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Abstract

The principal purpose of this study is to better understand the pointwise entropy

generation rate in bypass, transitional, boundary-layer flow. The experimental work

herein, utilized particle image velocimetry (PIV) to measure flow along a flat plate.

The flow past the flat plate was under the influence of a “negligible” zero pressure

gradient; followed by the installation of an adverse pressure gradient. Further, the

boundary layer flow was artificially tripped to turbulence (called “bypass” transi-

tion) by means of elevated freestream turbulence. The pointwise entropy generation

rate was seen to behave similar to that of published CFD and DNS results. The

observations from this work show the decrease of viscous contributions to entropy

generation rate through the transition process; while the turbulent contributions of

entropy generation rate greatly increase through the same transitional flow. A basic

understanding of pointwise entropy generation rate over a flat plate is that a large

majority of the contributions come within a y+ < 30. However, a trade off between

viscous and turbulent dissipation begins very early on in the flow where a significant

amount of the total pointwise entropy generation rate is seen up to the wake region

of the boundary layer.

An improvement to the measurement technique of PIV was found when taking

measurements very near a wall interface. The particles utilized in PIV form a biased

dispersion near interfaces that, in turn, lead to biased velocity measurements. This

lack of seeding in the high shear region of the flow always biases the velocity mea-

surement high as the particles are, on average, towards the far end of an interrogation

window (IW) – opposite of the wall. By observing the ensemble-averaged IW particle-

dispersion centroid as the corrected measurement location against the conventional

standard of the geometric center of the IW, this paper puts forth a methodology

to correct for the biased error in flow measurements very near the wall. A typical

correction to the reported velocity measurement location within a wall layer flow was
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seen to be approximately 75% from the geometric center to the edge of an IW – a

significant improvement at relatively low velocities.
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Chapter 1

Introduction and Background

The main objective of this dissertation is to obtain understanding of pointwise

entropy generation rate in a specific characteristic of wall shear flows, that is “bypass”

transitional flow between laminar and turbulent boundary layers. A significant un-

derstanding of entropy generation rate from flows of this kind are the principle factors

in saving energy and sustainability [20, 45]. This will in turn provide a reduction in

fuel consumption, green house gases, and/or waste. The local entropy generation rate

per unit volume, S ′′′, ascertains the localized contribution to losses. This study will

give a broader understanding of the governing sources of these loses which will help

improve the efficiency and sustainability of energy in industry. Entropy generation,

S′′′, has been the subject of many past studies for laminar and turbulent flows [3], the

questions now turn to the transitional stage of fluid flow – specifically that of bypass

transition. Bypass transition occurs when the free stream turbulence activates the

boundary layer forming on the plate, thus “bypassing” the Tollmein-Schlichting waves

[49]. Figure 1.1 is a representation of the “bypass” transition process illustrated by

Schlatter et al. [47] from a Direct Numerical Simulation (DNS) they performed in a

related study.

This scientific research will help improve the understanding of entropy genera-

tion in thermal fluid flow above and beyond the current understanding. This will

be immensely beneficial, due to its wide range of applicability in turbomachinary,

aerodynamics, and other general fluid flow disciplines.

The concept of entropy, S, and its generation are reviewed in Reynolds [43], Bejan

[3], and Gilmore [15] among others. Entropy in simple terms is the measurement of

chaos or the unavailability of heat to perform work in a cycle, i.e., losses. Entropy

generation is a factor in all turbomachinary, and is manifested whenever there is heat



2

Figure 1.1: DNS model of so-called “bypass” transition [47].

being lost to the surroundings and not being used as a reliable work source.

This research is part of the US Department of Energy effort to advance the energy

security of the United States with scientific ingenuity. Likewise, it will assist the Idaho

National Laboratory’s (INL) mission of providing safe, competitive,and sustainable

energy systems.
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Chapter 2

Literature Review

For just short of a century, extensive research has been done on the laminar,

transitional, and turbulent boundary layers, and on the effects of pressure gradients

and free stream turbulence intensities (Schlichting [49], Bradshaw [5], Narasimha

[38], Sudar et. al. [52], Mayle [32], Ames and Plesniak [2], Wang et. al. [65], Jacobs

and Durbin [21], Matsubara and Alfredsson [31], Volino et. al. [57], Brandt et.

al. [6], Schlatter et. al. [47]), but few have actually looked into the entropy being

generated. Further, few experiments have had sufficient measurements to calculate

the entropy generation. Some at the University of Limerick have previously predicted

and measured the local entropy generation rate within transitional boundary layers

with streamwise pressure gradients (Walsh et. al. [59] and Griffin et al. [16]).

For wall bounded fluid flow, Bejan [3] and Rotta [46] have both shown that most of

the entropy generation takes place just beyond the overlap layer (y+ < 30) of the flow

adjacent to the wall. Further, they find a significant increase in viscous dissipation at

the region so-called “onset of the transition” and beyond. In order to determine S ′′′

within this thin sublayer it is important to obtain instantaneous quantities as ∂v/∂y,

∂w/∂z, etc., and the time-average quantity as the Reynolds shear stress (−ρuv). With

the largest normal-to-the-wall distance being on the order of 0.1 mm at times, the

sublayer can be difficult to measure, as the smallest multi-sensor hot wire anemometer

are no smaller than a millimeter (Vukoslavcevic and Wallace [58]). Both the large

size and matched index of refraction in the present experiment allow for high fidelity

measurements very near the wall (more details will be expressed in Section 3.1)

Bejan [3], among others, have stated the entropy generation rate per unit volume,

S′′′, to be found from the viscous dissipation function Φ for the flow,
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S ′′′{y} =
µΦ

T
= µ

[
δU
δy

+ δV
δx

]2
+ 2

[
δU
δx

2
+ δV

δy

2
]

T
(2.1)

where it’s important to note that the uppercase velocities, U and V, are time averaged

velocity measurements; therefore representing the mean/viscous contribution of the

flow to entropy generation.

Later, Kock and Herwig [28] added to the viscous dissipation what they called

turbulent dissipation, ρε, which basically takes into account the turbulent kinetic

energy being dissipated into thermal energy by

ρε =2µ

[(
δu

δx

)2

+

(
δv

δy

)2

+

(
δw

δz

)2
]

+ µ

[(
δu

δy
+
δv

δx

)2

+

(
δv

δz
+
δw

δy

)2

+

(
δw

δx
+
δu

δz

)2
]
.

(2.2)

Here the velocity measurements are all lower case (e.g. u, v, and w), meaning these

are instantaneous gradients that have been squared, and only then time averaged. In

other words, the total instantaneous velocity measurement can be written as U+u,

which is the mean (capital letter) plus the fluctuating component (lower case letter).

Also, this requires instantaneous velocity gradients in all three directions. Equation

2.1 and 2.2 together give the complete pointwise entropy generation rate contributions

from both viscous and turbulent effects (or direct and indirect, respectively)

S ′′′ =
µφ+ ρε

T
(2.3)

Another, simpler way of looking at entropy generation is with Rotta’s [49] approx-

imate approach.

S ′′′ w

[
µ
(
δU
δy

)2
− ρuv

(
δU
δy

)]
T

(2.4)
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which should be noted as only being accurate within a turbulent flow, and away from

the wall. Which, unfortunately, has little to no application in the present study.

A look at Walsh et al. [63] shows a derivation of entropy generation in integral form

by integrating S ′′′ in wall coordinates, and yielding per unit area entropy generation

∫ δ

0

S ′′′{y}+dy+ = S ′′ {δ}+ ≈
∫ δ

0

(∂U+/∂y+)2dy+ −
∫ δ

0

(uv)+(∂U+/∂y+)dy+

−
∫ δ

0

[
(u2)+ − (v2)+

]
(∂U+/∂x+)dy+

− (d/dx+)

∫ δ

0

U+(1/2)(q2)+dy+

− (1/2)v+δ [(u2δ)
+ + (v2δ )

+ + (w2
δ)

+]− v+δ p
+
δ

(2.5)

where the terms are labeled as such: Mean/Viscous, Reynolds Shear Stress Pro-

duction, Normal Stress Production, Energy Flux, Turbulent Diffusion, and Pressure

Diffusion, respectively. Also, the limits on the integrand are from 0 to the boundary

layer thickness, δ, or δ99 in this case.

It is important to note three characteristics about equation 2.5. First, Walsh et al.

had a few typos in their equation 8 in [63]; namely, the square in the first term, and the

wall coordinates of q (i.e., the plus (+) sign signifying wall coordinates) in the fourth

term were missing. Second, the last two terms (Turbulent and Pressure Diffusion)

are found to be negligible [63], and are henceforth removed from the equation and/or

calculations in the present study. Lastly, the nature of the equation is to compute

the values in physical coordinates, followed by converting to wall coordinates with

TS ′′/ρu3τ . This arises from the nonlinearity of x and y when converted into the

respective wall coordinates, x+ and y+. For clarity, Eq. 2.5 is explicitly written in

physical coordinates here
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∫ δ

0

S ′′′{y} = S ′′ {δ} ≈ ρ

T

[
ν

∫ δ

0

(∂U/∂y)2dy −
∫ δ

0

(uv)(∂U/∂y)dy

−
∫ δ

0

[
(u2)− (v2)

]
(∂U/∂x)dy

− (d/dx)

∫ δ

0

U(1/2)(q2)dy

− (1/2)vδ [(u2δ) + (v2δ ) + (w2
δ)]− vδpδ

]
(2.6)

Justification for the removal of the turbulent and pressure diffusion terms in Eq.

2.5, besides just the relative magnitude, is also due to their inability to be measured.

The subscript δ in these two latter terms defines the measurements are taken at

the instantaneous boundary layer location, and at any given instance the boundary

layer location will fluctuate. Supposing one could use the average location of the

boundary layer, the boundary layer thickness, δ99, should not be used. An illustration

of this can be seen in Klebanoff [24] on pg. 1147. Here, Klebanoff distinguishes

between the boundary layer thickness, δ99, the mean position of the boundary, Y ,

and the boundary itself. That is, the reported δ99 is the time averaged u/U∞ = 99%

location of the boundary layer, and not the average boundary layer thickness, Y .

Looking more specifically at the last term, currently there is no means of measuring

the instantaneous pressure out near the freestream – wherever that may fluctuate.

Finally, Walsh et al. [63] shows how (S ′′{δ})+ can be brought into terms of the

dimensionless dissipation coefficient, Cd, by

Cd =
TS ′′

ρU3
∞

= (S ′′{δ})+
(
Cf
2

) 3
2

(2.7)

where skin friction coefficient, Cf , is defined by

Cf = µ
dU

dy

∣∣∣∣
w

(2.8)
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with dU/dy|w found methodically, and described later in chapter 4.

2.1 Previous Experimental Studies on Bypass Transition

The following is literature that has lead up to the current work. It is broken

up by categories: (1) Influence of free stream turbulence intensity on the transistion

process, (2) Measurements of entropy generation rate in bypass transitional flow, and

(3) Simulated entropy generation of bypass transitional flow. In the end they come

together in order for this work to stand on its own.

2.1.1 Influence of Free Stream Turbulence Intensity on the Transition

Process

In order to achieve bypass transition the freestream turbulence intensity (FSTI)

must be at an elevated level (>3%). The process of bypass transition has been

shown by Dunham [10], Abu-Ghamman and Shaw [1], and Mayle [32] to be heavily

dependent on the freestream turbulence intensity (FSTI), and when the FSTI is high

enough (>∼ 3%) very little of the transition process relies on the pressure gradient.

McIlroy and Budwig [37] recorded laser doppler velocimetry (LDV) measurements

in 2 components within the INL MIR flow system. Their representative model was

a flat plate (the same plate reused in the current study) that portrayed the first 1/3

of a high-pressure turbine blade, with and without realistic roughness. An active

(and passive) turbulence generator (TG), modeled after the input from Gad-el-Hak

and Corrsin [12], brought the FSTI up to an order of ∼7% the freestream flow. A

trip made from an array of dowel pins near the leading edge of the plate represented

the same flow conditions achieved from film cooling of turbine blades. Both the

FSTI and the trip resulted in the flow transitioning to a turbulent boundary layer,

yet the heavy favorable pressure gradient, in a sense, “relaminarized” the boundary

layer in both the smooth and rough cases. The results from the LDV data were
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time averaged velocities, and Reynolds normal and shear stresses. The current study

requires instantaneous readings of velocities over an entire flow field.

2.1.2 Measurements of Entropy Generation in Bypass Transitional Flow

The first real look into measurements of v′ (and therefore uv) performed within the

viscous sublayer with highly favorable pressure gradients were done by McEligot and

Eckelmann [35]. Their research provides v′ data at locations of y+ = 5, 7, 10, 15, 25 in

an oil channel where measurements were made from a “X” probe hot-wire anemometer

- along with simultaneous measurements of a wall shear stress sensor. This partic-

ular data set was the basis of a further study by McEligot et. al. [34] finding the

contribution of entropy generation rate in negligible and favorable pressure gradients.

A flat plate study representative of a turbine blade was performed at the Stokes

Research Institute at the University of Limerick. A team of researchers (Walsh et. al.

[59], Walsh and Davies [60], Nolan et al. [40], Walsh et al. [64], Walsh and McEligot

[61][62]), and Nolan and Walsh [39], under the direction of Walsh, have looked at

the careful measurements of S′′′ and S′′ using hot wire, hot film, and Particle Image

Velocimetry (PIV) in such flows as laminar, transitional, and turbulent - as well as

compressible and incompressible. This data set was acquired over a set number of

turbulence intensities, Mach, and Reynolds numbers. The accuracy of the PIV system

was able to reach y+ >∼ 10, achieve gradients of u and v, and apply them to the

approximate entropy generation equation defined in equation 2.4. In support of this

dataset, extensive DNS solutions have been computed by Nolan and Zaki [41] (more

in the next Section, 2.1.3).

2.1.3 Simulated Entropy Generation of Bypass Transitional Flow

Several DNS studies have taken the approach to separate out different parts of the

flow structures within a boundary layer. In transitional flow the field is patchy with
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a mix of turbulent and laminar spots [49] (See Figure 1.1), which are two completely

separate kinds of flow. Depending on what measurements and/or information is

needed from a given flow condition, an engineering approach may be to take an average

across the entire flow; with the downfall of information about pointwise measurements

being lost. On the range of the micro-scale (i.e., any singular location in space and

time) any two locations within the flow will behave differently from each other –

specifically in transitional flow. To help with the prediction of bypass transition

and these above mentioned differing flow structures, Brandt et al. [6], and Zaki

[68] employed DNS data with an initial laminar boundary-layer upstream boundary-

condition that tracks different energy streaks above and within the boundary layer

during transition.

Walsh et al. [61] utilized a DNS data set to show entropy generation rate occurring

mainly in the viscous layer of wall bounded flow. As well, Reynolds numbers are

relatively independent from flows with minor pressure gradients. This specific viscous

sublayer (i.e., from DNS calculations) was usually on the order of 1-2 mm. This shows

the need for high resolution measurements within the viscous sublayer.

It was found in the study of bypass transition by Zaki and Durbin [67] through sim-

ulations of low- and high- continuous eddy frequency modes, that the low-frequency

mode penetrates the boundary layer shear layer and produces turbulent streaks, by

means of the lift-up mechanism. In the high-frequency mode the eddies however re-

main within the freestream and do not penetrate the boundary layer shear. Further,

Zaki and Durbin [68] observed the impact of pressure gradients on bypass transition,

and found that the deceleration of the flow reduces the length needed down the length

of the plate for the turbulent streaks to begin to form in the boundary layer.

Liu et. al. [29, 30] utilized DNS to look specifically at the interaction between the

turbulent streaks forming within the transitional region of the flow, and the Tollmien-

Schlichting waves. They discovered that there exist a balance between the instability
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(though stable nature) of the T-S waves, and a secondary more enhanced instability.

These two instabilities oppose one another, and determine the outcome of turbulent

streaks forming sooner or later.

Computational fluid dynamics (CFD) was utilized at the University of Idaho to

help predict the onset of bypass transition by using various RANS models. Ghasemi et

al. [14] and George et al. [13] all found that the RANS models, heavily used in CFD,

either under shot the onset of transition or over shot the entropy being generated

when compared to a similar DNS computation. George mentions that the k − ω

4-equation model came the closest to predicting transition behavior of the boundary

layer as the DNS had done.

2.2 Needs and Justification

The above mentioned work by Dr. Walsh’s team at Stokes Research Institute

at the University of Limerick have shown the laminar region has significant entropy

generation, more than was previously thought. Also, free stream turbulence intensity

effected the laminar boundary layer, not only by shortening its overall length, but

by producing a rate of entropy generation, locally, by the influence of low and high

speed streaks on the time-averaged flow. Satisfactory agreement was found between

well established semi-empirical correlations and that of the measurements taken by

the team at Stokes Research Institute – more specifically, in the regions of laminar

flow with low free stream turbulence intensity and that of well developed turbulent

flow. Lacking still is the agreement between the transitional region and the said semi-

empirical correlations. From this specific work three main scientific questions have

arisen as fundamental difficulties with the prediction and measurements of S ′′ and

S ′′′: the onset, duration, and entropy generation rate of the transition region. All

must have sufficient data within y+ < 5.
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Chapter 3

Experimental Methods

The following is a compilation of the equipment, settings, and procedures used in

the current work.

3.1 Matched Index of Refraction Flow Facility

The Matched Index of Refraction (MIR) Flow Facility located at the Idaho

National Laboratory (INL) in Idaho Falls, ID is the largest in the world – which has

the advantage of being able to obtain highly detailed information about many flow

conditions - all while not interfering with the flow itself. Stoots [51] provides details

of this system, also see Fig. 3.1. The MIR utilizes the matched index of refraction

[7] between quartz and mineral oil to remove any visual effects from the bending of

light rays (refraction) through characteristic models in order to resolve flow patterns

optically in or around the models themselves.

There is approximately 3,000 gallons of oil in the closed loop of the MIR, and

an axial pump is able to push the fluid at approximately 10,000 gpm. The current

working matching temperature of the mineral oil to quartz is 25.156◦C, and the MIR

temperature control loop was able to maintain this temperature within ±0.05◦C.

This was accomplished by drawing approximately 300 L/min of the oil from the main

tunnel and running the fluid through various heat exchangers and/or heat stacks.

A traversing mechanism with accuracy in position within ±0.005 mm moved the

camera optics, utilized in the MIR measurement techniques, in all three directions,

either manually or automatically. The traverse allowed for the entire centerline plane

(xy-plane) of the test section of the MIR to be imaged – with the exception of two

supports that hold the walls of the MIR test section where the optics were blocked

(not shown in Figure 3.1). As mentioned above, the working fluid of the MIR is a
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Figure 3.1: Schematic diagram of the MIR Flow Facility

light mineral oil with fluid properties – and corresponding uncertainties – by Budwig

and Westin [8] at the MIR matching temperature of 25.156◦C are shown in Table 3.1.

3.2 Experimental Apparatus – Flat Plate

Figure 3.2 shows the CAD rendition of the flat plate apparatus within the test

section of the MIR. Flow is going from right to left. The CAD model shows a cut away

of the test section, where the three windows on each side of the tunnel for obtaining

optical data are also shown. The optical windows are made of soda-lime float glass for

a highly smooth and flat surface. Quartz sections of the flat plate are visible within

each of the three windows (transparent sections of the plate). The coordinate axis

followed the traditional right hand rule (as shown in Figure 3.2), and was held at the

center of the leading edge to the plate - with streamwise (and upstream) as x, normal
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Table 3.1: Light mineral oil fluid properties in the MIR.

Parameter Value

Matching Temperature
25.156◦C
±0.005◦C

Fluid Density, ρ
0.830 [g/mL]
±0.00024 [g/mL]

Kinematic Viscosity, ν
1.32x10−5 [m2/s]
±7.8x10−8 [m2/s]

Index of Refraction 1.458

Maximum flow in empty
tunnel

1.7 [m/s]
10,000 gpm

to the top surface of the plate as y, and spanwise to the tunnel as z.

The setup of the flat plate had three different flow configurations, each adding more

complexity than the last. In the first flow configuration, as seen in Figure 3.3a, the flat

plate is situated in an empty tunnel in order to have a very low free stream turbulence

intensity and negligible “zero” pressure gradient. This flow configuration was utilized

to basically calibrate the experimental setup of the tunnel, as the flow was quiet

and predictable it was easily analyzed against common theoretical flows such as the

Blasius solution for laminar flow. In Figure 3.3b the plate had the same configuration

as the first with the one addition of a turbulence generator (TG) which was an array

of 21 horizontal round bars with 12.7 mm diameter and 25.4 mm pitch. The TG has

the option of being blown (i.e., small holes injecting fluid into the bulk flow from a

secondary controlled loop), but it was observed by McIlroy and Budwig [37] to have

more turbulent contribution if the TG was held passive to the flow. In other words, the
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Figure 3.2: Geometry of the flat plate in the tunnel, with the origin at the leading
edge of the plate. Flow is from going from right to left.

TG bars were only present, and no auxiliary flow was injected. Furthermore, in Figure

3.3c the TG was still present, and an adverse pressure gradient was installed above

and below the experimental plate (for symmetry of the flow conditions) in the form of

flat aluminum plates. This began with a bell-mouthed curve that contracted the flow

down, which ended just at the leading edge of the flat plate. The bell-mouthed curve

then transitioned immediately and linearly diverged at an angle of 3.85◦. In summary,

the datasets are henceforth titled: (a) Zero Pressure Gradient without Turbulence

Generator (ZPG without TG), (b) Zero Pressure Gradient with Turbulence Generator

(ZPG with TG), and (c) Adverse Pressure Gradient with Turbulence Generator (APG

with TG).

Within the three flow configurations there are common features to the experimen-
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Figure 3.3: Flat plate configurations of the three tests performed on the flow. (a)
ZPG without TG (b) ZPG with TG (c) APG with TG. Flow is going from right to
left.
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tal setup. First, majority of the support for the plate was provided from underneath

by low profile aluminum bars. With the exception of the leading and trailing edge of

the plate that were supported by 6.35 mm thick aluminum plates that stood vertically

in the tunnel from top to bottom, and supported the plate at the midsection. Second,

a 5 cm aluminum leading edge design was defined by a symmetrical ellipse that ended

just over its minor axis (about 2.5 cm downstream), and continued downstream as a

flat plate for another 2.5 cm – at which point the first quartz plate began (i.e. the first

measurement location). This design was chosen as both Frannson [11] and Hanson

et al. [17] show the pressure distribution from leading edge effects at a minimum

between 1 and 1.5 lengths of the ellipsoidal part of the leading edge. Third, a flap

mechanism at the downstream side of the plate helped equalize the cross sectional

areas between the top and bottom of the plate. Lastly, in all three experimental

configurations a local seeder was held just at the centerline (xy-plane), leading edge

of the flat plate where highly seeded oil was injected at a low flow rate in the hopes

of entraining seeding particles within the boundary layer of the flow (see Section 3.3

for more info).

3.3 Local Seeding System

The MIR tunnel was seeded with 12 micron (on average) hollow glass spheres that

are silver coated. Due to the interface between freestream flow and boundary layer

on the flat plate the seeding becomes sparse within the boundary layer. There was

a need for the seeding particles to enter the boundary layer directly at the leading

edge, and it was observed that Kähler et. al. [23] used a local seeder in his work.

A small 6.35 mm ID tube was installed directly at the leading edge of the plate

(see Figure 3.4), and highly seeded oil (at matching temperature) was drawn at an

extremely low flow rate from a vat within a secondary loop (not shown). The vat

was temperature controlled by the secondary loop that was completely separated –
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Figure 3.4: Local seeder just at the leading edge of the flat plate.

thermally and hydraulically – from the main loop shown in Figure 3.1.

The local seeding system worked very well for the ZPG without TG flow, but

when the TG was installed for the later two flow conditions the turbulent eddies

broke up the stream of fluid coming from the local seeding system within the first

150 mm to 200 mm of flow atop the plate. This caused a low seeding density within

the boundary layer on these two flow configurations, and lead to the need to use the

measurement technique Particle Tracking Velocimetry (PTV) in this region instead

of PIV (see more in section 3.5).

3.4 Sample Size

Turbulence measurements need a relatively large data set in order to resolve

actual turbulence quantities and not just artifacts. A procedure put forth by Uzol and

Camci [56] resolves an appropriate number of samples needed to accurately address

this issue. A large number of samples were taken (in this case 10,000 image pairs),

followed by 100 subsets that were chosen at random from the overall (e.g. 100 random
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Figure 3.5: Convergence study for PIV and PTV sample size.

sets of 250 image pairs taken from the overall 10,000 image pairs), and, finally, each

subset is analyzed for mean and turbulence quantities. This is then repeated by an

incrementally increasing sample size (while the number of subsets is held constant)

that are also randomly taken from this overall sample, up to the total 10,000 image

pairs (where the 100 subsets is ignored in this last dataset as the mean and turbulence

quantities would not change).

This procedure was then taken one step further than the Uzol and Camci algorithm

[56] in the sense that the study was done over the entire FOV, and not just at a
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randomly selected location. After running the aforementioned algorithm over the

entire FOV the location in the FOV that took the longest to converge was selected as

the “worst case scenario”. This made certain the convergence was met for the entire

FOV by satisfying this worst case scenario. This means that for most of the FOV the

sample size went above and beyond the needed sample.

Looking now specifically at this worst case scenario location in the FOV the mean

from the 10,000 image pairs was deemed the ”golden” standard, and all other subsets

were held against this total dataset. Figure 3.5 shows the velocity mean and turbulent

quantity variations, left and right, respectively, for all subsets on a semi-log scale. The

chosen convergence (< 0.3% for the error in velocity measurements, < 6.1% for the

error in turbulence quantities, and hard drive size considerations) was selected at

4,000 image pairs, and all subsequent data sets were set at a sample size of 4,000.

3.5 Particle Image Velocimetry/Particle Tracking Velocime-

try

Velocities, instantaneous gradients, time-averaged gradients, and turbulence mea-

surements were obtained using LaVision’s FlowMaster and a Nd:YAG green laser

(532nm). By using transparent quartz at the same index of refraction as mineral oil,

the green laser sheet shown directly through the flat plate from below, and avoided

reflections on the surface of the plate. This gave unaltered, whole field, vector maps

on the centerplane (xy-plane) of the flat plate that have immense amount of infor-

mation needed for the various gradients in the entropy calculations very near the

plate. The images of the flow were recorded at two levels: large field of view (LFOV)

and mezzo field of view (MFOV), as depicted in Figure 3.6; with the vertical (plate

normal) length of the images being ∼130 mm and ∼7 mm, respectively. As a further

note, the LFOV was recorded at every location down the plate (i.e., the entire cen-
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Figure 3.6: Data Acquisition locations for both large and mezzo fields of view. Not
to scale.

terline plane of the plate was recorded with the exception of the supports on the test

section), while for the MFOV scale, the images were recorded at every other location.

In order to have an appropriate particle displacement within both the large and

mezzo field of view a simple calculation of ratios was performed

dt =
FOVx
Umax

∆x

#px
(3.1)

where FOVx is the calibrated image dimension in the x direction, Umax is maximum

observed velocity, ∆x is the desired pixel displacement of the particles in an IW, and

#px is the overall number of pixels on the camera sensor in the x direction. The dt

in the LFOV varied respective of the flow conditions of each case study, from 660 to

1200 µs. Also, due to the high deceleration of the flow in the APG case, the dt was

varied within the case itself, from 660 - 890 µs.
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The LFOV was processed using PIV (more specifically the cross correlation method),

and was able to capture freestream conditions, boundary layer location, and integral

parameters of the wall bounded flow. Initial processing was done with 128 x 128 pixel

interrogation windows (IW) followed by one iteration of 64 x 64 pixel IW, and then

finally by two iterations at 32x32 pixel IWs. A 75% overlap of the final pass was used

for all PIV processing. This gave a final pass, velocity vector, grid of 8x8 px. Table

3.2 shows an overview of the PIV flow parameters.

The MFOV was processed using PTV (due to its relatively low seeding density),

and captured high resolution images very near the wall in order to resolve the shear

stress at the wall. This small scale image was also utilized to resolve the various

gradients in the flow on the order of the Kolomogorov length scale, η. An initial PIV

algorithm was passed over the MFOV to achieve an initial idea of the flow conditions.

This gives a best “guess” for the PTV to take place. The velocity vector output

from the MFOV PIV is then utilized as the start of the PTV algorithm. The PTV

looked for particles sized 2-6 px in apparent diameter within both frames, and output

a velocity vector where successful. Velocity vectors from PTV are reported on an

unstructured grid; therefore there was a need to interpolated to structured grid in

order to calculate time averaged quantities at a single location. The 8x8, center-

to-center grid was chosen for the final size of the PTV output. This allowed for

the distances between velocity vectors to be on the same order of magnitude as the

Kolomogorov length scale. The interpolation used nearest neighbors and a third-order

curve fit to snap the vectors to the center of each grid location. In total, approximately

2,000 vectors were kept at each grid center from the 4,000 taken. Table 3.3 details

the parameters used in PTV of the MFOV.

This smaller image scale was able to reach deep into the viscous sublayer and

measure instantaneous and averaged quantities. The dt on the mezzo scale varied

across all datasets from 36 µs to 200 µs. Specifically though, within the APG with



22

Table 3.2: Large field of view PIV flow parameters for all three flow conditions.

Parameter Value

Image Size
172 mm x 130 mm

(1200x1600 px)

Typical particle density
(diameter)

0.03 ppp (3.25 px)

dt
ZPG without TG: 850 µs
ZPG with TG: 1200 µs

APG with TG: 660-890 µs

Interrogation Window
(# of passes)

128x128(1)

64x64(1)

32x32(2)

% Overlap on Final Pass 75%

Post-Processing
Remove vector: Q < 1.3

Universal outlier detection

Final LFOV PIV Grid
(px)

0.889 mm (8)
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Table 3.3: Mezzo field of view PTV flow parameters for all three flow conditions.

Parameter Value

Image Size
10 mm x 7 mm
(1200x1600 px)

Typical particle density
(diameter)

0.005 ppp (3.5 px)

dt – high
ZPG without TG: n/a

ZPG with TG: n/a
APG with TG: 99-200 µs

dt – low
ZPG without TG: 36 µs
ZPG with TG: 144 µs

APG with TG: 49-115 µs

PIV Initial Passes
(# of passes)

128x128(1)

64x64(1)

32x32(2)

% overlap on
Final PIV Pass

50%

PIV Post-Processing
Remove vector: Q < 1.3

Universal outlier detection
Fill-up all

PTV Particle Image
Diameter

2-6 px

Final MFOV PTV Grid
(px)

0.05 mm (8)



24

TG MFOV the flow was moving too fast near the leading edge to utilize only one dt

at each location. Therefore, two time steps were selected – one for the upper part

of the image (faster fluid motion, away from the plate), and a second for the lower

part (slower fluid motion, closer to the plate). Both datasets were taken without

moving the camera before proceeding. As an example, the current study was able

to capture ∼18-20 data points of mean flow within the viscous sublayer (y+ < 5)

of the wall bounded flow (see Figure 3.7, more on this in Section 4). In order to

understand an order of magnitude of size of the sublayer, a y+ = 1 throughout the

flow configurations is approximately 10−4 m from the plate surface (y-direction).

3.6 Image Calibration

The camera was mounted perpendicular (⊥) to the MIR test section windows,

therefore any aberrations (e.g. diffraction) of the image plane is at a minimum –

worst case being the corners of the image. Regardless, with the light rays going from

one medium to another, and in this case even a third, calibration of the image sensor

(pixels) to image plane (inches) was needed. On both levels, the LFOV and MFOV,

a calibration plate was submerged in the oil below the flat plate. For the LFOV

a LaVision type 7 calibration plate with dot to dot spacing of 5 mm was used to

calibrate the image plane. For the MFOV, a µPIV calibration plate was used with

dot spacing of 1 mm or less (see Figure 3.8).

3.7 Vibration Control

Running the tunnel at full speed, it was found that the camera mount on the

traversing system vibrated slightly, even with an air bladder system elevating the

tunnel; more specifically in the MFOV where the overall length was ∼8 mm. It

was seen that the vibration time scale was magnitudes larger than the time between
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Mezzo FOV: ◦
Large FOV: �

Figure 3.7: Velocity Profile near downstream of plate [33]. Plot is shown for
illustrative purposes to see how much data was achieved within the viscous sublayer
(i.e., 18-20). More on this in Section 4.
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Figure 3.8: Calibration plate for mezzo field of view. Scale in inches.

image pairs, dt, therefore the vibration correction was handled after data acquisition.

A PIV algorithm within the LaVision DaVis software was used to remove the shifting

of image pairs from one pair to another by utilizing the surface of the plate as the

image structure that should not move between images. The surface of the plate was

identified by small particles that rested on the plate surface, and formed a bright

band of light in the image – as the plate itself was transparent from the refraction

matching. The top of the plate can be seen in Figure 3.9, where the MFOV raw

image is seen on the left and the average intensity count across the horizontal is seen

on the right. This shows that the bright band of light at the plate surface is a perfect

candidate for the PIV algorithm to align the images to the same location throughout

the image set.
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Figure 3.9: Plate identification used in both LFOV and MFOV to align datasets
and remove vibration of the camera system. Example image shown is from the
MFOV dataset.
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Chapter 4

General Flow Conditions

4.1 Freestream Velocity

As freestream velocity, U∞, is such an important measurement in fluid flow over

a flat plate it will be discussed first. The current work used a method similar to

that of Nolan and Zaki [41] to find the freestream velocity. At each individual x

location, freestream velocity was recorded along the wall normal direction whenever

|dU/dy| < 0.002. After which, the values recorded were then averaged over the y-

direction. This method of finding freestream velocity was then repeated at each x

location giving the profile U∞(x). In mathematical form the measured freestream

velocity, U∞, is defined by the following two equations

U∞ =
1

j

j∑
1

U(j) (4.1)

where j is the index up to the number of nodes in the y direction and U(j) is

U(j) =


U(j) = U(j), if |dU/dy(j)| < 0.002

U(j) = NaN, otherwise

(4.2)

where dU/dy is found with a simple central differencing scheme about the point of

interest. It is also important to point out that equation 4.1 is computed by ignoring

any reference to “Not a Number” (NaN) that are present in the gathering of U(j) in

equation 4.2. Further, index j is the size of all real numbers in U, ignoring NaNs as

well.
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4.2 Streamwise Profiles

Freestream velocity was utilized to calculate the boundary layer growth, δ99,

and integral parameters, δ∗ and θ, of all three flow conditions. With the boundary

layer thickness defined as the point, normal to the wall, where the velocity, u(y), is

essentially 99% of the freestream streamwise velocity

δ99 = yj when
U(yj)

U∞
= 0.99 with j = 1...n (4.3)

where again j is the wall normal index, and n is the maximum nodes in the wall normal

direction. The integral parameters displacement, δ∗, and momentum, θ, thicknesses

are defined by

δ∗ =

∫ ∞
0

(1− U(y)

U∞
)dy (4.4)

θ =

∫ ∞
0

U(y)

U∞
(1− U(y)

U∞
)dy (4.5)

where the integration limit, ∞, can be dropped and replaced with δ99 from equa-

tion 4.3. The freestream velocity and the location of δ99 must be deduced from the

measured velocity profiles. Also, Equations 4.3, 4.4, and 4.5 are all functions of x,

producing their respective streamwise profiles. It is noteworthy that δ∗ holds for all

incompressible flow conditions, while θ on the other hand only works for flat plate

incompressible flow.

The freestream velocity is also utilized in the following equations to further clarify

the fluid motion

Reθ(x) =
θ(x)U∞(x)

ν
(4.6)

Rex(x) =
xU∞(x)

ν
(4.7)

FSTIx(x) =
URMS(x)

U∞(x)
(4.8)
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Kt(x) =
ν

U2
∞(x)

dU∞(x)

dx
(4.9)

where Kt is the acceleration parameter, Rex and Reθ are Reynolds number based

on position from the leading edge of the flat plate and local momentum thickness,

respectively, and lastly the free stream turbulence intensity (FSTIx) in the streamwise

direction as related to the x-component of the velocity feild. That is, far enough

downstream from the TG, isotropic behavior of the freestream is assumed, and the

full equation for turbulence intensity,

Tu =

√
1

3
(u′2 + v′2 + w′2)/U∞,

is reduced to Eq. 4.8 by means of the isotropic behavior, u′2 = v′2 = w′2 [49].

Explicit care has been taken in equations 4.6 through 4.9 to show they are a

function of x only, and therefore produce streamwise profiles. Also, since they are

based on x only, the values computed are all local values. For example, it is common

in the field to hold freestream velocity constant at some upstream location, but in

the present work the freestream velocity changes with x location.

The trapezoidal rule was utilized in the numerical integration of Equations 4.3, 4.4,

and 4.5. The results from these numerical schemes can be seen on the left side of Fig.

4.1. This left side of Fig. 4.1 shows that the ZPG with TG boundary layer increases

at a faster rate than the ZPG without TG case. The TG creates a FSTIx of ∼8% at

the leading edge of the flat plate, up from the 0.5% found in the ZPG without TG

case. The freestream turbulence provides energy to the boundary layer and “trips”

the flow closer to the leading edge; which in turn has an effect on the growth rate of

the boundary layer thickness [66]. Likewise, the APG with TG boundary layer grows

at an even larger rate than the ZPG with TG as the adverse pressure gradient and

turbulent freestream are both present.

The set of data in the last window of the APG with TG case has been removed due
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Figure 4.1: Streamwise profiles of measured quantities. Left side: Boundary layer
and integral parameters of flat plate flow for three flow conditions. Right side:
Freestream velocity, acceleration parameter, Kt, Reynolds number based on distance
from leading edge and based on momentum thickness, and freestream turbulence
intensity for all three cases. (a) ZPG without TG. (b) ZPG with TG. (c) APG with
TG.



32

to the boundary layer thickness being over sized for the current LFOV. This arises

from the inability to obtain the freestream conditions, and therefore the location

of the boundary layer. Further, since the integral parameters utilize the freestream

velocity – and an integration limit of the boundary layer thickness – they were not

calculated for this third window dataset, as well. This was found to be acceptable,

as will be seen in later sections, because the transition process for this dataset has

already occurred within the first window.

The right column of Figure 4.1 show the various freestream profiles defined earlier.

Notice the various “inlet” freestream turbulence intensities. Where for the ZPG

without TG case the FSTIx is well below 1%. This means if any onset to transition

is going to occur it will be through the traditional T-S instabilities, presumably. The

other two flow conditions (ZPG with TG and APG with TG) are both well above

the 1% threshold, and will therefore “bypass” the T-S waves. It is noteworthy that

the acceleration factor, Kt, is not constant for the two ZPG cases as the tunnel walls

provide a “negligible” favorable pressure gradient within the ZPG flow configurations

– actually, there are six viscous boundary layers essentially forming in the closed

tunnel: top and bottom of the experiment (the top boundary layer being the one of

interest), and on all four walls of the tunnel. Also, the Kt found in the APG with

TG case is always negative in sign as the freestream flow has a deceleration.

4.3 Wall Normal Profiles

Figure 4.2 is a representation of the flow at 6 locations (2 per each MIR window –

with the exception of the APG with TG flow configuration where the last 2 datasets

were removed) down the length of the tunnel. The left side shows the streamwise mean

velocity profiles, and their growth outwards away from the plate. The streamwise

velocity has been normalized by the local freestream velocity, U∞(x). Also, on the

left side of Fig. 4.2 is the comparison of Reynolds shear stress down the length of the
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plate

ReSS = ρu′v′ (4.10)

which has units of stress. For constant density (which is the present case), ρ can be

dropped, and the quantity is normalized by the squared local freestream velocity

ReSS =
u′v′

U2
∞

(4.11)

The Reynolds shear stress plots show that for the ZPG without TG configuration

the Reynolds shear stress is at a minimum throughout the boundary layer, but for

the ZPG and APG with TG flow configurations the Reynolds shear stress ramps

up through the boundary layer and comes back down just near the wall – which

satisfies the no-slip condition at the wall where fluctuations go to zero. The contrast

between flow configurations stems from the introduction of freestream turbulence

in the latter two cases. These freestream turbulent eddies introduce stress on the

developing boundary layer very early on in the flow.

The right side of Figure 4.2 shows the streamwise turbulence intensity defined as

TIx(y) =

√
u′2

U∞
=
URMS(y)

U∞(x)
(4.12)

and the normal component turbulence intensity as

TIy(y) =

√
v′2

U∞
=
VRMS(y)

U∞(x)
(4.13)

where the turbulence intensity is similar to that defined in equation 4.8, but a wall

normal profile is desired instead of the freestream profile. URMS(y) and VRMS(y) are

the standard time-averaged rms levels of the, respective, streamwise- and normal-

velocity components in the wall normal direction, while U∞ is, again, the local time-

averaged streamwise freestream velocity.
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The low-level freestream turbulence for the ZPG without TG case of about 0.5%.

In contrast, the ZPG with TG case starts out at approximately 8% and decays down

to 2.5% by the end of the tunnel. Presumably, both datasets with a TG started out

with the same “inlet” FSTIx, but due to the bell-mouthed curve that converged the

flow in the APG with TG case, the FSTIx starts out at around 4% in the first dataset

and decays to 2.5% at the end of the plate.

The high turbulence levels within the boundary layer are consistent with boundary

layers as seen in McIlroy and Budwig [3]. These relatively high turbulence levels

within the boundary layer – fed from the freestream turbulence intensity – near

the leading edge are what lead the flow to bypass transition where the Tollmien-

Schlichting waves are bypassed [25, 21].

4.4 Blasius Flow as Compared to the Current Work

In order to “calibrate” the entire setup and tunnel, and get a better understanding

of the instrumentation the ZPG without TG flow configuration was compared to the

Blasius solution of laminar flow at a location near the leading edge. Schlichting [49]

cites Blasius [4] , the first student of Ludwig Prandtl, who had the ingenious idea of

non-dimensionalizing the distance from the wall with

η = y

√
U

2νx
(4.14)

and using η as an input to the Blasius equation

f ′′′ + ff ′′ = 0 (4.15)
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Figure 4.2: Normal to wall mean velocity profile and Reynolds shear stress x 1000
(left side), and normal to wall turbulence intensity profiles of x- and y-components
of the flow (right side). Colors show progression down the length of the plate, x. (a)
ZPG without TG. (b) ZPG with TG. (c) APG with TG.
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Table 4.1: Numerical solution of the Blasius boundary layer, Equation 4.15

η f ′ η f ′

0 0 2.6 0.9306
0.2 0.09391 2.8 0.95288
0.4 0.18761 3 0.96905
0.6 0.28058 3.2 0.98037
0.8 0.37196 3.4 0.98797
1 0.46063 3.6 0.99289

1.2 0.54525 3.8 0.99594
1.4 0.62439 4 0.99777
1.6 0.6967 4.2 0.99882
1.8 0.76106 4.4 0.9994
2 0.81669 4.6 0.9997

2.2 0.8633 4.8 0.99986
2.4 0.90107 5 0.99994

where f is a function of η, and f ′ is U/U∞ (not explicitly in the equation). The

boundary conditions for the non-linear ODE are as follows

f ′(0) = f(0) = 0 f ′(∞) = 1 (4.16)

the solution to Equation 4.15 can be easily found with a numerical shooting method.

As there are various ways to solve the non-linear ODE given in Equation 4.15, the

present work results are shown in Table 4.1 for clarity.

By evaluating equation 4.14 at a given location within the middle window of the

MIR test section, a comparison can be made to the solution found in Table 4.1. By

choosing the middle window this allows for enough distance to remove any effects

from the leading edge, and the laminar boundary layer has developed enough to have

substantial amounts of data within the said boundary layer. This comparison can be

seen in Figure 4.3. The comparison works so well as explained by White [66], that

within laminar-boundary-layer flow there is no characteristic length, “L.” Therefore,

all laminar-boundary-layer profiles have the same dimensionless shape (i.e., Tbl. 4.1

holds for all locations x in a laminar boundary layer).
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Figure 4.3: Laminar flow comparison of ZPG without TG (symbols) to the Blasius
laminar-boundary-layer solution (line).

4.5 Skin Friction Coefficient

The skin friction coefficient defined from White [66] and utilizing the integral

parameters that were defined above is

Cf = 2

(
dθ

dx
+ (2 +H)

θ

dθ

dU∞
dx

)
(4.17)

with H as

H =
δ∗

θ
(4.18)

and is called the shape factor of the boundary layer. H commonly follows a horizontal

asymptote at ∼2.5 in a laminar boundary layer, and will slope downward towards

another asymptote of ∼1.5 through the transitional region of the boundary layer
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towards the fully developed turbulent boundary layer (see White [66]).

To measure the skin friction coefficient directly one must follow the following two

equations

τw = µ
dU

dy

∣∣∣∣
w

(4.19)

and

Cf =
τw(x)

1
2
ρU∞(x)2

(4.20)

where τw is the local shear stress of the fluid at the wall, U is the time averaged

velocity, and µ is the dynamic viscosity of the fluid. In equation 4.20, ρ is the fluid

density, and U∞ is the local freestream velocity.

Johansson et al. [22] gives a rather straight forward method to finding the slope,

dU/dy, of the shear stress at the wall. Data points (∼ 15−20) within y+ < 10 (where

y+ is defined as yuτ/ν) of the U velocity were measured within the MFOV, and a

curve fit was applied to the data by using a Taylor-series expansion about U as a

function of y

U =
∂U

∂y

∣∣∣∣
w

(y − y0)−
U∞
2ν

dU∞
dx

(y − y0)2 +
1

24

∂4U

∂y4

∣∣∣∣
w

(y − y0)4 +O(y5) (4.21)

where subscript w means the measurement at the wall, and the leading coefficient is

the slope of the velocity gradient at the wall. There is also an offset built into the

equation to correct for the wall location. This offset is needed because the measure-

ments of velocity are recorded on a regular grid, and (more than likely) the apparent

image of the plate lies in between the grid nodes. The second term has an interesting

coefficient that comes from (∂2U/∂y2)w = 1
µ
dP∞
dx

= −U∞
2ν

dU∞
dx

, and concerning the third

derivative it is known that (∂3U/∂y3)w = 0 making that specific term null. Further,

the fourth order derivative is as shown, and all higher order terms are neglected.

By applying a numerical mask that removes erroneous data within the plate, and

also any residual errors from the wall into the flow (around 2 grid nodes), and iterating
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on the above curve fit (Eq. 4.21), the data had enough points below the y+ < 10

criterion (as seen in Fig. 3.7). The iteration on Eq. 4.21 was computed within a while

loop until the y+ values had not changed from one iteration to the next below a cutoff

of 10−3, then the iteration is deemed sufficient and the velocity gradient at the wall

was recorded. The change in y+ values arouse considering that with every iteration

a “better” velocity gradient at the wall (dU/dy|w) was observed (differing from the

previous calculations), and the y+ values would change slightly. In more detail, the

consistent PIV/PTV grid of velocity vectors with known spatial dimensions would

stay constant, and the improved velocity gradient at the wall changed with every

iteration of the Eq. 4.21, thus changing y+.

An example of the curve fit U vs. y using Eq. 4.21 can be seen in Figure 4.4.

The data is taken from the APG dataset with an x location of x = 855 mm from the

leading edge. The figure shows the traditional y+ = U+ curve (where U+ is defined

as U/uτ , and uτ =
√
τw/ρ) for the viscous sublayer as a dashed line, and the APG

with TG measured data as circles, ◦. The Johannson curve (seen as a solid line in the

same figure) fits near perfectly down the middle of the APG data, and around y+ of 3

the dataset meets up with the viscous sublayer. This is consistent with observations

made bt Walsh et al. [63].

Looking now at equation 4.20 for the skin friction coefficient, it is important

to understand the characteristics of the coefficient in the laminar, transitional, and

turbulent regimes of the flow over a flat plate. Theoretically, Cf comes down from

positive infinity at the leading edge of the plate, then reaches a local minimum at the

onset of transition, followed by a maximum where the turbulent boundary layer is

formed. The local minimum of Cf at the onset of transition is at a different location

along the plate based on several factors: FSTI, pressure gradient, inlet conditions,

etc. Mayle [32], Abu-Ghamman and Shaw [1], and Dunham [10] have all addressed

this transition location, and based it on a criterion they all call Reθt, or in other words
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Figure 4.4: Curve fit using equation 4.21 to measure streamwise-normal velocity
gradient at the wall. Showing U+ vs. y+ as the viscous sublayer. Data from APG
with TG, and at x = 855 mm.

a critical Reynolds number based on momentum thickness. The three cited authors

each have their own approach to the transition location and are repeated here

Mayle [32]: Reθt = 400FSTI−5/8x (4.22)

Abu-Ghamman and Shaw [1]:

Reθt = 163 + eF (λθ)−F (λθ)τ/6.91

λθ < 0 : F (λθ) = 6.91 + 12.75λθ + 63.64λ2θ

λθ > 0 : F (λθ) = 6.91 + 2.48λθ − 12.27λ2θ

(4.23)

Dunham [10]:
Reθt =(0.27 + 0.73e−0.8FSTIx)·

(550 +
680

1 + FSTIx − 21λθ
)

(4.24)

where FSTIx is defined in 4.8, and λθ is the pressure gradient coefficient. Note that



41

Dunham recommends the use of the average of the two FSTI measurements at the

leading flow conditions (i.e., before the plate or just at the leading edge) and just

above the onset of transition location. This is slightly misleading as the equation is

trying to discover the onset of transition location in and of itself, but a best guess

will suffice.

Table 4.2 shows the utilization of Eqs. 4.22 – 4.24 to predict the transition lo-

cations of the boundary layers for each flow configuration. The predictions for the

ZPG w/out TG were drastically different from each other, as the low FSTI in this

case is a poor indicator of transition. While on the other two flow conditions, the

higher FSTI allows for a more realistic prediction of transition location. Note that

the observed transition location for the APG w/ TG case is before the domain of the

dataset which begins at Reθ = 180, and this is further clarified by the predictions

made for that dataset (Reθ = 168− 174).

In summary, transition for both ZPG with TG and APG with TG cases should

transition early due to their high freestream turbulence intensity and/or adverse pres-

sure gradient; while, in contrast, the ZPG without TG should transition much later

due to the quite freestream and ‘negligible’ pressure gradient. The values of Cf and

H are plotted together over the length of the plate in Fig. 4.5 for each flow configu-

ration. This plot, and Tbl. 4.2, can be compared to better understand the location

for transition to occur. In the ZPG without TG case (Fig. 4.5a), the transition may

be seen towards the end of the plate; where transition is seen as a local minimum on

the Cf curve. However, the shape factor does not appear to support the Cf curve,

as it stays around the horizontal asymptote of 2 - 2.5. This is also consistent with

the aforementioned predictions, as each prediction is outside (i.e., downstream) the

domain of the dataset. In the ZPG with TG flow configuration the onset of transition

is observed to be around Reθt = 163. The shape factor, H, is also consistent with this

observation as it comes downward from the expected laminar value, and transitions
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Table 4.2: Comparison of predicted to observed transition locations – based on the
critical momentum thickness Reynolds number, Reθt – for all three flow
configurations.
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into the turbulent region. As noted above the local freestream velocity is utilized to

calculate the skin friction coefficient. Therefore, as the tunnel has a slight favorable

pressure gradient from boundary layers forming on all sides, the skin friction coeffi-

cient is lower in magnitude (vs. the expected trend) within the turbulent boundary

layer from the slight increase in freestream velocity – found in the denominator of Eq.

4.20. The APG with TG flow condition has an onset of transition that is assumed

to have already occurred before the domain of the data (with more on this specific

assumption below). In Fig. 4.5c, the shape factor, H, for this flow configuration

follows the traditional trend of ∼1.5 for the fully turbulent regime – with the tran-

sition region coming downward towards that value. This is also consistent with the

predictions in Tbl. 4.2.

4.5.1 Note on Particles Resting on Plate Surface

In a related topic, and as mentioned above, the particles that rested on the plate

surface were magnitudes smaller than the lowest detactable measurement of the flow.

The average particle diameter was 12x10−6 m, and the smallest detectable measure-

ment was on the order of 10−4 m. Further, the sublayer, as an order of magnitude,

was approximately on that same scale of 10−4. This shows that the viscous effects

of the fluid dominate the effects from any singular particle resting on the plate sur-

face, and does not lead to any form of a “trip” from within the viscous sublayer. In

other words, the main effects of transitional behavior comes from the high freestream

turbulence, and not from the particles resting on the flat plate.

4.6 Integral Length Scale

The turbulent eddies throughout the flow are of an entire spectrum in size from

the largest eddies, down to the Kolmogorov length scale, and on to dissipation into

heat. In order to capture the average large eddy size an algorithm was made, and
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Figure 4.5: Skin friction coefficient and shape factor (H = δ∗/θ) for the three cases
shown. (a) ZPG without TG. (b) ZPG with TG. (c) APG with TG.
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utilized on the free stream velocity in both the x and y directions. The values were

found using

L =

∫ ∞
0

f(r)dr (4.25)

where f(r) is

f(r) =
u′(x)u′(x+ r)

u′(x)2
(4.26)

where f(r) is streamwise measurements of velocity fluctuations that are separated

horizontally by a vector, r. The upper limit of infinty was dropped from the integral

of Eq. 4.25, and was replaced by an upper limit of approximately 6”. This was

reasonable as the turbulent eddies were assumed to be around 1” to 2”, and a simple

order of magnitude study of the area under the correlation curve from Eqs. 4.25 and

4.26 is a triangle with height 1 and base 6” – which gives a 3” length. The 1” – 2”

assumption comes from the conclusions made by Roach [44] that eddy length scale

is on the order of the mesh diameter, M – which in this case is 1” – and grows (in a

ZPG) at a rate of
√
x downstream of the grid. This gives a correlation curve found

in Figure 4.6, where the area under the curve is the total integral length scale of the

turbulent eddies in the freestream. The curves were compared to Comte-Bellot and

Corrsin [9]. It was found that the turbulent eddies in the freestream at or very near

the transitional region of the boundary layer for the ZPG with TG case were ∼0.91”

and for the APG with TG were ∼0.63”.

4.7 Total Spatial Correlation

Nolan and Walsh [39] utilized the Pearson Correlation, R, as a total spatial

correlation. It follows suit with the integral length scale presented in Section 4.6,

but herein the correlation location was evaluated with all space in all directions. The

outcome is presented (in landscape) for the ZPG with TG and APG with TG cases in
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Figure 4.6: Spatial correlation curves. (a) ZPG with TG and (b) APG with TG.
ZPG without TG not shown.
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Figure 4.7 and Figure 4.8, respectively. Where column-wise representation is a given

x location down the length of the plate, and row-wise representation are different y/δ

locations from 0.2 - 1.4, with a 0.2 increment. The dashed line is the boundary layer

thickness at each location. Each individual image starts at total correlation, Ruu = 1

(red) and moves outward until the cutoff criterion of Ruu = 0.3 (blue).

These correlation maps show that at higher free stream turbulence levels, the free

stream turbulence effects the boundary layer up to the point where the boundary

layer becomes turbulent itself, independent of the freestream. At this point, the cor-

relation of freestream turbulence and boundary layer turbulence are separated, as the

boundary layer is now producing unique turbulent eddies to the freestream. Where,

also, very near the wall the lift-up angle can be observed for all post transitional

locations [39].

As stated earlier, the APG w/ TG flow configuration developed a boundary layer

that was too large for the optics used in the current work (see Fig. 3.6). The “blank”

boxes in Figure 4.8, show where the freestream information was not recorded.
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Figure 4.7: ZPG with TG total spatial correlation of u′. Note: Image is in
landscape.
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Figure 4.8: APG with TG total spatial correlation of u′. Note: Image is in
landscape.
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Chapter 5

Correction to Wall Shear Stress Using Particle

Distribution Centroid

In the close proximity to the wall, in the high shear region of the flow, the seeding

particles become sparse or spread out across the viscous sublayer (y+ <= 10, and

beyond). This causes the PIV velocity reading in the area to be biased upwards,

as the resulting velocity within an interrogation window (IW) has only detected the

higher velocity which exists in the section of the IW that is further from the wall.

In order to correct for this biased error in near wall measurements it was proposed

to look at the particle distribution centroid of the IW as the “correct” measurement

location, instead of the industry standard of the geometric center of the IW. The

purpose of this method is to model the particle distribution within an IW by looking

strictly at the intensity of the IW signal, and reporting the intensity centroid as the

“true” velocity measurement location.

The biased dispersion of seeding particles within an IW can come from multiple

sources. These can either act independently or in unison, amplifying the problem. A

small normal to the plate velocity component, v, pushes the seeding particles away

from the plate. Citing the conservation of mass, there is also the growth of the

boundary layer where seeding present at the beginning of the plate (small developing

boundary layer) is now spread out over a much larger boundary layer downstream.

The turbulent eddies in the freestream do not penetrate the viscous shear layer deep

inside the boundary layer as much as they did near the leading edge of the plate.

This means any momentum feeding eddies that could provide the boundary layer with

more seeding particles from the freestream cannot penetrate the viscous sublayer [41].

Another mode of scarcity of seeding particles in the boundary layer is from a heated

plate, where the buoyancy effect and the expansion of the heated fluid pushes the
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seeding particles away from the solid boundary [19][18]. The later is presumably the

most prevalent, and will be discussed below.

5.1 Methods Used to Find the Particle Dispersion Centroid

Similar to that of Theunissen et al. [53] and Usera et al. [55], an algorithm

was written to capture the intensity centroid of each IW in PIV. The main difference

from that proposed by Theunissen is that IWs were only analyzed above the wall

interface, and had only the effects from biased particle dispersion. In other words,

the present work looked specifically at flow measurements when the seeding was (on

average) biased away from a physical interface. The algorithm allowed for the biased

error, from the above mentioned sources (if present), in velocity vector location to be

corrected, and brought the velocity gradient at the wall into its correct location and

profile. Any random error from the intensity centroid instantaneous fluctuations – if

a concern – is beyond the scope of this work.

The intensity centroid was found using the following

Cx(m,n) =

∑M
k=1

∑N
l=1 [x(k, l)f(k +m, l + n)]∑M

k=1

∑N
l=1 [f(k +m, l + n)]

(5.1)

Cy(m,n) =

∑M
k=1

∑N
l=1 [y(k, l)f(k +m, l + n)]∑M

k=1

∑N
l=1 [f(k +m, l + n)]

(5.2)

where Cx and Cy are the image intensity centroid of the IW in the x and y directions,

respectively. The f matrix is the image signal, and the x and y matrices are the

pixel locations for moment leverage to each pixel in the IW. The algorithm asked

for certain user inputs that were used in PIV: IW size and overlap. This made sure

the grid size matched between PIV and the search for IW intensity centroids. An

example of the intensity centroid location can be seen in Figure 5.1. The illustration
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Figure 5.1: Example illustration of intensity centroid location versus geometric
center of an IW.

in Figure 5.1 shows the geometric center of the IW (where the reported vector from

PIV would be recorded) as a cross, +, the synthetic particles as dots, ·, and the

new intensity centroid of the particles as a circle, ◦. The location of the intensity

centroid would be recorded and repeated for all locations in an image, and then again

through the rest of the images in the set (e.g. 4,000 for the MIR datasets). The

ensemble average centroid location is then computed with the purpose of correcting

the previously ascertained PIV vector output of IW geometric centers.

To improve the output of equations 5.1 and 5.2, one of the challenges was to

remove background noise (e.g. reflections, current in the camera chip, etc.) from

the true signal of the particles. An algorithm was used to quiet down or completely

remove any noise, in order to specifically look at true signal from the particles in

the flow. The intensity centroid search windows (identical in size and location to the

IWs used in PIV) were scaled up by 2 or 3 times the corresponding PIV IW size.

This allowed for even better statistics and improved signal to noise ratio. A standard

deviation (using 95% confidence) of the signal from the average signal was computed

from this scaled search window. The signal floor was then removed below -3σ within
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that IW. This process then swept across each location within the image; finding the

intensity centroid within each IW to match the exact grid size from the ascertained

output from PIV.

5.2 Results From the Particle Dispersion Centroid

Two cases have been analyzed to demonstrate the need for correction to the biased

error in wall bounded flow. They are the aforementioned ZPG without TG case, and

a dataset from a vertical heated plate with forced convection flow provided to the

author by Harris et al. [19]. An example of the particle dispersion from the heated

plate dataset (discussed below in 5.2.3) can be seen in Figure 5.2. The bright strip

of light near the left of the figure is the wall interface, and the seeding used in PIV

can be seen in the bulk of the image. Flow is going from bottom to the top. The

seeding very near the wall can be seen thinning out, causing rise to be analyzed by

the intensity centroid method.

5.2.1 ZPG without TG Dataset From the Matched Index of Refraction

Flow Facility

The biased dispersion of particles near the plate was not pronounced enough within

the ZPG without TG dataset. However, the laminar flow of the ZPG without TG

dataset, could be compared with the Blasius solution (a laminar analytical solution

for wall bounded flow). This was ideal to see how much the centroid correction

method was needed to correct the seeding disparity at the wall. Therefore, a strip of

the image was masked out numerically with zeros just above the horizontal flat plate

to imitate the seeding disparity found elsewhere. This is seen as a red rectangle in

Fig. 5.3 where the flat plate is towards the bottom of the image (seen as a horizontal

bright strip of intensity just below the mask), and the flow itself takes up the bulk

of the image – flowing from right to left. The mask was a step function of zeros at
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Figure 5.2: An example image frame of particles being moved from the wall
boundary (bright strip of light near the left side of the figure).

32 pixels in the normal direction to match the PIV IW size, and spanned the entire

length of the image.

The results from the laminar ZPG without TG dataset was compared to the

analytical solution of the self similar Blasius profile and to a DNS solution of a

laminar boundary layer provided by Owen et al. [42]. In Fig. 5.4 – with the axes in

Blasius’ similarity variables – the “as-is” output from the PIV software is reported

as filled circles, •, while the centroid corrected data is reported as hollow circles,

◦. This figure shows that far enough away from the plate the two outputs coincide

with one another, as the hollow circles are at the same location as the filled circles.

Conversely, as the PIV IW approaches the wall in the normal direction the velocity

reading is biased upward (i.e., faster than should be reported), and diverges from the

“true” solution as the self-similar Blasius solution, shown as ‘x’ in Fig. 5.4. The DNS

laminar boundary layer solution is also shown as a solid line, —, and further solidifies
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Figure 5.3: The numerical mask of zeros (red rectangle) applied to the flow as a step
function – very near the wall – in order to amplify the seeding disparity in a high
shear region.

the need to improve the velocity measurement locations in the close proximity to the

wall. At this same proximity to the wall, the centroid correction method reports the

measurements at their “true” location, and aligns the reported location of the velocity

measurement with the Blasius and DNS solution.

In terms of error from the DNS, the velocity measurement location (reliable data

point closest to the wall) had an error of 27.9% using the geometric centers of the IW

(traditional PIV), down to an error of 1.8% for the centroid corrected method. Fur-

ther, the error in the velocity gradient at the wall (i.e., dU/dy – which is proportional

to the wall shear stress), when compared to the velocity gradient at the wall from

the DNS curve, went from 53.5% error for the reported geometric centers of the IWs,

all the way down to 8.7% error for the centroid correction method. The importance
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Figure 5.4: Biased correction of measurements within close proximity to a wall.

of the dU/dy
∣∣
w

measurement (and the difficulties of obtaining the measurement) will

be discussed below.

5.2.2 APG with TG from the MIR

The need for the intensity centroid correction method was also seen within

the transistional boundary layer of the APG with TG flow configuration. The flow

configuration was utilized to study conditions inside the transitional boundary layer;

coincidently the seeding very near the plate was seen to have a biased dispersion away

from the plate inside this transitional boundary layer. This allowed for the images

to be evaluated as-is, and did not require any additional modifications to the image

set as was seen in the ZPG without TG flow configuration. It is assumed the biased

dispersion of particles came from the local seeder discussed previously held just at

the leading edge of the plate.

After running both PIV and the centroid correction code on the image set, the



57

Figure 5.5: Biased particle dispersion correction of measurements within close prox-
imity to a wall of the APG with TG dataset.

correction to velocity locations can be seen in Fig. 5.5 – where the symbols are

similar to that in Fig. 5.4. The corrected locations of the velocity measurements can

be seen in the inset where, for example, the velocity at approximately y = 0.2 mm is

seen to be adjusted further away from the wall (i.e. y = 0 mm). These streamwise

measuremenst in the wall-normal direction, in turn, directly effect the measurement

of dU/dy
∣∣
w

and the wall coordinates that relate to that measurement. A significant

improvement can be seen to the y+ vs. U+ data points on the semi-log plot. The

centroid corrected viscous sublayer locations of the data points lie on top of the

y+ = U+ relationship, and diverge away from the viscous sublayer around y+ = 5.

The improvement to the velocity measurement location located at the first rea-

sonable velocity measurement away from the wall (0.2 mm in the inset of Fig. 5.5;

no flat plate information in the IW) was seen to be 9.5%. The improvement to the

velocity gradient at the wall, dU/dy
∣∣
w

, was 17.6% better than the as-is output of PIV.
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5.2.3 Vertical Heated Plate With Forced Convection

To further verify the centroid correction method, a dataset by Harris et al. [19]

was provided to the authors, because the biased particle dispersion was seen in the

dataset – prevalent enough to avoid any modifications to the images. A detailed

description of the experimental setup of this dataset can be found in [18].

Figure 5.2 shows the vertical heated plate on the left side of the figure as a bright

band of light. The flow is going from bottom to top. The particles just to the right of

the plate interface are thinned out enough to see the particle disparity with this single

image. On average, the particles are in fact towards the right side of the IWs in this

region. The same PIV processing, as in Tbl. 3.2, was performed on this image set,

followed by the centroid correction method. After which the correction is made to the

PIV output of velocity vector locations. The correction changes the velocity gradient

at the wall – in this case dV/dx
∣∣
w

– which in turn effects the wall coordinates, x+

and V +.

In contrast to the ZPG without TG dataset shown above, there was no analytical

solution to compare to for the heated-plate, forced-convection flow. It was decided

to look to the very thin viscous sublayer location where only the viscous effects of

the fluid dominate. The impact of the centroid correction method on the viscous

sublayer – in wall coordinates – is clearly seen in Fig. 5.6. The figure shows an inset

with x vs. V for both the geometric center and the centroid corrected locations. The

velocity gradient at the wall (i.e., dV/dx
∣∣
w

) obtained from the velocity profile in the

inset of Fig. 5.6 was then directly used to calculate the wall coordinates, x+ vs. V + –

shown in the main portion of the figure. The solid line in the figure is the traditional

viscous sublayer curve where only the viscous effects of the fluid are dominate, and

the dimensionless wall distance is equal to the dimensionless fluid velocity (i.e., in

this case x+ = V +). Comparing the original wall coordinates with the corrected, the

figure shows an excellent improvement to the data where the centroid corrected curve
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Figure 5.6: An example of the type of correction expected from removing the biased
error in velocity measurement recorded location.

is basically on top of the x+ = V + viscous sublayer curve.

Using the centroid corrected dataset as the ‘correct’ location of the velocity mea-

surements, and observing the data point closest to the wall, there was a 41.9% im-

provement to the velocity measurement location from geometric centers to centroid

corrected. Similarly, the velocity gradient at the wall was improved by 16.2% when

the centroid correction method was utilized.

5.3 Discussion on the Need For and Application of the Par-

ticle Dispersion Correction

Measuring the velocity gradient at the wall with PIV is highly dependent on the

optics used in each experiment. Two quick examples of how the velocity gradient at

the wall can be elusive are either: 1) the magnification is too high and the seeding

density is low, or 2) the magnification is too low and therefore velocity vector resolu-

tion is low, as well. Obtaining an accurate velocity gradient at the wall is important,
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as it directly applies to various flow parameters that describe and/or model the flow.

These parameters are (to name a few) the shear stress at the wall, τw, the friction

velocity, uτ , and the dimensionless wall coordinates, y+ and U+. Furthermore, wall

shear stress is known to be an important parameter in several applications – including

vascular flows, bedload sediment transport, and the skin friction component of the

drag force. It is recommended by the author that one of the following two options be

used to accurately obtain the velocity gradient at the wall.

Spalding [50] has shown a y+ vs. U+ curve fit that not only matches the no-

slip condition at the wall, but also fits data well into the overlap region of the wall

bounded flow. The equation is repeated here for simplicity

y+ = U+e−κC

[
eκU

+ − 1− κU+ − (κU+)
2

2
− (κU+)

2

6

]
(5.3)

with κ = 0.41 and C = 5. Notice this equation is y+ as a function of U+, and once

the data is fitted to the curve, the velocity gradient can be back calculated out of the

equation. This method is more difficult to apply as an initial velocity gradient at the

wall is “guessed”, followed by an iteration of calculations until some convergence is

met on the velocity gradient at the wall.

Johannson et al. [22] had a similar idea to curve fit the velocity data within

y+ < 10. By conducting a Taylor series expansion around U, they showed that the

data can be fitted by

U =
∂U

∂y

∣∣∣∣
w

(y − y0)−
U∞
2ν

dU∞
dx

(y − y0)2

+
1

24

∂4U

∂y4

∣∣∣∣
w

(y − y0)4 +O(y5)

(5.4)

where the coefficient to the first term is the velocity gradient at the wall. The second
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order coefficient is equivalent to

∂2U

∂y2

∣∣∣∣
w

=
1

µ

dP∞
dx

= −U∞
ν

dU∞
dx

,

the third order coefficient at the wall is equal to zero, the fourth order coefficient is as

shown, and higher order terms are neglected. This method is, in the author’s opinion,

more straightforward when compared to Spalding’s method, as the Johannson curve

fit obtains the velocity gradient at the wall directly. The Johannson curve fit was

used to calculate the velocity gradient at the wall for both aforementioned datasets.

It is recommended either Eq. 5.3 or 5.4 be utilized to obtain the velocity gradient

at the wall. In this way the measurements from the wall up to the measurements

in the overlap layer can all be useful. In any case, the correction from the centroid

correction method needs to be utilized in the near wall region of the flow in order to

correct for the biased error in velocity measurements.
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Chapter 6

Pointwise Entropy Generation Rate

The flow configurations discussed above were utilized to fundamentally under-

stand the pointwise distribution of entropy generation rates in transitional and pre-

transitional flow. More importantly, the introduction of high freestream turbulence

intensities and streamwise pressure gradients were used to “bypass” the Tollmein-

Schlichting waves that occur in quiet boundary-layer-transition processes. Integral

calculations of entropy generation rate per unit area were performed using Eq. 2.5;

as well as pointwise entropy generation measurements using Eq. 2.3. The former

integrates over the normal to the plate direction (i.e., y-direction) at each streamwise

location, and produces a streamwise profile of the entropy generation rate. The latter

is a makeup of the viscous and turbulent contributions at a single location in space.

Further, Eq. 2.3 can be integrated in physical space, and compared to Eq. 2.5, S ′′,

through the means of the dissipation coefficient, Cd (Eq. 2.7).

6.1 Integral Entropy Generation Rate

The integration of each term of Eq. 2.5 was calculated by means of the trapezoidal

rule in physical dimensions, and then converted into wall coordinates by means of

S ′′+ =
TS ′′

ρu3τ
. (6.1)

where S ′′ is explicitly
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S ′′ {δ} ≈ ρ

T

[
ν

∫ δ

0

(∂U/∂y)2dy −
∫ δ

0

(uv)(∂U/∂y)dy

−
∫ δ

0

[
(u2)− (v2)

]
(∂U/∂x)dy

− (d/dx)

∫ δ

0

U(1/2)(q2)dy

− (1/2)vδ [(u2δ) + (v2δ ) + (w2
δ)]− vδpδ

]
(6.2)

After Eq. 6.1 was applied to the first four terms of Eq. 6.2, they were converted

into their respective dissipation coefficients, Cd, by means of Eq. 2.7, and plotted in

Fig. 6.1. Each term is shown as they apply to the total by including their respective

sign (+/-) as shown in the equation. Also, as mentioned above, the last two terms

from Eq. 6.2 have been removed from the equation as they are neglible in magnitude

in relation to the total, as seen in Walsh et al. [63].

Upon plotting the dissipation coefficient, Cd, it appears from Fig. 6.1a that the

boundary layer of the ZPG without TG case is in fact remaining laminar throughout,

and not going through a transition process. This can be understood with the only

term with magnitude is the viscous term (i.e., the first term in Eq. 6.2). When

Figure 6.1b and 6.1c are held against the DNS results found in Fig. 6 of Walsh [63]

(duplicated here in Fig. 6.2 for simplicity), and considering Figure 6.6 (discussed and

shown below), both cases are beginning their respective transition processes near, or

just downstream from, the leading edge of the plate. This is seen by the increase

in the Reynolds shear stress term (dotted line), as the turbulent eddies begin to

increase through the transition process and into the turbulent boundary layer. In

fact, the Reynolds shear stress term begins the increase before the traditional onset

of transition location of minimum Cf as seen in Fig. 4.5; where the local minimum of

Cf corresponds to the
√
Rex values seen on the abscissa of Fig. 6.1 as 650, 170, and

150 for the ZPG without TG, ZPG with TG, and APG with TG flow configurations,
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respectively. Conversely, the viscous term is decreasing (or has decreased in the

APG w/ TG case) enough to show the trade off in the viscous contributions to the

turbulent contributions – again as seen in Fig. 6.2. An interesting feature of the

ZPG with TG flow configuration in Fig. 6.1 is the intersection of the Mean and

Reynolds Shear Stress terms coincide almost exactly with the local minimum of the

Cf curve. A similar feature can be seen in the APG with TG flow configuration,

but slightly downstream of the local minimum prediction of the Cf curve. This

leads to the conclusion that within bypass transition of a boundary layer, the use of

entropy generation can help predict the transition location. Further, in all three flow

conditions, the later two terms (i.e., Normal Stress production and Energy flux) in

Eq. 2.5 are seen to be small in magnitude compared to the former two terms discussed

previously. This is again consistent with the DNS results from [63].

An uncertainty analysis was performed on the results found in Fig. 6.1c by us-

ing the surface method as described by Timmins et al. [54]. The uncertainty on

streamwise velocity measurements was calculated and a typical profile was seen as

shown in Fig. 6.3 – where the uncertainty increases within the boundary layer. The

uncertainty in velocity measurements was then carried through Eqs. 2.5 and 2.7,

step-by-step, by means of the RMS method in Kline and McClintock [26]. The un-

certainty in the integration in Eq. 2.5 was carried out by the trapezoidal rule, and

the RMS method was applied in both the calculation of the individual rectangles,

and in the summation process to compute the integral itself. A typical uncertainty

of +/- 9.5% the total dissipation coefficient by means of the areal entropy generation

rate was observed (black line in Fig. 6.1).



65

Figure 6.1: Dissipation coefficient, Cd, for each flow condition. Also, individual
contributions of each term of Eq. 2.5. A slight smoothing was applied. a) ZPG
w/out TG, b) ZPG w/ TG, and c) APG w/ TG.
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Figure 6.2: The streamwise profiles of the dissipation coefficient, Cd. FSTIx = 4.7%.
As predicted by DNS in Walsh et al. [63]. For comparison to Fig. 6.1.
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Figure 6.3: Typical uncertainty profile of streamwise velocity for the APG flow
configuration at x = 0.15 m.

6.2 Behavior of Pointwise Entropy Generation Rate within

Pre-Transitional and Bypass Transitional Wall Bounded

Flow

To better understand the behavior of the turbulent contributions to pointwise

entropy generation rate, S ′′′ (and therefore S ′′, S ′, and S), as defined in Eq. 2.3, the

author utilized the DNS calculations from McEligot et al. [36], Walsh et al. [63], and

the experimental hot-wire measurements from Klebanoff [24]. In terms of the point-

wise entropy generation rate there are two contributions, direct and indirect. These

are represented in Eq. 2.3 as µΦ and ρε, respectively. These terms come in the form of
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the spatial gradients of the time averaged velocities (e.g. µΦ = (dU/dy)2 + ...), where

capital U, V, etc. mean time averaged velocities. This is then followed by the squared,

mean, spatial gradients of the instantaneous velocities (e.g. ρε = (du/dx)2+...), where

lowercase u, v, etc. signify the instantaneous measurement of the velocity.

6.2.1 DNS calculations of a laminar to transitional boundary layer

Walsh et al. have shown at locations of onset to transitional flow, and at low

y+ values, the turbulent contributions (indirect) were approximately 1/10th the total

rate of entropy being generated, and around a y+ of 50 to 60 the rates between viscous

and turbulent contributions became equal, and pratically negligible. This means that

a majority of the entropy being generated at pre-transitional to transitional locations

are at a very close proximity to the wall, and both taper off rather quickly. These ideas

can be seen readily in Fig. 6.4, where the breakdown of the different contributions

– and the corresponding approximates (see Eq. 2.4) – are plotted as a wall normal

profile in wall coordinates.

6.2.2 Air tunnel measurements from a ‘X’ probe hot-wire anemometer

of a fully turbulent boundary layer

In contrast, the Klebanoff experimental results [24] are for a well developed

turbulent boundary layer (Rex = 4.2 · 106) over a flat plate in air. Even more so,

the first two feet of the plate were covered in rough sandpaper to further ‘trip’ the

boundary layer into the turbulent state. The hot wire measurements are presented

in Fig. 14 of the paper – in the form of instantaneous squared and averaged spatial

gradients. Further, a streamwise velocity profile from the wall to the boundary layer

are presented in Fig. 3 of the same paper. These figures were digitized and applied

directly to Eqs. 2.2 and 2.1, respectively.

There was only a single ‘X’ hot-wire probe, therefore the time derivatives were
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Figure 6.4: The profiles of pointwise entropy generation rates (viscous, turbulent,
and approximate) in a pre-transitional boundary layer.

√
Rex = 350 and

FSTIx = 4.7%. As predicted by DNS in Walsh et al. [63]

converted to the spatial derivatives by assuming the accuracy of the space-time trans-

formation. For example, (
∂u

∂x

)2

=
1

U2

(
∂u

∂t

)2

(6.3)

where U is local mean velocity. Further, in order to utilized these measurements in

Eq. 2.3 were rewritten by Rotta [46] into

ρε = µ

[(
∂u

∂x

)2

+

(
∂v

∂x

)2

+

(
∂w

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂y

)2

+

(
∂w

∂y

)2

+

(
∂u

∂z

)2

+

(
∂v

∂z

)2

+

(
∂w

∂z

)2

+
d2

dy2
v2

]
.

(6.4)

With that being said, there was a need for a few assumptions in order to calculate

total pointwise entropy generation rate from Klebanoff’s paper. First, the streamwise

velocity profile was only given at one location over the plate, therefore the direct
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dissipation, Eq. 2.1, was approximated with

µΦ ≈ µ

(
dU

dy

)2

(6.5)

where the latter terms have been dropped in Eq. 2.1 due to their relatively low

magnitude. In other words, the streamwise normal velocity gradient is the most

significant.

Further, as all ten terms of Eq. 6.4 were not present in Klebenoff’s paper, great

care was taken as to a few of the assumptions needed to compute the remaining

squared, averaged, instantaneous spatial gradients. Rotta [46] discusses a few of the

physical behaviors of the said spatial gradients utilized in Eq. 6.4. That is, at the

wall (y = 0), all squared and averaged spatial gradients in the x- and z-direction are

equal to zero from the nature of the no-slip condition. In the wall normal direction,

du/dy and dw/dy at the wall are equal to a non-zero finite value. In contrast, dv/dy

is in fact zero at the wall from continuity

dv

dy

∣∣∣∣
w

= −du
dx

∣∣∣∣
w

− dw

dz

∣∣∣∣
w

= 0

where, as mentioned above, the no slip condition brings gradients in the x- and z-

directions to zero at the wall.

These assumptions were applied using

(
∂u

∂x

)2

,

(
∂v

∂x

)2

,

(
∂w

∂x

)2

,

(
∂u

∂y

)2

, and

(
∂u

∂z

)2

as the known quantities, and applying them to the remaining four unknowns by

(
∂v

∂y

)2

=
1

2

(
∂u

∂z

)2

,
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(
∂w

∂y

)2

=

(
∂u

∂y

)2

,

(
∂v

∂z

)2

=

(
∂u

∂z

)2

, and

(
∂w

∂z

)2

=
1

2

(
∂u

∂z

)2

.

Lastly, the term d2(v2)/dy2 was calculated by central differencing Fig. 4 of the Kle-

banoff paper [24].

The pointwise entropy generation rate of both turbulent and viscous contributions

from Klebanoff can be seen as a wall normal profile in Fig. 6.5. Also plotted in

Fig. 6.5, as a reference, are the DNS results from McEligot et al. [36]. As for

the comparison between locations in the turbulent boundary layers, the Klebanoff

experimental results are at a location with Reθ = 7445; while the DNS results from

McEligot are at Reθ = 1410. Furthermore, both flows have a negligible freestream

turbulence and zero (or negligible) pressure gradient.

Regarding the structure of the curves in Fig. 6.5, the viscous contribution reduced

down to almost nothing rather quickly at a y+ of approximately 60–70. Both viscous

contributions, from both datasets, are practically the same. This is identical to the

observation made by McEligot et al. [36], insomuch that the viscous contributions

in a turbulent boundary layer are independent of Reynolds number. Also, the tur-

bulent contributions at close proximity to the wall were less than 1/10th the viscous

contributions of entropy generation rate.

This appears to be consistent with the laminar boundary layer shown previously

by Walsh in Fig. 6.4. The governing contrast of pointwise entropy generation rate

between these two completely separate boundary layers is the magnitude of the tur-

bulent contribution term, ρε. Looking specifically at the Klebanoff experimental data

– since this was a well developed turbulent boundary layer – the pointwise entropy

generation rate doesn’t “zero” out until around y+ = 1000 – with the laminar station
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Figure 6.5: Wall normal profile of the pointwise entropy generation rate as
calculated by the author from Klebanoff [24] (symbols) at a Reθ = 7445. Also, DNS
results of the same calculated by McEligot et al. [36] (lines) at a Reθ = 1410.

shown previously ‘zeroed’ out around y+ = 70− 80.

To further emphasize this principle, the Klebanoff data was integrated to achieve

the total areal entropy generation rate, S ′′. This showed the turbulent contribution

was approximately 1/2 the total entropy generation rate within the boundary layer.

In other words, the integration of pointwise entropy generation rate, S ′′′, from the

wall to the boundary layer thickness was approximately 1/2 turbulent contributions,

and approximately 1/2 viscous contributions. This is seen as the area under the curve

in Fig. 6.5 (which is slightly misleading with the log-log scale.) This means that even

though a majority of the entropy being generated is within a very close proximity

to the wall due to viscous contributions (for both a laminar and turbulent boundary

layer) [46], the turbulent eddies in a well developed boundary layer are contributing

a significant amount throughout the boundary layer.
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In summary, the contrast between the Walsh et al. DNS calculations (Fig. 6.4)

to that of the Klebanoff experimental work (Fig. 6.5) was wherein the profiles were

located in relation to the flow conditions. At the location presented in Fig. 6.4, Walsh

et al. was in a laminar boundary layer (that is, just at the location of immediate

transition), and both viscous and turbulent contributions reduce to near zero by a

y+ = 70. Conversely, the Klebanoff data are within a turbulent boundary layer, and

the turbulent contribution to S ′′′ is never totally ‘zero’ until outside the boundary

layer (presumably).

This same demonstration can also be seen in the MIR dataset in Fig. 6.1b and c by

comparing the viscous curve (dash-dot) to the Reynolds shear stress curve (dashed).

The Reynolds shear stress curve ramps up to a finite value through the transition

region and beyond. Thus showing the trade off in entropy generation rate from direct

diffusion in the laminar boundary layer to indirect diffusion in a fully developed tur-

bulent boundary layer. The demonstration now looks specifically at the transitional

region of the boundary layer.

6.3 Pointwise Entropy Generation Rate from the MIR Dataset

Now that the behavior of the viscous and turbulent contributions has been shown

by others, pointwise entropy generation rate was computed for the MIR dataset.

Unfortunately, it was seen that the calculations for the turbulent contribution of

pointwise entropy generation rate had too much uncertainty and/or noise, and was

therefore on the order of magnitude 100 too high. However, it was still important

to see the behavior of the pointwise entropy generation rate through the transition

process experimentally, so it was decided to move forward with just the viscous con-

tribution from Eq. 2.3, that is µΦ. Figure 6.6 is the development of time-averaged

distributions of the viscous contribution of (S ′′′)+ versus y+ down the length of the

plate (increasing values of
√
Rex). Where (S ′′′)+ is defined only by equation 2.1 mul-
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tiplied by νT/ρu4τ . The velocity vector pitch on the PTV grid from the MFOV scale

was 0.05 mm - which is approximately unity with the local Kolmogorov length scale.

In the locations of an erroneous vector - or no vector at all - the vector was treated

as a “NaN”. This affected the time-mean quantities utilized in µΦ as well, but of

the 4,000 image pairs taken it was found that typically 2000 vectors were present

to compute the averages at each location of the post-processed time-averaged vector

map.

Had the derivatives been incorporated into the plots found in Fig. 6.6, they would

have presumably been at the 10% range of the total entropy generation rate within

the viscous sublayer, as was seen in Walsh et al. [63] and Klebanoff [24]. Interestingly

enough, the squared mean gradients of the flow where showing the right trends (ac-

cording to theory [46]), they were just not at the right magnitude, presumably from

the uncertainty in the PTV measurements. A look at the squared mean gradient

profiles can be seen in the appendix.

When Fig. 6.6 was compared to Fig. 5 of Walsh et al. [63] (placed here in Fig. 6.7

for simplicity) the trends were very similar, even though the turbulent contribution

term, ρε, was removed from the current work. This is consistant with the trade off

seen previously between direct and indirect dissipation as the boundary layer goes

through the transisiton process. The pre-transitional profile (solid line in the figures)

is larger and reduces at a lower slope (which is more pronounced in the APG w/ TG

flow, 6.6b). At the onset of transition the profile comes in towards the lower y+ values,

and continues to reduce in the same manner, at downstream locations. This is from

the exchange between viscous and turbulent dissipation. Further, since these curves

are non-dimentionalized with essentially the shear stress at the wall, by definition,

they can all be extrapolated to 1 at y+ = 0. This gives a complete understanding

of the viscous contributions in pointwise entropy generation rate from the wall to

the freestream flow through the transition process. The ZPG without TG case is
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not shown in Fig. 6.6, as the flow conditions did not exhibit a transition process.

Furthermore, laminar boundary layers with negligible freestream turbulence can be

calculated to solve for S ′′′ using the Blasius or Pohlhousen solutions [27].
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Figure 6.6: (S ′′′)+ profiles at streamwise stations
√
Rex in the transitional region for

both cases with a turbulence generator. a) ZPG with TG. b) APG with TG. ZPG
without TG not shown.
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Figure 6.7: Time- and Spanwise-averaged total (S ′′′)+ profiles at streamwise stations
(
√
Rex) within the transitional region, compared to Schlatter and Örlü [48] from a

fully turbulent boundary layer. Figure from Walsh et al.
[63].
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Chapter 7

Conclusions

To further understand the entropy generation rates in a bypass boundary layer

transition process, a study was performed at the Matched Index of Refraction Flow

Facility located at the Idaho National Laboratory (INL). A flat plate was installed

within the test section of the MIR, and three flow configurations were utilized to

either help comprehend or measure the entropy generation rate within a “bypass”

transitional boundary layer. These flow configurations were zero pressure gradient

with out turbulence generator (ZPG without TG), zero pressure gradient with turbu-

lence generator, and adverse pressure gradient with turbulence generator (APG with

TG).

Previous work on entropy calculations have been performed, but none have looked

specifically at bypass, transitional, boundary layer flow with the relatively high free

stream turbulence intensities (e.g. ∼ 8%) achievable in the MIR. Neither has the

study of entropy generation rate behavior within the transitional region of the bound-

ary layer within an adverse pressure gradient been seen before experimentally. Fur-

ther, the optical techniques utilized in the current work was able to achieve data

within a y+ < 2.5 – a considerable improvement from y+ = 10, or greater, by others.

The comparisons between the bypass transitional measurements presented in this

work to that of published DNS results show a very similar trend. The trends show

the turbulent contributions of pointwise entropy generation rate trading off with the

viscous contributions through the transition process and beyond. A large majority

of the contributions come within a y+ < 30, but within the transitional region of

the boundary layer a trade off between viscous and turbulent dissipation takes place

where an increasing amount of the total entropy generation rate is seen throughout

the boundary layer. This is most prevalent within the case of the APG with TG
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flow configuration as the viscous contribution continues to decrease throughout the

transitional and turbulent boundary layer, but the turbulent contribution continues

to rise. Where, in contrast, the ZPG flow configuration still has an increase in the

turbulent contribution as the boundary layer grows, but the viscous contribution to

pointwise entropy generation stays constant.

Work was also done to help improve particle image velocimetry (PIV) measure-

ments in high shear regions very near a wall interface. The particles utilized to seed

the flow in this region are found to be biased away from the interface, and lead to

biased measurements of the velocity (i.e., higher than to be expected). This provided

the need to correct for the biased error in the measurement, systematically, by us-

ing the average centroid location of the image intensity as the “true” location of the

reported velocity measurement. This centroid corrected method was applied to two

flow configurations, and improvements to the velocity gradient at or near the wall

were seen. For the ZPG without TG dataset the velocity gradient at the wall was

improved from 53.5% to 8.7% when compared to the Blasius profile. In the same flow,

the velocity measurement location (closest to the wall) was improved from 27.9% er-

ror down to 1.8% error when compared to the same Blasius profile. For the vertical

heated plate dataset there was a 41.9% improvement to the velocity gradient at the

wall; while the measurement location of the velocity (closest to the wall) was seen to

improve by 16.2%.
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Appendix A

PTV Instantaneous Gradients

A.1 Spanwise Component of the Velocity Measurement from

Continuity

The mezzo FOV images are of course 2D from the single camera set up of the

PTV; therefore the need to remove certain terms in equation 2.2 was needed. All the

terms involving a z- component of the flow were neglected, with the exception of the

dw/dz term which was computed from continuity

∂w

∂z
= −∂u

∂x
− ∂v

∂y
(A.1)

with the local Kolomogorov scale, η, never going below 3x10−5 m, and the PTV grid

on the same order of magnitude it was assumed to be sufficient to calculate equation

A.1. As a precaution, a convergence study was done on the central differencing scheme

performed to calculated the gradients. In this case du/dy was computed with various

spacings between the nodes i-1 and i+1 in the central differencing scheme. Figure

A.1 shows that even at a dy of 15 grid nodes in each direction to calculate the central

difference, there is no large change in value/magnitude. Therefore, a need to run

PTV at a smaller grid (taking massive amounts of CPU and RAM) is not needed.

A.2 Behavior of Instantaneous Velocities in the Vicinity of

the Wall

It has been shown by others in theory and with empirical data that behavior of

the gradients near the wall follow the understanding of the no slip condition at the
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Figure A.1: Central differencing convergence study on PTV grid size.

wall. That is

u = v = w = 0 at y = 0 (A.2)

This, in turn, means that all gradients (time averaged and instantaneous) at the wall

with respect to the x-, or z-directions are also zero,

du

dx

∣∣∣∣
w

=
du

dz

∣∣∣∣
w

=
dv

dx

∣∣∣∣
w

=
dv

dz

∣∣∣∣
w

=
dw

dx

∣∣∣∣
w

=
dw

dz

∣∣∣∣
w

= 0 (A.3)
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Finally, the wall normal velocity gradient, dv/dy, is also zero at the wall, from the

relationship found in continuity

dv

dy

∣∣∣∣
w

= −du
dx

∣∣∣∣
w

− dw

dz

∣∣∣∣
w

= 0 (A.4)

which, from equation A.3, dv/dy is 0. This means that the last two gradients in

the flow, du/dy and dw/dy are non-zero at the wall. This can be readily seen in

Figure A.2 and A.3 where each term has been normalized by the local boundary layer

thickness and freestream velocity. All gradients are trending downward at a close

proximity to the wall, except for the two terms that incorporate du/dy and dw/dy

(not shown). It is interesting to note that dv/dy is directly measured from the PTV,

and is strongly trending towards the zero gradient at the wall – as to be expected

from theory.
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Figure A.2: Near wall instantaneous gradient behavior, at
√
Rex = 135, in ZPG

with TG flow condition.
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Figure A.3: Near wall instantaneous gradient behavior, at
√
Rex = 143, in APG

with TG flow condition.


