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Abstract 

 

Accurate and spatially explicit measurements of forest attributes are critical for 

sustainable forest management and for ecological and environmental protection. Airborne 

Light Detection and Ranging (lidar) systems have become the dominant remote sensing 

technique for forest inventory, mainly because this technology can quickly provide highly 

accurate and spatially detailed information about forest attributes across entire landscapes. 

This dissertation is focused on developing and assessing novel and advanced methods for 

three dimensional (3-D) forest characterization. Specifically, I map canopy structural 

attributes of individual trees, as well as forests at the plot and landscape levels in both natural 

and industrial plantation forests using lidar remote sensing data. 

Chapter 1 develops a novel framework to automatically detect individual trees and 

evaluates the efficacy of k-nearest neighbor (k-NN) imputation models for estimating tree 

attributes in longleaf pine (Pinus palustris Mill.) forests. Although basal area estimation 

accuracy was poor because of the longleaf pine growth habit, individual tree locations, height 

and volume were estimated with high accuracy, especially in low-canopy-cover conditions. 

The root mean square distance (RMSD) for tree-level height, basal area, and volume were 

2.96%, 58.62%, and 8.19%, respectively. 

Chapter 2 presents a methodology for predicting stem total and assortment volumes in 

industrial loblolly pine (Pinus taeda L.) forest plantations using lidar data as inputs to 

random forest models. When compared to reference forest inventory data, the accuracy of 

plot-level forest total and assortment volumes was high; the root mean square error (RMSE) 

of total, commercial and pulp volume estimates were 7.83%, 7.71% and 8.63%, respectively. 

Chapter 3 evaluates the impacts of airborne lidar pulse density on estimating 

aboveground biomass (AGB) stocks and changes in a selectively logged tropical forest. 

Estimates of AGB change at the plot level were only slightly affected by pulse density. 

However, at the landscape level we observed differences in estimated AGB change of >20 

Mg·ha−1 when pulse density decreased from 12 to 0.2 pulses·m−2. The effects of pulse 

density were more pronounced in areas of steep slope, but when the DTM from high pulse 
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density in 2014 was used to derive the forest height from both years, the effects on forest 

height and subsequent AGB stocks and change estimates did not exceed 20 Mg·ha−1. 

Chapter 4 presents a comparison of airborne small-footprint (SF) and large-footprint 

(LF) lidar retrievals of ground elevation, vegetation height and biomass across a successional 

tropical forest gradient in central Gabon. The comparison of the two sensors shows that LF 

lidar waveforms are equivalent to simulated waveforms from SF lidar for retrieving ground 

elevation (RMSE=0.5 m, bias=0.29 m) and maximum forest height (RMSE=2.99 m; 

bias=0.24 m). Comparison of gridded LF lidar height with ground plots showed that an 

unbiased estimate of aboveground biomass at 1-ha can be achieved with a sufficient number 

of large footprints (> 3). 

Lastly, Appendix A presents an open source R package for airborne lidar 

visualization and processing for forestry applications. 
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Introduction to the Dissertation 

 

Accurate and spatially explicit measurement of forest structural attributes are 

required in other to effectively protect, monitor and manage forest ecosystems. Field 

measurements are considered the most accurate approach for measuring forest attributes, 

however, measuring forest structural attributes in either natural or plantation forests in the 

field is an extremely time consuming and labor-intensive task, especially in large or remote 

areas where access is limited, and a huge number of field plots are needed to characterize the 

forest variation.  

Remote sensing technologies have been widely utilized to characterize forest 

structure at both local and global scales. For instance, in the past two decades, lidar (light 

detection and ranging) remote sensing has emerged as a technology well-suited to providing 

accurate estimates of forest attributes including height, volume, basal area and biomass both 

in natural and industrial plantation forest ecosystems (e.g., Næsset 1997; Drake et al. 2002; 

Lefsky et al., 2002; Hudak et al. 2006, Silva et al. 2014). However, even though lidar can 

quickly provide forest attributes across extensive landscapes, it is still mostly used for 

research purposes, mainly due to the high cost of data acquision and lack of optimized and 

accessible tools and methods for processing and modeling lidar data for forestry 

applications. Moreover, accurate prediction of forest attributes from lidar is highly 

dependent on methods. For instance, when lidar data and statistical models are not well 

implemented, inappropriate models are created, and forest attributes are estimated with high 

uncertainty levels, which consequently leads to serious problems for forest managers.  This 

can create management uncertainty especially in industrial forest plantations where forest 

structural attributes are typically inventoried annually to support forest management 

decisions relating to silvicultural treatments, harvest planning, growing stock estimation and 

sustainability. Therefore, to overcome these limitations and make lidar technology 

practicable, operational and accessible to managers and researchers, both in governmental 

and no-governmental agencies, further development of novel, efficient and optimized 

methods for lidar data processing and modeling for forest applications are still required.  

This is particularly true in developing nations such as Brazil, where applications of lidar are 

in the early stages. 
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Enhanced understanding of forest structure via lidar remote sensing can be gained 

through improved tools and optimized frameworks. The research presented in this 

dissertation is therefore focused upon further development of strategies to promote 

conservation and sustainable management of natural and indisutral plantation forests. 

Specifically, the main goal of this dissertation is to develop and assess novel and advanced 

methods for 3-D forest characterization, and to map forest attributes at individual tree, plot 

and landscape levels from lidar remote sensing data. The dissertation, divided into six 

sections and an appendix, presents four specific case studies (Chapters 1-4) of lidar 

applications. Specifically, the first and last sections are the Introduction and Conclusion of 

the dissertation while Chapters 1-4 represent the main body of the dissertation. Chapters 1-4 

use several lidar datasets, coupled with individual tree and plot level spatially explicit 

datasets, to demonstrate the usefulness of lidar remote sensing for effictively predicting and 

mapping forest attributes in natural and industrial plantation forests located across large 

spatial extents.  

Chapter 1 develops and evaluates a novel framework to automatically detect 

individual trees and estimate tree attributes, such as tree height, diameter at breast height and 

volume in longleaf pine (Pinus palustris Mill.) forests using lidar and k-nearest neighbor (k-

NN) imputation. Longleaf pine forests are fire-dependent, and accurate characterization of 

the forest at the individual-tree level not only enhances conventional and lidar area-based 

forest inventory, but also extends its applications into disciplines where greater detail is 

valued, such as in fire behavior and ecology. The data used in this chapter was provided by 

the Joseph W. Jones Ecological Research Center in southwestern Georgia, USA. 

Chapter 2 presents a methodology for predicting stem total and assortment volumes 

in loblolly pine (Pinus taeda L.) forest plantations from lidar data using random forest 

models. Although random forest has been used in conjunction with lidar data to estimate 

many stand-level forest attributes, to date their efficacy for predicting assortment volumes in 

industrial forest plantations is largely untested. The methodology and products presented in 

Chapter 2 will be used by forest manangers and will play an important role in helping them 

to increase efficiency in monitoring and managing wood and pulp production in forest 
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plantations. The data used in this chapter were provided by Klabin, a pulp and paper 

company from Brazil.  

Chapter 3 evaluates the impacts of airborne lidar pulse density on estimating 

aboveground biomass (AGB) stocks and changes in a selectively logged tropical forest. 

While airborne lidar can facilitate timely and accurate estimates of forest structure in 

tropical forest, trade-offs still exist between lidar pulse density and accuracy. For instance, it 

is unclear how much the lidar pulse density can be reduced and still maintain an adequate 

level of accuracy for AGB change estimation in tropical forests. The data used in Chapter 3 

were provided by USAID and managed by the US Forest Service and the Brazilian 

Corporation for Agricultural Research (EMBRAPA) under the Sustainable Landscapes 

Brazil program. 

Chapter 4 presents a comparison of airborne small-footprint (SF) and large-footprint 

(LF) lidar retrievals of ground elevation, vegetation height and biomass across a 

successional tropical forest gradient in central Gabon. The lidar data used in Chapter 4 were 

collected as part of the NASA and European Space Agency (ESA) AfriSAR campaign with 

the goal of verifying the performance of future spaceborne lidar (GEDI) and radar sensors 

such as ESA’s BIOMASS mission and NASA-ISRO Synthetic Aperture Radar (NISAR) 

systems for ecosystem studies in quantifying vertical forest structure and AGB. 

In addition to Chapters 1-4, Appendix A of this dissertation presents an open source 

R package (rLiDAR) for reading, processing and visualizing lidar data (Silva et al. 2015).  

Chapters 1-3 were published in scientific journals prior to the preparation of this 

dissertation. Chapter 1 was published by the Canadian Journal of Remote Sensing with Dr. 

Andew Hudak, Dr. Lee Vierling, Dr. Louise Loudermilk, Dr. Joseph J. O'Brien; Dr. Kevin 

Hiers, Dr. Steve Jack; Dr. Carlos Gonzalez-Benecke; Dr. Heezin Lee; Dr.  Michael 

Falkowski and Dr. Anahita Khosravipour as co-authors (Silva et al. 2016). Chapter 2 was 

published by Forests with Dr. Carine Klauberg, Dr. Andew Hudak, Dr. Lee Vierling, Dr. 

Wan Shafrina Wan Mohd Jaafar; Mr. Midhun Mohan, Dr. Mariano Garcia, Dr. Antonio 

Ferraz, Dr. Sassan Saatchi and Dr. Adrian Cardil as co-authors (Silva et al. 2017a). Chapter 

3 was published by Remote Sensing with Dr. Andew Hudak, Dr. Lee Vierling, Dr. Carine 

Klauberg, Dr. Mariano Garcia, Dr. Antornio Ferraz, Dr. Michael Keller, Dr. Jan Eitel and 
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Dr. Sassan Saatchi as co-authors (Silva et al. 2017b). Errors identified in the publication 

proof stage of the above chapters were corrected in this dissertation. Chapter 4 has been 

submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing with Dr. Sassan Saatchi, Dr. Mariano Garcia, Dr. Nicholas Labrière, Dr. Carine 

Klauberg, Dr. Victorya Meyer, Dr. Kathryn Brun-Jeffery; Dr. Katharine Abernethy, Dr. Lee 

White, Dr. Simon Lewis and Dr. Andrew Hudak as co-authors.   
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Chapter 1. Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree 

Attributes from Field and Lidar Data 

 

Silva, C. A.; Hudak, A. T.; Vierling, L. A.; Loudermilk, E. L.; O'Brien, J. J.; Hiers, J. K.; 

Jack, S. B.; Gonzalez-Benecke, C.; Lee, H.; Falkowski, M. J.; Khosravipour, A. Imputation 

of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data. 

Canadian Journal of Remote Sensing. 2016, 42(5): 554-573. 

 

Abstract 

Light Detection and Ranging (lidar) has demonstrated potential for forest inventory 

at the individual-tree level. The aim in this study was to predict individual-tree height (Ht; 

m), basal area (BA; m2), and stem volume (V; m3) attributes, imputing Random Forest k-

nearest neighbor (RF k-NN) and individual-tree-level-based metrics extracted from a lidar-

derived canopy height model (CHM) in a longleaf pine (Pinus palustris Mill.) forest in 

southwestern Georgia, United States. We developed a new framework for modeling tree-

level forest attributes that comprise three steps: (i) individual tree detection, crown 

delineation, and tree-level-based metrics computation from lidar-derived CHM; (ii) 

automatic matching of lidar-derived trees and field-based trees for a regression modeling 

step using a novel algorithm; and (iii) RF k-NN imputation modeling for estimating tree-

level Ht, BA, and V and subsequent summarization of these metrics at the plot and stand 

levels. RMSDs for tree-level Ht, BA, and V were 2.96%, 58.62%, and 8.19%, respectively. 

Although BA estimation accuracy was poor because of the longleaf pine growth habitat, 

individual-tree locations, Ht, and V were estimated with high accuracy, especially in low-

canopy-cover conditions. Future efforts based on the findings could help improve the 

estimation accuracy of individual-tree-level attributes such as BA. 

 

Keywords: rLiDAR, CHM, k-NN imputation, Random Forest, individual tree attributes, 

forest inventory. 
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1.1 Introduction 

Longleaf pine (Pinus palustris Mill.) was once one of the most ecologically 

important tree species in the southern United States (Oswalt et al., 2012). Historically, 

longleaf pine forests spanned an estimated area of 92 million acres (Frost 2006) and were 

among the most extensive ecosystems in North America (Landers et al., 1995). Today, only 

4% of these longleaf pine forests remain (Franklin 2008). 

Fire is one of the dominant forces that shape the longleaf pine landscape (Dobbs 

2011). Longleaf pine is dependent on fire for successful regeneration and for suppressing 

hardwood growth (Loudermilk et al., 2011). However, due to fire suppression, much of the 

remaining longleaf pine forest is in poor or degraded condition. As a result, there has been 

tremendous interest in longleaf pine conservation, management, and restoration (Brockway 

2005). 

Successful management of these forests can have sustainable results, because longleaf 

pines can produce quality wood products when grown in a variety of densities (Franklin 

2008). Accurate measures of forest attributes such as tree density (tree·ha−1), and attributes 

such as height (Ht), basal area (BA), and stem volume (V) that are used at the tree, plot and 

stand levels, are essential to management and conservation practices in longleaf pine 

forests. The most accurate method of estimating these attributes is to physically sample 

them in the field. However, individual tree field measurements over large areas are limited 

by budgets and time, making them impractical. 

Airborne Light Detection and Ranging (lidar) systems have become the dominant 

remote sensing technique for plot- and stand-level forest inventory, mainly because this 

technology can quickly provide highly accurate and spatially detailed information about 

forest attributes across entire forested landscapes (Silva et al., 2014). Increased interest, 

dataset availability, and technological improvements have greatly expanded the use of lidar 

technologies in forestry over the past decade (Saremi et al., 2014; Hudak et al., 2006, 2009, 

2014; Hansen et al., 2015). The use of airborne lidar to retrieve forest attributes at the tree 

level is promising, however, not as widely studied as plot- or stand-level approaches. In a 

tree-level-based modeling approach, individual-tree attributes are usually predicted through 
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three steps: (i) individual tree detection and metrics extraction, (ii) lidar- and field-based 

tree matching, and (iii) modeling and prediction. 

The accurate prediction of tree-level attributes is highly dependent on the methods 

used to detect and extract individual-tree metrics and forest structure as well (Kankare et 

al., 2015). A lidar-derived Canopy Height Model (CHM) can be used for detecting 

individual trees, delineating tree crowns, and subsequently estimating biophysical attributes 

such as biomass and stem volume (Popescu et al., 2003; Popescu, 2007; Falkowski et al., 

2008; Falkowski et al., 2009; Vauhko- nen et al., 2012; Hu et al., 2014; Duncanson et al., 

2014; Duncanson et al., 2015; Kankare et al., 2015). There are a variety of approaches used 

to detect and delineate individual trees from lidar-derived CHMs. These include identifying 

local maxima (Popescu et al., 2003; Weinacker et al., 2004; Falkowski et al., 2008; 

Falkowski et al., 2009) for tree detection, as well as region growth (Hyyppa et al., 2001; 

Solberg et al., 2006; Pang et al., 2008), valley following (Leckie et al., 2003), and 

watershed (Chen et al., 2006; Jing et al., 2012) for tree crown delineation. 

In addition to the individual-tree detection method and forest structure, the accurate 

prediction of forest attributes at the tree level is also highly dependent on the modeling 

technique applied (Vauhkonen et al., 2010). Examples of the existing methods for modeling 

forest attributes at the tree-level from lidar data are both parametric (Chen et al., 2007) and 

nonparametric (Breidenbach et al., 2010; Vauhkonen et al., 2010; Vauhkonen  et al., 2012). 

Saarinen et al., (2014), Vastaranta et al., (2015) and Kankare et al., (2015) have recently 

tested k-nearest neighbor (k- NN) imputation for forest inventory modeling at the tree level. 

In most cases however, k-NN imputation, as a nonparametric method, has commonly been 

used to predict forest inventory attributes at the plot or stand levels (Falkowski et al., 2010; 

Hudak et al., 2014; Racine et al., 2014; McRoberts et al., 2015). For example, Hudak et al., 

(2008) evaluated nine k-NN imputation methods combined with lidar data for imputing 

plot-level BA and tree density (TD) of 11 conifer species occurring in mixed-conifer 

forests of north central Idaho, USA. Racine et al., (2014) used lidar data and k-NN 

imputation to estimate plot age across a managed boreal forest in Quebec, Canada, and 

Fekety et al., (2015) used repeated field and lidar survey data to assess the feasibility of 
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predicting forest inventory attributes across space and time in a conifer forest in northern 

Idaho, USA. 

The aforementioned studies integrated lidar and field data in an area-based k-NN 

imputation to predict forest attributes at the plot or stand levels. However, accurate 

characterization of the forest at the individual-tree level not only enhances conventional 

and lidar area-based forest inventory, but also extends its applications into disciplines where 

greater detail is valued, such as ecology, wildlife habitat, or biodiversity applications 

(Goetz et al., 2007; Hinsley et al., 2002; Vierling et al., 2008). 

Given that only a fraction of the historic longleaf pine forest ecosystem range remains 

today, accurate characterization and spatial distribution of individual trees are critical for 

sustainable forest management and for ecological and environmental protection in longleaf 

pine forests. Our goal in this study was to predict individual-tree-level attributes using k-NN 

imputation and individual-tree lidar-based metrics in a longleaf pine forest in southwestern 

Georgia, in the United States. Our first aim, therefore, was to evaluate the ability of lidar to 

accurately detect individual trees and determine treetop height (HMAX, m) and crown area 

(CA, m2) that are subsequently used for predicting tree attributes. Our second aim was to 

predict individual tree Ht (m), BA (m2), and V (m3) attributes from HMAX and CA metrics 

using k-NN imputation and evaluate its accuracy and precision. This investigation is based 

on the hypothesis that lidar technology and a k-NN imputation modeling approach can 

feasibly provide accurate estimates of these tree attributes in the open canopy structure that is 

typical of healthy longleaf pine forests. 

 

1.2 Material and Methods 

1.2.1 Study area 

The study area for this project is located at Ichauway, an 11,700 ha reserve of the 

Joseph W. Jones Ecological Research Center in southwestern Georgia, USA (Figure 1.1). 

The area is characterized by a humid subtropical climate (Christensen 1981) with a mean 

annual precipitation of 131 cm fairly evenly spread throughout the year. Mean daily 

temperatures range from 21 ◦C to 34 ◦C in the summer and 5 ◦C to 17 ◦C in the winter 

(Loudermilk et al., 2011). Elevation ranges from 6.23 m to 33.66 m, and the soils are 
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characterized as paleudults, kandiudults, and hapludults with some localized 

quartzipsamments (Kirkman et al., 2004). The Ichauway reserve has an extensive tract of 

second- growth longleaf pine managed with low-intensity, dormant- season-prescribed 

fires at a frequency of about 1–3 years since 1945 (Loudermilk et al., 2011). 

In this study, vegetation structure is characterized by an open canopy longleaf pine 

forest (Figure 1.1a, b) and a wiregrass- dominated ground cover maintained under a high-

frequency fire regime (Figure 1.1c). Maintaining a high-frequency fire regime through 

repeated application of prescribed fire is a top management goal at Ichauway, with 

occasional individual-tree selection harvesting for management and research purposes in the 

natural, second-growth longleaf forests (Palik et al. 2003). 

 

1.2.2 Field Data Collection  

The field measurements were carried out from March 2009 to July 2009. A total of 

15 rectangular plots (about 4 ha each) were established in 3 stands: CNT, NE, and NW 

(Figure 1.1d). All plots were georeferenced with a geodetic GPS with differential 

correction capability (Trimble Nomad) with an external Hemisphere Crescent A100 

antenna, and all had a horizontal accuracy of < 0.6 m with differential GPS (DGPS) and < 

2.5 m without DGPS in open canopy, and 1 m–2 m accuracy with DGPS under forest 

canopy. All trees were measured for DBH using calipers (two perpendicular measurements 

at right angles, averaged) or a steel diameter tape, and for Ht using a LaserTech Impulse 

200. We also geolocated (UTM E, N) them using the GPS mentioned, and, from these 

measures, a field-stem map was created. In a few instances, DGPS was not able to resolve 

locations of multiple small trees in areas with high stocking, and tree locations were 

recorded by establishing a known DGPS. 

The outside-bark V (m3) was obtained via a longleaf pine allometric equation 

according to Gonzalez-Benecke et al., (2014) (Equation 1.1). The equation has a 

coefficient of determination (R2) of 0.78 and absolute and relative root mean square error 

(RMSE) of 0.17 m3 and 38.21%, respectively. 

 

ln(V) =−  9.944543 + 3.123691∗ln(Ht).                                (1.1) 
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In addition to V, tree-level BA was also computed. Statistical summaries of the reference 

field measurements and BA and V calculations are presented in Table 1.1 and Table 1.2. 

 

1.2.3 Lidar Data and Pre-processing 

Lidar data were acquired using an Optech GEMINI Air- borne Laser Terrain Mapper 

(ALTM) mounted in a twin-engine Cessna Skymaster (Tail Number N337P). The survey 

was carried out on March 5, 2008. Lidar flight parameters are presented in Table 1.3. 

Lidar preprocessing was performed using US Forest Service FUSION/LDV 3.42 

software (McGaughey 2015) and LAStools (Isenburg 2015). The workflow is graphically 

shown in Figure 1.2a. First, in FUSION/LDV, the quality of the lidar dataset was visually 

evaluated, and a simple report using the Catalog tool was generated. A filtering 

algorithm based on Kraus and Pfeifer (1998) was applied to differentiate between ground 

and nonground returns. Digital Terrain Models (DTMs) were generated using the classified 

ground points with a spatial resolution of 1.0 m, using the GridSurfaceCreate function. 

The CanopyModel tool was then used to interpolate vegetation points and to generate 

Digital Surface Models (DSMs) with a spatial resolution of 0.5 m. Afterward, the ClipData 

tool was applied with the height and dtm switches to normalize heights and to assure that 

the z coordinate for each point corresponded to the height above ground and not the 

orthometric elevation of the single point. The PolyClipData tool was then used to make a 

subset of the lidar points within each of the 15 in situ measured test plots. The cloudMetrics 

tool with a height and cover thresholds of 1.37 m (Nilsson 1996) were used to compute 

the canopy cover (COV,%), within sample plots. COV was calculated as the number of lidar 

first returns above 1.37 m, divided by the total number of first returns. Such lidar-derived 

CHM often contain height irregularities within individual-tree crowns—so-called data 

pits—which reduce accuracy in tree detection and subsequent extraction of biophysical 

parameters (Gaveau and Hill 2003, Shamsoddini et al., 2013). Therefore, the pit-free 

algorithm, developed by Khosravipour et al., (2014) was used to generate a pit-free CHM 

at 0.5-m spatial resolution though a workflow implemented in LAStools (Isenburg 2015). 
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1.2.4 Individual tree detection and HMAX extraction 

Individual tree detection was performed in R (R Development Core Team 2015) 

using the FindTreesCHM function from the rLiDAR package (Silva et al., 2015). The 

FindTreesCHM function uses a local maximum algorithm to search for tree tops in the CHM 

through a moving window with a fixed tree-top window size (TWS; Wulder et al., 2000). To 

achieve optimal tree detection, we tested 3 TWS (3 x 3, 5 x 5, and 7 x 7 pixels) first on an 

unsmoothed CHM, and then on a CHM smoothed by a mean smooth filter with fixed 

smoothing window size (SWS) of 3 x 3 and 5 x 5 pixels. Even when the smoothed 

CHM option was used to find trees, the treetop heights (HMAX) were extracted from the 

unsmoothed CHM. 

A total of 15 test subplots (30 m 30 m) were randomly situated within each of the 15 

plots (1 subplot per plot), and the number of trees detected (NTD) per subplot from lidar 

were manually compared with field-based data and evaluated in terms of true positive (TP, 

correct detection), false negative (FN, omission error) and false positive (FP, commission 

error). The accuracy of the detection was further evaluated for recall (r), precision (p) and F-

score (F) according to Li et al. (2012), using the following equations (Goutte and Gaussier 

2005; Sokolova et al., 2006): 

 

r =
TP

TP+FN
                                                        (1.2) 

 

p =
TP

TP+FP
                                                        (1.3) 

 

F = 2 ∗ 
r∗ p

r+p
                                                     (1.4) 

 

Note that recall is inversely related to omission error and represents the tree detection 

rate. Precision is inversely related to commission error and describes the rate of correct 

detections. F-score is used to represent the harmonic mean of recall and precision, which 

takes both commission and omission errors into consideration. Hence, a higher F-score 

indicates that both commission and omission errors are lower (Li et al., 2012). Recall, 
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precision and F-score ranges from 0 to 1, and the F-score will become higher with higher p 

and r values. 

 

1.2.5 Individual tree crown delineation and crown area computation 

Tree-crown delineation was also performed in R, using the ForestCAS function from 

the rLiDAR package (Silva et al., 2015). Inputs to this process were the smoothed CHM in 

addition to the tree-location output described in the previous steps. The algorithm 

implemented in the ForestCAS function is shown in Figure 1.2c and Figure 1.3, and follows 

the example presented in the figure illustrating 3 hypothetical trees (Figure 1.3a). The 

algorithm starts by applying a variable radius crown buffer (Figure 1.3b) to delimit the initial 

tree crown area. In this study, the variable radius was calculated for each tree by multiplying 

the lidar-derived tree height by 0.6, because preliminary field observation revealed that the 

tree crown radius typically was not larger than 60% of the lidar-derived tree height. After 

determining the merged tree polygon using the first area delimitation (Figure 1.3b), we then 

split the data using the centroidal voronoi tessellation approach (Aurenhammer and Klein 

1999) to isolate each individual-tree polygon (Figure 1.3c, d). After isolating each tree 

polygon, we clipped them from the CHM and excluded the grid cells with values below 30% 

of the HMAX in each specific detected tree (Figure 1.3e) to eliminate the low-lying noise. 

Finally, the tree-crown delineation and crown area (CA, m2) were computed by delimiting 

the boundary of grid cells belonging to each tree (Figure 1.3f). 

 

1.2.6 rSTree: Searching for the lidar and reference trees  

Forest inventory and modeling of individual trees using field and lidar data is a 

highly desirable approach. However, to develop this type of modeling approach, the 

challenge is to match lidar-delimited trees with reference trees measured in the field. In 

many cases, the tree-location reference measured in the field is inaccurate (often due to GPS 

error), complicating the individual-tree-level modeling approach. Instead of manually 

moving reference tree locations to match with the tree locations detected from lidar, we 

developed a novel approach for matching lidar and field trees automatically (Figure 1.4). 

The proposed rSTree algorithm uses the acceptable maximum Euclidian distance (MED) 

and minimum height difference (MHD) computed between lidar and field-based data, in 
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terms of tree location and height, respectively, as the imputed parameters. The algorithm 

processes a single match tree at a time, and it starts with the first detected lidar tree. The 

user-defined MED parameter is then used to buffer a search area for a possible matching 

tree. In this study, we used 10 m, because, given the GPS errors, we are assuming that the 

reference tree is within a radius of 10 m. The field-based trees located inside the search 

area are selected. Trees with height difference (HD) ≤ MHD are then selected for the next 

step as target trees. In this study, we used MHD = 1.5 m, because most of the literature 

for conifer lidar versus field stems have reported a RMSE in height of ~ 1 m (e.g., 

Vastaranta et al. 2014). In an open canopy forest such as longleaf pine presented herein, 

we are assuming that the error in lidar height would not exceed 1.5 m. If more than one 

reference field-based tree has HD ≤ MHD, the trees are ranked by HD and the tree with 

the smallest HD is selected. If 2 or more field-based trees have a perfect match in terms of 

smallest HD and distance to the detected tree, we randomly selected one as the target 

field-based tree to match with the lidar tree. After all interactions, the lidar and reference 

trees are combined, added, and exported as a table for the individual-tree-level attributes 

modeling approach. 

 

 

1.2.7 Imputation modeling development  

In this study, because the height–diameter allometry for longleaf pine breaks down 

after reaching a diameter of ∼25 cm, when height growth asymptotes at ∼25 m (Gonzalez-

Benecke et al., 2014), we believed that a nonparametric modeling technique to predict 

forest attributes at tree level would be more appropriate than a parametric model. Therefore, 

k-NN imputation, a nonparametric technique, was conducted using the yaImpute 

(Crookston and Finley 2008) package in the R statistical software (R Core Team 2015). 

Many imputation methods can be used for associating target and reference observations; 

however, recent studies have shown that the Random Forest (Breiman 2001) approach 

generally produces better results compared to other imputation methods (Hudak et al., 

2008; Nelson et al., 2011; Waske et al., 2012). For this study, we used Random Forest-based 

k-NN (RF k-NN) to characterize the relationships between predictor (HMAX and CA) and 

response (Ht, BA, and V) variables used for imputation. The number of neighbors was set 
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to one (k= 1) to maintain the original variance in the data (Hudak et al., 2008). The dataset 

for the modeling process was randomly split into subsets with 75% for training and 25% for 

testing, and a total of 1,000 regression trees were fitted in the RF k-NN model. 

 

1.2.8 Model assessment  

Accuracy of the imputation model was assessed by calculating the absolute and 

relative root mean square distance (RMSD, RMSD%) and bias (Bias, Bias%) between 

imputations and observations (Stage and Crookston 2007), computed for a single response 

variable as follows: 

RMSD = √∑ (𝐼𝑖−𝑂𝑖)𝑛
𝑖=1

2

𝑛
                           (5) 

Bias =
1

𝑛
∑ (𝐼𝑖 − 𝑂𝑖)

𝑛
𝑖=1                          (6) 

 

where I is the imputed value of a variable, O is the observed value, and n is the 

number of reference observations. The RMSD is analogous to the RMSE used to assess 

regression model accuracy (Stage and Crookston 2007). The relative RMSD and Bias are 

computed by dividing absolute RMSD and Bias by the mean of the variable computed over 

the reference observations and multiplied by 100. We defined acceptable model precision 

and accuracy as a relative RMSD and Bias of 15% to have a model precision and accuracy 

higher than or equal to the conventional forest inventory standard in the longleaf pine. We 

also employed statistical equivalence tests to assess whether the imputed tree attributes are 

statistically similar (i.e., equivalent) to the field-based attributes (Robinson et al., 2005). 

According to Smith et al., (2009), statistical equivalence tests are used to test the null 

hypothesis of “no substantial difference” between 2 sample populations (H0: the sample 

populations are different; H1: the sample populations are equivalent). We employed a 

regression-based equivalence test to test for intercept equality (i.e., the mean of imputed tree 

attribute is equal to the mean of the field-based attribute) and slope equality to 1 (i.e., if the 

pairwise, imputed and observed, attributes are equal, the regression will have a slope of 1). 

A description of equivalence tests can be also found in the “equivalence” package in R 
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(Robinson, 2015), and examples of equivalence plots in lidar studies can be found in 

Falkowski et al., (2008), Smith et al., (2009), Hudak et al., (2012), and Silva et al., (2014). 

 

1.2.9 Stand-level imputation of tree attributes  

According to Falkowski et al., (2008), tree-detection accuracy decreases with 

increasing COV. An adaptive approach using COV as a constraint to select the best 

parameters of TWS and SWS for tree detection was developed in this study. Therefore, we 

tiled the normalized point cloud using a grid-layer of 200 m x 200 m square plots, and for 

each single tile we computed COV, which was calculated by the number of lidar first returns 

above 1.37 m, divided by the total number of first returns. A buffer of 30 m was applied 

over each single square layer to remove the edge effect of the individual tree detection. As 

the parameters of the tree detection at stand level was dependent on the results from the test 

plots, our hypothesis was that small TWS would provide better results in close canopy area, 

and vice versa. In the buffer overlaid areas, after tree detection using the FindTreesCHM 

function from the rLiDAR package (Silva et al., 2015), 1 of 2 trees detected was 

automatically removed to avoid overdetection. Afterward, tree-crown delineation was 

performed across the entire stand, using the ForestCAS function from the rLiDAR package 

(Silva et. Al., 2015). The RF k-NN imputed model based in the test plots was then applied, 

and the tree attributes Ht, BA, and V were estimated for each single tree across all stands. 

 

1.3 Results    

 

1.3.1 Stand-Level Characterization from Field Data and Lidar-Based Plot Metrics 

According to the lidar-derived HMAX value, canopy height of the longleaf pine 

forest was similar across the 3 stands (Figure 1.5a). Lidar-derived COV indicated a decrease 

in percent canopy cover from the NW to CNT and NE stands, whereas COV variance 

increased (Figure 5b). Although the stands are similar in height, they are different in terms 

of field-measured tree density. As observed in the description of the sites in the material and 

methods section, the NW stand had highest tree density and the NE stand had the lowest, 

whereas the variance in tree density showed the opposite trend in COV (Figure 1.5c). 
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1.3.2 Individual-Tree Detection 

The individual-tree detection results from the test plots are shown in Table 1.4. The 

TWS and SWS combination were sensitive parameters in terms of tree detection. The TWSs 

that provide better results were 5x5 and 7x7 pixels, with a tree detection overall 

improvement of 58.25% and 34.59% compared to the 3x3, respectively. The relationship 

between SWS and the NTD from lidar was inversely proportional. Smaller TWSs, such as 

3x3 pixels, detected more trees compared to large TWSs, such as 7x7, causing an 

overestimation of NTD. In general, TWS of 3x3 for the CHM smoothing provided better 

results. 

Although different combinations of TWS and SWS parameters might provide a 

better performance in each test plot, we identified a positive and strong nonlinear 

relationship between the number of reference trees and lidar-derived COV (Figure 1.6a). 

Therefore, in an effort to be consistent and replicable, we decided to use the adaptive 

approach already cited in the methods section, in which the COV is used as an auxiliary 

variable to select the TWS in each test plot. For the sample plots with COV >  70%, the 5x5 

TWS was selected and in plots with COV < 70% the 7x7 TWS was selected. Additionally, 

the SWS of 3x3 pixels was selected to be applied across all test plots, because it in general 

provides more accurate results (Table 1.4). 

The relationship between the reference and lidar-derived number of trees per test plot 

according to the adaptive approach mentioned is shown in Figure 1.6b. Our method slightly 

underestimates the number of trees, especially in the test plots with COV > 70%. However, 

the correlation between reference and NTD per hectare (N·ha−1) is relatively strong, 

displaying a correlation coefficient of 0.90. 

The accuracy assessment results for individual-tree detection in the 15 test subplots 

is shown in Table 1.5. The recall varies from 0.74 to 1, with the overall value of 0.82; the 

value of p varies from 0.71 to 1, with the overall value of 0.85; and the F-score, which 

considers both of these last 2 factors, varies from 0.74 to 1, with the overall value from all 

the plots of 0.83. There are 185 reference trees in our test subplots, and only 177 (81.6%) 

trees were detected. In summary, the algorithm missed 34 (14.1%) trees, and falsely detected 

26 (18.1%) trees, with underdetection outweighing overdetection (Table 1.5 and 1.6). 
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The strongest results were obtained in test subplots with COV < 70%, with 96% of 

the trees detected, commission and omission errors limited to 17.0 and 2% and an F-score of 

0.90. When considering test subplots with COV > 70%, the algorithm detected 76% of trees 

with commission and omission errors of 13% and 24%, respectively (Table 1.6). The 

relationship between the F-score and COV is shown in Figure 1.7. The correlation is 

relatively strong, with a correlation coefficient of 0.91. 

The lidar-derived HMAX ranged from 5.24 m to 31.91 m with mean and standard 

deviation (SD) of 24.39 m and 3.18 m, respectively. The lidar-derived CA ranged from 3.0 

m2 to 204.5 m2, with mean and SD of 50.2 m2 and 24.74 m2, respectively. The distributions 

of HMAX and CA are shown in the Figure 1.8. 

 

1.3.3 Imputation Modeling Estimates at Tree Level at the Test Plots 

The rStree algorithm matched 4,242 detected trees to field- based trees (48.0%). 

From this total, 3181 (75%) trees were used as training and 1061 (25%) trees were used as 

testing data for imputation modeling. The HMAX and CA metrics were better predictors of 

Ht and V than BA. The imputed training model produced a relative RMSD of 2.56%, 

57.33% and 7.49%; relative BIAS of 0.08%, 0.50% and 0.22%, and pseudo-R2 of 0.96, 

0.22, and 0.95 for the Ht, BA, and V attributes, respectively.  

The imputed and observed Ht and V attributes from the validation dataset were 

statistically equivalent at the 25% rejection region (Figure 1.9a,c). However, the imputed 

and observed BA values were not statistically equivalent at the 25% rejection region (Figure 

1.9b). The Ht and V imputation models produced estimates that were strongly (r > 0.97) 

correlated with the validation inventory dataset, whereas the BA imputation model produced 

estimates of BA that were weakly correlated (r=0.42) with the validation data. The RMSD 

and Bias values were relatively low, whereas pseudo-R2 values were high for the Ht and V. 

On the contrary, the RMSD and Bias was relatively high, and the pseudo-R2 relatively low, 

for the BA estimates. The distributions of imputed and observed forest attributes across all 

stands from the testing dataset are shown in the Figure 1.10. In general, the similarity 

between the observed and imputed attributes is high. 
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1.3.4 Stand-Level Forest Attributes Estimates 

The N of trees detected in the stands ranged from 35,980 to 52,184; mean tree Ht 

ranged from 21.10 to 23.17 m; mean tree BA ranged from 0.09 to 0.10 m2 and mean tree V 

ranged from 0.79 to 0.96 m3, as presented in Table1.7 Mean stand-level BA was 10.73 

m2·ha−1 (±2.69 m2·ha−1) and mean stand-level V was 99.94 m3·ha−1 (±26.25 m3·ha−1). We 

also graphed histograms of imputed values for each stand and the shape of these 

distributions (Figure 1.11). The distributions show that the NW stand is the most mature, the 

NE stand has the highest proportion of smaller trees, and the CNT stand has an intermediate 

structure. These distributions provide more information that is subsumed within the Ht, BA, 

and V mean and standard deviation trends between stands, as summarized in Figure 1.5. 

 

1.4 Discussion 

1.4.1 Individual Tree Detection 

Accurate individual-tree attributes are critical for forest assessment and planning. 

This study presents a simplified framework for automated, lidar-based individual-tree 

detection and modeling procedure for estimating tree attributes. The results presented herein 

demonstrate that the total number of trees can be derived with satisfactory accuracy. 

We found that the successful identification of tree locations using the local 

maximum technique depends on the careful selection of the TWS. If the TWS is too small or 

too large, errors of commission or, respectively, omission occur, as was also reported by 

Wulder et al. (2000). Tree-detection accuracy was greatly affected by the different TWS and 

SWS combinations tested (Table 1.4). TWS was inversely proportional to the number of 

trees detected in general. Because COV is directly proportional to tree density in general, 

larger TWS is generally more appropriate in open canopy forest structures. In this study, 

70% COV was the threshold chosen as the TWS; this is substantially higher than the 50% 

threshold reported in previous studies (Falkowski et al. 2008) and represents a significant 

advance in our ability to extract individual-tree attributes from denser coniferous forest 

canopies. Even though different combination of TWS and SWS would provide high 

accuracies in certain local areas, a consistent TWS parameter is also advantageous for 
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automated tree detection across large spatial extents, and therefore, we employed the COV 

variable as a criterion for adapting the TWS. 

Smoothing is a common technique applied to lidar-derived CHMs for individual tree 

detection purposes. In this study, we tested the mean smoothing filter as a smoother. 

Khosravipour et al. (2014) reported that the performance of individual-tree detection was 

better using pit-free CHMs instead of a standard smoothed Gaussian CHM (in a coniferous 

plantation forest in Barcelonnette basin, southern French Alps, France). We observed the 

same improvement, but then further applied the 3x3 pixels SWS over the pit-free CHM to 

produce even more accurate results. Applying the 3 × 3 pixels SWS the irregular crown 

shapes that typify longleaf pine tree crowns (compared to other conifers, which tend to have 

a more regular, conical shape), thus eliminating spurious local maxima caused, for example, 

by longleaf pine tree branches that were not already removed by the pit-free CHM itself. 

Filter sizes and the conditions for filtering the CHM must be carefully tested and selected for 

different forest types (Lindberg and Hollaus 2012). 

The tree-detection results from this study are comparable to the results obtained in 

other studies using both point cloud and raster-based approaches. Li et al. (2012), using a 

new method for segmenting individual trees from the lidar point cloud in a mixed conifer 

forest on the western slope of central Sierra Nevada Mountains of California, USA, showed 

that the algorithm detected 86% of the trees (“recall”), and 94% of the trees were segmented 

correctly (“precision”), with an overall F-score of 0.90. Vega et al. (2014), using the PTrees 

algorithm to segment individual trees in a conifer plantation in southwestern France, 

reported overall recall, precision, and F-score of 0.93%, 0.98%, and 0.95, respectively. 

Khosravipour et al., (2014), comparing the accuracy of individual-tree detection from the 

lidar-derived Gaussian smoothed and pit-free CHMs in mixed forest in southern French 

Alps in France, achieved an overall accuracy of 70.6% and 74.2%, respectively, from high-

density lidar, and 35.7% and 67.7%, respectively, from artificially thinned, low-density lidar 

data. Lahivaara et al. (2014), using a Bayesian approach to tree detection based on lidar data, 

reported an accuracy of 70.2% for 2751 trees measured across 36 different field plots in a 

managed boreal forest in Eastern Finland. Maltamo et al., (2004), in state-owned forest 

located in Kalkkinen, southern Finland, using local maximum and segmentation techniques, 
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detected only 39.5% of all trees, although the proportion of detected dominant trees was as 

high as 83.0%. 

In this study, the accuracy of individual-tree detection measured by the F-score, as 

expected, was inversely proportional to forest COV. Overall, commission errors were more 

prevalent in less dense test plots, and omission errors were more common where crowns 

overlapped. Previous research has shown that tree-detection accuracy decreases with 

increasing canopy cover (Falkowski et al. 2008). As also reported in Falkowski et al., 

(2008), the influence of GPS error is also an unquantifiable source of uncertainty in the 

current study. Popescu (2007) reported that treetop positions might be determined with 

higher accuracy using a CHM image rather than error-prone measurements derived from 

differential GPS in the field. Even though we collected at least 20 GPS positions at each tree 

and performed a differential correction, it can be argued that the field GPS tree location is 

less accurate than the treetop location detected from lidar, especially in high-canopy-cover 

conditions that can degrade field GPS accuracy (Wing et al., 2008). For example, in Figure 

12, the reference tree location represented by the black point (Figure 1.12a) and vertical 

black line (Figure 12b,c) are located far away from the treetop location (white point, Figure 

1.12a) and the point cloud peaks (Figure 1.12b). This leads to a less accurate stem map in 

areas with high COV, ultimately making it very difficult to objectively determine if a sample 

tree had actually been detected in high-canopy-cover situations. Moreover, the irregular 

shape of longleaf pine tree crowns likely further reduces tree detection accuracy compared 

to most other conifer species with more regular conical crowns. 

 

1.4.2 Imputing Forest Attributes at Tree Level 

In this study, we used an individual tree detection and crown delineation approach to 

compute HMAX and CA, which were subsequently employed as predictors to estimate tree-

level metrics such as V and BA in a modeling framework (RF k-NN imputation). This is the 

first study to detect individual trees and model tree-level attributes using such an approach 

in longleaf pine forest. 

In the modeling process, before building the tree-level RF k-NN imputation model, it 

was necessary to match individual trees detected from the lidar-derived CHM with the 
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associated reference trees measured in the test plots. The rSTree was able to match up 48.0% 

of all reference trees. Most of the missed trees occurred in test plots with COV conditions 

over 70%. However, even though an ideal situation (i.e., matching all the lidar and reference 

trees) was not achieved, the rStree algorithm proposed herein is still appropriate for tree 

matching when GPS errors in the field-based stem map are an issue. 

Error in estimating Ht, BA, and V came disproportionately from young trees, 

although these comprised only 1.9% of the total number of stems. Additional error could be 

attributed to the 1-year difference between the lidar acquisitions (2008) and field 

measurements (2009). Nevertheless, the accuracies of the RF k-NN imputation model for 

imputing Ht and V were satisfactory, with RMSD in the cross-validation ranging from 

2.96% to 8.19%, clearly surpassing the stated goal of less than 15%. However, the adjusted 

model was not able to accurately model BA. However, the primary contributor to the high 

BA estimation error is that the height–diameter allometry for longleaf pine breaks down 

after reaching a diameter of 25 cm, when height growth asymptotes at 25 m (Gonzalez-

Benecke et al., 2014). The addition of crown-dimension attributes to a biometric model can 

help, but in this study, it did not explain much BA variance. 

The use of airborne lidar to retrieve forest attributes such as Ht, V, and BA at tree 

level has been not widely studied, however, some previous studies have shown the great 

potential of this technology to provide it. For example, Maltamo et al., (2009), using lidar-

based metrics and k-Most Similar Neighbor (k- MSN) imputation for predicting tree-level 

characteristics from a reference dataset comprising 133 trees, reported relative RMSEs of 

1.95%, 5.6%, and 11.0% for the Ht, DBH, and V attributes estimation in 14 Scots pine 

(Pinus sylvestris L.) plots located in the Koli National Park in North Karelia, eastern 

Finland. Vauhkonen et al. (2010), working in mixed conifer mixed forest dominated mostly 

by Scots pine and Norway spruce (Picea abies L. Karst.) in southern of Finland, employed 

k-MSN and RF imputation methods simultaneously for estimating stem dimensions using 

lidar-based variables, and reported relative RMSEs of 3%, 13% and 31%, for Ht, DBH, and 

V, respectively. Vastaranta et al. (2014) using a multisource single-tree inventory (MS-STI) 

in a broad mixture of forest stands located in Evo, Finland, reported RMSEs ranging from 

4.2% to 5.3%, from 10.9% to 19.9% and from 28.7% to 43.5%, for Ht, DBH, and saw log 
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volume, respectively. Our accuracies were not higher than those reports in Maltamo et al., 

(2009) and Vauhkonen et al., (2010). However, it is difficult to compare these results with 

ours owing to methodological and site differences. Lindberg and Hollaus (2012) reported 

estimates of individual tree BA that were more accurate based on the regression models than 

those derived from identifying tree tops from local maxima in the CHM in hemi-boreal 

forest in the southwest of Sweden. Furthermore, Vauhkonen et al. (2010) reported that the 

variation in RMSEs of 11%–15% for individual-tree BA estimation was due to the type of 

method (k-MSN or RF), value of k, and    the set of predictor variables applied in the 

modeling process. In another study, also in Evo, Finland, Kankare et al., (2015) verified that 

the DBH accuracy was inversely proportional to tree density, where DBH accuracy 

decreased when tree density increased.  

Our BA results might be improved by optimizing k or adding more individual tree 

metrics as predictors, such as canopy volume (Chen et al., 2007, Vauhkonen et al., 2010). 

Even though it is time consuming, individual tree segmentation directly from the lidar point 

cloud methods as presented by Reitberger et al., (2009), Ferraz et al., (2012) and Yao et al., 

(2013) are considered alternatives to increase the number of individual-tree metrics to be 

derived from the lidar point cloud data, as can be accomplished with the rLiDAR package 

(Silva et al., 2015). We have tested the rLiDAR algorithms for individual-tree detection and 

crown delineation on a CHM derived from airborne lidar at plot and stand levels; the 

rLiDAR package is not designed to ingest large lidar datasets, due to inherent memory 

limitations of R compared to specialized lidar processing software such as FUSION/LDV 

and LAStools. 

 

1.4.3 Stand-Level Forest Attributes Characterization 

The longleaf pine forest attributes estimates reported in this study represent useful 

information for the study and management of the longleaf pine forest at the Ichauway site. 

The spatially detailed information such as the number, location, spacing, size, Ht, BA, and V 

distribution of individual trees as available in map form (not shown) helps managers achieve 

greater management and conservation efficiency. Forestry studies often produce estimates of 

the stand-level forest attributes and how they change over time (Gonzalez-Benecke et al., 
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2014). Therefore, distributions of forest structure attributes (Fig. 1.11) are relevant for forest 

management and planning. 

 

1.5 Conclusions 

In this study, we investigated the use of lidar and RF k-NN imputation for individual 

tree detection and forest attributes modeling in longleaf pine forest. Overall, our method 

detects individual trees with high accuracy in areas with < 70% COV. The precision and 

accuracy of lidar in retrieving Ht and V parameters at an individual-tree level using the 

framework presented was clearly demonstrated through a relative RMSE and bias less than 

15%. Even though the desired accuracy of BA was not fully attained, the framework 

presented herein can serve as a useful methodology, and the result will ultimately support 

further study and management of longleaf pine forest ecosystems in the study area. We hope 

that the promising results for individual-tree-level forest-attribute modeling in this study will 

stimulate further research and applications not just in longleaf pine but other forest types. 
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Table 1.2. Statistical summaries of tree basal area (BA) and stem volume (V) at sample plots 

Stand 
BA (m2/Tree) V (m3/tree) 

min max mean sd min max Mean sd 

NW 0.01 0.40 0.12 0.08 0.04 2.44 0.94 0.47 

CNT 0.01 0.44 0.10 0.07 0.01 2.73 1.01 0.50 

NE 0.01 0.28 0.09 0.06 0.01 2.28 0.99 0.52 

 

 

Table 1.3. Lidar flight parameters 

LIDAR Survey Parameters 

Scan Frequency 45 Hz 

Scan Angle +/- 20 deg 

Scan Cutoff +/- 4.0 deg 

Scan Offset 0 deg 

System PRF 125 kHz 

Swath Width 344.64 m 

Flying Altitude 600m AGL 

Down Track Resolution 0.75 m 

Points per square meter 5.06 

Horizontal Datum NAD83 

Vertical Datum NAVD88 (GEOID 03) 

Projection UTM Zone 16N 
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Table 1.4. Individual tree detection in the test subplots. The highlighted gray color represents the best results, 

which were determined by comparing the number of trees detected (NTD) to the field-based tree inventory 

number (N). The closest values of NTD compared with N were selected as the best results.  

Plots Stand COV 
Ref. 

(N) 

 TWS  

3x3 5x5 7x7 

SWS SWS SWS 

NF 3x3 5x5 NF 3x3 5x5 NF 3x3 5x5 

1 
NW 

68.39 803 4675 1112 587 1246 702 478 620 507 413 

2 75.63 815 4725 1156 586 1312 674 480 639 514 410 

3 

CNT 

70.40 519 4063 893 467 1028 515 393 485 399 340 

4 70.96 503 4346 939 490 1079 548 410 526 425 370 

5 71.47 572 4256 1021 536 1131 632 437 570 467 381 

6 72.62 543 4208 953 505 1096 584 426 550 440 385 

7 73.17 777 4222 1052 577 1110 622 449 552 452 383 

8 75.53 621 4723 1050 573 1221 620 465 609 483 410 

9 

NE 

60.13 321 2994 684 346 750 373 272 344 275 243 

10 61.75 306 3222 701 363 771 414 283 374 300 250 

11 63.85 366 3366 750 393 852 427 319 414 323 292 

12 63.96 338 3319 743 370 849 396 292 411 318 265 

13 72.24 737 4006 940 510 1018 563 405 521 436 368 

14 74.50 810 4379 1012 547 1119 612 437 530 463 385 

15 75.56 797 4357 1023 561 1145 620 452 567 454 391 
Ref.: reference number of tree per test plot (N); TWS: fixed treetop windows size; SWS: fixed smoothing windows size; 

NF: no filter applied; NE: Northeast stand; CNT: Central stand and NW: Northwest stand.  
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Table 1.5. Accuracy assessment results of lidar-based individual tree detection according to recall (r), precision 

(p) and F-score (F) statistics parameters. 

Subplots 
COV 

(%) 

Number of Trees Detected (NTD) 
r p F 

lidar Reference FP FN TP 

1 46.21 13 16 1 4 12 0.75 0.92 0.83 

2 46.87 16 18 2 4 14 0.78 0.88 0.82 

3 50.66 8 6 2 0 6 1.00 0.75 0.86 

4 56.55 5 5 0 0 5 1.00 1.00 1.00 

5 60.31 4 4 0 0 4 1.00 1.00 1.00 

6 63.02 4 4 0 0 4 1.00 1.00 1.00 

7 64.71 9 8 1 0 8 1.00 0.89 0.94 

8 67.13 7 5 2 0 5 1.00 0.71 0.83 

9 71.41 16 17 3 4 13 0.76 0.81 0.79 

10 71.45 18 21 2 5 16 0.76 0.89 0.82 

11 74.33 20 23 4 7 16 0.70 0.80 0.74 

12 76.93 11 10 2 1 9 0.90 0.82 0.86 

13 80.56 23 27 3 7 20 0.74 0.87 0.80 

14 85.58 15 13 3 1 12 0.92 0.80 0.86 

15 83.48 8 8 1 1 7 0.88 0.88 0.88 

Overall 66.41 177 185 26 34 151 0.82 0.85 0.83 

 

 

Table 1.6. Accuracy assessment results for the individual tree detection as a function of lidar-derived COV. FP: 

False positive; FN: False negative; TP: True positive; r: recall; p: precision and F: F-score. 

COV (%) 
Number of Trees Detected (NTD) 

r p F 
lidar Reference FP FN TP 

≤ 70 60 53 9 (17.0) 2 (3.8) 51 (96.2) 0.96 0.85 0.90 

>70 117 132 17 (12.9) 32 (24.2) 100 (75.8) 0.76 0.85 0.80 

Overall 177 185 26 (14.1) 34 (18.1) 151 (81.6) 0.82 0.85 0.83 

 

 

Table 1.7. Estimated tree attributes summarized at the stand-level. 

Stands NTD 

Ht (m) BA (m2) V (m3) 

Mean Sd Mean Sd Total Mean Sd Total 

NW 36958 23.17 4.14 0.10 0.07 3824.11 0.96 0.40 35658.33 

CNT 52184 21.26 5.34 0.09 0.07 4478.04 0.80 0.49 42114.29 

NE 35980 21.10 5.42 0.09 0.07 3119.95 0.79 0.49 28564.40 
NTD=Number of Trees Detected  
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Figure 1.1. Longleaf pine forest location: A, B, and D, and profile picture at Ichauway in southwestern Georgia, 

USA. NW: Northwest; CNT: central and NE: Northeast stands. 
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Figure 1.2. Flowchart of the lidar data processing. 



38 
 

 

Figure 1.3. Illustration of the individual tree crown delineation algorithm. T=trees. (A) treetops; (B) buffer earch area of 10 

m maximum radius; (C) Centroidal Voronoi Tessellation delineation; (D) buffer and Centroidal Voronoi Tessellation are 

overlaid (E) CHM clipping; (F) crown delineation. 
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Figure 1.4.  rSTree algorithm: searching for the lidar and reference trees. MED = maximum Euclidian distance, MHD = 

minimum height deference, HD = height difference. 
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Figure 1.5. Lidar-based plot (A) HMAX and (B) COV; and (C) tree density measured in the field at the longleaf 

pine test plots. Error bars indicate standard deviations. 

 

 

 

Figure 1.6. Lidar-derived COV versus number of reference trees (N) measured in the field (A), and lidar-derived versus 

reference tree densities. 

 



41 
 

 

Figure 1.7. Relationship between lidar-derived COV and F-score in the 15 test subplots. 

 

 

 

Figure 1.8. Distribution of lidar-derived (A) HMAX and (B) CA values. The black line represents a fitted distribution. 
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Figure 1.10. Imputed and observed tree attributes distribution from the testing dataset. (A), (B) and (C) 

represent Ht, BA, and V distribution across the 3 stands. The numbers 1 and 2 represent the imputed and 

observed values. The black line represents a fitted distribution, and the dashed vertical line represents the mean. 
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Figure 1.11. Distribution of imputed tree attributes (Ht, BA, and V) across the 3 stands in the study area. The numbers 

from 1 to 3 represent the attributes Ht, BA, and V, respectively. The letters from (A) to (D) represent the NE, CNT, and 

NW, and all stands, respectively. The black line represents a fitted distribution and the dashed vertical line represents 

the mean. 
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Figure 1.12. Illustration of individual tree detection and crown delineation under different COV conditions. (1) COV= 

90.96%; (2) COV= 76.79%, and (3) COV= 58.66%. (A) 2D visualization of the tree location and crown delineation over the 

CHM. (B) 3D visualization of the lidar point cloud and reference trees measured in the field. (C) 3D visualization of the lidar 

virtual forest, and the reference tree locations. 
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Chapter 2. Predicting Stem Total and Assortment Volumes in an Industrial Pinus taeda 

L. Forest Plantation Using Airborne Laser Scanning Data and Random Forest 

 

Silva, C.A.; Klauberg, C.; Hudak, A.T.; Vierling, L.A.; Jaafar, W.S.W.M.; Mohan, M.; 

Garcia, M.; Ferraz, A.; Cardil, A.; Saatchi, S. Predicting Stem Total and Assortment 

Volumes in an Industrial Pinus taeda L. Forest Plantation Using Airborne Laser Scanning 

Data and Random Forest. Forests 2017, 8, 254. 

 

Abstract 

 

Improvements in the management of pine plantations result in multiple industrial and 

environmental benefits. Remote sensing techniques can dramatically increase the efficiency 

of plantation management by reducing or replacing time-consuming field sampling. We 

tested the utility and accuracy of combining field and airborne lidar data with Random 

Forest, a supervised machine learning algorithm, to estimate stem total and assortment 

(commercial and pulpwood) volumes in an industrial Pinus taeda L. forest plantation in 

southern Brazil. Random Forest was populated using field and lidar-derived forest metrics 

from 50 sample plots with trees ranging from three to nine years old. We found that a model 

defined as a function of only two metrics (height of the top of the canopy and the skewness 

of the vertical distribution of lidar points) has a very strong and unbiased predictive power. 

We found that predictions of total, commercial, and pulp volume, respectively, showed an 

adjusted R2 equal to 0.98, 0.98 and 0.96, with unbiased predictions of −0.17%, −0.12% and 

−0.23%, and Root Mean Square Error (RMSE) values of 7.83%, 7.71% and 8.63%. Our 

methodology makes use of commercially available airborne lidar and widely used 

mathematical tools to provide solutions for increasing the industry efficiency in monitoring 

and managing wood volume. 

 

Keywords: forest inventory; lidar; remote sensing; supply chain 
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2.1 Introduction 

The area of planted forests worldwide has been steadily growing, with an estimated 

6.95% of total global forested area being plantations in 2010 (Payn et al., 2015). Tropical 

regions may be experiencing particularly rapid rates of plantation expansion (Iba, 2016). For 

example, the area of pine plantations in Brazil has dramatically risen in the last few decades 

to increase pulp and paper production. Currently ~20% of the total reforested area of Brazil 

is comprised of pine forest plantations (Khler et al., 2014). 

Most of the pine plantations are concentrated in South Brazil, with 34.1% and 42.4% 

of the total reforested area located in Paraná and Santa Catarina states (Iba, 2016). Pinus 

taeda L., also known as loblolly pine, is the most planted forest specie in these regions. It 

has high economic importance due to its high volumetric increment in the colder regions of 

the southern Brazil (Kohler et al., 2014). It has fast growing rates presenting increments up 

to 50 m3·ha−1·year−1(Iba, 2016). Moreover, P. taeda is commonly managed for production 

of multiple types of wood such as stem total, saw logs, pulpwood and small-diameter logs 

and branches, which are used for energy. Saw logs and pulpwood can be further divided into 

different assortments that differ in size and therefore in economic value (Kohler et al., 

2014). 

Forest inventory in P. taeda is currently based on field measurements and typically 

conducted annually to monitor forest growth in Brazil, allowing managers to identify 

problematic conditions during initial growth stages, and determine optimal harvest time 

(Silva et al., 2017a). While field measurements are considered the most accurate approach 

for monitoring industrial forest plantations, measuring stem total and assortment volumes 

annually via traditional methods is an extremely time consuming and labor-intensive task, 

especially in large plantations where a huge number of plots need to be measured to 

characterize the variation (Silva et al., 2016). Hence, to improve plantation management 

there is a need to develop and implement accurate, repeatable, and economical remote 

sensing based methods that provide synoptic coverage at high spatial resolution. 

Over the past few decades, lidar remote sensing has been established as one of the 

promising and primary tools for broad-scale analysis of forest systems. Lidar data can be 

used to characterize local to regional spatial extents with high enough resolution to quantify 
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the three-dimensional structure of the forest with the support of efficiently collected field 

data and several statistical methods (e.g., Næsset 1997; Næsset 2002; Næsset et al., 2007; 

Hudak et al., 2009). Lidar can be used to produce highly accurate retrievals of tree density, 

stem total and assortment volumes, basal area, aboveground carbon, and leaf area index, and 

thereby can be an effective way to predict and map forest attributes at unsampled locations 

(e.g., Andersen et al., 2005; Hudak et al., 2006; White et al., 2014; Silva et al., 2014; 

Korhonen et al., 2008; Peuhkurinen et al., 2008). To parlay these attributes into improved 

forest management practices for wood and pulp production, it is often necessary to predict 

stem total and assortment volumes of pine plantations in operational and experimental 

scenarios, as these scenarios often include thinning cruises, mid-rotation cruises, genetic 

trials, and silviculture research tests (Sherrill et al., 2011). 

Current predictive modeling methods include parametric (e.g., multiple linear 

regression) and non-parametric (e.g., Random Forest) approaches (e.g., Næsset 1997; 

Næsset 2002; Hudak et al., 2008). Among the machine learning algorithms, the Random 

Forest (RF) modeling approach has gained popularity in estimating forest attributes from 

lidar data due to its flexibility and ability to maintain nonlinear dependences compared to 

parametric algorithms (Ahmed et al. 2005). The RF can be viewed as an improved version 

of classification and regression tree (CART) methods; data and variables can be randomly 

sampled by RF in an iterative bagging bootstrap procedure to generate a “forest” of 

regression trees (Breiman 2001). Also, incorporation of multiple decision trees and internal 

cross-validation has improved results, enhanced ease of use and reduced issues regarding 

over-fitting while performing this modeling approach (Grossmann et al, 2010; Naidoo et al., 

2012). In case of regression-type problems, RF acts as an arbitrary number of simple trees 

whose responses are averaged to obtain an estimate of dependent variables (Yu et al., 2011). 

Diversification of sample trees is primarily done in two ways, either through a balancing 

methodology where equal numbers of samples are drawn from minority classes and majority 

classes, or by assigning a higher weight (i.e., heavier penalty) on misclassified minority 

class and taking the majority voting of individual classification trees (Ko et al., 2016). As 

RF does not require any assumptions about the relationships between explanatory and 

response variables, they are considered well suited for analyzing complex non-linear and 
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possibly hierarchical interactions in large datasets (Olden et al., 2008). In forest inventory, 

RF has been used for predicting and mapping forest attribute at the stand (e.g., Ahmed et al., 

2015) and individual tree levels (Yu et al., 2011), in addition to disturbance evaluation (e.g., 

Stumpf et al., 2011), mapping invasive plant species (e.g., Lawerence et al., 2006), and 

vegetation classification (e.g., Grossmann et al., 2010). Despite of the above-mentioned 

studies, to our knowledge, lidar and RF have been not yet being combined for predicting and 

mapping stem total, saw log and pulpwood volumes in industrial P. taeda forest plantations 

at stand level. 

Timely monitoring of stem total and assortment volumes in P. taeda plantations with 

lidar data and RF would allow managers to determine the optimal time for harvest or other 

treatment activities to maximize economic return. Therefore, the development of robust 

frameworks for modeling and mapping stem total and assortment volumes at plot and stand 

levels is still needed to increase the efficiency in monitoring and managing wood and pulp 

productions in forest plantations. Moreover, efficient frameworks also play important role in 

helping lidar technology move from research to operational modes, especially in industrial 

forest plantation settings where lidar applications are relatively new. The aims of this study 

were to: (i) present a robust and efficient framework for modeling, predicting and mapping 

stem total volume (Vt), saw logs (in this study mentioned as commercial) volume (Vc) and 

pulpwood volume (Vp) in a P. taeda plantation in southern Brazil using airborne lidar data; 

(ii) evaluate the use of the RF machine learning algorithm for modeling stem total and 

assortment volumes; and (iii) generate maps representing the spatial distribution of Vt, Vc 

and Vp in differently aged plantations of P. taeda. 

 

2.2 Material and methods 

2.2.1 Study Area Description 

The study area consisted of P. taeda stands located within the Telêmaco Borba 

municipality in the state of Paraná, southern of Brazil (Figure 2.1). Trees were planted using 

a 3.0 × 2.0 m or 2.5 × 2.5 m grid configuration, resulting in an average tree density of 1667 

or 2000 tree·ha−1, respectively. The climate of the region is characterized as warm and 

temperate (Köppen 1928), with annual average precipitation of approximately 1378 mm and 
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an annual average temperature of 18.4 °C. The P. taeda stands are situated on a plateau 

where the topography is relatively flat. The plantations are managed by Klabin S.A., a pulp 

and paper company. 

 

2.2.2 Field Data Collection 

A total of 50 rectangular plots, each approximately 600 m2 (i.e., 20 m × 30 m) were 

randomly established and measured across 50 stands distributed in four plantations. As such, 

the sample plots well represent the study area, and they capture the entire structural 

variability in these stands with ages ranging from three to nine years old. All plots were geo-

referenced with a geodetic GPS with differential correction capability (Trimble Pro-XR, 

Trimble, Sunnyvale, CA, USA) ensuring a location error lower than 10 cm. In each sample 

plot, individual trees were measured for dbh (diameter at breast height) at 1.30 m and a 

random subsample (15%) of trees for tree height (Ht). For those trees in the plots that were 

not directly measured for Ht, the inventory team of Klabin S.A. predicted heights from 

hypsometric equations (Curtis 1967), employing dbh as the independent variable, and Ht as 

the dependent variable, following the model below: 

 

ln(Ht) = β0 + β1 ×  (1/dbh) + e (2.1) 

 

where ln(Ht) is the natural logarithm of tree height (m); β0 and β1are the intercept and the 

slope of the model; dbh is the diameter at breast height (1.30 m) and e is the random error of 

the model. The coefficients of the hypsometric models are the company’s intellectual 

property and not made available to the public, however, the adjusted coefficient of 

determination (adj.R2) and standard error of estimate in percentage (SEE%) of the models 

ranged from 0.96 to 0.98 and 5.1 to 6.5, respectively. 

The management goal of the P. taeda plantations at Klabin is optimized to produce 

commercial logs of 2.65 m in length, which are then classified in four timber assortment 

classes: 18 to 25 cm (Vc 1), 25 to 30 cm (Vc 2), 30 to 40 cm (Vc 3), and diameter ≥ 40 cm 

(Vc 4). The logs designated for pulpwood are produced with log lengths of 2.40 m and 

diameters ranging from 8 to 18 cm (Vp), as illustrated in Figure 2.2. 
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In this study, Vt, Vc and Vp for each tree were computed using the fifth-degree 

polynomial (Schöpfer 1966) as presented below: 

di

dbh
= ⌊β0 +  β1 (

hi

h
) + β2 (

hi

h
)

2

+ β3 (
hi

h
)

3

+ β4 (
hi

h
)

4

+ β5 (
hi

h
)

5

⌋ (2) 

V = K ∫ di
2δh

h2

h1

 (3) 

V = K dbh2 ∫ (β0 + β1/h × h1
1 + β2/h2 × h2

2 + β3/h3 × h2
3

h2

h1

+ β4/h4 × h2
4 + β5/h5 × h2

5)2δh 

(4) 

 

where β =  parameters to be estimated; di = stem diameter (cm) at the ith position; dbh = 

diameter (cm) at breast height (1.30 m); h = total height (m); hi = height (m) at the ith 

position; and K = π/40,000 is an adjustment factor to estimate volume as m3·ha−1. 

The polynomial models were adjusted for classes of dbh, and the coefficients of the 

models are the companies’ intellectual property and not made available to the public; 

however, the classes of diameter, adj.R2 and standard error of the estimate (SEE; given in 

%) for the polynomial models used in this study are presented in Table 2.1. 

The total of Vt, Vc and Vp of all individuals were summed at plot-level and scaled to a 

hectare. The summary of volumes in m3·ha−1 for each class of stand ages is presented in 

Table 2.2. SEE (%) is the standard error of the estimate, expressed as a percentage. 

 

2.2.3 Lidar Data Acquisition and Data Processing 

Lidar data were obtained by a Harrier 68i sensor (Trimble, Sunnyvale, CA, USA) 

mounted on a CESSNA 206 aircraft. The characteristics of the lidar data acquisition are 

listed in Table 2.3. Lidar data processing consisted of several steps that ingested the lidar 

point cloud data and provided two major outputs: the digital terrain model (DTM), and the 

lidar-derived canopy structure metrics. All lidar processing was performed using 

FUSION/LDV 3.42 software (US Forest Service, Washington, DC, USA) (McGauchey, 

2015). 
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The original point cloud data were filtered using Kraus and Pfeifer’s algorithm (Kraus 

1998) and a 1 m resolution DTM was generated from the points classified as ground. 

Subsequently, the height of the returns was computed by subtracting the elevation of the 

DTM from each return. Once the heights were normalized, the metrics shown in Table 2.4 

were computed at plot and stand levels, at a grid cell resolution of 25 m, using all lidar 

returns. 

 

2.2.4. Predictor Variables Selection 

In order to derived accurate estimates of stem volumes from lidar, it is essential to select 

the most significant lidar metrics (predictor variables) for modeling within a parsimonious 

statistical model framework. Because the number of candidate lidar metrics can be very 

large (e.g., 30 metrics), in our study we selected the best lidar metrics for modeling stem 

volumes based on two steps. First, even though highly correlated variables will not cause 

multi-collinearity issues in RF, Pearson’s correlation (r) was used to identify highly 

correlated predictor variables (r > 0.9) as presented in previous studies (e.g., Hudak et al., 

2012; Silva et al., 2016). If a given group (2 or more) of lidar metrics were highly correlated, 

we retained only one metric by excluding the others that were most highly correlated with 

the remaining metrics. Second, we identified the most important metrics based on the Model 

Improvement Ratio (MIR), a standardized measure of variable importance (Evans et al., 

2009; Evans et al., 2010). MIR scores are derived by dividing raw variable important scores 

(output from RF models) by the maximum variable importance score, so that MIR values 

range from 0 to 1. MIR scores allow for variable importance comparisons among different 

RF models. We ran the RF routine (package randomForest, Liaw 2015) in R (R Core Team 

2015) 1000 times to compute MIR. In each MIR iteration, we bootstrapped the data by 

randomly selecting a sample of 50 plots with replacement. RF requires two parameters to be 

set: (i) mtry, the number of predictor variables performing the data partitioning at each node 

which in this study was defined by the number of highly uncorrelated preliminary set of 

lidar metrics and (ii) ntree, the total number of trees to be grown in the model run which was 

set to 1000 (e.g., Bright et al., 2013). Running 1000 iterations of RF produced consistent 

MIR distributions and avoided unnecessary processing time (Bright et al., 2013). To create 
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parsimonious models, we reserved the metrics for final RF models that exhibited the highest 

mean MIR values. 

 

2.2.5. Random Forest Model Development 

The three stem volumes (Vt, Vc and Vp) of interest were predicted at the plot and stand-

levels using also the RF package (Liaw 2015) in R (R Core Team 2015). The number of RF 

trees to grow was set to 1000, and the number of predictor variables performing the data 

partitioning at each node was set to equal the number of best lidar metrics selected by MIR 

on Section 2.4 (Liaw 2015). The accuracy of estimates for each model was evaluated in 

terms of Adj.R2, Root Mean Square Error (RMSE), and Bias (both absolute and relative) by 

the linear relationship between predicted (output from RF) and observed stem volumes: 

RMSE (m3 · ha−1) = √∑(𝑦𝑖 − �̂�𝑖)

𝑛

𝑖=1

2

/𝑛 (2.5) 

Bias (m3 · ha−1) =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

𝑛

𝑖=1

 (2.6) 

where n is the number of plots, yi is the observed value for plot i, and �̂�𝑖 is the predicted 

value for plot i. Moreover, relative RMSE (%) and biases (%) were calculated by dividing 

the absolute values (Equations 2.5 and 2.6) by the mean of the observed stem volume. Based 

on earlier experiences and recommendations from literature, we defined acceptable model 

accuracy as a relative RMSE and Bias of <15%. 

For validation purposes, RF models were embedded in a bootstrap with 500 iterations. 

In each bootstrap iteration, we drew 50 times with replacement from the 50 available 

samples. In this procedure, on average 44% of the total of sample (~22 samples) are not 

drawn. These samples were subsequently used as holdout samples for an independent 

validation (e.g., Lopatin et al., 2016). In each bootstrap iteration, Adj.R2, absolute and 

relative RMSE and Bias were computed based on the linear relationship between observed 

and predicted volumes using the holdout samples. We used also two-sided Kolmogorov-

Smirnov (KS) in R (R Core Team) and a statistical equivalence test (Robinson et al., 2005) 

to compare the field- and lidar-based stem volume estimates in each iteration. 
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2.2.6. Predictive Stem Volume Maps 

Predictive maps of stem volumes at 25 m of spatial resolution were generated based on 

the RF models containing the best lidar metrics according to MIR analysis. Because we have 

a large number of stands in this study, stem volumes predictions at the stand level were then 

presented herein by stand ages of 3–5, 5–7 and 7–9 years. Additionally, maps of coefficient 

of variation (CV, given in %) values for the stem volume predictions (as obtained from the 

500 bootstrap runs) was also produced for each stand (e.g., Lopatin et al., 2016). Figure 2.3 

provides an overview of the study methodology. 

 

2.3 Results 

 

2.3.1. Predictor Variable Selection 

A total of 25 of the 32 lidar metrics showed a very strong correlation (r > 0.9). We 

retained one of the highly correlated metrics (H99TH), which along with seven other 

remaining metrics not extremely highly correlated (r ≥ 0.9) were included in the MIR 

analysis (Table 2.5). Lidar metrics that were retained after correlation analysis included 

HMIN, HCV, HIQ, HSKEW, HKUR, H99TH and COV. Among these, H99TH and 

HSKEW exhibited the highest mean MIR values (Table 2.6) and therefore, were used for 

model development. Although HCV also showed high mean MIR values, its inclusion in the 

models did not significantly improve model performance. 

 

2.3.2. Model Performances 

The H99TH and HSKEW that exhibited high MIR values explained more than 80% 

variations of the stem volumes in Vt, Vc and Vp components with relative RMSE and Bias 

less than 10% and −0.10%, respectively (Table 2.7). The negative values in Bias indicate 

that the models are slightly underestimating the stem volumes. Predicted stem volumes at 

plot level did not differ significantly to the observed stem volumes by the KS and 

equivalence tests (p-values > 0.05). Figure 2.4 shows the distribution of observed and stem 

volumes and a good agreement can be observed. 

The performance of RF model to predict Vt, Vc and Vp was also summarized in terms 

of Adj.R2, RMSE and Bias for all 500 bootstrap runs (Table 2.8). Observed and predicted 
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stem volumes in each bootstrap iteration did not differ significantly by the statistical KS and 

equivalence test (p-values > 0.05) as well. Overall, all models using H99TH and HSKEW 

performed very well, with relative RMSE and Bias <15% in the bootstrap procedure. The 

observed and the average of the predicted stem volumes from the 500 bootstrap runs were 

also compared and according to the KS and equivalence tests those values did not differ 

significantly (p-values > 0.05) too (Figure 2.5). 

 

2.3.3. Prediction Maps 

Box plots of predicted stem values of Vt, Vc and Vp of P. taeda at the stand level are 

shown in Figure 2.5. On average, naturally predicted stem volumes tended to be lower at 

young age (Figure 2.6a) and higher at advanced age stands (Figure 2.6c). Herein, because it 

is not convenient to show all the maps for the 50 stands, Figures 2.7 and 2.8 is showing as 

an example the predicted map of stem volumes and CV (%) with spatial resolution of 25 m 

for only three stands, but with ages ranging from three to nine years old. 

 

2.4. Discussion 

 

Detailed information on stem total and assortments volumes is required in industrial 

forest plantations to achieve production efficiency. For instance, incomplete or inaccurate 

forest information adds to the expense and challenge of forest operations (e.g., Holopainen 

et al., 2010). Moreover, improving forest plantation productivity and efficiency are 

important for reducing harvest pressure on natural forests. To achieve efficiency gains in 

operational forest management, a wide range of forest inventory attributes are required to be 

measured accurately at high spatial resolution and landscape to regional extents (Sibona et 

al., 2016). More detailed inventory information can allow forest owners to make better 

decisions concerning the timing of timber sales, and allow forest companies to optimize 

their wood supply chain from forest to factory (Kankare et al., 2014). In this study, we 

present a framework for predicting and mapping total, commercial and pulpwood volumes 

in industrial P. taeda forest plantations using airborne lidar data and RF. While there have 

been previous studies exploring the use of lidar and non-parametric machine learning 
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algorithm for forest inventory modeling (e.g., Ahmed et al., 2015; Zhao et al., 2011; 

Mascaro et al., 2014; Garcia et al., 2015; Hudak et al., 2016), no studies yet have 

demonstrated the potential of lidar and RF combined for predicting and mapping 

commercial and pulpwood volumes in industrial pine forest plantations. 

Stem total and assortment volumes are directly related to the supply of fiber to pulp and 

paper companies. Herein, the accuracy of lidar for retrieving Vt, Vc and Vp using RF 

models was clearly demonstrated through achieving a relative RMSE and Bias less than 

<15% both for modeling and for validation. As we are predicting forest attributes at a 

homogenous and single layered forest structure, our measures of precision and accuracy 

were similar to or higher than those who used lidar data for predicting stem volume through 

a RF framework in other forest types (Korhonen et al., 2008; Peuhkurinen et al., 2008; 

Holopainen et al., 2010; Hayashi et al., 2014). Among prior studies, RF has generally 

showed better performance compared to other statistical approaches, such as multiple linear 

regression, boosting trees regression and support vector regression (Kankare et al., 2013; 

Wu et al., 2015; Shataeea et al., 2011). Lidar-derived stem total and saw log volumes and 

their estimation accuracies have previously been reported at the forest stand level (e.g., 

Korhonen et al., 2008; Peuhkurinen et al., 2008; Holmgren et al., 2012; Hawbaker et al., 

2010). For instance, in Eastern Finland in a typical Finnish southern boreal managed forest 

area, two studies used lidar data for estimating species-specific diameter distributions and 

saw log volumes (Korhonen et al., 2008; Peuhkurinen et al., 2008). Two years later, in 

Southern Wisconsin, USA, lidar data were used for predicting not only saw log volume, but 

also pulpwood volume (Hawbaker at al., 55); the models produced R2 of ~0.65 for 

estimating both saw log and pulpwood volumes. While those authors have showed the great 

potential of lidar in retrieving assortment volumes, this specific application is still relatively 

novel and further studies, such as presented herein, still need to be carried out. 

In this study, we showed that lidar measurements could be used as input data to predict 

and map stem total and assortment volumes through a RF framework. High levels of 

accuracy were found when predicting Vt, Vc and Vp volumes across variable stand ages of 

P. taeda using only H99TH and HSKEW as predictor variables. Lidar-derived H99TH 

represents the top of the canopy (height at 99th percentile) and HSKEW is a measure of the 
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asymmetry of height distribution, which is associated with the age of the stands because 

older trees are taller and cause a more negatively skewed distribution. Skewness and height 

percentile variables are logical selections for distinguishing between different volume levels 

based on distributional shapes and height frequencies (Van Aardt et al., 2006). In particular, 

these variables can explain changes in the volume distribution (Silva et al., 2016), thus 

providing a solid justification for inclusion in the predictive model. Our results suggest that 

models based on variables describing the height of the canopy and the symmetry of the 

distribution of the returns are capable of predicting stem total and assortment volumes across 

different tree ages in industrial P. taeda forest plantations. Height percentile lidar metrics, 

such as H99TH, and height distributional metrics, such as HSKEW, have been shown to be 

powerful metrics for modeling and predicting forest attributes (e.g., Næsset et al., 2007; 

Silva et al., 2017b; Hudak et al., 2017). 

A disadvantage of using the RF framework presented here is that RF models do not 

extrapolate predictions beyond the trained data, and consequently, as found herein, reduce 

the variance compared to the observations (Figure 2.5). However, an important advantage of 

non-parametric approaches, such as RF, is that they can model non-linear, complex 

relationships between the dependent and the independent variables more efficiently than 

parametric approaches (Mascaro et al., 2014). Furthermore, RF is insensitive to data skew, 

robust to a high number of variable inputs, and its implementation does not require pre-

stratification by forest type (Breiman 2001; Mascaro et al., 2014; Silva et al., 2017b). From 

an overall statistical perspective, the predicted and observed volumes were equivalent, 

although our RF model validations showed a systematic tendency to overestimate small 

values and underestimate high values. The same was found in previous studies (e.g., Lopatin 

et al., 2016). According to one study (Ota et al., 2014), a possible cause might be that 

because the RF model estimates values by averaging the predictions of many decision trees, 

it might tend to underestimate when the predicted value is close to the maximum value of 

the training data. Similarly, when the estimated value is close to the minimum value of 

training data it might tend to overestimate. Other possible causes might be that we have a 

relatively small number of field plots, especially in the young and older stands. 
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Traditional forest inventory approaches are not effective in terms of costing and 

mobility especially in P. taeda forest plantations, where there is a need to monitor annual 

forest growth and properties are very large. Lidar remote sensing constitutes an important 

step towards operational wood procurement planning and is of high current interest to 

forestry organizations. Such technology is of great interest owing to their spatial sampling 

capabilities within plantations, and have had great reliability in forest inventory work in 

countries such as Norway, Canada, or the USA (e.g., Næsset 1997; Næsset 2002; Hudak et 

al., 2006; Coops et al., 2007). Moreover, the application of airborne lidar technology for 

Brazilian industrial management is relatively new. While some studies have showed that the 

cost of the forest inventory derived from lidar could be lower than conventional forest 

inventory (Tilley et al., 2004; Hummel et al., 2011), the cost of lidar data acquisition could 

still be high to monitor forest growth annually; however, lidar has the ability to provide 

wall-to-wall, accurate mapping of forest attributes at high spatial resolutions (e.g., Figures 

2.7 and 2.8).  

Traditional forest inventory approaches are based on sampling theory, and forest 

attributes measured at plot level are then used to infer inventory attributes for an entire stand 

(Silva et al., 2014). We showed here that lidar and RF machine learning combined can be a 

powerful tool for mapping forest attributes in P. taeda forest plantations. In practice, lidar-

derived maps of stem total and assortment volumes (Figures 2.7 and 2.8) allow the owners 

to evaluate the production and forest structure variability within stands in a spatially explicit 

manner, which is not possible in a traditional forest inventory of P. taeda. Also, such maps 

may allow managers to detect spatial patterns related to tree diseases, fire or forest clearing. 

Recently, a study carried out in Eucalyptus spp. forest plantations showed that lidar and 

RF could be combined to predict and map aboveground carbon at high spatial resolution (5 

m), even if the models are calibrated using field plots with area larger than the cell size used 

for mapping (Silva et al., 2017b). Therefore, future studies should be also test the ability of 

lidar and RF to map stem total and assortment volumes even at higher spatial resolution than 

presented in this study (e.g., Figures 7.2 and 8.2). Herein, we demonstrated the potential of 

combined lidar-derive metrics and RF to predict forest attributes through a lidar-plot based 

approach framework, however, to get even higher amount of details in P. taeda forest 
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plantations, RF could be also tested in a lidar-individual tree based approach. For instance, 

RF has been successfully used to impute individual tree height and volume in longleaf pine 

(Pinus palustris Mill.) forest in Southern USA (Silva et al., 2016); therefore, lidar and RF 

could be also used to predict stem total and assortment volumes at an individual tree level in 

P. taeda forest plantations, if carefully implemented. 

 

2.5. Conclusions 

Refining strategies for improving productivity of forest plantations requires accurate 

and detailed spatial information on forest structure and growing stock volume. In this study, 

we showed that airborne lidar data metrics can predict total, commercial and pulpwood 

volumes in a P. taeda forest plantation in Brazil. We found that different stem volumes can 

be estimated with high levels of accuracy from two lidar-derived variables describing the 

height and the shape of the vertical distribution of the height. The use of a model based on 

two variables suggests a higher generalization potential than models based on specific 

metrics that could result in over-fitting. However, this potential should be tested in other 

plantations and forested environments. Although airborne lidar data has not been adopted by 

paper companies operationally, our results show that the method used could be readily 

applied to support the supply chain of pulp and paper companies in Brazil or elsewhere. 
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Table 2.1. Statistics of the taper models. 

DBH (cm) Range Adj. R2 
SEE (%) 

dbh Volume 

0.0–17.9 0.96 9.58 11.55 

18.0–29.9 0.98 7.99 9.33 

30.0–70.0 0.98 7.52 8.21 

 
Table 2.2. Summary of stem volumes computed in the 50 field sample plots. 

Ages (I) 
Stem Total and Assortment Volumes (m3·ha−1) 

N 
Vt Vc Vp 

3 ≤ I < 5 56.25 ± 10.98 47.53 ± 12.15 45.67 ± 11.14 19 

5 ≤ I < 7 134.20 ± 30.77 124.67 ± 30.3 114.20 ± 23.41 22 

7 ≤ I < 9 169.50 ± 22.86 160.2 ± 22.20 129.50 ± 24.83 13 

Mean ± 

Sd 
113.70 ± 52.53 

103.86 ± 

52.99 
92.13 ± 42.11 Total = 50 

N = number of plots. 

 
Table 2.3. Airborne lidar system characteristics. 

Parameter Value 

Scan angle (°) +/−30° 

Footprint (m) 0.33 m 

Flight speed (km/h) 234.0 km/h 

Horizontal accuracy 10 cm 

Elevation accuracy 15 cm 

Operating altitude 666.17 m 

Scan frequency 300 kHz 

Pulse density 4 pulse m−2 
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Table 2.4. Lidar-derived canopy height metrics considered as candidate variables for predictive V models . 

Variable Description 

HMIN Height Minimum 

HMAX Height Maximum 

HMEAN Height Mean 

HMAD Height median absolute deviation 

HSD Height standard deviation 

HSKEW Height skewness 

HKURT Height kurtosis 

HCV Height coefficient of variation 

HIQ Height interquartile range 

HMODE Height mode 

H01TH Height 1th percentile 

H05TH Height 5th percentile 

H10TH Height 10th percentile 

H15TH Height 15th percentile 

H20TH Height 20th percentile 

H25TH Height 25th percentile 

H30TH Height 30th percentile 

H35TH Height 35th percentile  

H40TH Height 40th percentile 

H45TH Height 45th percentile 

H50TH Height 50th percentile 

H55TH Height 55th percentile 

H60TH Height 60th percentile 

H65TH Height 65th percentile 

H70TH Height 70th percentile 

H75TH Height 75th percentile 

H80TH Height 80th percentile 

H90TH Height 90th percentile 

H95TH Height 95th percentile 

H99TH Height 99th percentile 

CR Canopy Relief Ratio ((HMEAN − HMIN)/(HMAX − HMIN))  

COV Canopy Cover (Percentage of first return above 1.30 m) 
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Table 2.5. Pearson’s correlations among lidar metrics selected. 

r HMIN HCV HIQ HSKEW HKUR H99TH COV 

HCV −0.45 **       

HIQ 0.14 −0.09      

HSKEW −0.30 ** 0.83 *** −0.36 *     

HKUR 0.27 −0.81 *** 0.07 −0.82 ***    

H99TH 0.39 ** −0.80 *** 0.61 *** −0.81 *** 0.77 ***   

COV 0.23 −0.74 *** 0.12 −0.67 *** 0.53 *** 0.58 ***  

“***”: p-value < 0.001; “**”: p-value < 0.01; “*”: p-value < 0.05; If there is no *: p-value > 

0.05. 

 
Table 2.6. Mean of the model improvement ratio (MIR) among the remained lidar-derived metrics not highly correlated. 

The bold represents the highest MIR values. 

Atributes 
Lidar-Derived Metrics 

HMIN HCV HIQ HSKEW HKUR H99TH COV 

Vt 0.16 0.40 0.18 0.75 0.31 0.99 0.12 

Vc 0.15 0.39 0.17 0.77 0.30 0.99 0.10 

Vp 0.16 0.65 0.20 0.74 0.38 0.98 0.11 

 

 
Table 2.7. Model accuracies per stem volume type. The average and standard deviation of Adj. R2, RMSE 

and bias derived from the 500 bootstrap runs are displayed. 

Volume Adj. R2
 

RMSE Bias 

m3·ha−1 % m3·ha−1 % 

Vt 0.94 ± 0.02 12.02 ± 2.78 9.80 ± 2.18 −0.58 ± 2.85 −0.45 ± 2.30 

Vc 0.95 ± 0.02 11.67 ± 2.76 10.31 ± 2.76 −0.95 ± 2.80 −0.82 ± 2.45 

Vp 0.91 ± 0.04 11.83 ± 2.56 12.10 ± 2.57 −0.49 ± 2.73 −0.54 ± 2.77 

 
 

Table 2.8. Model accuracies of random forest (RF) models per stem volume in terms of Adj.R2, Root Mean Square Error 

(RMSE) and bias calculated by the relationship between predicted and observed stem volumes. 

Volume 
Lidar Derived 

Metrics 
Adj. R2 

RMSE Bias 

m3·ha−1 % m3·ha−1 % 

Vt  0.97 8.91 7.83 −0.19 −0.17 

Vc H99TH + HSKEW 0.98 8.00 7.71 −0.12 −0.12 

Vp  0.96 7.96 8.63 −0.22 −0.24 
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Figure 2.1. Location of study area in Telêmaco Borba, Paraná, Brazil. The black dots indicate the location of the Pinus 

taeda stands. 

 

 
Figure 2.2. Process of forest volume measurement. (A) Pinus plantation; (B) Timber harvester and (C) Log segmentation 

for classes of volume measurements. 
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Figure 2.3. Procedure for predicting stem total and assortment volumes in an industrial P. taeda forest plantation using 

airborne laser scanning data and random forest. 

 

 

 
Figure 2.4. Distribution of observed (black line) and predicted (red line) stem volume from RF. The gray histograms are 

based from field data. (A) Total volume (Vt) (B) Commercial volume (Vc) and (C) Pulpwood volume (Vp). 
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Figure 2.6. Predicted Vt, Vc and Vp of P. taeda at stand-level for the studied stands. (A) 3–5 years; (B) 5–7 years and (C) 

7–9 years. The thick line in the box indicates the median value of the predicted stem volume. Boxes extend from the 25th to 

the 75th percentile, whiskers extend 1.5 times the length of the interquartile range above and below the 75th and 25th 

percentiles. The white dot is the mean of the predicted stem volume, and the vertical red lines represent the standard 

deviation around the mean (Mean ± SD). 

 

 

 

 
Figure 2.7. Predicted Vt (A1–C1), Vc (A2–C2) and Vp (A3–C3) of P. taeda at the stand-level obtained from the RF 

models. Representative stand of early (i.e., 3–5 years) (A1–3), intermediate (i.e., 5–7 years) (B1–3) and advanced-stages of 

development (i.e., 7–9 years) (C1–3). 
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Figure 2.8. Coefficient of variation (CV) maps in percentage (%) of Vt (A1–C1), Vc (A2–C2) and Vp (A3–C3) of P. taeda 

at the stand-level obtained from the 500 RF bootstrapped runs. Representative stand of early (i.e., 3–5 years) (A1–3), 

intermediate (i.e., 5–7 years) (B1–3) and advanced stages of development (i.e., 7–9 years) (C1–3). 
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Chapter 3. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and 

Changes in a Selectively Logged Tropical Forest 

 

Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Klauberg, C.; Garcia, M.; Ferraz, A.; Keller, M.; 

Eitel, J.; Saatchi, S. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks 

and Changes in a Selectively Logged Tropical Forest. Remote Sensing. 2017, 9, 1068. 

 

Abstract  

 

Airborne lidar is a technology well-suited for mapping many forest attributes, including 

aboveground biomass (AGB) stocks and changes in selective logging in tropical forests. 

However, trade-offs still exist between lidar pulse density and accuracy of AGB estimates. 

We assessed the impacts of lidar pulse density on the estimation of AGB stocks and changes 

using airborne lidar and field plot data in a selectively logged tropical forest located near 

Paragominas, Pará, Brazil. Field-derived AGB was computed at 85 square 50 × 50 m plots 

in 2014. Lidar data were acquired in 2012 and 2014, and for each dataset the pulse density 

was subsampled from its original density of 13.8 and 37.5 pulses·m−2 to lower densities of 

12, 10, 8, 6, 4, 2, 0.8, 0.6, 0.4 and 0.2 pulses·m−2. For each pulse density dataset, a power-

law model was developed to estimate AGB stocks from lidar-derived mean height and 

corresponding changes between the years 2012 and 2014. We found that AGB change 

estimates at the plot level were only slightly affected by pulse density. However, at the 

landscape level we observed differences in estimated AGB change of >20 Mg·ha−1 when 

pulse density decreased from 12 to 0.2 pulses·m−2. The effects of pulse density were more 

pronounced in areas of steep slope, especially when the digital terrain models (DTMs) used 

in the lidar derived forest height were created from reduced pulse density data. In particular, 

when the DTM from high pulse density in 2014 was used to derive the forest height from 

both years, the effects on forest height and the estimated AGB stock and changes did not 

exceed 20 Mg·ha−1. The results suggest that AGB change can be monitored in selective 

logging in tropical forests with reasonable accuracy and low cost with low pulse density 

lidar surveys if a baseline high-quality DTM is available from at least one lidar survey. We 
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recommend the results of this study to be considered in developing projects and national 

level MRV systems for REDD+ emission reduction programs for tropical forests.  

 

Keywords: lidar; humid tropical forest; biomass change; pulse density; MRV 

 

3.1 Introduction 

The Amazon is the largest remaining tropical forest in the world, however, its original 

extent has been steadily reduced due to deforestation and forest degradation, although 

deforestation rates in Brazil have decreased by 70% since 2004 (Hansen et al., 2013; Neptad 

et al., 2014). In recent decades, selective logging of valuable tree species has been an 

important land use of tropical forest in the Brazilian Amazon (Matricardi et al., 2010; Vidal 

et al., 2016). Selective logging timber extraction removes only the most valuable tree 

species from the forest (Hansen et al., 2013). It contributes substantially to gross carbon 

fluxes from the Brazilian Amazon and in other tropical regions as well (Asner et al., 2005). 

Selective logging has continued apace with degradation from forest fires and forest 

fragmentation, and may also degrade the Amazon forest through long term changes in 

structure, loss of forest carbon and species diversity (Longo et al., 2016). Characterizing the 

spatial distribution of forest structure, aboveground biomass (AGB), and AGB changes are 

important prerequisites for understanding carbon cycle dynamics and for monitoring the 

impact of selective logging in tropical forests over time (d’Oliveira, 2012). Accurate, 

landscape-wide estimates of AGB stocks and changes from selective logging in tropical 

forest are also desired for ongoing climate mitigation efforts to Reduce Emissions from 

Deforestation and Forest Degradation (REDD+) and for Measuring, Report and Verification 

(MRV) systems (d’Oliveira, 2012; Andersen et al., 2014). 

Airborne lidar is a technology well-suited to measure forest structure and estimate AGB 

stocks and changes in tropical forests (e.g., Andersen et al., 2014; Asner et al., 2014; Drake 

et al., 2002a; Drake et al., 2002b; Dubayah et al., 2010; Meyer et al., 2013). Lidar can 

provide high resolution, three-dimensional information on forest structure and the 

underlying topography (Silva et al., 2016). Recently, d’Oliveira et al. (2012) and Andersen 

et al. (2014) have used airborne lidar for detecting selective logging activities and mapping 
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AGB stocks and changes in the Brazilian Amazon forest. To monitor selective logging 

impacts on forest structure and AGB changes over large areas, multiple lidar data 

acquisitions must be acquired that increase the cost of data collection and processing over 

time. Many factors influence the cost of lidar data, including variables such as project size, 

location and deliverables, as well as market variables, such as competition amongst lidar 

vendors. A major variable that affects the cost of acquisition of lidar data is the pulse density 

(Magnusson et al., 2007), defined as the number of pulses emitted by the sensor per m2 

(pulses·m−2) (Evans et al., 2009). As pulse density increases, so does acquisition cost, due to 

the direct link between pulse density, aircraft altitude and flight time (Jakubowski et al., 

2013; Le Quéré et al., 2015). 

While airborne lidar can facilitate timely and accurate estimates of forest structure in 

tropical forest, trade-offs still exist between lidar pulse density and accuracy. For instance, it 

is unclear how much the lidar pulse density can be reduced and still maintain an adequate 

level of accuracy for AGB change estimation in tropical forests. Leitold et al. 2015 and Ota 

et al. 2015 have carried out studies to examine the relationship between lidar pulse density 

and AGB stock estimation accuracy in tropical forests. Even though they found that AGB 

can be accurately estimated from lidar using low-pulse density, neither of these authors 

assessed the impact of pulse density on estimating and mapping AGB stocks and AGB 

change at landscape level, and in the context of selectively logged tropical forest. Here, we 

focus on the impacts of pulse density in estimating AGB change in tropical forests and 

provide recommendations for specification of lidar data acquisitions for forest monitoring, 

REDD+ projects and MRV systems. We work with data collected in an eastern selectively 

logged Amazonian forest and lidar data with high pulse density acquired in 2012 and 2014. 

The study quantifies how reduced pulse density reduces the accuracy of AGB stock and 

AGB change estimation at plot and landscape levels. We evaluate accuracy based on lidar 

data acquired over dense tropical forests with variations of terrain characteristics and 

topography. The results of our study are then discussed in the context of implementation of 

airborne lidar systems in monitoring forest AGB change for REDD+ and emission reduction 

programs. 
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3.2 Material and Methods 

3.2.1. Study Area 

The study was conducted at the Fazenda Cauaxi in the Paragominas Municipality of 

Pará State, Brazil, in the eastern Amazon (Figure 3.1). The climate of the Cauaxi region is 

typically humid, with an average annual temperature of about 25 °C and an average annual 

precipitation of 2200 mm, which primarily falls between the months of January and June 

(Alvares et al., 2013). The forest is predominantly classified as tropical dense moist forest 

(IBGE, 2004). The terrain ranges from flat to steep slopes and the soils within the region are 

classified predominately as dystrophic yellow latosols following the Brazilian classification 

system (RadamBrazil 1983). The study area is divided into 12 logging units, where ten of 

them have been logged through the reduced-impact logging (RIL) since 2007 and the 

remaining two are still unlogged (Figure 3.1d). 

 

3.2.2. Field Data Collection 

A total of 22 field transects of 20 × 500 m were stratified randomly across the study 

area in 2012, and 88 plots of 50 × 50 m (0.25 ha) were spaced at 100 m intervals along the 

transects in 2014. In the field, plot corners were registered using differential GNSS 

(GeoXH6000, Trimble Navigation, Ltd., Dayton, OH, USA). At each plot, a sub-plot (strip) 

along one side of the plot with dimensions of 5 × 50 m (250 m2) was also demarcated. 

Because three of the plots were not covered by the lidar data, we selected 85 plots for further 

analysis. For each plot, all living trees with diameter at breast height (dbh) ≥ 35 cm were 

identified by parataxonomists familiar with the flora of the region and their dbh measured. 

In the sub-plots, all trees with dbh ≥ 10 cm were measured. Dbh was measured at 1.3 m 

above ground or above buttresses. A total of 1757 living trees were measured. The AGB 

(kg) of each tree was estimated using the Chave et al. 2014 Equation (3.1).  

 

AGB (kg) = 𝑒𝑥𝑝[−1.803 − 0.976E + 0.976 ln(𝜌) + 2.673 ln(dbh)

− 0.0299[ln(dbh)]2)] 
(3.1) 
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where AGB (kg) is the live tree aboveground biomass in Kg; dbh is the diameter at breast height 

(1.30 m); 𝝆 is the wood density and E is a measure of environmental stress. In this study area 

location E = −0.103815. 

The total live aboveground biomass (AGB) of the plots and sub-plots was obtained by 

aggregating the individual tree biomass values and converting to Mg·ha−1. The summary of 

the dbh and AGB measurements in 2014 at the sample plots is presented in Table 3.1.  

 

3.2.3. Lidar Data Acquisition and Processing 

Airborne lidar data were collected as part of Sustainable Landscapes Brazil, a joint 

project of the Brazilian Corporation of Agricultural Research Corporation (EMBRAPA) and 

the United States Forest Service. The first lidar acquisition occurred in July of 2012 with a 

pulse density of 13.8 pulses·m−2, with the second lidar collection in December of 2014 with a 

pulse density of 37.5 pulses·m−2. The total area covered by the lidar survey for the 

multitemporal analysis was 1200 ha. The data attributes of the lidar sensor and flight 

characteristics are listed in Table 3.2.  

 

The lidar data processing can be summarized in three steps:  

(i) Lidar data thinning: Lidar data from both 2012 and 2014 were thinned from the original 

pulse density of 13.8 and 37.5 pulses·m−2 to lower densities of 12, 10, 8, 6, 4, 2, 0.8, 

0.6, 0.4 and 0.2 pulses·m−2. An example of the pulse density reduction is shown in 

Figure 3.2. The reduction of pulse density was executed using the algorithm 

implemented in the ThinData utility of the FUSION toolkit (McGauchey 2015). The 

algorithm first identifies all the returns that belong to a pulse, and randomly reduces the 

number of pulses until achieving the desired pulse density within a certain grid cell size 

(e.g., in this case 50 m). To evaluate the uncertainty in the thinning process, we 

generated 30 random replicates for each lidar dataset and target density.  

(ii) Digital terrain models and lidar data above ground height normalization: Ground 

returns were classified using the Progressive Triangulated Irregular Network (TIN) 

densification algorithm implemented in lasground (Isenburg 2016) (settings: step is 10 m, 

bulge is 0.5 m, spike is 1 m, offset is 0.05 m), and 1 m DTMs were created for each of 
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the reduced pulse density datasets using the blast2dem utility in Lastools [25]. 

Afterwards, the lidar datasets were normalized to height aboveground by subtraction of 

the DTM elevation from the Z coordinate of each return projected above the ground. In 

particular, the impacts of pulse density were assessed under two DTM scenarios. First, 

under the DTM scenario DS1, where the lidar datasets from both 2012 and 2014 were 

height normalized using the DTMs created from their respective thinned dataset. 

Second, under the DTM scenario DS2, where to simulate the impact of pulse density on 

subsequent acquisition, the DTMs generated at the highest pulse density (37.5 

pulse·m−2) from 2014 were used to normalize the lidar datasets from both 2012 and 

2014.  

(iii) Lidar-derived Mean Height (HMEAN): In this study, HMEAN, the mean height of all 

returns above 1.3 m in height, was computed at plot and landscape levels. Herein, even 

though the plot corners were geolocated with differential GNSS to within < 1 m in most 

cases (Longo et al., 2016), we chose to optimize plot location to reflect canopy 

conditions. It is common to find trees with crown diameters larger than 30 m in the 

study area. When large tree stems are found outside of a plot, substantial proportions of 

their crowns may fall inside a plot thereby influencing lidar metrics such as HMEAN. 

To avoid these effects, we iteratively shifted each plot within a 25 m square 

neighbourhood on the lidar canopy height model (CHM) for improved co-registration, 

and consequently to achieve a better correlation between AGB and HMEAN. After this 

procedure, we observed that the plot centers were moved an average of 18.38 m (sd ± 

6.32 m) from the initial plot locations. Finally, at the landscape level, HMEAN was 

computed in grids with a cell size of 50 m × 50 m.  

 

3.2.4. Aboveground Biomass Change Estimation and Mapping 

For both DTM scenarios described in Section 2.3, we used the nls function in R (R Core 

Team 2016) to calibrate the relationship between plot level AGB measurements and lidar-

derived HMEAN. Non-linear least-squares regression models (the power-law models) were 

used to model AGB across 30 replicates of each reduced target density in 2014, and used to 

predict and map AGB stocks in 2012 (AGB2012) and 2014 (AGB2014) at plot and landscape 
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levels. The AGB change (∆𝐴𝐺𝐵(2014−2012)) estimation was then computed as the difference 

in AGB prediction from 2012 to 2014. 

 

AGB2014 =  𝑎2014 ∗  HMEAN2014
𝑏2014 (3.2) 

AGB2012 =  𝑎2014 ∗  HMEAN2012
𝑏2014 (3.3) 

∆𝐴𝐺𝐵(2014−2012) =  AGB2014 −  AGB2012 (3.4) 

 

where 𝒂𝟐𝟎𝟏𝟒 and 𝒃𝟐𝟎𝟏𝟒 are the estimates’ parameters of the power-law models in 2014. 

Leave-one-out cross-validation (LOOCV) was developed (e.g., Silva et al., 2016), and the 

prediction precision of the LOOCV models was evaluated in terms of the coefficient of 

determination (R2), absolute and relative Root Mean Square Error (RMSE), and absolute 

and relative bias from the linear relationship between observed and LOOCV predicted AGB 

values: 

 RMSE = √
∑ (�̂�𝑖 − 𝑦𝑖)𝑛

𝑖=1
2

𝑛
 (3.5) 

Bias =
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 (3.6) 

 

where n is the number of plots, 𝑦𝑖 is the observed value for plot i, and �̂�𝑖 is the predicted 

value for plot i. Moreover, relative RMSE and bias were calculated by dividing absolute 

RMSE and bias (Equations 3.5 and 3.6) by observed AGB mean. In order to have prediction 

accuracy equal to or higher than a conventional forest inventory in tropical forest, we 

defined accepted model accuracy as relative RMSE and bias of ≤ 20%.  

At the landscape level, maps representing the mean and standard deviation of AGB 

stocks and AGB changes from the 30 replications were calculated and used as final 

estimates to assess the impact of pulse density. The mean of AGB stocks in 2012 and 2014 

and AGB changes from the final maps were computed as follows:  
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𝐴𝐺�̂�2012 =  
1

𝑛
∑ AGB𝑘2012

𝑛

𝑘=1

  (3.7) 

𝐴𝐺�̂�2014 =  
1

𝑛
∑ AGB𝑘2014

𝑛

𝑘=1

  (3.8) 

∆𝐴𝐺�̂�(2014−2012) =  
1

𝑛
∑ ∆𝐴𝐺𝐵𝑘(2014−2012)

𝑛

𝑘=1

 (3.9) 

 

where 𝐴𝐺�̂�2012, 𝐴𝐺�̂�2014 and ∆𝐴𝐺�̂�(2014−2012) are the mean estimated AGB stock in 2012 

and 2014 and mean estimated AGB change, respectively. AGB𝑘2012
, AGB𝑘2014

 and 

∆𝐴𝐺𝐵𝑘(2014−2012)
 are the predicted AGB stocks in 2012 and 2014 and their changes at the 

pixel k, respectively.  

An uncertainty analysis of the 𝐴𝐺�̂�2012 and 𝐴𝐺�̂�2014 at landscape level for each pulse 

density target and DTM scenario was also performed by integrating the pixel level errors 

and accounting for spatial autocorrelation of the errors as follows (McRoberts 2006; 

Weisbin et al., 2014; Garcia et al., 2017): 

 

𝜎𝐴𝐺𝐵
2̂ =

1

𝑚2
∑ ∑ 𝑐𝑜𝑣(𝜎𝑖,𝜎𝑗)

𝑚

𝑗=1

𝑚

𝑖=1

=
1

𝑚2
(∑ 𝜎𝑖

2 + 2 ∑ ∑ 𝜌(𝑑)

𝑚

𝑖<𝑗

𝑚

𝑖=1

𝑚

𝑖=1

𝜎𝑖𝜎𝑗)  (3.10) 

 

where 𝜎𝐴𝐺𝐵
2̂  is the variance of the estimator for the mean AGB stock for the entire study 

area; m is the number of pixels in the area; ρ(d) is the spatial autocorrelation function of the 

distance, d, based on an exponential semi-variogram model; and 𝜎𝑖 is the estimated standard 

error of AGB stock values at the i-th pixel.  

The variance of the estimator of the mean 𝜎∆𝐴𝐺𝐵
2̂  at landscape level was computed as: 

 

𝜎∆𝐴𝐺𝐵
2̂ = 𝜎𝐴𝐺𝐵(2012)

2 ̂ + 𝜎𝐴𝐺𝐵(2014)
2 ̂ − 2𝐶𝑜𝑣(𝐴𝐺𝐵2012

̂ , 𝐴𝐺𝐵2014
̂ ). (3.11) 
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where the variances (𝜎𝐴𝐺𝐵(2012)
2 ̂  and 𝜎𝐴𝐺𝐵(2014)

2 ̂ ) were computed as described in Equation 

(3.10) and the cross-time covariance of the AGB was computed according to McRoberts et 

al., (2014): 

 

𝑐𝑜𝑣(𝐴𝐺𝐵2012, 𝐴𝐺𝐵2014) =
1

𝑚2
∑(𝜎𝑖(2012) −  𝜎𝑖(2012)̂ )(𝜎𝑖(2014) − 𝜎𝑖(2014)̂ )

𝑚

𝑖=1

 (3.12) 

 

3.2.5. Assessing Effects of Pulse Density on Lidar-Derived Mean Canopy Height 

As the HMEAN values vary from one replication to another for a given plot and target 

density, we calculated the mean and standard deviation of HMEAN at the plot level across 

the 30 repetitions. The impacts of pulse density on HMEAN at plot level was then evaluated 

by the reliability ratio, which is the ratio of the variance of HMEAN among sample plots, to 

the total variance of the HMEAN across 30 repetitions (Fuller, 1987): 

 

Reliability ratio (RR) =
𝑆𝑢

2

𝑆𝑢
2+𝑆𝑤

2
 (3.13) 

 

where 𝑆𝑢
2 is the estimated among-plot variance of HMEAN and 𝑆𝑤

2  is the estimated average 

within-plot variance. Reliability ratio ranges from 0 (no reliability) to 1 (complete 

reliability), and large replication variance makes HMEAN a low reliability predictor of 

AGB. 

 

3.2.6. Assessing Impacts of Pulse Density on the Aboveground Biomass Stocks and Change 

Estimation at the Plot and Landscape Levels 

The impacts of the lidar pulse density on AGB stocks and AGB change estimations 

were assessed at the plot level by comparing the R2, relative and absolute RMSE and bias 

across pulse densities and DTM scenarios. Boxplots were created to compare the variability 

of LOOCV AGB stock estimates, RMSE and bias at plot level. Because we built a model for 

each repeated dataset and target density, we also calculated the mean and standard deviation 

of the 𝑎2014 and 𝑏2014 model parameters. The two-sided Kolmogorov-Smirnov (KS) (R 
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Core Team 2016) test was used to test if the distributions of the HMEAN, observed and 

LOOCV AGB stock estimates in 2014 differed significantly, with significance level of 0.05, 

across pulse densities and DTM scenarios. Moreover, besides the maps of AGB stock and 

changes, we created a map of the slope over the study area, and the impacts of the lidar 

pulse density on AGB stocks and change estimations were evaluated by the difference on 

the AGB estimates from 12 pulses·m−2 to lower pulse densities, in each DTM scenario and 

across slope gradients of 0 to 12%; 12 to 24% and 24 to 35%. An overview of the 

methodology is outlined in Figure 3.3. 

 

3.3 Results 

 

3.3.1. Impacts of Lidar Pulse Density on Mean Canopy Height (HMEAN)  

The impacts of the pulse density on the lidar derived HMEAN at plot level are shown 

in Figure 3.4. The mean of HMEAN among plots slightly varied from 20.47 (±2.89) to 20.93 

(±2.93) m and 20.32 (±2.90) to 20.33 (±2.91) m for DS1 and DS2 in 2012, and from 20.77 

(±2.77) to 20.92 (±2.87) m and 20.77 (±2.74) to 20.78 (±2.75) m for DS1 and DS2 in 2014, 

respectively. In 2014 the HMEAN variation among-plots was slightly higher than 2012, 

however, HMEAN was not significantly affected by pulse density and DTM scenario in 

both years (KS: D ≥ 0.014, p-value > 0.05) (Figure 3.4 (a1,a2)). The variability of HMEAN 

represented by the standard deviation (Figure 3.4 (b1,b2)) within plots for the 30 replications 

was larger at lower than at higher pulse densities for both DTM scenarios and years. 

Reduced pulse density resulted in a decreased reliability ratio (RR); however, RR still 

showed high stability of HMEAN across DTM scenarios and years with RR values higher 

than 0.96 (Figure 3.4 (c1,c2)). 

 

3.3.2. Effects of Lidar Pulse Density on AGB Modelling  

The parameters 𝑎2014 and 𝑏2014 of the models adjusted in 2014 to predict AGB from 

lidar-derived HMEAN for 2014 across scenarios and pulse densities are presented in Table 

3. Reduced pulse density resulted in increased variation of these parameter values in both 

scenarios, where DS2 showed less variation then DS1. For DS1 the mean of model 
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parameters 𝑎2014 and 𝑏2014 showed significant differences (KS: D ≥ 0.40, p-values ≤ 0.015) 

at pulse densities ranging from 0.2 to 4 pulses·m−2 compared to the value at 12 pulses·m−2; 

for DS2, significant differences from 12 pulses·m−2 (KS: D ≥ 0.46, p-values < 0.002) were 

found only at pulse densities ranging from 0.2 to 2 pulse·m−2. Both parameters 𝑎2014 and 

𝑏2014 showed significant differences (KS: D ≥ 0.47, p-values ≤ 0.002) at pulse densities 

ranging from 0.2 to 2 pulse·m−2 when compared at the same pulse density, but across 

scenarios. 

The performance of the models to estimate AGB stock in 2014 was further assessed 

by leave-one-out cross-validation. The HMEAN was an important lidar metric to explain 

AGB stock variation. Reduced pulse density resulted in decreased R2 and increased relative 

and absolute RMSE and bias for both DTM scenarios, particularly for DS1 (Figure 3.5). 

Mean R2 values ranged from 0.60 (±0.09) to 0.73 (±0.00) and 0.71 (±0.02) to 0.73 (±0.00) 

across pulse densities in DS1 and DS2, respectively, and showed significant differences 

(KS: D ≥ 0.37, p-value ≤ 0.034) at pulse densities ranging from 0.2 to 6 pulse·m−2 and from 

0.2 to 2 pulse·m−2 compared to the results at 12 pulses·m−2 in DS1 and DS2, respectively 

(Figure 5a). Mean relative RMSE values ranged from 18.81 (±0.06) to 22.80 (±0.270) % and 

18.81 (±0.06) to 19.50 (±0.69) %, across pulse densities in DS1 and DS2, respectively, and 

also showed significant differences (KS: D ≥ 0.37, p-values < 0.035) at pulse densities 

ranging from 0.2 to 6 pulse·m−2 and from 0.2 to 2 pulse·m−2 compared to the value at 12 

pulses·m−2 in DS1 and DS2, respectively (Figure 3.5(b1)). Bias was less affected by pulse 

density in DS2 than in DS1 (Figure 5(c1)). While mean bias across pulse densities ranged 

from −0.48 (±0.38) to −0.04 (±0.01) % in DS1, and showed significant differences (KS: D ≥ 

0.57, p-values < 0.001) at pulse densities ranging from 0.2 to 2 pulse·m−2 compared to at 12 

pulses·m−2, mean bias remained constant around 0.04% in DS2, and showed significant 

differences (KS: D ≥ 0.43, p-values < 0.006) only at pulse densities ranging from 0.2 to 0.6 

pulse·m−2 when compared to 12 pulses·m−2. 
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3.3.3. Impacts of Lidar Pulse Density on AGB Stocks and AGB Change Estimation at the 

Plot and Landscape Levels  

The AGB stocks estimates from the leave-one-out cross-validation at plot level are 

presented in Figure 3.6. In 2012, mean predicted AGB ranged from 226.81 (±76.29) to 

230.35 (±75.98) Mg·ha−1 and from 226.51 (±75.78) to 227.02 (±74.46) Mg·ha−1 across pulse 

densities for DS1 and DS2, respectively, and significant differences (KS: D ≥ 0.035, p-value 

≤ 0.03) were found at pulse densities ranging from 0.2 to 0.4 pulse·m−2 compared to the 

value at 12 pulses·m−2, but only in DS1. In 2014, mean predicted AGB ranged from 237.83 

(±74.37) to 238.89 (±70.21) Mg·ha−1 and 273.83 (±74.28) to 273.84 (±73.43) Mg·ha−1 

across pulse densities for DS1 and DS2, respectively, and significant differences (KS: D ≥ 

0.04, p-value ≤ 0.015) were found only at pulse densities ranging from 0.2 to 0.4 pulse·m−2 

compared to the value at 12 pulses·m−2, but only in DS1 as well (Figure 3.6(a1,a2)).  

The estimated AGB change among plots ranged from −163.845 to 354.29 Mg·ha−1 

and from −159.79 to 155.46 Mg·ha−1 across pulse densities for DS1 and DS2, respectively. 

The estimated mean AGB change among plots only ranged from 7.05 (±42.20) to 7.50 

(±60.20) Mg·ha−1 and 10.83 (±41.42) to 11.01 (±38.68) Mg·ha−1 across pulse densities for 

DS1 and DS2, respectively, and significant differences (KS: D ≥ 0.38, p-values ≤ 0.042) 

were found at pulse densities ranging from 0.2 to 0.8 pulse·m−2 and from 0.2 to 0.6 

pulse·m−2 compared to 12 pulses·m−2 in DS1 and DS2, respectively. The reduced pulse 

density increased the variance of the AGB estimates within plots across the 30 replicates, 

and showed significant differences (KS: D ≥ 0.59, p-values < 0.001) in the standard 

deviation of AGB stocks and changes, from 0.2 to 0.8 pulse·m−2 compared to the value at 12 

pulses·m−2. DS2 shows slightly less variation than DS1, but after pulse density reaches 

values higher than 0.8 pulses·m−2, both scenarios show very low and not significant 

differences in standard deviation of AGB stocks and changes within plots across replicates. 

Landscape-wide AGB stock and change estimations were mapped at a 50 m × 50 m 

grid cell size based on the mean of the 30 replicated AGB maps derived in 2012 and 2014, 

and their AGB changes (Figures 3.S1–3.S3). Reduced pulse densities and DTM scenarios 

did not affect mean predicted AGB at landscape level, and showed no statistically 

significant differences (KS: D ≤ 0.02, p-value > 0.05). The AGB stocks at landscape level in 
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2012 and 2014 ranged from 43.90 to 811.33 Mg·ha−1 and from 42.42 to 853.00 Mg·ha−1, 

respectively, while predicted AGB changes ranged from −406.78 to 177.00 Mg·ha−1 in DS2 

at 12 pulses·m−2 (Figure 3.7a–c). The estimated mean AGB change for the entire study area 

ranged from 15.88 (±33.09) to 19.69 (±37.71) Mg·ha−1 and 22.58 (±37.22) to 23.26 (±38.25) 

Mg·ha−1 across pulse densities for DS1 and DS2, respectively. Figure 3.7c,d show the AGB 

changes in an unlogged and logged unit at 0.2 and 12 pulses·m−2 in DS1 while Figure 3.7e,f 

show the AGB changes in the same logged units and pulse density, but in DS2. The 

estimated mean AGB stocks and AGB changes and their uncertainties across pulse density 

and DTM scenarios are presented in Table 3.4. 

Landscape-wide standard deviation of estimated AGB change was also mapped at a 50 

m × 50 m grid cell resolution (Figure 3.8c,d and Figure 3.S4); reduced pulse density 

increased variation in estimated AGB change within replicates, and showed large standard 

deviation of AGB at 0.2 pulses·m−2, for both DS1 and DS2 (Figure 3.8(c1,d1)). In general, 

the standard deviation of estimated AGB change was higher in DS1 than DS2. Landscape-

wide elevation and slope were also mapped (Figure 3.8a,b), and for both DS1 and DS2 the 

large variability in AGB change occurred in high slope areas, reaching up to 33 Mg·ha−1 in 

areas with slopes ranging from 24 to 36% (Figure 3.8(c1)).  

Estimated AGB change at landscape level at pulse densities ranging from 0.2 to 10 

pulses·m−2 were compared with those estimates at 12 pulses·m2 across slopes and DTM 

scenarios (Figure 3.9a–c). In general, when compared with the AGB change estimates from 

12 pulses·m−2, reduced pulse density underestimated AGB change at landscape level in 

areas with slopes higher than 12% and showed significant differences (KS: D ≥ 0.45, p-

value > 0.001) at pulse densities ranging from 0.2 to 0.8 pulses·m−2, but only for DS1 at 

slopes of 12–24% (Figure 3.9b) and 24–35% (Figure 3.9c). At slopes of 0–12% (Figure 

3.9a), reduced pulse density increased the difference in AGB change when compared with 

those estimates at 12 pulses·m2 in both DS1 and DS2, but their differences were no higher 

than 20 Mg·ha−1 (Figure 3.9a).  
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3.4. Discussion 

This research assessed the impact of lidar pulse density on AGB stocks and changes 

estimations in an Amazon tropical forest. Previous studies have evaluated the impact of lidar 

pulse density on forest attribute estimation from lidar data (e.g., Hansen et al., 2015; 

Magnussen  et al., 2010; Strunk et al., 2012), yet few studies have evaluated the impacts of 

lidar pulse density on forest AGB stock estimates in tropical forest (Leitold et al., 2015; Ota 

et al., 2015; Singh et al., 2015). To our knowledge, this is the first study to assess the impact 

of airborne lidar pulse density on AGB stocks and AGB change estimations in tropical 

forest, and in the context of using an airborne lidar system in selective logging for 

monitoring forest AGB change for REDD+ and emission reduction programs. 

Many lidar-derived metrics have been used for modelling forest attributes (e.g., 

Næsset 2001; Næsset 2002; Næsset et al., 2008; Hudak et al., 2012; d’Oliveira et al., 2012; 

Silva et al., 2014; Silva et al., 2017b). Hansen et al., (2015) evaluated the effects of lidar 

pulse density on DTM and canopy structure metrics in a tropical forest and showed also that 

HMEAN was one of the most stable predictor variables for modelling forest attributes using 

airborne lidar data. In our study, under both DTM scenarios, reduced pulse density did not 

significantly affect the variability of HMEAN among plots. Magnusson et al., (2010) 

recommended a calibration of lidar models when the reliability ratio (RR) of one or more 

predictors is below 0.9. In our study, even though reduced pulse density increased the 

standard deviation of HMEAN within plots, the RR of HMEAN across all pulse densities 

and both DTM scenarios remained very high (RR > 0.9). Therefore, further calibration of 

models was not necessary. This is not surprising given that HMEAN, unlike other metrics 

such as the top mean canopy height (MCH), considers all returns above a certain height 

threshold (e.g., 1.37 m) to compute a vertical mean height, and therefore uses more 

information to describe the canopy structure. Unlike MCH, HMEAN is computed directly 

from the point cloud, and does not have any influence of CHM interpolation methods or grid 

cell size. Garcia et al., (2017) assessed the impact of lidar point density on the prediction of 

AGB across different forest ecosystems and found that predictions were more affected when 

using CHM-derived metrics then those computed directly from the 3D point cloud, even if 

the point density was as low as 1 point·m−2. Herein, we simulated low pulse density lidar 
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datasets by removing pulses randomly, however, other approaches of removing lidar pulses 

have also been found in the literature (Magnusson et al., 2007; Jakubowski et al., 2013; Le 

Quéré et al., 2015; Leitold et al., 2015; Magnussen et al., 2010; Tesfamichael et al., 2010) 

and may lead to different outcomes when considering the covarying effect of pulse density 

when survey parameters are changed. Nevertheless, our results on HMEAN variation 

patterns agree with a previous study (Hansen et al., 2015), and independent of the approach 

used, a realistic thinning approach on real lidar data is always extremely challenging (Lovell 

et al., 2005). 

In addition to the high stability, HMEAN correlated well with AGB, and we obtained 

linear relationships between observed and predicted AGB via LOOCV that explained at 

least 40% of the variation at the lowest pulse density (0.2 pulses·m−2) in DS1, for example. 

For comparison purposes, the R2 values were substantially greater than adjusted R2 = 0.43 

obtained by Leitold et al., (2015) using a regression model for predicting AGB stocks in the 

Brazilian Atlantic forest, but similar to those reported by d’Oliveira et al., (2012) and 

Andersen et al., (2014) using lidar for detecting and quantifying AGB changes in selective 

logging in western Amazonia, respectively. Herein, a substantial decrease in R2 and increase 

in RMSE and bias occurred when the pulse density was reduced from 12 pulses·m−2 to pulse 

densities lower than 2 pulses·m−2. For instance, AGB models under DS1 were much more 

affected at pulse densities ≤2 pulses·m−2. Magnusson et al. (2010) and Watt et al., (2014) in 

mixed conifer forests also evaluated the effect of lidar pulse density on the prediction 

accuracy of forest attributes under DS1 and DS2, and found increased RMSE at relatively 

low pulse densities. However, similar to findings by those authors, our predictions were 

more affected in DS1 than DS2. Nevertheless, in both scenarios, AGB stocks were 

underestimated. An underestimation of AGB stock with reduced pulse density was also 

found in Leitold et al., (2015), but as AGB stocks at low pulse densities were estimated from 

a single model adjusted at high pulse density, the author attributed the underestimation to a 

systematic error in the DTM propagated to the canopy. Herein, the underestimation in AGB 

stock in DS1 is attributed to the deterioration of the DTM and HMEAN quality due to 

combined random effects derived from pulse density reduction, while in DS2, the 

underestimation in AGB stock is only attributed to the poor HMEAN quality. Moreover, as 
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we kept a constant interpolation method and grid size for DTM modeling in DS1 and DS2 as 

in Magnusson et al., (2010) and Watt et al., (2010), the pulse density is the only factor 

affecting the DTM and HMEAN quality. Therefore, the differences in R2, RMSE and bias 

between DS1 and DS2 were only attributable to the deteriorating DTM and HMEAN 

quality.  

In this study, we mapped AGB change at the landscape level at a spatial resolution of 

50 m. Therefore, unlike most previous studies (e.g., Hansen et al., 2015; Magnussen et al., 

2010; Strunk et al., 2012), we not only evaluated the impact of pulse density on AGB stocks 

estimation at plot the level, but also at the landscape scale. Andersen et al., (2014) used 

repeated lidar flights to monitor selective logging in western Amazonia, and AGB stock and 

changes maps were accurately derived from lidar data acquired in 2010 and 2011 with pulse 

densities of 25 pulses·m−2 and 14 pulses·m−2, respectively. In the study, the authors found 

that multi-temporal lidar data can be used to detect and quantify AGB changes due to 

selective logging activities, even when the level of AGB change is low (10–20 Mg·ha−1). 

While the pulse density was appropriate for the study, they are not economically feasible for 

large-area acquisitions and for monitoring selective logging over time. Hansen et al., (2015) 

suggest that canopy metrics derived from sparse pulse density ALS data can be used for 

AGB estimation in a tropical forest; however, the authors either estimated AGB or expanded 

the analysis to landscape level in their studies. Wilkes et al., (2015) found that structural 

metrics (canopy height, canopy cover and vertical canopy structure) derived from pulse 

densities < 0.5 pulses·m−2 returned larger differences, particularly for tropical forest. Herein, 

while our uncertainty analysis showed that reduced pulse density did not affect the accuracy 

of mean estimated AGB change at the landscape level in both DTM scenarios, reduced pulse 

density did significantly affect the standard deviation of estimated AGB change at the local 

scale, especially in areas of steeper slopes. However, this effect was only observed for the 

DS1 scenario at pulse densities ≤ 0.8 pulses·m−2. Variation in AGB estimates increased with 

decreasing pulse density; this is illustrated by mapped standard deviation at landscape level 

(Figure 3.8).  

From a carbon monitoring perspective, our results show that it is not necessary to 

acquire lidar data with pulse density higher than 0.2 pulses·m−2 for mapping AGB stocks 
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and AGB change in selective logging areas in the Amazonia when a DTM is already 

available from previously flown high pulse density airborne lidar. In cases where no such 

DTM already exists, our results suggest that a lidar data acquisition with a minimum pulse 

density of 2 pulses·m−2 is necessary. Furthermore, we have demonstrated that it is possible 

to capture AGB stocks and AGB change variability at the stand level even in steep terrain 

with low pulse density lidar under DS2 and with pulse density equal to or higher than 2 

pulses·m−2 in DS1. Despite the change in AGB stocks, selective logging can also 

substantially alter forest structure and affect tree survival, growth, and recruitment rates for 

up to a decade post-harvest (Shenkin et al., 2015). In this study, we did not evaluate the 

impact of pulse density for detecting forest impacts associated with selective logging, nor 

the combined effect of pulse density and plot size on AGB change estimation. Therefore, we 

suggest caution when acquiring new lidar datasets, because the accuracy of the AGB change 

estimates in selective logging areas may depend also on other factors, such as plot and grid 

cell sizes for sampling and mapping, which were not evaluated in this study. In some small, 

randomly distributed areas, AGB change was highly overestimated (AGB change ≥ 100 

Mg·ha-1), which is not biologically possible in only two years. These overestimates could 

result from subtracting AGB stocks predicted from models calibrated with only 2014 data, 

and may not have resulted had independent AGB models been calibrated with data from 

both years (e.g., Hudak et al., 2012). Also, these overestimates could be attributable to small 

co-registration errors (<0.5 pixel) between the two lidar surveys, but this would lead to a 

comparable number of randomly distributed underestimates. In summary, it is unlikely that 

these errors would alter the sensitivity analysis to pulse density. 

Although a quantitative evaluation of lidar data acquisition cost was not a central 

objective in this study, it is nonetheless an important factor to consider because it can be a 

primary factor driving choices made about forest and AGB monitoring across a wide range 

of spatial scales. Because pulse density has a strong influence on the acquisition cost of lidar 

data, and even though the cost for using lidar with high or low pulse density for AGB in 

tropical forest might be lower than the cost of a conventional inventory (Hummel et al., 

2015), airborne lidar can be cost prohibitive for forest carbon monitoring, in selected logged 

areas for REDD+ at large spatial extents. Although field-based AGB estimations remain 



91 
 

necessary for these purposes, integrating lidar remote sensing into AGB inventory schemes 

allows recovery of carbon content and spatially-explicit estimates across landscapes, while 

reducing the total costs and need for extensive field-based sampling. 

  

3.5. Conclusions 

We evaluated the impacts of airborne lidar pulse density on AGB stocks and AGB 

change estimation in a selectively logged Amazon tropical forest. First, we confirmed that 

HMEAN is a stable lidar-derived metric for estimating AGB stock in selective logging. 

Second, we found that the accuracy of AGB stocks and AGB change estimates decreased as 

the pulse density decreased, but it remained relatively high except at low pulse densities of 

0.8 and 0.2 pulses·m−2 for the DS1 and DS2 scenarios, respectively. Furthermore, AGB 

stocks estimations at the landscape level were strongly underestimated at pulse densities 

lower than 0.8 pulses·m−2 in areas with steep slopes, but only in DS1, where the lidar 

datasets from both 2012 and 2014 were height normalized using the DTMs created from 

their respective thinned dataset. Therefore, these results demonstrate that high lidar pulse 

density is not necessary to estimate and map AGB stock and changes in selective logging in 

tropical forest, especially when there is already an accurate DTM derived from high pulse 

density lidar. Third, we showed that low pulse density lidar data (~2 pulses·m−2) has the 

ability to map ground topography, allowing accurate estimation of canopy height even over 

rough terrain and as a baseline for subsequent low density lidar acquisition for AGB change 

studies. Lower point densities can cover larger areas at reasonable cost and be used to 

complement satellite remote sensing measurements, e.g., NISAR—National Aeronautics 

and Space Administration-Indian Space Research Organization Synthetic Aperture Radar 

(http://nisar.jpl.nasa.gov) and GEDI—Global Ecosystem Dynamics Investigation 

(http://science.nasa.gov/missions/gedi/), that may have limitations in estimating tree height 

in areas with complex topography. Finally, although we focus on AGB stocks and AGB 

change estimation in a selectively logged tropical moist forest in Brazil, our methodology 

may also be applicable for inventorying and monitoring AGB changes to support REDD+ 

monitoring efforts in selective logging elsewhere across the tropics. 
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Table 3.1. Summary of the AGB stocks at the sample plots. 

Field 

Attributes 
min max mean sd 

dbh (cm) 10.00 186.00 32.70 20.16 

AGB (kg·tree−1) 22.46 73700 1804 3684 

AGB (Mg·ha−1) 65.34 525.79 238.11 86.48 

 

Table 3.2. Details of lidar data acquisitions. 

Data Attributes 2012 2014 

Lidar system ALTM 3100 ALTM300 

Flight Altitude (m) 850 850 

Acquisition Date 27–29 July 2012 26–27 December 2014 

Scan Angle (°) 11 12 

Scanning Frequency (Kz; Hz) 59.8 83.0 

Pulse Density (pulses·m−2) 13.8 37.5 

Datum Sirgas 2000 Sirgas 2000 
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Table 3.4. Mean and standard deviation (Sd) of the parameters a and b for the AGB models in 2014. DS1: DTM Scenario 

1; DS2: DTM Scenario 2. Std Error is the estimated standard error derived from the uncertainty analysis. 

Pulse 

Density 

(pulse 

·m−2) 

AGB 2012 (Mg·ha−1) AGB 2014 (Mg·ha−1) ∆𝐀𝐆𝐁 (Mg·ha−1) 

Mean + Sd 
Std 

Error 
Mean + Sd 

Std  

Error 
Mean + Sd 

Std 

Error 

 DTM Scenario 1 (DS1) 

0.2 262.54 ± 78.93 1.12 278.42 ± 84.7 1.19 15.88 ± 33.09 2.64 

0.4 266.56 ± 87.63 1.23 284.49 ± 94.59 1.31 17.93 ± 36.04 2.80 

0.6 267.46 ± 89.5 1.25 286.00 ± 96.9 1.33 18.54 ± 36.61 2.80 

0.8 268.18 ± 90.7 1.27 287.08 ± 98.39 1.35 18.9 ± 37.03 2.82 

2 268.88 ± 92.26 1.29 288.41 ± 100.53 1.37 19.53 ± 37.71 2.84 

4 268.96 ± 92.61 1.29 288.66 ± 100.98 1.37 19.69 ± 37.86 2.84 

6 269.03 ± 92.79 1.29 288.74 ± 101.17 1.38 19.7 ± 37.92 2.85 

8 269.11 ± 92.85 1.29 288.70 ± 101.16 1.38 19.59 ± 37.96 2.88 

10 269.26 ± 93.01 1.29 288.70 ± 101.21 1.38 19.44 ± 38.08 2.93 

12 269.45 ± 93.17 1.30 288.73 ± 101.28 1.38 19.28 ± 38.22 2.97 

  DTM Scenario 2 (DS2) 

0.2 268.09 ± 90.32 1.26 291.3 ± 99.16 1.35 22.58 ± 37.22 2.41 

0.4 268.43 ± 91.41 1.28 291.90 ± 100.42 1.37 22.84 ± 37.61 2.44 

0.6 268.54 ± 91.8 1.28 292.14 ± 100.91 1.37 22.97 ± 37.8 2.44 

0.8 268.87 ± 92.25 1.29 292.59 ± 101.43 1.38 23.08 ± 37.98 2.45 

2 269.07 ± 92.77 1.29 292.92 ± 102.08 1.38 23.21 ± 38.22 2.47 

4 269.05 ± 92.81 1.29 292.95 ± 102.13 1.38 23.25 ± 38.22 2.47 

6 269.12 ± 92.92 1.29 293.02 ± 102.25 1.38 23.26 ± 38.25 2.48 

8 269.18 ± 92.96 1.29 292.98 ± 102.21 1.38 23.16 ± 38.29 2.49 

10 269.31 ± 93.1 1.30 292.98 ± 102.25 1.38 23.04 ± 38.4 2.52 

12 269.48 ± 93.23 1.30 292.99 ± 102.29 1.38 22.89 ± 38.52 2.56 
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Figure 3.1. Location of the study area. (A) South America and Brazil; (B) States of Pará and Paragominas city; (C) 

Paragominas city; (D) Airborne lidar coverage; (E) Field plots on the lidar-derived CHM. Reduced-impact logging (RIL).  
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Figure 3.2. A 3D illustration of airborne lidar pulse density reduction at the plot level (0.25 ha) in 2014.  
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Figure 3.3.  Flowchart of the lidar data processing for AGB stocks and AGB change estimation in tropical forest. The 

green panel to the left shows the lidar data processing (a) and the gray panel to the right shows the AGB stocks and change 

estimation steps (b). 
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Figure 3.4. Lidar-derived HMEAN (m) (a1-2); Standard deviation of HMEAN (m) for the sample plots (30 repetitions) 

(b1-2); Reliability Ratio for HMEAN (c1-2); 2012 (a1–c1) and 2014 (a2–c2); (n = 84). DS1 (orange): DTM scenario 1; 

DS2 (green): DTM scenario 2.  
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Figure 3.5. Boxplot of R2 (a), relative (b1–c1) and absolute (b2–c2) RMSE and bias for the AGB leave-one-out cross 

validation – LOOCV models. DS1 (orange): DTM Scenario 1; DS2 (green): DTM Scenario 2. 
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Figure 3.6. Boxplot of the AGB estimates for 2012 and 2014 (a1,b1), and AGB change (c1). Standard deviation of AGB 

stock in 2012 (a2), 2014 (b2) and AGB change (c2) (30 repetitions) (n = 84). 
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Figure 3.7. Map of AGB stock in 2012 (a), 2014 (b) and AGB change (c) at 12 pulse·m−2 in DS2. Zoom in the AGB 

change maps derived at 0.2 and 12 pulse·m−2 in DS1 (d,e) and DS2 (f,g) in an unlogged and logged unit. The maps were 

calculated as the mean of the 30 replicates. 
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Figure 3.8. Digital terrain model (a) and Slope (%) (b) maps of the study area at 12 pulses·m−2 in 2012; Standard deviation 

of AGB change at 0.2 pulses·m−2 for DS1 (c–c1) and DS2 (d–d1). 

 

 

Figure 3.9. Boxplot of the differences in predicted AGB change at stand level of 12 m−2 degraded to 0.2, 0.4, 0.6, 0.8, 2, 4, 

6, 8 and 10 pulses·m−2 in areas with slopes ranging from 0 to 12% (a), 12–24% (b) and 24–36% (c), under DS1 (orange) 

and DS2 (dark green). 
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Figure S3.1. Mean of the 30 replicates AGB stocks in 2012 at pulse density ranging from 0.2 to 12 pulse·m−2 in DS1 (a1–

j1) and DS2 (a2–j2). 
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Figure S3.2. Mean of the 30 replicates AGB stocks in 2014 at pulse density ranging from 0.2 to 12 pulse·m−2 in DS1 (a1–

j1) and DS2 (a2–j2).  
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Figure S3.3. Mean of the 30 replicates of AGB change at pulse density ranging from 0.2 to 12 pulse·m−2 in DS1 (a1–j1) 

and DS2 (a2–j2).  
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Figure S3.4. Standard deviation of the 30 replicates of AGB change at pulse density ranging from 0.2 to 12 pulse·m−2 in 

DS1 (a1–j1) and DS2 (a2–j2). 

 

 

 

 

 

 



112 
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Tropical Forest Aboveground Structure and Biomass: A Case Study from Central 

Gabon 

 

Silva, C.A.; Saatchi, S.; Garcia, M.; Labrière, N.; Klauberg, C.; Ferraz, A.; Meyer, V.; 

Jeffery, K. J.; Abernethy, K.; White, L.; Zhao, K.; Lewis, S.; Hudak, A. T. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, under consideration. 

 

Abstract 

 

The NASA Global Ecosystem Dynamic Investigation (GEDI) has been designed to capture 

variation in forest structure using large-footprint lidar waveform sampled as it orbits the 

Earth while aboard the International Space Station. In this paper, we compared the retrieval 

of ground elevation, vegetation height and biomass from airborne small-footprint (SF) and 

large-footprint (LF) lidar sensors. The study focuses on Lope National Park in Central 

Gabon, in an area that encompasses a gradient of successional stages of forest development 

with different height, canopy density and topography. Airborne and ground data were 

collected during the AfriSAR campaign in Gabon. The comparison of the two sensors shows 

that LF lidar waveforms are equivalent to simulated waveforms from SF lidar for retrieving 

ground elevation (RMSE=0.5 m, bias=0.29 m) and maximum forest height (RMSE=2.99 m; 

bias=0.24 m). Comparison of gridded LF lidar height with ground plots showed that an 

unbiased estimate of aboveground biomass at 1-ha can be achieved with sufficient number 

of large footprints (> 3). Our results confirm the capability of LF lidar, as planned for the 

GEDI mission, to measure the complex structure of humid tropical forests and to provide 

estimates of forest aboveground biomass comparable to SF. 

 

Keywords:  Lidar, LVIS, GEDI, Gabon, Tropical Forest, AfriSAR 
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4.1 Introduction 

 

The NASA Global Ecosystem Dynamics Investigation Lidar (GEDI) space mission 

is planned to be onboard the International Space Station (ISS) for two years beginning late 

2018. The sensor will collect 25m diameter footprint full-waveform lidar data to help 

characterize vegetation structure and aboveground biomass globally, and report on 

aboveground biomass dynamics across landscapes. Lidar is an active remote sensing 

technique that is well-suited to providing high resolution, three-dimensional information on 

vertical and horizontal forest structures and underlying topography (Maltamo et al., 2014). 

Over the past few decades, lidar has been used to accurately retrieve ground and 

aboveground forest attributes, such as aboveground biomass (AGB), in temperate (e.g., 

García et al., 2010; Hudak et al., 2012), boreal (e.g. Næsset 1997; Næsset 2002) and tropical 

forests (e.g., Drake et al., 2002a; Clark et al., 2004; Saatchi et al., 2011). Lidar systems for 

forestry applications are distinguished based on platform type (e.g., terrestrial, airborne or 

spaceborne), signal recording (discrete return or full-waveform), footprint size (e.g. small 

i.e., < 1m or large i.e., 10-25m in diameter) and sample scanning pattern (profiling or 

scanning) (Dubayah et al., 2000; Lu et al., 2012). The most common lidar systems used in 

forestry applications have been small-footprint (SF) discrete return lidar and large-footprint 

(LF) full-waveform (FW) lidar. SF lidar sensors record discrete heights at peak return of 

light and are typically flown on airborne platforms or operated on the ground, while LF FW 

lidar sensors record a continuous height distribution of surfaces illuminated by the laser 

pulse and are found mainly on spaceborne platforms, such as the GLAS (Geoscience Laser 

Altimeter System) sensor (Lefsky et al., 2012). LVIS (Land, Vegetation, and Ice Sensor) is a 

LF lidar sensor on airborne platforms that provides coverage of large areas and can be used 

to simulate the characteristics of spaceborne observations such as GEDI (Qi et al., 2016). In 

both LF and SF systems, canopy height metrics (i.e., maximum height, height percentiles 

and canopy cover) can be derived from the recorded returned signals and may be used to 

retrieve aboveground forest structural properties. For example, Lefsky et al., (2010) used the 

GLAS data to produce a global map of forest height and Saatchi et al., (2011) converted the 

GLAS height metrics to aboveground biomass to produce a benchmark map of carbon 
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stocks of tropical forests across three continents. Drake et al., (2002a) and Drake et al., 

(2002b) used metrics derived from LVIS to estimate a variety of forest attributes, including 

AGB, over a tropical forest area at the La Selva Biological Station, Costa Rica. Asner and 

Mascaro (2014), using SF lidar, developed a series of aboveground carbon density models 

by calibrating the plot estimates to simple lidar metrics. The LF and SF lidar sensors have 

been compared over temperate forests to demonstrate the similarity and differences in 

measuring the structural characteristics of forests, such as canopy height (Blair et al., 1999; 

Popescu et al., 2011). However, examples of such studies over tropical forests with dense 

and structurally complex canopy cover are scarce. Meyer et al., (2013) used the two lidar 

datasets to examine changes in forest biomass over time, and Fricker et al. (2012) used the 

two types of observations to develop techniques to correct for LF lidar observations over 

topographically complex terrain in the tropics.  

Here, compare SF and LF lidar performance in quantifying the vertical structure and 

biomass across a forest-savanna boundary region encompassing a natural transition from 

grasslands (very low AGB) to very high aboveground biomass and structurally complex 

ancient afrotropical forests (>18,000 years), including many very large trees (>60m), located 

in central Gabon. The study focuses on variations of 3-D forest structure at the footprint and 

landscape scales. LF lidar and commercial SF lidar for the study site were collected as part 

of the NASA and European Space Agency (ESA) AfriSAR campaign with the goal of 

verifying the performance of future spaceborne lidar (GEDI) and radar sensors such as 

ESA’s BIOMASS mission and NASA-ISRO Synthetic Aperture Radar (NISAR) systems for 

ecosystem studies (Le Toan et al., 2011; Saatchi et al., 2011b) in quantifying vertical forest 

structure and AGB. The paper reports on the comparison of LF and SF data over Lopé 

National Park in central Gabon and examines the performance of LF simulated waveforms 

in detecting structure and estimating forest aboveground biomass. 

 

4.2 Material and method 

4.2.1 Study Area 

The study area is located in north Lopé National Park (LNP) in central Gabon (Figure 

4.1) and covers an area of approximately 50 km2 within the swath that will be surveyed by 
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the proposed BIOMASS satellite. LNP is located in the western Lower Congolian semi-

evergreen forests of central Africa (White et al., 1983) and is made up of dynamic, 

diversified vegetation types. Forest boundaries have been advancing, invading savanna 

grasslands under the influence of post-Pleistocene climate (White et al., 1983; White et al., 

1987, Maley et al., 1996), yet anthropogenic uses of fire (Ngomanda et al., 2009), together 

with the presence of elephant seed dispersal and browsing (Blake et al., 2009) have been 

modifying and maintaining the Lopé forest edge configuration and creating a complex 

system of forest types across the forest-savanna boundary. 

Annual rainfall at the study area averages 1500 mm (SEGC data, 1984–2016), and 

there are two rainy seasons and two dry seasons. The longer dry season extends from June to 

mid-September, followed by the longer rainy season from mid-September to mid-December. 

The shorter dry and rainy seasons are less regular and can vary in duration and intensity. The 

savanna and forest vegetation are on undulating terrain ranging from 230 to 470 m a.s.l. 

within slopes that can reach more than 30 degrees in the western region of the study area.   

Most of the vegetation in the study area can be divided into four categories of structural 

characteristics: 1) savanna grasslands (SAV) dominated by herbaceous plants and fire-

resistant woody shrubs. Two types of forest patch occur in the savanna-dominated areas: 

gallery forests over rocky or sandy soil along small watercourses; and isolated patches or 

“bosquets” of anthropogenic origin, mainly found on hilltops. In this study, within the 

continuous forest extent, forest cover can be categorized as: 2) Young colonizing forests that 

grow as a result of fire suppression at the edge of forest-savanna boundary (YCF), and 3) 

Okoumé (Aucoumea klaineana) dominated forests (ODF), containing mainly Okoumé and 

Azobe (Lophira alata) trees. 4) Marantaceae and Mature old growth forests (OGF) are found 

a greater distance from the current savanna edge and have greater species diversity and 

structure complexity (White et al., 1997; Blake et al., 2009). These old forests are mainly 

located in the western portion of the study area at the edge of the Massif du Chaillu 

Pleistocene forest refuge and cover a more complex, steeply hilly terrain. Based on the SF 

lidar-derived canopy height model (CHM), we manually delimited four sub-areas across the 

site to represent the four major vegetation types for their variations in structure and 

aboveground biomass (Figure 4.1). 
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4.2.2 Field data collection 

Forest inventory data were collected in field plots of either 1 ha (ODF, OGF, SAV; 

n=9) or 0.5 ha (YCF; n=3) that were designed to span a gradient of aboveground biomass 

from very low to high biomass values. In each plot, all stems greater than 10 cm in diameter 

at breast height (dbh, at 1.30 m), or above stem irregularity and buttresses, were labelled and 

diameters and heights were measured. For the plots in SAV and YCF, stems 5–10 cm in dbh 

were also measured as they can represent a substantial portion of aboveground biomass in 

such vegetation types. In all plots, trees were identified to genus level and where possible to 

species level. Wood density values were extracted from global data sets. Using diameter, 

height, and wood density of trees, we calculated the aboveground biomass (dry weight) of 

each stem using the Chave et al., (2014) pantropical moist tropical forest allometric equation 

(eq 4.1). 

 

AGB (kg) = 0.0673 ×  (ρ ×  dbh2  ×  ht)0.976               (4.1) 

 

were dbh is in cm, ht is in m, and ρ is the wood density in g.cm-3. The total AGB at plot 

level was then obtained by summing individual stem biomass estimates and converting it to 

Mg  ha-1. 

 

4.2.3 Lidar data and processing 

 

4.2.3.1 Small-footprint lidar 

The SF DR lidar data were collected using a Riegl VQ480U sensor mounted on a 

helicopter model EC 135 in July 2015 with a variable point density and footprint diameter of 

~10 cm. Data were pre-processed to remove artefacts due to helicopter motion. This 

provided a more uniform point density of ~10 points.m-2 for vegetation characterization. In 

this study, digital terrain model (DTM), slope, canopy height model (CHM) and canopy 

metrics derived from simulated pseudo-waveforms were computed based on the following 

steps: first, ground returns were classified using the Progressive Triangulated Irregular 

Network (TIN) densification algorithm (Axelsson et al., 2000), and a 1-m DTM was created. 
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Slope (%) maps were derived from the DTM. Second, normalized height (i.e. the height 

above ground) was obtained for each point of the point cloud by subtracting ground 

elevation (obtained from the DTM) from the raw point elevation value, and the 1-m CHM 

was then computed using the highest points. Lastly, within each LVIS footprint, the SF lidar 

point cloud was clipped and pseudo-waveforms were simulated by convoluting the returns 

within each footprint (Figure 4.2a) (Popescu et al., 2011): 

 

WV(z) =  [ ∑ Ii ∙ wh(xi, yi) 

i∈U

]  ⊛ wv (
2 ∙ z

c
) (4.2) 

U =  {i: √(xi − x0)2 +  (yi − y0)2  ≤ r and |zi − z| ≤
∆h

2
} (4.3) 

 

where (xi, yi, zi) are the coordinates of each discrete return, (x0, y0) refer to the coordinates 

of the footprint center, r is the footprint radius (i.e., defined as half of the e(-2) width rather 

than half of the full width at half maximum), ∆h is the sensor discretization interval (15 cm 

for LVIS), U denotes the set of those SF lidar returns within the SF footprint (25m in 

diameter), Ii is the intensity of each return, and ⊛ denotes the convolution operator. The 

Gaussian distribution of energy both along and across the laser beam was approximated by 

wv and wh: 

  

𝑤ℎ(𝑥, 𝑦) = exp [−2
(𝑥𝑖−𝑥0)2+(𝑦𝑖−𝑦0)2

 𝑟2  ], (4.5) 

wv(t) = exp [−2
(t−t0)

σt
2 ] , 

 

(4.6) 

where t0 is a reference time corresponding to the peak of an emitted pulse, and σt is the 

interval from t0 to the time at which the intensity along the beam drops to e(-2) of the 

maximum. The pulse duration was set to 10 ns (Blair et al. 1999).  
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After simulating the LVIS waveforms, canopy relative height metrics (SF RH) were 

calculated based on the cumulative waveform energy (i.e., 10%, 25%, 50%, 75%, 98% and 

100%; RH10, RH25, R50, RH75, RH98 and RH100). The SF data processing was done 

using FUSION/LDV (McGaughey 2017), Lastools (Isenburg 2017), R (R Core Team 2017) 

and Matlab (Matlab 2017) softwares. 

 

4.2.3.2 Large-footprint lidar 

The LF full-waveform lidar data were acquired in February 2016 using the LVIS 

sensor, developed and operated by the Laser Remote Sensing Laboratory at NASA’s 

Goddard Space Flight Center. In this study, LVIS was mounted on the NASA Langley B200 

aircraft and flown at ~7315 m with a footprint diameter of 25 m and nominal spacing of ~10 

m both along and across track. LVIS footprints were geo-located to the global reference 

ellipsoid WGS 84, using a combination of GPS and Inertial Navigation System (INS) 

information (Blair et al. 1999; Hofton et al., 2002). Our preliminary analyses indicate that 

LVIS data geolocation match very well with that of SF DR lidar data and that sensor 

comparison did not require any further geolocation correction. 

LVIS is a full-waveform digitizing system that records the vertical distribution of 

nadir-intercepted surfaces at 15 cm vertical resolution (Hyde et al., 96) using the return 

energy of Gaussian-shaped optical pulses at a wavelength of 1064 nm (Blair et al., 1999) 

(Fig. 2b). Essentially, the amplitude of a LVIS waveform signal is proportional to the energy 

reflected from canopy-intercepted surfaces and the ground (Swatantran et al., 2011). For 

each LVIS waveform, ground elevation (ZG) was defined as the center of the lowest mode 

in the waveform greater than mean signal noise (Swatantran etal., 2011; Blair et al., 2006), 

and height metrics relative to ground elevation (LF RH) were calculated based on the 

normalized cumulative return energy (Swatantran et al., 2011; Huang et al., 2013). In 

general, RH100 is considered a noisy metric because it is associated with the first return and 

depends strongly on the signal to noise ratio setup in LF lidar measurements. In comparing 

LF to SF lidar measurements, RH98 (heights at 98 percentiles of energy) was found to be 

more precise. Other metrics such as canopy cover can be computed based on the LVIS 

waveform. However, for this study, we only used ZG, RH75 and RH98 (representing ground 
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elevation, canopy height at 75% and 98% of the laser return energy, respectively) for 

comparison purposes and AGB modeling.   

 

4.2.4 Comparison of small- vs. large-footprint lidar-derived metrics for ground and forest 

structure attribute retrieval 

4.2.4.1 Ground and Canopy Height Comparison 

We compared ground elevation (ZG) and top-of-canopy height (RH98) retrieved 

from small- and large-footprint lidar at different spatial levels (LVIS footprint and grid) over 

the sub-areas selected to represent the gradient of successional stages of vegetation found in 

the study area (see section 4.2.1). For each metric, the comparison was performed using the 

two-sided Wilcoxon–Mann–Whitney rank-sum (Bauer 1972) and equivalence tests 

(Robinson 2005), at a significance level of 0.05 in R (R Core Team 2017). At the footprint 

level, SF ZG was computed as the mean of ground elevation from DTM within the footprint 

area. At the grid level, SF and LF lidar-derived ground elevation and top-of-canopy height 

were averaged at 25-m, 50-m and 100-m spatial resolutions leading to mean ZG 

(SF_ZG_MEAN and LF_ZG_MEAN) and mean RH98 (SF_RH98_MEAN and 

LF_RH98_MEAN). The grid cell resolutions were tested to quantify (i) how well the two 

observations characterize the landscape scale variations of aboveground forest structure and 

(ii) how differences between the two systems scales with grid cell resolutions. This approach 

will also allow us to understand how many footprints from LF sensors are required to 

capture landscape variability in forest structure and biomass. This, in turn, will provide 

useful information regarding GEDI projected sampling densities to accurately retrieve 

canopy height and biomass over complex tropical landscapes. 

 

4.2.4.2 Small-footprint discrete return lidar 

We developed relationships between SF and LF height metrics and ground-derived 

AGB. In this study, we used the nls function in R (R Core Team 2017) to calibrate a non-

linear relationship between AGB and lidar metrics at plot level. For each sample plot, the 

mean of SF lidar-derived CHM and LF lidar–derived RH75 were computed (SF_MCH; 

LF_RH75_MEAN) and used as independent variables for modeling AGB. We developed a 
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power-law relationship between the corresponding height metric and AGB. The accuracy of 

the model predictions was evaluated in terms of the coefficient of determination (R²), Root 

Mean Square Error (RMSE) and Bias in Mg  ha-1: 

 

AGB = β0 ∙  HL
̅̅̅̅ β1  + ε 

with ε ~ N(0, σ2) 

(4.7) 

RMSE = √
∑ (ŷi − yi)

n
i=1

2

n
 

(4.8) 

Bias =
1

n
∑(ŷi − yi)

n

i=1

 
(4.9) 

 

where AGB is the aboveground biomass in Mg ha-1, (HL
̅̅̅̅ ) is the lidar-derived mean 

forest canopy height metric (either SF_MCH_MEAN or LF_RH75_MEAN), n is the 

number of plots, yi is the observed value for plot i, and ŷi is the predicted value for plot i. 

Moreover, relative RMSE and biases were calculated by dividing the respective absolute 

values (eqs. 4.8 and 4.9) by the mean of predictions. 

For validation purposes, the AGB models were embedded in a bootstrap procedure with 

100 iterations. In each bootstrap iteration, we drew 12 times with replacement from the 12 

available samples. In this procedure, on average 44% of the total number of samples (~5 

samples) are not drawn. These samples were subsequently used as holdout samples for 

independent validation. In each bootstrap iteration, Adj.R2 and relative and absolute RMSE 

and bias were computed based on the linear relationship between observed and predicted 

AGB using the holdout samples. Wilcoxon–Mann–Whitney rank-sum and equivalence tests 

were also used to assess if the mean of predicted AGB from the 100 iterations and the 

observed AGB mean differ at a significance level of 5%. 

SF_MCH and LF_RH75_MEAN were computed for the entire site at a spatial 

resolution of 100 m, and the fitted models were applied to map AGB at landscape level. SF- 

and LF-derived AGB estimates were then compared at landscape level and summarized for 

the four vegetation types described in Section 2.1.  
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An uncertainty analysis was also performed at the landscape level for the entire site and 

for each subarea (Section 2.1) by integrating the pixel level errors over the regions of 

interest and accounting for spatial autocorrelation of the errors as follows (McRoberts 2006; 

Weisbin et al., 2014): 

 

𝜎𝐴𝐺𝐵
2 (𝑅𝑂𝐼) =

1

𝑚2
∑ ∑ 𝑐𝑜𝑣(𝜎𝑖,𝜎𝑗)

𝑚

𝑗=1

𝑚

𝑖=1

=
1

𝑚2
(∑ 𝜎𝑖

2 + 2 ∑ ∑ 𝜌(𝑑)

𝑚

𝑖<𝑗

𝑚

𝑖=1

𝑚

𝑖=1

𝜎𝑖𝜎𝑗)  (4.9) 

 

 

where 𝜎𝐴𝐺𝐵
2  (ROI) is the variance of the estimator for the mean AGB for the regions of 

interest (entire study area or subareas), m is the number of pixels; cov represents the 

covariance of pixel errors, 𝜎𝑖 is the estimated standard error of AGB values at the i-th pixel, 

and 𝜌(𝑑) is the spatial correlation function based on an exponential semivariogram model 

depending on the distance d between pixels i and j (Weisbin et al., 2013). The square root of 

the variances (𝜎𝐴𝐺𝐵
2 ) results in the standard error (SE), which was used as the uncertainty. 

 

4.2.5 Impacts of Sample Size on AGB Estimation 

The GEDI instrument will operate with a footprint of 25 m similar to LVIS LF, but 

each footprint will be separated by 60 m along track and 500 m across track between each of 

10 tracks. In order to evaluate the performance of GEDI for modelling AGB in tropical 

forests, we examine the number of footprints required to have a relatively unbiased estimate 

of AGB at 1-ha.  By subsampling the LVIS LF footprints, we assessed the impacts of LF 

sample size on AGB modelling at the plot level. The footprint density from LVIS varied at 

different locations in the study area because of the spatial variation of overlapping flight 

lines during the campaign. On average, 72 ± 23 (sd) footprints were registered over each 

field plot. We randomly downscaled the number of footprint to 10, 5, 3 and 1 for each plot, 

and LF_RH75_MEAN was then computed for AGB modeling. For the simulation where 

only one footprint shot was kept, we used the LF RH75 value for AGB modelling. 

Simulations were repeated 100 times and distribution histograms of R2, RMSE, Bias and 

model parameters were computed for each subsampling case. Thus, we were able to assess 
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how well one GEDI footprint randomly located within a 1-ha plot will be able to retrieve 

plot AGB.  

 

4.3 Results and discussion 

 

4.3.1 Comparison of SF and LF lidar-derived ground elevation and canopy height at 

footprint level 

SF and LF lidar-derived ground elevation were strongly correlated (Adj.R2=0.99; 

Figure 4.3). The mean difference in ground elevation across all vegetation types was 1.01 ± 

0.99 m (n.s.; p-value = 0.78; Wilcoxon–Mann–Whitney rank-sum test). Difference in 

ground elevation between SF and LF was highest in the most structurally complex OGF 

subarea (RMSE=2.46 m, RMSE=0.63%). LF and SF lidar-derived RH98 showed significant 

differences at footprint level for ODF, YCF and SAV (mean RMSE= 2.06 ± 1.20 m, mean 

bias=0.81 ± 0.71 m). Even though differences in RH98 could be higher than 10 m (RMSE ~ 

4 m) in OGF, it was not significant for the four sub regions combined and did not show a 

bias across the height range (bias=0.47m). Yet, based on equivalence tests, SF and LF lidar-

derived ground elevation (ZG) and top-of-canopy height (RH98) at footprint level were 

found equivalent across all vegetation types.  

Although we did not find significant differences between the two measurements 

when analysing all footprints within the sub regions, there were some large differences 

between the two datasets at individual footprint level (Figure 4.3). These differences reached 

up to 10 and 20 m for ground elevation and top-of-canopy height detection, respectively. 

Errors remained random though across footprints. By analysing individual footprints with 

large differences in ZG and RH98, we found several potential sources of uncertainty in 

individual measurements when comparing the two data sets:  

i) Ground topography is a significant source of error in LF lidar quantification of ZG 

and RH98. Slope (both its variations within a LF lidar footprint and its orientation against 

lidar observation) has been shown to induce errors in ground elevation retrieval (Hofton et 

al., 2002a; Lee et al., 2015; Hofton et al., 2002b; Park et al., 2014). In our study site, 

particularly under dense canopy, the individual LF lidar ZG values may have large errors 
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(Figure 4.4). However, similar errors may also appear in SF retrieval of ZG. Depending on 

pulse density and observation geometry (i.e., viewing angles), there may be no ground-

classified points over slopes and the interpolated DTM may miss micro-topographical 

variations across the landscape. If the individual LF lidar and the simulated SF lidar 

footprint fall over complex terrains with dense forest cover, the errors from both 

measurements can introduce large differences in the footprint level ZG values. In most 

studies, the difference in ZG is often attributed to uncertainties associated with LF 

measurements (Popescu et al., 2011). However, in dense tropical forests, SF measurements 

may also have errors in detecting ZG depending on the pulse density and ground 

interpolation method (Silva et al., 2017). 

ii) Canopy structure might also introduce uncertainty when calculating canopy height 

from LF lidar. In a study carried out in Sierra National Forest, Hyde et al., (2005) reported 

that differences between field and LVIS measurements of canopy height and biomass were 

mainly attributable to the spatial configuration of canopy elements and were less sensitive to 

topography, crown shape, or canopy cover. For instance, in our study, we identified that 

most of the large differences in RH98 were found in footprints located at higher slopes and 

across the transition from savanna to forest. In this case, taller trees located at the edges 

were detected by the SF lidar, but not detected from the LF lidar because of the low laser 

intensity at the edge of the footprint. In LF systems, Gaussian waveforms drop off in power 

across the footprint, resulting in a lack of sensitivity to canopy material progressively 

towards the edges of the footprint (Hyde et al., 2005). Figure 4.5 shows examples of 

footprints and geometry of canopy within the footprint from SF simulations over three 

different terrains and conditions where RH98 from LF may be very similar (Figure 4.5 a1-

d1), larger (Figure 4.5 a2-d2) or smaller (Figure 4.5 a3-d3) than SF. In most comparisons 

between LF and SF data, it is considered that SF lidar derived RH98 must be higher than LF 

lidar. SF measurements may have a return from a small leaf on the top of the canopy but LF 

requires enough leaves on the top of the canopy to have a significant return higher than 

SNR. However, when simulating the LF canopy height metrics from SF measurements, the 

difference may be in both directions.   



124 
 

iii) Simulation of LF data from SF measurements may also be a source of error in 

comparing RH98 at individual footprint level. Our result in Figure 4.3b shows that this error 

can be large and without any preference or bias towards one lidar measurement type. 

Simulation of LF footprint waveforms from SF measurements may include errors associated 

with the geometry of measurements, the form of Gaussian weighting of the small footprint 

data, and small geolocation error that may partially include or exclude large trees around the 

footprint edges. 

  

4.3.2 Comparison of SF- and LF-derived ground elevation and canopy height at grid levels 

SF_ZG_MEAN and LF_ZG_MEAN were strongly correlated (Adj.R2=0.99) with 

RMSE ≤ 1.02 m (0.31%) and bias ≤ 0.31 m (0.09%) whatever the spatial resolution (Figure 

4.5). Moreover, LF_RH98_MEAN and SF_RH98_MEAN were also strongly correlated at 

all spatial scales with RMSE ≤ 1.66 m (6.14%) and bias ≤ 0.62 m (2.94%). The difference 

between SF and LF measurement of ZG_MEAN and RH98_MEAN decreased ~32% in 

relative RMSE from 25 to 100 m resolutions. Equivalence tests showed that SF and LF for 

both ZG_MEAN and RH98_MEAN were equivalent across all spatial resolutions, but 

Wilcoxon–Mann–Whitney rank-sum tests showed significant differences in SF and LF lidar-

derived RH98 at spatial resolutions of 25 and 50 m (Figure 4.5 a2, b2). 

LF predominantly overestimated ground elevation when compared with SF lidar, yet 

differences exceeding 2 m were only found in the OGF area (Figure 4.6). For 

RH98_MEAN, we observed both under and overestimation, and differences ≥ 1.5 m were 

also found in the OGF area. As the grid cell size of the maps coarsened from 25 to 100 m, 

the spread of the differences of SF and LF also decreased as shown by the distribution of 

their differences (Figure 4.6a-g1.2-3.2). The comparison of the two sensors at grid cells 

revealed the importance of aggregated measurements to capture the landscape variations of 

the forest structure. By averaging several LF lidar footprints within a 1-ha area, random 

errors between the two measurements were reduced significantly, allowing the 

measurements to converge in representing the landscape characteristics of the forests in the 

study area. Comparison of Figures 4.3 and 4.5 readily shows the impact of LF footprint 

aggregation even with 25 m grid cells. 



125 
 

4.3.3 Comparison of SF and LF Aboveground Biomass Models 

4.3.3.1 Biomass model performance 

SF_MCH and LF_RH75_MEAN were significantly correlated with AGB at plot levels.  

AGB was overestimated in both SF (Bias: 1.24 Mg  ha-1) and LF (bias: 2.47 Mg  ha-1) 

models after bootstrapping the performance with 100 repetitions. However, the Wilcoxon–

Mann–Whitney rank-sum and equivalent tests showed that SF and LF AGB estimates at plot 

level are both equivalent to the ground-estimated AGB (p-value ≥ 0.93). Figure 4.7 shows 

the SF and LF derived AGB estimates from the bootstrap procedure. According to these 

tests, the mean AGB estimates from the bootstrapping procedure are equivalent with 

ground-estimated AGB (p-value ≥ 0.89) as well. SF and LF AGB estimates at plot level, 

both from the model and bootstrapping procedure, are also equivalent (p-value ≥ 0.88).  

At the 1-ha scale, the number of plots was limited to 12, and although this captures 

variation in biomass across the forest types, it may not be enough to develop a more robust 

cross-validation test of model performance. However, the accuracies, both for training and 

validation models, presented herein were similar to those reported in previous studies (Drake 

et al., 2002a; Meyer et al., 2013). This analysis can be done at different spatial scales to 

allow more GEDI footprints over larger landscapes, but requires either large ground plots or 

a more complex error propagation if compared with SF lidar-derived AGB. A more complex 

sampling approach to exactly mimic the GEDI samples over the landscape was beyond the 

scope of this study and hence is not considered in this paper. 

 

4.3.3.2 Aboveground biomass maps 

Landscape-wide AGB estimates based on the models from Table 4.1 were mapped at 

1-ha grid cells (100 m x 100 m) and are showed in the Fig.8. At the map scale, the 

equivalence test showed that LF and SF lidar AGB maps are equivalent at landscape level 

(p-value > 0.05). However, Wilcoxon–Mann–Whitney rank-sum tests showed significant 

RMSE and bias (p-value ≤ 0.01) of 6.34 Mg  ha-1 (2.84%) and 11.27 Mg  ha-1 (5.05%) 

between the two maps. The difference map (Figure 4.8b) showed LF-derived AGB was 

larger across all old growth forest types that appear to be distributed across areas with slopes 

larger than 10 degrees (Figure 4.8c). The uncertainty of the AGB estimates at landscape 
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level for the entire study area and for the four regions of interest are derived by taking into 

account the pixel base model errors from the bootstrapping approach and the spatial 

correlation of errors as presented in Table 4.2. 

SF and LF lidar-derived biomass models are equivalent in performance based on Table 

4.1, but different in coefficients and if used interchangeably to predict forest AGB over the 

landscapes can introduce larger random or systematic errors. However, individually they 

provide similar mean biomass density and similar uncertainty over the study area. Results 

shown in Table 4.2 also suggest that the difference between the two approaches is within the 

margin of error in AGB estimation for each lidar approach (Drake et al., 2002a; Hofton et 

al., 2002). The results suggest that models developed with SF lidar data at landscape scale (≥ 

1-ha) may be used for LF lidar data as long as equivalent height metrics between the two 

sensors are identified (e.g., mean top canopy height). 

 

4.3.4 Impacts of LF lidar sample size on AGB estimation 

The impact of LF sample size on the AGB modeling and estimation was examined 

by randomly selecting 10, 5, 3 and 1 footprint out of more than 50 footprints in each 1-ha 

plot (Figure 4.9). Reduced sample size resulted in increased RMSE and bias values, but the 

effect was small until only 1 lidar footprint was selected (Figure 4.8 a1-2, b1-2). The 

variability of R2 and parameters a and b of the AGB models increased slightly in reduced 

sample sizes (Figure 4.9 c1-2, d). The result suggests that a minimum of three samples can 

potentially provide an unbiased estimate of AGB of a 1-ha area. 

GEDI lidar is expected to provide global (between ± 51° latitude) estimates of forest 

height structure at different spatial sampling schemas (Stavros et al., 2017) such that 

unbiased forest biomass estimates are provided at 1-km2 (100 ha) resolution. However, by 

clustering the samples along tracks, there is a strong probability of having a minimum of 3 

footprints within a 1-ha area. The spatial distribution of a large number of 1-ha biomass 

values can help us to improve the GEDI final product from 100-ha to 1-ha through 

geostatistical modeling or machine learning approaches (Xu et al., 2017). 
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4.4 Conclusion 

In this paper, we performed a comparison of small and large footprint lidar 

measurements of ground and forest structure, including aboveground biomass, across an 

AGB transition zone in central Gabon. We showed that in the dense and complex tropical 

forests of Central Gabon, the LF lidar measurements are equivalent to SF lidar 

measurements in characterizing ground elevation and maximum forest height. In addition, 

comparison of gridded LF lidar height with ground plots showed that an unbiased estimate 

of aboveground biomass at 1-ha can be achieved with a sufficient number of large footprints 

(n > 3). The approach and results from this study can serve as a methodological basis for 

examining GEDI performance for estimating and mapping tropical forest structure and 

biomass. In addition, our results demonstrate that SF lidar measurements can be readily used 

for both calibration and validation of LF lidar measurements of structure and biomass over 

different tropical forest structures. 
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Table 4.1. Nonlinear Power-Law Aboveground Biomass Models (N=12) 

Lidar Models R2 
RMSE Bias 

Mg  ha-1 % Mg  ha-1 % 

SF AGBSF = 7.56 x SF_MCH1.06 0.94 34.28 17.32 1.24 0.63 

LF AGBLF = 6.40 x LF_RH75_MEAN 
1.11 0.93 37.28 18.72 2.47 1.24 

 

Table 4.2. Summary of SF And LF Lidar-derived AGB estimates and uncertainties at landscape level for the entire study 

area and regions of interest. 

Class of 

Vegetation 

Area  

(ha) 

SF Lidar LF Lidar 

Mean ± Std ( 

Mg  ha-1) 

U 

(Mg  ha-1; %) 

Mean ± Std 

(Mg  ha-1) 

U 

 (Mg  ha-1; %) 

OGF 74.15 320.13 ± 31.56 3.69 (1.15) 322.79 ± 38.87 4.35 (1.34) 

ODF 32.42 323.72 ± 32.51 7.47 (2.30) 316.52 ± 32.82 8.19 (2.59) 

YCF 15.92 48.97 ± 22.91 15.29 (31.22) 40.79 ± 19.88 17.97 (44.0) 

SAV 51.69 12.68 ± 20.74 4.46 (30.17) 14.94 ± 22.60 5.26 (35.2) 

Entire Study 

Area 

5044 223.01 ± 121.43 3.86 (1.73) 220.4 ± 120.77 4.16 (1.89) 

Std: standard error; U: uncertainty 
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Figure 4.1. a) Study area, Gabon; b) SF lidar derived Canopy Height Model in Lopé National Park; c) SF-derived Digital 

Terrain Model in Lopé National Park; D) SF-derived point cloud profile across a forest-savanna transition zone; Mixed old-

growth forest (OGF) b1-c1); Monodominant Okoumé forest (ODF) b2-c2); Young colonizing forests of savanna (YCF) b3-

c3); and Grassland savanna (SAV) b4-c4) 

 

Figure 4.2. a) SF-derived pseudo-waveform (vertical black line) and b) LF-derived waveform. Canopy metrics, such as 

RH75, RH98 and RH100, were derived from the normalized cumulative return energy.   
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Figure 4.3. a) Comparison of small-footprint (SF) and large-footprint (LF) lidar-derived ground elevation and (b) top-of-

canopy height at footprint level using the equivalence test. Mixed old-growth forest (OGF); Monodominant Okoumé forest 

(ODF); Young colonizing forests of savanna (YCF); and Grassland savanna (SAV). The equivalence plot design presented 

herein is an adaptation of the original equivalence plots presented by Robinson (2015), examples are showing in Silva et al. 

(2017). The grey polygon (SF in light grey and LF in dark grey) represents the ± 25% region of equivalence for the 

intercept, and the orange vertical bar represents a 95% confidence interval for the intercept. The LF ZG and RH98 are 

equivalent to SF ZG and RH98 on both intercept and slope as long as the orange bar remain completely within the grey 

polygon. If the grey polygon is lower than the orange vertical bar, the measurements would be negatively biased; and if it is 

higher than the orange vertical bar, the LF ZG and RH98 are positively biased. Moreover, the grey dashed line represents 

the ± 25% region of equivalence for the slope, the fit line is within the dotted lines and the black vertical bar is within the 

grey rectangle, indicating that the pairwise measurements are equivalent. An orange and black vertical bar that are wider 

than the region outlined by the grey dashed lines indicates high variance for SF measurements. The white dots are the 

pairwise measurements, and the solid line is a best-fit linear model for the pairwise measurements. The light grey dashed 

line represented the 1:1 relationship.  
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Figure 4.4. Comparison of LF and SF waveforms. LF (a1-a3) and SF (b1-b3) waveforms at footprint level. SF point cloud 

in 2D (c1-c3; d1-d3) and in 3D (e1-e3). a1-d1 footprint with difference in RH98 of 0.12 m (UTM E: 786989 N: 9978269). 

a2-d2 with difference in RH98 of 11.32 m (UTM E: 786184 N: 9977274). a3-d3 footprint with difference in RH98 of -

11.48 m (UTM E: 785368 N: 9977107). The SF derived pseudo-waveform is smoothed for better display herein. 
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Figure 4.5. Equivalence test of mean ground elevation (ZG_MEAN) (a1-c1) and mean canopy height (RH98_MEAN) (a1-

c2) at spatial resolution of 25 (a1-a2), 50 (b1-b2) and 100 m (c1-c2). Mixed old-growth forest (OGF); Monodominant 

Okoumé forest (ODF); Young colonizing forests of savanna (YCF); and Grassland savanna (SAV);   



138 
 

 

Figure 4.6. Spatial distribution of differences between SF and LF lidar-derived ground elevation (ZG_MEAN) and top-of-

canopy height (RH98_MEAN) for different vegetation types and spatial resolutions. We focused on four vegetation types: 

mixed old-growth forest (OGF; a1.1-a3.2 and e1.1-e3.2); monodominant Okoumé forest (ODF; b1.1-b3.2 and f1.1-f3.2), 

young colonizing forests of savanna (YCF; c1.1-c3.2 and g1.1-g3.2); and grassland savanna (SAV; d1.1-d3.2 and h1.1-

h3.2). Three spatial resolutions were considered: 25 m (a1.1-h1.1), 50 m (a2.1-h2.1), and 100 m (a3.1-h3.1). The blue 

graphs represent the distribution of differences between SF and LF lidar-derived ZG_MEAN and RH98_MEAN. The black 

and red dashed lines represent the 0 and mean of difference distribution, respectively.   
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Figure 4.7. Equivalence plots of the observed and predicted AGB (Mg  ha-1) obtained from the 100 bootstrapped model 

runs using SF_MCH (a) and LF_RH75MEAN (b) (N=12). The white dots are the pairwise measurements, and the solid line 

is a best-fit linear model for the pairwise measurements. The horizontal red bar is the standard deviation of AGB estimates 

from the bootstrapping procedure. The light grey dashed line represented the relationship 1:1. N=12 
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Figure 4.8. Small (a1) and Large (b2) Lidar-footprint derived Aboveground Biomass Estimates at the landscape level. b) 

The difference in Aboveground Biomass Estimates between SF and LF lidar. (c) slope (degree) map. Mixed old-growth 

forest (OGF); Monodominant Okoumé forest (ODF); Young colonizing forests of savanna (YCF); and Grassland savanna 

(SAV). 
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Figure 4.9. LF simulations for AGB modeling at 1-ha. Relative and absolute RMSE and bias (a1-b1; a2-b2). Parameters a 

(c1) and b (c2) and R2 (d) of the AGB models. 
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Conclusion and Future Directions 

 

The research presented in this dissertation contributes significantly to the 

understanding of how lidar remote sensing can be efficiently applied for predicting and 

mapping critical forest structural attributes, such as aboveground biomass and volume, at 

individual tree, plot and landscape levels in both natural forests and industrial forest 

plantations. Moreover, this dissertation developed a cutting-edge R package for lidar data 

processing and visualization for forestry applications. Major findings, contributions of this 

dissertation and future research directions are summarized for each chapter and presented as 

follows: 

In Chapter 1, I developed a novel framework to automatically detect individual trees 

and evaluate the efficacy of k-nearest neighbor (k-NN) imputation models for estimating tree 

attributes in longleaf pine (Pinus palustris Mill.) forests. Although basal area estimation 

accuracy was poor because of the longleaf pine growth habit, individual tree locations, 

height and volume were estimated with high accuracy, especially in low-canopy-cover 

conditions; the root mean square distance (RMSD) for tree-level height, basal area, and 

volume were 2.96%, 58.62%, and 8.19%, respectively. While the methodology developed 

here shows promising results, further work is needed to refine aspects of the approach to 

increase accuracy when estimating basal area. Future directions for this research include the 

combined use of airborne and terrestrial lidar to better describe the structure of individual 

trees. Besides crown height and crown projected area, additional crown metrics, such as 

crown volume and surface area, should be computed and tested as new predictors for 

estimating basal area and other important forest attributres. As Unmanned Aerial Vehicle 

(UAV) remote sensing technologies and methods improve, there is potential for combining 

airborne lidar-derived DTM from a previous acquisition with UAV photogrammetry and 

Structure from Motion (SfM) algorithms for effectively monitoring and mapping forest 

attributes at the individual tree level in longleaf pine forests in a cost-effective manner. 

Chapter 2 presented a framework to predict and map stem total and assortment 

volumes in industrial Pinus taeda L. forest plantations from lidar data and random forest 

models. The results of this chapter demonstrated that lidar data combined with ramdom 
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forest models could provide reliable estimates of total, commercial and pulp volumes. For 

instance, when lidar-dereived estimates of stem volume were compared to reference forest 

inventory data, the accuracy of plot-level total and assortment volumes were high; the root 

mean square error (RMSE) of total, commercial and pulp volume estimates were 7.83%, 

7.71% and 8.63%, respectively. Accurate estimates of crown attributes at the highest 

attainable spatial resolution is much desired to increase the efficiency of monitoring and 

managing Pinus teada plantations, therefore future research should focus on estimating 

forest attribues at the tree level as well. Crown estimates would be highly desired 

information to assist in common forestry tasks, such as in thinning operations. Also, crown 

attributes could be used in combination with field data to fit taper models and improve the 

accuracy of assortment volume estimates. Random forest k-NN imputation has been 

successfully used to predict individual tree height and volume in longleaf pine forest in 

southeastern USA, as shown in Chapter 1; therefore, lidar and random forest combined into 

an individual tree framework should be tested to predict stem total and assortment volumes 

at an individual tree level in P. taeda forest plantations as well. 

In Chapter 3, the impacts of airborne lidar pulse density on estimating aboveground 

biomass (AGB) stocks and changes in a selectively logged tropical forest were assessed. The 

results indicated that estimates of AGB change at the plot level were only slightly affected 

by pulse density. However, at the landscape level differences in estimated AGB change of 

>20 Mg·ha−1 was observed when pulse density decreased from 12 to 0.2 pulses·m−2. The 

effects of pulse density were more pronounced in areas of steep slope, but when the DTM 

from high pulse density lidar collected in 2014 was used to derive the forest height from 

both years, the effects on forest height and the estimated AGB stock and changes did not 

exceed 20 Mg·ha−1. The results of this chapter indicated that AGB change can be monitored 

in selective logged tropical forests with reasonable accuracy and low cost with low pulse 

density lidar surveys if a baseline high-quality DTM is available from at least one lidar 

survey. As forest degradation is one of the most important sources of carbon emissions in 

the tropics, future research should focus on testing the capability of low pulse density lidar 

for mapping logging activities with the aim of detecting and measuring forest degradation as 

well. 
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Chapter 4 presented a comparison of airborne small-footprint (SF) and large-

footprint (LF) lidar retrievals of ground elevation, vegetation height and biomass across a 

successional tropical forest gradient in central Gabon. The comparison of the two sensors 

shows that LF lidar waveforms are equivalent to simulated waveforms from SF lidar for 

retrieving ground elevation (RMSE=0.5 m, bias=0.29 m) and maximum forest height 

(RMSE=2.99 m; bias=0.24 m). Comparison of gridded LF lidar height with ground plots 

showed that an unbiased estimate of aboveground biomass at 1-ha can be achieved with a 

sufficient number of large footprints (> 3). The results of this chapter can be used as the 

foundation for further research on applying large footpring lidar remote sensing for 

monitoring and mapping forest structure in tropical forest. Also, the potential for large 

footprint lidar to estimate forest biomass at the global level will be increased as the Global 

Ecosystem Dynamics Investigation (GEDI) lidar becomes operational and provides data 

comparable to existing Land, Vegetation, and Ice Sensor (LVIS)  data used in this reseach. 

Future research should focus on developing and testing new algorithms for detecting ground 

elevation in a variety of canopy structure and topography conditions, because ground 

detection is one of the major sources of error when using large footprint lidar-derived 

metrics to retrieve forest structure and AGB stocks in tropical forest. Moreover, as other 

upcoming NASA missions, such as National Aeronautics and Space Administration-Indian 

Space Research Organization Synthetic Aperture Radar (NISAR) and Ice, Cloud and land 

Elevation Satellite (ICESat - 2) sensors will be soon collecting data sensitive to forest 

structure, future research should focus on developing and testing multi-sensor data fusion 

approaches in advance of these missions. 

The research presented in this dissertation was carried out in natural and industrial 

forest plantations located in Brazil, the United States and Gabon.  However, the framework 

and tools developed and presented herein can serve as useful methodologies for application 

worldwide.  I therefore hope that the promising results presented and discussed here will 

stimulate further research and applications of lidar remote sensing not just in these 

mentioned countries, but elsewhere as well. 
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Appendix A. rLiDAR: An R package for reading, processing and visualizing lidar data 

Silva, C.A., Crookston, N.L., Hudak, A.T., and Vierling, L. A.  2017.  rLiDAR: An R 

package for reading, processing and visualizing lidar (Light Detection and Ranging) data, 

version 0.1, accessed Oct. 15 2017, < http://cran.r-

roject.org/web/packages/rLiDAR/index.html>. 

 

The R package rLiDAR is an open-source tool for reading, processing and visualizing 

small sets of airborne lidar data. It was developed in 2014, as part of this Ph.D. dissertation, 

and made publicly available on the Comprehensive R Archive Network (CRAN) in 2015. The 

rLiDAR package presents eight functions that allow ecologists, forest managers and scientists 

to i) import and visualize lidar data (e.g. Figure A1a); ii) smooth, detect and delineate 

individual trees on the lidar-derived canopy height model (e.g., Figure A1b-d), iii) compute 

lidar metrics at plot and crown levels (e.g., Figure A1d-g), and iv) plot virtual forest stands 

(e.g., Figure A1h1-h3). Since we developed the rLiDAR, additional open-source R packages 

for lidar data processing and visualization have been developed, such as lidR (Roussel et al. 

2017) and ForestTools (Plowright 2017). rLiDAR was specifically developed to support the 

analysis presented in the Chapter 1 of this dissertation, with the goal of providing and testing 

a new framework for imputing individual tree attributes from field and lidar data in longleaf 

pine forests. However, the rLiDAR has general applicability to other forests in other 

ecosystems, and we encourage users to test it broadly. 
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Figure A1. Figure A1. rLiDAR: An R package for reading, processing and visualizing lidar data 
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