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Abstract

Accurateandspatially explicitmeasuremestof forestattributesarecritical for
sustainable forest management and for ecological and environmental pro#&iciome
Light Detectionand Ranging(lidar) systemsavebecome the dominan¢mote sensing
techniquefor forestinventorymainlybecaus¢histechnologycanquickly providehighly
accuratendspatiallydetailednformationaboutforestattributesacrossentirelandscapes.

This dissertation is focusexh developing and assessimgvel and dvanced methods for

three dimensionalB¥{D) forest characterizatiorspecifically,| mapcanopy structural

attributes of individual trees, as well as forests at the plot and landscape levels in both natural
and industrial plantation forests ugilidar remote sensindata.

Chapterl develos a novel framework to automatically detect individual trees and
evaluates the efficacy &fnearest neighbok{NN) imputation models for estimatingee
attributesin longleafpine (Pinus palustrigMill. ) forests Althoughbasal areastimation
accuracy was poor because of the longbéaé growth habitindividual tree locationsheight
andvolumewere estimated with high accura@gpecially in lowcanopycover conditions
The root mean square distanBMSD) for treelevel height basal areaandvolumewere
2.96%, 58.62%, and 8.19%, respectively.

Chapter2 presents anethodologyfor predicting stem total and assortment volumes in
industrialloblolly pine (Pinus taedd..) forest plantationsising lidar datas inputs to
random foresinodebk. When compared teeferencdorestinventory data, the accuracy of
plot-level forestotal and assortmernblumes wadigh; theroot mean squarerror (RMSE)
of total, commercial and pulplumeestimates were 7.83%, 7.7186d 8.63%respectively.

Chapter3 evaluats the impacts of airborne lidar pulse density on estimating
abovegroundhiomasgAGB) stocks and changes in a selectively logged tropical forest.
Estimates oAGB change at the pldével were only slightlaffected by pulse density.
However, at the landscape level we observed differences in estimated AGB change of >20
Mg-hd ! when pulse density decreased from 12 to 0.2 putdésThe effects of pulse

density were more pronounced in areas of steep,stopehen the DTM from high pulse



density in 2014 was used to derive the forest height from both years, the effects on forest
height andsubsequeM\GB stocks and changestimate did not exceed 20 Migd .

Chapterd presents a comparisonafborne smaifootprint (SF) and largéootprint
(LF) lidar retrievals ofgroundelevation vegetatiorheight and biomasscross a successional
tropical foresgradientin central GabonThe comparison of the two sensors shows that LF
lidar waveforms are equivalent to sitated waveforms from SF lidar foetrievMng ground
elevation (RMSE=0.5 m, bias=0.29 m) and maximum forest height (RMSE=2.99 m;
bias=0.24 m). Comparison of gridded LF lidar height with ground plots showed that an
unbiased estimate of aboveground biomadshat can be achieved witdhsufficient number
of large footpring (> 3).

Lastly, Appendix A presentn open source R package for airborne lidar

visualization and processing for forestry applications.



Acknowledgements

First andforemost, | would like to express my appreciation to my major advisors, Dr.
Lee A. Merling and Dr. Andrew T. Hudak for their assistance, encouragement, and insights
throughoutthis journey They pushed me when | needed it, [aldo gave me the freedom to
explore my own research questioBecond, | am grateful to Dr. Nicholas Croonkston, for his
kind support and valuable thoughts, which inspired me to advance my knowledge of statistics
andR programming language.

| extend my gratitude to Dr. Jan U.H. EjtBr. Luigi Boschetti and Dr. Michael Keller
for their input and assistance as committee members. They all helped increase the level of
research into a product | am proud of.

| would like to thank Dr. Sassan SaatehN A S A JetsPropulsion LaboratotygFL)
for his fruitful advice and unending encouragement. Gratitude is extended to all my &iends
JPL, especially Dr. Mariano Garcia for his friendship and assistance with some of the data
processing and statistical analysis used in this research.

A debtof thanks is owed to theniversity of Idaho (Ul) andJSDA Forest Service
Rocky Mountain Research Station (RMRS) in Moscow, Idaho. | amfgrabeall my friends
from Ul andRMRSfor theirfriendship andupport, especially Deanna Huffmamd Benjamin
Bright.

| wish to thank the National Council of Technological and Scientific Develogment
CNPq inBrazil for its financial support during &seyears(Science Without Borders Program
- Process 249802/2013. | alsothank the following organizations f@artially funding this
work: USDA Forest Service Rocky Mountain Research Station, the Strategic Environmental
Research and Development Program (#2@3), andlet Propulsion Laboratory, California
Institute of TechnologyNational Aeronautics and Space Admirasion (NASA). Thanks to
Klabin, a paper and pulp company in Brazil ahd Brazilian Corporation for Agricultural
ResearctEMBRAPA) for providing the field and lidar data used in part of this reseach.

Last but not least, thresearchvould not have been possible without the moral support,
generosity, encouragement and love of my family. baateful, especially, to myife Carine

KlaubergSilva, for her unwavering support, patience, and understanding.



Vi

Dedication

For my wife Carine Klaubergilva, my son Joaquim Klauberg Silva, myother Sueli Silva

andmy sister Paula Fernanda Silva



vii

Table of Contents

Authorization to Submit DISSErtation.............coouuiiiiiiiicee e e L.
N 0] = ox PO PPPPPPPPPP iii
ACKNOWIEAGEMENTS .....oiiiiiiiiiiiee e re e e eeenennnnnnneeeee e M
D1 To [ o3 11 o] o PP Vi
Table Of CONIENLS.......ccoiiiieee et e e e e e e e annn s e e e e e e e e e eaaes Vil
LISt Of FIQUIES. ... eeee et eeea bttt e e et e e e e s smmns e e e e e e e e e eaaeeeeeesd IX
S 0 N = 0] =SSR XVi
INtroduction tO the DiSSErTatiON............uuvuuuiiiii it e e e e e s seenrsse s e e e e e e e e e e e eeeeeeenne 1
] (=] €= o =P 4

Chapter 1. Imputation of Individual Longleaf Pif&ir{us palustrigMill.) Tree Attributes

from Field and Lidar DAtaA..............uuuuueiiiiiiieeeiiiiiiiiiiiieieeeeee e e s seereeeeeeee e e e e e e e e s s e s s ssnmmnee e 6
Y 0153 = Lo PP PPPRPRP 6
00 [ 0 Yo [T o PP 7
1.2 Material and MethOdS..........coooiiiiiiieeeee et e e e e emnennnes 9
IR B T | U 16
I o U1 o o 1S 19
IR T 0] T3 111 [ = USSR 24
] (=] €= o =P 24

Chapter 2. Predicting Stem Total and Assortment Volumes in an Indisinie taedd..

Forest Plantation Using Airborne Laser Scanning Data and Random Forest............ 46
Y 0111 =T od PP PRSP 46
P22 I [ 1 0 To [ Tod 1 o] o PP PPPUPPPRRTTR a7

2.2 Material anNd METNOAS. ..o e e e e aaama e e 49



viii

2.3 RESUIES. ...t 54
2.4, DISCUSSION. ....eeitieiiiiiiite et e e e emee ettt et e e e e et e eeemt e e e e e e e et e e e e s s anenss e et e e e e e nnrreeeas 55
2.5, CONCIUSIONS.......eiiiiiiee ittt e e reet e e e e e e e e s s s ame e bnn e e e e e e n e 59
RETEIEINCES. ... e e e rme e e e e e as 59

Chapter 3. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and

Changes in a Selectively Logged Tropical FOIESL...........uvviiiiiiiieeeiiiiiieieeeeeeeeeee e 74
I I [ o1 (o To [FTod 1 o] o WP PP PPPPPPPPPRPN 75
3.2 Material and MEthOdS. .........uuuiiiiiiiiiiii e nnne s 77
LB RESUIES. ..o eeer e e e e e 83
3.4 DISCUSSION. .....utteiiee ettt eeme e ettt e e e e ettt eeee et e e e e ek b e et e e e e e ss b enenss e e e e e e e e annbrneeas 87
3.5, CONCIUSIONS. ...ttt eena e e e e bbb r e e e e e s rmene e snbn e e e e e e anas 91
RETEIEINCES. ... ettt e e rmm e e e e e as 92

ForestAboveground Structure and Biomass: A Case Study from Central Gabon.....112
Y 011 = Vo S 112
0 I 1 o o 13 o o o 113
4.2 Material and methQd............oooeiiiiiiii e anen 114
4.3 ReSUItS @Nd QISCUSSION.........eviriuiiiiiis s et s e e e e e e e e e e e snanssas s e e e e e e e eeeeeeeeeeensannnes 122
O o o 11153 ) 127
RETEIENCES. ... ettt ettt e e e e e e e e e e e e eeeeeaeabaanas 127
Conclusion and FULUIe DIF€CHIONS. .......uuuuiiae e eeeer s e e e e e e e 142

Appendix A. rLIDAR: An R packge for reading, processing and visualizing lidar datk45

Appendix B. Copyright Statement$1DPI Open Access Information amblicy Remote
YT 1S T PR 147

Appendix C. Copyright StatemetFaylor & FrancCiS.........ccccceeeeviiiiiiiiicce s 148



List of Figures

Figure 1.1.Longleaf pine forest location: A, B, and D, and profile picture at Ichauway in
southwestern Georgia, USA. NW: Northwest; CNT: central and NE: Northeast starifs.
Figure 1.2.Flowchart of the lidar data procesSing..........ccccevvvvvvviiimeeeeeeeeeeeeeeeeeiiiinnns 37
Figure 1.3.lllustration of the individual tree crown delineation algorithm. T=trees. (A)
treetops; (B) buffer earch area of 10 m maximum radius; (C) Centroidal VVoronoi
Tessellation delineation; (D) buffer and Centroidatonoi Tessellation are overlaid (E)

Figure 1.4. rSTree algorithm: searching for thedidand reference trees. MED = maximum
Euclidian distance, MHD = minimum height deference, HD = height difference......39
Figure 1.5.Lidar-based plot (A) HMAX and (B) COV; and (C) tree density measured in the
field at the longleaf pine test plots. Error bars indicate standard deviations.............40
Figure 1.6.Lidar-derived COV versus number of reference trees (N) measured in the field
(A), and lidarderived versus reference tree densities.............vviviiiiieemieiiiiiieieeeeeeen, 40
Figure 1.7.Relationship between lidaterived COV and fscore in the 15 test subplotgll
Figure 1.8.Distribution of lidarderived (A) HMAX and (B) CA values. The black line
represents a fitted diStribULION...............oooiiiiiiie e 41
Figure 1.9.Equivalencdestgraphdor theimputedandobservedongleafpinetree

attributes(A) TreeHeightHt (m); (B) TreeBasal Area BA (m?); (C) TreeStemVolume- V

(m®), N (1067). The equivalence plots design presented herein are an adaptation of the
originalequivalencelotspresentethy Robinson2015).Thegreypolygonrepresentthe
25%regionof equivalencdor the interceptandtheredverticalbarrepresenta 95%
confidenceantervalfor theintercept.Theimputedtreeattributesareequivalent tdhe
referencattributesvhentheredbaris completelywithin thegreypolygon.If thegrey

polygonis lowerthantheredverticalbar,theimputedattributesarebiasedow; if it is higher
thantheredverticalbar,theimputedforestattributesarebiasechigh. The grey dashed line
represents the5% region of equivalence for tisope, and the red vertical bar is contained
completely within the grey dashed line, the pairwise measurements are equal. A bar that is

wider than the region outlined by the grey dashed lines indicagely variablepredictions.


file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146

Thegraydotsarethepairwisemeasurementandthesolidline is abestfit linearmodelfor

the pairwise measurements. The black dashed line representsithe.l:1................... 42
Figure 1.10.Imputed and observed tree attributes distribution from the testing dataset. (A),
(B) and (C) represent HBA, and V distributioracrosghe 3 standsThenumbersl and2
representheimputedandobservedralues Theblackline representafitted distribution, and

the dashed vertical line representSIBRN. ..o e 43
Figure 1.11.Distribution of imputed tree attributes (Ht, BA, and V) across the 3 stands in
the study area. The numbers from 1 to 3 represent the attribit8a Hand V, respectively.
The letters from (A) to (D) represent the NE, CNT, and NW, and all stands, respectively.

The black line represents a fitted distribution and the dashed vertical line represents the

Figure 1.12.lllustration of individual tree detection and crown delineation under different
COV conditions. (1)COV=90.96%; (2)COV=76.79%, and (3LOV=58.66%. (A)2D
visualization of the tree location and crown delineativerthe CHM. (B) 3D visualization

of thelidar pointcloudandreferencareesmeasuredh thefield. (C) 3D visualizationof the

lidar virtual forest, and the reference teeatioNS..............ovvvviiiii i i 45
Figure 2.1.Location of study area in Telémaco Borba, Parana, Brazil. The black dots
indicate the location of thieinus taedastands.............ccccuviiiiiiiiieeereeeeee e 69
Figure 2.2.Process of forest volume measurement. (A) Pinus plantation; (B) Timber
harvester and (C) Log segmentation for classes of volume measuremenits............. 69
Figure 2.3.Procedure for predicting stem total and assortment volumes in an industrial P.
taeda forest plantation using airborne laser scanning data amarémest.................... 70
Figure 2.4.Distribution of observed (black line) and predicted (red line) stem volume from
RF. The gray histogranase based from field data. (A) Total volume (Vt) (B) Commercial
volume (Vc) and (C) Pulpwood vOlUME (V)....ccoiiiiiiiiiieiieeeiieiie e avmmeens 70
Figure 2.5.Equivalence plots of the observed and the mean of predicted Vt (A), Vc (B) and
Vp (C) obtained from the 500 bootstrapped RF model. s 50). The equivalence plot
design presented herein is an adaptation of the original equivalence plots presented by
Robinson(2015).. The grey polygon represents the +25% region of equivalence for the

intercept, and the green vertical bar represe@&fa of confidence interval for the intercept.


file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024146
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154

Xi

The predicted stem volumes from the RF models are equivalent with reference to the
intercept and slope since the green bar is completely within the grey polygon. If the grey
polygon is lower than the green tieal bar, the predicted stem volumes are negatively

biased; and if it is higher than the green vertical bar, the predicted stem volumes are
positively biased. Moreover, the grey dashed line represents the £25% region of equivalence
for the slope, the fiine is within the dotted lines and the black vertical bar is within the

gray rectangle, indicating that the pairwise measurements are equivalent. A green bar that is
wider than the region outlined by the grey dashed lines indicates highly variableipnadict

The white dots are the pairwise measurements, and the solid line isfia Ibessdr model

for the pairwise measurements. The light grey dashed line represented the relationship 1:1.
The horizontal red bars represent the standard deviation of @heos@strapping

o110 T3 1 o] o K= T PP PPPPPPPPPPTPP 71

Figure 2.6.Predicted Vt, Vc and Vp of P. taeda at stéakl for the studied stands. (A) 3
5years; (B) 57 years and (C)i'® years. The thick line in the box indicates the median

value of the predicted stem volume. Boxes extend from the 25th to the 75th percentile,
whiskers extend 1.5 times the length of the interquartile range above and belthtitland

25th percentiles. The white dot is the mean of the predicted stem volume, and the vertical
red lines represent the standard deviation around the mean (Mean.+ SD).............. 12

Figure 2.7.Predicted Vt (A1C1), Vc (A2 C2) and Vp (ABC3) of P. taedaat the stand

level obtained from the RF models. Representative stand of earlyi(beyedrs) (A13),

intermediate (i.e.,’™ years) B1i 3) and advancesdtages of development (i.ei,97years)

Figure 2.8.Coefficient of variation (CV) maps in percentage (%) of Vti(81), Vc (A2

C2) and Vp (ABC3) of P. taedaat the standevel obtained from the 500 RF bootstrapped
runs. Representative stand of early (i.€5 $ears) (A13), intermediate (i.e.,i¥ years)

(B1i 3) and advanced stages of development (ii®. yéars) (CL3)........cccceeeeevvvirinnennnn. 73
Figure 3.1.Location of the midy area. (A) South America and Brazil; (B) States of Para and
Paragominas city; (C) Paragominas city; (D) Airborne lidar coverage; (E) Field plots on the
lidar-derived CHM. Reducetnpact 10gging (RIL).........cooiiiiiiiiiiiiiiieeer e 100


file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024154

Xii

Figure 3.2.A 3D illustration of airborne lidar pulse density reduction at the plot level (0.25
= ) IR 2 0 SRR SORPPRRRR 101
Figure 3.3. Flowchart of the lidar data processing for AGB stocks and AGB change
estimation in tropical forest. The green panel to the left shows the &tiaptbcessing (a)
and the gray panel to the right shows the AGB stocks and change estimation sted®b).
Figure 3.4.Lidar-derived HMEAN (m) (ai2); Standard deviation of HMEAN (m) for the
sample plots (30 repetitions) {2); Reliability Ratio for HMEAN (c12); 2012 (alcl) and
2014 (a2c2); (n = 84). DS1 (orange): DTM scenario 1; DS2 (green): DTM scenarib03.
Figure 3.5.Boxplot of R2 (a), relative (1) and absolute (h22) RMSE and bias for the
AGB leaveoneout cross validatioin LOOCV models. DS1 (orange): DTM Scenario 1;
DS2 (green): DTM SCENAIIO .2 .......uuuuiiiiieiiiiiieieeeiiiiieeeeeeeeeeeeeaaeeeesemereeeeaaeaaeaaaaaaaaans 104
Figure 3.6.Boxplot of the AGB estimates for 2012 and 2@a4,b1), and AGB change (c1).
Standard deviation of AGB stock in 2012 (a2), 2014 (b2) and AGB change (c2) (30
FEPELILIONS) (N = 84 i e e e e e e s eee e i s s e e e e e e e e e e e e e e e e e eeeerannneeeeeeees 105
Figure 3.7.Map of AGB stock in 2012 (a), 2014 (b) and AGB change (c) at 12 pus@m
DS2. Zoom in the AGB change maps derived at 0.2 and 12 pifse-®S1 (d,e) and DS2
(f,g) in an unlogged and logged unit. The mapsavetculated as the mean of the 30

=T 0] [or= 1 (= TSRS 106
Figure 3.8.Digital terrain model (a) and Slope (%) (b) maps of the studyaarg2a
pulses-m?in 2012; Standard deviation of AGB change at 0.2 pulsédanDS1 (¢ c1) and
D2 (o 1o ) PSSR POPUPRPRR 107
Figure 3.9.Boxplot of the differences in predicted AGB change at stand level of 12 m
degraded to 0.2, 0.4, 0.6, 0.8, 2, 4, 6, 8 and 10 puls&mmreas with slopes ranging from
0to 12% (a), 1224% (b) and 2436% (c), under DS1 (orange) and DS2 (dark greerd)07
Figure S3.1.Mean of the 30 replicates AGB stocks in 2012 at pulse density ranging from

0.2 to 12 pulse-ftin DS1 (a1j1) and DS2 (802). ...ecoveeeieeieeeee s eeeee e 108
Figure S3.2.Mean of the 30 replicates AGB stocks in 2014 at pulse density ranging from
0.2'to 12 pulse-htin DS1 (a1j1) and DS2 (A02). ...cceceeereereeereieerecreeeeeeere e, 109

Figure S3.3.Mean of the 30 replicates of AGB change at pulse density ranging from 0.2 to
12 pulse-m? in DS1 (1j1) and DS2 (80J2). ....eecveeerieeieeeeeeieeeeeee e see e eee e 110



Xiii

Figure S3.4.Standard deviation of the 30 replicates of AGB change at pulse density ranging
from 0.2 to 12 pulse-Min DS1 (a1j1) and DS2 (80J2). ....c.coveeeveeeereeeereecveeeeieseeenens 111

Figure 4.1.a) Study area, Gabon; b) SF lidar derived Canopy Height Model in Lopé

National Park; c) Sfderived Digital Terrain Model in Lopé National Park; D)-&tived

point cloud profile across a foresavanna transition zone; Mixed eddowth forest (OGF)

bl-c1l); Monodominant Okoumé forest (ODF)-b2); Young colonizing forests of savanna
(YCF) b3c3); and Grassland savanna (SAVIA®...........eoiiiiiiiieeiieciceeiieee e 134

Figure 4.2.a) Skderived pseudavaveform (vertical black line) and b) Ldferived

waveform. Canopy metrics, such as RH75, RH98 and RH100, were derivethérom
normalized cumulative return €Nergy..........ccouiiiiiiieiiiieeee e eeeeeeeeeeee e eeaaanans 134

Figure 4.3.a) Comparison of smatbotprint (SF) and largéootprint (LF) lidarderived

ground elevation and (b) tegf-canopy height at footprint level using the equivalence test.
Mixed old-growth forest (OGF); Monodominant Okoumé forest (ODF); Young colonizing
forests of savanna (YCF); and Grassland savanna (SAV). The equivalendesigot

presented herein is an adaptation of the original equivalence plots presented by Robinson
(2015), examples are showing in Silva et al. (2017). The grey polygon (SF in light grey and
LF in dark grey) represents the + 25% region of equivalence famtdreept, and the orange
vertical bar represents a 95% confidence interval for the intercept. The LF ZG and RH98 are
equivalent to SF ZG and RH98 on both intercept and slope as long as the orange bar remain
completely within the grey polygon. If the grpglygon is lower than the orange vertical

bar, the measurements would be negatively biased; and if it is higher than the orange vertical
bar, the LF ZG and RH98 are positively biased. Moreover, the grey dashed line represents
the £ 25% region of equivalea for the slope, the fit line is within the dotted lines and the
black vertical bar is within the grey rectangle, indicating that the pairwise measurements are
equivalent. An orange and black vertical bar that are wider than the region outlined by the
grey dashed lines indicates high variance for SF measurements. The white dots are the
pairwise measurements, and the solid line is afitdstear model for the pairwise
measurements. The light grey dashed line represented the 1:1 relationship.......... 135

Figure 4.4.Comparison of LF and SF waveforms. LF@8) and SF (bb3) waveforms at
footprint level. SF point cloud in 2D (ed3; d2d3) and in 3D (ek3).al-d1 footprint with



Xiv

difference in RH98 of 0.12 m (UTM E: 786989 N: 9978269)daavith difference in RH98
of 11.32 m (UTM E: 786184 N: 9977274).-d3 footprint with difference in RH98 of
11.48 m (UTM E: 785368 N: 9977107). The SF derived psewmcefom is smoothed for
better display NErein..........cooo e 136
Figure 4.5.Equivalence test of mean ground elevation (ZG_MEAN)qhAland mean
caropy height (RH98 MEAN) (at2) at spatial resolution of 25 @R), 50 (bib2) and

100 m (c%c2). Mixed oldgrowth forest (OGF); Monodominant Okoumé forest (ODF);
Young colonizing forests of savanna (YCF); and Grassland savanna (SAV).......... 137
Figure 4.6.Spatial distribution of differences between SF and LF Jaaived ground
elevation (ZG_MEAN) and topf-canopy height (RH98 MEAN) fadifferent vegetation
types and spatial resolutions. We focused on four vegetation types: mixgawith forest
(OGF; al.1a3.2 and el:£3.2); monodominant Okoumé forest (ODF; bia312 and f1.4
f3.2), young colonizing forests of savanna (YCF; ed32 and g1.4g93.2); and grassland
savanna (SAV; d1:413.2 and h1-h3.2). Three spatial resolutions were considered: 25 m
(a1.1xh1.1), 50 m (a2-h2.1), and 100 m (a313.1). The blue graphs represent the
distribution of differences between SF and LF kdarived ZG_MEAN and RH98 MEAN.
The black and red dashed lines represent the 0 and mean of difference distribution,
(ST o L=Tod 117 YT 138
Figure 4.7.Equivalence plots of the observed and predicted AB8dhal) obtained from
the 100 bootstrapped model runs using SF_MCHugd)LF_RH75MEAN (b) (N=12). The
white dots are the pairwise measurements, and the solid line isfé besar model for the
pairwise measurements. The horizontal red bar is the standard deviation of AGB estimates

from the bootstrapping procedure. Tight grey dashed line represented the relationship

Figure 4.8.Small (al) and Large (b2) Liddootprint derived Aleveground Biomass
Estimates at the landscape level. b) The difference in Aboveground Biomass Estimates
between SF and LF lidar. (c) slope (degree) map. Mixedyadith forest (OGF);
Monodominant Okoumé forest (ODF); Young colonizing forests of savanng)(a@d
Grassland SAVANNEA (SAV).....uu i eeeee e earer e 140



XV

Figure 4.9.LF simulations for AGB modeling atfa. Relative and absolute RMSE and
bias (aibl; a2b2). Parametera (c1) andb (c2) and R (d) of the AGB models............ 141
Figure Al. rLIDAR: An R package for reading, processing and visualizing lidar.datd46



XVi

List of Tables

Table 1.1.Statistical summary of tree measurements attributes at the sample.plats32
Table 1.2.Statistical summaries of tree basal area (BA) and stem volume (V) at sample

Table 1.3.Lidar flight parameters.............oovviiiiiiiiiice e 33
Table 1.4.Individual tree detection in the test subplots. The highlighted gray color
represents the best results, which were determined by comparing the number of trees
detected (NTD) to the fieldased tree inventory number (N). The closest values of NTD
comparedvith N were selected as the best results.............ccoviiiieeeie 34
Table 1.5.Accuracy assessment results of lidased individual tree detection aotiog to
recall (r), precision (p) and-§core (F) statistics parameters............cccevvvvvvvvieeeeeeeeenen. 35
Table 1.6.Accuracy assessment results for the idiial tree detection as a function of

lidar-derived COV. FP: False positive; FN: False negative; TP: True positive; r: recall; p:

PreciSion and Fid8CONE.......cooiiiii e e 35
Table 1.7.Estimated tree attributes summarized at the siavel..................ooooeeiiiieeee. 35
Table 2.1.Statistics of the taper models.............ooooririiiie s 66
Table 2.2.Summary of stem volumes computed in the 50 field sample plats........... 66
Table 2.3.Airborne lidar system characteriStiCS..........ooeeeeeeiiiiiiieeeii e 66

Table 2.4.Lidar-derived canopy height metrics considered as candidate variables for

Predictive V MOEIS.........oooiiii e e e e e e e e e rmeeenaa e e 67
Table25.Pear sonds correlations..amo.n.g..l.i.dégr metr
Table 2.6.Mean of the model improvement ratio (MIR) among the remaineddidaved

metrics not highly correlated. The bold represents the highest MIR values............. 68

Table 2.7.Model accuracies per stem volume type. The average and standard deviation of

Adj. R2, RMSE and bias derived from the 500 bootstrap runs are dgplay................ 68

Table 2.8.Model accuracies of random forest (RF) models per stem volume in terms of

Adj.R2, Root Mean Square Error (RMSE) and bias calculated by the relationship between

predicted and observed Stem VOIUMES............cooviiiiiiiiceei e e 68


file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024180

XVii

Table 3.1.Summary of the AGB stocks at the sample plots............cceeeeeiivieeeeeeenenn. 97

Table 3.2.Details of lidar data aCqUISItIONS........ccccoeeieeiiiiiiiieeeee e 97

Table 3.3.Mean and standardkviation of the parametets, 1t panddx, Tt pfar the AGB

models in 2014. DS1: DTM Scenario 1; DS2: DTM ScenariQ.2.........ccccceeeeeeeieieeeeennns 98

Table 3.4.Mean and standard deviation (Sd) of the parameters a and b for the AGB models
in 2014. DS1: DTM Scenario 1; DS2: DTM Scenario 2. Std Error is the estimated standard
error derived from the uncertainty analysiS.............cccceviviiiieeei e 99

Table 4.1.Nonlinear Powetaw Aboveground Biomass Models (N=12).................. 133

Table 4.2.Summary of SF And LF Lidaderived AGB estimates and uncertainties at

landscape level for the entire study area and regions of interest...................cceee... 133


file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024197
file:///C:/Users/Carlos%20Alberto%20Silva/Documents/Dissertation_proposal/Ph.D.dissertation_CarlosSilva_01.10.2018_LV.docx%23_Toc506024197

Introduction to the Dissertation

Accurateandspatially explicitmeasurement of forestructuralattributesare
requiredin other to effectivelyprotect,monitor and manage forest ecosystehnsid
measurements ao®nsidered the most accurate approachmieasuring forest attributes
however, measuring forest structural attributes in either natural or plantation fortésts in
field is an extremely time consuming aladborintensivetask, especially itarge or remote
areas where accesdimmited, anda huge number dfeld plotsareneeedto characterize the
forestvariation.

Remote sensing technologies have been widlgiged to characterize forest
structure at both local and global scales.iRstance, irthe past two decades, lidar (light
detection and ranging) remote sensing has emerged as a technolegyitedIto provithg
accurate estimates of forest attritsutecluding height, volume, basal asaad biomassoth
in natural and industrial plantation forestosystems (e.gNaessefl997;Drakeet al. 2002;
Lefskyet al., 2002; Hudak et al. 2006, Silva et al. 20HHwever even though lidar can
quickly provideforest attributes across extensive landscapes, it is still mostly used for
research purposes, mainly due to the high cost of data acquision anddatiknifedand
accessible tools and methods for processing and modeling lidar data for forestry
applicatons. Moreoveraccurate prediction dbrestattributesfrom lidaris highly
dependent on methadsor instance, when lidar data and statistical models are not well
implemented, inappropriate models are created, and forest attributes are estimataghwith
uncertainty levels, which consequently leads to serious problems for forest managers. This
can create management uncertainty especially in industrial forest plantations where forest
structural attributes atgpically inventoriedannually tosupportforest management
decisions relating to silvicultural treatments, harvest planning, growing stock estieadion
sustainability Therefore, to overcome these limitations and make lidar technology
practicable, operational and accessible to managers amdateses, both in governmental
and negovernmental agenciefsirther develoment ofnovel, efficient anaptimized
methods for lidar data processing and modeling for forest applications are still required
This is particularly true in developing nation€kuas Brazil, where applications of lidar are

in the early stages.



Enhanced understanding of foregucturevia lidar remote sensingan be gained
through improvedools and optimized frameworKshe researcpresented in this
dissertation ishereforefocused upon furthetevelopment of strategies poomote
conservation and sustainable managemenatfral and indisutral plantation forests
Specifically, the main goal of this dissertation is to develop and assess novedlandeal
methods for @D forest characterizatigrandto mapforest attributes at individual tree, plot
and landscape leveliiom lidar remote sensingata. Thedissertationdivided intosix
sectionsand an appendix, presembsir specific case studies (Chaptérg) of lidar
applications Specifically, the first and last sectiomsethe Introduction andConclusion of
the dissertation while ChapterstIrepresent the main body of the dissertation. Chapiér
use several lidar datasets, coupled with individual tree andepielt$patially explicit
datasets, to demonstrate the usefulness of lidar remote sensing for effictively predicting and
mapping forest attributes in natural and industrial plantation forests locatedlacgess
spatial extents.

Chapterl develop and evaluatea novel framework to automatically detect
individual trees and estimate tree attributes, such abérght, diameter at breast height and
volumein longleafpine (Pinus palustrigMill. ) forestsusing lidar andk-nearest neighbok{
NN) imputation.Longleaf pine forests are fugependentandaccurate characterization of
the forest at the individudieelevel not only enhances conventional dinidr areabased
forestinventory,but alsoexterds its applications into disciplines where greater detail is
valued, such as in fire behavior and ecoldye data used in this chapter vipmevided by
the JosephV. Jones Ecological Research Centesouthwestern Georgia, USA

Chapter2 presents anethalologyfor predicting stem total and assortment volumes
in loblolly pine (Pinus taedd..) forest plantationfrom lidar data using random forest
modeb. Althoughrandom foreshas been used in conjunction wiihar datato estimate
many standevel forestattributes to date their efficacy fquredicting assortment volumes in
industrial forest plantations is largely untested. The methodology and products presented in
Chapter 2 will be used by forest manangers andplailf animportant role in helpinghem

to increase efficiency in monitoring and managing wood and pulp production in forest



plantations The data used in this chapter were provided by Klabin, a pulp and paper
company from Brazil.

Chapter3 evaluats the impacts of airborne lidar pulse density on estimating
abovegroundhiomasgAGB) stocks and changes in a selectively logged tropical forest.
While airborne lidar can facilitate timely and accurate estimates of forest structure in
tropical forest, tradeffs still exist between lidar pulse density and accuracy. For instance, it
is unclear how much the lidar pulse density can be reduced and still maintain an adequate
level of accuracy for AGB change estimation in tropical ford3is.data used in Chaptgr
were providedy USAID and managed by the US Forest Service and the Brazilian
Corporation for Agricultural Research (EMBRAPA) under the Sustainable Landscapes
Brazil program

Chapterd presents a comparisonafborne smaifootprint (SF) and largéootprint
(LF) lidar retrievals ofgroundelevation vegetatiorheight and biomasscross a
successional tropical foregtadientin central GabonThe lidar dataised in Chapter were
collected as part of the NASA and European Space Agency (ESA) AfriSARaagmwith
the goal of verifying the performance of future spaceborne lidar (GEDI) and radar sensors
such as ESAOG6s Bl OMAISRO Swithete Aperture Radar (NNSARS A
systems for ecosystem studies in quantifying vertical forest structure and AGB

In additionto Chapters #, Appendix A of this dissertatigmresent anopen source
R packagerLIDAR) for reading, processing and visualizing lidar d&tiva et al. 2015)

Chaptersl-3 were published in scientific journals prior to the preparaticthis
dissertationChapter 1 was published by tGanadian Journal of Remote Senswith Dr.
Andew Hudak Dr. Lee Vierling Dr. LouiseLoudermilk,Dr. Joseph JO'Brien;Dr. Kevin
Hiers Dr. Stevelack;Dr. CarlosGonzalezBenecke Dr. HeezinLee Dr. Michael
Falkowskiand Dr.AnahitaKhosravipouras ceauthorgSilva et al. 2016)Chapter 2 was
published byForestswith Dr. Carine KlauberdDr. Andew HudakDr. Lee Vierling, Dr.

Wan Shafrina Wan Mohd Jaafar. Midhun Mohan Dr. Mariano Garcia, Dr. Anio
Ferraz, Dr. Sassan Saatchi and Dr. Adrian Caddeauthors(Silva et al. 2017a). Chapter
3 was published blremote Sensingith Dr. Andew HudakDr. Lee Vierling, Dr. Carine

Klauberg, Dr. Mariano Garcia, Dr. Antornio Ferraz, Dr. Michael Keller,Jan Eitel and



Dr. Sassan Saatcas ceauthorgSilva et al. 2017b)Errors identified in the publication
proof stageof the above chaptevgere corrected in thidissertationChapter4 has been
submitted tdEEE Journal of Selected Topics in Appliearh Observations and Remote
Sensingwith Dr. Sassan Saatchi, Dr. Mariano Garcia, Dr. Nichb&siere Dr. Carine
Klauberg, Dr. Victorya MeyeDr. Kathryn BrunJeffery Dr. Katharine AbernethyDr. Lee

White, Dr. Simon Lewis and Dr. Andrew Hudakco-authors.
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Chapter 1. Imputation of Individual Longleaf Pine (Pinus palustrigMill. ) Tree
Attributes from Field and Lidar Data

Silva, C A.; Hudak, A T.; Vierling, L. A.; Loudermilk, E. L; O'Brien, JJ.; Hiers, J. K
Jack, SB.; GonzalezBenecke, G Lee, H; Falkowski, M J.; Khosravipour, A. Imputation
of individual longleaf pineRinus palustrigMill.) tree attributes from field and LIiDAR data.

Canadian Journal of Remote Sensi@lg 42(5): 554573.

Abstract

Light Detection and Rangindjdar) has demonstrated potential for forest inventory
atthe individuaitree level. The aim in this study was to predict individved¢ height (Ht;
m), basal area (BA; fiy and stem volume (V; $hattributesjmputing Random Foregt
nearest neighbor (RENN) and individualtreelevelbased metrics extracted frontidar-
derived canopy height model (CHM) in a longleaf piRa(s palustrigMill.) forest in
southwestern Georgia, United States. We developed dramework formodeling tree
level forest attributes that comprigeeesteps: (i) individual tree detectiocrown
delineation, and trekevelbased metrics computation frdidar-derived CHM;(ii)
automatic matching didar-derived trees anfield-based trees for a regressimndeling
step using a novel algorithm; and (iii) RFNN imputation modeling foestimating tree
level Ht,BA, and V and subsequent summarization of these metrics pliothend stand
levels. RMSDs for tre¢evel Ht, BA,and V were 2.96%, 58.62%, aBdl9%, respectively.
Although BA estimation accuracy was poor because of the longjleaigrowth habitat,
individuakttree locations, Ht, and V were estimated with high accuespecially in low
canopycover conditions. Fure effortsbased on the findings could help improve the

estimation accuracy of individualeelevel attributes such as BA.

Keywords rLiDAR, CHM, k-NN imputation, Random Forest, individual tree attributes,

forest inventory



1.1 Introduction

Longleaf pne (Pinus palustrigVill.) was once one of the most ecologically
important tree species in the southern United States (Oswaltz212). Historically,
longleaf pine forests spanned an estimated area of 92 million acres (Frost 2006) and were
among themost extensive ecosystems in North America (Landers, 498)5). Today, only
4% of these longleaf pine forests remain (Franklin 2008).

Fire is one of the dominant forces that shape the longleaf pine landscape (Dobbs
2011). Longleaf pine is dependentfae for successful regeneration and for suppressing
hardwood growtlfLoudermilketal., 2011).However,dueto fire suppression, much of the
remaining longleaf pine forest is in poor or degractaalition.As a result, therbasbeen
tremendougterest n longleaf pine conservation, management, and restoration (Brockway
2005).

Successfunanagemenif thesdorestscanhavesustainable resultbecausdongleaf
pinescanproducequality wood productsvhengrownin avarietyof densitiegFranklin
2008).Accurate measures of forest attributes such as tree densithgtBseand attributes
such as height (Ht), basal af@#), and stem volume (V) that are used at the tree, plot and
stand levels, are essentiamanagemerdndconservatiomracticesn longleaf pine
forests. The most accurate method of estimating these attributes is to physically sample
them in the fieldHowever,individual tree field measuremeraserlarge areas are limited
by budgets and time, making thampractical.

Airborne Light Detectionand Ranging(lidar) systemshavebecome the dominant
remote sensing techniqder plot- andstandlevelforestinventorymainlybecaushis
technologycanquickly providehighly accuratendspatiallydetailednformationabout
forestattributesacrossentireforestedandscapeéSilva et al, 2014). Increased interest,
datasetavailability, andtechnological improvementsavegreatly expanded thaseof lidar
technologies in forestrgverthe pastdecadgSaremietal., 2014;Hudaketal., 2006,2009,
2014;Hanseretal., 2015).Theuseof airborndidar to retrieveforestattributesatthetree
levelis promisinghowevernot as widely studieds plot or standlevel approaches. In a

treelevelbasedmodelingapproach, individualreeattributes are usualfpyredictedthrough



threesteps: i) individual tree detection and metresraction (ii) lidar- and fieldbased
tree matching, andii) modelingandprediction.

The accuratepredictionof treelevel attributesis highly dependenbn the methods
usedto detectand extractindividuattree metricsand foreststructureas well (Kankareet
al., 2015).A lidar-derived Canopy Height Model (CHM) can be used for detecting
individual trees, delineating tree crowns, and subsequestityating biophysical attributes
such as biomass and stem volume (Popescu 208B; Popescu, 2007; Falkowski et al.
2008; Falkowski et 812009;Vauhka nen et al.2012; Hu et al.2014; Duncanson et al.
2014; Duncanson et a2015; Kankare et al2015). There are &riety of approaches used
to detect and delineate individual trees fricslar-derived CHMs. These include identifying
local maxima (Popescu et,@&003;Weinackeret al, 2004; Falkowski et 8l2008;
Falkowski et al.2009) for tre detectionaswell asregion growth (Hyyppaet al., 2001,
Solberget al, 2006; Pang et al2008),valley following (Leckie et aJ.2003), and
watershed (Chen et a2006; Jing et al2012) fortree crowrdelineation.

In addition to the individualree detection method and forest structure, the accurate
prediction of forest attributes at the tteeelis also highly dependent on the modeling
technique applie(Vauhkoneretal., 2010).Exampleof theexistingmethodgor modeling
forestattributesatthetreelevel from lidar data are both parametric (Chen et2007) and
nonparametric (Breidenbach et, @010;Vauhkoneret al, 2010;Vauhkonenet al, 2012).
Saarinen et gl(2014),Vastarantat al, (2015) and Kankaretal., (2015)haverecently
testedk-nearesheighbor(k- NN) imputation for foresinventorymodeling at the trelevel.

In most casebBoweverk-NN imputation, as a nhonparametric method, has commonly been
used to predict forestvertory attributesatthe plot or standlevels(Falkowskietal., 2010;
Hudak et al.2014; Racine et al2014; McRoberts et al., 2015). FetampleHudaketal.,
(2008)evaluatedhinek-NN imputation methodsombined withidar data for imputing
plot-level BA and tree density (TD) of 11 conifer species occurring in moadfer

forests of north central Idaho, USA. Racine et(@D14) usedidar data anck-NN

imputation to estimate plot ageross ananaged boreal forest in Chex, Canada, and

Fekety et al.(2015)usedrepeatedield andlidar surveydatato assesthe feasibilityof



predictingforestinventoryattributesacrosspace and time in a conifer forest in northern
ldaho,USA.

Theaforementionedtudiedntegratedidar andfield data in an arehasedk-NN
imputation to predict forest attributes at the plot or stand leMelsever,accurate
characterization of the forest at the individtrakelevel not only enhances conventional
andlidar areabased foresnhventay, but alscextends its applications into disciplines where
greater detail is valued, suchelogy,wildlife habitat, or biodiversity applications
(Goetz et al.2007; Hinsley et al2002;Vierling et al, 2008).

Giventhatonly afractionof thehistoriclongleafpineforest ecosystem range remains
today,accurate characterization and spatistributionof individualtreesarecritical for
sustainable forest management and for ecological and environmental protdoingteaf
pineforests Ourgoalin thisstudywasto predict individualtreelevel attributes using-NN
imputation and individualreelidar-basednetricsin alongleafpineforestin southwestern
Georgiajn theUnitedStatesOurfirst aim,therefore, was tevaluatehe ability oflidar to

accurately detect individual trees and determine treetop height (HMAX, m) and crown area
(CA, m2) that are subsequently used for predicting aterdoutes Our seconcaimwasto

predictindividualtreeHt (m),BA (m2), andV (m3) attributesfrom HMAX andCA metrics
usingk-NN imputationandevaluatets accuracyandprecision. This investigation is based
on the hypothesis thatar technologyanda k-NN imputationmodelingapproactcan
feasibly provideaccuratestimate®f thesdreeattributesn theopencanopystructurehatis

typicalof healthylongleafpine forests.

1.2 Material and Methods
1.2.1 Study area
The study area for this project is locatedchauwayan 11,700 ha reserve of the
JosephW. Jones EcologicdResearch Center in southwestern Georgia, USA (Figije 1
The area is characterizbgahumidsubtropicatlimate(Christensed981) withamean
annualprecipitationof 131cmfairly evenlyspread throughotlheyear.Meandaily

temperaturegangefrom 21 Q? to 34 Q? in thesummerand5 QZ tol7 Q? in thewinter

(Loudermilketal., 2011).Elevationrangedrom 6.23m to 33.66m, and the soils are
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characterized as paleudults, kandiudults, and hapludults with some localized
guartzipsamments (Kirkman et,&004). The Ichauway reserve has an extensive tract of
second growth longleaf pine managed withw-intensity,dormant seasorprescribed

fires at a frequency of abolit3 years since 1945 (Loudermilk et, 21011).

In thisstudy,vegetatiorstructuras characterizetdy anopen canopy longleaf pine
forest (Figure 1la, b) and a wiregrasdominatedyroundcovermaintainedinderahigh-
frequencyfire regime (Figure llc). Maintaining a higHrequency fire regime through
repeated@pplicationof prescribedire is atopmanagemergoalatichauwaywith
occasionaindividuaktreeselection harvestinigr managemerdndresearclpurposei the

natural, secongrowth longleaf forests (Palik et 2003).

1.2.2 Field Data Collection

The field measurements were carried out from March 2009 to July 2009. A total of
15 rectangular plots (about 4 ha each) were established in 3 SEAMONE, and NW
(Figure 11d). All plots were georeferenced with a geodetic GPS with differential
correcton capability (Trimble Nomad) with an external Hemisphere Crescent A100
antenna, and all had a horizontal accuraey 0.6 m with differential GPS(DGPS)and<
2.5m without DGPS in opecanopyand 1 m? m accuracy with DGPS under forest
canopyAll trees were measured for DBH usioglipers(two perpendiculameasurements
atrightangles, averagedy asteeldiametetape,andfor Ht usingaLaserTecimpulse
200.Wealso geolocated (UTM E, N) them using the Giitionedand fromthese
measuresgfield-stemmapwas created. In a few instances, DGPS was not able to resolve
locations of multiple small trees in areas with high stocking, anddos¢ionswere
recordedby establishinga known DGPS

The outsidebark V(m?®) was obtained via a longleaf pine allometric equation
according to GonzaleBenecke et al(2014) (Equation 1). The equation has a

coefficient ofdetermination (ﬂ) of 0.78 and absolute and relative root mean square error

(RMSE) of 0.17 nd and 38.21%,@spectively.

In(V) = 79.944543 43.12369In(Ht). (L.2)



11

In additionto V, treellevel BA wasalsocomputedStatistical summariesf thereference

field measurements and BéhdV calculationsarepresented iTable 1.1 andablel.2.

1.2.3 Lidar Data and P+grocessing
Lidardata were acquired using an Optech GEMINF AwmrneLaserTerrainMapper

(ALTM) mountedn atwin-engine Cessna Skymas(@&ail Number N337P). The survey

was carried out on March 5, 20Q8darflight parameters are presentedlablel.3.

Lidarpreprocessing was performed using US Forest Sérd&ON/LDV 3.42

softwargMcGaughey015)andLAStools (Isenburg 2015). The workflow is graphically
shown in Figurd.2a. First, iINFUSION/LDV, the quality of thdidar dataset was visually
evaluated, and a simple report using the Cattdod) was generatedA filtering

algorithm basedon Kraus and Pfeifer (1998) was applied to differentiate between ground
andnongroundeturns Digital TerrainModels(DTMs) were generated using the classified
ground points with a spatial resolution of 1.0 m, using the GridSurfaceCreate function.
TheCanopyModetool wasthenusedto interpolatevegetation points and to generate

Digital Surface Models (DSMs) with a spatial resolution of 0.5 m. Afterward, the ClipData
tool was applied with the height and dtm switches to normalize heights and to assure that
the z coordinate for each point correspehtb the height above ground and not the
orthometricelevationof the single point. The PolyClipData tool was then used to make
subsebf thelidar pointswithin eachof the15in situ measured test plots. THeudMetrics

tool with a height and covéhreshold=f 1.37m (Nilsson1996)wereusedto compute
thecanopycover(COV,%),within sampleplots.COV was calculated as the numbelidér

first returns above 1.37 m, dividbgithetotalnumberof first returns Suchlidar-derived

CHM often contairheight irregularities within individuakee crownd so-called data

pitsd which reduce accuracy in tree detection and subsequent extraction of biophysical
parameters (Gaveau and Hill 2003, Shamsoddini ,&2@13). Therefore, thegit-free
algorithm,developedy Khosravipouretal., (2014) was used to generate afpge CHM

at 0.5m spatial resaition though a workflow implemented in LAStools (Isenburg 2015).
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1.2.4 Individual tree detection and HMAX extraction

Individual tree detection was perfoeghin R (R Developme@oreTeam2015)
usingtheFindTreesCHMunctionfrom the rLIiDAR package (Silva et a2015). The
FindTreesCHM function uses a local maximum algorithm to search for tree tops in the CHM
through a moving window with a fixed tréep window size (TWSWulderet al, 2000).To
achieve optimal tree detection, we tested 3 TW8335x 5, and7 x 7 pixels) first on an
unsmoothed CHM, and then on a CHM smoothed by a mean smooth filter with fixed
smoothingwindow size (SWS) of 3 x 3 and5 x 5 pixels. Evenwhen the smoothed
CHM option was used to find trees, the treetop heights (HMAX) were exdrércim the
unsmoothed CHM.

A total of 15 test subplots (30 m 30 m) were randomly situated within each of the 15
plots (1 subplot per plot), and the number of trees detected (NTD) per subplditiaiom
weremanuallycomparedvith field-basedlataandevaluatedn termsof truepositive(TP,
correctdetection)falsenegativg FN, omission error) and false positi{feP,commission
error). The accuracy of the detection was further evaluated for recall (r), prépisaonlF-
score(F) accordingo Li etal. (2012),using the following equations (Goutte and Gaussier
2005;Sokolovaet al, 2006):

o —— (1.2)
p — (1.3)
& cz — (1.4)

Note that recall is inversely related to omission error and represents the tree detection
rate. Precision is inversely related to commission error and describes the rate of correct
detections. fscore is used to represent the harmonic mean of recall and precision, which
takes both commission and omission errors into consideration. Hence, a higloee F

indicates that both commission and omission errors are lower (Lj 2042). Recall,
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precisbn and Fscore ranges from 0 to 1, and thedere will become higher with higher p

and r values.

1.2.5 Individual tree crown delineation and crown area computation

Treecrown delineation was also performed in R, using the ForestCAS function from
therLiDAR package (Silva et al2015). Inputs to this process were the smoothed CHM in
addition to the tre¢ocation output described in the previous steps.algn@rithm
implementedn theForestCASunctionisshown in Figurel.2c and Figurd..3, and follows
the example presented in the figure illustraBrigypothetical trees (Figurk3a). The
algorithmstartsby applyingavariableradiuscrownbuffer(Figure1.3b) to delimit the initial
tree crown area. In thgudy,the variable radius wamlculated for each tree by multiplying
thelidar-derivedireeheightby 0.6,becausereliminaryfield observation revealed that the
tree crown radius typically was not largkan60%of thelidar-derivedtreeheight.After
determininghemergedreepolygonusingthefirst areadelimitation(Figure1.3b), we then
split the data using the centroidal voronoi tessellaproaci{AurenhammeandKlein
1999)toisolate eacindividuaktreepolygon(Figurel.3c,d). After isolatingeach tree
polygon,we clippedthemfrom the CHM andexcludedhe gridcellswith valuesbelow30%
of theHMAX in eachspecific detected tree (FiguieBe) to eliminate the losying noise.

Finally,thetreecrowndelineatiorandcrownarea(CA, m2) were computedyy delimiting

theboundaryof grid cellsbelongingio each tree (Figurg3f).

1.2.6 rSTree: Searching for the lidar and reference trees
Forestinventoryandmodelingof individualtreesusingfield andlidar data is a

highly desirable approachloweverto developthis type of modeling approach, the
challenge is to matdidar-delimitedtreeswith referencdreesmeasuredh thefield. In
manycasesthetreelocationreferenceneasuredh thefield isinaccurat€oftendueto GPS
error),complicatingheindividuattreelevel modeling approach. Instead of manually
moving reference tree locations to match with the tree locadretestedrom lidar, we
developedinovelapproachor matchinglidar and field trees automatically (Figutet).
The proposed rS€e algorithm uses the acceptable maxintiualidian distance (MED)
and minimum height difference (MHD) computed betwhkasar and fieldbased data, in
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terms of tree location and height, respectively, as the imputed parameters. The algorithm
processes a e match tree at a time, and it starts with the first detdictadtree. The
userdefined MED parameter is then used to buffer a search area for a possible matching
tree. In this study, we used 10 m, because, given the GPS errors, we are assurhiag that t
reference tree is within a radius of 10 m. The fieéded trees located inside the search

area are selected. Trees with height difference (BIRIHD are then selected for the next
step as target trees. In this study, we used MHIb m, because most of the literature

for coniferlidar versus field stems have reported a RMSE in heigktlom (e.g.,

Vastaranta et al. 2014). In an open canopy forest such as longleaf pine presented herein,
we are assuming that the errottidar height would not exceed 1.5 m. If more than one
reference fielebased tree has HOMHD, the trees are ranked by HD and the tree with

the smallest HD is selected. If 2 or more fiblased trees have a perfect match in terms of
smallest HD and distance to thetelcted tree, we randomly selected one as the target
field-based tree to match with thdar tree. After all interactions, tHalar and reference

trees are combined, added, and exported as a table for the indivedtlalel attributes
modeling approdt

1.2.7 Imputation modeling development

In this study,becaus¢heheighi diameterllometryfor longleaf pine breaks down
after reaching a diameter D25 cm, when height growth asymptote®a6 m(Gonzalez
Beneckeet al, 2014), we believed that a nonparametric modeling techmiuredict
forestattributesattreelevelwould bemoreappropriatéhanaparametrienodel.Therefore,
k-NN imputation, a nonparametric technique, was conducted using the yalmpute
(Crookston andFinley 2008) package in the R statistical software (R Cemn2015).
Many imputation methods can be useidassociatingargetandreferencebservations;
howeverrecent studiekaveshown that the Random Forest (Breiman 2001) approach
generallyproduces better results compared to other imputation methods (Hudak et al.
2008; Nelson et gl2011;Waskeetal., 2012).ForthisstudyweusedRandontorestbased
k-NN (RFk-NN) tocharacterizéherelationshipvetween predictqfHMAX andCA) and

responsé€Ht, BA, andV) variables used for imputation. The number of neighbors was set
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to one k= 1) to maintain the original variance in the data (Huda#.£2008).Thedataset
for themodelingprocessvasrandomly split into subsets with 75% for trisig and 25% for

testing, andatotal of 1,000regressionreeswerefitted in theRFk-NN model.

1.2.8 Model assessment

Accuracy of the imputation model was assessed by calculating the absolute and
relative root mean square distance (RMSD, RMSD%)aas! Bias, Bias¥) between
imputations and observations (Stage and Crookston 2007), computed for a single response

variable as follows:

2.3~ 2 (5)

"EfOB M0 (6)

where lis the imputed value of a variable, O is the observed value, and n is the
number of reference observations. The RMSD is analogous to the RMSE used to assess
regression model accuracy (Stage and Crookston 2007). The relative RMSiasackB
computed by diiding absolute RMSD andi&8s by the mean of the variable computed over
the reference observations and multiplied by 100. We defined acceptable model precision
and accuracy as a relative RMSD and Bia$5%6 to have a model precision and accuracy
higher than or equal to the conventional forest inventory standard in the longleaf pine. We
also employed statistical equivalence tests to assess whether the imputed tree attributes are
statistically similar (i.e., equivalent) to the fidbésed attributes (Robins@t al, 2005).
According to Smith et gl(2009), statistical equivalence tests are used to test the null
hypot hesis of fAno substantial differenceodo b
populations are different; H1: the sample populations arneaeguat). We employed a
regressiorbased equivalence test to test for intercept equality (i.e., the mean of imputed tree
attribute is equal to the mean of the fiblaised attribute) and slope equality to 1 (ifehe

pairwise, imputed and observed, ilttites are equal, the regression will have a slope of 1).

-

A description ofequivdlencet e st s can be also found in the
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(Robinson, 2015), and examples of equivalence pldidanstudies can be found in
Falkowski et al.(2008), Smith et al(2009), Hudak et gl(2012), and Silva et al(2014).

1.2.9 Standevel imputation of tree attributes

According to Falkowski et gl(2008), treedetection accuracy decreases with
increasing COV. An adaptive approach using CO¥ aenstraint to select the best
parameters of TWS and SWS for tree detection was developed in this study. Therefore, we
tiled the normalized point cloud using a gkayer of 200 nx 200 m square plots, and for
each single tile we computed COV, which wasculated by the number tdar first returns
above 1.37 m, divided by the total number of first returns. A buffer of 30 m was applied
over each single square layer to remove the edge effect of the individual tree detection. As
the parameters of the trdetection at stand level was dependent on the results from the test
plots, our hypothesis was that small TWS would provide better results in close canopy area,
and vice versa. In the buffer overlaid areas, after tree detection using the FindTreesCHM
function from the rLIiDAR package (Silva et a22015), 1 of 2 trees detected was
automatically removed to avoid overdetection. Afterward-¢tregvn delineation was
performed across the entire stand, using the ForestCAS function from the rLiDAR package
(Silva 4. Al., 2015). The RK-NN imputed model based in the test plots was then applied,
and the tree attributes Ht, BA, and V were estimated for each single tree across all stands.

1.3 Results

1.3.1 Stanelevel Characterization from Field Data dndar-Based Plot Metrics

According to thdidar-derived HMAX value, canopy height of the longleaf pine
forest was similar across the 3 stands (Fiduea).Lidar-derived COV indicated a decrease
in percent canopy cover from the NW to CNT and NE standereals COV variance
increased (Figure 5b). Although the stands are similar in height, they are different in terms
of field-measured tree density. As observed in the description of the sites in the material and
methods section, the NW stand had highestdegesity and the NE stand had the lowest,

whereas the variance in tree density showed the opposite trend in COV Ergire
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1.3.2 IndividualTree Detection

The individuailtree detection results from the test plots are shown in Tahldhe
TWS and SWS&ombination were sensitive parameters in terms of tree detection. The TWSs
that provide better results were®Hand %7 pixels, with a tree detection overall
improvement of 58.25% and 34.59% compared to {3 spectively. The relationship
between SWSral the NTD fromlidar was inversely proportional. Smaller TWSs, such as
3x3 pixels, detected more trees compared to large TWSs, sugfi,asadsing an
overestimation of NTD. In general, TWS of3for the CHM smoothing provided better
results.

Although diferent combinations of TWS and SWS parameters might provide a
better performance in each test plot, we identified a positive and strong nonlinear
relationship between the number of reference treedfigarederived COV (Figurd..6a).
Therefore, in an eff to be consistent and replicable, we decided to use the adaptive
approach already cited in the methods section, in which the COV is used as an auxiliary
variable to select the TWS in each test plot. For the sample plots with COV > 70%5 the 5
TWS was slected and in plots with COV < 70% the/7/TWS was selected. Additionally,
the SWS of 83 pixels was selected to be applied across all test plots, because it in general
provides more accurate results (Tabk).

The relationship between the reference laat-derived number of trees per test plot
according to the adaptive approach mentioned is shown in HdlreOur method slightly
underestimates the number of trees, especially in the test plots with COV > 70%. However,
the correlation between refeanand NTD per hectardl (hd ) is relatively strong,
displaying a correlation coefficient of 0.90.

The accuracy assessment results for indivities detection in the 15 test subplots
is shown in Tabld.5. The recall varies from 0.74 to 1, with the alevalue of 0.82; the
value of p varies from 0.71 to 1, with the overall value of 0.85; and-8w®fe, which
considers both of these last 2 factors, varies from 0.74 to 1, with the overall value from all
the plots of 0.83. There are 185 reference tireesir test subplots, and only 177 (81.6%)
trees were detected. In summary, the algorithm missed 34 (14.1%) trees, and falsely detected
26 (18.1%) trees, with underdetection outweighing overdetection (Td&béndl.6).
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The strongest results were obtained in test subplots with COV < 70%, with 96% of
the trees detected, commission and omission errors limited to 17.0 and 2% ascbas 61
0.90. When considering test subplots with COV > 70%, the algorithm detected Ti&¥sof
with commission and omission errors of 13% and 24%, respectively (T&bl&he
relationship between thegeore and COV is shown in Figut&. The correlation is
relatively strong, with a correlation coefficient of 0.91.

Thelidar-derived HMAX ranged from 5.24 m to 31.91 m with mean and standard
deviation (SD) of 24.39 m and 3.18 m, respectively. [idee-derived CA ranged from 3.0
m? to 204.5 nt, with mean and SD of 50.2%mnd 24.74 rf respetively. The distributions
of HMAX and CA are showmithe Figurel.8.

1.3.3 Imputation Modeling Estimates at Tree Level at the Test Plots

The rStree algorithm matched 4,242 detected trees to fiatbd trees (48.0%).
From this total, 3181 (75%) trees were used as training and 1061 (25%) trees weee used a
testing data for imputation modelinthe HMAX and CA metrics were better predictors of
Ht and V than BA. The imputed training model produced a relative RMSD of 2.56%,
57.33% and 7.49%; relative BIAS of 0.08%, 0.50% and 0.22%, and p&£.db0.96,
0.22 and 0.95 for the Ht, BA, and V attributes, respectively.

The imputed and observed Ht and V attributes from the validation dataset were
statistically equivalent at the 25% rejection region (Fidu®e,c). However, the imputed
and observed BA values waret statistically equivalent at the 25% rejection region (Figure
1.9b). The Ht and V imputation models produced estimates that were strongly (r > 0.97)
correlated with the validation inventory dataset, whereas the BA imputation model produced
estimates oBA that were weakly correlated=0.42) with the validation data. The RMSD
and Basvalues were relatively low, whereas pseRfosalues were high for the Ht and V.
On the contrary, the RMSD andaBwas relatively high, and the pseuBdrelatively low,
for the BA estimates. The distributions of imputed and observed forest attributes across all
stands from the testing dataset are shown in the Figl@e In general, the similarity

between the observed and imputed attributes is high.
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1.3.4 Stanel_evel Forest Attributes Estimates

The N of trees detected in the stands ranged from 35,980 to 52,184; mean tree Ht
ranged from 21.10 to 23.17 m; mean tree BA ranged from 0.09 to 6.40chmean tree V
ranged from 0.79 to 0.96%mas presented in TalllF Mean sandlevel BA was 10.73
m?-hd ! (+2.69m?-hd ') and mean starvel V was 99.94n%-hd ! (+26.25m3-hd %). We
also graphed histograms of imputed values for each stand and the shape of these
distributions (Figurd..11). The distributions show that the NVésd is the most mature, the
NE stand has the highest proportion of smaller trees, and the CNT stand has an intermediate
structure. These distributions provide more information that is subsumed within the Ht, BA,

and V mean and standard deviation trende/en stands, as summarized in Figube

1.4 Discussion
1.4.1 Individual Tree Detection

Accurate individuakree attributes are critical for forest assessment and planning.
This study presents a simplified framework for automdiedr-basedndividuaktree
detection and modeling procedure for estimating tree attributes. The results presented herein
demonstrate that the total number of trees can be derived with satisfactory accuracy.

We found that the successful identification of tree locatiasing the local
maximum technique depends on the careful selection of the TWS. If the TWS is too small or
too large, errors of commission or, respectively, omission occur, as was also reported by
Wulder et al. (2000). Tredetection accuracy was greadffected by the different TWS and
SWS combinations tested (Taldld). TWS was inversely proportional to the number of
trees detected in general. Because COV is directly proportional to tree density in general,
larger TWS is generally more appropriate pen canopy forest structures. In this study,
70% COV was the threshold chosen as the TWS; this is substantially higher than the 50%
threshold reported in previous studies (Falkowski et al. 2008) and represents a significant
advance in our ability to extramdividuaktree attributes from denser coniferous forest
canopies. Even though different combination of TWS and SWS would provide high

accuracies in certain local areas, a consistent TWS parameter is also advantageous for
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automated tree detection acrteagje spatial extents, and therefore, we employed the COV
variable as a criterion for adapting the TWS.

Smoothing is a common technique applietidar-derived CHMs for individual tree
detection purposes. In this study, we tested the mean smoothingdilesmoother.
Khosravipour et al. (2014) reported that the performance of individemldetection was
better using pifree CHMs instead of a standashoothed Gaussian CHM (in a coniferous
plantation forest in Barcelonnette basin, southern French Rfpsce). We observed the
same improvement, but then further applied th& @ixels SWS over the pitee CHM to
produce even more accurate results. Applying the 3 x 3 pixels SWS the irregular crown
shapes that typify longleaf pine tree crowns (comparedher conifers, which tend to have
a more regular, conical shape), thus eliminating spurious local maxima caused, for example,
by longleaf pine tree branches that were not already removed by-theep@HM itself.

Filter sizes and the conditions foltéiring the CHM must be carefully tested and selected for
different forest types (Lindberg and Hollaus 2012).

The treedetection results from this study are comparable to the results obtained in
other studies using both point cloud and rabsesed appro&es. Li et al. (2012), using a
new method for segmenting individual trees fromlitiar point cloud in a mixed conifer
forest on the western slope of central Sierra Nevada Mountains of California, USA, showed
that the algorithm detected 86% of thetrdes (e cal | 6), and 94% of t he
correctly (fApr eci-ssdreoh0®). Vegawt dl. (201d)nusimy\the PTacks| F
algorithm to segment individual trees in a conifer plantation in southwestern France,
reported overall recall, peesion, and Fscore of 0.93%, 0.98%, and 0.95, respectively.
Khosravipour et al(2014), comparing the accuracy of indiviciie detection from the
lidar-derived Gaussian smoothed andfpe CHMs in mixed forest in southern French
Alps in France, ackved an overall accuracy of 70.6% and 74.2%, respectively, from high
densitylidar, and 35.7% and 67.7%, respectively, from artificially thinned;densitylidar
data. lahivaara et al. (2014), using a Bayesian approach to tree detection béisked deta,
reported an accuracy of 70.2% for 2751 trees measured across 36 different field plots in a
managed boreal forest in Eastern Finland. Maltamo,g2804), in statewned forest

located in Kalkkinen, southern Finland, using local maximum and segmanithniques,
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detected only 39.5% of all trees, although the proportion of detected dominant trees was as
high as 83.0%.

In this study, the accuracy of individuaée detection measured by thadoére, as
expected, was inversely proportional to fore&\C Overall, commission errors were more
prevalent in less dense test plots, and omission errors were more common where crowns
overlapped. Previous research has shown thatiesetion accuracy decreases with
increasing canopy cover (Falkowski et al. D0As also reported in Falkowski et,al.

(2008), the influence of GPS error is also an unquantifiable source of uncertainty in the
current study. Popescu (2007) reported that treetop positions might be determined with
higheraccuracy using a CHM image Inatr than erreprone measurements derived from
differential GPS in the field. Even though we collected at least 20 GPS positions at each tree
and performed a differential correction, it can be argued that the field GPS tree location is
less accurate thahe treetop location detected frdiakar, especially in higkcanopycover
conditions that can degrade field GPS accuracy (Wing,&048). For example, in Figure

12, the reference tree location represented by the black point (Ei@eg and vertical

black line (Figure 12b,c) are located far away from the treetop location (white point, Figure
1.12a) and the point cloud peaks (Fighirg#2b). This leads to a less accurate stem map in
areas with high COV, ultimately making it very difficult to objectivdbtermine if a sample
tree had actuallpeen detected in higtanopycover situations. Moreover, the irregular

shape of longleaf pine tree crowns likely further reduces tree detection accuracy compared

to most other conifer species with more regular comicavns.

1.4.2 Imputing Forest Attributes at Tree Level

In this study, we used an individual tree detection and crown delineation approach to
compute HMAX and CA, which were subsequently employed as predictors to estimate tree
level metrics such as V af8A in a modeling framework (RK-NN imputation). This is the
first study to detect individual trees and modeldeee| attributes using such an approach
in longleaf pine forest.

In the modeling process, before building thedmel RFk-NN imputationmodel, it

was necessary to match individual trees detected frotrddrederived CHM with the
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associated reference trees measured in the test plots. The rSTree was able to match up 48.0%
of all reference trees. Most of the missed trees occurred in ts¢stypth COV conditions

over 70%. However, even though an ideal situation (i.e., matching étizhand reference

trees) was not achieved, the rStree algorithm proposed herein is still appropriate for tree
matching when GPS errors in the fidddsed m map are an issue.

Error in estimating Ht, BA, and V came disproportionately from young trees,
although these comprised only 1.9% of the total number of stems. Additional error could be
attributed to the year difference between thdar acquisitions 2008) and field
measurements (2009). Nevertheless, the accuracies of tk&lNFmputation model for
imputing Ht and V were satisfactory, with RMSD in the creakdation ranging from
2.96% to 8.19%, clearly surpassing the stated goal of less tharHbb®éver, the adjusted
model was not able to accurately model BA. However, the primary contributor to the high
BA estimation error is that the heigldiameter allometry for longleaf pine breaks down
after reaching a diameter of 25 cm, when height growtmpgytes at 25 m (Gonzalez
Benecke et al2014). The addition of crowdimension attributes to a biometric model can
help, but in thistudy,it did not explain much BA variance.

The use of airbornkdar to retrieve forest attributes such as Ht, V, anddAree
level has been not widely studied, however, some previous studies have shown the great
potential of this technology to provide it. For example, Maltamo g{28109), usindidar-
based metrics arldMost Similar Neighbork- MSN) imputation for pedicting treelevel
characteristics from a reference dataset comprising 133 trees, reported relative RMSESs of
1.95%, 5.6%, and 11.0% for the Ht, DBH, and V attributes estimation in 14 Scots pine
(Pinus sylvestrit..) plots located in the Koli National Rain North Karelia, eastern
Finland.Vauhkonen et al. (2010), working in mixed conifer mixed forest dominated mostly
by Scots pine and Norway spru¢tdea abied.. Karst.) in southern of Finland, employed
k-MSN and RF imputation methods simultaneouslyefsirmating stem dimensions using
lidar-based variables, and reported relative RMSEs of 3%, 13% and 31%, for Ht, DBH, and
V, respectively. Vastaranta et al. (2014) using a multisource dirggenventory (MSSTI)
in a broad mixture of forest stands laxhin Evo, Finland, reported RMSESs ranging from
4.2% to 5.3%, from 10.9% to 19.9% and from 28.7% to 43.5%, for Ht, DBH, and saw log
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volume, respectively. Our accuracies were not higher than those reports in Maltamo et al.
(2009) and Vauhkonen et g2010). However, it is difficult to compare these results with
ours owing to methodological and site differendesdberg and Hollaus (2012) reported
estimates of individual tree BA that were more accurate based on the regression models than
those derived fnm identifying tree tops from local maxima in the CHM in hdrareal
forest in the southwest of Sweden. Furthermore, Vauhkonen et al. (2010) reported that the
variation in RMSEs of 11%d45% for individualtree BA estimation was due to the type of
method k-MSN or RF), value of k, and the set of predictor variables applied in the
modeling process. In another study, also in Evo, Finland, Kankare (@045) verified that
the DBH accuracy was inversely proportionatree density, where DBH accuracy
decresed when tree density increased.

Our BA results might be improved by optimizik@r adding more individual tree
metrics as predictors, such as canopy volume (Chen 20al, Vauhkonen et ak010).
Even though it is time consuming, individual tregmentation directly from thealar point
cloud methods as presented by Reitberger g28l09), Ferraz et al(2012) and Yao et al.
(2013) are considered alternatives to increase the number of inditneeahetrics to be
derived from theidar point cloud data, as can be accomplished with the rLiDAR package
(Silvaet al.,2015). We have tested the rLIDAR algorithms for individinaé detection and
crown delineation on a CHM derived from airbotigiar at plot and stand levels; the
rLiDAR package is not designed to ingest latghar datasets, due to inherent memory
limitations of R compared to specializkdiar processing software such as FUSION/LDV
and LAStools.

1.4.3 Stanel_evel Forest Attributes Characterization

The longleaf pine forest aitbutes estimates reported in this study represent useful
information for the study and management of the longleaf pine forest at the Ichauway site.
The spatially detailed information such as the number, location, spacing, size, Ht, BA, and V
distributionof individual trees as available in map form (not shown) helps managers achieve
greater management and conservation efficiency. Forestry studies often produce estimates of

the standevel forest attributes and how they change over time (GonBaeecke edl.,
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2014). Therefore, distributions of forest structure attributes {Fid) are relevant for forest

management and planning.

1.5 Conclusions

In this study, we investigated the usdidar and RFk-NN imputation for individual
tree detection and forest attributes modeling in longleaf pine forest. Overall, our method
detects individual trees with high accuracy in areas with < 70% CQOV. The precision and
accuracy ofidar in retrieving Ht and V paramets at an individualree level using the
framework presented was clearly demonstrated through a relative RM®iaaleds than
15%. Even though the desired accuracy of BA was not fully attained, the framework
presented herein can serve as a useful rdetbgy, and the result will ultimately support
further study and management of longleaf pine forest ecosystems in the study area. We hope
that the promising results for individuee level forestattribute modeling in this study will

stimulate further reearch and applications not just in longleaf pine but other forest types.
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Table 12. Statistical summaries of tree basal area (BA) and stem volume (V) at sample plots

Stand BA (m?/Tree) V (m3tree)

min  max mean sd | min max Mean sd
NW | 0.01 040 0.12 0.08/0.04 2.44 0.94 0.47
CNT |0.01 0.44 0.10 0.07/0.010 2.73 1.01 0.50
NE |0.01 0.28 0.09 0.06/0.01 228 0.99 0.52

Table 13. Lidar flight parameters

LIDAR Survey Parameters

Scan Frequency

Scan Angle

Scan Cutoff

Scan Offset

System PRF

Swath Width

Flying Altitude

Down Track Resolution
Points per square meter
Horizontal Datum
Vertical Datum
Projection

45 Hz
+/- 20 deg
+/- 4.0 deg
0 deg
125 kHz
344.64 m
600m AGL
0.75m
5.06
NADS83
NAVD88 (GEOID 03)
UTM Zone 16N
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Table 14. Individual tree detection in the test subplots. The highlighted gray color represents the best results,
which were determined by comparing the number of trees detected (NTD) to tHeefeld tree inveaty
number (N). The closest values of NTD compared with N were selected as the best results.

TWS

Plots | Stand| cov | R&F 3x3 OX5 X7

(N) SWS SWS SWS
NF 3x3 5x5| NF 3x3 5x5| NF 3x3 5x%5
1 | gy | 6839 803 4675 1112 587 | 1246 702 478| 620 507 413
2 75.63| 815 | 4725 1156 586 | 1312 674 480| 639 514 410
3 70.40| 519 | 4063 893 467 | 1028 515 393| 485 399 340
4 70.96| 503 | 4346 939 490 | 1079 548 410| 526 425 370
5 | ont | 71:47| 572 | 4256 1021 536 | 1131 632 437| 570 467 381
6 72.62| 543 | 4208 953 505 | 1096 584 426| 550 440 385
7 73.17| 777 | 4222 1052 577 | 1110 622 449| 552 452 383
8 75.53| 621 | 4723 1050 573 | 1221 620 465| 609 483 410
9 60.13| 321 (2994 684 346 | 750 373 272| 344 275 243
10 61.75| 306 [3222 701 363 | 771 414 283| 374 300 250
11 63.85| 366 [3366 750 393 | 852 427 319| 414 323 292
12 | NE |63.96| 338 {3319 743 370 | 849 396 292| 411 318 265
13 72.24| 737 |4006 940 510 | 1018 563 405| 521 436 368
14 74.50| 810 [4379 1012 547 | 1119 612 437| 530 463 385
15 75.56| 797 |4357 1023 561 | 1145 620 452| 567 454 391

Ref.: reference number of tree per test plot (N); TWS: fixed treetop windows size; SWS: fixed smoothing windows size;
NF: no filter applied; NE: Northeast stand; CNT: Centtahd and NW: Northwest stand.



35

Table 15. Accuracy assessment resultdidér-based individual tree detection according to recall (r), precision

(p) and Fscore (F) statistics parameters.

Ccov

Number ofTrees Detected (NTD)

Subplots (%) lidar  Reference FP FN TP r P i
1 46.21 13 16 1 4 12 0.75 0.92 0.83
2 46.87 16 18 2 4 14 0.78 0.88 0.82
3 50.66 8 6 2 0 6 1.00 0.75 0.86
4 56.55 S S 0 0 5 1.00 1.00 1.00
5 60.31 4 4 0 0 4 1.00 1.00 1.00
6 63.02 4 4 0 0 4 1.00 1.00 1.00
7 64.71 9 8 1 0 8 1.00 0.89 0.94
8 67.13 7 5 2 0 5 1.00 0.712 0.83
9 71.41 16 17 3 4 13 0.76 0.81 0.79
10 71.45 18 21 2 5 16 0.76 0.89 0.82
11 74.33 20 23 4 7 16 0.70 0.80 0.74
12 76.93 11 10 2 1 9 090 0.82 0.86
13 80.56 23 27 3 7 20 0.74 0.87 0.80
14 85.58 15 13 3 1 12 092 0.80 0.86
15 83.48 8 8 1 1 7 0.88 0.88 0.88
Overall 66.41 177 185 26 34 151 0.82 0.85 0.83

Table 16. Accuracy assessment results for the individual tree detection as a fundtaar-oerived COV. FP:

False positive; FN: False negative; TP: True positive; r: recall; p: precision arstbrd:

Number of Trees Detected (NTD)

Ccov (%) lidar Reference FP FN TP ' P F

O 70 60 53 9(17.0) 2(3.8) 51(96.2) 0.96 0.85  0.90

>70 117 132 17 (12.9) 32 (24.2) 100 (75.8) 0.76 0.85  0.80

Overall 177 185 26 (14.1) 34 (18.1) 151 (81.6) 0.82 0.85  0.83

Table 17. Estimated tree attributes summarized at the skewel.

Stands

Ht (m)

BA (m?)

V (m®)

NTD |Mean

Sd

Mean Sd Total

Mean Sd Total

NW
CNT
NE

36958|23.17
52184(21.26
35980(21.10

414
5.34

5.42

0.10 0.07 3824.11
0.09 0.07 4478.04
0.09 0.07 3119.95

0.96 0.40 35658.33
0.80 0.49 42114.29
0.79 0.49 28564.40

NTD=Number of Trees Detected
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Figure 1.1. Longleaf pine forest location: A, B, and D, and profile picture at Ichauway in southwestern Georgia,

USA. NW: Northwest; CNT: central and NE: Northeast stands.
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A) LiDAR data pre-processing B) Individual tree detection and HMAX Q) Individual tree crown delineation and
extraction crown area (CA) computation

Figure 1.2. Flowchart of thdidar data processing.
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Figure 1.3. lllustration of the individual tree crown delineation algorithm. T=trees. (A) treetops; (B) buffer earch area of 10
m maximum radius; (C) Centroidal Voronoi Tessellation delineation; (D) buffer and Centroidal Voronoi Tessaiation

overlaid(E) CHM clippng; (F) crown delineation.
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Figure 1.4. rSTree algorithm: searching for thear and reference trees. MED = maximum Euclidian distance, MHD =
minimum height deference, HD = height difference.
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Chapter 2. Predicting Stem Total and Assortment Volumes in an IndustriaPinus taeda

L. Forest Plantation Using Airborne Laser Scanning Data and Random Forest

Silva, C.A.; Klauberg, C.; Hudak, A.TVjerling, L.A.; Jaafar, W.S.W.M.; Mohan, M.;
Garcia, M.; Ferraz, A.; Cardil, A.; Saatchi,Bedicting Stem Total and Assortment
Volumes in an Industrial Pinus taeda L. Forest Plantation Using Airborne Laser Scanning
Data and Random Forest. Forests 2@ 254.

Abstract

Improvements in the management of pine plantations result in multiple industrial and
environmental benefits. Remote sensing techniques can dramatically increase the efficiency

of plantation management by reducing or replacing-ttioresuning field sampling. We

tested the utility and accuracy of combining field and airborne lidar data with Random

Forest, a supervised machine learning algorithm, to estimate stem total and assortment
(commercial and pulpwood) volumes in an industiglus teedal. forest plantation in

southern Brazil. Random Forest was populated using field anedigtared forest metrics

from 50 sample plots with trees ranging from three to nine years old. We found that a model
defined as a function of only two metrics (4iei of the top of the canopy and the skewness

of the vertical distribution of lidar points) has a very strong and unbiased predictive power.

We found that predictions of total, commercial, and pulp volume, respectively, showed an
adjustedR?equalto0.98) . 98 and 0. 96, with unbiased pred
i0.23%, and Root Mean Square Error (RMSE) v
methodology makes use of commercially available airborne lidar and widely used

mathematical tools to provide sitibns for increasing the industry efficiency in monitoring

and managing wood volume.

Keywords: forest inventory; lidar; remote sensing; supply chain
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2.1 Introduction

The area of planted forests worldwide has been steadily growing, with an estimated
6.95% of total global forested area being plantations in ZBa§n et al., 2015)Tropical
regions may be experiencing particularly rapid rates of plantation expdhs=p2016) For
example, the area of pine plantations in Brazil has dramatically riska iast few decades
to increase pulp and paper production. Currently ~20% of the total reforested area of Brazil
is comprised of pine forest plantatiofiler et al., 2014)

Most of the pine plantations are concentrated in South Brazil, with 34.1%2at% 4
of the total reforested area located in Parana and Santa Catarinflistat2816) Pinus
taedal., also known as loblolly pine, is the most planted forest specie in these regions. It
has high economic importance due to its high volumetric incremeim¢ colder regions of
the southern Braz{Kohler et al., 2014)it has fast growing rates presenting increments up
to 50 n?-hd -year (Iba, 2016) Moreover P. taedais commonly managed for production
of multiple types of wood such as stem total, $ays, pulpwood and smatliameter logs
and branches, which are used for energy. Saw logs and pulpwood can be further divided into
different assortments that differ in size and therefore in economic (k&biner et al.,

2014)

Forest inventory irP. taedais currently based on field measurements and typically
conducted annually to monitor forest growth in Brazil, allowing managers to identify
problematic conditions during initial growth stages, and determine optimal harvest time
(Silva et al., 201&). While field measurements are considered the most accurate approach
for monitoring industrial forest plantations, measuring stem total and assortment volumes
annually via traditional methods is an extremely time consuming andifatbosive task,
especially inarge plantations where a huge number of plots need to be measured to
characterize the variatiqi®ilva et al., 2016)Hence, to improve plantation management
there is a need to develop and implement accurate, repeatable, and economical remote
sensing ba=d methods that provide synoptic coverage at high spatial resolution.

Over the past few decades, lidar remote sensing has been established as one of the
promising and primary tools for broadale analysis of forest systems. Lidar data can be

used to charderize local to regional spatial extents with high enough resolution to quantify
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the threedimensional structure of the forest with the support of efficiently collected field
data and several statistical methods (&gessel997;NaesseP002;Naessetetal., 2007;
Hudak et al., 2009 Lidar can be used to produce highly accurate retrievals of tree density,
stem total and assortment volumes, basal area, aboveground carbon, and leaf area index, and
thereby can be an effective way to predict and map fottektiaes at unsampled locations
(e.g.,Andersen et al., 2005; Hudak et al., 2006; White et al., 2014, Silva et al., 2014;
Korhonenet al., 2008Peuhkurineret al., 2008 To parlay these attributes into improved
forest management practices for wood anlgh production, it is often necessary to predict
stem total and assortment volumes of pine plantations in operational and experimental
scenarios, as these scenarios often include thinning cruisesptiation cruises, genetic
trials, and silviculture resech testgSherrill et al., 2011)

Current predictive modeling methods include parametric (e.g., multiple linear
regression) and negparametric (e.g., Random Forest) approaches (¢egssell997;
NeaesseR002; Hudak et al., 2008Among the machine leanyg algorithms, the Random
Forest (RF) modeling approach has gained popularity in estimating forest attributes from
lidar data due to its flexibility and ability to maintain nonlinear dependences compared to
parametric algorithmghmed et al. 2005)The RFcan be viewed as an improved version
of classification and regression tree (CART) methods; data and variables can be randomly
sampled by RF in an iterative bagging boot st
regression tregBreiman 2001)Also, incormration of multiple decision trees and internal
crossvalidation has improved results, enhanced ease of use and reduced issues regarding
overfitting while performing this modeling approafBrossmann et al, 201Baidooet al.,
2012. In case of regresswtype problems, RF acts as an arbitrary number of simple trees
whose responses are averaged to obtain an estimate of dependent (Xabled., 2011)
Diversification of sample trees is primarily done in two ways, either through a balancing
methodolgy where equal numbers of samples are drawn from minority classes and majority
classes, or by assigning a higher weight (i.e., heavier penalty) on misclassified minority
class and taking the majority voting of individual classification t(Eeset al., 20.6). As
RF does not require any assumptions about the relationships between explanatory and

response variables, they are considered well suited for analyzing comptéreasrand
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possibly hierarchical interactions in large datag@tden et al., 2008)n forest inventory,
RF has been used for predicting and mapping forest attribute at the stanthfaeq, et al.,
2015 and individual tree levekr'u et al., 2011))in addition to disturbance evaluation (e.g.,
Stumpf et al., 2011 mapping invasive pldarspecies (e.gLawerence et al., 2006and
vegetation classification (e.gsrossmann et al., 20LMespite of the aboveentioned
studies, to our knowledge, lidar and RF have been nditepegycombined for predicting and
mapping stem total, saw log and pulpwood volumes in induBtriiedaforest plantations
at stand level.

Timely monitoring of stem total and assortment volumeB. itaedaplantations with
lidar data and RF would allow manag¢o determine the optimal time for harvest or other
treatment activities to maximize economic return. Therefore, the development of robust
frameworks for modeling and mapping stem total and assortment volumes at plot and stand
levels is still needed tacrease the efficiency in monitoring and managing wood and pulp
productions in forest plantations. Moreover, efficient frameworks also play important role in
helping lidar technology move from research to operational modes, especially in industrial
forestplantation settings where lidar applications are relatively new. The aims of this study
were to: (i) present a robust and efficient framework for modeling, predicting and mapping
stem total volume (Vt), saw logs (in this study mentioned as commerciathgdhic) and
pulpwood volume (Vp) in &. taedaplantation in southern Brazil using airborne lidar data;
(ii) evaluate the use of the RF machine learning algorithm for modeling stem total and
assortment volumes; and (iii) generate maps representing tied digtibution of Vt, Vc

and Vp in differently aged plantations®f taeda

2.2 Material and methods
2.2.1 Study Area Description

The study area consistedPftaedastands located within the Telémaco Borba
municipality in the state of Parana, southern of Brazil (Figuke Trees were planted using
a 3.0 x 2.0 mor 2.5 x 2.5 m grid configuration, resulting in an average tree density of 1667
or 2000treehd ?, respetively. The climate of the region is characterized as warm and

temperatdKoppenl1928, with annual average precipitation of approximately 1378 mm and
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an annual average temperature of 18.4 °C.A.nHaedastands are situated on a plateau
where the topogmy is relatively flat. The plantations are managed by Klabin S.A., a pulp

and paper company.

2.22 Field Data Collection

A total of 50 rectangular plots, each approximately 68@i, 20 m x 30 m) were
randomly established and measured across 50 stands distributed in four plantations. As such,
the sample plots well represent the study area, and they capture the entire structural
variability in these stands with ages ranging fithnee to nine years old. All plots were geo
referenced with a geodetic GPS with differential correction capability (TrimblXRro
Trimble, Sunnyvale, CA, USA) ensuring a location error lower than 10 cm. In each sample
plot, individual trees were measdrior dbh (diameter at breast height) at 1.30 m and a
random subsample (15%) of trees for tree height (Ht). For those trees in the plots that were
not directly measured for Ht, the inventory team of Klabin S.A. predicted heights from
hypsometric equation€urtis 1967) employing dbh as the independent variable, and Ht as
the dependent variable, following the model below:

110 ¢ [ pTAAFE A (2.1)

where In(Ht) is the natural logarithm of tree height (f )andy are the intercept and the
slope of the radel; dbh is the diameter at breast height (1.30 m) and e is the random error of
the model. The coefficients of the hypsometric models are then p aimtellectaal
property and not made available to the public, however, the adjusted coefficient of
deternination (adj.R) and standard error of estimate in percentage (SEE%) of the models
ranged from 0.96 to 0.98 and 5.1 to 6.5, respectively.

The management goal of tRe taedaplantations at Klabin is optimized to produce
commercial logs of 2.65 m in length, which are then classified in four timber assortment
cl asses: 18 to 25 ¢cm (Vc 1), 25 to 30 cm (V
(Vc 4). The logs designatedrfpulpwood are produced with log lengths of 2.40 m and
diameters ranging from 8 to 18 cm (Vp), as illustrated in Fige
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In this study, Vt, Vc and Vp for each tree were computed using thedfiginee
polynomial(Schopferl966)as presented below:
A E E E E E @
rae T g TWE T E T E

T

6 + A\E (3)

6 +AAE [ T E ¥ E [ 7TE E
4
[ TE E [ ¥E E \E

wherer  parameters to be estimated;=dstem diametefcm) at the ith positiongbh =
diameter (cm) at breakeight (1.30 m); h = total height (m);#hheight (m)at the ith
position; and = " /40,000 is an adjustment factor to estimate volume3asant
Thepolynomial models were adjusted for classes of dbh, and the coefficients of the
model s are the companiesd intellectual pr op:¢
however, the classes of diameter, Rtiand standard error of the estimate (S§ken n
%) for the polynomial models used in this study are presented in Zable
The total of Vt, Vc and Vp of all individuals were summed at-fdgel and scaled to a
hectare. The summary of volumes if-ha *for each class of stand ages is presented in

Table2.2. SEE (%) is the standard error of the estimate, expressed as a percentage.

2.2.3 Lidar Data Acquisition and Data Processing

Lidar data were obtained by a Harrier 68i sensor (Trimble, Sunnyvale, CA, USA)
mounted on a CESSNA 206 aircraft. The characteristics of the lidar data acquisition are
listed in Table2.3. Lidar data pocessing consisted of several steps that ingestediérne |
point cloud data and provided two major outputs: the digital terrain model (DTM), and the
lidar-derived canopy structure metrics. All lidar processing was performed using
FUSION/LDV 3.42 softwar€US Forest ServigaVashington, DC, USAMcGauchey
2015)
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The original point cloud data we@rausf i | t er e
1998)and a 1 m resolution DTM was generated from the points classified as ground.
Subsequently, the height of the returns was computed by subtracting theoaleV e
DTM from each return. Once the heights were normalized, the metrics shown ir2:Bable
were computed at plot and stand levels, at a grid cell resolution of 25 m, using all lidar

returns.

2.2 4. Predictor Variables Selection

In order to derived@urate estimates of stem volumes from lidar, it is essential to select
the most significant lidar metrics (predictor variables) for modeling within a parsimonious
statistical model framework. Because the number of candidate lidar metrics can be very
large(e.g., 30 metrics), in our study we selected the best lidar metrics for modeling stem
volumes based on two steps. First, even though highly correlated variables will not cause
multi-c ol | i near ity i ssues r)iwasusedtpiddatdgaghlys onds corr
correlated predictor variables% 0.9) as presented in previous studies (elgdak et al.,
2012; Silva et al., 2@). If a given group (2 or more) of lidar metrics were highly correlated,
we retained only one metric by excluding the otherswieae most highly correlated with
the remaining metrics. Second, we identified the most important metrics based on the Model
Improvement Ratio (MIR), a standardized measure of variable importiaaaas et al.,
2009; Evans et al., 201QYIR scores are demed by dividing raw variable important scores
(output from RF models) by the maximum variable importance score, so that MIR values
range from 0 to 1. MIR scores allow for variable importance comparisons among different
RF models. We ran the RF routine ¢page randomForedtiaw 2015 in R(R Core Team
2015 1000 times to compute MIR. In each MIR iteration, we bootstrapped the data by
randomly selecting a sample of 50 plots with replacement. RF requires two parameters to be
set: (i) mtry, the number of predictor variables performing the data partitioniagtanede
which in this study was defined by the number of highly uncorrelated preliminary set of
lidar metrics and (ii) ntree, the total number of trees to be grown in the model run which was
set to 1000 (e.gBright et al., 2013 Running 1000 iterationsf RF produced consistent

MIR distributions and avoided unnecessary processing(Bmeht et al., 2018 To create
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parsimonious models, we reserved the metrics for final RF models that exhibited the highest

mean MIR values.

2.2.5. Random Forest Modeledelopment

The three stem volumes (Vt, Vc and Vp) of interest were predicted at the plot and stand
levels using also the RF packa@eaw 2015 in R (R Core Tean2015. The number of RF
trees to grow was set to 1000, and the number of predictor varigofesung the data
partitioning at each node was set to equal the number of best lidar metrics selected by MIR
on Section 2.4Liaw 2015) The accuracy of estimates for each model was evaluated in
terms of AdjR?, Root Mean Square Error (RMSE), and Biasticabsolute and relative) by

the linear relationship between predicted (output from RF) and observed stem volumes:

2-3% EA ®» W r (2.5)

"EAO EA g

W W (2.6)
wheren is the number of plotg; is the observed value for plgtandw is the predicted
value for ploti. Moreover, relative RMSE (%) and biases (%) were calculated by dividing
the absolute values (Equatichs and2.6) by the mean of the observed stem volume. Based
on earlierexperiences and recommendations from literature, we defined acceptable model
accuracy as a relative RMSE and Bias of <15%.

For validation purposes, RF models were embedded in a bootstrap with 500 iterations.
In each bootstrap iteration, we drew 50 timethweplacement from the 50 available
samples. In this procedure, on average 44% of the total of sample (~22 samples) are not
drawn. These samples were subsequently used as holdout samples for an independent
validation (e.g.L.opatinet al., 201% In eachbootstrap iteration, AdR?, absolute and
relative RMSE and Bias were computed based on the linear relationship between observed
and predicted volumes using the holdout samples. We used alsiddoKolmogorov
Smirnov (KS) in RR Core Teamand a statiscal equivalence tegRobinson et al., 2005)

to compare the fieldand lidarbased stem volume estimates in each iteration.
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2.2.6. Predictive Stem Volume Maps

Predictive maps of stem volumes at 25 m of spatial resolution were generated based on
the RF maels containing the best lidar metrics according to MIR analysis. Because we have
a large number of stands in this study, stem volumes predictions at the stand level were then
presented herein by stand agesid, & 7 and 79 years. Additionally, maps ebefficient
of variation (CV, given in %) values for the stem volume predictions (as obtained from the
500 bootstrap runs) was also produced for each stagdlLopatin et al., 2016 Figure2.3
provides an overview of the study methodology.

2.3 Results

2.3.1. Predictor Variable Selection

A total of 25 of the 32 lidar metrics showed a very strong correlatiord(9). We
retained one of the highly correlated metrics (H99TH), which along with seven other
remaining metrics not extremely highly correlated®( 0. 9) wer e included
analysis (Tabl.5). Lidarmetrics that were retained after correlatioalgsis included
HMIN, HCV, HIQ, HSKEW, HKUR, H99TH and COV. Among these, H99TH and
HSKEW exhibited the highest mean MIR values (Tab6 and therefore, were used for
model development. Although HCV also showed high mean MIR values, its inclusion in the
models did not significantly improve model performance.

2.3.2. Model Performances

The H99TH and HSKEW that exhibited high MIR values explained more than 80%
variations of the stem volumes in Vt, Vc and Vp components with relative RMSE and Bias
lessthan1® and 1T 0. 10 %, r2&)sTiheenedatives valliey in Biaks andidate
that the models are slightly underestimating the stem volumes. Predicted stem volumes at
plot level did not differ significantly to the observed stem volumes by the KS and
equivaknce testsptvalues > 0.05). Figur2.4 shows the distribution of observed and stem
volumes and a good agreement can be observed.

The performance of RF model to predict Vt, Vc and Vp was also summarized in terms
of Adj.R?, RMSE and Bias for all 500 bootstrap runs (T&b8). Observed and predicted
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stem volumes in each bootstrap iteration did not differ significantly by the statistical KS and
equivalence tespfvalues > 0.05) as well. Overall, all models using H99TH aS&EW
performed very well, with relative RMSE and Bias <15% in the bootstrap procedure. The
observed and the average of the predicted stem volumes from the 500 bootstrap runs were
also compared and according to the KS and equivalence tests those vahesldfdr

significantly p-values > 0.05) too (Figui25).

2.3.3. Prediction Maps

Box plots of predicted stem values of Vt, Vc and VPofaedaat the stand level are
shown in Figur&.5. On average, naturally predicted stem volumes tended to bedbwer
young age (Figur.6a) and higher at advanced age stands (Fig®®. Herein, because it
is not convenient to show all the maps for the 50 stands, Figuresnd2.8 is showing as
an example the predicted map of stem volumes and CV (%) with seatdition of 25 m

for only three stands, but with ages ranging from three to nine years old.

24. Discussion

Detailed information on stem total and assortments volumes is required in industrial
forest plantations to achieve production efficiency. Retance, incomplete or inaccurate
forest information adds to the expense and challenge of forest operationddegainen
et al., 2019 Moreover, improving forest plantation productivity and efficiency are
important for reducing harvest pressure otura forests. To achieve efficiency gains in
operational forest management, a wide range of forest inventory attributes are required to be
measured accurately at high spatial resolution and landscape to regional (&xbemiset
al., 2016) More detailed inventory information can allow forest owners to make better
decisions concerning the timing of timber sales, and allow forest companies to optimize
their wood supply chain from forest to factgankare et al., 2014)n this study, we
present a framework for predicting and mapping total, commercial and pulpwood volumes
in industrialP. taedaforest plantations using airborne lidar data and RF. While there have

been previous studies exploring the use of lidar anebapametric machine leang
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algorithm for forest inventory modeling (e.§hmed et al., 2015; Zhao et al., 2011;
Mascaro et al., 2014; Garcia et al., 2015; Hudak et al.,)28@6tudies yet have
demonstrated the potential of lidar and RF combined for predicting and mapping
commercial and pulpwood volumes in industrial pine forest plantations.

Stem total and assortment volumes are directly related to the supply of fiber to pulp and
paper companies. Herein, the accuracy of lidar for retrieving Vt, Vc and Vp using RF
models waglearly demonstrated through achieving a relative RMSE and Bias less than
<15% both for modeling and for validation. As we are predicting forest attributes at a
homogenous and single layered forest structure, our measures of precision and accuracy
were sinilar to or higher than those who used lidar data for predicting stem volume through
a RF framework in other forest typ@sorhonenet al., 2008Peuhkurineret al., 2008;
Holopaineret al., 2010Hayashiet al., 2013 Among prior studies, RF has generally
showed better performance compared to other statistical approaches, such as multiple linear
regression, boosting trees regression and support vector regigssiare et al., 2013;

Wu et al., 2015Shataeeat al., 2011)Lidar-derived stem total andwdog volumes and

their estimation accuracies have previously been reported at the forest stand level (e.g.,
Korhonenet al., 2008Peuhkurineret al., 2008Holmgrenet al., 2012Hawbakeret al.,

2010. For instance, in Eastern Finland in a typical Bhréouthern boreal managed forest
area, two studies used lidar data for estimating spspiesfic diameter distributions and
saw log volumegKorhonenet al., 2008 Peuhkurineret al., 2008) Two years later, in
Southern Wisconsin, USA, lidar data wesed for predicting not only saw log volume, but
also pulpwood voluméHawbakerat al., 55) the models produce®f of ~0.65 for

estimating both saw log and pulpwood volumes. While those authors have showed the great
potential of lidar in retrievingssortment volumes, this specific application is still relatively
novel and further studies, such as presented herein, still need to be carried out.

In this study, we showed that lidar measurements could be used as input data to predict
and map stem totaind assortment volumes through a RF framework. High levels of
accuracy were found when predicting Vt, Vc and Vp volumes across variable stand ages of
P. taedausing only H99TH and HSKEW as predictor variables. Lidarved H99TH
represents the top of tlwkanopy (height at 99th percentile) and HSKEW is a measure of the
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asymmetry of height distribution, which is associated with the age of the stands because
older trees are taller and cause a nmagativelyskewed distribution. Skewness and height
percentilevariables are logical selections for distinguishing between different volume levels
based on distributional shapes and height freque(iéas Aardtet al., 2006)In particular,
these variables can explain changes in the volume distribi8itva et al, 2016) thus
providing a solid justification for inclusion in the predictive model. Our results suggest that
models based on variables describing the height of the canopy and the symmetry of the
distribution of the returns are capable of predicting steaal aind assortment volumes across
different tree ages in industrill taedaforest plantations. Height percentile lidar metrics,
such as H99TH, and height distributional metrics, such as HSKEW, have been shown to be
powerful metrics for modeling and piieting forest attributes (e.g\Neesseet al., 2007;
Silva et al., 2013, Hudak et al., 203)7

A disadvantage of using the RF framework presented here is that RF models do not
extrapolate predictions beyond the trained data, and consequently, as foumd &éduee
the variance compared to the observations (Figixe However, an important advantage of
nonparametric approaches, such as RF, is that they can modih@an complex
relationships between the dependent and the independent variabledfitierglg than
parametric approachéslascaro et al., 2014Furthermore, RF is insensitive to data skew,
robust to a high number of variable inputs, and its implementation does not require pre
stratification by forest typéBreiman2001; Mascaro et al2014; Silva et al., 20bj. From
an overall statistical perspective, the predicted and observed volumes were equivalent,
although our RF model validations showed a systematic tendency to overestimate small
values and underestimate high values. The saméowad in previous studies (e.dLopatin
et al., 2015 According to one stud{Ota et al., 2014)a possible cause might be that
because the RF model estimates values by averaging the predictions of many decision trees,
it might tend to underestimate whthe predicted value is close to the maximum value of
the training data. Similarly, when the estimated value is close to the minimum value of
training data it might tend to overestimate. Other possible causes might be that we have a

relatively small numbeof field plots, especially in the young and older stands.
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Traditional forest inventory approaches are not effective in terms of costing and
mobility especially inP. taedaforest plantations, where there is a need to monitor annual
forest growth and pragties are very large. Lidar remote sensing constitutes an important
step towards operational wood procurement planning and is of high current interest to
forestry organizations. Such technology is of great interest owing to their spatial sampling
capabilties within plantations, and have had great reliability in forest inventory work in
countries such as Norway, Canada, or the USA (dagssell997;NeesseR002; Hudak et
al., 2006;Coopset al., 200). Moreover, the application of airborne lidar technology for
Brazilian industrial management is relatively new. While some studies have showed that the
cost of the forest inventory derived from lidar could be lower than conventional forest
inventory(Tilleyet al., 2004Hummelet al., 2011)the cost of lidar data acquisition could
still be high to monitor forest growth annually; however, lidar has the ability to provide
wall-to-wall, accurate mapping of forest attributes at high spatial resolutionsHigugres
2.7 and2.8).

Traditional forest inventory approaches are based on sampling theory, and forest
attributes measured at plot level are then used to infer inventory attributes for an entire stand
(Silva et al., 2014)We showed here that lidar aR& machine learning combined can be a
powerful tool for mapping forest attributesin taedaforest plantations. In practice, lidar
derived maps of stem total and assortment volumes (Figutesmd2.8) allow the owners
to evaluate the production anddst structure variability within stands in a spatially explicit
manner, which is not possible in a traditional forest inventoB. t¢deda Also, such maps
may allow managers to detect spatial patterns related to tree diseases, fire or forest clearing.

Recently, a study carried out Eucalyptusspp. forest plantations showed that lidar and
RF could be combined to predict and map aboveground carbon at high spatial resolution (5
m), even if the models are calibrated using field plots with area largerthaelt size used
for mapping(Silva et al., 201@). Therefore, future studies should be also test the ability of
lidar and RF to map stem total and assortment volumes even at higher spatial resolution than
presented in this study (e.g., Figure®and 82). Herein, we demonstrated the potential of
combined lidarderive metrics and RF to predict forest attributes through apidabased

approach framework, however, to get even higher amount of det&lsaedaforest
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plantations, RF could be alsotied in a lidatindividual tree based approach. For instance,

RF has been successfully used to impute individual tree height and volume in longleaf pine
(Pinus palustrigMill.) forest in Southern USASilva et al., 2016)therefore, lidar and RF

could be ao used to predict stem total and assortment volumes at an individual tree level in

P. taedaforest plantations, if carefully implemented.

2.5. Conclusions

Refining strategies for improving productivity of forest plantations requires accurate
and detailed spatial information on forest structure and growing stock volume. In this study,
we showed that airborne lidar data metrics can predict total, commertiptowood
volumes in &. taedaforest plantation in Brazil. We found that different stem volumes can
be estimated with high levels of accuracy from two hderived variables describing the
height and the shape of the vertical distribution of the heidid use of a model based on
two variables suggests a higher generalization potential than models based on specific
metrics that could result in owéitting. However, this potential should be tested in other
plantations and forested environments. AltHoagborne lidar data has not been adopted by
paper companies operationally, our results show that the method used could be readily

applied to suppotthe supply chain of pulp and paper companies in Brazil or elsewhere.
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Table 21. Statistics of the taper models.

. o, _SEE (%)
DBH (cm) Range Adj. R doh  Volume
0.0/117.9 0.96 9.58 11.55
18.0129.9 0.98 7.99 9.33
30.0°70.0 0.98 7.52 8.21

Table 22. Summary of stem volumes computed in the 50 field sample plots.

Stem Total and Assortment Volumes (fiha' )
Ages (1)

Vit Vc Vp N
3

O | 56.25+10.98 47.53+12.15 45.67 +11.14 19
5 O | 134.20 £30.77 124.67+30.3 114.20 +£23.41 22

O | 169.50+22.86 160.2 +22.20 129.50 + 24.83 13

nz*

113.70 + 52.53 103:86%

S 52 99 92.13+42.11 Total =50

N = number of plots.

Table 23. Airborne lidar system characteristics.

Parameter Value

Scan angle (°) +/ 130A
Footprint (m) 0.33m
Flight speed (km/h) 234.0 km/h
Horizontal accuracy 10 cm
Elevation accuracy 15cm
Operating altitude 666.17 m
Scan frequency 300 kHz

Pulse density 4 pulse rh 2

66



Table 2.4. Lidar -derived canopy height metrics considered as candidate variables for predictive V models .

67

Variable Description

HMIN Height Minimum

HMAX Height Maximum

HMEAN Height Mean

HMAD Height median absolute deviation
HSD Height standard deviation
HSKEW Height skewness

HKURT Height kurtosis

HCV Height coefficient of variation
HIQ Height interquartile range
HMODE Height mode

HO1TH Height 1th percentile

HOS5TH Height 5th percentile

H10TH Height 10th percentile
H15TH Height 15th percentile
H20TH Height 20th percentile
H25TH Height 25th percentile
H30TH Height 30th percentile
H35TH Height 35th percentile
H40TH Height 40th percentile
H45TH Height 45th percentile
H50TH Height 50th percentile
H55TH Height 55thpercentile

H60TH Height 60th percentile
H65TH Height 65th percentile
H70TH Height 70th percentile
H75TH Height 75th percentile
H80TH Height 80th percentile
HI90TH Height 90th percentile
H95TH Height 95th percentile
H99TH Height 99th percentile

CR Canopy Rel i Ratio ((HMEANM
cov Canopy Cover (Percentage of first return above 1.30 m)
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Table25./ 1 EUUOO0z UwEOUUI OEUPOOUWEOOOT wOPEEUwWOI UUDEUwWUI O EUI ES

r HMIN HCV HIQ HSKEW HKUR H99TH COV
HCV 1T0. 4

HIQ 0.14 T0.09

HSKEW 1 0. 3 083** 1T 0. 3¢

HKUR 0.27 T 0. 810.07 T0. 82

HI99TH 039** 10.80061* 10. 81 0.77**

CoVv 0.23 1 0. 740.12 T 0. 67 0.53** 0.58**

A**pwal ue < Opv@&0O e K*paalue & Q.05)ftheceis no *;p-value>
0.05.

Table 26. Mean of the model improvement ratio (MIR) among the remained-diddaved metrics not highly correlated.
The bold represents the highest MIR value

Lidar-Derived Metrics

Atributes —J\INT HCV HIO  HSKEW HKUR H99TH COV
Vit 0.16 040 018 0.75 031 099 012
Ve 015 039 017 0.77 030 099  0.10
Vp 0.16 065 020 0.74 038 098 011

Table 2.7. Model accuracies per stemvolume type. The average and standard deviation of Adj. R2, RMSE
and bias derived from the 500 bootstrap runs are displayed.

o RMSE Bias
Volume Adj. R mé-ha 1 % B.ha 1 %
Vit 0.94+0.02 12.02+278 980+218 10.58 10.45
Ve 095+0.02 11.67+276 1031+276 10. 95 T10. 82
Vp 091+0.04 11.83+256 1210+257 1 0. 49 10.54

Table 28. Model accuracies of random forest (RF) models per stem volume in terms of Adj.R2, Root MaanESour
(RMSE) and bias calculated by the relationship between predicted and observed stem volumes.

Lidar Derived R RMSE Bias
Volume Metrics Adj. R m3-ha 1 % m3-ha 1 %
Vit 0.97 8.91 783 1 0. 110.
\V/e H99TH + HSKEW 0.98 8.00 7.71 10.12 10.12

Vp 0.96 7.96 8.63 10.22 10.24
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Study Area : Pinus taeda plantation
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Figure 2.1. Location of study area in Telémaco Borba, Parana, Brazil. The black dots indicate the locatidtirafehe
taeda stands.
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Figure 2.2. Process oforest volume measurement. (A) Pinus plantation; (B) Timber harvester and (C) Log segmentation
for classes of volume measurements.
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Figure 2.3. Procedure for predicting stem total and assortment volumes in an industriale®otastl plantation using
airborne laser scanning data and random forest.
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Figure 24. Distribution of observed (black line) and predicted (red line) stem volume from RF. The gray histagrams
based from field data. (A) Taktvolume (Vt) (B) Commercial volume (Vc) and (C) Pulpwood volume (Vp).
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Figure 2.6. Predicted Vt, Vc and Vp of P. taeda at stdemH for the studied stands. (A) 8 years; (B) 57 years and (C)
7i 9 years. The thick line in the box indicates the median value of the predicted stem volume. Boxes extend from the 25th to
the 75th percentile, whiskers extend 1.5 times the length of thrquaitile range above and below the 75th and 25th
percentiles. The white dot is the mean of the predicted stem volume, and the vertical red lines represent the standard
deviation around the mean (Mean + SD).
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Figure 2.7. Predicted Vt (A1C1), Vc (A2 C2) and Vp (A3C3) of P. taedaatthe standlevel obtained from the RF
models. Representative stand of early (i.E5 Bears) (A13), intermediate (i.e.,i¥ years) (B13) and advancedtages of
development (i.e.,i® years)C1i 3).
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Figure 2.8. Coefficient of variation (CV) maps in percentage (%) of Vti(81), Vc (A2 C2) and Vp (ABC3) of P. taeda
atthestandlevel obtained from the 500 RF bootstrapped runs. Representative stand of eaBliy5(iyears) (A13),
intermediate (i.e.,’% years) (B13) and advanced stages of development (ii®. yéars) (CL3).
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Chapter 3. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and

Changes in a Selectively Logged Tropicatorest

Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Klauberg, C.; Garcia, M.; Ferraz, A.; Keller, M.;
Eitel, J.; Saatchi, S. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks

and Changes in a Selectively Logged Tropical Forest. Remoten§e2317, 9, 1068.

Abstract

Airborne lidar is a technology wedluited for mapping many forest attributes, including
aboveground biomass (AGB) stocks and changes in selective logging in tropical forests.
However, tradeoffs still exist between lidar pulse density aaturacyof AGB estimates.

We assessed the impacts of lidar pulse density on the estimation of AGB stocks and changes
using airborne lidar and field plot data in a selectively logged tropical forest located near
Paragominas, Para, Brazil. Figldrived AGB was computed 85 square 50 x 50 m plots

in 2014. Lidar data were acquired in 2012 and 2014, and for each dataset the pulse density
was subsampled from its original density of 13.8 and 37.5 paisé® lower densities of

12, 10, 8, 6, 4, 2, 0.8, 0.6, 0.4 and 0.2 mitsk 2 For each pulse density dataset, a pewer

law model was developed to estimate AGB stocks from-liéaived mean height and
corresponding changes between the years 2012 and 2014. We found that AGB change
estimates at the plot level were only slighaffected by pulse density. However, at the
landscape level we observed differences in estimated AGB change of >B8 Mghen

pulse density decreased from 12 to 0.2 putses The effects of pulse density were more
pronounced in areas of steep slopegesly when the digital terrain models (DTMs) used

in the lidar derived forest height were created from reduced pulse density data. In particular,
when the DTM from high pulse density in 2014 was used to derive the forest height from
both years, the efféx on forest height and the estimated AGB stock and changes did not
exceed 20 Mdd ! The results suggest that AGB change can be monitored in selective
logging in tropical forests with reasonable accuracy and low cost with low pulse density

lidar surveysf a baseline higlgquality DTM is available from at least one lidar survey. We
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recommend the results of this study to be considered in developing projects and national

level MRV systems for REDD+ emission reduction programs for tropical forests.

Keywords lidar; humid tropical forest; biomass change; pulse density; MRV

3.1lIntroduction

The Amazon is the largest remaining tropical forest in the world, however, its original
extent has been steadily reduced due to deforestation and forest degradation, although
deforestation rates in Brazil have decreased by 70% sincg(2@84eret al., 20.3; Neptad
et al., 2014 In recent decades, selective logging of valuable tree species has been an
important land use of tropical forest in the Brazilian Ama@datricardi et al., 2010; Vidal
et al., 2016)Selective logging timber extraction removesydhke most valuable tree
species from the fore@itlanseret al., 2013. It contributes substantially to gross carbon
fluxes from the Brazilian Amazon and in other tropical regions as(#sfier et al., 2005)
Selective logging has continued apace withrddgtion from forest fires and forest
fragmentation, and may also degrade the Amazon forest through long term changes in
structure, loss of forest carbon and species dive(isitygo et al., 2016)Characterizing the
spatial distribution of forest structyraboveground biomass (AGB), and AGB changes are
important prerequisites for understanding carbon cycle dynamics and for monitoring the
impact of selective logging in tropical forests over ti@@ O | i ,2@32. Aceurate,
landscapevide estimates of AGB stocks and changes from selective logging in tropical
forest are also desired for ongoing climate mitigation efforts to Reduce Emissions from
Deforestation and Forest Degradation (REDD+) and for Measuring, RepbXerification
(MRV) systemdqdo Ol i ,2@2; Arglersen et al., 2014

Airborne lidar is a technology wedluited to measure forest structure and estimate AGB
stocks and changes in tropical forests (Agdersen et al., 2014; Asner et al., 2014; Brak
et al., 2002a; Drake et al., 2002b; Dubayah et al., 2010; Meyer et al), RPRIES can
provide high resolution, thre#imensional information on forest structure and the
underlying topograph{Silva et al., 2016)Recentlyd 6 Ol ietwvak(2062randAndersen

et al.(2019 have used airborne lidar for detecting selective logging activities and mapping
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AGB stocks and changes in the Brazilian Amazon forest. To monitor selective logging
impacts on forest structure and AGB changes over large areas,|enidiap data
acquisitions must be acquired that increase the cost of data collection and processing over
time. Many factors influence the cost of lidar data, including variables such as project size,
location and deliverables, as well as market variables) as competition amongst lidar
vendors. A major variable that affects the cost of acquisition of lidar data is the pulse density
(Magnusson et al., 2007)efined as the number of pulses emitted by the sensor’per m
(pulses-m?) (Evans et al., 2009). As pulse density increases, so does acquisition cost, due to
the direct link between pulse density, aircraft altitude and flight (lmkubowsket al.,
2013;Le Quéréet al., 2015

While airborne lidar can facilitate timely andcairate estimates of forest structure in
tropical forest, tradeffs still exist between lidar pulse density and accuracy. For instance, it
is unclear how much the lidar pulse density can be reduced and still maintain an adequate
level of accuracy for AGBhange estimation in tropical forests. Leitold eatl5and Ota
et al.2015have carried out studies to examine the relationship between lidar pulse density
and AGB stock estimation accuracy in tropical forests. Even though they found that AGB
can be acurately estimated from lidar using lepulse density, neither of these authors
assessed the impact of pulse density on estimating and mapping AGB stocks and AGB
change at landscape level, and in the context of selectively logged tropical forest. Here, we
focus on the impacts of pulse density in estimating AGB change in tropical forests and
provide recommendations for specification of lidar data acquisitions for forest monitoring,
REDD+ projects and MRV systems. We work with data collected in an eastectivady/
logged Amazonian forest and lidar data with high pulse density acquired in 2012 and 2014.
The study quantifies how reduced pulse density reduces the accuracy of AGB stock and
AGB change estimation at plot and landscape levels. We evaluate adsasadyon lidar
data acquired over dense tropical forests with variations of terrain characteristics and
topography. The results of our study are then discussed in the context of implementation of
airborne lidar systems in monitoring forest AGB changdrieDD+ and emission reduction

programs.
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3.2 Material and Methods
3.2.1. Study Area

The study was conducted at the Fazenda Cauaxi in the Paragominas Municipality of
Para State, Brazil, in the eastern Amazon (Fi§ute The climate of the Cauaxi region is
typically humid, with an average annual temperature of abof€28d an average annual
precipitation of 2200 mm, which primarily falls between the months of January and June
(Alvares et al., 2013)The forest is gdominantly classified as tropical dense moist forest
(IBGE, 2004). The terrain ranges from flat to steep slopes and the soils within the region are
classified predominately as dystrophic yellow latosols following the Brazilian classification
system(RadanBrazil 1983) The study area is divided into 12 logging units, where ten of
them have been logged through the reduoguhct logging (RIL) since 2007 and the
remaining two are still unlogged (FiguBeld).

3.2.2. Field Data Collection

A total of 22 field transects of 20 x 500 m were stratified randomly across the study
area in 2012, and 88 plots of 50 x 50 m (0.25 ha) were spaced at 100 m intervals along the
transects in 2014. In the field, plot corners were registered using difféxeNtEZs
(GeoXH6000, Trimble Navigation, LtdQayton, OH, USA. At each plot, a sublot (strip)
along one side of the plot with dimensions of 5 x 50 m (250aas also demarcated.
Because three of the plots were not covered by the lidar data, we s8kgiets for further
anal ysi s. For each plot, all |l iving trees wi
identified by parataxonomists familiar with the flora of the region and their dbh measured.
Inthesubp | ot s, al |l tr ees easired.DbhdvasmedBurdad@t18m wer e
above ground or above buttresses. A total of 1757 living trees were measured. The AGB

(kg) of each tree was estimated using the Chave 2@BfiEquation 8.1).

" "EC QonpRmnomdoyx o Wsox lpl” ¢ xIoIAAE

o (3.1)
8t ¢ ol dA A E
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where AGB (kg) is the live tree aboveground biomass in Kg; dbh is the diameter at breast height
(2.30 m); z is the wood density and E is a measure of environmental stress. In this study area
locatonE=1 0. 103815.

The total live aboveground biomass (AGB) of the plots anepsatis was obtained by
aggregating the individual tree biomass values and converting to MgTha summary of
the dbh and AGB measurements in 2014 at the sample plots is preserdbteBl.

3.2.3. Lidar Data Acquisition and Processing

Airborne lidar data were collected as part of Sustainable Landscapes Brazil, a joint
project of the Brazilian Corporation of Agricultural Research Corporation (EMBRAPA) and
the United StateBorestService. The first lidar acquisition occurred in July of 2012 with a
pulse density of 13.8 pulses 4ywith the second lidar collection in December of 2014 with a
pulse density of 37.5 pulses-mThe total area covered by the lidar survey for the
multitemporal analysis was 1200 ha. The data attributes of the lidar sensor and flight

characteristics are listed in Talde.

The lidar data processing can be summarized in three steps:

() Lidar datathinning Lidar data from both 2012 and 2014 were thinned from the original
pulse density of 13.8 and 37.5 puls€$-to lower densities of 12, 10, 8, 6, 4, 2, 0.8,
0.6, 0.4 and 0.2 pulses'fAn example of the pulse density reduction is shown in
Figure3.2. The reduction of pulse density was executed using the algorithm
implemented in the ThinData utility of the FUSION tooltMcGauchey 2015)The
algorithm first identifies all the returns that belong to a pulse, and randomly reduces the
number of pulseantil achieving the desired pulse density within a certain grid cell size
(e.g., in this case 50 m). To evaluate the uncertainty in the thinning process, we
generated 30 random replicates for each lidar dataset and target density.

(i) Digital terrain modelsand lidar data above ground height normalizati@round
returns were classified using the Progressive Triangulated Irregular Network (TIN)
densification algorithnimplemented in lasgroundisenburg 2016fsettings: step is 10 m,
bulge is 0.5 m, spike isrh, offset is 0.05 mand 1 m DTMs were created for each of
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the reduced pulse density datasets using the blast2dem utility in Lastools [25].
Afterwards, the lidar datasets were normalized to height aboveground by subtraction of
the DTM elevation from th& coordinate of each return projected above the ground. In
particular, the impacts of pulse density were assessed under two DTM scenarios. First,
under the DTM scenario DS1, where the lidar datasets from both 2012 and 2014 were
height normalized using tH&TMs created from their respective thinned dataset.

Second, under the DTM scenario DS2, where to simulate the impact of pulse density on
subsequent acquisition, the DTMs generated at the highest pulse density (37.5
pulse-m?) from 2014 were used to normmeithe lidar datasets from both 2012 and

2014.

Lidar-derived Mean Height (HMEAN)n this study, HMEAN, the mean height of all
returns above 1.3 m in height, was computed at plot and landscape levels. Herein, even
though the plot corners were geolocatethwlifferential GNSS to within < 1 m in most
cases (Longo et al., 2016), we chose to optimize plot location to reflect canopy
conditions. It is common to find trees with crown diameters larger than 30 m in the
study area. When large tree stems are founsiade of a plot, substantial proportions of
their crowns may fall inside a plot thereby influencing lidar metrics such as HMEAN.

To avoid these effects, we iteratively shifted each plot within a 25 m square
neighbourhood on the lidar canopy height mo@#i1) for improved ceregistration,

and consequently to achieve a better correlation between AGB and HMEAN. After this
procedure, we observed that the plot centers were moved an averagg8aohi8d +

6.32 m)from the initial plot locations. Finally, at the landscape level, HMEAN was

computed in grids with a cell size of 50 m x 50 m.

3.2.4. Aboveground Biomass Change Estimation and Mapping

For both DTM scenarios described in Section 2.3, we useaudffienction in R(R Core

Team 2016)o calibrate the relationship between plot level AGB measurements and lidar

derived HMEAN. Nonlinear leastsquares regression models (the pelaar models) were

used to model AGB across 30 replicates of each reduced demygty in 2014, and used to
predict and map AGB stocks in 2012'( " ) and 2014!( ' " ) at plot and landscape
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levels. The AGB changé/® "06 ) estimation was then computed as the difference

in AGB prediction from 2012 to 2014.

P Gz (- %! . (3.2)
I Gz (- % . (3.3)
Y8 "08 I I (34)

where andf are the esti mat es dawmadelaimp®ider s o f
Leaveoneout crossvalidation (LOOCV) was developed (e.§ilva et al., 201} and the
prediction precision of the LOOCV models was evaluated in terms of the coefficient of
determination (B, absolute and relative Root Mean Square Error (RMSE), and absolute

and relative bias from the linear relationship between observed and LOOCYV predicted AGB
values:

B ®
2- 3% - (35)

"EAé o @ (36)

wheren is the number of plotso is the observed value for plgtandw is the predicted

value for ploti. Moreover, relative RMSE and bias were calculated by dividing absolute

RMSE and bias (Equatior¥ss and3.6) by observed AGB mean. In order to have prediction

accuracy equal to or higher than a conventional forest inventory in tropical forest, we

defined accepted model accuracy as relative
At the landscape level, maps representing thamand standard deviation of AGB

stocks and AGB changes from the 30 replications were calculated and used as final

estimates to assess the impact of pulse density. The mean of AGB stocks in 2012 and 2014

and AGB changes from the final maps were compusgdlbws:
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0 "00 g P (3.7
0 "00 g P (3.8)
V6 "06 g V6 "06 39
whered "08 ,6 "06 andYd "06 are the mean estimated AGB stock in 2012
and 2014 and mean estimated AGB change, respectively: ! " " and
Y6 "06 arethe predicted AGB stocks in 2012 and 2014 and their changes at the

pixel k, respectively.

An uncertainty analysis of the "'O0 and0 "O0 at landscape level for each pulse
density target and DTM scenario was also performed by integrating the pixel level errors
and accounting for spatial autocorrelation of the errors as fo(lelvRobets 2006;

Weisbinet al., 2014Garciaet al., 201Y:

p € r AS p D)
r_ V! I_ ” " Q ” ” 3 '10
” 3 wé Pp 3 C (3.10)

where, is the variance of the estimator for the mean AGB stock for the entire study
areamis the number of pixels in the arg#¢l) is the spatial autocorrelation function of the
distanced, based on an exponential sevariogram model; angl is the estimated standard

error of AGB stock values at theh pixel.

The variance of the estinma of the meany  at landscape level was computed as:

"y . . 6 & ®O5 M0Os 8 (3.11)
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where the variances ( and, ) were computed as described in Equation

(3.10) and thesrosstime covariance of the AGB was computed according to McRoberts et
al., (2014)

O& D06 D OB ai . ) ; , (3.12)

3.2.5. Assessing Effects of Pulse DensityLathar-Derived Mean Canopy Height

As the HMEAN values vary from one replication to another for a given plot and target
density, we calculated the mean and standard deviation of HMEAN at the plot level across
the 30 repetitions. The impacts of pulse densityAHMEAN at plot level was then evaluated
by the reliability ratio, which is the ratio of the variance of HMEAN among sample plots, to
the total variance of the HMEAN across 30 repetitions (Fuller, 1987):

2 Al EAO\AEOZEEIOHW (3.13)

where"Y is the estimated amongot variance of HMEAN andY is the estimated average
within-plot variance. Reliability ratio ranges from 0 (no reliability) to 1 (complete
reliability), and large replication variance makes HMEAN a low reliabiligdprtor of

AGB.

3.2.6. Assessing Impacts of Pulse Density on the Aboveground Biomass Stocks and Change
Estimation at the Plot and Landscape Levels

The impacts of the lidar pulse density on AGB stocks and AGB change estimations
were assessed at the plotdeby comparing the Rrelative and absolute RMSE and bias
across pulse densities and DTM scenarios. Boxplots were created to compare the variability
of LOOCV AGB stock estimates, RMSE and bias at plot level. Because we built a model for
each repeated thset and target density, we also calculated the mean and standard deviation

ofthe®y and®  model parameters. The tveided KolmogorosSmirnov (KS)(R
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Core Team 201Ggst was used to test if the distributions of the HMEAN, observed and
LOOCYV AGB stock estimates in 2014 differed significantly, with significance level of 0.05,
across pulse densities and DTM scenarios. Moreover, besides the maps of AGB stock and
changes, we created a map of the slope over the study area, and the impacts of the lidar
pulse density on AGB stocks and change estimations were evaluated by the difference on
the AGB estimates from 12 pulse$ato lower pulse densities, in each DTM scenario and
across slope gradients of 0 to 12%; 12 to 24% and 24 to 35%. An overview of the
methodology is outlined in Figue3.

3.3 Results

3.3.1. Impacts of Lidar Pulse Density on Mean Canopy Height (HMEAN)

The impacts of the pulse density on the lidar derived HMEAN at plot level are shown
in Figure3.4. The mean of HMEAN among plots slightly varied from 20.47 (£2.89) to 20.93
(x2.93) m and 20.32 (¥2.90) to 20.33 (£2.91) m for DS1 and DS2 in 2012, and from 20.77
(x2.77) t0 20.92 (¥2.87) m and 20.77 (£2.74) to 20.78 (x2.75) m for DS1 and DS2 in 2014,
respetively. In 2014 the HMEAN variation amorgots was slightly higher than 2012,
however, HMEAN was not significantly affected by pulse density and DTM scenario in
both years (VlBe>0D5) Figwailal,d2)). The variability of HMEAN
represented by the standard deviation (Figdidg(b1,b2)) within plots for the 30 replications
was larger at lower than at higher pulse densities for both DTM scenarios and years.
Reduced pulse density resulted in a decreased reliability ratio (RR); how&vsti)l
showed higrstability of HMEAN across DTM scenarios and years with RR values higher
than 0.96 (Figur84 (c1,c2)).

3.3.2. Effects of Lidar Pulse Density on AGB Modelling

The parameter® andw  of the models adjusted in 2014 to predict AGB from
lidar-derived HMEAN for 2014 across scenarios and pulse densities are presented in Table
3. Reduced pulse density resulted in increased variation of these parameter values in both
scenarios, where DS2 shied less variation then DS1. For DS1 the mean of model
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parametersd) and® showed significant dviaflfueerse n(c e0s. 0(1
at pulse densities rangirfiggm 0.2 to 4 pulses-Mcompared to the value at 12 puls€'s:m
for DS2, signifcant differences from 12 pulsesff KS: D p-Galués < 8.802) were
found only at pulse densities ranging from 0.2 to 2 pulseBoth parameter®  and
@ showed significant pdviaflfueerse n(t e0s. 0(0K2S: amr O ul
ranging from 0.2 to 2 pulse-riwhen compared at the same pulse density, but across
scenarios.
Theperformance of the models to estimate AGB stock in 2014 was further assessed
by leaveoneout crossvalidation.The HMEAN was an important lidar metric to eaipl
AGB stock variation. Reduced pulse density resulted in decregdsatiRicreased relative
and absolute RMSE and bias for both DTM scenarios, particularly for DS1 (Bigjre
Mean R values ranged from 0.60 (+0.09) to 0.73 (+0.00) and 0.71 (+0.@RY80(+0.00)
across pulse densities in DS1 and DS2, respectively, and showed significant differences
(KS: Dp®abuB870 0.034) at pul se dé&@amslirdami es r at
0.2 to 2 pulse-frf compared to the results at 12 pulsé€imDS1 and DS2, respectively
(Figure 5a). Mean relative RMSE values ranged from 18.81 (+0.06) to 22.80 (+0.270) % and
18.81 (+0.06) to 19.50 (x0.69) %, across pulse densities in DS1 and DS2, respectively, and
al so showed signi f i .87aprvaluedd<iOfo35kat palsedensitiey K S : D ¢
ranging from 0.2 to 6 pulse’mand from 0.2 to 2 pulsercompared to the value at 12
pulses-m?in DS1 and DS2, respectively (Figu8&(b1)). Bias was less affected by pulse
density in DS2 than in DS1 (Figurécd)). While mean bias across pulse densities ranged
from 170.48 (N0O.38) to 10.04 (NO.O1) % in DS:
0.57,p-values < 0.001) at pulse densities ranging from 0.2 to 2 puiéeempared to at 12
pulses-m?, mean bia remained constant around 0.04% in DS2, and showed significant
di ffer encesp\vallesSx<0.006) @ly 8t puls8 densities ranging from 0.2 to 0.6

pulse-m?2 when compared to 12 pulses$m
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3.3.3. Impacts of Lidar Pulse Density on AGB Stockd AGB Change Estimation at the
Plot and Landscape Levels
The AGB stocks estimates from the leares-out crossvalidation at plot level are
presented in Figur@.6. In 2012, mean predicted AGB ranged from 226.81 (x76.29) to
230.35 (+75.98) Mg-Ha and from 226.51 (+75.78) to 227.02 (+74.46) M¢*esross pulse
densities for DS1 and DS2, respect pvaed y, an
O 0.03) were found at pul se 'foomparedtitees r angi |
value atl2 pulses-m? but only in DS1. In 2014, mean predicted AGB ranged from 237.83
(£74.37) to 238.89 (+70.21) Mg-haand 273.83 (£74.28) to 273.84 (x73.43) Mg*ha
across pulse densities for DS1 and DS2, res|
0,pvalue O 0.015) were found only at'?pul se
compared to the value at 12 pulsés#but only in DS1 as well (Figui@6(al,a2)).
The esti mated AGB change among pliots rani
andf om 1T 159. 79 {lacrotshpllse dedsitidddor ISa and DS2, respectively.
The estimated mean AGB change among plots only ranged from 7.05 (x42.20) to 7.50
(+60.20) Mg-ha! and 10.83 (+41.42) to 11.01 (+38.68) Md-hacross pulse densities for
DSI and DS2, respectively, angvaligesfOcanoi4?
were found at pulse densities ranging from 0.2 to 0.8 puls@ma from 0.2 to 0.6
pulse-m “compared to 12 pulses'rfin DS1 and DS2, respectively. The reduced pulse
density increased the variance of the AGB estimates within plots across the 30 replicates,
and showed signi f i c a rpialudsi<f.004)ringhe standard( K S : D O
deviation of AGB stocks and changes, from 0.2 to 0.8 pulsé&ompared to the value at 12
pulses-r 2 DS2 shows slightly less variation than DS1, but after pulse density reaches
values higher than 0.8 pulses-&rboth scenarios show very low and not significant
differences in standard deviation of AGB stocks anchgha within plots across replicates.
Landscapeavide AGB stock and change estimations were mapped at a 50 m x 50 m
grid cell size based on the mean of the 30 replicated AGB maps derived in 2012 and 2014,
and their AGB changes (Figuras1i 3.S3). Reduced pse densities and DTM scenarios
did not affect mean predicted AGB at landscape level, and showed no statistically
significant di f fpealue»n®k08)sThg AGB stock3 at @nd8cap@ Rvel in
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2012 and 2014 ranged from 43.90 to 811.33 Md-had from 42.42 to 853.00 Mg-Ha
respectively, while predicted AGB'mP®nges r :
at 12 pulses-h?(Figure3.74 c). The estimated mean AGB change for the entire study area

ranged from 15.88 (+33.09) to 19.69 (+37.K)-hd ! and 22.58 (+37.22) to 23.26 (+38.25)

Mg-hd ! across pulse densities for DS1 and DS2, respectively. Fgiog show the AGB

changes in an unlogged and logged unit at 0.2 and 12 puls@s D51 while Figure3.7e,f

show the AGB changes in thensa logged units and pulse density, but in DS2. The

estimated mean AGB stocks and AGB changes and their uncertainties across pulse density

and DTM scenarios are presented in Table

Landscapeavide standard deviation of estimated AGB change was also thappes0
m x 50 mgrid cell resolution (Figur8.8c,d and Figur&8.S4); reduced pulse density
increased variation in estimated AGB change within replicates, and showed large standard
deviation of AGB at 0.2 pulses!®) for both DS1 and DS2 (FiguBs8(c1,d1)). In general,
the standard deviation of estimated AGB change was higher in DS1 than DS2. Landscape
wide elevation and slope were also mapped (Fig@®,b), and for both DS1 and DS2 the
large variability in AGB change occurred in high slope greseching up to 33 Mg-hain
areas with slopes ranging from 24 to 36% (Fighi8¢cl)).

Estimated AGB change at landscape level at pulse densities ranging from 0.2 to 10
pulses-m? were compared with those estimates at 12 pulsescross slopes and DTM
scenarios (Figurd.9a c). In general, when compared with the AGB change estimates from
12 pulses-m? reduced pulse density underestimated AGB change at landscape level in
areas with slopes higher than 12% ,pnd showe
value > 0.001) at pulse densities ranging from 0.2 to 0.8 pulsésut only for DS1 at
slopes of 1P24% (Figure3.9b) and 2435% (Figure3.9c). At slopes of 012% (Figure
3.9a), reduced pulse density increased the difference in AGB change whenexbmijia
those estimates at 12 pulse$imboth DS1 and DS2, but their differences were no higher
than 20 Mg-ha(Figure3.9a).
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3.4. Discussion

This research assessed the impact of lidar pulse density on AGB stocks and changes
estimations in an Amazon tropical forest. Previous studies have evaluated the impact of lidar
pulse density on forest attribute estimation from lidar data (dagnseret d., 2015;
Magnussenet al., 2010Strunket al., 2012, yet few studies have evaluated the impacts of
lidar pulse density on forest AGB stock estimates in tropical fQre#tbld et al., 2015; Ota
et al., 2015; Singh et al., 20159)o our knowledge, this the first study to assess the impact
of airborne lidar pulse density on AGB stocks and AGB change estimations in tropical
forest, and in the context of using an airborne lidar system in selective logging for
monitoring forest AGB change for REDD+ anahigsion reduction programs.

Many lidarderived metrics have been used for modelling forest attribeigs
NeesseR001;NaesseR002;Naesseet al., 2008; Hudak et al., 201dy Ol i et al.j 2012;
Silva et al., 2014; Silva et al., 201)7blansen et gl(2015)evaluated the effects of lidar
pulse density on DTM and canopy structure metrics in a trofuicedt andshowed also that
HMEAN was one of the most stable predictor variables for modelling forest attributes using
airborne lidar data. In our studynder both DTM scenarios, reduced pulse density did not
significantly affect the variability of HMEAN among plots. Magnusson e{(2010)
recommended a calibration of lidar models when the reliability ratio (RR) of one or more
predictors is below 0.9n our study, even though reduced pulse density increased the
standard deviation of HMEAN within plots, the RR of HMEAN across all pulse densities
and both DTM scenarios remained very high (RR > 0.9). Therefore, further calibration of
models was not necesy. This is not surprising given that HMEAN, unlike other metrics
such as the top mean canopy height (MCH), considers all returns above a certain height
threshold (e.g., 1.37 m) to compute a vertical mean height, and therefore uses more
information to desribe the canopy structure. Unlike MCH, HMEAN is computed directly
from the point cloud, and does not have any influence of CHM interpolation methods or grid
cell size. Garcia et al2017)assessed the impact of lidar point density on the prediction of
AGB across different forestcosystems anfdund that predictions were more affected when
using CHMderived metrics then those computed directly from the 3D point cloud, even if

the point density was as low as 1 painit? Herein, we simulated low pulse density lidar
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datasets by removing pulses randomly, however, other approaches of removing lidar pulses
have also been found in the literat@dagnussoret al., 2007;Jakubowsket al., 2013Le
Quéréet al., 2015 eitold et al., 2015Magnusseret al., 2010Tesfamichaeét al., 2010)
and may lead to different outcomes when considering the covarying effect of pulse density
when survey parameters are changed. Nevertheless, our results on HMEAN variation
patterns agree with@revious studyHanseret al., 201%, and independent of the approach
used, a realistic thinning approach on real lidar data is always extremely chall@royiek)
et al., 2005

In addition to the high stability, HMEAN correlated well with AGB, andoi¢ained
linear relationships between observed and predicted AGB via LOOCYV that explained at
least 40% of the variation at the lowest pulse density (0.2 puls§smbS1, for example.
For comparison purposes, thé\Rlues were substantially greater tlaajusted R= 0.43
obtained by Leitold et gl(2015)using a regression model for predicting AGB stocks in the
Brazilian Atlantic forest, but(E2and | ar t o
Andersen et al(2014)using lidar for detecting amguantifying AGB changes in selective
logging in western Amazonia, respectively. Herein, a substantial decreasarid Rcrease
in RMSE and bias occurred when the pulse density was reduced from 12 pufeputse
densities lower than 2 pulses-fFor instance, AGB models under DS1 were much more
affected at pul s éMagrrssaniettal?0d®and/Zatt et a)(2814)m L m
mixed conifer forests also evaluated the effect of lidar pulse density on the prediction
accuracy of forest atbiutes under DS1 and DS2, and found increased RMSE at relatively
low pulse densities. However, similar to findings by those authors, our predictions were
more affected in DS1 than DS2. Nevertheless, in both scenarios, AGB stocks were
underestimated. An undestimation of AGB stock with reduced pulse density was also
found in Leitold et aJ.(2015) but as AGB stocks at low pulse densities were estimated from
a single model adjusted at high pulse density, the author attributed the underestimation to a
systemd#c error in the DTM propagated to the canopy. Herein, the underestimation in AGB
stock in DS1 is attributed to the deterioration of the DTM and HMEAN quality due to
combined random effects derived from pulse density reduction, while in DS2, the

underestimtion in AGB stock is only attributed to the poor HMEAN quality. Moreover, as

t
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we kept a constant interpolation method and grid size for DTM modeling in DS1 and DS2 as
in Magnusson et al(2010 and Watt et a).(2010, the pulse density is the only factor
affecting the DTM and HMEAN quality. Therefore, the differencesinRMSE and bias
between DS1 and DS2 were only attributable to the deteriorating DTM and HMEAN
quality.

In this study, we mapped AGB change at the landscape level at a spatial resdlution
50 m. Therefore, unlike most previous studies (élgnsen et al., 201B5)agnusseret al.,
2010;Strunket al., 2012, we not only evaluated the impact of pulse density on AGB stocks
estimation at plot the level, but also at the landscape scale.s&mdetral.(2014)used
repeated lidar flights to monitor selective logging in western Amazonia, and AGB stock and
changes maps were accurately derived from lidar data acquired in 2010 and 2011 with pulse
densities of 25 pulses'mand 14 pulses-h? respetively. In the study, the authors found
that multitemporal lidar data can be used to detect and quantify AGB changes due to
selective logging activities, even when the level of AGB change is |0i2QLBIg-ha 3.
While the pulse density was appropriatetfee study, they are not economically feasible for
large-area acquisitions and for monitoring selective logging over time. Hansen(20ab)
suggest that canopy metrics derived from sparse pulse density ALS data can be used for
AGB estimation in a trpical forest; however, the authors either estimated AGB or expanded
the analysis to landscape level in their studies. Wilkes,éP@ll5)found that structural
metrics (canopy height, canopy cover and vertical canopy structure) derived from pulse
densites < 0.5 pulses-hfreturned larger differences, particularly for tropical forest. Herein,
while our uncertainty analysis showed that reduced pulse density did not affect the accuracy
of mean estimated AGB change at the landscape level in both DTM seenadiaced pulse
density did significantly affect the standard deviation of estimated AGB change at the local
scale, especially in areas of steeflepes. However, this effect was only observed for the
DS1 scenari o at pul' $\ariation in AGBtestimates iDcredsedwitp u | s e s
decreasing pulse density; this is illustrated by mapped standard deviation at landscape level
(Figure3.8).

From a carbon monitoring perspective, our results show that it is not necessary to

acquire lidar data witpulse density higher than 0.2 pulses4or mapping AGB stocks
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and AGB change in selective logging areas in the Amazonia when a DTM is already
available from previously flown high pulse density airborne lidar. In cases where no such
DTM already exists, ur results suggest that a lidar data acquisition with a minimum pulse
density of 2 pulses-hfis necessary. Furthermore, we have demonstrated that it is possible
to capture AGB stocks and AGB change variability at the stand level even in steep terrain
with low pulse density lidar under DS2 and with pulse density equal to or higher than 2
pulses-m %n DS1. Despite the change in AGB stocks, seledtigging can also
substantially alter forest structure and affect tree survival, growth, and recruitmefdrates
up to a decade poekarvestShenkinet al., 2015)In this study, we did not evaluate the
impact of pulse density for detecting forest impacts associated with selective logging, nor
the combined effect of pulse density and plot size on AGB changeaéenh. Thereforewe
suggest caution when acquiring new lidar datasets, because the accuracy of the AGB change
estimates in selective logging areas may depend also on other factors, such as plot and grid
cell sizes for sampling and mapping, which wereevaluated in this study. In some small,
randomly distributed areas, AGB change was
Mg-ha?), which is not biologically possible in only two years. These overestimates could
result from subtracting AGB stocks predicted from models calibrated with only 2014 data,
and may not have resulted had independent AGB models been calibrated with data from
both years (e.gHudaket al., 2012)Also, these overestimates could be attributable to small
co-registration errors (<0.5 pixel) between the two lidar surveys, but this would lead to a
comparable number of randomly distributed underestimates. In supitianynlikely that
these errors would alter the sensitivity analysis to pulse density.

Although a quantitative evaluation of lidar data acquisition cost was not a central
objective in this study, it is nonetheless an important factor to consider bé&czarsbe a
primary factor driving choices made about forest and AGB monitoring across a wide range
of spatial scales. Because pulse density has a strong influence on the acquisition cost of lidar
data, and even though the cost for using lidar with higbwe pulse density for AGB in
tropical forest might be lower than the cost of a conventional inve(itanynmelet al.,
2015, airborne lidar can be cost prohibitive for forest carbon monitoring, in selected logged

areas for REDD+ at large spatial exteAtshough fieldbased AGB estimations remain
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necessary for these purposes, integrating lidar remote sensing into AGB inventory schemes
allows recovery of carbon content and spatiabplicit estimates across landscapes, while

reducing the total costs anéed for extensive fieldased sampling.

3.5. Conclusions

We evaluated the impacts of airborne lidar pulse density on AGB stocks and AGB
change estimation in a selectively logged Amazon tropical forest. First, we confirmed that
HMEAN is a stabldidar-derived metric for estimating AGB stock in selective logging.
Second, we found that the accuracy of AGB stocks and AGB change estimates decreased as
the pulse density decreased, but it remained relatively high except at low pulse densities of
0.8 and0.2 pulses-it for the DS1 and DS2 scenarios, respectively. Furthermore, AGB
stocks estimations at the landscape level were strongly underestimated at pulse densities
lower than 0.8 pulses’rhin areas with steep slopes, but only in DS1, where the lidar
datasets from both 2012 and 2014 were height normalized using the DTMs created from
their respective thinned dataset. Therefore, these results demonstrate that high lidar pulse
density is not necessary to estimate and map AGB stock and changes in delggitiegin
tropical forest, especially when there is already an accurate DTM derived from high pulse
density lidar. Third, we showed that low pulse density lidar data (~2 pulsehas the
ability to map ground topography, allowing accurate estimati@abpy height even over
rough terrain and as a baseline for subsequent low density lidar acquisition for AGB change
studies. Lower point densities can cover larger areas at reasonable cost and be used to
complement satellite remote sensing measuremegtsN#SARY National Aeronautics
and Space Administratieimdian Space Research Organization Synthetic Aperture Radar
(http://nisar.jpl.nasa.gov) and GED Global Ecosystem Dynamics Investigation
(http://science.nasa.gov/missions/gedi/), that may have tionigin estimating tree height
in areas with complex topography. Finally, although we focus on AGB stocks and AGB
change estimation in a selectively logged tropical moist forest in Brazil, our methodology
may also be applicable for inventorying and mamig AGB changes to support REDD+

monitoring efforts in selective logging elsewhere across the tropics.
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Table 31. Summary of the AGB stocks at the sample plots.
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Field _

_ min  max mean sd
Attributes
dbh (cm) 10.00 186.00 32.70 20.16

AGB (kg-treél) 22.46 73700 1804 3684
AGB (Mg-hd?) 65.34 525.79 238.11 86.48

Table 32. Details of lidar data acquisitions.

Data Attributes 2012 2014

Lidar system ALTM 3100 ALTM300

Flight Altitude (m) 850 850

Acquisition Date 27129 July2012 26i 27 December 201
Scan Angle (°) 11 12

Scanning Frequency (Kz; H: 59.8 83.0

Pulse Density (pulses’r) 13.8 37.5

Datum Sirgas 2000 Sirgas 2000
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Table 34. Mean and standard deviation (Sd) of the parameters a and b for the AGB models in 2014. DS1: DTM Scenario
1; DS2: DTM Scenario 2. Std Error is the estimated standard error derived from the uncertainty analysis.

Pulse AGB 2012 (Mg-hd?1) AGB 2014 (Mg-hd?) YA¢ Mg-ha'?)
Density
(pulse Mean + Sd Std Mean + Sd Std Mean + Sd Std
‘mi2) Error Error Error
DTM Scenario 1 (DS1)
0.2 262.54 + 7893 1.12 278.42 + 84.7 1.19 15.88 £33.0S 2.64
0.4 266.56 + 87.63  1.23 284.49 + 94.59 1.31 17.93+36.04 2.80
0.6 267.46 + 89.5 1.25 286.00 + 96.9 1.33 18.54 £ 36.61 2.80
0.8 268.18 + 90.7 1.27 287.08 + 98.39 1.35 18.9+37.03 2.82
2 268.88 +92.26  1.29 288.41+100.53 1.37 19.53+37.712.84
4 268.96 +92.61 1.29 288.66 + 100.98 1.37 19.69 +37.86 2.84
6 269.03 192.79 1.29 288.74 +101.17 138 19.7+37.92 2.85
8 269.11 +92.85 1.29 288.70 £101.16 1.38 19.59 +37.96 2.88
10 269.26 +93.01 1.29 288.70 £101.21  1.38 19.44 +38.08 2.93
12 269.45+93.17 1.30 288.73+101.28 1.38 19.28 +38.22 2.97
DTM Scenario 2 (DS2)
0.2 268.09 +90.32 1.26 291.3 +99.16 1.35 2258 +37.22 2.41
0.4 268.43+91.41 1.28 291.90 +100.42 1.37 22.84+37.612.44
0.6 268.54 + 91.8 1.28 292.14 +100.91 137 22.97+37.8 2.44
0.8 268.87 +92.25 1.29 29259 +101.43 1.38 23.08+37.98 2.45
2 269.07 +92.77  1.29 292.92 +102.08 1.38 23.21+38.22 2.47
4 269.05+92.81 1.29 292.95+102.13 1.38 23.25+38.22 2.47
6 269.12 +92.92 1.29 293.02 +102.25 1.38 23.26 +38.252.48
8 269.18 +92.96 1.29 292.98 +102.21 1.38 23.16 +38.29 2.49
10 269.31 +93.1 1.30 292.98 +102.25 1.38 23.04+38.4 252

12 269.48 +93.23  1.30 292.99+102.29 138 22.89 * 38.52 2.56
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Figure 3.2. A 3D illustration of airborne lidar pulsgensity reduction at the plot level (0.25 ha) in 2014.
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Figure 3.3. Flowchart of the lidar data processing for AGB stocks and AGB change estimation in tropical forest. The
green panel to the left shows the lidar data processing (a) and the gray panel to the right shows the AGB stocks and change
estimation steps (b).
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change maps derived at 0.2 and 12 pulseimDS1 (d,e) and DS2 (f,g) in an unlogged and logged unit. The maps were
calculatedas the mean of the 30 replicates.



107

9587000
9587000

9586000

9585000

SD of AGB Change (Mg.ha)

g .
g :
8
— 2
8
E; g
w 3
|= 8
£
8
5
&
2
E é 779000 780000 781000
=
=2

9586000
958640

9586000

9585000

9585600

_ =" RIL 2012
- -5 .

\Yplgesed

9584000

9585200

778500 779000 779500 780000 778500 779000 779500 780000

UTM Easting (m)

9583000
o

T T
778500 779500 780500

Figure 3.8. Digital terrain model (a) and Slope (%) (b) maps of the study area at 12 plifses2@12; Standard deviation
of AGB change at 0.2 pulses-hior DS1 (6 c1) and DS2 (dd1).

81 mno° 81 o 1 -
! ad T 40
] J4 [ [ T
Ear: : LT 7 ool r T T To-qo i b T
o ] P s : H [
(1] 1 | m -
£ § BB eE e= e BY oE e= ) .| -1 —f FH B2 ==
=y . T 1 e 4 B ! [ - 0 o ook
=24 P ! | | L4+ ™ | +
— + o4 [ o R [ o 4 (- o+
UUJ) o 1‘ i F‘P :* .
- 1.
%mg T T ' =) T T T I ! T T T T
5 8 10 3 6 8 10 g I [ 6 8 10
. ! ‘
m o o o
Q TT g S 0 T ' ! i
%o B o= = A |
L ] N T I
5 To =t I I = ; :
@ j L ! [ 2 Lo
§"-’- : ‘N m " R !
‘
5 ! =4 B B f " B L s -
e H | ' o [ H [
5} 1 R R S o
52 : Pl b : & TTe oo,
: I H
Porrob il of B B B BB o o= ot 55
H o ool ! i N
g | Pl
w | @ DSt ®m Ds? * Dol L
T T T T T T T T T T T T T T T T T T T T T T T T T T T
02 04 06 08 2 4 6 & 10 02 04 06 08 2 4 & 8 10 02 04 08 08 2 4 [ ] 10

Pulse density (Pulse,m’z)

Figure 3.9. Boxplot of the differences in predicted AGB change at stand level of 4degraded to 0.2, 0.4, 0.6, 0.8, 2, 4,
6, 8 and 10 pulses’min areas with slopes ranging from 0 to 12% (a),24®6 (b) and 2436% (c), undeDS1 (orange)
and DS2 (dark green).



108

Figure S3.1. Mean of the 30 replicatesGB stocksin 2012at pulse density ranging from 0.2 to 12 puls&in DS1 (al
j1) and DS2 (a32).
























































































































