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Abstract 

Water management, from energy production to aquatic habitat quality assessment, uses 

hydrological modeling to predict water quantity, temperature and timing. Due to the strong 

effect of snow on the hydrology of mountainous regions, an integrated hydrologic modeling 

framework of snow, streamflow and stream temperature models is required for accurate 

predictions of hydrological processes. The prediction accuracy of such frameworks is reliant 

on meteorological input spatial and temporal resolutions. The main objectives of this work are 

(a) to find appropriate inputs spatial and temporal resolutions for the integrated hydrologic 

modeling for a range of climatic conditions and topographic elevations; and (b) understand 

the effects of these resolutions on snow properties, streamflow and stream temperature 

estimations. To address these objectives, a statistical stream temperature model, SWTM, was 

first developed to estimate mean daily stream temperatures at a point. Then, a process-based 

snow model, iSnobal, was run using 1-, 3- and 6-hourly inputs for wet, average and dry years 

over Boise River Basin (6,963 km
2
), which spans rain-dominated (≤1,400m), rain-snow 

transition (>1,400 and ≤1,900m), snow-dominated below treeline (>1,900 and ≤2,400m) and 

above treeline (>2,400m) elevations. ISnobal was run with inputs distributed at 50m – the 

benchmark for comparisons – and 100m resolutions and with aggregated inputs from the 50m 

model to 100m, 250m, 500m and 750m resolutions. Surface water input (SWI) estimations 

from these scenarios were used to run the process-based Penn State Integrated Hydrology 

model (PIHM) over upstream of the Anderson Ranch Dam (2,490 km
2
). The mean daily 

streamflow estimations from the scenarios were then used along with mean daily air 

temperatures to run SWTM. 

Comparison of estimated and observed stream temperatures indicated robust performance of 

SWTM across a range of climate and hydrologic conditions. SWTM showed better 

performance than the widely-used Mohseni model in terms of accuracy of fit and model 

errors. The analyses indicated that the inclusion of the autoregressive structure is critical in 

large streams and stream discharge is an important hydrologic driver during the spring-

summer period for unregulated streams in snow-dominated basins. SWTM can be used to 

either reconstruct historical daily stream temperatures or to project daily stream temperatures 

under different climate change scenarios. 
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Using longer than hourly time steps of meteorological inputs led to inaccurate estimation of 

precipitation amount that is in form of rain or snow, and energy input to the snowpack. The 

magnitude of errors in snow cover area (SCA) and snow water equivalent (SWE) generally 

decreased as elevation increased, from rain-dominated to snow-dominated above treeline. 

However, the errors in SCA and SWE increased as annual precipitation decreased, toward the 

dry year. The results of this chapter (a) suggest hourly measurements of meteorological 

variables; (b) can be applied as a guide to decide on optimal observation/reanalysis time steps 

in different settings; and (c) can inform modelers of the errors in their simulations due to the 

temporal resolution of their inputs, and how the errors may vary depending on elevation 

ranges and wet/dry years. 

Differences between the simulated SCA and SWE from the 50 m model and that of the 

aggregated scenarios were generally negligible, because the topographic feature effects on 

meteorological input distribution was transferred through aggregation. However, errors in the 

simulated SCA and SWE from the distributed 100 m scenario were large, particularly in the 

wet year and at the highest elevation band when and where snow mass was large. The large 

errors were because of losing the effect of small scale variability in topographic features on 

meteorological inputs distribution. Homogenization of topographic features due to coarsening 

the DEM from 50 m to 100m caused net radiation overestimation, wind-induced snow drifting 

moderation and precipitation phase mischaracterization.  

The effect of inputs spatial resolution of on streamflow estimations was more pronounced 

than that of temporal resolution. Coarser resolution generated from aggregated inputs from 50 

m resolution had negligible effects on streamflow as the effect of topographic features was 

transferred by aggregation. In contrast, the distributed 100 m scenario had the largest 

inaccuracy, which was reduced as the watershed area increased due to the buffering effect of 

the groundwater. In large watersheds (>800 km
2
), the SWI estimations from all resolution 

scenarios led to similar streamflow estimations. However, in small watersheds (<300 km
2
), 

using coarse spatial and temporal resolutions of the inputs caused inaccurate streamflow 

estimations, whose magnitude was strongly reliant on climate conditions and the watershed 

surface cover, which affect the groundwater buffering effect. The results show that only fine 

temporal hourly and spatial (50m) resolutions provide consistent streamflow modeling 
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performance among climatic conditions. All the inputs spatial and temporal resolutions 

investigated in this work were sufficient input scales to provide streamflow estimations for 

stream temperature modeling. Groundwater level and soil moisture measurements should be 

added to constrain process-based hydrological modeling, as streamflow may not be adequate 

for validating hydrological modeling. 
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Chapter 1. Introduction 

 

Understanding and prediction of hydrological variables such as snow accumulation and 

ablation, streamflow and stream temperature are critical for water resource planning and 

management, ecological and aquatic habitat studies (Piccolroaz et al. 2016; Smith et al. 2014). 

Snow is particularly important in mountainous watersheds, because it controls microbial 

activity during winter (Schimel et al. 2004), energy exchanges of environment (Molotch and 

Bales 2005) and growing season length (Darmody et al. 2004; Sensoy et al. 2006; Torp 2010; 

Trujillo et al. 2012). Distribution, timing and magnitude of snow melts also control soil 

moisture dynamics, groundwater recharge and streamflow generation, which are necessary for 

flood forecasting, reservoir operation and river restoration (Kormos et al. 2014; Kumar et al. 

2013; Reba et al. 2011; Wang et al. 2013; Weill et al. 2013). In addition, availability of 

streamflow estimations improves prediction accuracy of stream temperature (Piccolroaz et al. 

2016; Vliet et al. 2011), which plays a major role in water quality and aquatic ecosystems 

(Isaak et al. 2012; Isaak et al. 2015). These studies indicate the value of accurate snow 

accumulation and ablation, streamflow and stream temperature estimations for dam and water 

resource managers, ecologist and decision makers. 

Due to advances in numerical modeling and computational power of computers, application 

of integrated hydrologic modeling of snow, streamflow and stream temperature models has 

increased (Merenlender and Matella 2013; Null et al. 2010). Integrated hydrologic modeling 

frameworks predict changes in response of hydrological processes with regard to changes in 

meteorological variables. Such frameworks require fine spatial and temporal resolutions of 

meteorological inputs to reflect changes of these variables on hydrological processes 

responses. Application of fine spatial and temporal resolutions of meteorological inputs 

considerably increases modeling costs such as runtime and storage space, whereas coarse 

inputs decreases modeling costs in expense of prediction accuracy. Reduction in prediction 

accuracy due to using coarse resolution inputs is not well known, particularly (a) in large 

mountainous watersheds, where hydrological characteristics vary from rain dominated to 

snow dominated (Winstral et al. 2014); (b) under different climate condition such as wet, 
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average and dry years, when catchments respond differently to a melt event (Rosenberg et al. 

2013); and (c) in watersheds with different drainage area and geology (surface cover), where 

contribution of hydrological processes such as runoff and groundwater to streamflow 

generation varies (Frisbee et al. 2011; Miller et al. 2016; Orlova and Branfireun 2014) and 

this may change dependency of streamflow estimations to surface water input accuracy.  

Thus, this work addresses these knowledge gaps with the following specific objectives: (a) 

quantifying the effect of spatial and temporal resolutions of meteorological inputs on 

estimations of snow cover area and mass with regard to elevation and climate conditions; (b) 

identifying the importance of detailed spatial information of energy fluxes and snow drifting 

on estimations of snow cover area and mass with regard to elevation range, climate condition 

and vegetation cover; and (c) quantifying the effect of inaccurate predictions of surface water 

input on streamflow, groundwater level and stream temperature estimations with regard to 

climate condition and watershed size and surface cover. The main hypotheses of this work 

are: (a) using longer than hourly time step of inputs results in mischaracterization of 

precipitation phase, particularly in rain dominated and rain-snow transition regions, due to 

misestimating of dew point temperatures; (b) coarsening spatial resolution of inputs affects 

energy balance and wind-induced snow drifting and consequently snow accumulation and 

ablation as it smoothens topographical complexity; (c) groundwater dominated systems are 

less affected by inaccuracy in surface water input (SWI) because of transient storage of water 

in the ground; and (d) the larger the system the less depends on SWI due to groundwater 

buffering and (e) the buffering effect of groundwater is a function of climate conditions and 

watershed surface cover. 

To address the objectives and hypotheses of this work, 8 different spatial and temporal 

resolutions of meteorological inputs were used to run an integrated hydrologic modeling 

framework. To prepare this modeling framework, SWI estimated from a process-based snow 

model, iSnobal, was used instead of precipitation in a process-based streamflow model, 

PIHM. Estimated streamflow were, then, used to predict stream temperature using a statistical 

stream temperature model, SWTM. Using different resolutions of inputs to force the 

integrated hydrologic modeling framework helps to understand: (a) to what extent resolution 

of inputs affects estimation of snow properties such as snow cover area and snow mass; and 
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(b) how much changes in snow properties estimations caused by inputs resolution, which are 

reflected on SWI estimation, can impact streamflow, groundwater level and stream 

temperature estimations with regard to climate condition and watershed size and surface 

cover. To achieve these objectives, we develop a new statistical stream temperature models to 

overcome some of the limitations in the widely-used statistical stream temperature model in 

chapter 2; in chapter 3, we investigates the effects of temporal resolution of meteorological 

inputs on estimation of snow accumulation and ablation in different climate conditions and 

topographic elevations; in chapter 4 we address the effects of disregarding topography-

induced heterogeneity of meteorological inputs on estimation of snow accumulation and 

ablation in different climate conditions and topographic elevations; finally in chapter 5, we 

demonstrate the effects of errors in estimation of snow accumulation and ablation caused by 

meteorological inputs resolution on estimation of streamflow, groundwater level and stream 

temperature given climate condition and watershed size and surface cover. The following is 

brief description of these chapters: 

Chapter 2. Stream temperature plays an important role in aquatic ecosystems (Isaak et al. 

2015; Mesa et al. 2013). Statistical stream temperature models, which rely on covariates that 

indirectly represent physical processes such as air temperature and streamflow, are beneficial 

tools to predict stream temperatures at a point (Ahmadi-Nedushan et al. 2007; Neumann et al. 

2003). Available statistical models have been rarely tested under a wide range of climate 

conditions. Most statistical models were tested at one watershed and within one climate zone 

(Caissie et al. 2001; Caldwell et al. 2013; Webb et al. 2003). Conversely, the Mohseni (1998) 

model was tested for regulated and unregulated streams under a wide range of climate and 

hydrologic conditions. The Mohseni model that predicts stream temperatures at a site from air 

temperatures is widely used in riverine studies because of its simplicity and good 

performance. The Mohseni model performs poorly at shorter than weekly time steps and in 

snow dominated watersheds, where the snowmelt has a pronounced effect on spring and early 

summer stream temperatures (Benyahya et al. 2007; Isaak et al. 2012; Luce et al. 2014). The 

model performance is also sensitive to the difference between maximum and minimum values 

of weekly averaged stream temperatures and it performs poorly in regions where this 

difference is low (Benyahya et al. 2007; Mohseni et al. 1998). The main objective of this 

chapter is to develop a statistical model that overcomes these limitations of the Mohseni 
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model. The model developed in this chapter can be used as a reliable tool to either reconstruct 

historical daily stream temperatures or to project daily stream temperatures. 

To overcome these limitations, a statistical stream water temperature model, SWTM, which 

uses mean daily air temperatures and discharge to estimate stream temperatures at a daily time 

step, is presented in Chapter 2. SWTM tracks changes in independent variables rather than 

depending on the difference between the maximum and minimum values of stream 

temperature. The model has an autoregressive structure to consider thermal inertia and 

prevent fluctuations in daily air temperatures from overly influencing daily stream 

temperature estimations. SWTM was tested against observed stream temperatures at 34 sites 

over Boise River Basin (BRB) and at 8 climatically different basins of the USA. Comparison 

of the estimated stream temperatures to those of the observed indicated robust performance of 

SWTM across a range of climate and hydrologic conditions. In addition, SWTM showed 

better performance than the Mohseni model in terms of accuracy of fit and model errors.  

Chapter 3. Accurate estimation of snow accumulation and ablation requires a fine temporal 

resolution data to capture diurnal changes in meteorological variables (Beniston 1997; Garen 

and Marks 2005). The diurnal variability of meteorological variables in mountainous regions 

indicates high temporal gradients due to the low atmosphere mass (Little and Hanna 1978), 

which causes large incoming short-waves during the daytime and outgoing long-waves in the 

nighttime (Aguado and Burt 2013). Due to the fast diurnal variations of meteorological 

variables, using coarse temporal resolutions may cause errors in: (a) the precipitation phase 

characterization because hourly changes in dew point temperatures are neglected (Beniston 

2012; Marks et al. 2013); and (b) net radiation and turbulent energy estimations, which are 

responsible for a large portion of the energy balance (Mazurkiewicz et al. 2008). These errors 

affect estimation of timing and magnitude of snow accumulation and ablation, whose 

magnitude is likely to vary across topographic elevations and between years with 

characteristically different climatology (Beniston 2012; Howat and Tulaczyk 2005; Keller et 

al. 2005; Marks et al. 2013; Martin et al. 1994; Scherrer and Appenzeller 2004). Therefore, 

the main objective of this chapter is to evaluate impact of temporal resolution of 

meteorological inputs on snow accumulation and ablation estimation for a range of climatic 

conditions and topographic elevations. 
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To address the main objective of this chapter, iSnobal was run using 1-, 3- and 6-hourly 

inputs for wet, average and dry years over Boise River Basin (6,963 km
2
), which spans rain 

dominated, rain-snow transition, snow dominated below and above treeline regions. This 

helps to: (a) quantify the impact of temporal resolution of meteorological inputs on modeled 

SCA and SWE; (b) evaluating the role of annual precipitation on aforementioned impacts; and 

(c) identifying the elevation ranges wherein snow models are most sensitive to temporal 

resolution of meteorological inputs. The results indicated that using longer than hourly time 

steps of meteorological inputs leads to substantial inaccuracy in SCA and SWE estimations, 

particularly in years with low snow mass and in rain dominated and rain-snow transition 

regions. The results of this chapter can be applied as a guide to decide on optimal 

observation/reanalysis time steps in different settings 

Chapter 4. Accurate estimation of snow distribution requires an appropriate model resolution 

to consider heterogeneity in snow accumulation and ablation (Bloschl 1999; Luce et al. 1998; 

Pohl et al. 2006). In mountainous settings, the interaction among rugged terrain and 

vegetation causes spatial disparities in meteorological variables (Marks et al. 1999; Trujillo et 

al. 2007) and consequently results in heterogeneity in snow accumulation and ablation (Elder 

et al. 1991). Therefore, a coarse spatial resolution, which causes neglecting small scale 

variability in slopes and aspects, may cause errors in the precipitation phase characterization, 

the net radiation estimation and the wind-induced snow drifting estimation. The degree of 

these errors may vary across topographic elevations and years with characteristically different 

climatology (Bloschl 1999; Luce et al. 1998; Winstral et al. 2014). Therefore, the main 

objective of this chapter is to understand transferred and lost information in snow 

accumulation and ablation estimation over a watershed due to the model spatial resolution for 

a range of climatic and topographic conditions. 

To address this objective, iSnobal was run with inputs distributed at 50 – the benchmark for 

comparison – and with aggregated inputs from the 50 m model to 100 m, 250 m, 500 m and 

750 m resolution for wet, average and dry years over the BRB. ISnobal was also run with 

inputs distributed at 100 m to understand how much the prediction accuracy vary given 

changes in topographic features due to coarsening the DEM from 50 m to 100 m resolution. 

The simulations using different spatial resolutions of inputs help: (a) quantify the effect of 
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inputs spatial resolution on estimation of SCA and SWE; (b) assess the role of annual 

climatology on the sensitivity of predictions accuracy to inputs spatial resolution; and (c) 

identify the elevation range where the prediction accuracy is most sensitive to inputs spatial 

resolution. Differences between the simulated SCA and SWE from the distributed 50 m 

scenario and those of the distributed 100 m scenario were large due to disregarding the small 

scale variability in topography, particularly in the wet year and at the highest elevation band. 

The results of this chapter can be used as a guide for selecting an appropriate inputs spatial 

resolution in different topographic settings and climate conditions. 

Chapter 5. Accurate snow accumulation and ablation estimation is required for hydrologic 

modeling in addition to hydro-meteorological and geological processes that are calculated for 

rain dominated watersheds (Piccolroaz et al. 2016; Winstral et al. 2014). The results of the 

previous chapters showed the dependence of SCA and SWE estimations accuracy on spatial 

and temporal resolutions of meteorological inputs. Errors in estimation of SCA and SWE 

caused by different spatial and temporal scenarios are reflected on the distribution, timing and 

magnitude of SWI, which is the source of water for streamflow. Comparing estimated 

streamflow and stream temperatures generated from estimated SWI from these scenarios to 

those of the observed is a reliable quantitative metric to evaluate accuracy of the estimated 

SWI (Luce et al. 1998). This helps to understand appropriate inputs resolution in an integrated 

hydrologic modeling framework. Simulating streamflow and stream temperatures using the 

estimated SWI from these scenarios also help to quantify the effect of inaccuracy in the 

estimated SWI on estimation of peak flows and summer’s high stream temperatures in various 

climate conditions. Therefore, this chapter’s main objective is to quantify dependency of the 

prediction accuracy in an integrated hydrologic modeling to accuracy of SWI given climate 

conditions and the watershed size in mountainous watersheds.  

To reach the main objective of this chapter, iSnobal, PIHM and SWTM were coupled and run 

over upstream of the Anderson Ranch Dam watershed (2,490 km
2
), which varies from rain 

dominated to snow dominated above treeline. Differences between the estimated streamflow 

from the spatial and temporal scenarios were merely due to differences between the estimated 

SWI from the scenarios as other inputs of PIHM were the same for all the scenarios. PIHM 

and SWTM were calibrated for the distributed 50 m scenario, benchmark for comparison, for 
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the wet year and were validated for the dry and average years. The results indicated that the 

effects of spatial and temporal resolution of meteorological inputs on integrated hydrologic 

modeling depend on the watershed size and climate conditions. The effect of inputs spatial 

and temporal resolutions on stream temperature estimations was negligible. This chapter can 

be used as a guide for selecting appropriate spatial and temporal resolutions of inputs given 

climate conditions and the watershed size for integrated hydrologic modeling in mountainous 

watersheds. 
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Chapter 2. Estimation of Daily Stream Water Temperatures with a Bayesian Regression 

Approach 

 

2.1. Abstract 

Stream water temperature plays a significant role in aquatic ecosystems where it controls 

many important biological and physical processes. Reliable estimates of water temperature at 

the daily time step are critical in managing water resources. We develop a parsimonious 

piecewise Bayesian model for estimating daily stream water temperatures that accounts for 

temporal autocorrelation and both linear and non-linear relationships with air temperature and 

discharge. The model was tested at 8 climatically different basins of the USA and at 34 sites 

within the mountainous Boise River Basin (Idaho, USA). The results show that the proposed 

model is robust with an average root mean square error of 1.25 
◦
C and Nash-Sutcliffe 

coefficient of 0.92 over a 2-year period. Our approach can be used to predict historic daily 

stream water temperatures or make projections of stream temperatures under climate change 

in any location using observed daily stream temperature and regional air temperature data. 

 

Keywords: Daily stream water temperature, Bayesian approach, Air temperature, Stream 

temperature prediction, Discharge 

 

2.2. Introduction 

Stream water temperature plays an important role in aquatic ecosystems and is an important 

cue for organism behavior (Isaak et al. 2012; Jobling 1997; Rice et al. 1983; Rieman et al. 

2007), fish metabolism (Forseth and Jonsson 1994; Isaak et al. 2015; Mesa et al. 2013; 

Railsback and Rose 1999) and growth rates (Brett 1979; Crozier et al. 2010; Xu et al. 2010). 

Stream water temperature controls dissolved oxygen concentrations, which may affect water 

quality and biogeochemically reactive solutes (Marzadri et al. 2011; Marzadri et al. 2012; 

Tonina et al. 2015; Webb et al. 2008) while high stream water temperatures may negatively 
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affect industrial activity (Boogert and Dupont 2005; Null et al. 2012; Vliet et al. 2013; Vliet et 

al. 2012b). These studies indicate the value of accurate estimates of daily stream water 

temperatures for dam and water resource managers, ecologists, economists and decision 

makers.  

Many stream temperature models have been developed. These can be divided into 

mechanistic models that use physical processes (Carron and Rajaram 2001; Ficklin et al. 

2012; Vliet et al. 2012a) and statistical models that rely on covariates that indirectly represent 

physical processes (Ahmadi-Nedushan et al. 2007; Bogan et al. 2003; Gu et al. 1999; Hockey 

et al. 1982; Mohseni et al. 1998; Neumann et al. 2003). Process-based models require a large 

number of input variables (e.g., wind speed, net radiation, relative humidity, stream hydraulic 

cross sections), which may not be available in many locations, limiting opportunities for 

prediction. Process models may also be more computationally intensive because they solve a 

large number of equations to quantify energy balance and heat transport within the watershed.  

Conversely, statistical models are simpler to apply and have lower data requirements 

(Benyahya et al. 2007) but sacrifice interpretability. Regression approaches rely on 

correlations between stream water temperature and environmental covariates that vary 

spatially or temporally. When used with air temperature data series measured 

contemporaneously with stream temperature, predictions can be made at various times-steps 

(e.g., daily, weekly, monthly). However, air-water temperature relationships become weaker 

at finer temporal resolutions (Ahmadi-Nedushan et al. 2007; Webb et al. 2003), due to the 

large heat capacity of water, which does not respond to heat exchanges as quickly as air 

temperature. At short time-steps, temporal autocorrelation may also cause parameter 

estimation bias because measurements are not independent (Webb et al. 2003). Statistical 

autoregressive (AR) models account for the autocorrelation structure within stream water 

temperature time series by considering stream water temperatures of previous time steps and 

the correlation with meteorological variables of interest (e.g., air temperature). Stochastic 

models have two components, (1) the long-term annual component (seasonal variation) and 

(2) the departure from annual component (short-term variation; residual). In these models, a 

fixed function, e.g. a sinusoidal function, is fitted to stream water temperature time series, 

which in turn may cause non-stationary in the residual from year to year (Benyahya et al. 
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2007; Caissie et al. 2001). Non-parametric approaches, such as artificial neural networks 

(ANN) train the models with relatively long time series of input data, which prevent their 

applicability in locations with short time series. These models capture complex non-linear 

relationship between independent and dependent variables solely based on data and without 

assuming a priori statistical distributions and relationships among variables (Bélanger et al. 

2005; Benyahya et al. 2007). Their lack of a general theoretical framework and dependence 

on the training data makes them less reliable in predicting stream water temperatures outside 

the range of their training conditions (i.e. dry or wet) (Benyahya et al. 2007; Risley et al. 

2003).   

One of the most  widely used stream water temperature model in riverine studies is the  

Mohseni et al. (1998) model because of its simplicity and good performance (reported 

average RMSE of 1.64 mm). It is a statistical model that predicts stream temperatures at a site 

from air temperatures at a remote climate station. It is often fit at a weekly time-step but can 

be run at any interval resolvable within the temperature time-series. A non-linear regression 

function captures hysteresis effects associated with differential stream-atmosphere heat 

transfer rates that vary seasonally (Mohseni et al. 1998). The model was initially developed 

using only air temperature as a covariate but stream discharge is now routinely incorporated. 

However the model has a low performance in snow dominated watersheds, where 

contribution of snowmelt to discharge has a pronounced effect on spring and early summer 

stream water temperatures (Isaak et al. 2012; Luce et al. 2014; Vliet et al. 2011). Its 

performance is sensitive to the difference between maximum and minimum values of weekly 

averaged stream temperatures and it performs poorly in regions where this difference is low 

(Benyahya et al. 2007; Mohseni et al. 1998). Consequently, it is not adequate for snow-

dominated mountain regions, where these limitations are exacerbated. 

Thus the main objective of this work was to develop and test a new parsimonious statistical 

model to predict stream water temperature at the daily temporal resolution under a wide range 

of climatic conditions in both regulated and unregulated streams and for current, historical 

and future conditions. The model was designed to overcome one of the limitations of existing 

statistical models by including the effect of discharge on stream water temperature. However, 

it can be parameterized solely with air temperature data when discharge data are unavailable. 
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It is based on a piecewise Bayesian approach and accounts for the autocorrelation structure 

within the stream water temperature time series. We tested model performance in different 

climatic regions and compared it to that of the widely-used Mohseni et al. (1998) model in a 

mountain river basin and selected locations throughout the U.S. with different climatic 

regimes.  

 

2.3. Study Area and Data 

Model development was done in the Boise River Basin of central Idaho, USA (Figure 2.1) 

because of the availability of extensive stream temperature datasets 

(http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html); and climate monitoring 

stations. The terrain of the basin is mountainous ranging from about 1,000 to 3,000 m, which 

creates complex meteorological conditions with strong temporal and spatial variability and 

provides a challenging test for water temperature model performance. The Boise River Basin 

also has strongly seasonal weather patterns, with large snowpack accumulations occurring 

during winter and annual floods occurring during late spring when snow melts. 

 

http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html
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Figure 2.1. Study area and spatial distribution of the metrological, hydrological and temperature gage stations. 

 

Eight additional stream temperature stations were selected in different portions of the U.S. to 

test and validate the generality of the model (Figure 2.2). Those climate regions include 

(Sohrabi et al. 2015): Semi-Arid Steppe (CT1), Marine West Coast (also known as Oceanic 

Climate) which is also the predominant climate across most parts of Europe (CT2), 

Mediterranean (CT3), Mid-Latitude Desert (CT4), Highland or Alpine (CT5), Humid 

Continental with cool summer (CT6), Humid Continental with warm summer (CT7) and 

Humid Subtropical (CT8). These eight stations are distributed over a wide range of elevations, 

from 29 to 2,700 meters above mean see level (See Table 2.1). Each station recorded mean 

daily stream temperature and discharge. 
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Figure 2.2. Location of weather and stream temperature stations at eight different climate regions in United 

States. 
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Table 2.1. Detailed information of stream temperature stations 

Station NO. Stream Latitude Longitude T* Elevation (m) 

CT1 Skagit River at Newhalem, WA 48.67 -121.25 CW1 59 

CT2 Long Tom River near Alvadore, OR 44.12 -123.30 CW2 205 

CT3 Russian River near Hopland, CA 39.03 -123.13 CW3 609 

CT4 Truckee River near Nixon, NV 39.78 -119.34 CW4 1435 

CT5 Eagle River near Wolcott, CO 39.70 -106.73 CW5 2682 

CT6 ST. Croix River at ST. Coix Falls, WI 45.41 -92.65 CW6 295 

CT7 White River near Centerton, IN 39.50 -86.40 CW7 228 

CT8 Spring Creek near Spring, TX 30.11 -95.44 CW8 29 

T1 Dixie creek 43.34 -115.48 W1 1171 

T2 Smith Creek 43.52 -115.67 S2 1171 

T3 Little Rattlesnake Creek 43.59 -115.70 W3 1134 

T4 Mores Creek 43.64 -115.48 W3 1134 

T5 Grimes Creek 43.74 -115.96 W4 1032 

T6 Bannock Cr 43.82 -115.80 W4 1216 

T7 MF Boise River 43.70 -115.66 W4 1048 

T8 Rattlesnake Creek 43.63 -115.56 S3 2000 

T9 Rattlesnake Creek 43.59 -115.60 S2 1527 

T10 SF Boise River 43.48 -115.31 S3 1281 

T11 Grouse Creek 43.54 -115.23 S3 1660 

T12 Dog 43.53 -115.31 S3 1371 

T13 Dog Creek 43.56 -115.34 S3 1838 

T14 Trinity Creek 43.63 -115.39 S3 2034 

T15 Scotch Creek 43.69 -115.42 S3 2063 

T16 EF Roaring River 43.69 -115.44 S3 1831 

T17 Roaring River 43.72 -115.47 S3 1547 

T18 Mores Creek  43.90 -115.71 S4 1499 

T19 GRIMES CR 43.98 -115.84 W4 1362 

T20 Grimes Creek 44.01 -115.74 S4 2002 

T21 Pikes Fork 44.00 -115.51 S5 1701 

T22 Crooked River 44.00 -115.47 S5 1806 

T23 Bear Creek 43.99 -115.45 S5 1790 

T24 Crooked River 44.05 -115.42 S5 1942 

T25 Queens River 43.82 -115.21 S7 1507 

T26 SF Ross Fork 43.79 -115.00 S8 2025 

T27 Gold Run Cr 43.79 -114.95 S8 1997 

T28 Paradise Ck 43.69 -114.86 S8 2056 

T29 Skeleton Cr 43.64 -114.97 S8 1853 

T30 BIG SMOKY 43.66 -114.80 S9 1799 

T31 Big Peak Creek 43.65 -114.79 S9 1854 

T32 Big Peak Creek 43.63 -114.76 S9 1959 

T33 Little Smoky Creek 43.52 -114.72 S9 1945 

T34 Little Smoky Creek 43.53 -114.69 S9 2015 

T* shows weather or Snowtel stations which were used to estimate stream water temperature for each stream 

water temperature station. Letter C, T, S and W stand for Climate Region, Stream Water Temperature station, 

SNOTEL and Weather stations, respectively, for example CW1 indicates the weather station located at first 

climate region. 
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2.4. Methods 

2.4.1. Data Collection 

We obtained mean daily water temperature data in the Boise River Basin at 34 stations for the 

period of August 2010 to August 2012. Miniature digital temperature sensors were placed in 

solar shields and epoxied to the downstream side of large boulders below the low-flow 

summer water surface as described in Isaak et al. (2013). One additional water temperature 

record was obtained at T4 station, which had data from November 1969 to July 1972 at a 

USGS flow gage. The water temperature records were matched with contemporaneous 

meteorological and hydrological data from 3 weather stations, 8 SNOTEL stations and 4 

stream discharge gaging stations (Figure 2.1). Table 2.1, Table A. 2.1, Table A. 2.2 and Table 

A. 2.3 report detailed information of stream water temperature, weather, SNOTEL 

(www.wcc.nrcs.usda.gov) and discharge stations (USGS website: www.usgs.gov), 

respectively. Because there was not a weather or SNOTEL station for each reach with a 

temperature sensor, we matched the nearest weather or SNOTEL station to each stream water 

temperature gage (therefore, recorded mean daily air temperature of some weather and 

SNOTEL stations were matched with multiple water temperature sensors). The observed 

mean daily discharges at D1, D3 and D4 gages were used for estimation of stream water 

temperature at T1, T7 and T4, respectively. Station D2 had discharge and stream water 

temperature measurements from April 1963 to September 1965 and from April 1978 to 

October 1979 (Table A.3). We used the observed data for these two periods at D2 to test the 

capability of our model to reconstruct historical stream water temperatures in periods with 

different hydrological conditions from those of the calibration period (see section 2.4.6). After 

October 1979, only discharge was recorded at D2. At this gage the observed discharge was 

used for estimation of stream water temperature at T10, which is close to D2, for the period of 

August 2010 to August 2012.   

At the eight stations selected to test the performance of the model in different climates, daily 

discharge measurements with less than 4% missing values were available for all stations 

except CT2. The discharges in this station (CT2) were influenced by upstream irrigation 

diversions and were not used. The stations CT1, CT2, CT3 and CT6 located downstream of a 

dam were used to test the model at regulated streams. 

http://www.wcc.nrcs.usda.gov/
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2.4.2. Model Development 

We developed a piecewise model, called the Stream Water Temperature Model (SWTM), 

which accounts for both linear and non-linear relationships between dependent and 

independent variables. The model uses mean daily air temperature (Ta) as meteorological 

driver and discharge (Q) as hydrological driver to estimate mean daily stream water 

temperature (Ts). It accounts for antecedent conditions by considering the stream water 

temperature of the previous time step (day). We fit the model using Bayesian methods 

(Gelman and Hill 2007; Lunn et al. 2000a).  

Stream water temperature is correlated with air temperature and discharge (Luce et al. 2014; 

Mohseni et al. 1998). Air temperature is commonly used as a surrogate for heat flux 

exchanges in stream water temperature models. The linear relationship between air 

temperature and steam water temperature becomes non-linear as air temperature approaches 

freezing (0
◦
C) (Figure 2.3) (Mohseni et al. 1998; Neumann et al. 2003; Webb et al. 2003). 

Discharge is a proper proxy for snowmelt and rain, which have notable influences on stream 

water temperature (Gu et al. 1999; Hockey et al. 1982; Webb et al. 2003). Webb et al. (2003) 

identified a linear relationship between discharge and stream water temperature at any time 

scale (e.g. daily or weekly).  

 

 
Figure 2.3. Linear and non-linear relationship between daily stream water and air temperatures at station T10. 

 

Heat capacity of a system is the amount of heat required to increase the temperature by 1
◦
C 

(IUPAC 2014). Because heat capacity of water is large and larger than that of the air, stream 
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water temperature does not respond to heat exchanges as quickly as air temperature. 

Consequently, stream water temperature changes slowly unless there are sources of water of a 

different temperature from that of the stream or changes in canopy cover. The correlation 

distance increases with discharge, as more heat or heat loss is required to warm or cool the 

water. This spatial longitudinal correlation is particularly true at fine temporal resolution i.e. 

hourly and daily (Ahmadi-Nedushan et al. 2007; Webb et al. 2003). The SWTM model 

considers the thermal inertia with an autoregressive component. We tested lag times varying 

between 0 and 7 days. We found that the highest autocorrelation was associated with a one-

day lag (Figure 2.4) and therefore specified a 1-day lag in the model. 

 

 

Figure 2.4. One-day and seven-day lagged autocorrelation of daily stream water temperature at station CT7. 
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A robust stream temperature model at a daily resolution should account for two important 

properties: non-linearity near the freezing point and the thermal inertia of the water. To 

account for this, we divided the data series temporally into three parts: days Ta <1
◦
C (group 1), 

days in the October to May period that Ta >1
◦
C (group 2), and the June-September period 

(group 3). A linear model is applied for data in group 2 and 3, whereas a non-linear model is 

used for data in group 1. In both the linear and non-linear models, it is assumed that stream 

water temperature has a Gaussian (normal) distribution (Eq. 2.1), because daily Ts and Ta are 

strongly correlated and daily Ta follows a Gaussian distribution (Robeson 2002).  

 

 )),((  tNormalTs   (Eq. 2.1) 

 

Where   (mean) and   (standard deviation) are location and scale parameters, respectively. 

The standard deviation   is time independent, whereas   is time dependent and defined in 

two different ways for the linear (Eq. 2.2) and non-linear (Eq. 2.3) models:  

 

 btQatatTat a  )()1()()( 321   (Eq. 2.2) 

 

 btQatatTat a  )()1()]([exp)( 321   (Eq. 2.3) 

 

where 1a , 2a  and 3a  are coefficients related to air temperature, stream water temperature at 

the previous time step and discharge, respectively, t is time and b is intercept in both linear 

and non-linear models. For streams that have temperatures near the freezing point, a negative 

value could be estimated for 2a  or b; we prevent this by using absolute values of 2a  and b in 

the model (Eq. 2.3), to result in posterior distributions with a positive mean for these 

parameters. The second variable ( )1( t ) in Eq. 4.2 and 4.3 carries over the estimated 

stream water temperature from the prior time step.  
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With a large sample size the choice of prior distribution has a negligible impact on posterior 

inference (Gelman 2002). We used minimally informative prior distributions. It is assumed 

that coefficients and intercepts in Eq. 4.2 and 4.3 followed a Gaussian distribution (Gelman 

2006; Kwon et al. 2008): 

 

 )10,0(,, 4

321

 Normalbandaaa
 

(Eq. 2.4) 

 

The scale parameter   must have positive values. We assumed the scale parameter followed a 

Gamma distribution to constrain the scale parameter to positive values (Spiegelhalter et al. 

2003). 

 

 
 

(Eq. 2.5) 

 

We fit these parameters using WinBUGS software, called from R with the R2WinBUGS 

package (Sturtz et al. 2005). WinBugs (Lunn et al. 2000b) applies Markov Chain Monte Carlo 

(MCMC), using Gibbs sampling and the Metropolis–Hastings algorithm to infer posterior 

distributions. MCMC is a numerical method that generates dependent samples that follow a 

given probability distribution. The role of MCMC is to generate large enough dependent 

samples that the characteristics of a posterior distribution can be precisely summarized 

(Campbell et al. 1999; Tierney 1994). At each iteration, a parameter is updated by sampling 

from its full conditional distribution, which depends on the data, the prior and on the current 

values of the other parameters (Gilks et al. 1995). The R2WinBUGS package is used to call 

WinBUGS from R to facilitate the preparation and manipulation of the data in WinBUGS 

(Sturtz et al. 2005). We ran three chains for 2,000 iterations each, following a 1,000 iteration 

burn-in period. We evaluated convergence using the Gelman-Rubin statistic. 

 

)10,10( 33 Gamma

http://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm


26 

 

 

2.4.3. Model Evaluation 

The model was calibrated with the first two thirds of the data and validated with the 

remaining one third. Accuracy of fit and error of the model were evaluated with the Nash-

Sutcliffe coefficient (NSC) and root mean square error (RMSE), respectively. NSC is 

calculated as follows (Nash and Sutcliffe 1970): 

 

 

 

(Eq. 2.6) 

 

where 
isimsT

,
 and 

iobssT
,

 are the simulated and observed stream water temperatures, 
obssT

 
is the 

mean observed stream water temperature, n is  number of observations (time step). RMSE is 

computed based on the below equation: 
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(Eq. 2.7) 

 

where m is the number of parameters in the model. The effect of m (Eq. 2.7) is negligible 

when n is large as in this study; thus m is ignored. We calculated also RMSE for each month 

and averaged it over the study sites. To have an accurate comparison of model performance at 

all the stations, mean daily stream water temperatures were estimated using only mean daily 

air temperatures (Ta model). 
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2.4.4. Role of Discharge  

Discharge measurements were available only at 11 (T1, T4, T7, T10, CT1, CT3, CT4, CT5, 

CT6, CT7 and CT8) of the 42 stations. At these stations, mean daily stream water 

temperatures were estimated using both air temperature and discharge as inputs (Ta-Q model) 

and also using Ta model. Comparison between Ta-Q and Ta models allowed us to quantify 

the effect of discharge on model performance. Out of these 11 stations, 3 stations are 

regulated (CT1, CT3 and CT6), 2 stations (CT7 and CT8) are located at rain-dominated 

basins and 6 stations (T1, T4, T7, T10, CT4 and CT5) are located at snow-dominated basins.  

 

2.4.5. Effect of Inclusion of the Autoregressive Component 

The most important effect of the autoregressive component is to prevent unrealistically rapid 

changes in the estimated stream water temperatures due to sudden changes in air 

temperatures. The effect of the autoregressive component was evaluated by comparing 

estimated stream water temperatures from Ta model with and without the autoregressive 

component. 

 

2.4.6. Historical Reconstruction 

We tested the capability of the model to predict historical stream water temperatures for 

periods that may also have different hydrological conditions (e.g. dry or wet) from those of 

the calibration period. We performed this analysis using data from station D2, because at this 

station stream water temperature and discharge were available for two different hydrological 

conditions. The April 1963- September 1965 period coincides with an exceptionally wet 

period, whereas the April 1978- October 1979 period is representative of an averaged year 

with precipitation close to the long-term mean (Sohrabi et al. 2015; Sohrabi et al. 2013). We 

calibrated the Ta-Q model for the 1978-1979 period and compared its predictions with the 

1963-1965 temperature records.  
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2.4.7. Comparison to the Modified Mohseni Model 

SWTM performance for both Ta and Ta-Q versions was compared to that of the Mohseni 

model. We used the modified Mohseni model (2011) that uses mean daily air temperature and 

discharge to estimate mean daily stream temperature. Ta-Q model was used at the 11 sites that 

recorded discharge, and Ta model was used for the remaining sites with only air temperature 

measurements. 

 

2.5. Results  

2.5.1. Model Evaluation  

The NSC and RMSE values indicated that the Ta model performed well at unregulated 

streams but substantially worse at regulated streams. The 2-year RMSE and 2-year NSC, 

including both calibration and validation periods, ranged from 0.87 
◦
C (at T15) to 2.5 

◦
C (at 

CT5) and from 0.63 (at CT1 and CT3) to 0.97 (at CT6, CT7 and CT8; Figure 2.5), 

respectively. The largest RMSE was related to site CT5, which was located in a snow-

dominated basin. Large errors were observed from May through August, the period when the 

contribution of snow melt to discharge substantially affects stream water temperatures. Across 

all sites the highest errors occurred in May (Figure 2.7), the month during which snowmelt 

makes the largest contribution to stream discharge (unlike the Ta-Q model, the Ta model does 

not account for the effect of discharge). The second highest RMSE (2.1 
◦
C) was related to 

CT2 (Figure 2.5 and Figure 2.6 a), which is 0.32 km downstream from a dam. Site CT6, 

located 0.48 km downstream from a dam, had the highest NSC and a RMSE of 1.59 
◦
C 

(Figure 2.5 and Figure 2.6 b). The RMSE was relatively low (1.1- 1.19 
◦
C) during July and 

August (Figure 2.7), indicating good model performance during the warmest part of the year, 

which is particularly important for many aquatic habitat and water quality applications. 
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Figure 2.5. 2-year RMSE and NSC, including both calibration and validation periods, of Ta model. 

 

 
Figure 2.6. Simulated and observed daily stream water temperatures and discharge at CT2 (a) and CT6 (b) 

stations. 
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Figure 2.7. Average RMSE of Ta model for each month. 

 

 

2.5.2. Role of Discharge  

Stream discharge as an additional input variable had negligible influence on model 

performance for streams in rain-dominated basins and those with regulated flows. However, it 

significantly enhanced model performance for most snow-dominated streams (except T1; 

Figure 2.8) for the months between April through August, the period when discharge is 

dominated by snowmelt (Figure 2.9). The largest difference (RMSE) in performance between 

Ta and Ta-Q models was in June (1.5
◦
C), when snowmelt had the highest contribution to 

discharge (Figure 2.10). Performance of the Ta model was slightly better than that of Ta-Q 

model in March. For other months beside outside of the April to August period, the Ta-Q 

model was only modestly better (< 0.1
◦
C in RMSE) than the Ta model.  

 

 



31 

 

 

 

Figure 2.8. Changes in the RMSE of SWTM by adding discharge. 

 

 

Figure 2.9. Changes in the RMSE of SWTM by adding discharge as a predictor at monthly scale. 
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Figure 2.10. Time series of simulated and observed daily stream water temperatures at CT5 (the top figure) and 

T7 (the bottom figure) stations, respectively. 

 

 

2.5.3. Effect of Inclusion of the Autoregressive Component 

Our analysis shows that the autoregressive component may have different effects on model 

performance when daily stream water temperatures are modeled at short (weekly) or long 

(yearly) time scale analysis. The autoregressive component has an important effect on 

predicting daily stream water temperatures within short temporal windows (weekly time scale 

analysis) as shown from fall to spring when sudden changes in temperature occur on a single 

day (Figure 2.11; the top figure) regardless of watershed size. However, at large time scales 

(monthly or yearly time scale) the autoregressive component increases model performance 

only in streams with a drainage area >100 km
2
; its effect is negligible in streams <50 km

2
 

drainage area. On average RMSE was increased by 0.21
◦
C in large streams due to neglecting 

the autoregressive component, whereas on average only a 0.06
◦
C increase in RMSE was 

observed in small streams. The largest increase in RMSE (increase of 1.14
◦
C) was observed at 

CT7 site, which was the largest unregulated stream among the study sites (Figure 2.11; the 

bottom figure).  
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Figure 2.11. Effect of disregarding autoregressive component at T22 (the top figure) and CT7 (the bottom 

figure). Red line indicates estimated stream water temperatures from Ta model. Green line shows estimated 

stream water temperatures from Ta model without autoregressive component. 

 

 

2.5.4. Historical Reconstruction 

SWTM predicted stream water temperature reasonably well (RMSE of 1.55
◦
C) for the 2-year 

validation period at station D2, in spite of different climatic and hydrological conditions 

between the calibration and validation periods (Figure 2.12). SWTM extensively 

underestimated stream water temperature for only five days (mid-June 1965) (Figure 2.12). 

During those five days, air temperatures dropped from 21.5
◦
C to 11.5

◦
C and discharges 

increased significantly due to an exceptional summer rainfall event (40 mm in 5 days).  
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Figure 2.12. Hindcast of daily stream water temperature (Ta-Q model) for the period with different hydrological 

conditions from the calibration period at station D2. The top figure indicates calibration period (average year) 

and the bottom figure shows validation period (wet year). 

 

 

2.5.5. Comparison to the Modified Mohseni Model 

Performance of SWTM exceeded that of the modified Mohseni model (Figure 2.13). Average 

RMSE and NSC of SWTM were 1.25 
◦
C and 0.91, respectively, whereas average RMSE and 

NSC of the modified Mohseni model were 1.68 
◦
C and 0.86, respectively. Performance 

differences were most pronounced at stations with discharge measurements (T1, T4, T7, T10, 

CT4, CT5, CT7 and CT8). For these stations, SWTM had an average RMSE of 1.43 
◦
C, 

compared to 2.24 
◦
C, for the modified Mohseni model. The largest difference was observed at 

CT5 (Figure 2.14), in which RMSE and NSC of SWTM was 1.43 
◦
C lower and 0.2 larger, 

respectively, than that of the modified Mohseni model. SWTM also performed better than the 

Mohseni model on regulated streams (Figure 2.13), with RMSE of 1.72 
◦
C compare to 2.31 

◦
C 

for the modified Mohseni model.  
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Figure 2.13. Comparison of daily stream water temperature predicted with the modified Mohseni and SWTM. 

 

 
Figure 2.14. Comparison between generated daily stream temperatures from SWTM and the modified Mohseni 

model at CT5, a snow dominated basin. 

 

 

2.6. Discussion 

The performance of SWTM was good with average RMSE and NSC of 1.25
◦
C and 0.91, 

respectively, over the study sites. Comparing these RMSE and NSC values to those of 

reported in the literature indicates robust performance of SWTM. Ficklin et al. (2012) 

reported average NSC of 0.82 and mean error of 0.66
◦
C, and Vliet et al. (2011) reported 
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average RMSE and NSC of 2.26
◦
C and 0.85, respectively, for estimation of mean daily stream 

temperatures. Mohseni et al. (1998) demonstrated average RMSE and NSC of 1.64
◦
C and 

0.93, respectively, for estimation of weekly stream temperature. 

Available statistical stream temperature models have been rarely tested under a wide range of 

climate conditions. Most statistical models, such as those presented in the works of Caissie et 

al. (2001), Webb et al. (2003), Ahmadi-Nedushan et al. (2007) and Caldwell et al. (2013), 

were tested at one watershed and within one climate zone. Conversely, the Mohseni model 

was tested for regulated and unregulated streams under a wide range of climate and 

hydrologic conditions. However, it performed poorly in regions where the difference between 

maximum and minimum weekly averaged stream water temperature was low (Benyahya et al. 

2007; Mohseni et al. 1998), as for instance our study site CT3, where the Mohseni model had 

a NSC value of 0.56, compared to SWTM with NSC of 0.63. Its performance was also low in 

snow dominated watersheds, where discharge variation had a pronounced effect on summer 

stream water temperature (Luce et al. 2014). 

The results indicate robust performance of SWTM across a range of climate and hydrologic 

conditions. Because SWTM tracks changes in the independent variables rather than 

depending on the difference between maximum and minimum values of stream water 

temperature, its performance is similar in different climate and hydrologic conditions. On the 

other hand, seasonality influences the hysteresis between air-water temperature (Benyahya et 

al. 2007; Langan et al. 2001; Webb and Nobilis 1997). Our model is separately fitted for cold 

and warm seasons to minimize the effect of seasonality. The autoregressive structure is 

another important feature of SWTM, because it prevents fluctuations in daily air temperatures 

from overly influencing daily stream water temperature estimations. Similar to Webb et al. 

(2003), our results indicated that inclusion of the autoregressive component is critical in large 

streams. These streams can absorb large amounts of heat with negligible change in their 

temperature because their large water volume provides high thermal capacity inertia. This 

causes hysteresis in the air-water temperature relationship and lowers the correlation between 

air and water temperatures.   

Similarly to previous studies (Ahmadi-Nedushan et al. 2007; Bogan et al. 2003; Neumann et 

al. 2003; Webb et al. 2003), the analyses show that air temperature is the primary predictor for 
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estimating stream water temperature for most hydrological settings. Consistent with the 

findings of Webb et al. (2003), our model shows that discharge is a secondary factor in 

predicting stream water temperatures in rain-dominated basins and those with regulated flows. 

Ahmadi-Nedushan et al. (2007) reported that discharge has a secondary impact in snow-

dominated streams as well. However, our analyses indicate that stream discharge is a major 

hydrologic driver for unregulated streams in snow-dominated basins with a large drainage 

area, particularly during the spring-summer period from April through August. Ahmadi-

Nedushan et al. (2007) used flow-derived variables, i.e. minimum and maximum flow of 3-, 

5- and 7-day periods, rather than discharge measurements as independent variables. The 

disagreement between results of this work and those of Ahmadi-Nedushan et al. (2007) might 

be due to the difference in accounting for flow information. Our results indicate that the 

largest difference between the performance of Ta and Ta-Q models occurs in June. In this 

month, air temperature substantially increases but stream discharge also increases due to snow 

melt. The latter contribution prevents stream water temperatures from increasing rapidly 

following the air temperature trend, which causes the Ta model to over-predict stream water 

temperature. An increase in a stream discharge increases thermal capacity and decreases 

travel time which in turn leads to less sensitivity of water temperature to air temperature, 

which is a surrogate for net heat exchanges at the air-water interface (Webb et al. 2003). In 

addition, when the source of discharge is cold water from snow melt, it causes hysteresis in 

the air-water temperature relationship (Mantua et al. 2010; Mohseni et al. 1998). The results 

suggest that the performance of Ta-Q over Ta decreases with smaller contributing drainage 

area, because discharge typically decreases with drainage area.  

Statistical stream water temperature models such as SWTM may have some limitations when 

applied to time series far from the calibration period. For example, SWTM does not consider 

impacts of possible changes in vegetation on stream water temperatures. Shading influences 

sensible and latent heat fluxes, particularly in summer (Bogan et al. 2003). Furthermore, in 

groundwater dominated streams, particularly when there is considerable hyporheic exchange 

close to a stream temperature sensor, differences in hydrological conditions of calibration and 

validation periods, i.e. dry or wet conditions, may results in large errors due to changes in 

magnitude of the interactions between surface and subsurface waters (Bogan et al. 2003). 

These two limitations can be solved by using equilibrium temperature as a predictor instead of 
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air temperature. Equilibrium temperature is defined as the temperature that a water body can 

have when the integral of the heat fluxes across the air-water interface is zero (Bogan et al. 

2003). Equilibrium temperature can be calculated using weather data including air 

temperature, dew point temperature, precipitation, solar radiation, sky cover, and wind speed. 

Bogan et al. (2003) found a linear relationship between equilibrium temperature above 0
◦
C 

and stream water temperature. In streams where stream water temperatures follow heat 

exchanges at the air-water interface and are minimally affected by shading and groundwater 

exchanges, stream water temperature should be approximately equal to equilibrium 

temperature (roughly a 1:1 relationship (Bogan et al. 2003)). However, in streams where 

water temperatures are substantially influenced by groundwater exchanges or shading, for 

example, equilibrium temperatures are considerably lower or higher than stream water 

temperatures during winter and summer, respectively. In these streams, the relationship 

between equilibrium temperature and stream water temperature substantially deviates from 

the 1:1 relationship, but equilibrium temperatures can be adjusted to consider impact of 

shading and groundwater. To account for effect of shading and groundwater, which are not 

considered in equilibrium temperature calculation, on stream water temperature, a slope and 

intercept are calculated for the linear relationship between equilibrium temperature and stream 

water temperature to minimize their difference. (Bogan et al. 2003).  

Model accuracy decreases in predicting stream water temperatures downstream of large 

reservoirs. The lower performance is mostly due to the reservoir releases, particularly from 

the hypolimnion, rather than variations in heat flux at air-water interface (Lowney 2000; Null 

et al. 2013; Risley et al. 2010; Sinokrot et al. 1995). The downstream distance at which the 

influence of the reservoir becomes negligible depends on reservoir depth and size, outlet 

vertical location and discharge (Mohseni et al. 1998; Sinokrot et al. 1995). Sinokrot et al. 

(1995) reported that the impact of reservoir releases from the hypolimnion can persist as far as 

48 km downstream from the dam depending on the magnitude of releases. However, water 

releases may also form a consistent temporally-gradually varying stream temperature pattern 

(Lowney 2000), which SWTM proved capable of capturing at CT6. Dam releases are high 

between mid-spring to mid-summer (Figure 6b) at CT6, mimicking the effect of high 

discharge of unregulated streams due to snow melt in snow dominated regions during the 

period of mid-spring to mid-summer on stream water temperature.   
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The geostatistical models such those presented in the work of Isaak et al. (2010) interpolate 

and extrapolate stream water temperature throughout the river network from point measured 

stream water temperature. Our model could provide point temperatures in locations where 

measurements are no longer available or were not available in the past with reasonable 

estimates of uncertainty. This may allow coupling of the two models to provide more reliable 

forecasts of stream water temperature from climate change air temperature than available 

models. This will allow prediction of stream water temperature at the daily scale, which is an 

important variable for aquatic habitat quality, and of spatially distributed stream water 

temperature changes avoiding the uniform spatial change adopted in the work of Isaak et al. 

(2010).  

Stream water temperatures at the daily time scale are important for estimating fish habitat 

quality during the low summer flows when stream water tends to reach the highest 

temperatures, or quantifying the days with stream water temperatures exceeding certain 

thresholds (Crozier et al. 2010; Mesa et al. 2013; Xu et al. 2010). It could be particularly 

useful in projecting the effects of climate change on riverine environments and forecasting 

potential effects on fish population dynamics (Ficklin et al. 2012). 

 

2.7. Conclusions 

We found that the SWTM model provided daily stream water temperature predictions of good 

accuracy, with average RMSE and NSC of 1.25
◦
C and 0.92, respectively. Monthly RMSE of 

SWTM and time series of simulated daily stream water temperatures indicate that SWTM is 

capable of predicting well during the warmest periods, which are critical for aquatic habitats 

(RMSE of August is 1.1
◦
C). Our results indicate that discharge improves model performance 

in snow-dominated basins with large drainage areas.  

SWTM can be a useful tool to either reconstruct historical daily stream water temperatures or 

to project daily stream water temperatures under different climate change scenarios. Similar to 

other statistical models, performance of SWTM may be influenced by regulated discharges. 

However, even at regulated streams SWTM performed notably better than the commonly-

used Mohseni model. It assumes static influence of both riparian vegetation shading and 
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groundwater contribution. In situations where riparian vegetation or/and groundwater 

influence is expected to change, air temperature should be replaced with equilibrium 

temperature.  
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2.9. Appendix A: The Detailed Information of Weather, SNOTEL and Discharge Stations 

 

Table A. 2.1. Detailed information of weather stations 

Station 

NO. 

COOP-ID Station Name Latitude Longitude Elevation 

(m) 

CW1 - Concrete PPL Fish Station, WA 48.54 -121.74 59 

CW2 - Leaburg 1 SW, OR 44.10 -122.68 205 

CW3 - Hawkeye, CA 38.78 -122.91 609 

CW4 - Minden, NV 38.95 -119.77 1435 

CW5 - Red Deer, CO 38.82 -106.21 2682 

CW6 - University of Minnesota ST Paul, MN 44.98 -93.17 295 

CW7 - Hardin Ridge, IN 39.00 -86.42 228 

CW8 - Houston Intercontinental Airport, TX 29.98 -95.36 29 

W1 100282 Anderson Dam 43.36 -115.45 387 

W2 100448 Arrowrock Dam 43.58 -115.92 986 

W3 104442 Idaho City 43.83 -115.82 1209 

 

Table A. 2.2. Detailed information of SNOTEL stations 

Station 

NO. 

Station Name Hydrological_Unit Latitude Longitude Elevation 

(m) 

S1 Bogus Basin Lower Boise 43.75 -116.08 1932 

S2 Prairie South Fork Boise 43.50 -115.57 1463 

S3 Trinity MTN. South Fork Boise 43.62 -115.43 2368 

S4 Mores Creek Summit North and Middle Fork Boise 43.92 -115.65 1859 

S5 Jackson Peak North and Middle Fork Boise 44.05 -115.43 2155 

S6 Atlanta Summit North and Middle Fork Boise 43.75 -115.23 2310 

S7 Vienna Mine Upper Salmon 43.78 -114.85 2731 

S8 Dollarhide Summit Big Wood 43.60 -114.67 2566 
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Table A. 2.3. Detailed information of discharge stations 

Station 

NO. 

Station Name Latitude Longitude Drainage Area 

(km
2
) 

CT1 Skagit River at Newhalem, WA 48.67 -121.24 3008 

CT2 Long Tom River near Alvadore, OR 44.12 -123.29 645 

CT3 Russian River near Hopland, CA 39.02 -123.12 926 

CT4 Truckee River near Nixon, NV 39.77 -119.33 4677 

CT5 Eagle River near Wolcott, CO 39.70 -106.72 1536 

CT6 ST. Croix River at ST. Coix Falls, WI 45.40 -92.64 15974 

CT7 White River near Centerton, IN 39.49 -86.40 6256 

CT8 Spring Creek near Spring, TX 30.11 -95.43 1047 

D1 Dixie Creek 43.34 -115.48 10 

D2 Featherville 43.49 -115.31 1641 

D3 Twin Springs 43.67 -115.72 2130 

D4 Mores Creek AB Robie Creek NR Arrowrock Dam 43.64 -115.99 1016 
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Chapter 3. Role of Temporal Resolution of Meteorological Inputs on Process-Based 

Snow Modeling  

 

3.1. Abstract 

Accurate snow accumulation and melt simulations are crucial for understanding and 

predicting hydrological dynamics in mountainous settings. As snow models require 

temporally varying meteorological inputs, time resolution of these inputs is likely to play an 

important role on the model accuracy. Since meteorological data at a fine temporal resolution 

(~1 hr) is generally not available in many snow dominated settings, it is important to evaluate 

the role of meteorological inputs temporal resolution on the performance of process-based 

snow models. The objective of this work is to assess the loss in model accuracy with temporal 

resolution of meteorological inputs, for a range of climatic conditions and topographic 

elevations. To this end, a process-based snow model was run using 1-, 3- and 6-hourly inputs 

for wet, average and dry years over Boise River Basin (6,963 km
2
), which spans rain-

dominated (≤1400m), rain-snow transition (>1400 and ≤1900m), snow-dominated below 

treeline (>1900 and ≤2400m) and above treeline (>2400m) elevations. The results show that 

sensitivity of the model accuracy to the inputs time step generally decreases with increasing 

elevation from rain-dominated to snow-dominated above treeline. Using longer than hourly 

inputs causes substantial underestimation of snow cover area (SCA) and snow water 

equivalent (SWE) in rain-dominated and rain-snow transition elevations, due to the 

precipitation phase mischaracterization. In snow-dominated elevations, the melt rate is 

underestimated due to errors in estimation of net snow cover energy input. In addition, the 

errors in SCA and SWE estimates generally decrease toward years with low snow mass, i.e. 

dry years. The results indicate significant increases in errors in estimates of SCA and SWE as 

the temporal resolution of meteorological inputs become coarser than an hour. However, use 

of 3-hourly inputs can provide accurate estimates at snow-dominated elevations. The study 

underscores the need to record meteorological variables at an hourly time step for accurate 

process-based snow modeling. 
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Keywords: Temporal resolution, Physics-based snow modeling, Mountainous regions, Rain-

snow transition, Alpine treeline, Model accuracy, Model evaluation 

 

3.2. Introduction 

Snow strongly affects the hydrology and ecology of mountainous regions (Homan et al. 2010; 

Raleigh and Lundquist 2012). From a hydrologic perspective, snow is a critical water storage 

reservoir that delays hydrologic response to precipitation (Garen and Marks 2005). Snow 

cover stores water in winter and releases it during spring and early summer (Kormos et al. 

2014a). Snow melt, rain on bare ground and their combination define the so called surface 

water input (SWI). The spatio-temporal distribution of SWI is of great importance for 

hydrological studies (Grünewald and Lehning 2011; Lee et al. 2005). Soil moisture dynamics, 

evapotranspiration, streamflow generation and groundwater recharge depend on the spatial 

distribution, timing and magnitude of SWI (Kormos et al. 2014a; Kumar et al. 2013; Reba et 

al. 2011; Wang et al. 2013; Weill et al. 2013). From an ecological perspective, snow cover, 

with its duration and depth, controls soil moisture and moderates spring and early summer air 

temperature by increasing albedo (Molotch and Bales 2005). Soil moisture and air 

temperature are fundamental controls on vegetation distribution and greening (Darmody et al. 

2004; Sensoy et al. 2006; Torp 2010; Trujillo et al. 2012). Snow also insulates soil from very 

low air temperatures due to its low thermal conductivity (Flerchinger and Saxton 1989; Liston 

and Elder 2006; Torp 2010), resulting in continued microbial activity during winter (Schimel 

et al. 2004). Moreover, stream temperature that has a significant role in aquatic ecosystem 

sustainability is influenced by snow melt (Gu et al. 1999; Webb et al. 2003). The contribution 

of snow melt to streamflow moderates increase in stream temperature in late spring and early 

summer (Luce et al. 2014). Aforementioned influences indicate that accurate estimation of 

snow accumulation and ablation is critical to understand and predict both hydrological and 

ecological dynamics.  

Accurate estimation of snow accumulation and melt requires a fine temporal resolution (at 

least 6 hourly) data in order to capture diurnal changes in meteorological variables (Beniston 

1997; Garen and Marks 2005). The diurnal variation of meteorological variables in 
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mountainous regions shows high temporal gradients (Little and Hanna 1978), due to the low 

atmosphere density (mass) (Aguado and Burt 2013), which facilitates large incoming short-

waves during the daytime and outgoing long-waves in the nighttime. Because of the fast 

variations of meteorological variables such as wind speed, air temperature and vapor pressure 

(Marks et al. 1998), which determine both energy and water fluxes across the air-snow cover 

interface, coarse temporal resolutions may cause errors in identification of the precipitation 

phase and estimation of timing and magnitude of snow accumulation and melt. In rain 

dominated and rain-snow transition bands, where precipitation may fall in form of snow or 

rain, fast variations in dew point or wet-bulb temperature may result in incorrect identification 

of precipitation phase (Beniston 2012). This in turn may lead to inaccurate estimation of snow 

mass and advected heat from precipitation to the snow cover (Hock and Holmgren 2005; 

Kormos et al. 2014a). In snow dominated bands, where turbulent energy is responsible for a 

large portion of the energy balance (Marks et al. 1998), particularly in winter and early spring, 

and radiation is the dominant contributor to energy balance from mid-spring to early summer; 

estimation of the energy exchange between snow and the atmosphere can be less reliable 

when coarse temporal resolution inputs are used. These examples suggest that the impact of 

input data resolution on estimation accuracy is likely to vary across elevation bands.  

The impact of temporal resolution of meteorological inputs on snow accumulation and 

ablation can be quantified by evaluating changes in variables such as snow cover area (SCA) 

and snow water equivalent (SWE). Expectedly, the impacts are expected to vary with snow 

variable. For example, SCA strongly depends on changes in heat fluxes (Keller et al. 2005; 

Martin et al. 1994; Scherrer and Appenzeller 2004), while SWE is also sensitive to 

precipitation mass (Beniston 2012; Howat and Tulaczyk 2005). Impacts are also likely to vary 

between years with characteristically different climatology. For example, in a wet year, daily 

temporal gradient of heat fluxes is on an average less significant due to high humidity and 

large number of cloudy days (Rohli and Vega 2008). In contrast, in a dry year, heat fluxes 

temporal gradient is pronounced.  

Despite the aforementioned sensitivity of snow processes to hourly variation of 

meteorological variables, the influence of temporal resolution of meteorological inputs on 

snow accumulation and ablation has not been assessed yet. This work addresses this 
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knowledge gap by: (1) quantifying the impact of time resolution of meteorological inputs on 

modeled SCA and SWE; (2) evaluating the role of annual precipitation on aforementioned 

impacts; and (3) identifying the elevation ranges wherein snow models are most sensitive to 

temporal resolution of meteorological inputs.  

 

3.3. Study Area and Data 

The study site is a portion of the Boise River basin (BRB) (Idaho, USA) upstream of the 

Lucky Peak Dam (Figure 3.1). BRB has a drainage area of 6,963 km
2
 and it is mainly covered 

with coniferous forest (41%) and shrubland (35%). The remaining area is covered with bare 

rock, grass, deciduous forest, or burned/harvested forest. Basin elevations range from 841 m 

to 3,168 m. Lower elevations are rain dominated and receive approximately 500 mm of 

annual precipitation, and higher elevations are snow dominated and receive approximately 

1,500mm of annual precipitation.  
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Figure 3.1. Boise River Basin and weather and SNOTEL sites. Black stars indicate SNOTEL sites with SWE 

measurements, which were used in the evaluation of model performance. 

 

There are 18 weather and SNOTEL stations in or near BRB that measure meteorological 

variables on hourly basis (Figure 3.1 and Table 3.1). Ten of these stations are operated by 

Natural Resources Conservation Service (NRCS; SNOTEL sites). The rest of the stations are 

either operated by Bureau of Land Management (BLM) and U.S. Department of Agriculture 

(USDA) Forrest Service (FS; 5 stations) or Bureau of Reclamation (BR; 3 stations). Hourly 

precipitation (p) and temperature (t) are available at all the stations. Relative humidity (rh), 

solar radiation (sr) and wind (w) are measured at 5, 6 and 9 of these stations, respectively 

(Table 3.1). 
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Table 3.1. Detailed information of the stations. 

NO. Station Name Latitude 

(Decimal ◦) 

Longitude 

(Decimal ◦) 

Elevat-

ion (m) 

Variables 

Measured 

Operated 

by 

1 Little Anderson 44.09 -115.88 1389 p, t, rh, sr, w BLM & FS
 

2 Jackson Peak 44.05 -115.44 2155 p, t, w, SWE NRCS
 

3 Graham Guard STA. 43.95 -115.27 1734 p, t, w, SWE NRCS 

4 Mores Creek Summit 43.93 -115.67 1859 p, t, SWE NRCS 

5 Town Creek 43.94 -115.91 1415 p, t, rh, sr, w BLM & FS 

6 Arrowrock Dam 43.61 -115.92 998 p, t BR
 

7 Prairie 43.50 -115.57 1463 p, t, SWE NRCS 

8 Camas Creek Divide 43.27 -115.35 1740 p, t, SWE NRCS 

9 South Fork Boise 43.49 -115.31 1286 p, t BR 

10 Wagontown 43.57 -115.33 1881 p, t, rh, sr, w BLM & FS 

11 Trinity Mountain 43.63 -115.44 2368 p, t, SWE NRCS 

12 Atlanta Summit 43.76 -115.24 2310 p, t, sr, w, SWE NRCS 

13 Vienna Mine 43.80 -114.85 2731 p, t, w, SWE NRCS 

14 Fleck Summit 43.62 -114.90 2164 p, t, rh, sr, w BLM & FS 

15 Big Smokey Ranger 43.62 -114.87 1706 p, t BR 

16 Dollarhide Summit 43.60 -114.67 2566 p, t, SWE NRCS 

17 Soldier Mountain Peak 43.48 -114.91 2904 p, t, rh, w BLM & FS 

18 Soldier R.S. 43.48 -114.83 1749 p, t, SWE NRCS 

Variable abbreviations: p, precipitation; t, air temperature; rh, relative humidity; sr, solar radiation; w, wind 

speed and direction; SWE, snow water equivalent. 

Abbreviations for institutes operate the stations: BLM & FS, Bureau of Land Management and U.S. Department 

of Agriculture (USDA) Forrest Service, respectively; NRCS, Natural Resources Conservation Service; BR, 

Bureau of reclamation. 

 

 

3.4. Methodology 

3.4.1. Snow Model: iSnobal 

Snobal was developed by Marks (1988) to calculate snow accumulation and ablation at a 

point. Spatial (image) version of Snobal, iSnobal, uses the same set of equations as Snobal to 

solve mass and energy flux exchanges at each DEM cell (Marks et al. 1999b). Both versions 

are part of the Image Processing Workbench (IPW) software system developed by Frew 

(1990) and improved by Marks et al. (1999a). ISnobal has been successfully applied to 
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simulate snow accumulation and melt distribution over several watersheds such as the 

Wasatch Range in Utah (Susong et al. 1999), the Emerald Lake basin in California (Marks et 

al. 1999b), the sub-Arctic and boreal forest (Link and Marks 1999), the Reynolds Creek 

Experimental Watershed (Chen et al. 2016; Kumar et al. 2013; Kumar et al. 2012; Seyfried et 

al. 2009; Wang et al. 2016) and the Boise River Basin (Garen and Marks 2005). The model 

uses a two-layer representation of the snowpack. The top layer has a fixed-thickness of 0.25 

mm, while the lower layer’s thickness is variable and consists of the remainder of the 

snowpack. Water exchanges such as evaporation, condensation and sublimation are calculated 

at the snow-air interface in the top layer. Heat and energy exchanges are computed for both 

layers at each time step for each grid cell using the energy balance equation (Eq. 3.1), (Garen 

and Marks 2005; Marks et al. 1999b): 

 

 MGELHRQ vn   (Eq. 3.1) 

 

where ∆Q (W m
-2

) indicates changes in the snow cover energy and Rn, H, LvE, G and M (all 

units of W m
-2

) are energies that are added to and/or subtracted from the snow cover energy 

due to changes in net radiation, sensible and latent heat, conduction and advection, 

respectively. Lv (W m
-2

 kg
-1

) and E (kg) represent specific latent heat for water and mass of 

water that has phase change, respectively. Increase in energy of the snow cover leads to 

decrease in the cold content. Cold content is the energy required to raise the snow cover 

temperature to 0 °C. When the cold content reaches 0°C, melt occurs. Melt is calculated in 

both layers. Notably, melt estimates in the model includes both melt and rain on snow. Once 

the total liquid water content in snowpack is higher than a specified threshold, water drains 

out and is terms has surface water input (SWI).  

 

3.4.2. Spatial Distribution of Meteorological Data 

ISnobal requires spatially distributed meteorological inputs, which are precipitation, air 

temperature, vapor pressure, solar and thermal radiation and wind speed. We distributed these 
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inputs at 50 m spatial resolution and, then, rescaled them to obtain 100 m resolution to reduce 

modeling costs such as runtime and data storage. Rescaling inputs from 50 to 100 m grid-cell 

has negligible effects on estimation of snow variables as shown by work of Winstral et al. 

(2014). Spatially distributed data was obtained by interpolation using detrended elevation 

(vertical) and distance (horizontal) Kriging method (Garen and Marks 2005). More details 

about the interpolation methodology for different meteorological variables are described 

below.  

Air temperature-elevation trends were constrained to be zero or negative values, because air 

temperature decreases with increase in elevation. However, relative humidity-elevation trends 

were not constrained. The distributed relative humidity and air temperature were then used to 

compute dew point temperature and vapor pressure, which in turn was used to identify the 

precipitation phase and calculate latent heat flux exchanges from the snow cover, respectively 

(Garen and Marks 2005).  

Wind speed and direction were distributed using a detrended elevation and distance based 

Kriging method. Wind speed of a grid cell, then, was adjusted based on a wind factor 

calculated from two terrain parameters, maximum upwind slope (sx) and upwind slope break 

(sb). Detailed description of the wind distribution approach can be found in the literature 

(Winstral et al. 2002; Winstral and Marks 2002; Winstral et al. 2009; Winstral et al. 2013), 

however, here the approach is explained in brief. Values of sx and sb were calculated for each 

cell, and for each wind direction. The sx values are the maximum slope between the cell of 

interest and all cells in the upwind direction up to a user defined search distance (dmax). At 

topographically exposed cells, where sx is negative, wind speed is increased due to vertical 

flow constriction (Winstral and Marks 2002). In contrast, at topographically sheltered grid 

cells, where sx is positive, wind speed is decreased due to expansion of flow (Winstral and 

Marks 2002). The sb parameter calculates upwind breaks in slope to identify flow separation 

zones, where there is no contact between airflow and the ground and downwind lee eddy is 

formed, which substantially reduces wind speed (Winstral et al. 2013). The value of sb is the 

difference between two sx values, the local sx minus outlying sx, which are calculated using 

two different search distances. Local sx is calculated using dmax, whereas outlying sx is 

calculated using a distance quite larger than dmax. 100 and 1,000 m were used for local sx and 
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outlying sx dmax values, respectively, which were suggested and used in the literature (Winstral 

et al. 2002; Winstral and Marks 2002; Winstral et al. 2009; Winstral et al. 2013).  

Precipitation was distributed analogous to wind speeds. Precipitation was first distributed 

using a detrended elevation and distance based Kriging method with precipitation-elevation 

trends that were constrained to be zero or positive, because precipitation increases with 

elevation (Garen and Marks 2005). Next, at each grid cell, wind-induced snow redistribution 

was calculated using a snow drift factor that was computed based on sb and wind speed 

(Winstral et al. 2002; Winstral et al. 2013; Winstral et al. 2014). Snow erosion occurred at 

cells where wind speed was high and sb was negative. The transported snow particles from 

eroded cells were, then, deposited at cells where wind speed was substantially low, such as 

cells with large sb. This precipitation distribution approach has been previously used in 

several studies (Winstral and Marks 2002; Winstral et al. 2013; Winstral et al. 2014). 

Solar radiation was distributed and corrected to account for variations in solar angle, shading, 

vegetation, and albedo (Link and Marks 1999; Susong et al. 1999). Snow albedo was adjusted 

with snow age to consider the influence of dust and organic debris exposure (Garen and 

Marks 2005). Distributed thermal radiation was first calculated for clear sky based on 

temperature, vapor pressure, elevation and sky view factor. Calculated thermal radiation was 

then adjusted for cloud cover and vegetation (Link and Marks 1999). 

 

3.4.3. Scenario Design 

Three iSnobal scenario simulations were performed using hourly (scenario 1h), 3-hourly 

(scenario 3h) and 6-hourly (scenario 3h) meteorological inputs. Although, resolution of 

meteorological inputs are different across the three scenarios, iSnobal uses a one hour 

simulation time step (Marks et al. 1999b) to perform calculations. The model employs a 

simple linear interpolation to generate hourly values from inputs with longer than hourly 

temporal resolution. As at least 6-hourly time step of the inputs is required to capture diurnal 

variations in meteorological variables (Beniston 1997; Garen and Marks 2005), we did not 

consider longer than 6-hourly time step in this study. To generate the 3- and 6- hourly inputs, 

hourly air temperature, vapor pressure, wind speed, solar and thermal radiation were averaged 
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over 3- and 6-hour windows. However, hourly precipitation was summed to represent total 

precipitation for a given 3- or 6-hour.  

Model runs were conducted for entire water years (wy), which start on October of the 

previous year and end in September of the current year. Each scenario was run for a wet 

(wy2006; top 20 percentile, 359mm), average (wy2010; 325mm), and dry year (wy2007; 

bottom 10 percentile,209mm) to identify the impact of forcing’s time step on snow modeling 

for different climatic conditions (Sohrabi et al. 2015). These years were identified based on a 

60 year data set (1950-2010) at the Boise Airport station.   

 

3.4.4. Model Performance Evaluation and Analyses 

The results were analyzed: 1) at point scale where observed and estimated snow water 

equivalent (SWE) from the three scenarios were compared; and 2) in a spatially distributed 

fashion by comparing SCA and SWE from 3h and 6h scenarios within four elevation bands.  

Point scale comparisons of SWE were performed at six out of the ten SNOTEL sites located 

inside BRB: Prairie, Graham Guard, Mores Creek Summit, Atlanta Summit, Trinity Mountain 

and Vienna Mine (Figure). Performance of the model was quantified using Nash-Sutcliffe 

coefficient (NSC; (Eq. 3.2)) and the ratio of root mean square error (RMSE) and standard 

deviation ratio (RSR; (Eq. 3.3)). Goodness of fit and error between SWE1h, estimated SWE 

generated from scenario 1h, and observed SWE was quantified using NSC and RSR, 

respectively. This assumes that simulation based on finest resolution data set i.e., the SWE1h 

scenario, does a best job of representing the snow physics and is expected to result in the best 

model performance. We adopted a model performance scheme proposed by Moriasi et al. 

(2007), which classifies model performance into four categories based on NSC and RSR 

values. These model performance categories are very good (NSC > 0.75 and RSR ≤ 0.5), 

good (0.65 < NSC ≤ 0.75 and 0.5 < RSR ≤ 0.6), satisfactory (0.5 < NSC ≤ 0.65 and 0.6 < 

RSR ≤ 0.7) and unsatisfactory (NSC ≤ 0.5 and RSR > 0.7). 
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where 
iobsSWE ,
, obsSWE , obsSTD  and n are observed SWE at time i, the mean and standard 

deviation of observations and number of observations, respectively. 

Daily time series of SCA and SWE generated from the three scenarios were analyzed by 

classifying the simulated data into four elevation bands (Table 3.2). The rain-snow transition 

band (E2) is an elevation band in which precipitation generally falls either as rain or snow 

based on changes in dew point temperature (Marks et al. 2013). E2 is typically located from 

1,500 to 1,800 m in the Pacific Northwestern of the USA (Kormos et al. 2014a; Kormos et al. 

2014b). Here, E2 was set from 1,400 to 1,900 m. Bands below and above E2 are rain 

dominated (E1) and snow dominated (E3) bands, respectively. Snow dominated region above 

the treeline (E4) indicates elevation ranges where trees are not able to grow due to low 

temperatures and long snow cover durations. E4 is located above 2,400 m based on BRB 

latitude (Korner 1998). Simulated SWE was spatially averaged over each elevation band. 

SCA represents the percent of area covered with snow and was calculated for each band by 

summing the area of all cells with SWE greater than 0 and then dividing the aggregated area 

by the total area of each elevation band. Daily time series of spatially averaged SWE and 

aggregated SCA simulated from 3h and 6h scenarios for the wet, average and dry years were 

compared to those of scenario 1h. The spatially averaged snow water equivalent ( )(, tSWE ji ) 

and aggregated snow cover area ( )(, tSCA ji
) for the i-th elevation band (E1, E2, E3 and E4) 

with area, Ai, and the j-th scenario (1h, 3h, 6h) are calculated as follows: 
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(Eq. 3.5) 

 

where SWEi, j(t,a) and SCi, j(t,a) are the snow water equivalent and snow cover index, 

respectively, for a cell of area a (100 m by 100 m) at time t. The spatially averaged residual or 

mean error of SWE is calculated as: 

 

 hhjandEEiwithtSWEtSWEt hijiji 6,341)()()(Res 1,,,   (Eq. 3.6) 

 

Table 3.2. Elevation Bands 

Bands Elevation (m) Description % of Grid Cells 

E1 ≤ 1400 Rain Dominated 16 

E2 > 1400 and ≤ 1900 Rain-Snow Transition 44 

E3 > 1900 and ≤ 2400 Snow Dominated 28 

E4 > 2400 Alpine Treeline 12 

  

To present residuals in SWE in percentage, the residuals were divided by the mean of the 

estimated SWE from the 50 m (d) for a given snow season. Results were quantified using 

mean absolute error (MAE). A large value of MAE indicates deviation of estimated snow 

variables generated from scenarios 2 and 3 from those of scenario 1. MAE is calculated as 

follows (Moriasi et al. 2007): 
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where snow variable, SVi,j, stands for )(, tSWE ji  and )(, tSCA ji
 for the j-th scenario and T 

represents the simulation period. MAE was computed for the entire snow season (total MAE), 

accumulation (Rising Limb; RL) and ablation (Falling Limb; FL) periods at each elevation 

band. RL starts as snow accumulation begins and ends when SWE reaches its maximum, FL 

starts after maximum SWE occurs and continues to the time snow disappears.  

 

3.5. Results and Discussion 

3.5.1. Model performance as Compared to Observed SWE 

Simulated SWE1h captures the measured SWE time series reasonably well with average NSC 

of 0.83 and RSR of 0.36, excluding the Prairie site (Table 3.3 and Figure 3.2). NSC of 

modeled SWE1h at Prairie was 0.64/ 0.44/ 0.14, while the RSR was 0.59/ 0.78/ 0.79 for wet, 

average and dry years, respectively. Notably, the dry year exhibited low NSC and large RSR 

errors. At all the sites, the best model performance was observed in the wet year with 

averaged NSC of 0.88 and RSR of 0.29 over all the sites. Vienna Mine had the highest NSC 

(0.99) and lowest RSR (0.07) in the wet year. Model performance decreased substantially in 

the dry year with averaged NSC of 0.64 and RSR of 0.53 over all the sites. Excluding Paririe, 

the lowest NSC (0.54) and highest RSR (0.68) were observed at Trinity Mountain. Over the 

three years, the best model performance was observed at Mores Creek Summit with average 

NSC of 0.95 and RSR of 0.22. Snow accumulation started at the same time for both simulated 

and observed SWE regardless of the year, but melt-out date was estimated later or earlier due 

to overestimation or underestimation of SWE, respectively. SWE1h and SWE3h were very 

similar (Figure 3.2). However, in terms of magnitude, SWE6h was generally smaller than 

SWE1h at sites located in E2, such as Prairie, Graham Guard and Mores Creek Summit. In 

particular, in the wet and average years at Prairie site, scenario 6h did not estimate any snow 

accumulation, although scenario 1h and 3h registered accumulation. At sites, which were 
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located in E3 and E4, SWE6h was generally larger and snow melt rate was smaller than that of 

SWE1h. 

Comparison between measured and predicted SWE was at par to previous studies (Marks et 

al. 1999b; Sultana et al. 2014). However, model performance at the Prairie site was ranked 

unsatisfactory. This station is at the lowest elevation and lies at the lower fringe of the snow 

transition zone. For instance, Sultana et al. (2014) reported unsatisfactory model performance 

with very low NSC (ranged from 0.1 to 0.9) and high RSR (ranged from 0.28 to 0.86).  

 

Table 3.3. Calculated values of NSC and RSR at SNOTEL sites.  

 NSC RSR 

SNOTEL Sites Wet Average Dry Wet Average Dry 

Prairie 0.64 0.44 0.14 0.59 0.78 0.79 

Graham Guard 0.88 0.72 0.78 0.34 0.52 0.46 

Mores Creek Summit 0.98 0.91 0.96 0.14 0.30 0.21 

Atlanta Summit 0.85 0.55 0.79 0.39 0.67 0.46 

Trinity Mountain 0.96 0.96 0.54 0.19 0.19 0.68 

Vienna Mine 0.99 0.97 0.65 0.07 0.18 0.59 

 

Mismatch between estimated and observed SWE is due to the following reasons. Observed 

SWE at SNOTEL sites are point measurements represent SWE for an area of approximately 7 

m
2
, whereas simulated SWE quantifies average of SWE over 10,000 m

2
. Influence of 

topographic features on snow drifting and energy exchanges get modified with spatial scale 

(Luce et al. 1998; Luce et al. 1999; Winstral et al. 2014), thus influencing SWE estimates. 

Moreover, snow pillows are located in a flat area whereas relatively larger model grid cells 

have slope and aspect (Raleigh and Lundquist 2012), resulting in  discrepancies that are 

common between simulated and measured SWE (Grünewald and Lehning 2011; Lee et al. 

2005; Molotch and Bales 2005).  
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Figure 3.2. Comparison between simulated and observed SWE at Prairie, Graham Guard, Mores Creek Summit, 

Atlanta Summit, Trinity Mountain and Vienna Mine. Note that the SNOTEL sites were ordered from low 

(Prairie) to high (Vienna) elevation. SWE-1h indicates estimated SWE using hourly inputs. 
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3.5.2. Temporal Resolution Effects on Snow State 

3.5.2.1. Snow Cover Area (SCA) 

MAE6h was considerably larger than MAE3h in all the years and elevation bands. Total MAE3h 

did not exceed 19.8%, whereas total MAE6h was as high as 24.5% (Table 3.4). MAE3h and 

MAE6h for FL were less pronounced than those for RL. Meteorological inputs with temporal 

resolution longer than an hour led to underestimation of SCA during the snow accumulation 

(RL) period (Figure 3.3). The largest underestimation was observed for the coarsest input. 

Use of 3h and 6h inputs resulted in slow melting of snow during the snow ablation period 

(FL). The change in melt rate with regard to hourly inputs was larger for SCA6h than for 

SCA3h. Model results based on coarser resolution inputs missed rapid increases in SCA. For 

instance, SCA1h increased by 11% (from 60% to 71%) on December 2
nd

 in the wet year in E1, 

whereas estimated SCA from scenarios 3h and 6h did not change at all (Figure 3.3).  

The underestimation of SCA in RL was large in rain dominated (E1) and rain-snow transition 

(E2) bands, but negligible at the snow dominated elevation bands (E3 and E4). However, the 

change in snow melt rate in FL was larger in E3 and E4 than in E1 and E2. Differences 

between SCA1h, SCA3h and SCA6h were less pronounced in E3 and E4 than in E1 and E2 

(Table 3.4). MAE3h and MAE6h in RL generally decreased from E1 to E4. In contrast, MAE3h 

and MAE6h in FL increased from E1 to E4. The dry year had the largest total MAE3h (19.8%) 

and MAE6h (24.5%). In addition, the largest MAE3h (28.2%) and MAE6h (34.5%) for RL were 

related to the dry year. MAE3h and MAE6h in E1 were substantially larger in the wet year than 

those of in the average year. 
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Figure 3.3. Aggregated SCA from 1h, 3h and 6h scenarios (SCA-1h, SCA-3h and SCA-6h) over 4 elevation 

bands. 

 

Table 3.4. MAE3h and MAE6h for SCA (%) at each band. 

 MAE3h (Wet | Average | Dry) MAE6h (Wet | Average | Dry) 

 E1 E2 E3 E4 E1 E2 E3 E4 

RL 16 | 11 | 28 9  | 12 | 21 2  |  9  | 14 2  |  5  | 10 33 | 13 | 34 26| 19 | 30 8  | 14 | 25 4  |  7  | 19 

FL 1  |  3  |  7 1  |  2  |  8 1  |  2  |  3 1  |  2  |  3 2  |  2  |  9 4  |  4  | 11 3  |  4  |  7 3  |  5  | 10 

Total 11 |  7  |20 7  |  9  | 16 2  |  7  | 10 2  |  4  |  8 24 |  8  | 24 20 | 15 | 23 7  | 11 | 19 4  |  7  | 16 
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3.5.2.2. Snow Water Equivalent (SWE) 

Deviation of SWE3h from SWE1h was much smaller than between SWE1h and SWE6h in all the 

years and elevation bands (Figure 3.4 and Table 3.5). The 6h simulation indicated average 

residual and MAE of 11.1% and 9.7 mm, respectively, whereas the 3h simulation showed 

average residual and MAE of 6.9% and 5.2 mm, respectively, over all the years and elevation 

bands. Residuals and total MAE generally decreased with increasing elevation with average 

residual of 13.9%, 6.8%, 4.1% and 2.7% for the 3h simulation and 20.3%, 10.5%, 6% and 

7.4% for the 6h simulation from E1 to E4, respectively, over all the years. For the entire snow 

season, residuals were negative in E1 but positive in E4. However, residuals were negative 

during the winter but positive in the spring in E2 and E3. Positive (negative) errors indicate 

that SWE1h is smaller (larger) than SWE3h or SWE6h. Residuals decreased from E1 to E4 

during RL, but they increased during FL. Residuals and MAE generally increased toward 

years with lower snow mass, from the wet year to the dry year. The wet, average and dry 

years indicated average residual of 3.2%, 7.6% and 9.8% for the 3h simulation and 8.4%, 

9.4% and 15.3% for the 6h simulation over all the elevation bands, respectively. Notably, the 

average year had larger residuals than the dry year for the 6h simulation in E4. 
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Figure 3.4. Spatially averaged SWE over 4 elevation bands. SWE-1h indicates estimated SWE using hourly 

inputs. SWE-Error-3h and SWE-Error-6h indicate the percent of the residuals in the estimated SWE using 3-

hourly and 6-hourly inputs, respectively. 

 

Table 3.5. MAE3h and MAE6h for SWE (mm) at each band. 

 MAE3h (Wet | Average | Dry)  MAE6h (Wet | Average | Dry) 

 E1 E2 E3 E4 E1 E2 E3 E4 

RL  5  | 3  | 13 7  |  8  | 11 1  |  9  |  6 1  |  3  |  5 11 |  3  | 21 17 |  9  | 16 4  |  7  |  8 3  | 15 |  5 

FL  1  |  3  |  5 1  |  2  |  6 3  |  3  |  3 6  |  5  |  5 3  |  1  |  8 3  |  3  |  9 8  | 10 |  8 18 | 30 | 14 

Total  3  |  3  | 10 5  |  7  |  9 2  |  7  |  5 2  |  4  |  5 8  |  2  | 16 13 |  7  | 14 5  |  8  |  8 8  | 20 |  8 
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3.5.2.3. Explanations for the differences in estimated SCA and SWE with temporal resolution 

of meteorological inputs 

One of reasons for differences in estimates of SCA and SWE from the 1h, 3h and 6h scenarios 

was mischaracterization of precipitation phase, particularly in the early snow season (Figure 

3.5). Coarser resolution inputs did not capture the hourly changes in dew point temperatures 

and precipitation, causing misidentification of precipitation phase in all the elevation bands. 

Notably, the mischaracterization of precipitation phase in E1 to E3 was very different than 

that observed in E4. In E1 to E3, several events that were characterized as snowfall in 1h 

scenario were misidentified as a rainfall or a mixed rain/snow event in the 6h scenario. In 

contrast, many events that were identified as mixed rain/snow or a rainfall in the 1h scenario 

in E4 were misidentified as snowfall in the 6h scenario. To explore the reasons of these 

mischaracterizations in precipitation phase, one grid cell each in E2, hereafter E2-cell, and E4, 

hereafter E4-cell, were selected for further analyses. 

At the E2-cell, differences between the 1h simulation and those of the 3h and 6h were very 

small from October 1
st
 until November 10

th
, 2009. During this period, dew point temperatures 

were far above the freezing point that neglecting hourly changes in dew point temperatures 

did not lead to misidentification of the precipitation phase. The pronounced difference 

between the 1h, 3h and 6h simulations started on November 10
th

, when the snow cover 

formed for the 1h and 3h simulations but all the precipitation turned into SWI in the 6h 

simulation. On this day, all the precipitation that occurred before noon was identified as 

snowfall in all the scenarios (Figure 3.5 a and b; see Marks et al. (2013) for detailed 

information about estimation of precipitation phase based on dew point temperature). At 

noon, the 1h scenario precipitation was identified as snow, but was identified as a mixed 

rain/snow event in the 3h and 6h scenarios. The rest of the precipitation on this day was 

estimated as a mixed rain/snow event that mainly consisted of 25% rain and 75% snow in 1h 

and 3h scenarios and 75% rain and 25% snow in the 6h scenario. As a result, SWI of 7, 7.4 

and 20.9 mm was estimated in the 1h, 3h and 6h scenarios, respectively. Discrepancies in 

identification of precipitation phase affected snow cover accumulation start date. For 

example, on this day, the snow cover was formed in the 1h and 3h scenarios, but 

accumulation started 11 days later at the E2-cell in the 6h scenario. As a result, snow mass 
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and the timing of the snow cover formation were impacted by misidentification of 

precipitation phase. At E4-cell, estimation of snow mass was affected more than the timing of 

the snow cover formation due to the misidentification of precipitation phase. At this cell, the 

snow cover accumulation started on October 3
rd

, 2009 in all the three scenarios. A 

pronounced difference between the three scenarios was observed starting November 2
nd

, 

2009, the day on which all precipitation was identified as snowfall in the 3h and 6h scenarios, 

but was identified as a mixed rain/snow event with 75% rain and 25% snow in the 1h 

scenario. On this day 0.9 mm out of 3.6 mm precipitation was estimated as snow and the rest 

was estimated as rain in 1h scenario. In addition, estimated precipitation temperature and 

density of snow for scenario the 1h and 6h were substantially different due to differences in 

dew point temperatures at the time of precipitation. As a result, snow ablation occurred in 1h 

scenario, while it accumulated in the 6h scenario. 
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Figure 3.5. Mischaracterization of precipitation phase due to the use of coarser than hourly precipitation and dew 

point temperature data. Figures (a) and (b) indicate precipitation and dew point temperatures, respectively, at E2-

cell. Figures (c) and (d) show precipitation and dew point temperatures, respectively, at E4-cell. Figures (b) and 

(d) indicate dew point temperatures at hours that precipitation occurred. 

 

Another reason for the observed differences in SCA and SWE estimates between the three 

scenarios is net snow cover energy input (∆Q). Coarser resolution of meteorological inputs 

generally resulted in underestimation of ∆Q. The 3h and 6h scenarios fail to capture the large 
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magnitudes of energy fluxes, particularly on sunny days (e.g., November 23
rd

, 2009) when 

hourly variation of solar radiation and air temperature is pronounced (Figure 3.6). For 

instance, at noon on this day, solar net radiation was 30 and 50 W/m
2
 for the 1h scenario and 

was 8 and 20 W/m
2
 for the 6h scenario at E2-cell and E4-cell, respectively. As a result, net 

radiation in the 6h scenario was estimated to be lower by 2.7 and 1.2 W/m
2
 than in the 1h 

scenario at E2-cell and E4-cell, respectively. Turbulent energy was also underestimated for 

the 3h and 6h scenarios. The degree of this underestimation was related to the moderated 

variations in the magnitude of air temperature, vapor pressure and wind speed due to coarser 

than hourly inputs. For example, air temperature was well above freezing point for a few 

hours on November 23
rd

, 2009, whereas 6-hourly air temperature did not exceed 0.5 and 0 °C 

at E2-cell and E4-cell, respectively. For vapor pressure, not only the diurnal range narrowed, 

but the timing of its maximum also shifted. Diurnal range of wind speed also shortened, 

particularly at the E2-cell where wind speed had high variation during the day. Due to these 

changes, turbulent energy of the 6h scenario was estimated to be lower by 3.8 and 0.6 W/m
2
 

than in the 1h scenario at E2-cell and E4-cell, respectively. 
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Figure 3.6. Changes in energy flux input due to coarse temporal resolution of inputs on a sunny day (November 

23
rd

, 2009). The left column is for a grid cell located in E2 band, E2-cell, and the right column belongs to a grid 

cell located in E4 band, E4-cell. 
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The results indicate that MAE3h and MAE6h of SCA decreased during RL from E1 to E4. This 

was due to misidentification of several snowfall events as rain or mixed snow/rain events. The 

phase of precipitation is strongly dependent on dew point temperature (Hock and Holmgren 

2005; Marks et al. 2013). In E1 and E2, if hourly dew point temperatures fluctuated around 

the freezing point during the snow accumulation (RL) period, coarser temporal resolutions 

missed dew point temperatures that were below the freezing point, particularly in the 6h 

scenario. In contrast, dew point temperatures were much below the freezing point during most 

of the snow season in snow dominated bands, particularly E4. As a result, temporal resolution 

of inputs had a small effect on the timing of snow cover formation (Morán-Tejeda et al. 

2013). Coarser temporal resolutions also caused underestimation of snow melt rate 

(overestimation of SCA) during snow ablation period (FL), particularly in E3 and E4, as high 

diurnal values of the energy fluxes were considerably moderated. In particular, net radiation 

and turbulent energy, which are the main driver for snow ablation (Hock and Holmgren 2005; 

Mazurkiewicz et al. 2008), were underestimated.  

Negative residuals of SWE were observed during RL in E1 to E3 and occasionally in E4, 

indicating underestimation of SWE generated from the 3h and 6h scenarios in comparison to 

that in 1h scenario. This was again due to limitation of the 3h and 6h scenarios to estimate the 

correct precipitation phase. Identification of a precipitation event as rainfall instead of 

snowfall resulted in underestimation of SWE, because of: (a) underestimation of snow mass; 

and (b) incorrect identification and/or overestimation of the magnitude of rain-on-snow 

events, which can contribute to snow ablation (Marks et al. 1998; Mazurkiewicz et al. 2008). 

The magnitude of these negative residuals decreased as elevation increased from E1 to E4. In 

E3 and E4, because of low air temperatures, misidentification of snowfall as rainfall or 

mixed/snow rain occurred seldom. Positive residuals of SWE were observed during RL in E4, 

because diurnal dew point temperatures exceeding 0 °C for a few hours in a day, particularly 

in the early snow seasons, were not captured due to averaging in coarser inputs. In addition, 

lower magnitudes of peak diurnal dew point temperatures caused underestimation of 

precipitation temperature and snow density. As a result, the estimated SWE in the 3h and 6h 

simulations was larger than that in the 1h simulation. 
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Positive residuals of SWE were also observed during FL in E1 to E4, indicating 

underestimation of snow ablation rate. As stated earlier, this was due to moderation of diurnal 

variations in energy fluxes. Radiation on sunny days (Elder et al. 1991; Keller et al. 2005) and 

turbulent energy on warm and cloudy days (Pohl and Marsh 2006) are mainly responsible for 

snow ablation. Therefore, reduction in the maximum diurnal magnitude of radiation and 

turbulent energy in coarser meteorological inputs led to underestimation of the snow cover 

energy and consequently snow ablation rate. The magnitude of these positive residuals 

increased from E1 to E4 because of increase in elevation and reduction in trees density. 

Higher elevations with a very sparse tree distribution, as in E4 (above treeline), have 

substantially large incoming short-wave during daytime, outgoing long-wave during 

nighttime and diurnal variation of wind speed (Aguado and Burt 2013; Pohl et al. 2006; Rohli 

and Vega 2008; Winstral et al. 2013), which result in substantial diurnal variation of energy 

fluxes. Another reason that caused large positive residuals of SWE during FL in E4 was the 

overestimation of SWE during RL.  

Among the three selected years, the greatest residuals in the estimated SCA and SWE were 

observed in the dry year (Figure 3.3 and Figure 3.4). In this year, the number of precipitation 

events was substantially lower than in the wet and the average years. Thus, precipitation 

misidentification as rainfall instead of snowfall for the coarser input scenarios substantially 

impacted the estimated snow mass, timing of the snow cover formation and number of grid 

cells with accumulated snow. Large residuals in SWE were also observed in the average year 

in E4. This was because: (a) hourly variation of energy fluxes was larger in this year than the 

wet year due to lower humidity and fewer cloudy days (Aguado and Burt 2013; Rohli and 

Vega 2008); and (b) number of precipitation events that led to positive residuals of SWE due 

to misidentification of precipitation phase was substantially larger than in the dry year. 

Further confidence in the results could be obtained by implementing the model in other snow 

dominated settings and by using different process-based models. It is to be noted that this 

work quantifies model errors vis-à-vis temporal resolution of inputs, but only for the case 

when all meteorological inputs have identical resolution. The work does not address the 

sensitivity of model results to temporal resolution of any individual meteorological variable. 

Before translating the results from this study to other regions the following points should be 
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taken into account. The elevation bands that indirectly define precipitation regimes in this 

work may be different in other regions depending on the latitude and regional climatology 

(Kormos et al. 2014b; Korner 1998). The results presented here were based on aggregation (of 

precipitation) and averaging (of other meterological inputs) of hourly data. This methodology 

may transfer additional statistical information to coarser meteorological inputs, which may 

not be inherent in a data set observed at coarse time steps. Also, in vicinity of large body of 

water, which may influence, diurnal meteorological variations and energetics (Aguado and 

Burt 2013; Rohli and Vega 2008), variation of model errors with input resolution and 

elevation may exhibit alternate relations. 

 

3.6. Summary and Conclusions 

This work explores how estimates of snow accumulation and ablation from a process-based 

snow model are affected by resolution of meteorological inputs. The results revealed that 

coarser than hourly temporal resolution may significantly affect the accuracy of simulated 

snow variables. Using longer than hourly time steps of meteorological inputs may lead to 

inaccurate estimation of mass i.e. precipitation amount that is in form of rain or snow, and 

energy input to the snowpack. In particular, in rain dominated and rain-snow transition 

elevation bands, precipitation phase is likely to be estimated as rainfall instead of snowfall, 

when longer than hourly inputs are used. As a result, rain-on-snow events are identified 

incorrectly or the magnitude of these events is overestimated. This model inaccuracy is 

reflected in substantial underestimation of SCA and SWE in rain-dominated and rain-snow 

transition bands (Table 3.6). The model accuracy is less dependent on the inputs temporal 

resolution during accumulation period in snow-dominated bands, both below and above the 

treeline, because precipitation phase is characterization of less concern. In these elevation 

bands, using coarse temporal resolution of inputs causes underestimation of the melt rate 

during ablation period due to neglecting diurnal hourly variation of energy fluxes. Estimation 

of SCA and SWE is considerably impacted at coarser resolutions in dry years because of large 

sensitivity to misidentification of precipitation phase, given that number of precipitation 

events is relatively low. In contrast, SCA and SWE estimations in wet years are less 
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dependent on the temporal resolution of inputs, due to a less pronounced diurnal variation of 

energy fluxes and dew point temperatures. 

 

Table 3.6. The effect of inputs time steps on the model accuracy. 

SCA Wet Average Dry SWE Wet Average Dry 

E1 (3h|6h) ++ | ++ ++ | ++ ++ | ++ E1 (3h|6h) ++ | ++ ++ | ++ ++ | ++ 

E2 (3h|6h) ++ | ++ ++ | ++ ++ | ++ E2 (3h|6h) ++ | ++ +   | ++ ++ | ++ 

E3 (3h|6h) +   |   + +   | ++ ++ | ++ E3 (3h|6h) +   |   + +   |   + +   |   + 

E4 (3h|6h) +   |   + +   |   + +   | ++ E4 (3h|6h) +   |   + +   | ++ +   | ++ 

"+" indicates less than 10% average residuals due to the use of longer than hourly of the inputs. 

"++" indicates more than 10% average residuals due to the use of longer than hourly of inputs. 
 

The results lead us to the conclusion that it is necessary to observe meteorological variables at 

an hourly basis to conduct process-based snow accumulation and melt simulations and related 

hydrological and ecological studies. While the results showed that 6-hourly meteorological 

inputs substantially reduced the model accuracy, temporal resolution of 3-hour resolution may 

provide very similar estimates of SCA and SWE as that from the 1-hr scenario at snow 

dominated elevations, both below and above alpine treeline.  

This work will benefit agencies that are responsible for generating meteorological data sets. 

The results could be used as a guide to decide on optimal observation/reanalysis time steps in 

different settings. These results will inform modelers of the errors in their simulations because 

of the temporal resolution of their inputs, and how the errors may vary depending on elevation 

ranges and wet/dry years. Since the errors change with precipitation regimes, the analyses 

suggests that model errors based on a given resolution might vary temporally, and should be 

appropriately tracked while performing climate change impact simulations in snow dominated 

regions. 
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Chapter 4. How Fine Is A Fine Spatial Resolution for Process-Based Snow Modeling? 

 

4.1. Abstract 

Hydrological processes in mountainous settings depend on snow distribution, whose 

prediction accuracy is a function of model spatial scale. Although model accuracy is expected 

to improve with finer spatial resolution, the reduction in scale comes with modeling costs. 

This computational expense is still a limiting factor for many large watersheds and there 

exists a lack of understanding of which processes dominate snow distribution at different 

topographic elevations and climate conditions. Thus, the objective of this work is to unveil 

what physical processes lead to loss in model accuracy with regard to inputs spatial resolution 

under different climatic conditions and elevation ranges. The main hypothesis is that the 

topographic information loss at increased spatial resolutions affects the energy balance and 

consequently accumulation/ablation of snow. To address this objective and hypothesis, a 

spatially distributed snow model, iSnobal, was run with inputs distributed at 50m – our 

benchmark for comparison – and 100m resolutions and with aggregated inputs from the 50m 

model to 100m, 250m, 500m and 750m resolution for wet, average and dry years over the 

Upper Boise River Basin (6,963 km
2
), which spans 4 elevation bands: rain dominated, rain-

snow transition and snow dominated below treeline and above treeline. Residuals of simulated 

snow cover area (SCA) and snow water equivalent (SWE) were generally slight in the 

aggregated scenarios. This was due to transferring the effects of topography on 

meteorological variables from the 50m model to the coarser scales through aggregation. 

Residuals in SCA and SWE in the distributed 100m simulation were even larger than those of 

the aggregated 750m. Topographic features such as slope and aspect were flattened due to 

coarsening the topography from the 50 to 100m resolution. Therefore, net radiation was 

overestimated and snow drifting was modified and caused substantial SCA and SWE 

underestimation in the distributed 100m model relative to the 50m model. Large residuals 

were observed in the wet year and at the highest elevation band when and where snow mass 

was large. These results support that model accuracy reduces substantially with model scales 

coarser than 50m. 
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4.2. Introduction 

Accumulation and ablation of snow is critical for hydrological cycles and ecological systems 

in mountainous settings (Homan et al. 2010; Nitaa et al. 2014; Raleigh and Lundquist 2012). 

In these regions, precipitation accumulates as snow during winter and the accumulated water, 

then, releases during spring and early summer (Luce et al. 1998). Spatio-temporal distribution 

of these water releases from the snow cover is critical for hydrological studies, because spatial 

distribution, timing and magnitude of snow melt controls soil moisture dynamics (Kormos et 

al. 2014a; Liston and Elder 2006), groundwater recharge (Kormos et al. 2014b; Kumar et al. 

2013) and runoff and streamflow generation (Garen and Marks 2005; Weill et al. 2013). In 

addition, many variables that are important for ecosystem depend on spatio-temporal 

distribution of snow accumulation and ablation. Spring and early summer air temperatures 

and soil moisture distribution, which are fundamental factors for vegetation distribution 

(Darmody et al. 2004; Sensoy et al. 2006; Torp 2010), are moderated by snow cover the 

former due to increase in albedo (Marks et al. 2013; Molotch and Bales 2005). Soil microbial 

activities continues even during winter (Schimel et al. 2004), because soil is insulated from 

very low air temperatures due to snow low thermal conductivity (Liston and Elder 2006; Torp 

2010). Moreover, contribution of snow melt to discharge prevents stream temperature from 

following increasing trend in air temperatures in late spring and early summer (Luce et al. 

2014). As a result, stream temperature, which is an important element for aquatic ecosystems, 

is influenced by spatio-temporal distribution of melt (Gu et al. 1999; Webb et al. 2003). 

Therefore, accurate estimation of spatio-temporal distribution of snow accumulation and 

ablation is necessary to predict hydrologic response from watersheds.  

For accurate estimation of snow distribution, an appropriate model scale is required to 

consider heterogeneous snow distribution caused by rugged terrain and vegetation (Bloschl 

1999; Luce et al. 1998; Pohl et al. 2006). Topographic features and/or vegetation changes 
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over small distances in mountainous settings and this causes snow distribution to be strongly 

heterogeneous (Winstral et al. 2014). The interaction among several factors such as elevation, 

slope, aspect and vegetation highly impacts distribution of meteorological variables, 

particularly radiation, wind and precipitation (Marks et al. 1999b; Trujillo et al. 2007). 

Changes in these meteorological variables over small distances results in heterogeneity in 

snow accumulation and ablation (Elder et al. 1991).  

Heterogeneous snow accumulation is mainly due to spatial variability of precipitation and 

redistribution of snow (Trujillo et al. 2007), but spatially variable energy fluxes cause 

heterogeneous snow ablation (Pohl and Marsh 2006). At a watershed scale, snow 

accumulation distribution depends on distribution of precipitation, which varies based on 

changes in elevation (Winstral et al. 2013). Wind is responsible for re-deposition of snow 

during a snowfall event and redistribution of snow after the event (Liston 2004; Winstral et al. 

2009). Even if precipitation pattern was uniform over a watershed, snow accumulation would 

be heterogeneous due to wind disparity, which is caused by terrain irregularities in 

mountainous settings (Elder et al. 1991; Luce et al. 1999; Winstral and Marks 2002). Snow 

ablation is heterogeneous because of large spatial disparities in energy fluxes. In mountainous 

settings, slope and aspect that vary over small distances cause spatial variation in radiation on 

sunny days, which has a key role in snow ablation heterogeneity (Keller et al. 2005; Pohl et 

al. 2006). On warm and cloudy days, spatial variation in turbulent energy caused by spatial 

disparity in air temperature, vapor pressure and wind speed is mainly responsible for snow 

ablation heterogeneity (Marks et al. 2013; Pohl and Marsh 2006). 

Neglecting small scale variability of these meteorological variables and energy fluxes impacts 

estimation of snow cover properties, and the extent of this impact may vary in different 

elevation ranges and climate conditions. In rain dominated and rain-snow transition bands, 

where precipitation can fall either in form of rain or snow, precipitation phase can be 

misidentified due to neglecting spatial variability in dew point or wet-bulb temperature 

(Beniston 2012). This causes inaccurate estimation of snow mass and advected heat from 

precipitation to the snow cover. In snow dominated bands, it is critical to capture small scale 

variations in snow drifting and energy exchanges at the interface of air-snow (Luce et al. 

1998). Small scale variation in wind-induced snow drifting is important because of large wind 
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spatial disparity, particularly at regions above alpine treeline where only topographic 

variability constrain redistribution (Deems et al. 2006; Korner 1998; Winstral et al. 2009). 

Estimation of the energy exchange between snow and the atmosphere can be less reliable 

when topography-induced spatial disparity in net radiation and turbulent energy is neglected. 

Spatial disparity in meteorological variables is also likely to vary between years that have 

different climatology. For example, in a wet year, spatial disparity in dew point temperature 

and energy fluxes is on an average less pronounced due to high humidity and large number of 

cloudy days (Rohli and Vega 2008). In contrast, in a dry year spatial variability in these 

variables is pronounced. These examples suggest that the effect of model scale on prediction 

accuracy is likely to vary across elevation bands and years with characteristically different 

climatology.  

 

4.3. Background 

To accurately account for heterogeneity in snow accumulation and ablation an appropriate 

model scale is required so that the model be able to capture process scale (natural) variability 

of snow accumulation and ablation (Bloschl 1999). For instance, process scale (correlation 

length) is small, in regions where SWE substantially changes over small distances. Therefore, 

in order to capture variability in SWE at process scale, the model scale needs to be finer than 

the process scale or the model must have a tool to consider sub-grid variability. Sub-grid 

variability of snow distribution is usually calculated using statistical distributions and/or 

empirical relationship between snow cover area and sow depth or SWE rather than 

considering small scale physical processes (Liston 2004; Luce and Tarboton 2004; Luce et al. 

1999; Meromy et al. 2013; Nitaa et al. 2014; Niu and Yang 2007).  

It is important to analyze effect of scaling on estimation of snow accumulation and ablation to 

identify an appropriate model scale for snow modeling. Scaling effect on prediction of snow 

accumulation and ablation can be evaluated using three approaches (Bloschl 1999); (1) a 

spectral analysis; (2) variogram analysis; and (3) analyzing changes in the average value of a 

snow variable, i.e. SWE, over an area given coarsening the measurement resolution or the 

model scale. All these three approaches lead to the same results for linear processes. 
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However, for non-linear processes the third approach, which is generally used, may have 

different results than the first two approaches (Bloschl 1999). This is due to impact of scale 

change on the mean value of a variable over an area in non-linear processes. A process is 

linear, if the process conserves mass and/or energy. For instance, average SWE of a basin 

calculated from measured SWE at a 1 m grid is the same as average SWE of that basin 

calculated from measured SWE at a 10 m grid (Bloschl 1999). However, estimation of SWE 

is a non-linear process, because SWE estimation relies on meteorological variables with 

topography-induced spatial variation, i.e. net radiation and snow drifting (Bloschl 1999; 

Hopkinson et al. 2010). Topographic features such as slope, aspect, sky view factor and etc. 

change as model scale changes. As a result, average value of SWE over a basin estimated 

using different model scales are not necessary the same, although physics-based snow models 

conserve mass and energy to estimate SWE.  

Scaling impact on snow cover properties have been investigated in previous studies using the 

stated three approaches. Deems et al. (2006) and Trujillo et al. (2007) analyzed scaling effect 

on snow depth from LIDAR data at couple of Colorado catchments using variogram and 

spectral analyses, respectively. They reported that scale breaks (correlation length) of snow 

depth were ranged from 15 to 40 m. They found that scaling behavior of snow depth depends 

on spatial distribution of vegetation height and wind. They concluded that scaling 

characteristics of snow depth is controlled by spatial distribution of vegetation height in 

forested regions where interception is the dominant factor for snow distribution. However, in 

non-forested or sparse forested regions, where wind is responsible for snow redistribution, 

scaling characteristics of snow depth is controlled by wind. Luce et al. (1998) analyze impact 

of spatial resolution of inputs on snow accumulation and ablation by comparing simulation 

from lump and distributed models. They found that detail spatial information of snow drifting 

is as or more important than that of net radiation in their study watershed. Cline et al. (1998) 

modeled SWE spatial distribution for a short melt period after SWE peak using inputs 

resolutions of 30, 90, 250 and 500 m to force a coupled remote sensing/distributed energy 

balance snowmelt model (SNODIS) over a small watershed (1.2 km
2
). They observed no 

significant difference between basin-averaged SWE generated from 30 to 500 m. Winstral et 

al. (2014) analyzed sensitivity of basin averaged SWI to the model scale and used spatial 

resolution of 10 to 1500 m for inputs to run a distributed physics-based snow model (iSnobal) 
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over a small watershed (6 km
2
). They observed that simulated basin averaged SWI using 100 

m resolution of the inputs was very similar to that of 10 m resolution with less than 4% 

biases. However, they concluded that due to small drainage area of the studied watershed, 

selecting the appropriate model scale for other watersheds requires further analyses related to 

the watershed of interest. 

There is no optimum model scale for snow modeling, because in practice a grid size is 

selected by considering data availability, modeling costs and required resolution and/or 

accuracy of predictions (Bloschl 1999; Winstral et al. 2014). In distributed snow models that 

require distributed forcing inputs, the use of a fine model scale increases substantially 

modeling costs, such as runtime and storage space. This substantial increase in the modeling 

costs is mainly due to spatially distributing forcing inputs rather than running snow models. 

On the other hand using a coarse model scale neglects small scale variations, which reduces 

prediction accuracy. The extent of this reduction in model accuracy is unknown. It is difficult 

to fill this knowledge gap and generalize a scale which does not mask critical information 

about snow cover properties based on the results of the previous studies. Prior studies were 

conducted either for a short period of a snow season or small spatial extent. In addition, in 

these studies effect of model scale on prediction accuracy was merely evaluated based on 

changes in inputs resolution by aggregating inputs from a fine resolution to obtain coarse 

resolutions. This may result in transferring information from inputs with a fine resolution to 

those with coarse resolutions. Moreover, aggregating inputs does not provide any information 

on how much prediction accuracy reduces when topographic settings such as slope, aspect, 

sky view factor and etc. are changed due to coarsening DEM.  

Therefore, there is a need to understand transferred and lost information in estimation of snow 

cover properties due to neglecting topography-induced heterogeneity of meteorological 

variables caused by coarsening the model spatial resolution. The objective of this work is to 

understand what sort of information can be lost over a watershed due to the model spatial 

resolution for a range of climatic and topographic conditions. Its main hypothesis is that 

increasing model scale affects energy balance and consequently precipitation phase and 

accumulation/ablation of snow because it smoothens topographical complexity. This work 

addresses these knowledge gaps with these specific objectives: (1) quantifying the impact of 
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model scale on snow model response by analyzing SCA and SWE; (2) assessing the role of 

annual climatology on the sensitivity of predictions accuracy to model scale; and (3) 

identifying the elevation range where predictions accuracy are most sensitive to model scale.  

 

4.4. Study Area and Data 

The study area is the portion of the Boise River basin (BRB) (Idaho, USA), upstream of the 

Lucky Peak Dam, with drainage area of 6,963 km
2
 (Figure 4.1). This portion of the BRB is an 

important source of water that provides agricultural and urban water demands using three 

reservoirs, including Lucky Peak, Arrow Rock and Anderson Ranch Dams. Vegetation cover 

of the BRB is mainly coniferous forest (41%) and shrubland (35%) and the rest of the BRB is 

covered with bare rock, grass, deciduous forest, or burned/harvested forest. Elevations of the 

BRB range from 841 m to 3,168 m, which vary from rain to snow dominated regions. Due to 

this wide range of elevations, average annual precipitation that is received through the basin 

varies substantially from about 500 mm at low elevations to approximately 1,500 mm at high 

elevations.  
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Figure 4.1. Boise River Basin and weather and SNOTEL sites. Black stars indicate SNOTEL sites with SWE 

measurements, which were used in the evaluation of model performance. 

 

There are 18 weather and SNOTEL stations in or near BRB that measure hourly 

meteorological variables, including precipitation (p), air temperature (t), relative humidity 

(rh), solar radiation (sr) and wind (w) (Figure 4.1 and Table 4.1). Precipitation and 

temperature are measured at all the stations, whereas relative humidity, solar radiation and 

wind are available at 5, 6 and 9 of these stations, respectively. Ten of these 18 stations are 

SNOTEL sites that are operated by Natural Resources Conservation Service (NRCS) and the 

rest of the stations are weather stations that either operated by Bureau of Land Management 

(BLM) and U.S. Department of Agriculture (USDA) Forrest Service (FS; 5 stations) or 

Bureau of Reclamation (BR; 3 stations).  
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Table 4.1. Detailed information of the stations. 

NO. Station Name Latitude 

(Decimal ◦) 

Longitude 

(Decimal ◦) 

Elevat-

ion (m) 

Variables 

Measured 

Operated 

by 

1 Little Anderson 44.09 -115.88 1389 p, t, rh, sr, w BLM & FS
 

2 Jackson Peak 44.05 -115.44 2155 p, t, w, SWE NRCS
 

3 Graham Guard STA. 43.95 -115.27 1734 p, t, w, SWE NRCS 

4 Mores Creek Summit 43.93 -115.67 1859 p, t, SWE NRCS 

5 Town Creek 43.94 -115.91 1415 p, t, rh, sr, w BLM & FS 

6 Arrowrock Dam 43.61 -115.92 998 p, t BR
 

7 Prairie 43.50 -115.57 1463 p, t, SWE NRCS 

8 Camas Creek Divide 43.27 -115.35 1740 p, t, SWE NRCS 

9 South Fork Boise 43.49 -115.31 1286 p, t BR 

10 Wagontown 43.57 -115.33 1881 p, t, rh, sr, w BLM & FS 

11 Trinity Mountain 43.63 -115.44 2368 p, t, SWE NRCS 

12 Atlanta Summit 43.76 -115.24 2310 p, t, sr, w, SWE NRCS 

13 Vienna Mine 43.80 -114.85 2731 p, t, w, SWE NRCS 

14 Fleck Summit 43.62 -114.90 2164 p, t, rh, sr, w BLM & FS 

15 Big Smokey Ranger 43.62 -114.87 1706 p, t BR 

16 Dollarhide Summit 43.60 -114.67 2566 p, t, SWE NRCS 

17 Soldier Mountain Peak 43.48 -114.91 2904 p, t, rh, w BLM & FS 

18 Soldier R.S. 43.48 -114.83 1749 p, t, SWE NRCS 

Variable abbreviations: p, precipitation; t, air temperature; rh, relative humidity; sr, solar radiation; w, wind 

speed and direction; SWE, snow water equivalent. 

Abbreviations for institutes operate the stations: BLM & FS, Bureau of Land Management and U.S. Department 

of Agriculture (USDA) Forrest Service, respectively; NRCS, Natural Resources Conservation Service; BR, 

Bureau of reclamation. 

 

 

4.5. Methodology 

4.5.1. Snow Model: iSnobal 

Snobal is a physics-based snow model that conserves both mass and energy at a point (Marks 

1988). Spatial (image) version of Snobal, iSnobal, was developed by Marks et al. (1999b) and 

uses the same set of equations as Snobal to calculate mass and energy flux exchanges at each 

grid cell. The model uses a two-layer representation of the snow cover with a 0.25 mm fixed-

thickness top layer, the interface between air and snow, and the bottom layer having the rest 
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of the snowpack. Calculation of water exchanges, such as evaporation, condensation and 

sublimation, are conducted in the top layer. However, computation of energy exchanges are 

performed at both layers at each time step for each grid cell with the following energy balance 

equation (Eq. 4.1) (Eq. 3.1), (Garen and Marks 2005; Marks et al. 1999b) : 

 

 MGELHRQ vn   (Eq. 4.1) 

 

where ∆Q (W m
-2

) is the snow cover energy that depends on changes in net radiation (Rn), 

sensible heat (H), latent heat (LvE), conduction (G) and advection (M) energies (all units of W 

m
-2

). Lv (W m
-2

 kg
-1

) indicates specific latent heat of water and E (kg) represents mass of 

water that has phase change. An increase in the snow cover energy causes a decrease in the 

cold content, which is energy required to bring the snow cover temperature to 0 °C. Melt 

calculated at both layers and occurs once the cold content reaches 0 °C. Estimated melt in the 

model consists of both melt and rain on snow and it drains out when total liquid water content 

in snowpack is higher than a specified threshold. Melt that drains out is surface water input 

(SWI). 

 

4.5.2. Spatial Distribution of Meteorological data 

Distributed meteorological inputs such as precipitation, air temperature, vapor pressure, solar 

radiation, and wind speed are required to force iSnobal. Details about the spatial interpolation 

methodology for meteorological variables were described in our previous work (Sohrabi et al. 

In Preparation) and the following is a brief description about the method used. Inputs were 

spatially distributed using interpolation detrended elevation (vertical) and distance 

(horizontal) Kriging method (Garen and Marks 2005). Air temperature-elevation trends were 

constrained to be zero or negative, because air temperature decreases as elevation increases. 

However, we did not constrain relative humidity-elevation trends. The distributed relative 

humidity and air temperature was then used to compute dew point temperature and vapor 

pressure. Dew point temperatures were used to identify precipitation phase (Garen and Marks 
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2005). Wind speed and direction were distributed using a detrended elevation and distance 

based Kriging method. Wind speed of a cell, then, was adjusted using Winstral et al. (2002) 

algorithm. In this algorithm, topographically wind exposed and sheltered cells are identified 

using maximum upwind slope (sx). At exposed cells, negative sx, wind speed is increased due 

to vertical flow constriction, whereas wind speed is decreased at topographically sheltered 

cells, positive sx, due to expansion of flow (Winstral and Marks 2002). Analogous to wind 

speeds, precipitation was first distributed using a detrended elevation and distance based 

Kriging method. Precipitation-elevation trends were constrained to be zero or positive, 

because precipitation increases with elevation (Garen and Marks 2005). Wind-induced snow 

drifting was, then, calculated using upwind slope break (sb) and wind speed (Winstral et al. 

2002; Winstral et al. 2013; Winstral et al. 2014). Snow is eroded at exposed cells once wind 

speed is high. The transported snow particles from these cells are, then, deposited at sheltered 

cells where wind speed is low. Solar radiation was distributed using a detrended elevation and 

distance based Kriging method. The distributed solar radiation was then corrected for solar 

angle, shading, vegetation, and albedo (Link and Marks 1999; Susong et al. 1999). Snow 

albedo was adjusted to consider snow aging due to dust and organic debris exposure (Garen 

and Marks 2005). Distributed thermal radiation was computed for clear sky based on the 

distributed air temperature and vapor pressure and elevation and sky view factor. The 

calculated thermal radiation was then adjusted given cloud cover and vegetation (Link and 

Marks 1999). 

 

4.5.3. Scenarios Design 

To evaluate effect of scaling on estimation of SCA and SWE, iSnobal was run for 5 different 

grid sizes (scale) of inputs, including 50 m (50 m (d)), 100 m (100 m (a)), 250 m (250 m (a)), 

500 m (500 m (a)) and 750 m (750 m (a)). To do this, inputs were distributed at 50 m 

resolution and the distributed inputs were then aggregated to obtain 100 to 750 m resolutions 

of inputs, hereafter aggregated scenarios that are indicated as 100 m (a) to 750 m (a). Values 

of an input for 50-m cells that were located in a coarser grid cell were averaged to degrade 

resolution of that input. Aggregated scenarios used in this work are similar to those used in 

Winstral et al. (2014). Coarser resolutions than 750 m were not used, because Winstral et al. 
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(2014) identified those scales as inappropriate scales for snow modeling at a watershed scale. 

In addition to the aggregated scenarios, iSnobal was run using inputs that were distributed at 

100 m resolution, hereafter 100 m (d) scenario. This scenario was added due to the following 

reasons; (a) understand magnitude of information that is transferred from the distributed 

inputs at 50 m resolution to those that aggregated to 100 m resolution; and (b) understand how 

prediction accuracy and distribution of inputs vary regarding to changes in topographic 

features such as slope, aspect and sky view factors due to coarsening the DEM from 50 m to 

100 m resolution. 

Hourly time step of inputs was used and model runs were performed for entire water years 

(WY), which start on October of the previous year and end in September of the current year. 

Each scenario was run for a wet (WY2006-359mm), average (WY2010-325mm), and dry 

year (WY2007-209mm) to understand sensitivity of model scale impacts on prediction 

accuracy to various climatic conditions (Sohrabi et al. 2015; Sohrabi et al. 2013). These years 

were identified from the period of 1950-2010 using four different drought indices at Boise 

Airport station. 

 

4.5.4. Model Performance Evaluation and Analyses 

In our previous work (Sohrabi et al. In Preparation), 50m grid predicted SWE for the wet, 

average and dry years was validated using measured SWE at six out of the ten SNOTEL sites 

located inside BRB: Prairie, Graham Guard, Mores Creek Summit, Atlanta Summit, Trinity 

Mountain and Vienna Mine (Figure 4.1). We observed average Nash-Sutcliffe coefficient 

(NSC) of 0.76 and root mean square error (RMSE)-observations standard deviation ratio 

(RSR) of 0.42 over all sites and years. NSC and RSR values were generally larger than 0.75 

and lower than 0.5, representing very reliable estimations (Moriasi et al. 2007). In non-linear 

processes such as SCA and SWE estimation, an appropriate approach to understand scaling 

effect is to analyze changes in the mean values of these variables over an area as scale 

changes (Bloschl 1999). To do this, estimated daily time series of SCA and SWE from all the 

scenarios were divided into four elevation bands (Table 4.2). At the rain-snow transition 

region (E2), where precipitation can fall either as rain or snow, precipitation phase is very 
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sensitive to changes of dew point temperature (Beniston 2012; Marks et al. 2013). E2 includes 

range of elevations from 1,500 to 1,800 m in the Pacific Northwestern USA (Kormos et al. 

2014a; Kormos et al. 2014b). E2 in the BRB was set to regions that have elevation from 1,400 

to 1,900 m. The rain dominated (E1) and snow dominated (E3) regions are below and above 

E2, respectively. Alpine treeline (E4) is an imaginary line, which indicates that above this line 

trees cannot grow because of low air temperatures and long snow cover duration. E4 in the 

BRB includes regions that have elevations greater than 2,400 m (Korner 1998). 

 

Table 4.2. Elevation Bands 

Bands Elevation (m) Description % of Grid Cells 

E1 ≤ 1400 Rain Dominated 16 

E2 > 1400 and ≤ 1900 Rain-Snow Transition 44 

E3 > 1900 and ≤ 2400 Snow Dominated 28 

E4 > 2400 Alpine Treeline 12 

 

Modeled SWE were spatially averaged over each band. SCA represents percent of the area 

covered with snow, which was calculated by dividing number of cells with SWE greater than 

0 over total number of cells at each band. The spatially averaged snow water equivalent (

)(, tSWE ji ) and snow cover area ( )(, tSCA ji ) for the i-th band (E1, E2, E3 and E4) with area, 

Ai, and the j-th scenario, such as 50 m (d), 100 m (d), 100 m (a), 250 m (a), 500 m (a) and 750 

m (a), are computed as follows: 
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where SWEi, j(t,a) and SCi, j(t,a) are the SWE and snow cover index, respectively, for each cell 

of area a at time t. The spatially averaged residual of SWE and SCA for each band, which was 

applied for visualizing the results, was computed as: 

 

 

(a) 750m (a), 500m (a), 250m , (a) 100m (d), 100m41
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(Eq. 4.4) 

 

where SVi,j stands for )(, tSWE ji  and )(, tSCA ji  for each j-th scenario. To present residuals in 

SWE in percentage, the residuals were divided by the mean of the estimated SWE from the 50 

m (d) for a given snow season. Effect of scaling on the estimated snow variables for each 

band was quantified using mean absolute error (MAE). In our case, increase in value of MAE 

indicates reduction in prediction accuracy. MAE is computed as follows (Moriasi et al. 2007): 
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(Eq. 4.5) 

 

where T indicates the period of time that MAE is computed. MAE was calculated for the 

entire snow season (total MAE), accumulation (Rising Limb; RL) and ablation (Falling Limb; 

FL) periods at each band. RL begins as snow cover forms and terminates when SWE reaches 

its peak. FL begins after SWE peak occurs and continues to the time snow ablates completely. 

To understand the reasons that caused discrepancies between the estimated SCA and SWE 

from the 50 m (d) scenario and those of the aggregated scenario, two 750 m cells were 

selected in E2, hereafter 750m-E2-cell, and E4, hereafter 750m-E4-cell. November 24
th

 and 

October 26
th

, 2005 were selected for the 750m-E2-cell and 750m-E4-cell, respectively, to 

identify reasons that caused the differences in the estimated SCA and SWE during RL. April 

27
th

 and June 20
th

, 2006 were selected to identify causes for different ablation rates in the 

aggregated scenarios relative to that of the 50 m (d) scenario at the 750m-E4-cell.  



99 

 

 

To investigate the reasons that caused differences between the estimated SCA and SWE of the 

50 m (d) and 100 m (d) scenarios, a 100 m cell was selected in E3, hereafter 100m-E3-cell. 

November 10
th

, 2005, May 20
th

 and December 27
th

, 2006 were selected for the 100m-E3-cell 

to analyze changes in the inputs as a result of coarsening the DEM from 50 m to 100 m. To 

understand changes in wind-induced snow drifting due to coarsening the DEM from 50 m to 

100 m, iSnobal was ran for the 100 m (d) scenario with precipitation that was distributed at 50 

m and aggregated to 100 m, hereafter 100 m (d)-nodrift scenario. Addition of the 100 m (d)-

nodrift scenario helps to understand how much changes in snow drifting is responsible for the 

differences between the estimated SCA and SWE from 50 m (d) scenario and those of the 100 

m (d) scenario. The 100 m (d)-nodrift scenario was applied to run iSnobal only for the wet 

year, because this year had larger snow mass than the average and dry hears. 

 

4.6. Results and Discussion 

4.6.1. Scaling Effect on the Model Performance 

4.6.1.1. Snow Cover Area (SCA) 

Residuals in the aggregated scenarios increased with scale from negligible for the 100 m (a) 

scenario (less than 2.0 %) to large in the 750 m (a) scenario (up to 17.6 %; Figure 4.2). Total 

MAE reduced with increase in elevation from rain dominated to snow dominated above the 

treeline (Table 4.3). The largest MAE for RL and FL were related to the 750 m (a) scenario. 

As elevation increased, MAE decreased for the accumulation period (RL), but MAE increased 

for the ablation period (FL). Residuals in RL were generally positive, representing 

overestimation of SCA in the aggregated scenarios relative to the 50 m (d) scenario. In FL, 

residuals were positive at the beginning of the ablation periods, but they were negative after 

the middle of the ablation periods. The largest difference between the estimated SCA from the 

50 m (d) simulation and that of the aggregated scenarios were observed in the average year. 

The largest total MAE was related to the average year, whereas the lowest total MAE was 

related to the wet year over all the aggregated scenarios and elevation bands. MAE for RL and 

FL were larger in the wet year than the other years, except in E3 and E4 that the dry year had 

the greatest MAE for RL. Neglecting spatial variability of meteorological inputs was 
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responsible for these residuals in the aggregated scenarios. The residuals increased as spatial 

resolution of the aggregated scenarios increased, because larger variability of meteorological 

inputs was lost as spatial resolution of inputs increased.  

Residuals in the 100 m (d) scenario were even larger than those observed in the 750 m (a) 

scenario. Maximum residual of 48.7 % was observed in the 100 m (d), whereas residuals of 

the 750 m (a) did not exceed 17.6 %. Similar to the aggregated scenarios, MAE generally 

decreased with increasing elevation from E1 to E4 during RL, but increased during FL. 

Residuals were positive in E1 and E2, except in the wet year that had negative residuals in 

these bands, and they were negative in E3 and E4. The wet year had large residuals (up to 

48.7 %) in E1 and E2, but large residuals in E3 and E4 were observed in the dry year. The 

large difference between estimated SCA from the 50 m (d) and the 100 m (a) simulations and 

that of the 100 m (d) simulation indicated the need for considering effect of topographic 

variability at 50 m on meteorological inputs. The effect of topographic variability at 50 m on 

meteorological inputs was transferred by aggregation in the 100 m (a) simulation. However, 

topographic variability at 50 m was completely neglected in distribution of inputs in the 100 

m (d) scenario. 
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Figure 4.2. Aggregated estimated SCA over 4 elevation bands. Dotted lines show the 50 m (d) and 100 m (d) 

scenarios, but solid lines indicate the aggregated scenarios (from the 100 m (a) to 750 m (a)). Primary Y (left) 

axis shows residuals, the estimated SCA generated from all the scenarios minus that of the 50 m (d) scenario. 

Secondary Y (right) axis shows the estimated SCA from the 50 m (d) scenario. 
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Table 4.3. MAE for SCA (%) in each band. 

Bands MAE (%) 100 m (a) 250 m (a) 500 m (a) 750 m (a) 100 m (d) 

E1 

RL (Wet| Average| Dry) 0  |  0  |  0 3  |  4  |  3 4  |  5  |  4 4  |  6  |  4 15 |  9  | 12 

FL (Wet| Average| Dry) 0  |  0  |  0 1  |  2  |  1 2  |  2  |  2 2  |  2  |  2 3  |  4  |  2 

Total (Wet| Average| Dry) 0  |  0  |  0 2  |  3  |  2 3  |  4  |  3 3  |  4  |  3 11 |  7  |  8 

 

E2 

 

RL (Wet| Average| Dry) 0  |  0  |  0 1  |  2  |  2 1  |  4  |  3 1  |  4  |  3 6  |  5  |  3 

FL (Wet| Average| Dry) 0  |  0  |  0 2  |  2  |  2 3  |  3  |  3 3  |  3  |  3  5  |  1  |  1 

Total (Wet| Average| Dry) 0  |  0  |  0 1  |  2  |  2 2  |  3  |  3 2  |  4  |  3 6  |  2  |  2 

 

E3 

 

RL (Wet| Average| Dry) 0  |  0  |  0 1  |  2  |  3 2  |  3  |  4 2  |  4  |  4 8  |  4  |  9 

FL (Wet| Average| Dry) 0  |  0  |  0 2  |  3  |  1 3  |  4  |  2 3  |  4  |  2 10 |  7  |  4 

Total (Wet| Average| Dry) 0  |  0  |  0 2  |  2  |  2 2  |  4  |  3 2  |  4  |  3 9  |  5  |  7 

 

E4 

 

RL (Wet| Average| Dry) 0  |  0  |  0 1  |  1  |  1 1  |  2  |  2 1  |  2  |  2 6  |  7  | 13 

FL (Wet| Average| Dry) 0  |  0  |  0 2  |  3  |  2 3  |  4  |  4 4  |  5 |  4 11 | 13 | 18 

Total (Wet| Average| Dry) 0  |  0  |  0 1  |  2  |  2 2  |  3  |  3 2  |  3  |  3 8  |  9  | 15 

 

 

4.6.1.2. Snow Water Equivalent (SWE) 

Similarly to SCA, SWE residuals increased with coarsening resolution in the aggregated 

scenarios. The 50 m (d) and 100 m (a) simulations were similar with total MAE and residuals 

that were less than 0.5mm and 0.6%, respectively, but the 750 m (a) simulation indicated total 

MAE and residuals as large as 40.8 mm and 40%, respectively. Residuals and total MAE 

were low in E2 with average residual of 3.7% over all the years. Residuals and total MAE 

generally increased with elevation from E2 to E4 (Figure 4.3 and Table 4.4). The largest 

residuals were in E1 with average residual of 11.6% over all the years, whereas the largest 

total MAE was in E4, which was due to the larger mean SWE in E4 than E1. Residuals were 

negligible and generally negative during RL, except in E4 whose residuals were generally 

positive. However, they were large during FL and were more pronounced in E3 and E4 than 

those in E1 and E2. Similar to the SCA results, residuals were positive in the beginning of FL, 

but they turned to negative residuals after the middle of FL. Residuals were larger in the 

average year with average residual of 6.8% over all the elevation bands than that of the wet 

and dry years with average residuals of 4.9% and 4.3%, respectively. As spatial resolution 

increased in the aggregated scenarios, larger variability in meteorological inputs neglected 

and caused larger SWE residuals, particularly in years and elevation bands when and where 

meteorological inputs variation and snow mass was large. 
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Residuals for the 100 m (d) scenario were as large as 66% and thus substantially larger than 

those in the 750 m (a) (Figure 4.3 and Table 4.4). Residuals were larger in E1 than E2, but 

total MAE was slightly larger in E2 than E1. Residuals and total MAE increased with 

elevation from E2 to E4. Residuals were negative, indicating substantial underestimation of 

SWE relative to the 50 m (d) simulation, except in the average and dry years in E1 and E2 

where they were positive. Large residuals and MAE were observed in the wet year with 

average residual of 18.8% over the elevation bands. Residuals and total MAE in the average 

and dry years were less pronounced (with average residual of 9% and 10.1%, respectively) 

relative to the wet year. Distribution of inputs at 100 m led to substantial information loss in 

topography-induced heterogeneity of meteorological variables as topographic features 

changed by coarsening the DEM from 50 to 100 m. This substantial information loss in 

meteorological inputs spatial variability caused underestimation of snow mass, particularly in 

the wet year and E4 that snow mass was large.  
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Figure 4.3. Aggregated estimated SWE over 4 elevation bands. Dotted lines show the 50 m (d) and 100 m (d) 

scenarios, but solid lines indicate the aggregated scenarios (from the 100 m (a) to 750 m (a)). Primary Y (left) 

axis shows residuals, the estimated SWE generated from all the scenarios minus that of the 50 m (d) scenario. 

Secondary Y (right) axis shows the estimated SWE from the 50 m (d) scenario. 
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Table 4.4. MAE for SWE in each band. 

Bands MAE (mm) 100 m (a) 250 m (a) 500 m (a) 750 m (a) 100 m (d) 

E1 

RL (Wet| Average| Dry) 0  |  0  |  0 2  |  1  |  2 3  |  2  |  3 4  |  2  |  4 14 |  2  |  2 

FL (Wet| Average| Dry) 0  |  0  |  0 3  |  3  |  2 5  |  4  |  3 6  |  5  |  4  10 |  1  |  2 

Total (Wet| Average| Dry) 0  |  0  |  0 2  |  2  |  2  3  |  3  |  3 4  |  4  |  4 13 |  2  |  2 

 

E2 

 

RL (Wet| Average| Dry) 0  |  0  |  0 3  |  1  |  1 5  |  1  |  1 6  |  1  |  1 17 |  3  |  4 

FL (Wet| Average| Dry) 0  |  0  |  0 5  |  4  |  2 8  |  5  |  3  9  |  6  |  3 13 |  1  |  3 

Total (Wet| Average| Dry) 0  |  0  |  0 4  |  2  |  1 6  |  2  |  2 7  |  2  |  2  16 |  3  |  4 

 

E3 

 

RL (Wet| Average| Dry) 0  |  0  |  0 2  |  1  |  1 2  |  2  |  1 3  |  2  |  1 46 | 12 |  9 

FL (Wet| Average| Dry) 0  |  0  |  0 5  |  6  |  2 8  |  8  |  2  8  |  9  |  3 38 | 17 |  7 

Total (Wet| Average| Dry) 0  |  0  |  0 3  |  3  |  1 4  |  4  |  2 5  |  4  |  2 43 | 13 |  8 

 

E4 

 

RL (Wet| Average| Dry) 0  |  0  |  0 3  |  2  |  1 7  |  2  |  2 5  |  6  |  1 48 | 17 | 15 

FL (Wet| Average| Dry) 0  |  0  |  0 8  |  6  |  4 13 |  9  |  7 14 | 10 |  6 39 | 34 | 25 

Total (Wet| Average| Dry) 0  |  0  |  0 5  |  3  |  2 9  |  5  |  4 8  |  7  |  3 45 | 23 | 19 

 

 

4.6.1.3. What caused the observed discrepancies in the estimated SCA and SWE? 

Homogenization of the spatial heterogeneity of energy fluxes caused the observed differences 

between the 50 m (d) and the aggregated scenarios. For instance, a 750 m area is composed by 

225 50-m cells, each of them with a set of energy flux inputs. Thus, in the 50 m (d) scenario, 

225 different sets of energy flux inputs were used to calculate the snow cover energy over a 

750 m area, whereas only one energy flux is used in the 750 m (a) scenario. The use of 

different sets of energy flux inputs inside a 750 m area made the model capable of delineating 

areas that were preferable for snow accumulation, hereafter low energy 50 m cells, from those 

with preferable condition for snow ablation, hereafter high energy 50 m cells. These cells 

were neglected in the 750 m (a) scenario by using one set of energy flux inputs that were 

averaged over inputs of all 50 m cells inside a 750 m cell. During the accumulation periods 

(RL), disregarding high and low energy cells caused overestimation of SCA and 

underestimation of SWE in E1 to E3 and overestimation of SWE in E4 for the 750 m (a) 

scenario. At the beginning of the ablation periods (FL), snow ablation rate was 

underestimated in all elevation bands, which was indicated by the positive residuals of SCA 

and SWE, whereas snow ablation rate was overestimated from the middle of FL. 
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The differences between SCA and SWE from the 50 m (d) and 750 m (a) simulations were 

negligible from October 1
st
 until November 20

th
, 2009 at the 750m-E2-cell.  During this 

period at this cell, snow cover was formed at times, but it was completely ablated in a day or 

two because of undesirable condition for snow cover retention. On November 20
th

, snow 

cover was formed for the 50 m (d) simulation at some 50 m cells, low energy cells, inside the 

750m -E2-cell, but snow was completely ablated during the course of the day for the 750 m 

(a) simulation at the 750m -E2-cell. This continued until November 24
th

 and caused negative 

residuals in SWE for the 750 m (a) simulation. On November 24
th

, snow cover still did not 

formed at high energy 50 m cells inside the 750m -E2-cell, but formed for the 750 m (a) 

simulation and caused a positive residual in SCA for the 750 m (a) simulation (Figure 4.4 a). 

This positive residual in SCA became zero in the middle of the December when snow cover 

was formed at all 50 m cells within the 750m -E2-cell. However, magnitude of the negative 

residual (residual of 4 mm) in SWE remained almost constant for the rest of RL as snow 

accumulation and ablation rates were similar between estimated SWE from the 750 m (a) 

simulation at the 750m -E2-cell and that of the 50 m (d) simulation averaged over 50 m cells 

inside the 750m -E2-cell.  

At the 750m -E4-cell, snow cover was formed for the 750 m (a) scenario and for the 50 m (d) 

scenario at all 50 m cells inside this cell, except at one 50 m cell, on October 26
th

, 2005 

(Figure 4.4 b). This caused a negligible positive residual in SCA for the 750 m (a) simulation 

at the 750m -E4-cell. On this day, the difference between the estimated SWE from the 750 m 

(a) simulation and that of the 50 m (d) simulation averaged over all 50 m cells inside the 

750m -E4-cell was a positive residual of only 0.2 mm. This positive residual continuously 

increased during RL and led to a positive residual of 59 mm in SWE by the time of SWE 

peak, which was April 26
th

, 2006. This was due to neglecting snow melt in the 750 m (a) 

simulation during RL at high energy cells, similar to the cell with zero SWE on October 26
th

, 

2005 (Figure 4.4 b). 
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Figure 4.4. Sub-grid variability of SWE in (a) the 750m-E2-cell and (b) 750m-E4-cell. 

 

On April 27
th

 2006, when ablation period was started, the positive residual of 59 mm in SWE 

for the 750 m (a) scenario was increased to 60.6 mm from the prior day in the 750m -E4-cell 

(Figure 4.5 a). On this day, the snow cover energy (∆Q) of 17.5 W/m
2
 was estimated for the 

750 m (a) scenario for the 750m -E4-cell. The estimated snow cover energy ranged from 11.4 

to 28.4 W/m
2
 in the 50 m (d) scenario for 50 m cells inside the 750m -E4-cell with average of 

20.1 W/m
2
 over all the 50 m cells. As a result, SWI was estimated as large as 6 mm for the 50 

m cells with average of 1.7 mm, whereas SWI of 0.1 mm was estimated for the 750 m (a) 

scenario for the 750 m (a)-E4-cell. This was due to neglecting energy fluxes at high energy 

cells. The positive residual in SWE for the 750 m (a) scenario continuously increased until 

snow started to melt at low energy cells. After initiation of melt at low energy cells, the 

positive residual decreased and eventually turned to a negative residual when snow was 

completely melted (zero SWE) at high energy cells. At the 750m-E4-cell, positive residual of 

1.4 mm in SWE in the 750 m (a) scenario on June 19
th

, 2006 was turned to negative residual 

of 11.1 mm on June 20
th

. On this day, SWI of 27.5 mm was estimated for the 750 m (a) 

scenario, whereas averaged SWI over all the 50 m cells was 15 mm (Figure 4.5 b). Snow melt 

occurred only at low energy cells where the snow cover was still available and energy flux 

inputs of high energy cells had no contribution in reduction of SWE. However, energy flux 

inputs of high energy cells still had contribution in ablating snow in the 750 m (a) scenario, 

because energy flux inputs of all 50 m cells inside the 750m-E4-cell were aggregated to 

generate that of the 750 m (a) scenario. This continued to the end of FL and caused FL to be 

shorter in the 750 m (a) scenario than in 50 m (d) scenario. 
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Figure 4.5. Sub-grid variability of SWE, SWEI and ∆Q in the 750m-E4-cell. 

 

The differences between the 50 m (d) or 100 m (a) and 100 m (d) simulations were due to 

changes in topographic features such as slope, aspect, sky view factor and to some extent 

elevation. These topographic features changed, due to the coarsening the DEM from 50 m to 

100 m resolution for the distributed case. For 50 m cells inside a 100 m cell, energy flux 

inputs were distributed using four different slopes, aspects, sky view factors and elevations. 

The effects of these topographic features on meteorological inputs were transferred by 
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aggregating the inputs to obtain 100 m resolution aggregated scenario (the 100 m (a) 

scenario). In the 100 m (a) simulation only variation of meteorological inputs at these four 50 

m cells was lost, which had negligible impact on estimation of SCA and SWE. However, 

when inputs were distributed at 100 m, on top of overlooking meteorological inputs variation, 

variation in slope, aspect, sky view factor and elevation inside a 100 m cell were neglected.  

As a result, the effects of these topographic features on meteorological inputs were lost in the 

100 m (d) scenario and caused significant changes in snow cover properties prediction. Even 

in the 750 m (a) simulation, the effects of the topographic features on meteorological inputs 

were transferred through aggregation procedure. This is the reason for substantially larger 

residuals of SCA and SWE in the 100 m (d) simulation than that of the 750 m (a) simulations. 

Difference between the estimated net radiations of the 50 m (d) and 100 m (d) scenarios was 

the main reason that caused the observed discrepancies between these scenarios. Changes in 

slope and aspect were responsible for estimating different net solar radiations in the 50 m (d) 

and 100 m (d). Changes in sky view factor and to some extent elevation caused the calculated 

thermal radiation to be different for these scenarios. Slope changes were substantially 

moderated in the 100 m DEM relative to the 50 m DEM. As a result, less pronounced slope 

breaks were observed, which in turn resulted in moderating the effect of wind-induced snow 

drifting. At hours that measured relative humidity had substantially different values at the 

observation sites, changes in elevation due to the use of different resolution of the DEM led to 

estimation of different relative humidity values, which cause different estimation of dew point 

temperatures for these scenarios. The net effect was an incorrect identification of precipitation 

phase or inaccurate estimation of precipitation temperature and snow density. Therefore, 

overlooking variation in topographic features resulted in negative residuals in SCA and SWE, 

except in the dry and average year in E1 and E2. 

The 50 m DEM shows a ridge where the 100m-E3-cell is located with four 50m-cell having 

within 100m-E3-cell different slopes, aspects and elevations. This feature is not present in the 

100 m DEM due to smoothing of the topography. Cell1 and cell2 inside the 100m-E3-cell 

(Figure 4.6 a) were southeast facing (with aspects of 99° and 113.3°, respectively), but cell3 

and cell4 were northeast facing (with aspects of 48.5° and 44.5°, respectively). Cell1, cell2, 

cell3 and cell4 had slopes of 27.1%, 25.9%, 40.4% and 42.1% and their elevations were 2,282 
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m, 2,266 m, 2,278 m and 2,296 m, respectively. Sky view factor of cell1 was 0.95 and the 

other cells had sky view factor of 0.94. However, the 100m-E3-cell was east facing with 

aspect of 76.3° and slope, sky view factor and elevation of this cell was 25.6%, 0.76 and 

2,281 m, respectively. As a result of these topographical changes, estimated net radiation in 

the 100 m (d) scenario was substantially larger than that of the 100 m (a) scenario during RL, 

which caused underestimation of snow accumulation in the 100 m (d) scenario. Net solar 

radiation of the 100 m (d) scenario was larger in the morning than that of the 100 m (a) (or 50 

m (d); Figure 4.6 b). Due to this net solar radiation of the 100 m (d) was larger than that of the 

100 m (a) during RL when solar angle is low and sun hour in the afternoon is short. In 

addition, the calculated thermal radiation in the 100 m (d) scenario was larger than that of the 

100 m (a) scenario (Figure 4.6 c). During FL when sun angle is high and days are longer, net 

solar radiation of the 100 m (d) was lower than that of the 100 m (a) (Figure 4.6 d). This 

caused lower ablation rate in the 100 m (d) scenario relative to the 100 m (a) scenario. Similar 

to RL, the calculated thermal radiation in the 100 m (d) scenario was larger than that of the 

100 m (a) scenario during FL (Figure 4.6 e). 
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Figure 4.6. Differences in the estimated net solar and thermal radiations and dew point temperatures of the 50 m 

(d) or 100 m (a) scenarios and those of the 100 m (d) scenario. Figure a indicates establishment of 50 m cells 

inside the 100m-E3-cell. The estimated thermal radiation and dew point temperatures of the 50 m (d) and 100 m 

(a) were very similar. 

 

Another reason that caused discrepancies between the 50 m (d) or 100 m (a) and 100 m (d) 

scenarios was inaccurate estimation of dew point temperatures. Differences in dew point 

temperatures of the 50 m (d) or 100 m (a) and 100 m (d) scenarios were in range of decimal 

degree. These small differences caused incorrect identification of precipitation phase at times 

when dew point temperatures fluctuated around freezing point. For instance, on December 

27
th

, 2006 precipitation occurred during the entire day and difference between precipitation 

phase and temperature and snow density of the 100 m (a) and those of the 100 m (d) occurred 

from 10 am to 1 pm (Figure 4.6 f). At 10 am, precipitation phase was identified as a rainfall 

for the 100 m (a) scenario, whereas a mixed rain/snow event with 75% rain and 25% snow 

was estimated for the 100 m (d) scenario. Precipitation phase was estimated as snow for the 
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100 m (d) scenario for the rest of the day, but a mixed rain/snow event of 25% rain and 75% 

snow was estimated for the 100 m (a) scenario at 11 am and 1 pm. This was due to change in 

elevation and change in distance of grid of interest from the observation sites, which were 

weighting factors to distribute relative humidity.  

In addition to net solar and thermal radiations, changes in wind-induced snow drifting, which 

is important during RL, was another reason that caused the observed discrepancies between 

the 50 m (d) or 100 m (a) and 100 m (d) simulations. Extent of the discrepancies in SCA and 

SWE estimations caused by changes in drifting varied based on vegetation and elevation 

(Figure 4.7). SCA and SWE estimations from the 100 m (d) scenario were very similar to 

those of the 100 m (d)-nodrift scenario in E2, representing negligible importance of wind-

induced snow drifting in this elevation band. E2 vegetation cover was coniferous forest and in 

forested areas wind-induced snow drifting is negligible (Deems et al. 2006; Trujillo et al. 

2007). E1 vegetation cover was mainly sagebrush and E3 vegetation cover was either sparse 

coniferous forest or bare rock. As a result, residuals in SCA and SWE during RL in the 100 m 

(d)-nodrift simulation were substantially lower than those of the 100 m (d) simulation in E1, 

E3 and E4. In SCA, the maximum residual during RL in E1 was reduced from 48.5% in the 

100 m (d) simulation to 24.6% in the 100 m (d)-nodrift simulation with 4.8% reduction in 

MAE of RL. In E3 and E4, MAE of RL in SCA was reduced from 7.1% in the 100 m (d) 

simulation to 3.1% in the 100 m (d)-nodrift simulation. In SWE, MAE of RL in E3 and E4 

was reduced from 48.3 mm in the 100 m (d) simulation to 37.2 mm in the 100 m (d)-nodrift 

simulation. In E1, MAE of RL in SWE in the 100 m (d)-nodrift simulation (7.7 mm) was 

about half of that of the 100 m (d) simulation (14.4 mm).  
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Figure 4.7. The scaling effect on the estimation of SCA and SWE once the effect of scaling on wind-induced 

snow drifting was remove. The left column indicates the estimated SCA and the right column shows the 

estimated SWE for the 50 m (d) (solid blue line), 100 m (d) (solid red line) and 100 m (d)-nodrift (dotted green 

line) for the wet year over all the elevation bands. 

 

In agreement with the results of Winstral et al. (2014), our results related to the aggregated 

scenarios indicated negligible residuals in the 100 m (a) scenario (residuals of less than 2% in 

SCA and less than 0.6% in SWE) over all the years and elevation bands. Residuals increased 

as resolution coarsened. Negligible residuals were observed during accumulation period (RL), 

but residuals were large during FL, particularly for the 500 m (a) and 750 m (a). This was due 
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to increase in spatial variation of energy fluxes during FL as a result of an increase in sun 

angle (Winstral et al. 2014). Residuals in SCA and SWE were large in the low elevation band, 

E1, because in this band snow cover area is very sensitive to spatial variation in energy fluxes 

(Howat and Tulaczyk 2005; Scherrer and Appenzeller 2004). The largest differences between 

the estimated SCA and SWE from the 50 m (d) and that of the aggregated scenarios were 

observed in the average year. Because spatial variability of the energy fluxes might be larger 

in the average year than the wet year due to lower humidity and fewer cloudy days (Aguado 

and Burt 2013; Rohli and Vega 2008) and precipitation mass was larger than the dry year. 

This work found substantial underestimation in SCA and SWE as model spatial resolution 

coarsened from 50 m (50 m (d) scenario) to 100 m (100 m (d) scenario). The underestimation 

in SCA and SWE was caused by overestimation of net radiation and moderating wind-

induced snow drifting. Coarsening of the DEM from 50 m to 100 m resulted in flattening of 

slopes, aspects and elevation and changes in sky view factors (Kok and Ramli 2007; Wu et al. 

2008). This led to overestimation of radiation receipt, which in turn resulted in overestimation 

of net radiation and consequently overestimation of snow melt during accumulation period 

(Chen et al. 2013; Hopkinson et al. 2010). Reduction of wind-induced snow drifting was 

another reason for underestimation in SCA and SWE in non-forested regions, in agreement 

with previous works (Luce et al. 1998; Luce et al. 1999). Wind-induced snow drifting reduced 

because slopes were flattened in the 100 m DEM and less slope breaks were, thus, detected 

relative to the 50 m DEM (Deems et al. 2006). In contrast with Luce et al. (1998), this work 

found that topography-induced spatial variation of net radiation is more important than spatial 

information of snow drifting in estimation of SCA and SWE. Luce et al. (1998) used 30 m 

scale and found that spatial information of snow drifting as or more important than spatial 

variation of net radiation in their studied watershed. Snow drifting can be as important as 

spatial variation in net radiation for finer than 50 m scale where slope substantially changes 

over small distances. SCA and SWE were overestimated in the 100 m (d) simulation relative 

to the 50 m (d) simulation in the average and dry years in E1 and E2. In the average and dry 

years, differences between recorded relative humidity at observation sites were large as spatial 

variation in relative humidity is larger in these years than the wet year. This accompanied by 

changes in interpolation weighting factors due to coarsening the DEM to 100 m caused 

underestimation of dew point temperatures in the 100 m (d) scenario relative to the 50 m. In 
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E1 and E2 where dew point temperatures fluctuate around the freezing point during RL, 

underestimation of dew point temperatures even in range of decimal degree can cause 

misidentification of precipitation phase. As a result, snow mass was overestimated in the 100 

m (d) simulation relative to the 50 m (d) simulation. The largest residual in SCA and SWE in 

the 100 m (d) scenario was observed in E4 where precipitation mass was larger than the other 

elevation bands. The dry year had the largest residual in SCA. In this year, net radiation 

overestimation caused snow cover that was just formed completely ablated in the course of a 

day in the 100 m (d) simulation at about 13% of cells in E4. However, SCA of 100% was 

estimated in the 50 m (d) simulation during RL for this band. The largest residual in SWE was 

related to the wet year with average residual of 18.8%. Precipitation mass was larger in this 

year than the dry and average years. As a result, net radiation overestimation and moderating 

wind-induced snow drifting caused larger residuals in snow mass estimation in the 100 m (d) 

simulation in the wet year than the dry and average years. 

These results on the effect of input spatial resolution on snow modeling would be similar in 

any other process-based models. However, the magnitude of these effects may be different in 

other snow models because some models cannot provide consistently good performance for 

various climate conditions and vegetation and topographic settings. This is because these 

models do not take into account density and albedo of snow and storage of liquid water within 

snow (Essery et al. 2013), whereas iSnobal tracks changes in these parameters during a snow 

season. The elevation bands that indirectly define precipitation regimes in this work may be 

different in other regions depending on the latitude and regional climatology (Kormos et al. 

2014b; Korner 1998). 

 

4.7. Conclusions 

This investigation demonstrated that model accuracy not only depends on model scale but 

also on climate conditions and elevation distribution, which modulate the distribution of 

errors within watersheds. Our results supported our hypothesis and showed inputs of 50 m or 

finer resolutions are necessary because coarser resolutions lose important topography-induced 

spatial variation in meteorological inputs by smoothing the topography, which has altered 
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slope, aspect, sky view factor and to some extent elevation. However, the usage of finer than 

250 m resolution inputs generated from aggregation of fine scale (50m or finer) inputs has 

negligible effects on prediction accuracy because information from the finer scale transfer to 

the aggregated model. This does not occur when data are distributed at coarser than 50m 

scale. Modelers select coarse resolutions to reduce modeling costs such as runtime and 

storage space. Whereas the distribution of inputs on a coarse scale reduces modeling costs, the 

usage of coarse inputs generated from aggregating fine scale inputs only slightly reduces 

modeling costs, because distributing inputs at a fine scale is the procedure that mainly 

increases modeling costs rather than running a snow model.  

In mountainous settings, distribution of inputs at coarser than 50 m scales is affected by the 

homogenization of the heterogeneity of topographic features. This smoothing effect causes 

underestimation of snow cover area and snow mass because of net radiation overestimation, 

misidentification of precipitation phase and moderation of wind-induced snow drifting. Net 

radiation is overestimated in all 4 elevation bands, whereas misidentification of precipitation 

phase occurs in rain-dominated and rain-snow transition regions and the snow drifting effect 

is reduced in sparse-forested or non-forested regions like above alpine treeline. The amount of 

error generally increases with elevation because of two effects: (1) low elevations are rain-

dominate; and (2) topographical heterogeneity increases with elevation. This suggests that 

finer than 50m cell should be used at all elevations in watersheds where snow-dominated 

elevation bands control the hydrology.  

Climatic conditions modulate the error induced by scale and elevation band. Effect of 

misidentification of precipitation phase on SCA and SWE estimation is noticeable in average 

and dry years, when spatial variability of relative humidity is high. However, the effects of net 

radiation overestimation and snow drifting reduction on SCA and SWE estimation are 

substantially large in wet years because of large snow mass. Prediction of SCA is 

considerably impacted in dry years when accurate estimation of snow cover energy is 

necessary for snow cover retention due to a low number of precipitation events. In wet years, 

when snow mass is large, net radiation overestimation and moderation of wind-induced snow 

drifting cause substantial underestimation of SWE. In average years, prediction of SCA is less 

impacted than dry years and prediction of SWE is less affected than wet years.  
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Chapter 5. Reflection of Estimated Surface Water Input Inaccuracy Caused By Inputs 

Resolution on Streamflow and Stream Temperature Predictions Given Groundwater 

Role in A Mountainous Watershed 

 

5.1. Abstract 

Water management, from energy production to aquatic habitat quality assessment, uses 

integrated hydrological modeling to predict water quantity, temperature and timing. Although 

model prediction accuracy depends on spatial and temporal resolutions of meteorological 

inputs, few works have assessed the impact of these resolutions on predicted hydrological 

responses, particularly in large mountainous watersheds and under different climate 

conditions. This work main objective is to quantify the role of spatial and temporal resolutions 

of meteorological inputs on predicted quantity, timing and temperature of streamflow given 

the watershed area and climate conditions. To address this objective, a physics-based snow 

model, iSnobal, was run with hourly inputs distributed at 50 and 100m resolutions and with 

aggregated inputs from the 50m resolution to 100m, 250m, 500m and 750m resolution for 

wet, average and dry years. ISnobal was also run with 3-hourly and 6-hourly inputs 

aggregated from hourly inputs. Estimated SWI from these scenarios were used to run Penn 

State Integrated Hydrology Model and the Stream Water Temperature Model to estimate 

streamflow and stream temperature at Anderson Ranch Dam (2,490 km
2
). The results 

indicated that inputs spatial resolution was more important than temporal resolution in 

streamflow estimations. Coarse inputs spatial resolutions aggregated from 50m resolution had 

negligible effects on streamflow estimations. However, inputs distributed at 100m resolution 

showed the largest inaccuracy in streamflow predictions, which reduced as watershed area 

increased. In watersheds larger than 800 km
2
, all spatial and temporal resolution scenarios 

indicated similar streamflow estimations due to the groundwater buffering effect. However, in 

watersheds smaller than 300 km
2
, using coarse spatial and temporal resolutions of inputs 

caused inaccurate streamflow estimations, whose magnitude depended strongly on climate 

conditions and the watershed surface cover, which impact the groundwater buffering effect. 

Our results show that only fine temporal hourly and spatial (50m) provide consistent 
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streamflow modeling performance among climatic conditions. All the inputs spatial and 

temporal resolutions investigated in this work are sufficient input scales to provide 

streamflow estimations for stream temperature modeling. 

 

Keywords: Integrated hydrologic modeling, Watershed scale, Surface water input, 

streamflow, stream temperature, spatial and temporal resolution  

 

5.2. Introduction 

Discharge is one of the most important hydrologic variables because it indicates changes in 

hydrological, geological and climatological cycles over a watershed (Choo et al. 2015; 

Dingman and Bjerklie 2006). Accurate discharge estimations are necessary for flood 

forecasting, water resource planning and management, reservoir operation, river restoration 

and ecological studies (Smith and Pavelsky 2008; Smith et al. 2014). Availability of discharge 

estimations can also improve the prediction accuracy of stream water temperature (Luce et al. 

2014; Piccolroaz et al. 2016; Vliet et al. 2011), which is of high importance in ecological 

studies, restoration of rivers and aquatic habitats. Stream water temperature plays an 

important role in aquatic ecosystems and is a critical cue for organism behavior (Isaak et al. 

2012; Jobling 1997; Rice et al. 1983; Rieman et al. 2007), fish metabolism (Forseth and 

Jonsson 1994; Isaak et al. 2015; Mesa et al. 2013; Railsback and Rose 1999) and growth rates 

(Brett 1979; Crozier et al. 2010; Xu et al. 2010). These indicate the value of accurate daily 

discharge and stream temperature estimates for dam and water resource managers, ecologists, 

economists and decision makers. 

Hydrologic models are sensitive to the distribution of precipitation data (Ajami et al. 2004; 

Wang et al. 2015) and this sensitivity varies from one watershed to another as catchments 

respond differently to a precipitation event (Choo et al. 2015; Segond et al. 2007; Viglione et 

al. 2010b). Accurate discharge estimations for watersheds with complex topography and 

rugged terrain, which causes a pronounced precipitation spatial disparity, depend strongly on 

accuracy and detailed spatial information of precipitation (Ahl et al. 2008; Viglione et al. 
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2010a). Several previous studies showed that the use of detailed spatial information of 

precipitation increases discharge prediction accuracy in such watersheds (Ajami et al. 2004; 

Haddeland et al. 2002; Lobligeois et al. 2014; Smith et al. 2004). Boyle et al. (2001) 

concluded that detailed spatial information of precipitation improves estimation of peak rather 

than base flow.  

In addition to the detailed spatial information of precipitation, the distribution, timing and 

magnitude of surface water input (SWI), which is combination of snow melt, rain on snow 

and rain on bare ground, are necessary for hydrologic modeling in mountainous watersheds 

(Ahl et al. 2008; Kormos et al. 2014; Liston and Elder 2006; Weill et al. 2013). In such 

watersheds, precipitation is accumulated as snow in winter and the accumulated water is 

released in spring and early summer. In these watersheds, not only precipitation, but also 

snow accumulation and ablation are highly heterogeneous due to changes of elevation, slope, 

aspect and vegetation over small distances (Elder et al. 1991; Marks et al. 2013; Trujillo et al. 

2012; Winstral et al. 2013). This adds more complexity to hydrologic modeling of 

mountainous watersheds, where accurate estimations of snow accumulation and ablation are 

required for modeling in addition to the hydro-meteorological and geological processes that 

are calculated for rain dominated watersheds (Chen et al. 2016; Piccolroaz et al. 2016; 

Toffolon and Piccolroaz 2015; Winstral et al. 2014). 

Our previous works showed the dependence of accurate snow cover area (SCA) and snow 

water equivalent (SWE) estimations on spatial and temporal resolutions of meteorological 

inputs (Sohrabi et al. In Preparation-a; Sohrabi et al. In Preparation-b). Changes in SCA and 

SWE caused by different spatial and temporal scenarios are expected to be reflected in the 

distribution, timing and magnitude of SWI, which is the source of water for streamflow. 

Comparing estimated streamflow and stream temperatures generated from estimated SWI 

from these scenarios to those of the observed is a reliable quantitative metric to evaluate 

accuracy of the SWI estimations (Luce et al. 1998). To do this, an integrated hydrological 

modeling framework is required, in which snow, streamflow and stream temperature models 

are coupled.  

The advances in numerical modeling and the computational power of computers have 

increased the application of integrated hydrologic modeling frameworks, which helps to link 



126 

 

 

changes in meteorological variables with physical hydrologic processes (Merenlender and 

Matella 2013; Null et al. 2010). In such frameworks, the use of fine spatial and temporal 

resolutions of meteorological inputs substantially increases modeling costs such as runtime 

and storage space, especially in large watersheds. While, coarse-resolution of inputs reduces 

modeling costs, it comes at the in expense of prediction accuracy, whose reduction is not well 

known. There are still knowledge gaps on the effect of inputs resolution on integrated 

hydrologic modeling in mountainous watershed, as previous works merely addressed the 

impact of precipitation resolution on streamflow modeling over rain-dominated watersheds 

(Ajami et al. 2004; Boyle et al. 2001; Haddeland et al. 2002; Viglione et al. 2010a; Viglione 

et al. 2010b). Because precipitation occurred mainly in the form of rain in their studied 

watershed it was not necessary to use an integrated hydrologic modeling framework for these 

works. Therefore, there is still a need to understand and quantify the reduction in prediction 

accuracy due to inputs resolution in integrated hydrologic modeling in mountainous 

watersheds, particularly (a) in large mountainous watersheds, where hydrological 

characteristics vary from rain dominated to snow dominated (Winstral et al. 2014); (b) under 

different climate conditions such as wet, average and dry years, when catchments respond 

differently to a melt event (Rosenberg et al. 2013); and (c) in watersheds with different 

drainage area and geology (surface cover) where the contribution of hydrological processes 

such as runoff and groundwater to streamflow generation varies (Frisbee et al. 2011; Miller et 

al. 2016; Orlova and Branfireun 2014) and this may change the dependency of streamflow 

estimations to SWI. 

To fill these knowledge gaps and understand the appropriate resolution of inputs in an 

integrated hydrologic modeling framework in mountainous watersheds, this work addresses 

these specific objectives: (1) quantifying the effect of the observed inaccuracy in SCA and 

SWE caused by the use of different spatial and temporal scenarios on streamflow and stream 

temperatures estimations for various climatic conditions. As a result, these inaccuracies can 

be described in terms of their influence on estimation of peak flows and summer’s high 

stream temperatures in wet, average and dry years; and (2) quantifying the effect of 

inaccuracy in SWI on streamflow, groundwater level and stream temperature estimations with 

regard to climate conditions and the watershed size. The main hypotheses of this work are: (a) 

groundwater dominated systems that are less impacted by inaccuracy in surface water input 
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(SWI) because of the temporary storage of water in the ground; and (b) the larger the system 

the less depends on SWI due to groundwater buffering and the buffering effect of 

groundwater is a function of climate conditions and the watershed surface cover. 

 

5.3. Study Area 

The upper section of the South Fork of the Boise River (SFB), with drainage area of 2490 km
2
 

at Anderson Ranch Dam closure point, was selected for the integrated hydrological modeling 

(Figure 5.1). This watershed is not regulated and has a wide range of elevations, from rain 

dominated (1,174 m) to snow dominated above alpine (3,100 m). This helps to evaluate the 

effect of the observed inaccuracy in SCA and SWE in all the elevation bands regarding the 

estimation of streamflow and stream temperature. Streamflow is measured at the dam and at 

Featherville. Stream temperature is also measured at Featherville. 

 

 

Figure 5.1. River network and DEM of the study area. 
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5.4. Method 

To route runoff from the watershed to tributary confluences and estimate daily mean 

streamflow, a process-based snow model, iSnobal, was coupled with the Penn State Integrated 

Hydrology Model (PIHM; Figure 5.2). To do this distributed SWI generated from iSnobal 

was used instead of precipitation and the temperature index snowmelt tool in PIHM was 

switched off in the source code. Daily mean streamflow estimations were then fed along with 

daily mean air temperatures to a stream water temperature model, SWTM, to estimate daily 

mean stream temperatures.  

 

 

Figure 5.2. Diagram of the integrated hydrologic modeling framework. 

 

 

5.4.1. Snow Model, iSnobal, and Spatial and Temporal Scenarios 

ISnobal is a physics-based and spatially distributed snow model (Marks et al. 1999). The 

model requires distributed meteorological inputs including air temperature, precipitation, solar 
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and thermal radiations, vapor pressure and wind speed to calculate mass and energy flux 

exchanges at each grid cell. To understand the role of temporal and spatial resolution of the 

meteorological inputs on SCA and SWE estimations, iSnobal was run using: (a) hourly 

(scenario 1h), 3-hourly (scenario 3h) and 6-hourly (scenario 3h) meteorological inputs; and 

(b) six different model scales. Two out of six spatial scenarios were obtained by distributing 

meteorological inputs at 50 m (scenario 50 m (d)) and 100 m (scenario 100 m (d)) resolutions. 

In four out of six spatial scenarios, meteorological inputs were aggregated from the 50 m (d) 

scenario to obtain 100 m (scenario 100 m (a)), 250 m (scenario 250 m (a)), 500 m (scenario 

500 m (a)) and 750 m (scenario 750 m (a)) resolution of inputs. Hourly time step was used in 

the spatial scenarios and aggregated meteorological inputs at 100 m resolution (100 m (a) 

scenario) were used in the temporal scenarios. Thus, 1h and 100 m (a) scenarios are the same. 

These scenarios were run for three water years (wy), including a wet (wy2006), average 

(wy2010), and dry year (wy2007) in order to understand the impact of time step of inputs and 

model scale on prediction accuracy for various climatic conditions. 

In our previous work (Sohrabi et al. In Preparation-a), the 50m grid predicted SWE for the 

wet, average and dry years was validated using measured SWE at six SNOTEL sites located 

inside the Boise River Basin (BRB). The average Nash-Sutcliffe coefficient (NSC) of 0.76 

and the root mean square error (RMSE)-observations standard deviation ratio (RSR) of 0.42 

were observed over all sites and years. NSC and RSR values were generally larger than 0.75 

and lower than 0.5, representing very reliable estimations (Moriasi et al. 2007). 

 

5.4.2. Penn State Integrated Hydrology Model (PIHM) 

PIHM was developed to estimate hydrological state variables and hydrological processes 

(Kumar 2009). The hydrological state variables include soil moisture of unsaturated zone, 

groundwater level and stream depths and hydrological processes consist of 

evapotranspiration, surface and subsurface flow and streamflow. PIHM has been used to 

estimate these hydrological state variables and hydrological processes over several 

watersheds, including the Young Womans Creek and the Little Juniata River in Pennsylvania 

(Yu et al. 2013), the Lysina watershed in Czech Republic (Yu et al. 2014) and the Reynolds 
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Creek Experimental Watershed in Idaho (Chen et al. 2016; Kumar et al. 2013). In the latter 

watershed, coupled iSnobal and PIHM were used and evaluated. 

PIHM is a semi-distributed hydrology model that employs the D8 algorithm for routing and 

watershed identification (Tarboton 1997). It uses the finite volume method to solve partial 

differential equations of the hydrological state variables on a constrained unstructured mesh, 

which is called the semi-discrete finite volume method (Kumar et al. 2009; Yu et al. 2013). 

Streamflow within the channel routing and surface flow over ground are predicted with a one-

dimensional (1-D) and 2-D diffusive wave approximation of Saint Venant equations, 

respectively. The Richard’s equation (Richards 1931) is employed to compute subsurface 

flow. The subsurface domain is composed of unsaturated and saturated soil layers. The 

unsaturated layer thickness is assumed to be 0.5 meters and the saturated layer depth is 

defined by the user. Unsaturated zone has only vertical flow, a 1D flow, whereas groundwater 

flow is 2-D (vertical and along maximum slope). The Van Genuchten (1980) equation is used 

to define soil water storage in the subsurface layers. Potential evapotranspiration is calculated 

using the Penman-Monteith approach (Monteith 1965). Actual evapotranspiration is 

computed using the Noah-LSM approach, which is based on potential evapotranspiration, 

vegetation fraction, maximum canopy capacity, canopy resistance, field capacity and wilting 

point (Yu et al. 2013). 

 

5.4.2.1. PIHM Inputs 

River elements and mesh were generated in an integrated GIS framework, PIHMgis (Kumar 

et al. 2010). The algorithm for mesh generation provides restriction options such as minimum 

angle and maximum area of cells. This allows generation of large cells at homogenous areas 

and small cells at locations with significant contribution in streamflow simulation (i.e. close to 

river elements). 

PIHM inputs are air temperature, relative humidity, solar net radiation, wind speed, vapor 

pressure and SWI of which their spatial distribution over BRB were quantified (Sohrabi et al. 

In Preparation-a; Sohrabi et al. In Preparation-b). The gridded data of these variables inside a 

mesh cell were averaged to generate one time series for each input for each mesh cell. The 
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same sets of data for air temperature, relative humidity, solar net radiation, wind speed and 

vapor pressure, which are needed for evapotranspiration calculation in PIHM, were used for 

all the scenarios. Therefore, differences in the streamflow estimations between the scenarios 

were only due to using different SWI inputs.  

Estimation of SWI is a non-linear process, because SWI estimation relies on meteorological 

variables with topography-induced spatial variation, i.e. net radiation and snow drifting 

(Bloschl 1999; Hopkinson et al. 2010). Therefore, the mean values of estimated SWI over an 

area varies as the spatial and temporal resolutions of meteorological inputs change (Bloschl 

1999). Sensitivity of estimated streamflow from the scenarios to size of mesh cells were tested 

by using 3 sets of meshes, which were: (a) 592 mesh cells that had the largest and averaged 

mesh cell had areas of 8.9 km
2
 and 4.2 km

2
, respectively (Figure 5.3) (b) 880 mesh cells that 

had the largest and averaged mesh cell areas of 5.6 km
2
 and 2.8 km

2
, respectively; and (c) 

1453 mesh cells that had the largest and averaged mesh cell areas of 2.4 km
2
 and 1.7 km

2
, 

respectively. Estimated streamflow from the scenarios were insensitive to the size of the mesh 

cells as similar streamflow in terms of NSC and RSR was estimated using 592, 880 and 1452 

mesh cells. Therefore, the 592-cell mesh with 152 river elements was selected to reduce 

runtime.  
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Figure 5.3. River elements and mesh cells generated for upstream of Anderson Ranch Dam. 

 

The groundwater initial level and its distribution are very important, because they control the 

timing and magnitude of groundwater contribution to streamflow. The Kumar et al. (2013) 

approach was used to identify groundwater initial condition over the watershed due to the 

unavailability of groundwater measurements in the watershed. The PIHM groundwater model 

was run for ten years with SWI value of zero and fully saturated groundwater condition. The 

purpose of this approach is to estimate the groundwater level for a condition that streamflow 

is merely generated by groundwater and the basin is not fed by SWI for a long time, similar to 

the condition of the watershed from peak streamflow in early summer through October. 

 

5.4.3. Stream Water Temperature Model (SWTM) 

The Stream Water Temperature Model (SWTM) is a piecewise statistical model that accounts 

for both linear and non-linear relationships between dependent and independent variables 

(Sohrabi et al. In Review). The model uses daily air temperatures as a meteorological driver 
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and daily discharges as a hydrological driver to estimate stream temperatures at a daily 

resolution. Air temperature is a surrogate for heat flux exchanges (Mohseni et al. 1998; 

Neumann et al. 2003; Webb et al. 2003). Discharge is a proper proxy for snowmelt and rain, 

which have notable influences on stream temperature (Gu et al. 1999; Hockey et al. 1982; 

Webb et al. 2003). Because the heat capacity of water is very large and larger than that of the 

air, stream temperature does not respond to heat exchanges as quickly as air temperature 

(Ahmadi-Nedushan et al. 2007; Webb et al. 2003). SWTM accounts for thermal inertia by 

considering the stream water temperature of the previous time step. SWTM divides the data 

series temporally into three groups: days Ta <1
◦
C (group 1), days in the October to May period 

that Ta >1
◦
C (group 2), and the June-Sept period (group 3). A linear model is applied for the 

data in group 2 and 3, whereas a non-linear model is used for the data in group 1. SWTM fits 

these models using the Bayesian methods (Gelman and Hill 2007; Lunn et al. 2000) and 

applies Markov Chain Monte Carlo (MCMC) to infer posterior distributions (Campbell et al. 

1999; Tierney 1994). SWTM was tested over the Boise River Basin (BRB) and 8 different 

climatic regions of the USA. A statistical stream temperature model, SWTM, was used, 

because the objective was to understand effect of differences in estimated streamflow caused 

by changes in estimated SWI from the scenarios on stream temperature estimation at a point. 

However, physics-based stream temperature models, which carry over heat exchanges 

between the river and its surroundings, are useful tools to evaluate the effects of thermal 

pollution, presence of a reservoir and deforestation on stream temperature (Benyahya et al. 

2007; Piccolroaz et al. 2016).   

 

5.4.4. Calibration and Validation of the Integrated Hydrologic Modeling Framework: 

PIHM was calibrated for the 50 m (d) scenario for wy2006, the wet year, and validated for 

wy2007 and wy2010, the dry and average years, respectively. The calibrated parameters were 

then used to generate streamflow for the other scenarios. PIHM was not calibrated for the 

other scenarios, because the parameters of these models could be estimated differently to 

compensate for the inaccuracies in SWI. Calibration of SWTM was conducted using observed 

daily mean air temperatures and estimated streamflow from the 50 m (d) simulation for 

wy2006 at Featherville. The calibrated parameters were then used to run SWTM using the 
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observed daily mean air temperatures and estimated streamflow generated from the other 

scenarios at Featherville. Streamflow and stream temperatures estimated from these scenarios 

were compared with those of the observed to evaluate the effects of the observed residuals in 

SCA and SWE on prediction accuracy of streamflow and stream temperature. The Nash-

Sutcliffe coefficient (NSC) and the root mean square error (RMSE)-observations standard 

deviation ratio (RSR) were used to evaluate the performance of the modeling framework 

against the observed streamflow and stream temperature. 

Estimated streamflow from the 50 m (d) scenario matched that of the observed reasonably 

well with a NSC of 0.93 and 0.72 and a RSR of 0.24 and 0.57 over the calibration and 

validation periods, respectively, at Anderson Ranch Dam and Featherville. Estimated stream 

temperatures from the 50 m (d) scenario also captured that of the observed reasonably well 

with a NSC of 0.93 and 0.91 and a RSR of 0.27 and 0.30 over the calibration and validation 

periods, respectively, at Featherville. Comparisons between the measured and predicted 

streamflow and stream temperatures from the 50 m (d) scenario were at par with other 

reported studies (Moriasi et al. 2007; Moriasi et al. 2015; Vliet et al. 2011; Yu et al. 2013; Yu 

et al. 2014). 

 

5.4.5. Watershed Scale Analysis 

The study watershed was divided into several sub-watersheds to investigate the role of 

drainage area size on streamflow estimations for each scenario. Estimated SWI from the 50 m 

(d), 100 m (d) and 6h scenarios were accumulated for the October through July period, which 

was the snow accumulation and ablation season. The accumulated SWI from these scenarios 

were then averaged over the drainage area at each sub-basin closure point, indicated by the 

solid circle in Figure 5.4. At each point, ∆ accumulated SWI were divided by averaged 

accumulated SWI of the 50 m (d) scenario related to that point to present changes in ∆ 

accumulated SWI in percent. The percentage of differences between the accumulated SWI of 

the 50 m (d) scenario with the 100 m (d) (∆ accumulated SWI of the 100 m (d)) and 6h (∆ 

accumulated SWI of the 6h) scenarios were analyzed with regard to changes in the drainage 

area at these points. In a similar fashion, estimated accumulated streamflow from the 50 m (d) 
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and 100 m (d) scenarios were compared and anlyzed at these points. Observed streamflow 

was unavailable at these points. Thus, the 50 m (d) simulation was used as the benchmark 

because the estimated SWE and streamflow from the 50 m (d) simulation well matched those 

of the observed in terms of NSC and RSR values and capturing peak flows.  

 

 

Figure 5.4. Drainage area of the black filled circles were selected to calculate difference between accumulated 

SWI from the 50 m (d) during the highest peak flow and that of the 100 m (d) and 6h scenario.  

 

 

5.5. Results and Discussion 

5.5.1. Analysis of Streamflow Estimated From the Scenarios 

The 50 m (d) simulation indicated accurate streamflow estimations in terms of NSC and RSR 

(Table 5.1). The differences between NSC and RSR from the 50 m (d) simulation and those of 

the other scenarios were generally negligible, except in the dry year. The largest difference 
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was observed between the estimated streamflow from the 50 m (d) simulation and that of the 

100m (d) simulation in terms of NSC, RSR and capturing peak flows.  

 

 

Table 5.1. NSC and RSR at the Anderson Ranch Dam, without parentheses, and at the Featherville, in 

parentheses, for the estimated streamflow from all the scenarios.  

 Wet Year (wy2006) Average Year (wy2010) Dry Year (wy2007) 

Scenarios NSC RSR NSC RSR NSC RSR 

50 m (d) 0.94 (0.92) 0.23 (0.26) 0.76 (0.81) 0.49 (0.44) 0.64 (0.66) 0.65 (0.68) 

3h 0.94 (0.92) 0.25 (0.27) 0.74 (0.79) 0.51 (0.46) 0.54 (0.41) 0.74 (0.74) 

6h 0.92 (0.91) 0.29 (0.29) 0.74 (0.78) 0.51 (0.46) 0.36 (0.28) 0.77 (0.78) 

100 m (d) 0.93 (0.91) 0.26 (0.30) 0.74 (0.74) 0.51 (0.50) 0.32 (0.28) 0.71 (0.77) 

100 m (a) 0.94 (0.92) 0.23 (0.27) 0.75 (0.8) 0.49 (0.45) 0.61 (0.48) 0.71 (0.77) 

250 m (a) 0.94 (0.92) 0.23 (0.26) 0.73 (0.76) 0.52 (0.48) 0.49 (0.47) 0.74 (0.78) 

500 m (a) 0.94 (0.92) 0.24 (0.27) 0.71 (0.75) 0.54 (0.50) 0.49 (0.36) 0.74 (0.78) 

750 m (a) 0.94 (0.92) 0.23 (0.26) 0.68 (0.72) 0.57 (0.53) 0.60 (0.50) 0.69 (0.73) 

 

The estimated streamflow from the 50 m (d) simulation captured the observed streamflow 

peaks during the wet year (the calibration period; Figure 5.5). However, in the 100 m (d) 

simulation, streamflow was overestimated April’s peak flows, but underestimated the late 

spring and early summer’s peak flows. Smoothing topographic features such as slope and 

aspect in the 100 m DEM relative to 50 m DEM caused net radiation overestimation during 

winter or snow accumulation period. This caused SWI overestimation in the 100 m (d) 

simulation relative to the 50 m (d) simulation during winter, which was mainly stored in the 

ground rather than generating streamflow (Figure 5.5). Due to this, the groundwater level was 

higher in the 100 m (d) simulation relative to the 50 m (d) simulation by the time streamflow 

started to rise (the beginning of April). As a result, during April, when SWI from the 100 m 

(d) simulation was slightly lower relative to the 50 m (d) simulation, groundwater 

compensated for the difference in SWI and also caused streamflow overestimations in the 100 

m (d) simulation. This caused large reduction in the difference between the groundwater level 

estimations from these two scenarios. In contrast, the late spring and early summer’s peak 
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flows were underestimated, because of lower groundwater contributions and lower SWI in the 

100 m (d) simulation relative to the 50 m (d) simulation (Figure 5.5). During May, the 

estimated snow mass, SWE, in the 100 m (d) simulation was lower relative to the 50 m (d) 

simulation, as in the 100 m (d) simulation large portions of the snow mass was melted during 

the winter. This caused SWI from the 100 m (d) simulation to be lower than that of the 50 m 

(d) simulation during May. This difference in the estimated SWI was negated to some extent 

with the larger groundwater level of the 100 m (d) simulation due to SWI overestimations 

during the winter relative to the 50 m (d) simulation. Groundwater level difference of the two 

scenarios became zero in mid-May, as all the extra water storage in the 100 m (d) simulation 

due to SWI overestimation during winter was turned to streamflow. From mid-May to early 

June, SWI from the 50 m (d) simulation was larger relative to the 100 m (d) simulation and 

generated larger streamflow that captured the highest and last peaks. However these two 

peaks were underestimated in the 100 m (d) simulation. As a result, differences between NSC 

and RSR of the 50 m (d) simulation and those of the 100m (d) simulation were as large as 0.1 

during peak flows. This is consistent with the Boyle et al. (2001) study that found the spatial 

resolution of precipitation input has a larger effect on simulation of peak flows than base 

flow. 

The inaccuracy in estimated peak flows in the 100 m (d) simulation due to lost meteorological 

information requires changing the parameters related to water retention and groundwater, 

which means providing a different watershed response. This indicates that the 100 m (d) 

scenario is unreliable for presenting physical hydrologic processes because changes in the 

timing and magnitude of estimated SWI in this scenario changes how the system works. The 

use of estimated SWI from the 100 m (d) scenario changes the system toward increasing 

water retention. 
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Figure 5.5. Visual comparison between the estimated streamflow from the 50 m (d) and 100 m (d) and that of 

observed in the wet year (calibration period) at Anderson Ranch Dam and Featherville (top figures). Differences 

between the averaged estimated SWI (bottom left figure) and groundwater level (bottom right figure) from the 

50 m (d) and 100 m (d) simulations in the wet year over the Anderson Ranch Dam. Note that positive values in 

groundwater level difference indicate larger groundwater level in the 100 m (d) simulation relative to the 50 m 

(d) simulation. 

 

In the average year, difference between estimated streamflow from the 50 m (d) and the 100 

m (d) simulations were negligible in terms of NSC, RSR and capturing peak flows (Figure 

5.6; Table 5.1). In this year, the difference between the estimated SWI of these scenarios was 

low. This low difference in the estimated SWI was also buffered by temporarily storing water 

in the ground and releasing it later, which caused negligible differences between the estimated 

streamflow from these scenarios. 
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Figure 5.6. Visual comparison between the estimated streamflow from the 50 m (d) and 100 m (d) and that of 

observed in the average year at Anderson Ranch Dam and Featherville (top figures). Differences between the 

averaged estimated SWI (bottom left figure) and groundwater level (bottom right figure) from the 50 m (d) and 

100 m (d) simulations in the average year over the Anderson Ranch Dam. Note that positive values in 

groundwater level difference indicate larger groundwater level in the 100 m (d) simulation relative to the 50 m 

(d) simulation. 

 

Differences between NSC and RSR values of the 50 m (d) simulation and those of the 100 m 

(d) were larger in the dry year relative to the wet and average years. Similar but with much 

less pronounced magnitude to the wet year, SWI from the 100 m (d) simulation was larger 

than that of the 50 m (d) simulation during winter in the dry year. In contrast to the wet year, 

during spring the SWI from the 100 m (d) simulation was still larger than that of the 50 m (d) 

simulation in the dry year. Therefore, differences between the estimated SWI from these 

scenarios were not buffered by storing water in the ground and releasing it later as happened 

in the wet year. The largest difference between estimated streamflow from these scenarios 

was during the period between April and May, when the 100 m (d) simulation overestimated 

streamflow and caused low NSC and high RSR in this scenario. This streamflow 

overestimation in the 100 m (d) simulation was due to on average larger SWI of this scenario 

at the Anderson Ranch Dam watershed relative to that of the 50 m (d) (Figure 5.7). This was 

caused by underestimation of the sublimation in the 100 m (d) simulation in comparison to 

that of the 50 m (d). Underestimation of the net solar radiation in the 100 m (d) simulation 

during the melt period, which is a primary energy input for the energy balance, was 

responsible for underestimation of sublimation. Net solar radiation underestimation was due 
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to flattening slopes and aspects as a result of coarsening the DEM from 50 m to 100 m. The 

magnitude of the underestimation of sublimation was much more pronounced in the dry year 

than the wet year, which was due to shallow snowpack and a large number of sunny days in 

the dry year. 

 

 
Figure 5.7. Visual comparison between the estimated streamflow from the 50 m (d) and 100 m (d) and that of 

observed in the dry year at Anderson Ranch Dam and Featherville (top figures). Differences between the 

averaged estimated SWI (bottom left figure) and groundwater level (bottom right figure) from the 50 m (d) and 

100 m (d) simulations in the dry year over the Anderson Ranch Dam. Note that positive values in groundwater 

level difference indicate larger groundwater level in the 100 m (d) simulation relative to the 50 m (d) simulation. 

 

Differences between NSC and RSR of the 50 m (d) simulation and those of the other 

scenarios were larger at Featherville than at Anderson Ranch Dam. This was due to the larger 

drainage area of Anderson Ranch Dam relative to that of Featherville. Reduction in watershed 

size increases the sensitivity of streamflow estimation to SWI time series as reduction in 

watershed drainage area decreases watersheds’ water retention and groundwater storage 

(Frisbee et al. 2011; Miller et al. 2016; Orlova and Branfireun 2014). In addition, the 

differences between SWI from the scenarios were on average lower in a large watershed than 

a small watershed, which is discussed in section 5.5.3. 
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5.5.2. Analysis of Stream Temperatures Estimated From the Scenarios 

A negligible difference was observed between the estimated stream water temperature from 

the 50 m (d) and that of the other scenarios (Table 5.2). The lowest NSC (0.89) and largest 

RSR (0.33) were observed in the average year (Figure 5.8). All the scenarios had the same 

NSC and RSR values for the estimated stream temperatures, indicating that all the scenarios 

provided streamflow estimations with sufficient accuracy for stream temperature modeling. 

Air temperature, which is a proxy for heat flux exchanges, is the primary predictor of stream 

temperature (Ahmadi-Nedushan et al. 2007; Mohseni et al. 1998) and streamflow moderates 

stream temperature estimations in order to consider the effect of snow melt on stream 

temperature (Gu et al. 1999; Hockey et al. 1982; Webb et al. 2003). Therefore, differences 

between estimated stream temperatures from the scenarios will be negligible unless 

differences between estimated streamflow from the scenarios are substantially large. 

 

Table 5.2. NSC and RSR for estimated stream temperature from all the scenarios. 

 Wet Year Average year Dry Year 

NSC 0.93 0.89 0.92 

RSR 0.27 0.33 0.27 

Note that all the scenarios had the same NSC and RSR values. 

 

 

Figure 5.8. Estimated stream water temperature from the 50 m (d) and 100 m (d) simulations for the average year 

at Featherville. 
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5.5.3. Watershed Scale Analysis 

Differences in ∆ accumulated SWI of the 100 m (d) and 6h scenarios decreased with 

increasing watershed area (Figure 5.9). Percentage of ∆ accumulated SWI was large in the 

100 m (d) simulation, but negligible in the 6h simulation. The difference between estimated 

SWE from the 50 m (d) scenario and that of the 100 m (d) simulation was substantially larger 

than that between the 50 m (d) and the 6h scenarios (Sohrabi et al. In Preparation-a; Sohrabi 

et al. In Preparation-b). As a result, ∆ accumulated SWI of the 100 m (d) scenario was 

substantially larger (as large as 205 mm) than that of the 6h scenario (less than 36.5 mm) over 

all the watersheds. 

The largest reduction of ∆ accumulated SWI of the 100 m (d) with the increase in the drainage 

size was related to the wet year. In this year, the difference between the SWE of the 50 m (d) 

simulation and that of the 100 m (d) was substantially larger due to larger snow mass of the 

wet than the other years. Therefore, the net radiation overestimation and snow drifting 

moderation due to smoothing slopes and aspects that caused by using the 100 m DEM had 

larger reflection on SWE estimation and consequently SWI estimation in the wet year than the 

other years. 

The reduction of ∆ accumulated SWI of the 100 m (d) was larger as watershed area increased 

in the North and Middle Forks than that of the South Fork. In the North, Middle and South 

Forks ∆ accumulated SWI of the 100 m (d) decreased by about 5%, 9% and 3% from the 

headwaters to the outlets of these tributaries, respectively. This was due to the different ranges 

of elevation in the North, Middle and South Forks. The largest difference between estimated 

SWE from the 50 m (d) scenario and that of the 100 m (d) scenario was observed in snow 

dominated areas above treeline (elevations > 2400 m) (Sohrabi et al. In Preparation-a; Sohrabi 

et al. In Preparation-b). In addition, the difference between estimated SWE from the 50 m (d) 

scenario and that of the 100 m (d) simulation decreased as the elevation decreased. 48% of the 

North and Middle forks have elevations higher than 2400 m, whereas less than 1% of the 

South Fork has elevations above 2400 m. As a result, ∆ accumulated SWI of the 100 m (d) at 

the headwaters of the North and Middle Forks were large. As watershed areas in the North 

and Middle Forks increased, the elevation range substantially widened, consequently causing 

a large reduction in ∆ accumulated SWI of the 100 m (d) scenario.  
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At the confluence of North, Middle and South Fork tributaries (point 67 in Figure 5.4), where 

the main stem begins, to the Anderson Ranch Dam ∆ accumulated SWI of the 100 m (d) and 

6h scenarios slightly changed as watershed area increased. This indicates that on average the 

main stem received similar SWI from these scenarios. This caused negligible differences 

between estimated streamflow from the 50 m (d) and that of the 100 m (d) and 6h in terms of 

NSC and RSR at the Anderson Ranch Dam and Featherville. In the wet and dry years, ∆ 

accumulated SWI of the 100 m (d) was about 13% in the main stem. This difference caused 

underestimation and overestimation of streamflow in the 100 m (d) simulation during peak 

flows in the wet and dry years, respectively, at the Anderson Ranch Dam and Featherville. 

 

 
Figure 5.9. Changes of ∆ accumulated SWI with regard to watershed area. Difference between accumulated SWI 

of the 50 m (d) scenario and that of the 100 m (d) scenario (∆ accumulated SWI of the 100m (d)) is indicated in 

the top row. Difference between accumulated SWI of the 50 m (d) scenario and that of the 6h scenario (∆ 

accumulated SWI of the 6h) is indicated in the bottom row. Note that NF, MF and SF stand for North Fork, 

Middle Fork and South Fork tributaries. 

 

Percentage of ∆ accumulated streamflow of the 100 m (d) generally decreased as watershed 

area increased (Figure 5.10). As watershed size increased, water storage increased and runoff 

contributions to streamflow generations decreased (Figure and Figure). As a result, the 

buffering effect of groundwater increased with increasing watershed size, which reduced the 

sensitivity of streamflow generation to SWI time series (Rosenberg et al. 2013).  
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Figure 5.10. Changes in ∆ accumulated streamflow of the 100 m (d) with regard to increase in watershed area. 

Note that NF, MF and SF stand for North Fork, Middle Fork and South Fork tributaries. 

 

In the North Fork, ∆ accumulated streamflow of the 100 m (d) increased, whereas ∆ 

accumulated SWI decreased as watershed area increased from the headwater (point 80) to 

point 71, which was located before the outlet. This was due to surface cover of this basin, 

which was more than 86% rock. Impermeability of the rock caused the differences in SWI of 

these two scenarios turned to runoff and immediately contributed to streamflow rather than 

storing in the ground and releasing later and gradually (Figure 5.11 and Figure 5.12). From 

the point 71 to the outlet of the North Fork (point 76) watershed area increased by about 77 

km
2
 and rock surface cover reduced by about 20%. As a results, the differences in SWI of 

these scenarios was buffered by storing in the ground and releasing later and gradually, which 

caused reduction in ∆ accumulated streamflow of the 100 m (d). 

The largest reduction in ∆ accumulated streamflow of the 100 m (d) as watershed area 

increased was related to the Middle Fork, where the largest reduction in ∆ accumulated SWI 

was observed. In the Middle Fork, watershed area increased from 45 to 261 km
2
 and percent 

of rock reduced from 50% to 33% from the headwater (point 96) to the outlet (point 90), 

respectively. Reduction of ∆ accumulated SWI and the groundwater buffering effect caused a 

synergy that led to the large reduction in ∆ accumulated streamflow (average reduction of 

33% over all the years).  
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Figure 5.11. Runoff contribution to streamflow generation from the 50 m (d) and 100 m (d) simulations in the 

wet year at the headwaters (left column) and outlets (right column) of the North (top row), Middle (middle row) 

and South Forks (bottom row). 

 

Percentage of ∆ accumulated streamflow of the 100 m (d) was negligible in the South Fork, 

where ∆ accumulated SWI percentage was low due to the elevation range of this fork. Runoff 

contribution for streamflow generation was low in this fork (Figure 5.11 and Figure 5.12) as 

the basin had permeable surface cover (0% rock), which caused increase in the groundwater 

buffering effect. 
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Figure 5.12. Runoff contribution to streamflow generation from the 50 m (d) and 100 m (d) simulations in the 

dry year at the headwaters (left column) and outlets (right column) of the North (top row), Middle (middle row) 

and South Forks (bottom row). 

 

Percentage of ∆ accumulated streamflow of the 100 m (d) was negligible in the main stem 

except in the dry year when ∆ accumulated streamflow was about 26%. This indicates that 

SWI estimations from both the 50 m (d) and the 100 m scenarios provide similar streamflow 

estimation in watersheds with drainage area larger than 800 km
2
. Changes in ∆ accumulated 

streamflow from confluence of the North, Middle and South Forks tributaries (point 67) to the 

Anderson Ranch Dam (point 1) were negligible. This was in agreement with changes in ∆ 

accumulated SWI of the 100 m (d) in the main stem from point 67 to point 1. 
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Figure 5.13. Estimated SWI from the 50 m (d) and 100 m (d) simulations in the wet year at the headwaters (left 

column) and outlets (right column) of the North (top row), Middle (middle row) and South Forks (bottom row). 
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Figure 5.14. Groundwater level difference between and streamflow the 50 m (d) and 100 m (d) simulations in the 

wet year at the headwaters (left column) and outlets (right column) of the North (top row), Middle (middle row) 

and South Forks (bottom row). 

 

Although ∆ accumulated SWI percentage of the 100 m (d) was generally larger in the wet 

year than the dry year, ∆ accumulated streamflow percentage was larger in the dry year. In the 

wet year, SWI overestimation in the 100 m (d) during winter stored in the ground and mainly 

released during spring when the 50 m (d) simulation had larger SWI than the 100 m (d) 

simulation (Figure 5.13 and Figure 5.14). The role groundwater buffering effect was different 

in the dry year than the wet year, because the 100 m (d) simulation had larger SWI than the 50 

m (d) simulation over the entire season (Figure 5.15 and Figure 5.16). The average year had 

lowest ∆ accumulated streamflow percentage of the 100 m (d), which is consistent with 

observed low ∆ accumulated SWI percentage. 
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Figure 5.15. Estimated SWI from the 50 m (d) and 100 m (d) simulations in the dry year at the headwaters (left 

column) and outlets (right column) of the North (top row), Middle (middle row) and South Forks (bottom row). 
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Figure 5.16. Groundwater level difference between and streamflow the 50 m (d) and 100 m (d) simulations in the 

wet year at the headwaters (left column) and outlets (right column) of the North (top row), Middle (middle row) 

and South Forks (bottom row). 

 

The results indicate that in small mountainous watersheds, particularly watersheds with 

drainage area less than 100 km
2
, accurate and detailed information of SWI is important. This 

is due to two main reasons: (a) neglecting topography-induced heterogeneity in 

meteorological variables causes on average large SWI prediction inaccuracy over small 

watersheds; and (b) streamlow estimation of such watersheds are highly sensitive to SWI time 

series as water retention and groundwater storage is (Frisbee et al. 2011; Miller et al. 2016; 

Orlova and Branfireun 2014). In contrast, in large watersheds that have drainage area larger 

than 800 km
2
, SWI estimations even from the 100 m (d) scenario can generate accurate 

streamflow estimations. This is due to: (a) difference between estimated SWI from the 50 m 

(d) and that of the 100 m (d) scenarios is on average negligible over large watersheds; and (b) 

streamflow generation is less sensitive to SWI time series due to the groundwater buffering 
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effect. The results also indicate that the buffering effect of groundwater increase as watershed 

area increases and changes with climate conditions. 

Therefore, the effects of inaccurate SWI estimations on streamflow estimations are moderated 

to a great degree in large groundwater-dominated basins and in cases that calibration and 

validation periods of hydrologic models have a similar climate condition. This indicates that 

there is a need to measure the groundwater level and soil moisture to constrain the process-

based hydrological modeling. With these measurements the estimations of the following 

hydrological processes can be validated: (a) the groundwater recharge and depletion curve; 

(b) the base flow contribution to the streamflow generation; (c) the runoff generation response 

to a melt event; and (d) the interaction between groundwater and surface water. 

 

5.6. Conclusions 

This investigation shows that spatial and temporal resolution of meteorological inputs affect 

prediction accuracy of integrated hydrologic modeling framework, in which snow, streamflow 

and stream temperature model are coupled. The effects of inputs resolution on prediction 

accuracy depend strongly on climate condition and watershed size and surface cover in 

mountainous watersheds. 

The effect of spatial resolution of inputs on streamflow estimation was much more 

pronounced than that of temporal resolution which confirms that 6 hour temporal resolution is 

sufficient in most applications. Similarly coarser resolution generated from aggregated inputs 

from 50 m resolution had negligible effects on stream flows as the effect of topographic 

features was transferred by aggregation. Conversely distributing inputs at coarser than 50m 

deteriorated the accuracy of the model because it caused surface water input (SWI) 

overestimation during winter and SWI underestimation during spring and early summer. 

Overestimation of SWI due to inputs spatial resolution during winter was mostly buffered by 

storing water in the ground, which led to small impact on base flow estimation. Then, 

underestimated SWI during spring and early summer was compensated by the stored water in 

the ground to some extent, which led to larger effect on peak flow than base flow estimations. 

This buffering effect of groundwater depends strongly on climate conditions, the watershed 
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area and surface cover. This suggests that comparison of the predicted and observed stream 

discharges to quantify performance of hydrological modeling is effective only if different 

climatic years are used.  

Impact of spatial and for a lesser impact temporal resolutions of inputs on stream flow 

prediction accuracy decreased as watershed area increased. In large watersheds, larger than 

800 km
2
, SWI estimations from all resolution scenarios investigated in this study had similar 

streamflow estimations. However, in small watersheds, smaller than 300 km
2
, SWI estimation 

using coarse spatial and temporal resolutions of inputs resulted in inaccurate streamflow 

estimations, particularly in wet and dry years and watersheds with impermeable surface cover. 

Groundwater level and soil moisture measurements should be added to constrain process-

based hydrological modeling, as streamflow may not be adequate for validating hydrological 

modeling. 

The effect of spatial and temporal resolution of inputs on stream temperatures estimations was 

negligible. Estimated stream temperatures from all the spatial and temporal resolution 

scenarios had the same accuracy of fit and errors in comparison to the observed stream 

temperatures. This indicates that 100 m spatial and 6 hourly temporal resolutions of inputs are 

sufficient input scales to provide streamflow estimations for stream temperature modeling. 
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