hello’ and the null (0) byte. 
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Figure 2.3: General purpose register in x86. (Adapted from Intel’s guide manual) 

➢ Addressing Memory Access: Modern x86-compatible processors are capable of 

addressing up to 2N bytes of memory: memory addresses are N-bits wide. For example, 

mov %cl, (%esi,%eax,1) ; Move the contents of CL into the byte at address 

ESI+EAX 

mov (%esi, %ebx,4),%edx ; Move the 4 bytes of data at address ESI+4*EBX into 

EDX 

 

➢ Size Directives:  In general, the assembly code instruction in which the data item is 

addressed can be used to determine the intended size of the data item at a specific 

memory address. For example, 

movb $2, (%edx) ; Move 2 into the single byte at the address stored in EDX. 

movl    $2, (%ebx)    ; Move the 32-bit integer representation of 2 into the 4 bytes 

starting at the address in EBX. 
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2.1.2.3 Instructions 

The instructions can be divided into three categories – control flow, arithmetic & logic and 

data transfer. Examples of each type of instructions are as follows: 

➢ Data transfer: This includes instructions like mov, lea, push, pop, etc. where the actual 

data or content is getting transferred. For example, 

    movb    $3, 0x08445 — store the value 3 into the byte at location having memory  

            address as 0x08445 

 pushl  %ebp — pushing register ebp on stack. 

leaq   0xe5d(%rip),%rdi — the address of (%rip)+0xe5d and store in %rdi. 

 

➢ Arithmetic and Logical Instructions: These perform some logical or arithmetic 

operations that include increment & decrement, addition, subtraction, integer 

multiplication, and, or, xor, nor, shl etc. For example, 

addl   $0x1,-0x4(%rbp) ; adding 1 to the value stored in %ebp-0x4. 

shll $1, %eax — shift all the bits in %eax by 1 spot left effectively. 

 

➢ Control Flow Instructions: An instruction pointer (IP, EIP) register is used to track 

where the current instruction starts in memory. After an instruction has been executed, 

it ordinarily increments to point to the following instruction in memory. The given 

control flow instructions update the IP register implicitly rather than allowing direct 

manipulation. This type includes jump, conditional jump, compare, return, call, etc. 

Examples are – 

jmp    11d1 <displayString+0x48> ; jump to a target address 

callq  1070 <putchar@plt>  ; call a target outside the function 

 

2.1.2.4 Calling Conventions 

A protocol describing how to call and return from routines is known as the calling convention. 

For instance, a programmer need not look up a subroutine's definition to know how parameters 

should be handed to it if there are rules for calling conventions. Furthermore, high-level 

language compilers can be designed to adhere to a set of calling convention rules, enabling  
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Figure 2.4: Stack during subroutine call (Reference taken from x86 Assembly Guide) 

 

hand-coded assembly language routines and high-level language routines to call one another. 

The utilization of the hardware-supported stack forms a significant part of the C calling 

convention. Instructions like push, pop, call and ret form the basis of this convention. The stack 

is used to pass parameters to subroutines. The stack serves as a storage location for registers 

and local variables utilized by subroutines. There are two sets of rules for the calling 

convention. The caller of the subroutine follows the first set of rules, and the writer of the 

subroutine abides by the second set of rules (the callee). The calling convention should be 

implemented with extreme caution in subroutines since failure to follow these guidelines can 

soon lead to severe software problems because the stack will be left in an inconsistent state.  

Figure 2.4 shows how a stack looks during a subroutine call with two parameters and two local 

variables being executed. Each memory location is 4 bytes apart and the base pointer is 8 bytes 

away from the first parameter. The return address is placed below the base pointer and above 

the parameters, the call instruction has an additional 4 bytes of offset. To exit from the 

procedure, ret instruction will reach the return address saved on the stack. The way function 

parameters are passed, return values are returned, and the stack is maintained during function 

calls are all governed by calling conventions. There are different types calling conventions 

used in programming and systems architecture, including: 

 

➢ CDECL (C Declaration): The programming languages like C and C++ frequently 

make use of this calling technique. The caller is in charge of clearing the stack after a 
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function call according to the cdecl protocol, which requires that function parameters 

be passed on the stack in reverse order (the rightmost parameter is pushed first). 

 

➢ STDCALL (Standard Call): Some Windows APIs and the Microsoft Visual C++ 

compiler both use this calling convention. According to the stdcall protocol, the callee 

is in charge of clearing the stack before returning, and function parameters are passed 

on it in reverse order. 

 

➢ FASTCALL: Some compilers and architectures, like x86, use this calling pattern to 

enhance function call performance. Faster function calls without having to touch the 

stack are possible with the fastcall convention, in which function parameters are passed 

in registers (often in the ECX and EDX registers). 

 

➢ THISCALL: In object-oriented programming languages like C++, this calling 

convention is used to handle member function calls that have a concealed this pointer 

as the first parameter. The ‘this’ pointer is normally supplied in a register (ECX on an 

x86 platform, for example) or on the stack when using the thiscall convention, and the 

remaining parameters are also passed on the stack. 

 

➢ SYSTEM V AMD64 ABI: Systems running on 64-bit x86 architecture, including 

Linux and macOS, use this calling convention. The callee is in charge of clearing the 

stack before returning under the System V AMD64 ABI. Function parameters are 

supplied in registers (such as RDI, RSI, R9) before spilling onto the stack if necessary. 

 

 

2.2 Stack Memory Management 

Stack memory management is a process by which a software or application allocates and 

deallocates memory from the stack data structure to store and retrieve data during the execution 

of the program. This memory allocation takes place on contiguous blocks of memory. The 

compiler creates and maintains the stack and activation record called stack frame. Most 

programming languages uses a stack to manage data for function calls. Therefore, a developer 

need not worry about stack allocation or deallocation. Generally, the information includes 
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argument values (if not passed in registers), the return address, callee-saved register values, 

and local variables. Every function call if not all will have at least a return address, which is 

the location in the calling function to return to when the function call is finished. 

 

In stack memory, the first item popped off of the stack is the last item pushed onto the stack 

that means it follows the ‘Last In First Out’ (LIFO) data structure. In modern microprocessors, 

it is assumed a stack grows down. This also means that the last item pushed is in a lower 

memory address. The stack often stores local variables, function parameters, calling functions, 

and return addresses. A stack memory management involves the following two main 

operations: 

➢ Pushing: Pushing is the process of adding data to the top of the stack. When a function 

is called, its local variables and parameters are pushed onto the stack. The return 

address of the function is also pushed onto the stack, which allows the program to return 

to the calling function after the execution of the current function is completed. 

 

➢ Popping: Popping is the process of removing data from the top of the stack. When a 

function returns, its local variables and parameters are popped off the stack. The return 

address is also popped off the stack, allowing the program to return to the calling 

function. 

 

The stack is managed automatically by the compiler, which keeps track of the stack pointer 

with a register that stores the memory address of the top of the stack. Usually, it is referred to 

as ESP (Extended Stack Pointer) on 32-bit Intel systems and RSP (64-bit Stack Pointer) on 64-

bit Intel systems. To access the memory address of the top of the stack, we can simply read the 

value of the ESP or RSP register. This value represents the memory address of the last item 

pushed onto the stack. When we push a value onto the stack, the ESP or RSP register is 

decremented by the size of the pushed value, so that it points to the start of that value on the 

stack. The stack grows from higher memory addresses downward towards lower memory 

addresses. During the pushing and popping operations, the stack pointer is changed to 

guarantee that the data is saved and retrieved in the proper sequence. Usually, the first two 

instructions in a function save the current activation record pointed by (%rbp) on the stack, i.e. 
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(“pushq %rbp”) and then copies the stack pointer to ‘%rbp’, i.e. (“movq %rsp, %rbp”) as 

shown in Figure 2.5. The frame pointer is ‘%rbp’ for the current function call. Thus, all 

references to local variables and to parameters or arguments in memory are made using this 

indirect memory addressing with either ‘%ebp’ or ‘%rbp’ which was mentioned in section 

1.2.3. Space for local variables is created on the stack by subtraction from ‘%esp’ or ‘%rsp’ 

and then local variable is accessed with a negative offset from ‘%rbp’. The syntax for a local 

variable looks like ‘-0x28(%rbp)’ in assembly in AT&T syntax which is an indirect memory 

address obtained by subtracting 0x28 as an offset from the address value in ‘%rbp’. Since stack 

memory management uses only a few machine instructions to push and pop data, for example, 

Intel has optimized memory access using ‘%esp’, ‘%ebp’, so it is fast and efficient presenting 

several advantages, including: 

➢ Efficiency and Convenience: Because the program or operating system handles 

memory allocation and deallocation automatically, stack memory management is a 

very effective method of managing memory. This can save time and resources because 

there is no longer a need to manually allocate or deallocate memory for local 

variables.Writing and debugging code is made simpler by the program's automatic 

memory management of local variables and function calls. 

 

➢ Security: Stack memory management provides a secure way of managing memory 

because the memory allocated on the stack is only accessible within the current function 

or block. This means that other parts of the program cannot access the memory, which 

helps to prevent data corruption and security vulnerabilities. 

 

➢ Speed: Stack memory management is typically faster than other types of memory 

management because the memory is allocated and deallocated using a simple pointer 

manipulation. This means that programs that use stack memory can run faster and be 

more efficient than programs that use other types of memory management. 

 

However, the amount of stack memory available to a program is limited, and exceeding the 

available stack space can cause a stack overflow error, which can lead to program crashes and 

other issues. Figure 2.6 shows a program having stack overflow. For the function ‘foo’ it does  
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Figure 2.5: A function start showing stack and base pointer making space 

 
not include any base condition for its recursive call, i.e. calling the function ‘foo’ again. This 

loop will never end and results in the overflow of the stack to store more values. Hence, 

whenever the stack memory gets completely filled, a stack overflow error occurs. In summary, 

stack memory management is an essential part of the execution of computer programs, 

allowing them to store and retrieve data in a temporary and efficient manner. The management 

of the stack is automatic and handled by the compiler, which uses the stack pointer to keep 

track of the data stored on the stack. 

 

2.3 Related Work 

Disassembly Static analysis techniques for extracting data from binary executables have 

received a lot of attention in the past few decades [39, 47, 9, 48, 46, 36, 40, 27]. A lot of efforts 

have been made towards static analysis of a binary code [4, 5, 6] to develop tools to find bugs 

and security vulnerabilities. Many techniques have been proposed to improve the recovery of 

data types [10, 11, 12], code structure [10, 13, 14, 15], and even exact syntactic identity [10, 

16]. Many tools like ATOM [26], EEL [27], Vulcan [29], and Phoenix [28] evaluate 

executables with the help of symbol-table or debugging information. It is now possible to find 

some information even without the debugging information when descriptors represent 

collections of memory configurations [24]. Scharwz et al. combined linear sweep and recursive 

traversal techniques and created a hybrid algorithm where they tested the output of both 

disassembly and if it matched then it was considered as correct [42]. Orso et. al created a 

disassembly method for use on obfuscated code [43] relied on CFG checks to verify 

disassembly correctness. Some of the tools like GHIDRA, IDAPro, BAP and JIMA are 

examples of static binary analysis tools.  

0000000000001169 <getAverage>: 

    1169: endbr64  

    116d: pushq  %rbp 

    116e: movq   %rsp,%rbp 

    1171: movq   %rdi,-0x28(%rbp) 

    1175: movl   %esi,-0x2c(%rbp) 
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Figure 2.6: Stack Overflow example 

 

Decompilation As decompilation is an important step towards analyzing stripped binaries 

by static analysis, there are developments in this direction like Cifuentes’s [46] concentration 

on the recovery of expressions from instruction sequences and control flow. Also, Chang et al. 

created a framework for converting assembly code to high-level languages like C++ and Java 

[53] and makes use of a group of similar decompilers. Some decompilers were chained together 

to create a mechanism for a lower-level decompiler to communicate to a higher-level compiler 

and vice-versa. It is done by interfacing different decompilers with the modularized 

framework. However, this process is very complicated as the locals of a procedure need to be 

identified prior to decompilation. 

 

Memory Accesses To determine information about a program’s memory accesses, Rugina 

and Rinard [54] used a combination of pointer and numeric analysis. It was not widely adopted 

as their approach assumed that the local and global variables of the program are known prior 

to analysis. The collection of "allocation blocks" included the local and global variables and 

dynamic-allocation sites of the program. There was no information about alignment and stride 

information even though they were able to determine the range information. Pointer and 

numerical analyses are carried out independently even though they can be intertwined. A static-

analysis method is presented by Bergeron et al. [55] to determine whether an executable that 

contains debugging information complies with a user-specified security policy. According to 

Min'e [56], a combined data-value and points-to analysis computes an over-approximation of 

#include<stdio.h> 
 
void foo(int a) { 
   if(a== 0) 
    return; 
   a += 1; 
   printf("\n"); 
   printf("%d",a); 
   foo(a); 
} 
 
int main() { 
   int a = 3; 
   foo(a); 
} 
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the values in the cells where program variables are divided into groups based on how they are 

accessed at each program point. His implementation does not enable study of heap-allocated 

storage-using apps. Furthermore, his methods are unable to draw conclusions from loop access 

patterns. Similarly, instead of using global reasoning about complete heap abstractions, 

Hackett and Rugina [57] offer an approach that employs local reasoning about specific heap 

areas. They essentially employ an independent-attribute abstraction, wherein each "tracked 

place" in a concrete memory configuration is tracked independently of the others. 

 

Value Set Analysis Attempts have been made towards accessing the indirect memory to 

recover intermediate representation (IR). Ramalingam et al. [2] made an attempt by creating 

Value Set Analysis (VSA) which analyzes and reason about the values that program variables 

can take during program execution. VSA has been successful due to its precision, scalability, 

flexibility, and soundness properties, which make it a powerful and effective technique for 

analyzing program values and reasoning about their behavior during program execution. 

Debray et al. [36] also made a similar attempt by proposing an alias algorithm which is highly 

related to VSA. This alias determines an over-approximation of the range of values that each 

register can hold at each program point. They only maintain the tracking of the addresses’ low-

order bits in their analysis, which involves approximating a set of addresses using a set of 

congruence values. Unlike VSA, it did not attempt to track values that are not in registers. So, 

whenever a load from memory occurs, they lose a significant amount of precision. A few others 

which are closely related are Amme et al. [39] who created an algorithm for data-dependence 

analysis and Guo et al. [40] who proposed a low-level intermediate representation for pointer 

analysis which tracks registers in a flow-sensitive manner. It is ambiguous whether the Amme 

et al. technique completely accounts for dependencies between memory regions since it only 

does an intraprocedural examination. Guo et al. algorithm's [40] solely tracks registers in a 

flow-sensitive manner while treating memory addresses in a flow-insensitive manner. The 

technique achieves context-sensitivity by using partial transfer functions. Unknown initial 

values (UIVs) are used as parameters for the transfer functions, although it is unclear if the 

algorithm takes into consideration the risk of called processes altering the memory locations 

that the UIVs represent. Moreover, Xu et al. [49] developed a system to determine whether or 

not specific memory-safety features applied to SPARC executables. The untrusted program's 



38 

 

 

initial inputs were typestate and linear constraint indicated. This was based on traditional 

theorem-proving methods: the typestate-checking algorithm employed Omega [51] to 

determine Presburger formulas and the induction-iteration method [50] to create loop 

invariants. To find aliases in assembly code, Brumley and Newsome [52] offer an approach 

based on Datalog programs. The goal is to translate each assembly statement into a predicate 

in Datalog. All of the alias associations would be present in the resulting saturated database. 

To find out if any two memory accesses are aliases, tools would query the database. Although 

their method is intriguing, it is unclear whether it would be useful. To ensure that the analysis 

is completed in an acceptable amount of time, for example, they lack the concept of widening 

for loops. The approach described in this thesis, on the other hand, aims to recover data from 

an Intel x86 executable that enables the generation of intermediate representations comparable 

to those that can be constructed for a program written in a high-level language. 

 

2.4 Introduction to JIMA Tool Kit and JIL file 

JIMA is a binary analysis toolkit developed at University of Idaho. This section utilizes some 

of the research group’s description of JIMA. The JIMA tool suite is written in Python3. 

Although the use of Python may limit performance, it also enables collaboration, portability 

and extensibility. The JIMA binary analysis and repair activities center on the JIL data format, 

a custom data structure that maintains information about the contents of a binary, an 

intermediate representation. The JIMA Intermediate Language (JIL) representation is a large 

python dictionary. This dictionary contains entries that may themselves be dictionaries, lists 

or sets. The use of dictionaries and sets to speed up access is at the cost of more memory used. 

The JIMA tool suite includes several functions and utilities to examine, evaluate and modify 

the JIL data structure. For reuse, JIMA stores the JIL data structure in a pickled (compressed) 

file. For the purposes of this thesis, we use JIL file of the JIMA tool that gives instructions, 

size, targets, indices etc. like the objdump file. 

 

2.4.1 JLift 

The JIMA system starts with the JLift tool. This tool is responsible for extracting information 
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Figure 2.7: Python Program to read a JIL file 

 

from an ELF executable file. JLift reads the ELF file, collecting information about the file 

structure, individual sections, exception handlers, dynamic symbols and data sections. For 

disassembly of instructions, the tool invokes objdump and stores the result in a file. That file 

is then read and parsed. A future improvement of the tool will integrate direct calls to a 

dissembler, avoiding the need to invoke objdump and the corresponding extra overhead of text 

file writing and parsing. JLift also directly reads the ELF file collecting additional information 

not directly available from objdump. JLift populates the several fields that are part of the Jil 

data structure, such as ‘startAddr’, ‘jumpPtrs’, ‘jumpedBy’, etc. 

 

2.4.2 Detection of Explicit Calls and Jumps 

During disassembly, JIL categorizes each instruction. If the instruction is an explicit call or 

jump (has a hardcoded address), it records the source and target addresses as well as the reverse 

in data. It also keeps track of the returns. Initially all calls and jumps are a mapping from the 

source address to a single target address. However, with jump pointers and call pointers, the 

targets may be one of a list of addresses. The ’calledBy’ and ’jumpedBy’ data structures map 

the target address to a list of source addresses. These data structures are used by JIMA when 

detecting function starts and function boundaries. Note that in Intel 32-bit position independent  

def processFile(fileName): 
   instructs._init_() 
   with open(fileName,'rb') as fn: 
      jil=pickle.load(fn) 
 
   ins = jil['ins'] 
   funcs=jil['functions'] 
   addresses={} 
 
   for funcId in funcs: 

addresses[funcs[funcId]['startAddr']]=funcId 
 
   for addr in sorted(list(addresses.keys())): 
      func=funcs[addresses[addr]] 
 
    for insId in range(func['startIndex'],func['endIndex']+1): 
         inst = ins[insId] 
         printInst(inst,jil,sys.stdout) 
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Figure 2.8: Output generated by running code in Figure 2.7. 

code, a compiler can generate a call to the next instruction, which then pops the value into a 

register, obtaining the current instruction counter. JIMA detects this behaviour and does not  

include these calls in the preceding list of calls. Modern compilers use a function get_thunk 

that provides this capability.In that case it is a real function, and JIMA detects that as well.  

Intel 64-bit code has a separate instruction pointer register and does not need to use this trick. 

2.4.3 Exception Handler Analysis 

ELF data files contain two exception handling sections, eh_frame and eh_frame_hdr, which 

contain information about the exception handlers. The details of these exception handling 

sections is beyond the scope of this thesis, but it is sufficient to say that they contain tables that 

map regions of instructions to specific exception handlers. When an exception occurs, the 

tables are searched  to find the region containing the current instruction pointer address and to 

get the appropriate handler (and possible pre-processing code). The compilers analyzed here 

(i.e., gcc, icc, clang) append the exception handlers to their parent functions and include them 

in the size of the function. Normal control flow analysis will not detect these handlers as part 

of the parent function, since they are not normal. This is true for linear and recursive analysis 

and both static and dynamic analysis (unless the dynamic analysis forces an exception to 

occur). As an added heuristic, JIMA decodes these tables to correctly include the handlers 

within the parent function’s boundaries. The other algorithmic tools appear to do this as well, 

but not the machine learning and neural network tools. 

2.4.4 Static Binary Analysis 

The JIMA tools are designed to support binary analysis. With all of the information about the 

executable stored in the JIL data structure, we have a collection of library routines to support 

startAddr  = 0xbda 
startindex = 111 
endAddr    = 0xca9 
endindex   = 164 
len = 208 (0xd0) 
secid      = 13 
sec name   = .text 
Has True Return 
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analysis and expansion of the capabilities of JIMA. A simple bit of code can be used, with the 

library, to start processing the JIL file. For example python code in Figure 15 can be used to 

generate the output as shown in Figure 16. Programmers can walk through the functions, 

extract information about them along with the function instructions. JIMA’s opcodes library 

contains additional information about each instruction classifying it as math, control flow, etc. 

It keeps track when the opcode modifies flags and source and destinations, since some opcodes 

will access or modify implicit registers. All of this information is implicit in most binary 

analysis systems, and the purpose of JIMA is to make it queryable and usable by programmers, 

so that they can build additional analysis tools. The original version of Jima, used for the CGC, 

includes control-flow and data-flow analysis modules, has the ability to determine which 

values were relevant for the conditions in a jump, and detects loops, loop parameters, and 

estimates the numbers of arguments and local variables. We are in the process of porting all of 

these analysis functions to the python-based version of JIMA. A companion project to this 

thesis is using JIMA data to detect variadic functions in binaries, while another is using it as 

an interface to GDB to generate lists of breakpoints for code coverage analysis. Exception 

handlers exist to allow the program to execute code that is outside the normal control flow. 

These can cause great difficulty for binary analysis. The binary analyzer has to tread carefully 

with exception handlers and the data they provide but must be able to use them.  

 

2.4.5 Binary Rewriting 

The final portion of JIMA subsystem is the binary rewriting section which is not used in this 

thesis. Using results from the analysis, and user provided guideline, JIMA can generate a 

representation of the binary in two ways. This most common way is to generate assembly code, 

with appropriate labels and tags and pragmas, along with a build configuration file, to allow 

the binary to be assembled and relinked. The assembly also can include a large number of 

comments about the file to assist in manual inspection as shown in Figure 2.8. The second way 

is to provide a translation of the file into another analysis form. We currently do this in a 

PROLOG data format for one of our projects. We plan to allow translation into other forms, 

such as LLVM, as needed. We are also involved in a project to generate ’C’ code from the data 

file and using it to guide selective editing of the raw ELF file.  
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Chapter 3 : The Algorithm 

As we have established that analyzing stripped binaries is quite challenging, the major aim of 

this thesis is to improve a portion of that analysis by finding function formal parameters, local 

variables and parameters used as a pointer. This algorithm is implemented in several phases 

and uses the JIL file as an input. The algorithm is written in Python and is compatible with the 

3.x version. 

 

3.1 Initial Analysis – A Reaching Definition 

Since assembly language does not use the higher-level variable names, it is not immediately 

clear which value a register is storing. To solve this, it is mandatory to determine the data flow 

of every instruction for every path possible. Hence, initially, we need data flow analysis which 

will converge to reach the definition. The sequence of steps starts with intraprocedural analysis 

that leads to reaching definition analysis and finally implements data flow equations [8]. These 

steps are necessary prerequisites to develop the algorithm.  

 

3.1.1 Intraprocedural Analysis 

An intraprocedural analysis is the analysis of each instruction within a single function or 

procedure. The analysis is defined by several formal functions. Each function consists of a list 

of instructions, labelled by an instruction id. To be clear, we will list multiple statements 

separated by a semicolon, even though the semicolon is not used in assembly language. The 

first function from this set has the information about the true entry called the ‘Initial’ label to 

the block and the second has information about the true exit called the ‘Final’ label [8]. Let us 

define certain terms with the help of examples stated in assembly language: 

 

➢ Initial label: This returns the initial label of every function.  

𝒊𝒏𝒊𝒕 ∶  𝐒𝐭𝐦𝐭 → 𝐋𝐚𝐛  

Examples: 𝑖𝑛𝑖𝑡(ℓ: (𝑚𝑜𝑣𝑞   %𝑟𝑑𝑖, −0𝑥18(%𝑟𝑏𝑝))  =   ℓ 
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➢ Final label: This returns the final instruction or statement of the function. 

𝒇𝒊𝒏𝒂𝒍 ∶  𝐒𝐭𝐦𝐭 → Ᵽ(𝐋𝐚𝐛)  

Examples: 𝑓𝑖𝑛𝑎𝑙(ℓ: [𝑟𝑒𝑡𝑞])  =  ℓ 

𝑓𝑖𝑛𝑎𝑙(ℓ: [𝑛𝑜𝑝𝑙 (%𝑟𝑎𝑥)])  =  ℓ 

    

➢ Block: In these functions, Blocks constitute an important part of the analysis which are 

instructions or statements. In this thesis, we use the terms ‘statements’ or ‘instructions’ 

interchangeably. This function is used to access the statements or tests of a label in a 

program. It is of the form –  

𝒃𝒍𝒐𝒄𝒌 ∶  𝐒𝐭𝐦𝐭  →   Ᵽ(𝐛𝐥𝐨𝐜𝐤)  

Example: 𝑏𝑙𝑜𝑐𝑘(ℓ: [𝑎𝑑𝑑𝑞   %𝑟𝑑𝑥, %𝑟𝑎𝑥])   =   { ℓ: [𝑎𝑑𝑑𝑞   %𝑟𝑑𝑥, %𝑟𝑎𝑥] }  

 

➢ Labels: Set of labels in a program is defined as –  

𝒍𝒂𝒃𝒆𝒍𝒔 ∶  𝐒𝐭𝐦𝐭 →  Ᵽ(𝐋𝐚𝐛)  

 where, 𝒍𝒂𝒃𝒆𝒍𝒔(𝑺)  =  { 𝓵 | 𝓵: [𝐁]    ∈  𝐒𝐭𝐦𝐭(𝑺) } 

 

Thus, we can say that, 𝒊𝒏𝒊𝒕(𝑺)𝒂𝒏𝒅 𝒇𝒊𝒏𝒂𝒍(𝑺) ∈ 𝒍𝒂𝒃𝒆𝒍𝒔(𝑺) ;  𝑩𝒍𝒐𝒄𝒌(𝑺) ⊆ 𝒍𝒂𝒃𝒆𝒍𝒔(𝑺) , 

such that ‘ℓ’ is the address or index of the current statement, ‘Ᵽ’ is the program, ‘a’ is a 

constant.  

        

3.1.2 Reaching Definition Analysis 

The Reaching Definition Analysis or reaching assignments analysis determines for each 

instruction the source instruction of that value stored in the registers. To conduct this analysis, 

at every instruction, we determine a set of two functions called RDentry and RDexit i.e. RD = 

(RDentry , RDexit). This is the current RD working set. An assignment of the form ℓ: movl   %eax, 

%edi] may reach a certain program point (usually an entry or exit of an elementary block) 

along some path if there is an execution of the program where %edi was assigned a value at ℓ 

when the program point is reached [8]. For example, consider the code snippet shown in Figure 

3.1. The label is shown at 4, 4: [movl  0x10(%ebp), %eax] called RDentry reaches to 5: [movl   

%eax, -0x4(%ebp)] RDexit which means (%eax,4) reaches the entry point at 5. Implementation  
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Figure 3.1: A code snippet to explain Reaching Definitions 

 

of RDA requires an understanding of a few more functions [8]. These are – 

 

➢ 𝒌𝒊𝒍𝒍𝑹𝑫: 𝑩𝒍𝒐𝒄𝒌𝒔∗ →  Ᵽ(𝑽𝒂𝒓∗  × 𝑳𝒂𝒃∗
?) 

This function produces the set of variables (either memory locations or registers) and 

labels (indices) of assignments that are destroyed or removed from the RD working set 

for the instruction. It can happen when a variable is overwritten by a new value. 𝑳𝒂𝒃∗
?  

is the union of all the labels in a set with initialization or no value for a particular 

statement or set of statements (a block) i.e. 𝑳𝒂𝒃∗
?  =  𝑳𝒂𝒃∗  ∪  {? }. 

Examples: 

𝑘𝑖𝑙𝑙𝑅𝐷(ℓ: [movl   0x10(%ebp), %eax]) =  {(%eax, ? )}  ∪  {(%eax, ℓ′)} 

      𝑘𝑖𝑙𝑙𝑅𝐷(ℓ: [subl   $0x10, %esp])  =  ∅  

 

➢ 𝒈𝒆𝒏𝑹𝑫: 𝑩𝒍𝒐𝒄𝒌𝒔∗ →  Ᵽ(𝑽𝒂𝒓∗  × 𝑳𝒂𝒃∗
?) 

The generator function produces the set of pairs of variables and labels of assignments 

generated by a block (statement or set of statements). 

Examples: 

𝑔𝑒𝑛𝑅𝐷(ℓ: [movl   0x10(%ebp), %eax]) =   {(%eax, ℓ)} 

      𝑔𝑒𝑛𝑅𝐷(ℓ: [pushl  %ebp]) =  ∅ 

 

Further, the analysis that has a pair of functions (RDentry , RDexit) maps the labels to the set 

of variables and indices (labels of assignment block). 

𝑹𝑫𝒆𝒏𝒕𝒓𝒚 , 𝑹𝑫𝒆𝒙𝒊𝒕 : 𝑳𝒂𝒃∗ →  Ᵽ(𝑽𝒂𝒓∗  × 𝑳𝒂𝒃∗
?) 

1:       pushl  %ebp 
2:       movl   %esp,%ebp 
3:       subl   $0x10,%esp 
4:       movl   0x10(%ebp),%eax 
5:       movl   %eax,-0x4(%ebp) 
6:       movl   -0x4(%ebp),%eax 
7:       movl   (%eax),%eax 
8:       testl  %eax,%eax 
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Example 3.1.2 As shown in Figure 3.1, for every instruction kill, gen or no function is applied 

which leads to the final analysis at every index. For example, the genRD function is used at 

indices 2, 4, 5, etc. Function genRD(4: [movl   0x10(%ebp),%eax]) = { ('%eax',4) } and the 

assignments are continuously added to the final analysis set of every instruction. Thus, by 

analyzing the block from the start, we will get the analysis of instruction at index 4 as {('%eax', 

4), ('%esp', 3), ('%ebp', 2)}. Similarly, killRD can be defined at 6 and 7 such that killRD([movl   

-0x4(%ebp),%eax]6) will overwrite the value of ‘%eax’ at index 4. Hence, the final analysis at 

index 6 is {('-0x4(%ebp)', 5), ('%eax', 6), ('%esp', 3), ('%ebp', 2)}. Finally, full analysis of the 

code snippet is – 

 

3.2 Implementation 

As discussed before, the implementation of this algorithm is currently limited to Intel’s ISA in 

AT&T syntax. The theory behind finding the function parameters in 32-bit is that %ebp or 

%rbp act as a reference on the stack. Going towards the positive offset gives us the formal 

parameters and the negative offset determines the local variables. And in 64-bit, we keep track 

of the sources which have not been used before as destinations or are unique to sources. This 

has been discussed in Sections 2.2 and 2.3 in detail. For finding the parameter used as a pointer, 

we require RDA as it will determine the flow where the pointer was last accessed, initialized, 

or changed which is discussed in Section 3.1. The pointer is dereferenced and to compare or 

check the value from where it is coming, the algorithm traverses back through the path of data 

flow for all the instructions. If the pointer is coming from the assignment of the parameter 

which we discover in the first part, then we say that the parameter is used as a pointer at some 

instruction with index ℓ. Before the actual implementation, a few steps are performed which 

are common for all the major findings like finding sources, destinations for each instruction or  

final_analysis {1: set(), 2: {('%ebp', 2)}, 3: {('%esp', 3), ('%ebp', 2)},  4: {('%eax',4), 

('%esp', 3), ('%ebp', 2)},  5: {('-0x4(%ebp)', 5), ('%eax',4), ('%esp', 3), ('%ebp', 2)},  

6: {('-0x4(%ebp)', 5), ('%eax',6), ('%esp', 3), ('%ebp', 2)}, 7:  {('-0x4(%ebp)', 5), 

('%eax',7), ('%esp', 3),  ('%ebp', 2)}, 8: {('-0x4(%ebp)', 5),  ('%eax', 7),  ('%esp', 3),  

('%ebp', 2)}} 
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Figure 3.2:‘get_archive_member_name_at’ function written in C language from 

gcc_binutils_32_O0_elfedit file. 

 

statements. Also, we need to create a flow list or working list which states the flow of each 

statement to the next in order to get the final analysis of the whole function. Then, finally 

solving the data flow equation forms the basis of the algorithm. To understand all the steps in 

detail, we use an example of a C function given in Figure 3.2, converting it into a binary code 

as shown in Figure 3.3 and finally obtaining the JIL file which will serve as an input to the 

algorithm. Further, by showing the output at every step, we will demonstrate how we fetched 

the function parameters, local variables and the parameters used as pointers for a function. 

 

3.2.1 Approach 

We need to install the JIMA toolkit and then set the home variable in the JIMA environment. 

The function given in Figure 3.2 is a function of a program written in C language to swap two 

integers. It is done for Intel ISA and compiled by 32-bit GCC compiler which gives us a binary 

file in ELF format. Further, we execute JIMA and save the JIL file as an output in the current 

char * get_archive_member_name_at (struct archive_info *arch, unsigned long 
offset, struct archive_info *nested_arch) 
{ 
  size_t got; 
  if (fseek (arch->file, offset, SEEK_SET) != 0) 
    { 
      error (_("%s: failed to seek to next file name\n"), arch->file_name); 
      return NULL; 
    } 
  got = fread (&arch->arhdr, 1, sizeof arch->arhdr, arch->file); 
  if (got != sizeof arch->arhdr) 
    { 
      error (_("%s: failed to read archive header\n"), arch->file_name); 
      return NULL; 
    } 
  if (memcmp (arch->arhdr.ar_fmag, ARFMAG, 2) != 0) 
    { 
      error (_("%s: did not find a valid archive header\n"), 
      arch->file_name); 
      return NULL; 
    } 
  return get_archive_member_name (arch, nested_arch); 
} 
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0804b7ff <get_archive_member_name_at>: 
 804b7ff: pushl  %ebp 
 804b800: movl   %esp,%ebp 
 804b802: pushl  %ebx 
 804b803: subl   $0x24,%esp 
 804b806: movl   0xc(%ebp),%edx 
 804b809: movl   0x8(%ebp),%eax 
 804b80c: movl   0x4(%eax),%eax 
 804b80f: movl   $0x0,0x8(%esp) 
 804b817: movl   %edx,0x4(%esp) 
 804b81b: movl   %eax,(%esp) 
 804b81e: calll  8048ba0 <fseek@plt> 
 804b823: testl  %eax,%eax 
 804b825: je     804b84e <get_archive_member_name_at+0x4f> 
 804b827: movl   0x8(%ebp),%eax 
 804b82a: movl   (%eax),%ebx 
 804b82c: movl   $0x804d400,(%esp) 
 804b833: calll  8048c40 <gettext@plt> 
 804b838: movl   %ebx,0x4(%esp) 
 804b83c: movl   %eax,(%esp) 
 804b83f: calll  804a378 <error> 
 804b844: movl   $0x0,%eax 
 804b849: jmpl   804b8fb <get_archive_member_name_at+0xfc> 
 804b84e: movl   0x8(%ebp),%eax 
 804b851: movl   0x4(%eax),%eax 
 804b854: movl   0x8(%ebp),%edx 
 804b857: addl   $0x34,%edx 
 804b85a: movl   %eax,0xc(%esp) 
 804b85e: movl   $0x3c,0x8(%esp) 
 804b866: movl   $0x1,0x4(%esp) 
 804b86e: movl   %edx,(%esp) 
 804b871: calll  8048bd0 <fread@plt> 
 804b876: movl   %eax,-0xc(%ebp) 
 804b879: cmpl   $0x3c,-0xc(%ebp) 
 804b87d: je     804b8a3 <get_archive_member_name_at+0xa4> 
 804b87f: movl   0x8(%ebp),%eax 
 804b882: movl   (%eax),%ebx 
 804b884: movl   $0x804d324,(%esp) 
 804b88b: calll  8048c40 <gettext@plt> 
 804b890: movl   %ebx,0x4(%esp) 
 804b894: movl   %eax,(%esp) 
 804b897: calll  804a378 <error> 
 804b89c: movl   $0x0,%eax 
 804b8a1: jmp    804b8fb <get_archive_member_name_at+0xfc> 
 804b8a3: movl   0x8(%ebp),%eax 
 804b8a6: addl   $0x6e,%eax 
 804b8a9: movl   $0x2,0x8(%esp) 
 804b8b1: movl   $0x804d426,0x4(%esp) 
 804b8b9: movl   %eax,(%esp) 
 804b8bc: calll  8048b60 <memcmp@plt> 
 804b8c1: testl  %eax,%eax 
 804b8c3: je     804b8e9 <get_archive_member_name_at+0xea> 
 804b8c5: movl   0x8(%ebp),%eax 
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Figure 3.3: Assembly code of C function in AT&T syntax given in Figure 3.2 obtained from 

objdump. 

 

directory. Figure 3.3 is an assembly code of the function given in Figure 3.2. It could be 

considered as a general iterative algorithm for any distributive framework for a function ƒ 

which could be of an application, program, or a dynamically executable file. 

 

Analysis of each statement or block is required to compute the data flow algorithm. This 

analysis consists of extreme labels which could be the initial or the final index of a function ƒ 

and a finite dataflow. The algorithm uses analysis as a dictionary that contains the input 

information up to any label. The input information for any label of the elementary block is the 

control flow analysis done by the reaching definition. This reaching definition includes all the 

assignments made to variables up until that label. The analysis dictionary is indexed by the 

labels through gen and kill functions which have already been discussed in section 3.1.2. This 

analysis of each label is created by the worklist which is the pair of the current and possible 

target’s indices. By looping through every instruction using the JIL file, we create the list of 

sources and destinations also. Further, we calculate the final analysis using the data flow 

algorithm. With the sources and destinations, we find formal parameters and local variables if 

any register or memory offset used directly as a source can be considered as a parameter. For 

this, we can look for instructions that move values onto the stack directly. The rationale behind 

 804b8c5: movl   0x8(%ebp),%eax 
 804b8c8: movl   (%eax),%ebx 
 804b8ca: movl   $0x804d42c,(%esp) 
 804b8d1: calll  8048c40 <gettext@plt> 
 804b8d6: movl   %ebx,0x4(%esp) 
 804b8da: movl   %eax,(%esp) 
 804b8dd: calll  804a378 <error> 
 804b8e2: movl   $0x0,%eax 
 804b8e7: jmp    804b8fb <get_archive_member_name_at+0xfc> 
 804b8e9: movl   0x10(%ebp),%eax 
 804b8ec: movl   %eax,0x4(%esp) 
 804b8f0: movl   0x8(%ebp),%eax 
 804b8f3: movl   %eax,(%esp) 
 804b8f6: calll  804b5e3 <get_archive_member_name> 
 804b8fb: addl   $0x24,%esp 
 804b8fe: popl   %ebx 
 804b8ff: popl   %ebp 
 804b900: retl    
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INPUT: A function ƒ having distributive framework of an application: 

OUTPUT: parameters(), local variables(), pointer as parameter() 

METHOD: Step 1: calculating sources & destinations 
sources := nil; destinations := nil; final_result := nil; 
init := init(ƒ(block)); final := final(ƒ(block)); 

for all inst in range(ƒ[init], ƒ[final] + 1) 

    if inst is call then check get_pc_thunk 

       if reg in sources then final_result.append(inst[0]); 

       else pass; 

    else if inst in jump, return, push, lea, pop, shr, shl 
then 

        destinations.append(inst[0]);                           

    else if inst in cmp, mov, add, sub, test then 
        sources.append((inst[0]); 
        destinations.append(inst[1]); 

    else check len(inst[agrs])>1 then 
        sources.append(inst[0]); 
        destinations.append(inst[1]); 

Step 2: calculating parameters 
for src in sources:  
    if src not in destinations: 
               final_result.append(src); 
parameters := set(final_result); 

Step 3:  creating flowlist 
flowlist := nil; 
for all inst in range(ƒ[init], ƒ[final] + 1) 
    if inst :== ƒ[init] then flowlist.append(ℓ,ℓ+ 1), 
    where ℓ is the label and ℓ’ = ℓ+1 
   else if inst is cndJump then  
      ℓ’ := inst.get('ctrlTarget'); 
       flowlist.append(ℓ, ℓ’); 
       flowlist.append(ℓ, ℓ +1); 

   else if inst in jump, call then 
       if inst.get('ctrlTarget') is None then 
          flowlist.append(ℓ, ℓ + 1); 
       else  
          ℓ’ = jilLib.getInsIdByAddr(jil, 
              inst.get('ctrlTarget'))[1] 
          flowlist.append(ℓ, ℓ’) 
    else if inst is ret then continue; 
    else if inst is jump and ℓ’ ∉  range(ƒ[init], ƒ[final])  
then continue; 

    else flowlist.append(ℓ, ℓ + 1); 

flowlist = flowlist.copy(); 
Step 4: computing analysis for each ℓ using RDA 
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  analysis := set(); // initialized with the null set for all 
ℓ 

    if inst :== ƒ[init] then analysis[ℓ] := set([‘null’, ℓ]) 
    else if inst in mov, add, sub, lea then 

              analysis[ℓ] := set(destination,ℓ) ∪ analysis[ℓ -1] 

    else analysis[ℓ] := analysis[ℓ -1]) 
    for aly in analysis[ℓ].copy() do 
        if aly[0] is null then remove 
analysis[ℓ].remove[aly] 
       

STEP 5: using general iterative algorithm computing final analysis 
of every statement or instruction 

Iteration (updating worklist and Analysis) 

worklist = flowlist.copy(); final_analysis = {} 

while worklist ≠ nil do 

    ℓ := worklist[0][0]; ℓ’:= worklist[0][1]; 

    worklist := worklist.pop(0); 

    final_analysis[ℓ] = do kill & gen (initial_analysis[ℓ]) 

    if final_analysis[ℓ] ⊄ analysis[ℓ’] then 

       analysis[ℓ’] := analysis[ℓ’] ∪ final_analysis[ℓ] 

       ℓ’’ := value for item,value in flowlist if item == ℓ’; 

       for all ℓ’’ with (ℓ’, ℓ’’) in flowlist do 

           worklist.append((ℓ’, ℓ’’)); 

STEP 6: Fetching parameter used as pointer 

 temp1 := inst[0]; temp2 := inst[1];  

local_argument :=nil; pointer_as_parameter := nil; 

if (temp1 ≠ nil or temp2 ≠ nil) and sources[ℓ] in 
(parameters or local_argument) then 

   local_argument.append(temp1 or temp2); 

else for all item,val in flowlist if val :== ℓ do 

   for all address in final_analysis(item) do 

       if sources[ℓ] :== address and sources[ℓ] in 
(parameters or 

       local_argument) then 

          pointer_as_parameter.append(temp1 or temp2); 

Table 3.1: Pseduo-code of the algorithm 

 
this approach is that the number of arguments is the references to EBP + (n>=8) within a given 

function. Also, the negative offset to all references of EBP can be stated as local variables, i.e., 

EBP – (n>=8). After fetching formal parameters, we need to check for the instructions that 

access the memory pointed to by the pointer parameter. By looping through all the instructions 

one by one and using sources, destinations, worklist, initial analysis, final analysis, parameters, 

Table 3.1 cont'd 
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and local variables, which we calculated above, we find the parameters used as a pointer by 

dereferencing every memory location. This location is either checked directly in the parameters 

list or traced back by the backward analysis to get the flow which tells if the value of the 

location is flowing from a parameter. There are many rules and limitations associated with the 

approach which are discussed in later sections. The implementation is done in Python3 and 

initially aimed at Intel processors [45] which can be generalized later for other ISAs. The 

pseudo-code of the algorithm is presented in Table 3.1 step by step with the description. In the 

coming sections, we will understand the steps to develop the algorithm in detail along with the 

dataflow diagrams (DFDs). 

 

3.2.2 Finding Sources and Destinations 

The first step is to create a list of sources and destinations of every instruction despite the flow 

of data or control. This is done by looping through all the instructions within the range of the 

first index (f[init]) and end index +1 (f[final]) of a function by checking the start and end 

addresses. First, we check that the instructions we are working on have arguments which means 

they either have a source or a destination. This is done by examining the value of the ‘args’ 

key of the JIL instruction dictionary. Otherwise, the loop continues and checks for the type of 

instruction which plays a key role in identifying the source and destination.  For example, 

‘mov’ has the first register or memory offset as the source and the second as the destination. In 

Figure 3.3, instruction (movl   0xc(%ebp),%edx) has ‘0xc(%ebp)’ as source and ‘%edx’ as 

destination. Similarly, (pushl  %ebp) only has a destination. This segregation has been done 

based on semantics. Once getting the instruction, we check whether the instruction involves 

registers or indirect memory addressing. This is done by checking the value of that argument's 

key ‘type’ of that particular argument. If the type is ‘reg’ then it is a register and if it is of type 

‘memOffsetBase’, ‘memBase’, etc., we consider it as indirect referencing. Moreover, a check 

is made to see if the base, offset, or index has a null value before dereferencing the address in 

order to determine the memory location to assign as a source or a destination. A source can be 

an immediate or a constant value also. This is true if the value of‘type’ is ‘imm’. It should be 

noted that some checks were also made to consider the registers to be the same as 32-bit and 

64-bit in the final code, which is discussed in detail in the 3.3 rules section of this chapter. For  
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Figure 3.4: Data Flow diagram for calculating sources, destinations, and parameters. 

 

example, %eax is the same as %rax and so is %ax. The output of the sources and destination 

for Figure 3.3 is: 

sources {3095: '%ebp', 3096: '%esp', 3097: '%ebx', 3098: '$0x24', 3099: 

'0xc(%ebp)', 3100: '0x8(%ebp)', 3101: '0x4(%eax)', 3102: '$0x0', 3103: '%edx', 

3104: '%eax', 3106: '%eax', 3108: '0x8(%ebp)', 3109: '(%eax)', 3110: '$0x804d400', 

3112: '%ebx', 3113: '%eax', 3115: '$0x0', 3117: '0x8(%ebp)', 3118: '0x4(%eax)', 

3119: '0x8(%ebp)', 3120: '$0x34', 3121: '%eax', 3122: '$0x3c', 3123: '$0x1', 3124: 

'%edx', 3126: '%eax', 3127: '$0x3c', 3129: '0x8(%ebp)', 3130: '(%eax)', 3131: 

'$0x804d324', 3133: '%ebx', 3134: '%eax', 3136: '$0x0', 3138: '0x8(%ebp)', 3139: 

'$0x6e', 3140: '$0x2', 3141: '$0x804d426', 3142: '%eax', 3144: '%eax', 3146: 

'0x8(%ebp)', 3147: '(%eax)', 3148: '$0x804d42c', 3150: '%ebx', 3151: '%eax', 3153: 

'$0x0', 3155: '0x10(%ebp)', 3156: '%eax', 3157: '0x8(%ebp)', 3158: '%eax', 3160: 

'$0x24', 3161: '%ebx', 3162: '%ebp'} 
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where 119, 120 and so on are the indices of the function. Also, if the instruction is a ‘call’, we 

need to check whether the call has been made to a function called get_pc_thunk which is used 

for position-independent code on x86. It loads the position of the code into a called register 

(for example, if we have instruction - call   0xf60d2f47 <__i686.get_pc_thunk.bx>, %bx in 

instruction is a register used as source) which allows global objects (which have a fixed offset 

from the code) to be accessed as an offset from that register. Position-independent code can be 

loaded and run at several addresses without any changes. Code that will be linked into shared 

libraries must take this into consideration because those libraries may be mapped at various 

addresses in separate processes. However, an equivalent call is not required on x86-64, because 

that architecture has IP-relative addressing modes (that is, it can directly address memory 

locations as an offset from the current instruction location). 

 

3.2.3 Finding Formal Parameters 

Further, the list of sources is looped through, and each source is compared with every 

destination. If the source is not in the destination, then it is a unique value coming directly onto 

the stack externally. This is considered to be a parameter since it has been directly used as a 

source without any assignment. It is usually in the form of EBP + (n>=8). It is done at step 2 

destinations {3095: 'null', 3096: '%ebp', 3097: 'null', 3098: '%esp', 3099: '%edx', 

3100: '%eax', 3101: '%eax', 3102: '0x8(%esp)', 3103: '0x4(%esp)', 3104: '(%esp)', 

3105: 'null', 3106: '%eax', 3107: 'null', 3108: '%eax', 3109: '%ebx', 3110: '(%esp)', 

3111: 'null', 3112: '0x4(%esp)', 3113: '(%esp)', 3114: 'null', 3115: '%eax', 3116: 

'null', 3117: '%eax', 3118: '%eax', 3119: '%edx', 3120: '%edx', 3121: '0xc(%esp)', 

3122: '0x8(%esp)', 3123: '0x4(%esp)', 3124: '(%esp)', 3125: 'null', 3126: '-

0xc(%ebp)', 3127: 'null', 3128: 'null', 3129: '%eax', 3130: '%ebx', 3131: '(%esp)', 

3132: 'null', 3133: '0x4(%esp)', 3134: '(%esp)', 3135: 'null', 3136: '%eax', 3137: 

'null', 3138: '%eax', 3139: '%eax', 3140: '0x8(%esp)', 3141: '0x4(%esp)', 3142: 

'(%esp)', 3143: 'null', 3144: '%eax', 3145: 'null', 3146: '%eax', 3147: '%ebx', 3148: 

'(%esp)', 3149: 'null', 3150: '0x4(%esp)', 3151: '(%esp)', 3152: 'null', 3153: '%eax', 

3154: 'null', 3155: '%eax', 3156: '0x4(%esp)', 3157: '%eax', 3158: '(%esp)', 3159: 

'null', 3160: '%esp', 3161: 'null', 3162: 'null'} 
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in the pseudocode shown in Table 3.1. The idea is based on stack memory management and 

the calling convention, which has already been discussed in Chapter 2. While looping, the 

value is appended in the final_res list as shown in Figure 3.4. Then the unique values are 

fetched by the ‘set’ operation to avoid getting the same value twice from a particular iteration 

within the loop. Further, if a call is made to the function get_pc_thunk, then the address of the 

next instruction is stored in the called register which is also added in the final_res. By taking 

the length of the set of final_res we get the number of parameters and their values as output 

from the algorithm which is: 

 

3.2.4 Creating Flowlist 

As shown in Table 3.1, we create a flowlist in step 3. This will determine that at every 

instruction, all the expressions, which must have already been computed up until that 

instruction, may not get modified later for any of the data flow paths. This is used to avoid re-

computation and is an important step in the development of the algorithm where at each 

point(instruction), we are fetching the address of all the possible data flow targets. Thus, 

flowlist states all the possible data flow paths and in our case, it is the list of sets of all possible 

initial and target indices (ℓ, ℓ’) of every instruction. We can say that flowlist Ⱳ is a list of 

pairs where each pair is an element or possible indices of the flow of the function ƒ which is an 

element of the set of functions Ϝ in a program. The presence of a pair in the worklist indicates 

that the analysis has changed at the exit of (or entry to – for backward analysis) the statement 

labelled by the first component. Thus, it must be recomputed at the entry to (or exit from) the 

block labelled by the second component. In this process also, the types of instructions play an 

important role. For the range of function start (f[init]) and end (f[final]), we again check for 

different instructions. If the label is the first instruction, we move to the next label by adding 1 

to the value of the label which gives us the next instruction. The idea is that usually, a function 

starts either with ‘ebp’ stack based or with no operations operands like nop, endbr32, endbr64, 

etc. Then we check the type of instruction and take the value of ‘ctrltarget’ of every source  

no. of parameters is 3 {'0xc%ebp', '0x10%ebp', '0x8%ebp'} 
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Figure 3.5: Data Flow diagram for creating a worklist. 

 

and destination as we did in step 1. If the instruction is ‘jump’, ‘call’ or ‘cndjmp’, we need to 

verify the value of the ℓ’. This ℓ’ could be either the next instruction or any other memory 

location out of the scope of that function, and thus we either add the data flow path in our 

‘worklist’ or continue with the next instruction in the loop. For example, in Figure 3.3, for a 

conditional jump at label ℓ 3107, it has two possible data flow paths. It can jump either to the 

label ℓ’ 3117 or to 3108 depending on the condition set being true or not. If the condition is 

true or values are equal, it will go to 3117 which we get from the value of ‘ctrltarget’ of the 

label 3107 and if it is not equal, it will simply go to the next instruction label ℓ’ 3108. Further, 

if the instruction is a call like at label 3132 which calls the function at ℓ’ 85 which is out of the 

scope of the function boundary level. Hence, we simply continue with the very next instruction. 

Similarly, if the instruction is a ‘ret’, then we directly continue through the next label as shown 

in Data flow diagram in Figure 3.5. Hence, instructions like ‘jump’, ‘cndjmp’, ‘call’, etc. 

change the control flow of the program and capture all possible states of the program. The  

worklist we got from the algorithm for the program given in Figure 3.3 is – 
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3.2.5 Final Analysis for Every Label 

In this section, we will find the analysis and then the final analysis of every label ultimately up 

until that index within the range of the function starts and that instruction itself using the 

flowlist, as shown in example 3.1.2. We also create worklist which is a copy of flowlist and it 

will keep on changing during the iteration.This is done by using the RD analysis algorithm, 

explained in detail in section 3.1.2, which helps us to solve the killRD and genRD functions while 

iterating through the statements. This constitutes steps 4 and 5 of Table 3.1.  The method 

employs ‘analysis’ as a dictionary data structure that holds the input data for any label. Control 

flow analysis conducted by reaching definition serves as the input data for each label of an 

elementary block. In order to find the analysis, we will initialize all the labels with an empty 

set. By looping through, we check that if ‘label’ is the first index then we will set the analysis 

of that as (‘null’, ℓ). For the code in figure 3.3, label 3095 is set as (‘null’,3095). The analysis 

of a label is the values assigned to a variable up until that particular instruction. It serves as 

input or known information for the next label.  For example, when ℓ is equal to 3108, then ℓ’ 

as per the worklist would be 3109. Initially, the analysis of 3108 would be an empty set() as 

discussed in the dataflow diagram. Then, we move further to verify whether it is any instruction 

out of mov, add, sub, or lea. If it is any one of the mov, add, sub, or lea, then we create a set 

flow list is [(3095, 3096), (3096, 3097), (3097, 3098), (3098, 3099), (3099, 3100), (3100, 

3101), (3101, 3102), (3102, 3103), (3103, 3104), (3104, 3105), (3105, 55), (3106, 3107), 

(3107, 3117), (3107, 3108), (3108, 3109), (3109, 3110), (3110, 3111), (3111, 85), (3112, 

3113), (3113, 3114), (3114, 1510), (3115, 3116), (3116, 3160), (3117, 3118), (3118, 

3119), (3119, 3120), (3120, 3121), (3121, 3122), (3122, 3123), (3123, 3124), (3124, 

3125), (3125, 64), (3126, 3127), (3127, 3128), (3128, 3138), (3128, 3129), (3129, 3130), 

(3130, 3131), (3131, 3132), (3132, 85), (3133, 3134), (3134, 3135), (3135, 1510), (3136, 

3137), (3137, 3160), (3138, 3139), (3139, 3140), (3140, 3141), (3141, 3142), (3142, 

3143), (3143, 43), (3144, 3145), (3145, 3155), (3145, 3146), (3146, 3147), (3147, 3148), 

(3148, 3149), (3149, 85), (3150, 3151), (3151, 3152), (3152, 1510), (3153, 3154), (3154, 

3160), (3155, 3156), (3156, 3157), (3157, 3158), (3158, 3159), (3159, 2923), (3160, 

3161), (3161, 3162), (3162, 3163)] 



57 

 

 

Figure 3.6: Data flow Diagram to calculate analysis of every label. 

 

by doing a union of the current label and analysis of the previous label. This is shown in the 

dataflow diagram in Figure 3.6. Thus, for the label ‘804b827’ in Figure 3.3, we have analysis 

as {('0x4(%esp)', 3103), ('%eax', 3108), ('%ebp', 3096), ('%esp', 3098), ('(%esp)', 3104), 

('%eax', 3101), ('0x8(%esp)', 3102), ('%edx', 3099), ('%eax', 3100)}. If it is not any one of 

the mov, add, sub, lea instructions as mentioned before, then the analysis of the current label 

will be the same as the previous one. The instruction with label 3109 is ‘movl’, where the 

source is a pointer, as the type of this argument is ‘mem’ and the destination is a register 

‘%ebx’. Hence, we do the union of the set (‘%ebx’,3109) and the previous analysis, i.e. of label 

3108. Thus, we finally get the analysis of 3109 as 3109: {('0x4(%esp)', 3103), ('%ebx', 3109), 

('%eax', 3108), ('%ebp', 3096), ('%esp', 3098), ('(%esp)', 3104), ('%eax', 3101), 

('0x8(%esp)', 3102), ('%edx', 3099), ('%eax', 3100)}. The number of sets keeps on 

increasing for the newer labels with the iterations. In this step also, the type of value is 

important to fetch the exact register or memory offset as discussed in section 3.2.2. All the 

labels are defined in the dictionary data structure which has key as labels and values as the list 
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of these sets. After iterating the function for the first time, we then loop through the analysis 

to see if there are any null sets. In the analysis[3109], label 3095 has a null value and hence, 

we will remove it since the null set means no information is present about that label and is of 

no use to keep for future purposes. It will make the analysis redundant, complex, and time-

consuming to perform. The fragment of the analysis from the algorithm is – 

 

Next, the analysis calculated previously leads to the introduction of the data flow equation 

which served as the basis of our algorithm. Thus, we require RDA to develop the algorithm of 

data flow equations. The general iterative algorithm for the data flow path states that for any 

framework (in our case it is a function) we can find the analysis at each label (index) by doing 

forward and backward analysis of the data flow. It states all the possible values that a register 

or a memory address can hold up till that instruction. If any value gets modified in any of the 

future statements, the analysis also gets updated at that label. Forward analysis means the 

forward flow of statements(S*). This is step 5 of the pseudo-code and uses both worklist and 

analysis as input to calculate final_analysis for every label. It starts by iterating the worklist 

until it is not empty. Firstly, the first element of the worklist set is popped from which we get 

our first set of labels, i.e. ℓ and ℓ’. As an example, we have ℓ and ℓ’ as 3109 and 3110. Then 

iterating over the analysis[ℓ], a condition is checked where the current value of the loop (which 

is an element of analysis[ℓ]) is compared with the destinations[ℓ]. In this condition, we fetch 

every element ‘anlys’ of analysis[3109] and, we check if the destination[3109] is equal to that 

element or not. If they are not equal, then we add the element from the current element from 

analysis  {3095: {('null', 3095)}, 3096: {('%ebp', 3096)}, 3097: {('%ebp', 3096)}, 3098: 

{('%esp', 3098), ('%ebp', 3096)}, 3107: {('0x4(%esp)', 3103), ('%ebp', 3096), ('%esp', 

3098), ('(%esp)', 3104), ('%eax', 3101), ('0x8(%esp)', 3102), ('%edx', 3099), ('%eax', 

3100)}, 3108: {('0x4(%esp)', 3103), ('%eax', 3108), ('%ebp', 3096), ('%esp', 3098), 

('(%esp)', 3104), ('%eax', 3101), ('0x8(%esp)', 3102), ('%edx', 3099), ('%eax', 3100)}, 

3109: {('0x4(%esp)', 3103), ('%ebx', 3109), ('%eax', 3108), ('%ebp', 3096), ('%esp', 

3098), ('(%esp)', 3104), ('%eax', 3101), ('0x8(%esp)', 3102), ('%edx', 3099), ('%eax', 

3100)}} 
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analysis[ℓ] to final_analysis[ℓ]. Otherwise, we need the killRD function to remove that value. 

Finally, we add the new set of elements having values (destinations[ℓ], ℓ)  by using genRD 

function. We find that at label 3109, the value ‘%eax’ register is holding gets reassigned again 

by a parameter ‘0x8(%ebp)’. This means that at index 3109, a new value is generated for the 

register ‘%eax’ and is not overwritten for any previous value assigned to the register ‘%eax’ 

anywhere before in the control flow. Hence, we get the ‘if’ condition true and a value is 

generated at label 3109 in the analysis by the generator function. Similarly, we either add or 

remove the values if generated or overwritten, respectively, by killRD and genRD functions for 

the remaining analysis of the labels iterating with the help of with the control flow analysis 

and storing it in in a new dictionary data structure called final_analysis. 

 

Further, we remove the null set elements from the final_analysis dictionary having key as 

the current label in the current loop of the worklist since we might encounter these null values 

again due to the repeated iteration. At this stage, we get the final_analysis of 3109, however, 

we are still calculating the analysis and final_analysis of ℓ’ which is 3110. Then, as described 

in the dataflow diagram in Figure 3.7, we will check if the final_analysis[ℓ] is a subset of 

analysis[ℓ’] or not. If it is not a subset, we update the analysis[ℓ’] by the union of it with the 

final_analysis[ℓ]. Here, we will compare whether the final_analysis[3109] ⊆ analysis[3110]. 

The main idea is to verify that the analysis of 3110 has all the reaching definitions up until the 

instruction label 3109, including the analysis of the label 3110 itself. If it is not a subset, it 

means we are missing some information up until that label. Therefore, we update the set of 

analysis[3110] by assigning the union of the final_analysis[3109] and analysis[3110]. Thus, 

we obtain the final_analysis in the next iteration where the ℓ will be 3110. If the last condition 

is true, then we find the list of all possible ℓ’’ (all possible paths for ℓ’) by iterating over the 

flowlist which is the copy of the worklist initially obtained at step 3. Finally, we update the 

worklist by appending all the ℓ’’. Here ℓ’’ is 3111 and we generally append this in the worklist. 

However, in our case, final_analysis[3109] is a subset analysis[3110] and it will not get 

appended in the worklist. Thus, the next set which gets appended in the worklist is working 

list after appending [(3111, 85), (3112, 3113), (3113, 3114), (3114, 1510), (3115, 3116), 

(3116, 3160), (3117, 3118), (3118, 3119), (3119, 3120), (3120, 3121), (3121, 3122), (3122, 

3123), (3123, 3124), (3124, 3125), (3125, 64), (3126, 3127), (3127, 3128), (3128, 3138), 
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Figure 3.7: Data flow Diagram to calculate final analysis of every label. 

 

 (3128, 3129), (3129, 3130), (3130, 3131), (3131, 3132), (3132, 85), (3133, 3134), (3134, 

3135), (3135, 1510), (3136, 3137), (3137, 3160), (3138, 3139), (3139, 3140), (3140, 3141), 

(3141, 3142), (3142, 3143), (3143, 43), (3144, 3145), (3145, 3155), (3145, 3146), (3146, 

3147), (3147, 3148), (3148, 3149), (3149, 85), (3150, 3151), (3151, 3152), (3152, 1510), 

(3153, 3154), (3154, 3160), (3155, 3156), (3156, 3157), (3157, 3158), (3158, 3159), (3159, 

2923), (3160, 3161), (3161, 3162), (3162, 3163), (3097, 3098), (3105, 55), (3107, 3117), 

(3107, 3108), (3117, 3118), (3108, 3109), (3111, 85)] for ℓ as 3110, ℓ’ as 3111 and  ℓ’’ as 85. 

Therefore, the worklist gets modified and (ℓ’,ℓ’’) gets appended. This whole process continues 

until the worklist is empty. At last, we get the final_analysis of all the labels within the 

range(f[init], f[final+1). In general, we can say that the final analysis of a label ℓ so obtained 

after the completion of step 4 & 5 is the information of all the variables which is changed or 
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modified by some operation in the possible dataflow paths. The fragment of the final analysis 

of the function as shown in Figure 3.3 is –  

 

3.2.6 Finding Parameter Used as Pointer 

To find the parameter used as a pointer, we first need to check for the instructions having 

‘args’, i.e. source or destination. In order to fetch a pointer, we only need the statements that 

involve indirect accessing of the memory to dereference the memory address by an offset. For 

this, we iterate over the function's range to get the value of the desired memory address. The 

statements that only have arguments of type "mem" are tested to see if the condition is true. 

Let us call this "mem" argument as “temp”, a location which could be either a source or 

destination of the current instruction where both are tested individually. We then determine 

whether any argument's value out of both is present in parameters; if so, we can treat that  

argument as a local argument. Otherwise, looping through all the ℓ’ in the flowlist and 

considering it as the current instruction label ℓ, we can traverse back to fetch the index from 

where we got ℓ’ initially. We can call this label ℓ*. This is called backward analysis and the pair 

of labels now are (ℓ*, ℓ) which is equivalent to (ℓ, ℓ’) in the forward analysis, as discussed in 

section 3.1, where ℓ* is the last, ℓ is the current and ℓ’ is the next instruction. By traversing 

through the final_analysis of every ℓ*, we compare the source or destination of that label 

final_analysis {3095: set(), 3096: {('%ebp', 3096)}, 3107: {('0x8(%esp)', 3102), 

('%edx', 3099), ('0x4(%esp)', 3103), ('%eax', 3106), ('%esp', 3098), ('%ebp', 3096)}, 

3108: {('0x8(%esp)', 3102), ('%eax', 3108), ('%edx', 3099), ('0x4(%esp)', 3103), 

('(%esp)', 3104), ('%esp', 3098), ('%ebp', 3096)}, 3109: {('0x8(%esp)', 3102), ('%eax', 

3108), ('%edx', 3099), ('0x4(%esp)', 3103), ('(%esp)', 3104), ('%esp', 3098), ('%ebx', 

3109), ('%ebp', 3096)}, 3110: {('0x8(%esp)', 3102), ('%eax', 3108), ('%edx', 3099), 

('0x4(%esp)', 3103), ('(%esp)', 3110), ('%esp', 3098), ('%ebx', 3109), ('%ebp', 3096)}, 

3111: {('0x8(%esp)', 3102), ('%eax', 3108), ('%edx', 3099), ('0x4(%esp)', 3103), 

('(%esp)', 3110), ('%esp', 3098), ('%ebx', 3109), ('%ebp', 3096)},…. } 
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Figure 3.8: Data flow diagram for finding the pointer as parameter used as pointer. 

 

 with the value in final_analysis for the key ℓ* up until the first instruction. This means we test 

whether the sources[ℓ*] or temp_location is equal to final_analysis[ℓ*]. If it is true and this 

temp exists in the list of parameters or local arguments, then we say that it is a parameter used 

as a pointer. In Figure 3.3, the instruction having label ℓ as 3109 at ‘804b82a’ accesses memory 

indirectly at the source argument. This means the temp is ‘%eax’, ℓ* is 3108 and the source of 

3109 is equal to the final_analysis of 3108. Hence, the last value assigned for ‘%eax’ is coming 

from the source of ℓ*(3108), i.e., 0x8(%ebp) which is a parameter and hence, is a pointer. 

 

Therefore, we have finally performed the binary static analysis on the function given in 

Figure 3.3. We found the parameters as {'0x8%ebp', '0x10%ebp', '0xc%ebp'} which are *arch, 

offset and *nested_arch respectively; local parameters {'-0xc(%ebp)'} which is size_t got; 

finally, at 3109, 3130 and 3147, we get (%eax) as parameters used as a pointer.  
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Note: In this example, out of the two parameters as pointers which are *arch and *nested_arch, 

only *arch is used as a pointer inside the function, whereas *nested_arch was used as a 

parameter to another function get_archive_member_name and is not used as pointer. Thus, 

the only parameter used as pointer inside the function is *arch which we are able to identify. 

 

Similarly, while finding pointers used as parameter, we find local variables by backward 

analysis. Since the local arguments are calculated in the form of EBP - (xN>=8) for O0 levels 

and of the form ESP ± xN where Xn< stack depth for O2 level. This is done by looking at the 

source and destination of that instruction individually. If the origin of the any source or 

destination of any ‘mov’ instruction is a parameter or a local variable (we do the back tracing 

as we did while finding the pointers) then it is a local variable. We can see this in step 6 in 

Table 2. The output we get from the algorithm is: 

 

3.3 Rules 

In the development of this algorithm, there are a few rules which need to be adhered to while 

coding, otherwise, it will lead to discrepancies in the final result. 

 

➢ Consider all the registers having similar functionality to be the same for 16-bit, 32-bit 

and 64-bit registers. Since these registers have different names, the algorithm will 

evaluate the same registers differently and results in discrepancies in the final output. 

For example, %eax and %rax are the same but since the names are different, they might 

be considered different registers which leads to wrong results. Hence, during the code 

development, we created a register list having the same functionality. Before assigning 

the value of a given register to any variable, it is checked in the list which tells us if the 

same or an equivalent register name is used before. For example, the lists created in the 

code are: 

local arguments are 1 {'-0xc(%ebp)'} 
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➢ Every time an instruction argument is checked or calculated; it is checked in three ways 

based on its type. If they are ‘reg’ means it is a register, ‘imm’ gives an immediate 

value and if it has ‘mem’ keyword in the type, it states a memory location and needs to 

be dereferenced. Also, if it is ‘mem’ type, then the calculation of an offset is different 

based on the null values in ‘base’, ‘scale’ or an ‘index’. 

 

➢ We created a list where we should not consider certain registers as a part of the analysis 

as they are more of general-purpose registers such as a base pointer, instruction pointer, 

etc. Even though they are actual registers, in order to be aligned with the approach of 

our algorithm, they are not considered to be useful and hence we skipped them. 

 

➢ A JIL file created from a C source file has many functions involved. We need to loop 

through all the potential functions one by one and then this algorithm is applied. 

However, for testing purposes, we can pass the direct ranges or addresses of a function 

if inst.get('args')[0].type == 'reg' and reg not in not_reg: 
sources.append(inst.get('args')[0].reg) 

elif inst.get('args')[0].type == 'memOffsetBase': 
if str(inst.get('args')[0].base) not in not_base_index: 

sources.append(hex(inst.get('args')[0].offset) + 
inst.get('args')[0].base) if  inst.get('args')[0].offset != 'None' and 
int(inst.get('args')[0].offset)>0 else 
sources.append(inst.get('args')[0].base) 

  elif str(inst.get('args')[0].index) not in not_base_index: 
sources.append(hex(inst.get('args')[0].offset) + 
inst.get('args')[0].index) if inst.get('args')[0].offset != 'None' and 
int(inst.get('args')[0].offset)>0 else 
sources.append(inst.get('args')[0].index) 

else: 
pass 

not_reg = ['%ebp', '%rbp', '%esp', '%rsp', '%rip', '%eip'] 
not_base_index = ['None', '%eip', '%rip','%esp','%rsp'] 

same_reg1 = ['%ax', '%al', '%eax', '%ah', '%rax'] 
same_reg2 = ['%bx', '%bl', '%ebx', '%bh', '%rbx'] 
same_reg3 = ['%cx', '%cl', '%ecx', '%ch', '%rcx'] 
same_reg4 = ['%dx', '%dl', '%edx', '%dh', '%rdx'] 

         same_reg5 = ['%edi','%rdi','%di'] 
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with start and end addresses also. But the JIL file is not directly in human-readable 

format and hence, we need to either use pprint library or parse the file itself which is 

discussed in section 2.4. 

 

➢ For 32-bit, there is a need to adhere to a special function called ‘get_pc_thunk’ which 

is already incorporated in the algorithm since it uses a register where the next 

instruction value is stored. Initially, when it was not incorporated, it led to some 

erroneous results. 

 

➢ For every call, the return value is in register ‘%eax’ and for O2 levels also, ‘%eax’ 

serves as special instruction for ‘ret’ instruction. 

 

➢ This algorithm only works for Python > 3.x version. If the algorithm ran on python 

version less than 3.x, then it will call the sys.exit function. 

 

➢ Apart from the common instructions like ‘mov, push, add, sub’,etc., there are other 

commands also. They are taken care of by having an ‘else’ clause in every branch of 

the algorithm. The approach for these commands is similar and since the testing is still 

going on, we continue to update the algorithm if any different scenario arises.s 

 

Thus, the implementation of this algorithm requires certain considerations to get the correct 

output. Note, these are limited to Intel only as other ISA may require some different strategies 

or rules. And since we are limiting ourselves with the use of JIL data structure file while 

analyzing objdump file or any other might not involve these checks or limitations. 
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Chapter 4 : Experiments and Results 

In Chapter 3, the algorithm was presented and explained in detail with the help of an example. 

In this chapter, we will give the details of the experimental results for detecting the parameters, 

local variables and pointer used as parameter of a function for binutils, coreutils and findutils 

stripped binaries compiled on GCC, Clang compilers. The results were verified manually and 

have been tested in over 650 test cases. In our analysis, we sometimes found discrepancies in 

the source code function declaration and function definition. Similarly, our analysis has 

sometimes overapproximated the final results by considering a 64-bit parameter into two 32-

bit parameters which results in few false positives too. These kinds of issues provide us with 

limitations which have been talked about in detail in Chapter 5.  

 

4.1 Ground Truth 

The ground truth for each stripped binary and its function has been obtained by the data in 

ground truth file which consists of start and end addresses of a function, size and the function 

prototype, etc., of the source code. We have compared the ground truth of our results with the 

source code as well ground truth file generated in our JIMA toolkit. To get this ground truth 

file, we need to run some packages individually which are a part of the JIMA. These are 

py_dwarf.py and makeDwarfSym.py that gives us the header file, text file, JSON, etc. Further, 

it is cross verified manually by checking the source code of that particular file. Considering 

this file as a ground truth, the results are evaluated. Since the results we get from this algorithm 

is compared with the ground truth, it is mandatory to note that there can be discrepancies in 

the ground truth as well.  

 

Example of Discrepancy: In stripped binaries, we do not have any debugging information 

and hence source code makes the ground truth. There are times when the listed function 

prototype or declaration has a different number of formal parameters as compared to the actual 

number of parameters used in the function definition. Some of the arguments are not even used 

in the function definition and are redundant to pass, which creates discrepancies in defining 

the actual formal parameters. In our analysis too, we encountered a similar issue in which the  
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Figure 4.1: Function declaration of a source code from gcc_binutils_32_O0_ld-new  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Binary code definition of the function declaration given in Figure 4.1 

 

static analysis of the source code could not identify unused attributes. However, when the 

binary static analysis was done for the function shown in Figure 4.2, it was found that fewer 

parameters were actually used or called than the number of parameters which were passed in 

the definition of source code as shown in Figure 4.1.  The function given in Figure 4.2, is the 

objdump obtained from stripped binary ‘gcc_binutils_32_O0_ld-new’ which is in the ELF 

format. As the name suggests, it was compiled on a 32-bit GCC compiler with an optimization 

level of O0. As per the function definition, we can see that three parameters have been passed 

to a function but after doing the static binary analysis, it was found that only two parameters 

were actually used. After the analysis, only two parameters, at locations 0x10(%ebp) and 

0xc(%ebp), which are *data and *s, respectively, were found to be actually used. As we see, 

these types of issues cannot be identified using source code analysis alone and also create 

discrepancies with the ground truth. We see that binary analysis works better in determining 

bfd_boolean section_iterator_callback (bfd* abfd, asection* s, void* data) 

08052679 <section_iterator_callback>: 
 8052679:       pushl  %ebp 
 805267a:       movl   %esp,%ebp 
 805267c:       subl   $0x10,%esp 
 805267f:       movl   0x10(%ebp),%eax 
 8052682:       movl   %eax,-0x4(%ebp) 
 8052685:       movl   -0x4(%ebp),%eax 
 8052688:       movl   (%eax),%eax 
 805268a:       testl  %eax,%eax 
 805268c:       je     805269f <section_iterator_callback+0x26> 
 805268e:       movl   -0x4(%ebp),%eax 
 8052691:       movl   $0x1,0x4(%eax) 
 8052698:       movl   $0x1,%eax 
 805269d:       jmp    80526ac <section_iterator_callback+0x33> 
 805269f:       movl   -0x4(%ebp),%eax 
 80526a2:       movl   0xc(%ebp),%edx 
 80526a5:       movl   %edx,(%eax) 
 80526a7:       movl   $0x0,%eax 
 80526ac:       leavel 
 80526ad:       retl 
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the relevant ground truth. However, little effort was made in the direction of binary analysis 

and even commercial tools, which analyze binary code, require debugging information and 

depend on symbolic execution. Thus, the algorithm developed, as explained in detail in the 

later sections, serves as the ultimate step in finding the function parameters. 

 

The results are finally presented by the precision, recall, and F1 after comparing it with the 

ground truth for each of the operation, i.e. detecting the parameters, local variables and pointer 

used as parameter of a function. To calculate them, we need true negative, false positive, false 

negative, and finally true positive results of the parameters, local variables and parameter used 

as pointer in a function identification. These metrics are defined as follows for each of the 

operation: 

➢ True Negative (TN) means the source code has not output for any of the operations 

of a function and even the algorithm presented it with no output. 

 

➢ False Negative (FN) means that the source code has the correct number of outputs 

for any of the operations of a function but the algorithm does not detect it. 

 

➢ False Positive (FP) means the source code has no output for any of the operations 

of a function but the algorithm detects some output. 

 

➢ True Positive (TP) means that the source code has the correct number of output for 

any of the operations of a function and the algorithm also detects the correct output. 

 

Precision (P): For comparing the ground truth with the output of our algorithm, we need to 

know when the algorithm has correct results. Precision means the percentage of reported 

operations on a funcion that are correctly reported and are not false positive. The precision is 

the ratio of the true positive as the numerator and the sum of true positive and false positive 

results as the denominator. 

𝑷 =  
|𝐓𝐏|

|𝐓𝐏| +  |𝐅𝐏|
 

Recall (R): Recall denotes the percentage of true or correct operations on a function detected 
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by the algorithm. The recall is the ratio of the true positive as the numerator and the sum of 

true positive and false negative results as the denominator. 

𝑹  =  
|𝐓𝐏|

|𝐓𝐏| +  |𝐅𝐍|
 

F1: F1 is a weighted average of precision and recall. F1 is calculated by the following formula. 

This is used to give a balanced comparison between algorithm and the ground truth, addressing 

both false positives and false negatives. 

𝑭𝟏  =  
𝟐 ∗ 𝐏 ∗ 𝐑

𝐏 + 𝐑
 

 

4.2 Datasets & Results 

Different stripped binaries are chosen to obtain the results by finding precision, recall and F1 

score. These are GCC 32-bit and 64-bit, both compiled by O0 and O2 optimization levels. The 

results for finding parameters and correctly identifying the number of parameters used as 

pointers are tested by the script giving the output in CSV format. This CSV file has the function 

start address, in both hexadecimal and decimal format, the number of parameters obtained from 

the algorithm, the function end address, the name of the parameters, the number of local 

variables, the name of the local variables and list of pointers as parameter which is a set of the 

name of the memory location and the address where it is found. The CSV is then compared 

with the ‘.h’ file, i.e. the header file for the parameter and pointers. But, for the local variable, 

it has been done manually, since we need to look for the actual number of local variables, 

which is not possible without the source code. Table 4.1 and Table 4.6 show the number of 

information about the data used to perform the experiments. 

 

 

4.1.1 GCC 32-bit and 64-bit O0 

 The results from algorithm were tested on 144 functions compiled on 32-bit and 100 functions 

compiled on 64-bit for O0 optimization level. Table 4.2 shows the summary of the percentages 

of precision, recall and F1 score for finding the parameters, local variables and parameter used 

as pointer. As we can see in the Table 4.2, the precision obtained in 32-bit and 64-bit is 96.53%  
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Table 4.1: Characteristics of GCC Dataset 

 

Table 4.2: Summary of percentages of precision, recall and F1 for finding parameters, local 

variables and parameter used as a pointer in GCC O0 optimization level 

 
and 100%, respectively for finding parameters which means that the algorithm gives the correct 

number of parameters for around 96.53% for 32-bit and 100% for 64-bit of the time. Similarly, 

the precision is calculated as 91.17% and 96.20% for local variables and 92.60% and 93.05% 

for parameter as pointer for 32-bit and 64-bit, respectively. Further, the recall is calculated as 

 Data Set 

 ELF 32-bit  ELF 64-bit 

 gcc O0 gcc O2 gcc O0 gcc O2 

Number of Binaries 3 2 2 2 

Number of Functions 145 100 100 100 

Avg. Number of Functions 48 50 50 50 

Size of Stripped  
Binaries (MB) 

6 6.9 6 8 

 Data Set % Precision, Recall and F1 for GCC O0 optimization 

level 

ELF 32-bit ELF 64-bit 

P
r
e
c
i
s
i
o
n
 

R
e
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a
l
l
 

F
1
 

P
r
e
c
i
s
i
o
n
 

R
e
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a
l
l
 

F
1
 

Parameters 96.53 100 98.23 100 100 100 

Local 

variables 

91.17 96.24 93.6 96.20 95 95.81 

Parameter 

used as a 

Pointer 

92.60 83.4 88.1 98.53 93.05 95.71 
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 Table 4.3: Summary of percentages of precision, recall and F1 for finding parameters, local 

variables and parameter used as a pointer in GCC O2 optimization level. 

 

100% for getting number of parameters in both 32-bit and 64-bit. Having 100% recall means 

how accurately the algorithm is able to find the number of parameters. It is also called true 

positive rate or sensitivity. In the similar manner, recall is also calculated for local variables as 

96.24% and 95% and 83.4% and 93.05 for parameter used as pointer. Finally, F1 score is also 

calculated as 98.23% and 100% for finding parameters which means the tradeoff between 

precision and recall. Also, we got 93.6% and 95.81% for local variables and 88.1% and 95.71% 

for parameter used as pointer. 

 

4.1.2 GCC 32-bit and 64-bit O2 

 The same calculations is done for the functions compiled for O2 optimization level on both 

32-bit and 64-bit. The experiments were performed on 200 functions in total, accounting for 

100 each for both 32-bit and 64-bit. Again, the precision, recall and F1 score are calculated for 

finding the parameters, local variables and parameter used as pointer. Since O2 is highly  

 Data Set % Precision, Recall and F1 for GCC O2 optimization 

level 

ELF 32-bit ELF 64-bit 

P
r
e
c
i
s
i
o
n
 

R
e
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a
l
l
 

F
1
 

P
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n
 

R
e
c
a
l
l
 

F
1
 

Parameters 99 100 99.5 97.92 96.91 97.41 

Local 

variables 

63.42 88.14 73.76 29.55 41.94 34.67 

Parameter 

used as a 

Pointer 

86.67 81.25 83.87 56.37 93.94 70.46 
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Table 4.4: Average % of different measures for different types for GCC O0 optimization 

level 

 
 

Table 4.5: Average % of different measures for different types for GCC O2 optimization 

level 

 

 optimized, we did not achieve very good results as compared to O0. Due to the high false 

positives rate which is observed in O2, especially for the local variables, the values of different 

measures are also dropped significantly as shown in Table 4.3. The reason behind high false 

positives is discussed in detail in the section 5.2. We see that the different measure values are 

highest in finding the parameters in both 32-bit and 64-bit. The precision is 99%, the recall is 

100% and the F1 score is 99.5% for finding parameters in 32-bit. In 64-bit, these measures got 

dropped as compared to the 32-bit. Similarly, for local variables, the values were least for the 

different measures due to many reasons like padding variables, a 64-bit value gets divided into 

two 32-bit, some global variables, etc,. We observed the precision as low as approx. 64% and  

Type TN TP FN FP Precision Recall F1 

Parameter 0 239 0 5 98 100 99 

Local 

Variables 

52 169 11 12 93.37 93.88 93.62 

Parameter 

as 

Pointer 

102 119 17 6 95.2 87.5 91.4 

Type TN TP FN FP Precision Recall F1 

Parameter 0 194 3 3 98.47 98.47 98.47 

Local 

Variables 

43 70 25 62 53.03 73.68 61.67 

Parameter 

as 

Pointer 

82 77 11 30 72 87.5 80 
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Table 4.6: Characteristics of Clang Dataset 

 

 

30% only, whereas the recall values are better which means we have more false positives than 

false negatives. We got 88.14% and 41.94% recall values for local variables for 32-bit and 64- 

bit, respectively. This also means that in 64-bit, we see that the optimizations are much higher 

due to enough memory. Further, we calculated parameter used as a pointer and found the 

precision, recall and F1 score values as 86.67%, 81.25% and 83.87 respectively for 32-bit 

whereas, 56.37%, 93.94% and 70.46%, respectively for 64-bit. 

 

4.1.3 Final Analysis of GCC O0 and 02 Optimization Level 

Table 4.4 shows the confusion matrix for each of the types we evaluated. Thus, the average 

precision, recall and F1 score were calculated for finding parameters, local variables and 

parameters as pointers for the O0 optimization level. We get average precision, recall and F1 

score for parameters as 98%, 100% and 99% overall. Similarly, for local variables, 93.4%, 

93.9% and 93.6% are observed; for parameters as pointers, 95%, 88% and 92% approximately 

are observed. We get the total functions on which the evaluation is done by adding true 

negatives, true positives, false negative and false positives which were defined before. Thus, 

the values are highest for finding parameters among the other two.  

 Data Set 

 ELF 32-bit  ELF 64-bit 

 clang O0 clang O2 clang O0 clang O2 

Number of Binaries 2 2 2 2 

Number of Functions 50 50 50 50 

Avg. Number of Functions 25 25 25 25 

Size of Stripped  
Binaries (MB) 

1.3 0.94 1.4 1.2 
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Table 4.7: Summary of percentages of precision, recall and F1 for finding parameters, local 

variables and parameter used as a pointer in Clang O0 optimization level 

 

In a similar manner, Table 4.5 shows the confusion matrix for each of the types evaluated for 

O2 optimization level to calculate the average precision, recall and F1 score. We observe the 

F1 score is highest for finding the parameters and least for local variables which is the case 

with O0 level too. 

 

4.1.4 Clang 32-bit and 64-bit O0 

 The results from algorithm were tested for LLVM compiler on 50 functions compiled on 32-

bit and 50 functions compiled on 64-bit for O0 optimization level. Table 4.7 shows the 

summary of the percentages of precision, recall and F1 score for finding the parameters, local 

variables and parameter used as pointer. As we can see in the Table 4.7, the precision obtained 

in 32-bit and 64-bit is 96% and 100%, respectively for finding parameters which means that 

the algorithm gives the correct number of parameters for around 96% for 32-bit and 100% for 

64-bit of the time. Similarly, the precision is calculated as 73.34% and 74.35% for local 

 Data Set % Precision, Recall and F1 for CLANG O0 optimization 

level 

ELF 32-bit ELF 64-bit 
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Parameters 96 100 98 100 100 100 

Local 

variables 

73.34 73.34 73.34 74.35 96.67 84.05 

Parameter 

used as a 

Pointer 

91.67 81.5 86.28 83.34 50 62.50 
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variables and 91.67% and 83.34% for parameter as pointer for 32-bit and 64-bit, respectively.  

Table 4.8:Summary of percentages of precision, recall and F1 for finding parameters, local 

variables and parameter used as a pointer in Clang O2 optimization level. 

 

Further, the recall is calculated as 100% for getting number of parameters in both 32-bit and 

64-bit. Having 100% recall means that almost always the algorithm is able to find the number 

of parameters accurately. In the similar manner, recall is also calculated for local variables as 

73.34% and 96.67% and 81.5% and just 50% for parameter used as pointer. Finally, F1 score 

is also calculated as 98% and 100% for finding parameters which means the tradeoff between 

precision and precision and recall. Also, we got 100% and 84.05% for local variables and 

86.28% and 62.50% for parameter used as pointer compiled on 32-bit and 64-bit, respectively. 

The statistics clearly shows that the algorithm performed better on GCC O0 than Clang O0 

optimization level. Also, the algorithm performed better in GCC O0 than Clang O0 as so many 

false positives are observed as clang considers every structure element as a new local variable. 

 

 Data Set % Precision, Recall and F1 for Clang O2 optimization 

level 

ELF 32-bit ELF 64-bit 
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F
1
 

Parameters 94 100 97 97.87 93.87 95.82 

Local 

variables 

54.05 80 64.51 50 26.5 34.64 

Parameter 

used as a 

Pointer 

75 66.67 70.59 94.5 65.38 77.3 
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4.1.5 Clang 32-bit and 64-bit O2 

The same calculations is done for the functions compiled for Clang O2 optimization level on  

Table 4.9: Average % of different measures for different types for Clang O0 optimization 

level 

 

both 32-bit and 64-bit. The experiments were performed on 100 functions in total, accounting 

50 each for both 32-bit and 64-bit. Again, the precision, recall and F1 score are calculated for 

finding the parameters, local variables and parameter used as pointer. Since O2 is highly 

optimized, we did not achieve very good results as compared to Clang O0. Also, as compared 

to GCC O2, the algorithm did not performed well for Clang O2 especially for fining local 

variables. This is again attributed to the compiling technique used by clang especially with 

struct data structures which is discussed in section 5.2. Due to the high false positives rate 

which is observed in O2, especially for the local variables, the values of different measures are 

also dropped significantly as shown in Table 4.8. We see that the different measure values are 

highest in finding the parameters in both 32-bit and 64-bit and least for local variables. The 

precision is 94%, the recall is 100% and the F1 score is 97% for finding parameters in 32-bit. 

In 64-bit, these measures got dropped as compared to the 32-bit. Similarly, for local variables, 

the values were least for the different measures due to many reasons like padding variables, a 

64-bit value gets divided into two 32-bit, some global variables, etc,. We observed the 

precision and recall as low as approx. 50% and 26% which drops the value of F1 score to 

34.64% in local variables for 64-bit. This is because of the highly optimized compiler.  

 

Type TN TP FN FP Precision Recall F1 

Parameter 0 98 0 2 98 100 99 

Local 

Variables 

21 52 9 18 74.28 85.3 79.40 

Parameter 

as 

Pointer 

49 32 15 4 88.89 68.08 77.92 
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4.1.3 Final Analysis of Clang O0 and 02 Optimization Level 

Table 4.9 shows the confusion matrix for each of the types we evaluated. Thus, the average  

Table 4.10: Average % of different measures for different types for Clang O2 optimization 

level 

 

precision, recall and F1 score were calculated for finding parameters, local variables and 

parameters as pointers for the O2optimization level. We get average precision, recall and F1 

score for parameters as 95.9%, 96.9% and 96.4% overall. Similarly, for local variables, 53.57%, 

50% and 51.72% are observed; for parameters as pointers, 86.12%, 67.4% and 75.62% 

approximately are observed. We get the total functions on which the evaluation is done by 

adding true negatives, true positives, false negative and false positives which were defined 

before. Thus, the values are highest for finding parameters among the other two.  

 

In a similar manner, Table 4.10 shows the confusion matrix for each of the types evaluated 

for O2 optimization level to calculate the average precision, recall and F1 score. We again 

observe the values are highest of finding the parameters and least for local variables which is 

the case with O0 level too. Also, the measures of local variables are the least among others. 

 

  

Type TN TP FN FP Precision Recall F1 

Parameter 0 93 3 4 95.9 96.9 96.39 

Local 

Variables 

14 30 30 26 53.57 50 51.72 

Parameter 

as 

Pointer 

49 31 15 5 86.12 67.4 75.62 
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Chapter 5 : Challenges and Limitations 

This chapter discusses the challenges faced while developing the algorithm and the limitations 

of it. Since the objective of this research is to make a generalized approach for finding the 

number of parameters, local variables and parameter used as pointer, it is a challenge to 

incorporate all the requirements of different compilers for both 32-bit and 64-bit for different 

optimization levels. 

 

5.1 Challenges 

Numerous challenges were presented while analyzing parameters, local variables and pointers 

to develop the algorithm due to the several reasons.  

 

Compiler Architecture: The way a compiler generates binary code can be influenced by 

its architecture, which might make it more challenging to search for local variables and 

arguments in stripped binaries. Due to this difference in a compiler’s architecture, it becomes 

difficult to address all the conditions when a modification is made because one compiler might 

hamper the correct output when compiled on another platform. The registers used by various 

compilers to store local variables and function parameters may also vary. While evaluating 

stripped binaries, it can be difficult to determine which registers are being used for which 

purpose. Additionally, stack usage also plays an important role as depending on the compiler, 

different conventions are used for storing local variables and parameters on the stack. Due to 

this, it becomes very hard to understand how the stack is being used and which values belong 

to which variables. The calling convention used by a compiler can also impact the way a 

function parameter is given and how a return value is handled. Further, the optimizations by a 

compiler changes the way code is generated and thus, the structure of the code changes. This 

changed sequencing of instructions or code that seems superfluous also gets removed by 

compiler optimizations. This can cause unexpected behavior and make it more difficult to track 

the flow of data and the changed values. Therefore, it is very difficult to make a generalized 

approach for different compiler architectures in a single algorithm. 
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Some compilers will store local variables on the stack in the order as the source code while 

others may rearrange them. For instance, GCC and ICC write code utilizing various approaches 

and optimizations. As a result, they could handle local variables differently during code 

compilation. In order to assign registers for local variables, both of them employ various 

techniques, which results in various register usage patterns and performance characteristics of 

the produced code. Both of them have different optimization levels that can alter some inline 

small functions or remove unnecessary variables, resulting in different register usage patterns. 

Since they are different in architecture and the calling convention, the memory access can also 

vary as it depends on how the data structures are laid out in memory. It may use different data 

structure alignment and packing options, which can result in different memory usage patterns 

for local variables. The particular variation will depend on the specific code being generated 

and the optimization parameters employed by each compiler. To understand how various 

compilers are affecting local variable handling for a specific codebase, it is always a good idea 

to examine the resulting assembly code and run benchmarks. Due to the complexity of the 

differences in architecture, it is quite hard to identify the parameters, pointers as parameters, 

and local variables perfectly. 

 

In both 32-bit and 64-bit compilers, one of the main challenges is memory management 

during program execution. Since the stack size in a 32-bit compiler is restricted to 4GB, the 

memory for storing parameters and local variables is also a finite amount. This results in issues 

like programs that need a lot of memory. Sometimes, a 64-bit parameter passed in 32-bit 

becomes a challenge to recognize the actual parameter as it will get divided into two 32-bit 

values and thus, breaks the code. This results in many false positives while finding the number 

of parameters. On the other hand, 64-bit compilers may address up to 16 exabytes of memory, 

which is a substantially larger number (18,446,744,073,709,551,616 bytes) thus, making 

applications with more intricate data structures possible. However, due to enough memory, the 

parameters are directly used from the registers which makes it hard to capture the local 

variables and parameters on the stack during run-time correctly. Also, in 64-bit, ‘%eax’ serves 

a special purpose where all the return addresses of calls made to different functions resides. 

Hence, this exception of ‘%eax’ should also be handled carefully while designing the algorithm 

as it may result in many false positives. One such challenge occurred while analyzing the 
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pointers and the stack pointer is being referenced to the last time where ‘%eax’ has assigned a 

value or has the return value from a function. Hence, during the analysis of pointers, it results 

in false positives. 

 

Optimization levels: Different optimization level makes any analysis challenging because 

of how the compiler transforms and optimizes the code during compilation. The compiler 

produces code that closely resembles the original source code when optimization level O0 (i.e., 

no optimization) is used. This makes it simpler to recognize and locate parameters and local 

variables in the compiled code because the resulting code largely preserves the original 

structure and variable names. However, the compiler aggressively optimizes the code at 

optimization level O2 (i.e., high optimization), potentially affecting the code's structure and 

the way that parameters and local variables are used. It may be more challenging to identify 

and locate particular parameters and local variables in the produced code because of 

optimizations the compiler makes, such as inlining routines, removing unnecessary variables, 

and rearranging instructions. Moreover, the compiler may undertake aggressive register 

allocation and other optimizations at high optimization levels, which could result in variables 

being stored in registers rather than in memory. This can make identifying and locating 

parameters and local variables in the produced code much more difficult. 

 

Furthermore, the calling convention of both optimization levels is different which makes 

it more complicated to develop a generalized algorithm. Since the compiler produces code that 

closely resembles the original source code at optimization level O0, it involves employing a 

straightforward calling convention where the caller is responsible for clearing the stack 

following the function call, such as the CDECL convention. This convention makes it simpler 

to debug the code because it is clear-cut and simple to comprehend. At optimization level O2, 

however, a complicated calling convention, such as the FASTCALL convention is used where 

some parameters are passed in registers rather than on the stack which later may be used by 

the compiler. This usually happens when the compiler knows the function is local and can 

optimize all the calls made to it. The code may run more quickly as a result, but the function 

call and parameter passing may not follow the expected pattern, making it harder to analyze. 

It is more difficult to understand the program's control flow and data flow because of the 
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function inlining at the O2 level, which completely eliminates the need for a function call by 

inserting the function code right into the calling code. This is because the way functions are 

called and how parameters are given get altered most of the time. 

 

An example of this may be that in a 32-bit and 64-bit O0 optimization level, a compiler 

(especially the common ones like GCC, Clang, etc.) generally pushes the ‘%ebp or %rbp’ first 

onto the stack followed by an instruction like ‘movq   %rsp,%rbp’ or ‘movl   %esp,%ebp’. 

However, in the O2 optimization level, there is no general pattern that we observe at the start 

of a function in binary code. Generally, we see an instruction like ‘subl   $0x30, %esp’ meaning 

that it makes space on the stack by using ‘%esp’ as a reference for local variables which 

includes some padding too. This padding gives some extra values which are not local variables 

compared with the ground truth and gives many false positives again. Other times, we see a 

direct push of ‘%ebp’ or ‘%rbp’ similar to in the O0 level. In addition to this, there are 

scenarios where we see ‘push %ebx’ at the function start. It is uncommon that a function does 

not follow the -fomit-frame-pointer option by default. Hence, without a frame pointer, which 

generally happens in the case of optimizations, the compiler uses other registers to reference 

these values. O2 may use the ‘%ebx’ register to reference the values within a function. But, in 

x86 systems, the ‘%ebx’ register also gets utilized for position-independent code (PIC) that 

creates code that can be loaded at any address in memory. The O2 optimization level in GCC 

pushes the value of the ‘%ebx’ register onto the stack at the start of a function and recovers it 

before returning to enable with PIC. By doing this, it is ensured that utilizing the ‘%ebx’ 

register to reference values inside the function can be done without endangering the PIC. 

However, it is important to note that other compilers or optimization levels might not exhibit 

this behavior, which is unique to GCC's implementation of the O2 optimization level. In 

addition, depending on the particular code being produced, using the ‘%ebx’ register may not 

always be the best option and alternative registers may be used in its place. 

 

Finding parameters used as a pointer also presents some challenges especially in O2 level. 

One of the major challenge with stripped binaries is determining the places in memory where 

the pointers are placed are transferred between functions or allocated dynamically. 

Additionally, sometimes the current function calls another function which means that the caller 
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function does not necessarily executes the next instruction of the given function or the return 

address is stored in ‘%eax’. This disrupts the control flow of the current function and makes it 

harder to achieve the correct flow in the form of the workflow list. Therefore, it becomes hard 

to recognize the pointer used as parameter especially in the case where ‘%eax’ is a parameter. 

Further, we found few instances where the base or frame pointer, ‘%ebp’, used as a regular 

register. For example, let us suppose the parameter has assigned value to the ‘%ebp’ register, 

like in instruction ‘movl   0x30(%esp), %ebp’. Using this base register, the next instruction 

‘movzbl 0x7(%ebp), %ecx’ is used as a pointer to the parameter ‘0x30(%esp)’. Thus, this 

creates confusion in recognizing or analyzing the correct pointer since any value of the form 

0xn(‘%ebp’) is used generally as parameters.  

 

Therefore, analyzing the binary code statically is challenging as it depends on data flow 

analysis which can be limited in scope due to its complex nature. Since it is hard to decode the 

complex data structures or dynamic memory allocation, the algorithm presented sometimes 

gave false results as well. 

 

5.2 Limitations 

With respect to the development of the algorithm presented this section describes limitations 

in detail with the examples. Some of these limitations can be enhanced in future and are not 

implemented because of the time constraint. 

 

 

➢ Lack of Context: Static analysis techniques do not execute the code, therefore they are 

unable to access the environment in which it is being used. It may be challenging to tell 

which functions are called in particular execution paths or how variables are used as a 

result. Factors such as input parameters, environment variables, system configuration, 

and the state of memory and file systems are included in the context of the program. 

For example, depending on its runtime context, a variable might be initialized to a 

particular value that isn't always clear from the code alone. Similarly, the behavior of 

a function may depend on the exact parameters provided to it, which may not be known 
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without executing the program. Due to a lack of context, findings in the analysis may 

contain false positives or false negatives. To alleviate this constraint, it may be essential 

to combine static analysis with other techniques, such as dynamic analysis, to acquire 

more full knowledge of the program's behavior. 

 

➢ Limitations due to Incomplete Code and Data Flow Analysis: In stripped binaries, 

we may find some code that is executed only under specific conditions, certain type of 

inputs or system configurations. As a result, the insufficient code creates inaccurate 

data flow or control flow graphs, which may result in an incorrect output. As a result, 

the method becomes more prone to errors since code that employs sophisticated data 

structures or dynamic memory allocation may not be handled by the data flow analysis 

method. 

 

➢ No runtime or dynamic information: Programs frequently allocate and deallocate 

memory at runtime using dynamic memory allocation techniques like malloc() and 

free(). Tracking of all the allocations and deallocations of memory makes it more 

difficult to understand how variables are used. Also, code is executed at runtime by 

programs using dynamic control flow techniques like function pointers or indirect 

jumps which makes it hard to understand how the code is being run and which functions 

are being called. 

 

➢ Code Obfuscation: As with dynamic analysis, code obfuscation techniques can also 

hinder static analysis. Obfuscation can make it difficult to understand the code structure 

or to identify important functions and variables. We constantly require useful properties 

of a function that hold true across all executions. It usually gets combined with the 

complexity added by typical encryption and obfuscation methods for protecting binary 

code. The privacy-sensitive portions of an algorithm are typically encrypted to maintain 

privacy. Binary code is modified through obfuscation to make it more challenging to 

understand or deconstruct [7]. An example of obfuscation is shown in Figure 5.1 which 

shows a pseudo-code where obfuscation changes binary code to make it challenging to  
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Figure 5.1: A pseudo-code showing obfuscation (Adapted from [7]). 

 

understand or deconstruct. In the example, static analysis by itself is unable to detect 

the loop's execution route. To infer that integer ‘c’ is not constant, we need an abstract 

representation of ‘c’. 

 

➢ Lack of Dynamic Analysis: In dynamic analysis, the code is executed in a controlled 

environment setting and during the runtime, its behavior is observed. Memory leaks, 

runtime problems, and race situations are just a few examples of the faults that can be 

detected in this way but are challenging by using only static analysis. Moreover, 

dynamic analysis can be used to test the behavior of the software under various settings 

and scenarios, which can be used to validate the software's accuracy in a real-world 

setting. But, dynamic analysis tends to take a single path of execution flow using 

runtime information. Thus, it has its own restrictions which infers that having the 

hybrid strategy should be considered which includes the combination of both. 

 

➢ Architectural difference: In our analysis, we found few cases in 32-bit compiled 

stripped binaries where a 64-bit parameter has been passed and gets divided into two 

32-bit parameters. This gives some false positive results which is difficult to determine 

in the absence of the source code or debugging information. An example is shown in 

Figure 5.2 of a function named ‘byte_put_little_endian’ from a standard library of 

binutils was tested. As we can see in the source code in Figure 5.3, this function has 

three parameters where the first one is a pointer too. But when we analyzed the function 

in the stripped binary, we found four parameters - {'0x8(%ebp)', '0x14(%ebp)', 

const int constants1[32] = {...}; 
const int constants2[32] = {...}; 
int random = rand(); 
int c = 0; 
for (int i = 0; i < 32; ++i) { 
 if (some_func(random, i) == true) { 
  c ^= constants1[i]; 
 } else { 
  c ^= constants2[i]; 
 } 
} 
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 Figure 5.2: Source code where 64-bit parameter gets divided into two 32-bit parameters. 

 

Figure 5.3: An example of the limitation of intra-analysis 

 

 

void byte_put_little_endian (unsigned char * field, elf_vma value, int 
size) 
{ 
  switch (size) 
    { 
    case 8: 
      field[7] = (((value >> 24) >> 24) >> 8) & 0xff; 
      field[6] = ((value >> 24) >> 24) & 0xff; 
      field[5] = ((value >> 24) >> 16) & 0xff; 
      field[4] = ((value >> 24) >> 8) & 0xff; 
      /* Fall through.  */ 
    case 4: 
      field[3] = (value >> 24) & 0xff; 
    case 3: 
      field[2] = (value >> 16) & 0xff; 
    case 2: 
      field[1] = (value >> 8) & 0xff; 
      /* Fall through.  */ 
    case 1: 
      field[0] = value & 0xff; 
      break; 
    default: 
      error (_("Unhandled data length: %d\n"), size); 
      abort (); 
    } 
} 

static int process_object (const char *file_name, FILE *file) 
{ 

long offset = ftell (file); 
if (! get_file_header (file)) 

{ 
error (_("%s: Failed to read ELF header\n"), 

file_name); 
return 1; 

} 
if (fseek (file, offset, SEEK_SET) != 0) 

{ 
error (_("%s: Failed to seek to ELF header\n"), 

file_name); 
} 

if (! update_elf_header (file_name, file)) 
return 1; 

return 0; 
} 
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Figure 5.4: An example code showing no local variables in source code (left side) and extra 

(false positives) local variables in binary code (right side) 

 

0xc(%ebp)', '0x10(%ebp)'}. In the list, '0x8%ebp' is an extra since *field parameter is  

a 64-bit parameter and got divided into 32-bit parameters. Thus, it gives extra 

parameters which leads to false positives. Similarly, there are few other functions such 

as byte_put_big_endian, byte_get_signed which comes under exceptional category. 

 

 

Lack of Inter- function Analysis of a Pointer used as Parameter in a function: In 

this algorithm, we are dealing with the parameters which are used as pointers only in 

the scope, i.e., within a given function which is called intra-function analysis. But there 

were few cases where the parameter passed in the function was a pointer, however, it 

is not used as a pointer inside the scope of that function. The pointer parameter was 

passed to another function through a local variable and hence, we are not able to find 

this pointer parameter unless we do inter-function analysis. At this point of time, it is 

out of the scope of this thesis but is likely an enhancement in the future work. This non 

accessibility of inter-analysis gives us false negatives as we are not able to capture the 

pointer parameter even though it exists. As shown in Figure 5.3, the parameters 

‘*file_name’ and ‘FILE *file’ are passed either to the function ‘ftell’  
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Figure 5.5: An example of limitation showing false negatives of local variables in case of faster 

access  

 

or‘get_file_header’ directly and never really used as a pointer inside the function 

‘process_object’. Hence, we need inter-analysis of functions where we can cater these 

types of limitations.  

 

➢ Extra Local Variables detected due to Optimizations and some Padding: The 

compiler may carry out a number of optimizations to reduce the size and enhance the 

speed of the resultant binary when code is generated with optimization flags like O2. 

Register allocation is one optimization that the compiler might carry out that can speed 

up code execution, is the procedure by which the compiler assigns variables to 

particular hardware registers in the processor. The compiler might, however, 

occasionally need to allocate more registers than the hardware can support. To hold the 

values of the variables that cannot be kept in registers in this situation, the compiler 

may generate new local variables in the function. These new temporary local variables 

do not usually exist in the original source code, but are often generated by the compiler 

during compilation. In addition to that, sometimes compiled code does not do a push 

to pass to the next function. Instead, it preallocates space and uses it to reference the 

places to pass to the called functions. Also, some of these preallocated locations are 

due to the padding and as a result, in O2 optimization levels a high number of test cases 

resulted in extra local parameters.  In Figure 5.4, the right side shows such a binary 

function where we see that stack is allocating space for function call variables, padding  

void freeargv (char **vector) 
{ 
  register char **scan; 
 
  if (vector != NULL) 
    { 
      for (scan = vector; *scan != NULL; scan++) 
 { 
   free (*scan); 
 } 
      free (vector); 
    } 
} 
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Figure 5.6: An example showing false positives due to character array for local variables in 

GCC O2 

 

or some extra variables to do optimizations, etc. Thus, we get the local variables 

as{'0x8(%esp)', '0x4(%esp)'} which are extra and give false positives, whereas there 

are no local variables defined in the source code as shown at the left-hand side of the 

figure. 

 

➢ False negatives in local variables due to use of registers: We have encountered some 

cases where the local variable is declared with a register keyword for faster access. 

Since the local variable is now a register, it leads to confusion among a parameter or 

local variable or a return value register. Thus, in these types of cases, the algorithm 

does not locate the local variable correctly and gives false negatives. An example is 

shown in Figure 5.5 where we can see in the source code that the local variable named 

‘scan’ is declared and is a pointer to a pointer to a character type. It also suggests to the 

compiler to store the variable in a CPU register for faster access. The "register"  



89 

 

 

 

Figure 5.7: An example showing false positives for finding local variables in clang due to a 

presence of an enum or a struct; (source code at left side) and (binary code at right side) 

 

it is not guaranteed that the compiler will do so, as the compiler may choose to ignore 

this suggestion.  Overall, this statement declares a pointer to a pointer to a character 

type, and it may help optimize the program's performance by suggesting the compiler 

keep the variable in a register. 

 

➢ False positives in local variables due to character array or strcut elements: There 

are cases where we have got extra local variables due to the presence of character array 

or struct where every element of the character array and struct was accessed 

individually and the algorithm encountered them as the individual normal local 



90 

 

 

variables as there is no way to differentiate between those temporary variables and 

actual variable. For example, as shown in the left of Figure 5.6 is the source code, in 

which we have defined char b[2]. This led to extra variables in the final result. We see 

at the right side of Figure 5.7 is the binary code obtained from objdump file. At address 

‘804a72a’, we see that ‘0x1e(%esp)’ is used as a variable for the first element b[0] of 

the array and similarly at ‘804a735’ address, ‘0x1f(%esp)’ is used as the second 

element b[1]. Since these both are less than the depth of the stack, they were considered 

as local variable. As the final list of local variables we got, local arguments are 5 

{'0x1e(%esp)', '0x1f(%esp)', '0x4(%esp)', '0x8(%esp)', '0xc(%esp)'} which gives 

us false positives in GCC O2. 

 

➢ False positives due to unoptimized switch cases in Clang compiler: Sometimes, due 

to a presence of struct or enum gives false positives in number local variables in the 

case of Clang compiler. As an example, in Figure 5.7 on the left-hand side we see the 

source code having ‘enum’ class, i.e., enumerated and used for a function called 

‘elfclass’. On the right-hand side of Figure 5.7 is the binary code where we can see at 

the addresses like ‘80492fe’, ‘804932c ‘, etc., we got values like ‘-0xc(%ebp)’, ‘-

0x18(%ebp)’ which usually serves as local variables and hence giving us the false 

positives. Although in this function, no actual variable is used as a local variable, we 

have got 7 local variables. These are some special cases which need to be worked upon.  

 

Despite these limitations, static analysis can still be a useful tool for software development. 

It can identify possible problems and assist developers in finding bugs early in the development 

cycle by offering automated code analysis. However, it is crucial to be aware of the limits of 

static analysis and to incorporate it within a larger strategy for software development that also 

uses methods like human code reviews and testing. Furthermore, it is crucial to choose a static 

analysis tool that is appropriate for the programming language and development environment 

being used, to make sure the tool is configured correctly, and to be aware of the tool's limits. 

Developers can effectively and efficiently use static analysis to enhance code quality and lower 

the likelihood of bugs and vulnerabilities in their software by following these steps.  
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Chapter 6 : Conclusions and Future Works 

As cyber-attacks continue to evolve and become more sophisticated, there is a need for static 

analysis tools for mitigating security risks and improving the integrity of software systems. For 

a better constructive approach, static analysis in conjunction with dynamic analysis, code 

reviews and reverse engineering paves the way. Static analysis tools can uncover potential 

security flaws before the code is executed or distributed, which can considerably lower the 

chance of a successful cyber-attack. Early detection of security flaws allows developers to 

correct them before they become more complicated and expensive to fix. The motivation 

behind reverse engineering and static analysis is to improve the quality, reliability, and security 

of software systems, by gaining insight into their behavior, identifying potential issues and 

vulnerabilities, and developing new tools, approaches, ideas, applications, etc. that work with 

the software. Hence, cyber-security has become an integral part of our lives and the major 

aspiration behind this thesis is to make reverse engineering simple, reliable and fast. Thus, in 

this thesis, we presented an approach to detect function parameters, local variables and 

parameters used as a pointer in a function in GCC and CLANG for both O0 and O2 on Intel 

32-bit and 64-bit ISA architectures. This approach is an algorithm which is additional 

functionality to the University of Idaho’s JIMA tool. Creating a new functionality for a static 

tool can be challenging and generally involves many aspects like designing, integrating, testing 

and the scope of future improvements. 

 

6.1 Summary 

Research communities in programming languages and compilers have generally adopted the 

maxim of increasing programmer productivity and software reliability. Research in reverse 

engineering is not something we encounter commonly and even if one did, it is highly limited 

to one architecture or optimization level only. To fill in the gap, adapting a generalized model 

is the main focus of this thesis. Thus, we created an algorithm for analyzing the stripped 

binaries, written in Python3.x. The algorithm is not complete and has limitations but there is a 

scope for improvement and further analysis which has been discussed in detail in section 6.3. 

Hence, this chapter concludes the method adopted and findings of the thesis and highlights 
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future work. By using measures of precision, recall, and F1, we demonstrate the accuracy and 

high success rate achieved by heuristics. 

 

We began by presenting the advantages, challenges, recent developments and the 

motivation behind this thesis in Chapter 1. Then we discussed the fundamental concepts of 

binary analysis and assembly language where we presented reverse engineering, its tools and 

applications. Also, we discussed Intel’s architecture for both 32-bit & 64-bit. Further, we talked 

about stack memory management during a subroutine call made to a function and the related 

work done in the same direction. This led to the introduction of the JIMA toolkit, where we 

discussed the JIL file and how it is used as input to our algorithm in Chapter 2. Afterwards, we 

introduced the algorithm itself and the approach behind it along with defining some new terms. 

We discussed the reaching definition analysis, control flow, worklist and iterative algorithm in 

detail. We also discussed the pseudo-code and every step of the algorithm in detail with some 

data flow diagrams. Then, with the help of an example we understand the output of the 

algorithm in terms of parameters, local variables, and pointers as parameters in Chapter 3. In 

chapter 4, we presented the experimental results for various bulk test cases along with the 

precision, accuracy etc. Finally, in Chapter 5, we outline the challenges and limitations 

encountered while developing the algorithm. 

 

6.2 Research Contributions 

Finding parameters, parameters used as pointers and especially, local variables in a function in 

stripped binaries that are without existing any source code or high-level information is very 

difficult. We started by analyzing the JIL file from JIMA tool to fetch the parameters by finding 

the sources which are getting used without any assignment. Then, we started looking for local 

variables which are of the form EBP- n form. But, in our analysis we find that this works only 

for O0 optimization level. In general, for O2 in GCC, it is the stack depth which defines the 

parameters and local variables. If for any source or destination, the value is greater than the 

stack depth then it is considered to be a parameter, otherwise, it is a local variable. However, 

since the O2 is highly optimized and directly deals with registers mostly, it uses extra local 

variables and hence, we get many false positives. This leads the drop in the F1 score of local 
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variables. Further, we introduce the concept of worklist, reaching definition analysis and 

iterative algorithm for the distributive framework which is function for case and finally 

developing the algorithm. This has been studied in detail in chapter 3 with the help of pseudo-

code and dataflow diagrams.  

 

We then tested the algorithm on Clang compiler too. We found that for O0 level for parameters, 

it performed similar to O0 GCC. However, for local variables the results dropped drastically 

since in clang, every element of a struct is considered as local variables which gave us many 

false positives. Once, analyzing and with the help of heuristics that some of the variables are 

coming because the parameters are first stored to registers and then to local variables to use 

later. We fixed it by ignoring those variables, however, in some cases we still got variables 

with the base registers ‘%eax’, ‘%edx’, ‘%ecx’, etc. This is hard to avoid in generalized 

algorithm since the same results are obsereved for the actual local variables in 64-bit. Thus, it 

resulted in less accurate results for local variables. This has a direct impact on the parameters 

used as pointers. Due to the parameters being stored in registers sometimes and then in local 

variables, it gave some false results which indirectly referencing the parameters. To cater for 

it, we need to ignore those registers which then again used in the function later. Since we are 

ignoring those, in some special cases, these gave false negatives too. Hence, there is a huge 

difference in parameters used as pointers in both GCC and Clang. 

 

As algorithm is designed to statically recognize parameters, local variable and pointers which 

means it does not need to execute the program to recognize these types and it considers all the 

possible data flow paths and has a full coverage of the code. The functions in the library 

packages like binutils, coreutils and findutils are used as datasets compiled on both 32-bit and 

64-bit for O0 and O2 optimization levels for GCC and Clang. After evaluation, we discovered 

the algorithm worked best for 64-bit GCC O0 level where we got 100% F1 score and out of 

all, it also did best in finding the parameter as pointer where the F1 score is 95.7%. As we 

move to O2 levels, the algorithm did not perform well due to many limitations already 

discussed in section 5.2. We also observe that 32-bit presents some challenges like having a 

64-bit divided into two 32-bit values, thus leading to many false positives which explains the 

difference of accuracy between 32-bit and 64-bit. Although the Clang compiler presented other 
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issues due to its compiling technique, the algorithm detected parameters correctly almost 100% 

of the time even for the O2 level. It performed worst for detecting correct local variables. 

 

6.3 Future Work 

As discussed previously, the limitation of the algorithm states some future enhancement and 

gives the scope to extend this research. As research is an ongoing process and doing more 

investigation may yield additional significant findings. Additionally, it prepares for automated 

inspection and maintenance. The following are some future works: 

➢ Firstly, working towards all the limitations stated in section 5.2 and doing rigorous 

testing on those cases. Since these functions are a part of standard libraries compiled 

on both GCC and Clang compilers, these are some test cases should give true positives 

or true negatives for the algorithm so developed. 

 

➢ Automating the testing results to compare it with ground truth which is already in the 

development phase.  

 

➢ The analysis presented in this thesis is a intra-function which means it only works 

within the range of a function. It lacks the inter-analysis of a function which leads to 

the full coverage of the code and gives better insights and results. The results from this 

type of analysis will make more sense as we get more accurate CFGs and DFGs. 

 

➢ Knowing about the parameters, local variables and parameters used as pointers is a step 

towards reverse engineering. We also require the remaining functionalities, such as 

obtaining type inference, identifying signed or unsigned numbers, arrays, etc., to ensure 

complete coverage of the code. Overall, this means to know everything about the 

function signature. 

 

➢ The goal is to reverse engineer and find the vulnerabilities in stripped binaries. To do 

so, we need to generate the structure like the source code. Thus, finding a ‘struct’, and 

fetching all the variables and values used is another dimension of this research. 
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➢ Currently, the algorithm works for GCC and CLANG. To make the algorithm a more 

generalized model, there is a need to add different ISA architectures such as ICC 

compiler, ARM architecture, etc. Also, we need to leverage different optimization 

levels like O1, O3 and so on since currently it works for O0 and O2. 

 
➢ Since the code presents different scenarios which can occur in a function depending on 

the compiler and optimization, many conditions are required to be checked. Therefore, 

there is a need for further optimization and refinement. The algorithm needs to be 

optimized and refined to improve accuracy, speed, and performance.  

 

➢ Currently, this algorithm is based on a heuristic approach. With the hybrid strategy of 

applied machine learning and heuristics, it is possible to get a faster and better output. 

This could help in increased accuracy or investigate parallel processing to speed up the 

processing of big codebases. 

 

As a result, there are many possible applications for this technique in the field of reverse 

engineering, where it can improve software analysis and comprehension through the 

development of new features. 
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