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Abstract

Optical wireless communications (OWC) has recently gained a lot of interest among industrial and aca-

demic communities. The main inhibitor factor of this resurgence of interest is the fact that radio-frequency

(RF) spectrum is already so densely occupied to handle the increasingly high demand, and hence, ex-

ploring higher frequency spectrum, including the optical range, would be a relief. Another reason behind

such an interest resides in the relatively simple deployment of OWC systems. However, before a real

deployment of OWC systems, there is a persistent need to establish its fundamental performance limits

(e.g. capacity, secrecy capacity, and capacity region) and extract design guidelines for building efficient,

reliable, and secure OWC systems. Indeed, due to different propagation channels and different transmit

constraints, RF communications and OWC are fundamentally quite different. For instance, the popular

intensity modulation and direct detection (IM-DD), which is a favorable scheme for OWC due to its

simplicity, has some subtle differences in comparison with RF systems manifested in the nonnegativity

of the transmit signal, in addition to constraints on the peak- and average-intensity of the signal. These,

in turn, make the fundamental performance limits and the optimal transmission schemes for OWC based

on IM-DD different from those for RF systems.

Since the fundamental performance limits of OWC play a vital role in extracting guidelines and

communication protocols for designing reliable and secure systems, this dissertation addresses those limits

in an OWC setting. Particularly, this dissertation presents novel contributions to the understanding of the

fundamental limits of multiuser OWC with and without secrecy constraints. When a secrecy constraint is

imposed, this dissertation provides analytical results on the characterization of the optimal transmission

schemes for secure and reliable OWC when input-dependent Gaussian noise and Poisson noise models are

considered. Additionally, an asymptotic analysis of the secrecy capacity (the fundamental performance

limit for secure communications) is presented. Furthermore, a two-user optical multiple access channel

model, which depicts a multiuser OWC scenario without secrecy constraints, is proposed and the optimal

multiuser transmission schemes that achieve the capacity region (fundamental performance limit of this

multiuser scenario) are developed. Moreover, the capacity region of the considered optical multiple access

channel is explicitly characterized in a closed-form expression in the regime where the peak- and average-

intensity constraints are vanishingly small. After establishing the fundamental performance limits of

OWC, powerful machine learning techniques, such as deep learning, are employed for the implementation

of OWC systems. In particular, a simple and cost-effective learning-based system with (near-)optimal

performance is proposed and is implemented by merely taking off-the-shelf deep learning models, applying

them to an OWC design problem, and tuning them based on the easily generated training data.
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Chapter 1: Introduction

1.1 Motivations

1.1.1 Reliable and Secure Wireless Communications

During the last two decades, our daily lives have become increasingly more dependent on wireless com-

munications. As a consequence, wireless communication technologies have to be continuously enhanced

to support this increasing demand. This technological evolution has led to the current high-performing

wireless communication systems that are used on a daily basis.

One of the main features that distinguish wireless communications from its counterpart, wired com-

munications, is its ability to reach multiple parties simultaneously. This is achieved through broadcasting

the information. However, the broadcast nature of wireless signals imposes a critical design challenge for

communicating confidential data with trusted users in the presence of unauthorized parties who can ma-

liciously eavesdrop the ongoing communications. Communication security is a delicate issue that can, in

some cases, have major ramifications if breached. For instance, consider a wireless communication system

application in a bank. In such a scenario, the system must be designed in a way that ensures error-free

communications (reliable communications) behind the counter and communication security elsewhere.

Figure 1.1 depicts a typical communication system and its basic building blocks. In this setup, a

message W which is drawn from the message set W = {1, 2, . . . , |W|} is communicated to a receiver. To

this end, first, the encoder block maps the message W into some sequence of channel symbols denoted

by Xn, where n is the length of the sequence. Then the channel symbols are transmitted over the

communication channel and they produce the output sequence of the channel denoted by Y n. The output

sequence is random but has a distribution that depends on the input sequence and the communication

channel is defined to be this conditional distribution. Finally, the decoder block maps the channel output

sequence to an estimate of the transmitted message denoted by Ŵ and an error is occurred if the message

Figure 1.1: Building blocks of a communication system.
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Figure 1.2: Communication of a secret message W in presence of an eavesdropper.

estimate Ŵ is not the same as the transmitted message W .

When designing a wireless communication system, two goals have to be considered and need to be

achieved: communication reliability and security. A communication system is called reliable when the

transmitted messages in Fig. 1.1 can be recovered with a vanishingly small probability of error at the

receiver, i.e.,

Pr
{
W 6= Ŵ

}
≤ ε, (1.1)

where ε is an arbitrarily small positive value.

As mentioned, wireless communication systems impose a security challenge for transferring confiden-

tial data to trusted users in the presence of unauthorized parties who can maliciously eavesdrop the

communications. Consider a wireless communication scenario depicted by Figure 1.2. In this setup, the

secret message W is to be communicated reliably to a legitimate receiver, i.e., with a vanishingly small

probability of error. Furthermore, the secret message W should be kept hidden from the eavesdropper.

As such, secure communication refers to the case when a legitimate receiver can successfully decode the

secret message W with a vanishingly small probability of error, while an eavesdropper cannot decode

and infer the secret message W . This means that the eavesdropper’s observations should not reveal any

insightful information about the secret message W , i.e.,

I(W ;Zn) ≤ ε, (1.2)

where Zn is the channel output sequence received by the eavesdropper, ε is an arbitrarily small positive

value, and I(W ;Zn) denotes the mutual information function which measures the amount of insightful

information that Zn can reveal about the secret message W .
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Figure 1.3: Optical frequency range.

1.1.2 Optical Wireless Communications

Coping with the increasing demand for higher data-rate wireless communications is becoming more

and more challenging, especially since we are approaching the limits of what can be done with the available

resources. One of these resources is bandwidth. Indeed, a communication system’s capability can greatly

improve if it can access a larger bandwidth. Unfortunately, this is not possible since the currently licensed

spectrum is already so densely occupied. This spectrum scarcity problem has motivated researchers to

explore new frequencies for wireless communications. The optical spectrum (frequencies ranging from 300

GHz to 3000 THz as shown in Figure 1.3) is one of the promising candidates due to its abundance and

free license. The term optical wireless communications (OWC) refers to optical transmission in which

guided visible light (VL), infrared (IR), or ultraviolet spectrum (UV) are used as propagation media. The

optical wireless systems operating at IR, VL, and UL are mainly used for the terrestrial point-to-point

communications as well as space and deep space communications [1].

Recently, optical wireless communications have witnessed a revival due to the invention of Li-Fi

(light-fidelity). Li-Fi is a visible-light communication (VLC) technology which promises much higher

rates (around Gigabit per second) than its radio-frequency (RF) counterpart (Wi-Fi). In addition to its

large bandwidth, Li-Fi enjoys the property of locality, which means that it allows dense special reuse

without interference, contrary to RF. Those advantages make Li-Fi an excellent technology for ensuring

data coverage without relying on the RF spectrum. Li-Fi can be used for indoor applications using light

fixtures (smart lighting), thus combining lighting and communication for better utilization of resources,

and hence better sustainability. It can also be used for outdoor applications using light posts to provide

coverage for mobile users and using traffic lights or car head/backlights to ensure connectivity between

cars and infrastructure. Li-Fi can also be an excellent solution for connectivity in places where low

electromagnetic interference is desired, such as hospitals and airplanes [2].
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Figure 1.4: Intensity modulation and direct detection OWC.

One of the most popular communication techniques used in OWC systems is the intensity modulation

and direct detection (IM-DD) due to its simplicity [2]. In this scheme, as shown in Figure 1.4, the

transmitted data modulates the intensity of the emitted light from the optical transmitter (emitted light

from a laser diode or a light-emitting diode). The detection of the photons takes place at the receiver by

focusing the received light onto a photodetector device. The direct detection method allows the received

light to impinge directly upon the photodetector device which responds to its intensity. As opposed to

RF communications where the transmitted signals are in the nature of voltage and can be negative, in

an OWC setting the transmitted signals are proportional to the light intensity and therefore, they are in

the nature of power and are nonnegative.

Like any other form of communication, the applicability of OWC brings about the question of relia-

bility and security. Thus, the reliability and security constraints must be considered when designing an

OWC system. While several aspects of the former have been studied in the literature, this is not the case

for the latter. Note that due to the differences between OWC and RF communication, results regarding

RF communication security do not directly carry over to OWC.

The main thrust of this Ph.D. dissertation is thus to propose wireless communication protocols for a

reliable and secure design of OWC systems.

1.2 Background

In OWC systems based on IM-DD, the photodetector device at the receiver absorbs integer number

of photons and generates a real-valued output corrupted by noise. Based on the distribution of this

corrupting noise, there exist several channel models for the underlying optical wireless channels. Free

space optical intensity channels [2, 3, 4], optical intensity channels with input-dependent Gaussian noise [5]

and Poisson optical intensity channels [6, 7, 8] are the most widely used models for OWC. Next, a brief

introduction about each of these channel models is provided.
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1.2.1 free-space optical intensity channel

The simplest channel model for the optical communications based on IM-DD is the free-space optical

intensity channel. In this model, the corrupting noise is independent of the received optical intensity

by the photodetector device and follows a zero-mean Gaussian distribution [3, 2]. This Gaussian noise

accurately models the ambient light and the thermal noise existing in the optical channel and the electronic

devices at the receiver, respectively. However, it neglects the effect of the nonlinearities induced by the

optical devices and the photon counting process at the receiver. In this model, the addition of the channel

input and the Gaussian noise and is given by [2]

Y = X + Z, (1.3)

where Y denotes the channel output, X denotes the channel input and Z is the input-independent noise

following a zero-mean Gaussian distribution with variance σ2. Furthermore, since X is proportional to

the light intensity, it has to satisfy nonnegativity, peak- and average-intensity constraints due to practical

reasons [2]. Hence, X is constrained as 
0 ≤ X ≤ A,

E[X] ≤ E ,
(1.4)

where A and E are the peak- and average-intensity constraints, respectively, and E[X] denotes the average

value of X.

1.2.2 optical intensity channel with input-dependent Gaussian noise

A more accurate channel model than the free-space model that takes into account the additional

effects of the nonlinearities of the optical devices at the receiver, is the optical intensity channel with

input-dependent Gaussian noise [2, 5]. In this model, which is considered as the improved version of the

free-space model, the variance of the noise depends on the received optical intensity. Despite accurately

modeling the ambient light, thermal noise and the nonlinearities of the optical devices, this channel model

does not capture the effect of photon arrivals at the receiver. In this setup, the channel output Y is given

by [5]

Y = X +
√
XZ1 + Z0, (1.5)

where X is the channel input satisfying the constraints (1.4), Z0 and Z1 follow zero-mean Gaussian

distributions with variances σ2
0 and σ2

1 , respectively, and Z0, Z1 and X are independent of each other.
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1.2.3 Poisson Optical Channel

The most accurate channel model that can capture most of the optical channel impairments, is the

Poisson optical channel model. In this model, the output is a doubly stochastic Poisson process whose rate

is typically the intensity of the incident light (channel input) plus a constant “dark current”. Here, the

corrupting noise is called the dark current which follows a Poisson process with a constant rate [2, 6, 7].

Whether there are restrictions on the bandwidth of the input signal or not, the results regarding the

Poisson channel can be divided into two categories:

• The channel input can have as large as possible bandwidth (i.e., there is no restriction on the signal

bandwidth), but it has to satisfy the nonnegativity, peak- and average-intensity constraints. In this

model, the channel input signal is denoted by X(t). Given the channel input, the channel output

Y (t) is a Poisson Process with instantaneous rate X(t) + λ0 satisfying [6]

Pr {Y (t+ τ)− Y (t) = k|X(t)} =
e−Γ Γk

k!
, k = 1, 2, 3, . . . , (1.6)

where Γ =
∫ t+τ
t

(X(u) + λ0) du, τ ≥ 0 and λ0 ≥ 0 is the dark current. This model is referred to as

the continuous-time Poisson optical channel.

• In practical OWC systems, the channel input is restricted by bandwidth constraints in addition to

nonnegativity, peak- and average-intensity constraints. In this case, the transmitter modulates the

information bits onto continuous-time pulses of duration ∆ seconds, and the receiver preprocesses

the incoming continuous-time signal by integrating it over nonoverlapping intervals of length ∆.

Therefore, the intensity of the input signal is fixed in each time intervals of lenght ∆, but may

vary across different time intervals. In this setting, the channel input is a nonnegative sequence

{xk}, k = 1, 2, . . ., where xk corresponds to the fixed intensity of the input signal over the interval

[k∆, (k + 1)∆). The output is a sequence {Yk}, where Yk denotes the number of counts registered

during the interval [k∆, (k+1)∆). Therefore, conditioned on the channel input, Yk follows a Poisson

distribution with mean (xk +λ0)∆, where λ0 is the expected number of dark current counts during

the interval [k∆, (k + 1)∆). Since Yk depends only on xk for k = 1, 2, . . ., a memoryless setting

is obtained and the time index k can be dropped. This model is called the discrete-time Poisson

channel and the conditional probability mass function of the output Y given the input X = x is [7]

pY |X(y|x) = e−(x+λ0)∆ [(x+ λ0)∆]y

y!
, y = 0, 1, 2, . . . . (1.7)



7

where X must satisfy the constraints in (1.4).

1.3 Problem Statement

This Ph.D. dissertation tries to highlight the potential offered by OWC technologies in terms of in-

creasing the date-rate of existing networks, by leveraging spectrum resources in unlicensed bands. Due

to its specific properties, fundamentally different from those of its RF counterpart, deployment of OWC

systems requires first revisiting what is known about RF design guidelines. Do all RF communications

protocols and design guidelines extend naturally to OWC? What is the viability of OWC infrastructures

regarding security requirements? How to extend security mechanisms initially developed for RF commu-

nications to OWC?

This dissertation intends to answer the above questions, among others and plans to provide design

guidelines and protocols that are sustainable for OWC systems.

1.4 Prior Work

Information Theory studies the fundamental performance limits of any form of a communication

system. Information-theoretic studies helps us identify and extract the communication system design

guidelines to achieve the reliability and security goals. The channel capacity and the secrecy capacity

are two information-theoretic fundamental performance limits of communication systems. The channel

capacity refers to the maximum reliable data rate, i.e., the maximum data rate at which it is guaranteed

that the transmitted messages are received with a vanishingly small probability of error. The secrecy

capacity denotes the maximum reliable data rate at which the secret messages are received by a legitimate

receiver and yet the eavesdroppers cannot recover the messages.

The reliable and secure designs of OWC systems are rather difficult compared to RF systems. This

is because in OWC, the input signals must be nonnegative and they are subject to peak- and average-

intensity constraints (cf. equation (1.4)). On the other hand, in RF systems the transmitted signals can

be negative and are generally constrained by an average power, i.e.,

E[X2] ≤ P. (1.8)
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1.4.1 Reliability in Single-user OWC

Consider a single-user communication scenario in which a transmitter wishes to reliably communicate

messages to a receiver. In this setting, the objective is to identify the maximum reliable data rate

(capacity) and an efficient design to achieve this limit. This problem can be formulated as finding

solutions to the following optimization problem [9]

C
4
= sup
FX(x)

I(X;Y ) =

∫
X

∫
Y
p(y|x) log

p(y|x)

p(y;FX)
dy dFX(x), (1.9)

where FX(x) is the cumulative distribution function of the transmitted signal X and Y is the received

signal; p(y|x) is the conditional distribution of the output given the input and p(y;FX) is the distribution

function of the output induced by the input distribution; X and Y are the alphabet set of the transmitted

and the received signals, respectively. It is noteworthy that the optimal F ∗X(x), which is the solution

to (1.9), helps us identify efficient system design (e.g., coding/decoding, modulation/demodulation, etc.)

which achieves the capacity C.

In the context of RF communications, the transmitted signal X must satisfy (1.8) and the work

in [9] showed that Gaussian distribution is the solution to the optimization problem (1.9) and found a

closed-form expression of the capacity C.

However, in the context of OWC, the transmitted signals must be nonnegative and satisfy peak- and

average-intensity constraints (cf. equation (1.4)). Thus, a Gaussian distribution is not admissible in an

OWC setting because: 1) an input signal which is drawn from the Gaussian distribution can be negative;

2) there is no guarantee that a Gaussian distributed random variable satisfy peak- and average-intensity

constraints. In fact, for free-space optical channel, the optical channel with input-dependent Gaussian

noise, and the Poisson optical channels, the authors in [6, 7, 10] proved that the capacity-achieving

distribution F ∗X(x) is discrete with a finite number of mass points. Moreover, in general, there are no

closed-form expressions for the capacity of OWC systems.

1.4.2 Security in OWC Systems

The problem of secure communication systems has been conventionally addressed by cryptographic

encryption [11] without considering the imperfections introduced by the communication channel. In this

scheme, the usage of secret keys is the main approach for having secure communication. Wyner [12],

on the other hand, proved the possibility of secure communications without relying on encryption by

introducing the wiretap channel. In wiretap channels, secure communication is delivered without using
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Figure 1.5: Communication of a secret message W in presence of an eavesdropper.

any secret keys and by only leveraging the randomness in the communication channels, such as noise,

fading, and interference. A wiretap channel is formally defined as follows [12].

Definition 1. As illustrated in Figure 1.5, a wiretap channel consists of a transmitter, a legitimate

receiver, and an eavesdropper. In this channel, the transmitter wishes to transmit a confidential message

W to a legitimate receiver and wishes to keep this message as secret as possible from an eavesdropper.

An encoder at the transmitter maps the secret message W to channel input sequence Xn. Then the

input symbols are transmitted over the communication channel and they produce the output sequences

Y n at the legitimate receiver and Zn at the eavesdropper. The output sequences Y n and Zn are random

but have distributions that depends on the input sequence. These conditional distributions of the output

sequences Y n and Zn given the input sequence Xn are respectively denoted by p(Y n|Xn) and p(Zn|Xn).

Finally, the decoder at the legitimate receiver maps the channel output sequence Y n to an estimate of

the transmitted message Ŵ with a vanishingly small error probability Pr{W 6= Ŵ} ≤ ε. To have secure

communications, the encoder must be designed in such a way that the eavesdropper cannot decode and

infer the secret message W , which means that I(W ;Zn) ≤ ε.

Furthermore, a formal definition of a degraded wiretap channel is given below.

Definition 2. A wiretap channel is called degraded if the conditional joint probability of the output

sequences Y n and Zn given the input sequence Xn satisfies

p(Zn, Y n|Xn) = p(Y n|Xn) p(Zn|Xn), (1.10)

i.e., Xn and Zn are conditionally independent given Y n, or in other words, Xn, Y n and Zn form the

Markov chain Xn → Y n → Zn.

Definition 2 implies that in a wiretap channel, if the eavesdropper observes a degraded (noisier) version

of the signal obtained by the legitimate receiver, then the wiretap channel is degraded [12, 13].
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Consider a degraded wiretap channel in which a transmitter wishes to reliably communicate secret

messages to a legitimate receiver in the presence of an eavesdropper. In this setup, the objective is to

identify the maximum reliable and secure data rate (secrecy capacity) and an efficient design to achieve

this limit. This problem can formally be given as finding the solutions of [12, 13]

CS
4
= sup
FX(x)

[I(X;Y )− I(X;Z)] = sup
FX(x)

[ ∫
X

{∫
Y
p(y|x) log

p(y|x)

p(y;FX)
dy

−
∫
Z
p(z|x) log

p(z|x)

p(z;FX)
dz

}
dFX(x)

]
, (1.11)

where FX(x) is the probability distribution function of the transmitted signal X, Y and Z are the received

signals at the legitimate receiver and the eavesdropper, respectively; p(y|x) and p(z|x) are the conditional

distribution of the received signals Y and Z given the transmitted signal X, respectively; p(y;FX) and

p(z;FX) is the distribution functions of Y and Z induced by the input distribution, respectively; Y and Z

are the alphabet sets of the received signals Y and Z, respectively. Note that the optimal solution F ∗X(x)

helps us identify the efficient and secure system design (e.g., secure coding/decoding) which achieves the

secrecy capacity CS .

In the context of secure RF communications, the transmitted signal X must satisfy (1.8) and [13]

showed that Gaussian distribution is the solution of the optimization problem (1.11) and found a closed-

form expression of CS .

However, in the context of secure OWC, the transmitted signals must be nonnegative and satisfy peak-

and average-intensity constraints (cf. equation (1.4)), and Gaussian distributions are not admissible.

In fact, for the degraded free-space optical wiretap channel and the degraded continuous-time Poisson

wiretap channel, the authors in [14, 15] established that the secrecy-capacity-achieving distribution F ∗X(x)

is discrete with a finite number of mass points.

1.4.3 Reliability in Multiuser OWC

Multiuser communication refers to a scenario in which multiple transmitters communicate their mes-

sages with multiple receivers simultaneously. In this setting, the objective is to identify the maximum

reliable set of data rates (capacity region) and an efficient system design attaining these maximum data

rates.

As an example of a multiuser communication, consider a multiple access channel (MAC) in which two

transmitters wishes to communicate their messages to a common receiver simultaneously with communi-

cation rates R1 and R2, respectively. For this scenario, the set of maximum reliable data rates is called
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the capacity region and it can be given as the convex-hull of the union of all the reliable communication

rates satisfying [9] 
0 ≤ R1 ≤ supFX1

FX2
I(X1;Y |X2),

0 ≤ R2 ≤ supFX1
FX2

I(X2;Y |X1),

0 ≤ R1 +R2 ≤ supFX1
FX2

I(X1, X2;Y ).

(1.12)

where Xi, i ∈ {1, 2} is the transmitted signals from the transmitter i, i ∈ {1, 2}, Y is the received signal,

FXi , i ∈ {1, 2} is cumulative distribution function of Xi, i ∈ {1, 2}, and I(X1;Y |X2) is the conditional

mutual information between Y and X1 given X2.

In the context of RF communications, the transmitted signals X1 and X2 are subject to a power

constraint (1.8) and [9] showed that a bivariate Gaussian distribution attains the capacity region.

However, in the context of multiuser OWC, the transmitted signals are nonnegative and are subject

to peak- and average-intensity constraints (cf. equation (1.4)). Thus, Gaussian distributions are not

admissible. In fact, for the free-space optical MAC and the Poisson optical MAC, the authors in [14, 16, 17]

established that the capacity region is attained by discrete distributions with a finite number of mass

points.

1.5 Limitations of Current Solutions

1.5.1 Limitations of RF Solutions

With the increased interest in OWC based on IM-DD, it becomes natural to study the security and

reliability aspects of this communication methodology. Current research studies on RF systems do not

directly extend to OWC due to the physical restrictions existing in an OWC setting. For instance,

using a Gaussian input has been shown to be optimal for RF systems. It is known that Gaussian

distributions achieve both the capacity and the secrecy capacity of RF systems when an average power

constraint is imposed. However, this is not possible in an IM-DD system since the transmit signal has

to be nonnegative. Thus, the optimal input distribution that satisfies a nonnegativity constraint has

to be sought. Additionally, there is a natural constraint on the peak and average input signal which is

reflected as the peak and average optical intensities. These constraints make the problem of finding the

optimal input distributions fundamentally different from those studied in the literature. To overcome

this limitation, it is required to find input distributions that satisfy nonnegativity, peak- and average-

intensity constraints and achieve the capacity of the single-user OWC channels, secrecy capacity of the

optical wiretap channels, and the capacity region of multiuser OWC channels.
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Furthermore, since the capacity and the secrecy capacity of the majority of OWC channel models are

unknown in a closed-form expression, it is of great interest to characterize these performance limits in the

regimes where the constraints (peak- and average-intensity) tend to zero (low-intensity regime) or tend

to infinity (high-intensity regime). Unfortunately, the asymptotic analysis in the context of OWC is also

rather more complicated and challenging than RF. Most of the available asymptotic analysis relies on the

fact that Gaussian distributions are optimal under an average power constraint. However, if the transmit

signal is nonnegative and is subjected to peak- and average-intensity constraints, the characterization

techniques become fundamentally different, and necessitates new asymptotic analysis approaches.

1.5.2 Limitations of Existing OWC Solutions

Studying the communications performance limits of the considered channel models for OWC, i.e.,

free-space, input-dependent Gaussian noise, and Poisson noise models, from an information-theoretic

point of view is rather difficult due to the nonnegativity, peak- and average-intensity constrained input

signals. The single-user channel capacities of these channel models are shown to be achieved via discrete

input distributions with a finite number of mass points under nonnegativity, peak- and average-intensity

constraints [6, 7, 10, 18]. Furthermore, when the channel input is only constrained by nonnegativity

and average-intensity constraints, the capacity-achieving distributions for free-space channel [19] and

Poisson noise optical channel [20] are shown to be discrete but with an unbounded support set, i.e., the

support set of the optimal distributions are countably infinite. However, there are no results regarding

the characterization of the capacity-achieving input distributions for the input-dependent Gaussian noise

model. Finally, the single-user channel capacities of the considered optical channel models are only known

in closed-form in the low- or high-intensity regimes [5, 8, 21], and in general, there are no closed-form

characterization of the channel capacities.

The amount of studies regarding the secure design of OWC systems with different channel models

are less abundant compared to the studies on the reliable single-user system design. The existing works

are limited to the free-space optical wiretap channel with peak- and average-intensity constraints [14]

as well as the continuous-time Poisson wiretap channel with a peak-intensity constraint [15]. Authors

in [14] studied the free-space optical wiretap channel and proved that the entire rate-equivocation region

of this wiretap channel is attained by discrete input distributions with finitely many mass points, but

they did not provide any asymptotic analysis for the secrecy capacity. Additionally, [15] examined the

degraded continuous-time Poisson wiretap channel with a peak-intensity constraint and gave a closed-

form expression for the entire boundary of the rate-equivocation region. Particularly, the authors showed
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that binary input distributions with mass points located at the origin and the peak-intensity constraint

and with a very short duty cycle attain the boundary of the rate-equivocation region. However, there

are no results regarding the secrecy capacity and the rate-equivocation region of an input-dependent

Gaussian noise model or a discrete-time Poisson noise model.

Information-theoretic studies have also been performed for reliable multiuser OWC systems. For in-

stance, the work in [22] considered the free-space optical multiple access channel with nonnegativity and

peak-intensity constraints, and established that the boundary of the capacity region is obtained by distri-

butions that are discrete with a finite number of mass points. Furthermore, [23, 24] provided tight bounds

on the capacity region of free-space optical multiple access channel with peak- and average-intensity con-

straints across several intensity regimes (low, moderate, and high). Authors in [24] characterized the

capacity region of free-space optical multiple access channel with nonnegativity and average-intensity

constraints in the regime where the average-intensity tends to infinity. For a continuous-time Poisson

optical multiple access channel subject to peak- and average-intensity constraints, Lapidoth et al. es-

tablished the capacity region for the two-user case in a closed-form expression. The authors showed

that for achieving every point on the boundary of the capacity region, the input distributions for both

users must be binary with an infinite transmission bandwidth. The discrete-time Poisson optical multiple

access channel has also been considered in [16], where authors considered a two-user case and verified

the optimality of discrete inputs with a finite support set for achieving the sum-capacity when nonneg-

ativity and peak-intensity constraint are imposed. However, the authors did not verify whether or not

discrete input distributions exhaust the entire capacity region. Unfortunately, there are no studies on an

optical multiple access channel with an input-dependent Gaussian noise under nonnegativity, peak- and

average-intensity constraints. In particular, neither the optimal input distributions exhausting the entire

capacity region are known, nor does an asymptotic analysis of the capacity region exist.
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Chapter 2: Contributions

Optical wireless communication is an excellent candidate as a complementary or a backup technology

to RF communications for providing high data-rate connections. Nevertheless, due to its specific proper-

ties, fundamentally different from those of its RF counterpart, deployment of OWC systems requires first

revisiting what is known about RF design guidelines. Toward this end, this Ph.D. dissertation studies

the fundamental performance limits (e.g., capacity, secrecy capacity, and capacity region) of reliable and

secure OWC systems. These fundamental performance limits play a vital role in extracting guidelines

and communication protocols for designing reliable and secure OWC systems.

After establishing the fundamental performance limits of single-user and multiuser OWC scenarios,

powerful machine learning techniques, such as deep learning, are employed for the implementation of

OWC systems. In particular, a simple and cost-effective learning-based system with (near-)optimal

performance can be implemented by merely taking off-the-shelf deep learning models, applying them to

an OWC design problem, and tuning them based on the easily generated training data.

2.1 Contributions to Optical Wiretap Channel with Input-

Dependent Gaussian Noise Under the Peak- and Average-

Intensity Constraints

Chapter 3 studies the problem of design a secure and reliable OWC system with an input-dependent

Gaussian noise channel model. This input-dependent noise model is accurate scenarios when high power

optical intensity signals are considered [1, 2, 5]. Subject to nonnegativity and peak-intensity constraints

on the channel input, first, a practical optical wireless communication scenario for which the considered

wiretap channel is stochastically degraded is presented. It is shown that the secrecy-capacity-achieving

input distribution of the wiretap channel is discrete with a finite number of mass points, one of them

located at the origin. Moreover, it is established that the entire boundary of the rate-equivocation region

is also obtained by discrete input distributions with a finite number of mass points. Furthermore, the

optimality of discrete input distributions with finitely many mass points is established in the presence of

both peak- and average-intensity constraints. Finally, the asymptotic behavior of the secrecy capacity in

the low- and high-intensity regimes is analyzed. In the low-intensity regime, the secrecy capacity scales

quadratically with the peak-intensity constraint. On the other hand, in the high-intensity regime, the

secrecy capacity does not scale with the constraint.
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In this chapter, analytical results on the characterization of the optimal input distributions that

attain the fundamental performance limits (e.g. capacity, secrecy capacity, and rate-equivocation region)

of an input-dependent Gaussian noise optical wiretap channel are obtained. These results significantly

contribute to the current understanding of the fundamental limits of optical wireless communications with

secrecy constraints, advances the knowledge of the secure design of OWC systems in an input-dependent

Gaussian noise optical channel, and identify secure OWC protocols. Particularly, the chapter studies the

problem of secure and reliable OWC system when nonnegativity, peak- and average-intensity constrained

input signals are considered. The obtained results show that to achieve the maximum secure and reliable

data rate when communicating confidential data in an OWC setting over an input-dependent Gaussian

noise channel, the transmitted signals must be designed to have a discrete probability distribution with

a finite number of mass points [25].

2.2 Contributions to Optical Wiretap Channel with Input-

Dependent Gaussian Noise Under the Average-Intensity

Constraint

This chapter considers the problem of the secure and reliable design of OWC systems over an input-

dependent Gaussian noise channel when only nonnegativity and average-intensity constraints are con-

sidered. This is a practical assumption for scenarios where the input signals are not restricted by a

peak-intensity constraint. In this case, it is shown that the entire boundary of the rate-equivocation is

achieved by discrete input distributions with countably infinite support set, but with finitely many mass

points in any bounded interval. This implies that when the transmitted optical signals are restricted by

only an average-intensity constraint: 1) the secrecy capacity is achieved by a distribution which has a

countably infinite support set; 2) the single-user channel capacity (the case with no secrecy constraints)

is also achieved by a distribution having a countably infinite support set. Notice that these results are in

contrast to the case when both peak- and average-intensity constraints are active. In the latter case, the

support set of the optimal input distributions contains a finite number of mass points.

The results of this chapter significantly contribute to the current understanding of the fundamental

limits of optical wireless communications with secrecy constraints when only an average-intensity con-

straint is active and extracts design guidelines and protocols for a secure OWC over an input-dependent

Gaussian noise channel. Particularly, the obtained results show that to achieve the maximum secure and

reliable data rate when communicating confidential data in an OWC setting over an input-dependent
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Gaussian noise channel, the transmitted signals must be designed to have a discrete probability distribu-

tion along with an infinite number of mass points, but with finitely many mass points in any bounded

interval.

2.3 Contributions to Degraded Discrete-Time Poisson Wire-

tap Channel

Since the Poisson noise model is the most accurate model for the underlying OWC based on IM-

DD, studying the fundamental performance limits of such a model is of great importance. To this end,

a discrete-time Poisson wiretap channel subject to nonnegativity, peak- and average-intensity, as well

as bandwidth constraints, is considered. First, the secrecy-capacity-achieving input distribution of this

wiretap channel is proved to be discrete with a finite number of mass points. Furthermore, it is shown that

every point on the boundary of the rate-equivocation region of this wiretap channel is also obtained by a

discrete input distribution with finitely many mass points. Additionally, the analysis is extended to the

case where only an average-intensity constraint is active. In this case, it is found that the secrecy capacity,

as well as the entire boundary of the rate-equivocation region, are attained by discrete distributions with

a countably infinite number of mass points, but with finitely many mass points in any bounded interval.

Finally, an asymptotic analysis for characterizing the behavior of the secrecy capacity in the low-intensity

and high-intensity regimes is provided. It is observed that when peak- or both peak- and average-intensity

constraints are active the secrecy capacity scales quadratically with the peak-intensity constraint in the

low-intensity regime. However, in the high-intensity regime and when the legitimate receiver’s and the

eavesdropper’s channel gains are identical, the secrecy capacity does not scale with the constraints and

hence, it is a constant value. Moreover, when the channel gains are different, the secrecy capacity cannot

scale faster than the logarithm of the square root of the constraints.

This chapter studies the most accurate, yet the most difficult channel model for OWC, i.e., discrete-

time Poisson. The problem of extracting design guidelines and protocols for a reliable and secure OWC

over the discrete-time Poisson wiretap channel has been an open problem for about 40 years since Davis

introduced the Poisson noise channel model for OWC in 1980 [6]. This chapter successfully addresses this

challenging problem and fully characterizes a reliable and secure signal design for OWC over a discrete-

time Poisson channel. More specifically, this chapter establishes that to have secure and reliable OWC

over the discrete-time Poisson noise channel, the transmitted signals must be designed to have discrete

probability distributions with a finite number of mass points when nonnegativity, peak- and average-

intensity constraints are active [26]. Furthermore, in the absence of a peak-intensity constraint, the input
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signals must follow discrete probability distributions with an infinite number of mass points, but with

finitely many mass points in any bounded interval.

Furthermore, this chapter addresses a conjecture that was first introduced in 1988 by Shamai [7]

regarding the capacity-achieving-distributions of the discrete-time Poisson channel under an average-

intensity constraint. In his paper, Shamai conjectured that the capacity-achieving-distribution of this

channel under nonnegativity and average-intensity constraints is discrete with an infinite number of

mass points, but he did not provide any formal proof. This chapter formally proves the conjecture and

characterizes the capacity-achieving distribution to be discrete with an infinite number of mass points,

but with finitely many mass points in any bounded interval.

2.4 Contributions to Optical Multiple Access Channel with

an Input-Dependent Gaussian Noise

Designing reliable multiuser wireless communication systems is more challenging compared to its

single-user counterpart. This is because multiple transmitters simultaneously send their messages to

multiple receivers, and therefore, cause harmful interference to the ongoing communications. This chapter

considers a multiuser scenario in an OWC setting, namely, an optical multiple access channel with an

input-dependent Gaussian noise. In this setup, two optical transmitters wish to simultaneously and

reliably communicate their messages to a common optical receiver when nonnegativity, peak- and average-

intensity constraints are considered for signal transmission. This scenario applies to several optical

wireless links, most notably, space optical communications as well as Li-Fi systems. Under nonnegativity,

peak- and average-intensity constraints, it is shown that generating code-books of both users according to

discrete distributions with finitely many mass points achieve any point on the boundary of the capacity

region [27]. Furthermore, an asymptotic analysis of the capacity region is conducted in the low-intensity

regime, where the capacity region is explicitly presented in a closed-form expression and it is shown

that binary distributions with mass points at the origin and the peak-intensity constraint are optimal.

Numerical results indicate that due to the existence of an input-dependent noise component, the geometry

of the capacity region under nonnegativity, peak- and average-intensity constraints is not a pentagon as

opposed to the case of the Gaussian multiple access channel with peak- and/or average-power constraints.

In particular, this chapter advances the knowledge of reliable system design in a multiuser OWC

setting. It is shown that designing the transmitted signals of both users based on discrete probability

distributions with a finite number of mass points results in the best reliable and simultaneous commu-

nication performance when an input-dependent Gaussian noise model is considered for the underlying
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OWC.

2.5 Contributions to Learning-Based Optical Wireless Com-

munication Systems

Studying the communications performance limits of OWC is rather difficult compared to its RF

counterpart. The reason is that the transmitted signals must satisfy nonnegativity, peak- and average-

intensity constraints due to the physical restrictions existing in the optical wireless channels. More

importantly, traditional approaches used in constructing the signal constellations for RF channels cannot

be applied directly to the optical channels due to the mentioned constraints. Therefore, one should

consider designing a structured optical signal-space model that can capture all the physical restrictions

in an OWC setting. This task is not straightforward and heavily depends on the considered optical channel

model. Hence, seeking communications techniques (such as modulation, coding, decoding, etc.) that do

not heavily depend on an existing channel model is quite appealing. Motivated by the success of learning-

based autoencoders in capturing the end-to-end performance of the RF communications system, this

chapter proposes a reliable design of the OWC systems in both single-user and multiuser settings based

on the deep neural network structures. For each of these scenarios, a deep neural network structure is built

and trained to capture the end-to-end performance of an OWC system. According to the obtained results,

the learning-based OWC can perform as well as the model-based counterpart. In particular, a simple and

cost-effective learning-based system with (near-)optimal performance is proposed and is implemented by

merely taking off-the-shelf deep learning models, applying them to an OWC design problem, and tuning

them based on the easily generated training data. According to the obtained results, the learning-based

OWC can perform as reliable as the model-based counterpart [28].

The proposed learning-based structures can capture the end-to-end performance of both single-user

and multiuser OWC systems and through proper training, they can lead to a system design that performs

as reliably as the model-based OWC systems. Therefore, this chapter advances the knowledge of reliable

OWC system design by investigating the potential of applying machine learning methods to OWC sys-

tems and proves that a simple and cost-effective OWC that is designed entirely based on deep learning

algorithms can provide a reliable single-user and multiuser OWC.

2.6 Dissertation Structure

The balance of this dissertation is organized as follows.
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Chapter 3 studies the optical wiretap channel with an input-dependent Gaussian noise component,

in which the main distortion is caused by an additive Gaussian noise whose variance depends on the

current signal strength. Subject to nonnegativity, peak- and average-intensity constraints, it is shown

that optimal input distributions achieving the secrecy capacity as well as any point on the boundary

of the rate-equivocation region are discrete with finitely many mass points. Furthermore, the secrecy

capacity is analyzed in low- and high-intensity regimes.

Chapter 4 considers the optical wiretap channel with an input-dependent Gaussian noise when only

an average-intensity constraint is active. It is established that any point on the boundary of the rate-

equivocation region is attained by discrete input distributions with a countably infinite number of mass

points, but with finitely many mass points in any bounded interval. This result implies that when the

transmitted optical signals are restricted by nonnegativity and average-intensity constraints, the secrecy

capacity and the capacity are achieved by discrete distributions with a countably infinite number of mass

point, but with finitely many mass points in any bounded interval.

Chapter 5 provides an analytical characterization of the optimal input distributions achieving the

secrecy capacity as well as the boundary of the rate-equivocation region of the discrete-time Poisson

wiretap channel under nonnegativity, peak- and/or average-intensity constraints. It is shown that when

both peak- and average-intensity constraints are active, optimal distributions are discrete with a finite

support set. However, when only an average-intensity constraint is considered, optimal distributions

are discrete with a countably infinite number of mass points. Additionally, the behavior of the secrecy

capacity is analyzed in the low- and high-intensity regimes.

In Chapter 6, the two-user optical multiple access channel with an input-dependent Gaussian noise

component is investigated. It is shown that to achieve any point on the boundary of the capacity region,

input distributions must be chosen to be discrete with finitely many mass points. Moreover, in the

low-intensity regime, the capacity regime is explicitly characterized in a closed-form expression.

Chapter 7 proposes the design of reliable single-user and multiuser OWC systems entirely based on

deep neural network autoencoders. This chapter compares the end-to-end performance of the proposed

autoencoders (learning-based OWC systems) with the state-of-the-art model-based OWC systems in

terms of the block error rate (BLER) performance metric. The obtained numerical results indicate that

the proposed learning-based OWC system can perform as good as the model-based counterparts in both

single- and multiuser settings.

Finally, Chapter 8 presents concluding remarks and suggestions for future work.
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Chapter 3: Optical Wiretap Channel with

Input-Dependent Gaussian Noise Under Peak- and

Average-Intensity Constraints

M. Soltani and Z. Rezki, “Optical Wiretap Channel with Input-Dependent Gaussian Noise Under Peak-

and Average-Intensity Constraints,” in IEEE Transactions on Information Theory, vol. 64, no. 10, pp.

6878-6893, Oct. 2018.

M. Soltani and Z. Rezki, “Optical Wiretap Channel with Input-Dependent Gaussian Noise Under Peak

Intensity Constraint,” in Proceedings of the IEEE International Zurich Seminar on Information and

Communication (IZS’2018), Zurich, Switzerland, Feb. 2018.

3.1 Introduction

Optical wireless communication (OWC) is a promising technique for supporting high data-rate com-

munication as a complementary or a backup technology to radio-frequency (RF) communications. It

has numerous advantages in comparison to RF, including higher data-rates, more abundant unlicensed

spectrum and being less demanding in terms of system infrastructure.

One of the most popular communication techniques used in OWC is the intensity modulation and

direct detection (IM-DD) technique for its simplicity [2]. In this setup, the channel input modulates

the intensity of the emitted light. Thus, the input signal is proportional to the light intensity and is

nonnegative. The receiver is usually equipped with a photodetector (PD) which measures the intensity of

the received light and generates a signal proportional to the detected intensity, corrupted by noise. The

simplest existing channel model for OWC is the free-space optical (FSO) channel, where the corrupting

noise at the receiver is independent of the input signal [3]. To reflect a more accurate channel model

for OWC, [5] assumes the corrupting noise to be dependent on the input signal (due to the random

nature of photon emission in the laser diode) and derives asymptotic upper and lower bounds on the

capacity under nonnegativity, peak- and average-intensity constraints. The work in [10] also focuses on

the optical intensity channels with input-dependent Gaussian noise and proves that under peak- and

average-intensity constraints, discrete input distributions with finite supports are capacity-achieving.

Exchanging confidential information over a communication medium (wired, wireless or optical) in

the presence of unauthorized eavesdroppers has been always a challenging problem for system designers.

This problem has been conventionally addressed by cryptographic encryption [11] without considering
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the imperfections introduced by the communication channel. In this model, the usage of secret keys is the

main approach for having secure communication. Wyner [12], on the other hand, proves the possibility of

secure communications without relying on encryption by introducing the stochastically degraded wiretap

channel model.

The wiretap channels are studied with respect to the rate-equivocation region, which is defined as

the set of rate pairs for which the transmitter can communicate confidential messages reliably with a

legitimate receiver while ensuring a certain secrecy level against an eavesdropper [29]. For the class of

degraded wiretap channels, it is established in [12] that there exists a single-letter characterization for the

rate-equivocation region. Authors in [30] study the Gaussian wiretap channel under an average power

constraint and obtain a single-letter expression for the entire rate-equivocation region. Particularly, they

show that under an average power constraint, the Gaussian distribution is the optimal input distribution

for attaining both the capacity and the secrecy capacity with no compromise between the communication

rate and the equivocation rate at the eavesdropper. On the other hand, under a peak-power constraint, the

work in [14] proves that the entire rate-equivocation region of the Gaussian wiretap channel is achieved by

discrete input distributions with finite supports. More specifically, the secrecy-capacity-achieving input

distribution may not be identical to the capacity-achieving counterpart in general, resulting in a tradeoff

between the rate and its equivocation.

This chapter considers an optical wiretap channel with input-dependent Gaussian noise which con-

sists of a transmitter, a legitimate user and an eavesdropper. We assume that the output signals at

both the legitimate user’s and the eavesdropper’s channels are corrupted by both input-dependent and

input-independent Gaussian noises. In this setup, the objective is to have a secure communication with

the legitimate user over an optical channel while keeping the eavesdropper ignorant of the transmitted

message as much as possible. We study the optical wiretap channel with input-dependent Gaussian noise

under nonnegativity, peak- and average-intensity constraints. We first present a practical OWC scenario

based on IM-DD technique for which the optical wiretap channel with input-dependent Gaussian noise

is stochastically degraded. We then use the results in [12] to conclude that there exists a single-letter

expression for the entire rate-equivocation region. Next, a functional optimization problem is employed

to obtain necessary and sufficient conditions, also known as Karush-Kuhn-Tucker (KKT) conditions, for

the optimal input distribution. Using KKT conditions, it is proved by contradiction that the secrecy

capacity and the entire rate-equivocation region of this wiretap channel are obtained by discrete input

distributions with a finite number of mass points. Finally, an asymptotic analysis of the secrecy capacity

in the low- and high-intensity regime is presented. More specifically, it is observed that in the low-intensity

regime, the secrecy capacity is achieved by a binary input distribution and it scales quadratically with the
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peak-intensity constraint. In the high-intensity regime, the secrecy capacity can be upper-bounded by a

constant value implying that it does not scale with the constraints. The numerical results demonstrate

that similar to the case of the Gaussian wiretap channel under a peak-power constraint, here too, the

secrecy capacity and the capacity are not achieved by the same distribution in general. This, in turn,

implies that there is a tradeoff between the rate and its equivocation.

In the case of the optical wiretap channel with input-dependent Gaussian noise, due to the existence

of input-dependent noise components, our technical proofs differ from those of [14]. More specifically,

our analysis for showing the analyticity of the mutual information densities are more challenging. Addi-

tionally, our contradiction statements for proving the discreteness of the optimal input distribution are

different. Besides, it is proved that the secrecy-capacity-achieving input distribution has a mass point at

the origin for the case of peak-intensity constraint and the case of peak- and average-intensity constraints.

3.2 System Model

We consider a practical OWC system where IM-DD is employed for optical communication. In this

setup, the channel input modulates the emitted light intensity from Light Emitting Diode (LED) at the

transmitter and PDs are used for receiving the optical signal at the legitimate user’s and eavesdropper’s

receivers. We assume that there exist line-of-sight (LoS) paths between the optical transmitter and the

receivers. In such a scenario, the received power of the LoS path dominates the received power of the

reflected paths. Hence, the optical wireless channel between the transmitter and the legitimate user and

between the transmitter and the eavesdropper become LoS channels [31, Chapter 2]. Figure 3.1 shows

the geometry of an LoS OWC link with arbitrary receiver orientation. The LoS optical wireless channels

between the transmitter and the legitimate user and between the transmitter and the eavesdropper are

denoted by positive reals h and g, respectively, and are given by [31, Chapter 2]

h =


(m+ 1)AB

2πd2
B

cosm(θB) cos(ψB) fB kB, if 0 ≤ ψB ≤ ΨB,

0, if ψB > ΨB,

(3.1)

g =


(m+ 1)AE

2πd2
E

cosm(θE) cos(ψE) fE kE, if 0 ≤ ψE ≤ ΨE,

0, if ψE > ΨE,

(3.2)
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Figure 3.1: Geometry of a line of sight optical wireless link.

where m is the order of Lambertian emission, which depends on the semiangle at half illuminance of the

LED Ψ1/2 and is given by

m = − ln(2)

ln
(
cos
(
Ψ1/2

)) . (3.3)

The indices B and E stand for the legitimate user Bob and the eavesdropper Eve; dB and dE are the dis-

tances between the transmitter and the legitimate user and between the transmitter and the eavesdropper,

respectively; AB and AE are the physical areas of the PDs at the legitimate user and the eavesdropper,

respectively; θB ∈ [0, π/2) and θE ∈ [0, π/2) are the angles between the emitted light and the normal to

the LED surface toward the legitimate receiver and the eavesdropper, respectively; ψB and ψE are the

incident angle at the legitimate user and the eavesdropper, respectively; ΨB ∈ [0, π/2) and ΨE ∈ [0, π/2)

are the concentrator field-of-view (FoV) of the legitimate user and the eavesdropper, respectively; fB,

kB, fE and kE denote the optical filter gain and the concentrator gain of the legitimate user and the

eavesdropper, respectively, and are assumed to be constant over their respective FoVs. An LoS IM-DD

optical wireless link with input-dependent Gaussian noise from the transmitter to the legitimate user and

from the transmitter to the eavesdropper can be respectively modeled as [31, Chapter 7]


Ỹ = hX +

√
hXÑB,1 + ÑB,1,

Z̃ = gX +
√
gXÑE,1 + ÑE,0,

(3.4)

where X is the channel input ant it is a nonnegative random variable representing the intensity of the

optical signal. Moreover, due to practical and safety restrictions, the input intensity is constrained by a
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Figure 3.2: The optical wiretap channel with input-dependent Gaussian noise.

peak constraint in general, i.e., X ≤ A [2]. Therefore, the channel input is constrained as

0 ≤ X ≤ A. (3.5)

Ỹ and Z̃ are the received optical signals at the legitimate user and the eavesdropper, respectively. h

and g are the LoS channel gains between the transmitter and the legitimate user and between the

transmitter and the eavesdropper, respectively, and are given by (3.1)–(3.2). ÑB,0 ∼ N (0, σ̃2
B,0) and

ÑB,1 ∼ N (0, σ̃2
B,1) are the input-independent and input-dependent Gaussian noise components at the

legitimate receiver, respectively, and are assumed to be independent. Similarly, ÑE,0 ∼ N (0, σ̃2
E,0) and

ÑE,1 ∼ N (0, σ̃2
E,1) are the input-independent and input-dependent Gaussian noise components at the

eavesdropper, respectively and are assumed to be independent. Furthermore, ÑB,0 and ÑE,0 are also

assumed to be independent. We note that the input-dependent noise in (3.4) is due to the nonlinearity

in the optical channel [31, Chapter 7]. Figure 3.2 depicts an optical wiretap channel that is equivalent to

the optical wiretap channel described by (3.4). In this equivalent wiretap channel, each link is an optical

channel with input-dependent Gaussian noise model and is given by [5]


Y = X +

√
XNB,1 +NB,0,

Z = X +
√
XNE,1 +NE,0,

(3.6)

where Y = Ỹ
h , Z = Z̃

g , NB,0 ∼ N (0, σ2
B), NB,1 ∼ N (0, σ2

Bη
2
B), NE,0 ∼ N (0, σ2

E) and NE,1 ∼ N (0, σ2
Eη

2
E)

with σ2
B =

σ̃2
B,0

h2 , η2
B =

σ̃2
B,1

σ̃2
B,0
h, σ2

E =
σ̃2
E,0

g2 , and η2
E =

σ̃2
E,1

σ̃2
E,0
g, respectively. The variables η2

B and η2
E

denote the ratios of the input-dependent noise variances to the input-independent noise variances of the

legitimate user’s and the eavesdropper’s channels, respectively. Notice that changing the orientation
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of the transmitter with respect to the legitimate receiver’s and the eavesdropper’s positions affects the

channel gains h and g through ψB, θB, ψE, θE, respectively. We note that if the system parameters satisfy

cos(ψB)

cos(ψE)

[
cos(θB)

cos(θE)

]m
=
σ̃2

B,1

σ̃2
E,1

d2
BE ρEB, (3.7)

where d2
BE =

d2B
d2E

and ρEB = AEfEkE
ABfBkB

, then, using (3.1)–(3.2), one obtains

σ2
Bη

2
B = σ2

Eη
2
E, (3.8)

which implies that the input-dependent noise components in both channels are statistically equivalent.

One can show via numerical inspections that (3.8) might be satisfied for various system parameters θB,

ψB, θE, ψE, σ̃2
B,1, σ̃2

E,1, d2
BE and ρEB. This implies that in such cases, NB,1 and NE,1 are statistically

equivalent and the optical wiretap channel with input-dependent Gaussian noise can be stochastically

degraded.

In the sequel, without loss of generality, the wiretap channel described by (3.6) whose input is X and

whose outputs are Y and Z, at the legitimate receiver and the eavesdropper, respectively, is considered. In

this optical wiretap channel, if σ2
B < σ2

E and σ2
Bη

2
B = σ2

Eη
2
E, then the random variables X, Y and Z form

the Markov chain X → Y → Z and consequently the optical wiretap channel becomes stochastically

degraded. As a result, the rate-equivocation region of such an optical channel can be expressed in a

single-letter form due to[12]. Furthermore, under the conditions σ2
B ≥ σ2

E and σ2
Bη

2
B = σ2

Eη
2
E, the random

variables X, Y and Z form the Markov chain X → Z → Y , from which it can be easily inferred that the

secrecy capacity (defined later in this section) is equal to zero.

3.2.1 The Characterization of the Rate-Equivocation Region

An (n, 2nR) code for the peak-intensity-constrained optical wiretap channel with input-dependent

Gaussian noise consists of the random variable W (message set) uniformly distributed over the set W =

{1, 2, . . . , 2nR}, an encoder at the transmitter fn : W → [0, A]
n

satisfying the nonnegativity and peak-

intensity constraints, and a decoder at the legitimate user gn : Rn → W. The equivocation of the

confidential message W is defined as the eavesdropper’s uncertainty about W and is measured by the

normalized conditional entropy 1
n H(W |Zn). The probability of error for such a code is defined as

Pne = Pr {gn(Y n) 6= W}. A rate-equivocation pair (R,Req) is said to be achievable if there exists an
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(n, 2nR) code satisfying

lim
n→∞

Pne = 0, (3.9)

Req ≤ lim
n→∞

1

n
H(W |Zn). (3.10)

The rate-equivocation region consists of all achievable rate-equivocation pairs, and is denoted by E .

A rate R is said to be perfectly secure if Req = R, i.e., if there exists an (n, 2nR) code satisfying

limn→∞
1
n I(W ;Zn) = 0. The supremum of such rates is defined to be the secrecy capacity and denoted

by CS.

Since under the assumption of σ2
Bη

2
B = σ2

Eη
2
E and σ2

E > σ2
B, the optical wiretap channel with input-

dependent Gaussian noise under nonnegativity and peak-intensity constraints is stochastically degraded,

its entire rate-equivocation region E can be expressed in a single-letter expression and the entire rate-

equivocation region of the this wiretap channel is given by the union of the rate-equivocation pairs

(R,Req) such that [12]

R ≤ I(X;Y ), (3.11)

Req ≤ I(X;Y )− I(X;Z), (3.12)

for some input distribution FX ∈ A+, where I(X;Y ) and I(X;Z) are the mutual information of the

legitimate user’s and the eavesdropper’s channels, respectively, and the feasible set A+ is given by

A+ 4=

{
FX :

∫ A

0

dFX(x) = 1

}
. (3.13)

3.3 Main Results

In this section, main results related to the optical wiretap channel with input-dependent Gaussian

noise under nonnegativity and peak-intensity constraints are given. We first focus on the secrecy capacity

and prove the discreteness of the secrecy-capacity-achieving input distribution. We then establish that

the entire rate-equivocation region of this wiretap channel is also obtained by discrete input distributions

with finite supports.
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3.3.1 Results on the Secrecy Capacity

The secrecy capacity of the optical wiretap channel with input-dependent Gaussian noise under non-

negativity and peak-intensity constraints is given by the solution of the following optimization problem

max
FX∈A+

g0(FX), (3.14)

where g0(FX) = I(X;Y )− I(X;Z). Under the constraint (3.5), the solution of (3.14) is discrete with a

finite support as stated by Theorem 1.

Theorem 1. There exists a unique input distribution that attains the secrecy capacity of the optical

wiretap channel with input-dependent Gaussian noise under nonnegativity and peak-intensity constraints.

Furthermore, the support set of this optimal input distribution is a finite set.

Proof. The proof is provided in Appendix A. �

To prove Theorem 1, first, it is shown that the set of input distributions A+ that satisfies (3.13), is

compact and convex. We then show that the objective function in (3.14) is continuous, strictly concave

and weakly differentiable in the input distribution FX and hence one concludes that the solution to the

optimization problem (3.14) exists and is unique. We continue the proof by deriving the necessary and

sufficient conditions (KKT conditions) for the optimality of the optimal input distribution F ∗X and finally

by means of contradiction it is shown that this optimal input distribution is discrete with a finite number

of mass points. Unlike the case of the Gaussian wiretap channel under a peak-power constraint, where

the corrupting noise components are assumed to be independent from channel input [14], the existence of

input-dependent noise components in the optical wiretap channel with input-dependent Gaussian noise

results in several challenging problems: 1) The conditions under which this wiretap channel under a

peak-intensity constraint becomes stochastically degraded is different than that of [14]; 2) The proof of

the analyticity of the mutual information density functions are different from those presented in [14]; 3)

The technical steps for proving the discreteness of the solution to problem (3.14) are different from those

utilized in [14] and cannot be generalized to those cases.

Next, the existence of a mass point at x = 0 in the support set of the secrecy-capacity-achieving input

distribution is established.

Proposition 1. Let SF∗X be the support set of the secrecy-capacity-achieving input distribution F ∗X for

the optical wiretap channel with input-dependent Gaussian noise under nonnegativity and peak-intensity

constraints. Then x = 0 always belongs to SF∗X .



28

Proof. The proof is presented in Appendix A. �

It is worth mentioning that the existence of a mass point at the origin has also been established

in [10] for the optical channel with input-dependent Gaussian noise, but with no secrecy constraints.

Furthermore, the proof of Proposition 1 also holds true for the case where η2
B = η2

E = 0, i.e., the optical

wiretap channel with input-independent Gaussian noise.

3.3.2 Results on the Rate-Equivocation Region

By a time-sharing argument, it can be shown that the rate-equivocation region of the optical wiretap

channel with input-dependent Gaussian noise is convex. Therefore, the region can be characterized by

finding tangent lines to E , which are given by the solutions of

max
FX∈A+

gλ(FX), (3.15)

where gλ(FX) = λI(X;Y ) + (1 − λ) [I(X;Y )− I(X;Z)], for all λ ∈ [0, 1]. Next, it is verified that the

entire rate-equivocation region of the optical wiretap channel with input-dependent Gaussian noise under

the constraints (3.5) is also obtained by discrete input distributions with finite supports.

Theorem 2. There exists a unique input distribution that achieves the boundary of the rate-equivocation

region of the optical wiretap channel with input-dependent Gaussian noise under nonnegativity and peak-

intensity constraints. This optimal input distribution is discrete with a finite support.

Proof. Theorem 2 is established in Appendix A. �

It is worth noting that for the case when η2
B = η2

E = 0 (i.e., for the optical wiretap channel with input-

independent Gaussian noise), an approach similar to the one in [14] can be used to prove the discreteness

of the optimal solutions (3.14) and (3.15). An interesting observation is that our contradiction argument

for proving the discreteness of the optimal solutions of (3.14) and (3.15) (Equations (A.54)–(A.63)), when

η2
B, η

2
E 6= 0 cannot be generalized to the case when η2

B = η2
E = 0. A similar observation has been made

in [10], but for the case with no secrecy constraint.

3.4 asymptotic results for a peak-intensity constraint

This section provides the asymptotic analysis on the secrecy capacity of the optical wiretap channel

with input-dependent Gaussian noise under nonnegativity and peak-intensity constraints. First, the
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secrecy capacity is investigated for asymptotically small values of A. Second, it is proved that for high-

intensity regime, the secrecy capacity can be bounded by a constant value implying that it does not scale

with the peak-intensity constraint in this regime.

3.4.1 Low-Intensity Results

For relatively small values of the peak-intensity constraint A, one can use the results shown in [32] to

get

I(X;Y )− I(X;Z) =
1

2
[JB(0)− JE(0)] Var (X) + o(A2), (3.16)

where o(A2) denotes a term that tends to 0 faster than A2, Var (X) is the variance of the random variable

X, JB(0) and JE(0) denote the Fisher information of the legitimate user’s and wiretap channel at 0 and

J(x) is given by

J(x) =

∫
y

(
d
dxp(y|x)

)2
p(y|x)

dy. (3.17)

For the channel laws (A.3) and (A.4), one can write

JB(x) =
2 + η4

Bσ
2
B + 2η2

Bx

2σ2
B(1 + η2

Bx)2
, (3.18)

JE(x) =
2 + η4

Eσ
2
E + 2η2

Ex

2σ2
E(1 + η2

Ex)2
, (3.19)

such that

JB(0) =
2 + η4

Bσ
2
B

2σ2
B

, (3.20)

JE(0) =
2 + η4

Eσ
2
E

2σ2
E

. (3.21)

Therefore, for small values of A, the secrecy capacity is

CS =
1

2
[JB(0)− JE(0)] max

FX∈A+
Var (X) + o(A2). (3.22)

Proposition 2. In the regime A � 1, the secrecy capacity under the peak-intensity constraint is as

follows

CS(A) =
A2

8

(
1

σ2
B

− 1

σ2
E

+
1

2
(η4

B − η4
E)

)
+ o(A2). (3.23)

Proof. See Appendix B. �
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Proposition 2 indicates the secrecy capacity to be a quadratic function of the peak-intensity constraint

A in the low-intensity regime. Furthermore, as shown in Appendix B, under constraint (3.5), two mass

points located at 0 and A with equal probabilities are optimal in this regime.

3.4.2 High-Intensity Results

In this section, an upper bound on the secrecy capacity that holds for any value of A is presented.

Based on (A.40), the secrecy capacity can be simplified as

CS = hY (F ∗X)− hZ(F ∗X) +
1

2
log

(
σ2

E

σ2
B

)
+

1

2
EF∗X

[
log

(
1 + η2

Ex

1 + η2
Bx

)]
. (3.24)

Since the optical wiretap channel with input-dependent Gaussian noise is stochastically degraded and

based on the fact that σ2
Eη

2
E = σ2

Bη
2
B and σ2

E > σ2
B, one can write Z = Y + ND for some zero-mean

Gaussian random variable ND with variance σ2
D = σ2

E − σ2
B. Therefore, h(Z) > h(Z|ND) = h(Y ) and

consequently h(Z) > h(Y ) for any nontrivial input distribution F ∗X . Furthermore, as η2
E < η2

B and x ≥ 0,

one finds 1
2EF∗X

[
log
(

1+η2Ex

1+η2Bx

)]
≤ 0. As a result, CS ≤ 1

2 log
(
σ2
E

σ2
B

)
for any value of A. This, in turn,

implies that the secrecy capacity in the regime A→∞ does not scale with the peak-intensity constraint

A and converges to a real and positive constant, i.e.,

CS(A) = O(1), (3.25)

where O(1) is a function such that for large enough A, the secrecy capacity is at most if k0, for some real

number k0 > 0.

3.5 The case of peak- and average-intensity constraints

In this section, the discreteness of the optimal input distribution is generalized to the case when an

additional average-intensity constraint is imposed on the channel input. First, the Theorems 1 and 2

are generalized to the case when both peak- and average-intensity constraints are active by establishing

parallels to the proof of these theorems. Let the average intensity constraint be P . The new feasible set

for the input distribution is

M+ 4=

{
FX :

∫ A

0

dFX(x) = 1,

∫ A

0

x dFX(x) ≤ P

}
. (3.26)
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We first consider the secrecy capacity

CS = max
FX∈M+

[I(X;Y )− I(X;Z)]. (3.27)

Similar to the lines provided for the proof of Theorem 1, here too, the mutual information difference

I(X;Y )−I(X;Z) is strictly concave and continuous in the input distribution FX . Furthermore,M+ is a

compact and convex set [33, Appendix A.1]. Thus the necessary and sufficient conditions in (A.38)–(A.39)

take the new form

req(x;F ∗X)− γx ≤ CS − γ E [X] , ∀x ∈ [0, A], (3.28)

req(x;F ∗X)− γx = CS − γ E [X] , ∀x ∈ SF∗X , (3.29)

γ (E [X]− P ) = 0, (3.30)

for some γ ≥ 0. Assuming that the average intensity constraint is tight, we have γ > 0. For the case of

γ = 0, the only imposed constraints are the nonnegativity and peak-intensity constraints and we have

already proven in Theorem 1 that the optimal input distribution is discrete. Hence, (3.28)–(3.30) can be

rewritten as

req(x;F ∗X)− γx ≤ CS − γ E [X] , ∀x ∈ [0, A], (3.31)

req(x;F ∗X)− γx = CS − γ E [X] , ∀x ∈ SF∗X , (3.32)

E [X] = P. (3.33)

Next, it is proved by contradiction that the optimal input distribution F ∗X satisfying (3.31)–(3.33) must

be discrete with a finite number of mass points. To this end, let SF∗X have an infinite number of elements.

In view of the optimality condition (3.31)–(3.33), the analyticity of req(w;FX) and w over D and the

Identity Theorem of complex analysis, along with the Bolzano-Weierstrass Theorem, if SF∗X has an infinite

number of mass points, one gets req(w;F ∗X)− γ w = CS − γ P for all w ∈ D, which results in

req(x;F ∗X)− γ x = CS − γ P, x ∈ (−1/η2
B,+∞), (3.34)

E [X] = P. (3.35)
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Using the bounds given in (A.57)–(A.58), one can write

L ≤ CS − γ P + γ x+
1

2
log

(
σ2

B(1 + η2
Bx)

σ2
E(1 + η2

Ex)

)
≤ U. (3.36)

Defining a convergent sequence of distinct points {xn}n∈N in S with a limit point x0 = −1/η2
B, we have:

1) xn and σ2
B(1 + η2

Bxn) are real for all positive integers n; 2) limn→∞ σ2
B(1 + η2

Bxn) = 0. Following the

results in [10, Theorem 3] and using (3.36) one can write

lim
n→∞

(L− CS) ≤ lim
n→∞

[
γ xn − γ P +

1

2
log

(
σ2

B(1 + η2
Bxn)

σ2
E(1 + η2

Exn)

)]
≤ lim
n→∞

(U − CS). (3.37)

Since limn→∞
1
2 log

(
σ2
B(1+η2Bxn)

σ2
E(1+η2Exn)

)
= −∞ and L−CS is a finite value, a contradiction occurs. This, in turn,

implies that the support set SF∗X cannot have an infinite number of mass points and therefore the optimal

input distribution F ∗X under the nonnegativity, peak- and average-intensity constraints, is also discrete

with a finite number of mass points. Additionally, following along similar lines as in Proposition 1, one

can prove that x = 0 belongs to the support set SF∗X of the secrecy-capacity-achieving input distribution

with peak- and average-intensity constraints.

Finally, this contradiction argument is extended to the entire rate-equivocation region. Consider the

optimization problem for determining the boundary point of the rate-equivocation region

max
FX∈M+

{λ I(X;Y ) + (1− λ) [I(X;Y )− I(X;Z)]}. (3.38)

We note that if the average intensity constraint is not tight, i.e., E [X] < P , the problem reduces to the

case where only the nonnegativity and peak-intensity constraints are present, in which case the optimal

input distribution is discrete with a finite support by Theorem 2. Hence, without loss of generality,

one can assume that the average-intensity constraint is tight and the necessary and sufficient optimality

conditions for (3.38) become

λ iB(x;F ∗X) + (1− λ) req(x;F ∗X)− γ x ≤ λ IB(F ∗X) + (1− λ)[IB(F ∗X)− IE(F ∗X)]− γ P, ∀x ∈ [0, A],

(3.39)

λ iB(x;F ∗X) + (1− λ) req(x;F ∗X)− γ x = λ IB(F ∗X) + (1− λ)[IB(F ∗X)− IE(F ∗X)]− γ P, ∀x ∈ SF∗X ,

(3.40)

E [X] = P. (3.41)
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Next, using contradiction argument, it is shown that the input distribution F ∗X satisfying (3.39)–(3.41)

must be a discrete distribution with a finite support. Assume, on the contrary, that SF∗X has an infinite

number of elements. In view of (3.39)–(3.41) and the analyticity of iB(w;FX), req(w;FX) and w over D

and the Identity Theorem of complex analysis, one finds

λ iB(x;F ∗X) + (1− λ) req(x;F ∗X)− γ x = λ IB(F ∗X) + (1− λ)[IB(F ∗X)− IE(F ∗X)]− γ P, ∀x > −1/η2
B,

(3.42)

E [X] = P. (3.43)

Using the bounds presented in (A.69)–(A.70), one can verify that

L̃ ≤ IB(F ∗X)− (1− λ) IE(F ∗X) +
1

2
log

(
σ2

B(1 + η2
Bx)

σ2
E(1 + η2

Ex)

)
+
λ

2
log(2πeσ2

E(1 + η2
Ex)) + γ (x− P ) ≤ Ũ .

(3.44)

Now, let {xn}n∈N be a convergent sequence of distinct points in S such that it is converging to a limit

point x0 = −1/η2
B. Based on this, we have the following results: 1) xn and σ2

B(1 + η2
Bxn) are real for

all positive integers n; 2) limn→∞ σ2
B(1 + η2

Bxn) = 0. Following the results in [10, Theorem 3] and using

(3.44), we get

lim
n→∞

[L̃− IB(F ∗X) + (1− λ) IE(F ∗X)] ≤ lim
n→∞

[
1

2
log

(
σ2

B(1 + η2
Bxn)

σ2
E(1 + η2

Exn)

)
+
λ

2
log(2πeσ2

E(1 + η2
Exn))

+ γ (xn − P )

]
≤ lim
n→∞

[Ũ − IB(F ∗X) + (1− λ) IE(F ∗X)]. (3.45)

Since, limn→∞
1
2 log

(
σ2
B(1+η2Bxn)

σ2
E(1+η2Exn)

)
= −∞ while L̃−IB(F ∗X)+(1−λ) IE(F ∗X) is a finite value, a contradiction

occurs and thus, the support set SF∗X has a finite number of mass points.

3.6 asymptotic results for the secrecy capacity under peak-

and average-intensity constraints

This section provides the asymptotic analysis on the secrecy capacity of the optical wiretap channel

with input-dependent Gaussian noise under peak- and average-intensity constraints. First, the secrecy

capacity is investigated for asymptotically small values of A and P with their ratio κ
4
= P

A ∈ (0, 1
2 ).

Second, an upper bound on the secrecy capacity will be given that holds true for any value of A and κ.
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3.6.1 Low-Intensity Results

For the small values of A and κ, based on the results in [32] one can write

CS =
1

2
[JB(0)− JE(0)] max

FX∈M+
Var (X) + o(A2). (3.46)

Proposition 3. In the regime A � 1 and κ ∈ (0, 1
2 ), the secrecy capacity under the peak- and average-

intensity constraints is as follows

CS(A, κ) =
A2

2
κ(1− κ)

(
1

σ2
B

− 1

σ2
E

+
1

2
(η4

B − η4
E)

)
+ o(A2). (3.47)

Proof. See Appendix C. �

Similar to the case with a peak-intensity constraint, Proposition 3 reflects that the secrecy capac-

ity under peak- and average-intensity constraints scales quadratically in A. Furthermore, as shown in

Appendix C, the secrecy-capacity-achieving input distribution possesses two mass points located at 0

and A with probabilities κ and 1 − κ, respectively. Additionally, note that based on Appendix C, the

average-intensity constraint is inactive when κ ∈ [ 1
2 , 1] and consequently CS(A, κ) is given by (3.23).

3.6.2 High-Intensity Results

In the regime A→∞ and P →∞ with their ratio κ kept fixed, the secrecy capacity CS ≤ 1
2 log

(
σ2
E

σ2
B

)
and the proof follows along similar lines as in Proposition 2. This implies that the secrecy capacity under

peak- and average-intensity constraints in the high-intensity regime does not scale with the constraints

and therefore converges to a real and positive constant.

3.7 Numerical Results

In this section, numerical results for the secrecy capacity and the entire rate-equivocation region of the

optical wiretap channel with input-dependent Gaussian noise under nonnegativity, peak- and average-

intensity constraints are provided.

Figure 3.3 provides a plot of the equivocation density for an optimal input distribution for A = 4,

σ2
B = 1, σ2

E = 2, η2
B = 0.25, and η2

E = 0.125. We numerically found that for these parameters, the optimal

input distribution is ternary with mass points located at x = 0, 2.025 and 4 with probability masses

0.2862, 0.3045 and 0.4093, respectively. We observe that CS − req(x;FX) is generally nonnegative and is
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Figure 3.3: Illustration of CS−req(x;FX) yielded by the optimal input distribution when σ2
B = 1, σ2

E = 2,
η2

B = 0.25, η2
E = 0.125 and A = 4.
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Figure 3.4: The secrecy capacity for σ2
B = 1, σ2

E = 2, η2
B = 0.25, and η2

E = 0.125 versus the peak-intensity
constraint A.

equal to zero at the optimal mass points; verifying the optimality conditions in (A.38) and (A.39).

Figure 3.4 illustrates the secrecy capacity CS and the difference CB − CE versus the peak-intensity

constraint A, where CB and CE are the legitimate user’s and the eavesdropper’s capacities, respectively.

We observe that this difference is in general a lower bound for the secrecy capacity CS which can be

easily proven. We also observe that, for small values of A, CB −CE and CS are identical. However, as A

increases, CB−CE and CS become different. Similar to the secrecy capacity results of the Gaussian wiretap

channel under a peak-power constraint provided in [14], here too, I(X;Y ) and I(X;Z) are maximized

by the same discrete distribution, however, I(X;Y ) − I(X;Z) is maximized by a different distribution.
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Figure 3.5: The rate-equivocation region for σ2
B = 1, σ2

E = 2, η2
B = 0.25, and η2

E = 0.125 under peak-
intensity constraints A = 2.8 and A = 4. Point M refers to the case when secrecy capacity and capacity
are achieved simultaneously.

As a specific example, when A = 4, while both I(X;Y ) and I(X;Z) are maximized by the same binary

distribution with mass points at x = 0 and 4 with probability masses 0.5088 and 0.4912, respectively,

I(X;Y ) − I(X;Z) is maximized by a ternary distribution with mass points at x = 0, 2.025 and 4 with

probability masses 0.2862, 0.3045 and 0.4093, respectively. This explains the difference between CS and

CB − CE at A = 4 in this figure.

Figure 3.5 depicts the entire rate-equivocation region of the optical wiretap channel with input-

dependent Gaussian noise under nonnegativity and peak-intensity constraints when σ2
B = 1, σ2

E = 2,

η2
B = 0.25, and η2

E = 0.125 for two different values of A. When A = 2.8, it is clear from the figure that

both the secrecy capacity and the capacity can be attained simultaneously (Point “M” in the figure). In

particular, for A = 2.8, the binary input distribution with mass points located at x = 0 and 2.8 with

probabilities 0.5183 and 0.4817, respectively, achieves both the capacity and the secrecy capacity. This

implies that, when A = 2.8, the transmitter can communicate with the legitimate user at the capacity

while achieving the maximum equivocation at the eavesdropper. On the other hand, when A = 4, the

secrecy capacity and the capacity cannot be achieved simultaneously (notice the curved shape in the

figure). More specifically, for A = 4, the binary input distribution with mass points located at x = 0

and 4 with probabilities 0.5088 and 0.4912 achieves the capacity, while a ternary distribution with mass

points located at x = 0, 2.025, 4 with probability masses 0.2862, 0.3045 and 0.4093, respectively, achieves

the secrecy capacity, i.e., the optimal input distributions for the secrecy capacity and the capacity are

different. In other words, there is a tradeoff between the rate and its equivocation in the sense that, to
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Figure 3.6: Illustration of CS−req(x;FX)+γ (x−P ) yielded by the optimal input distribution for σ2
B = 1,

σ2
E = 2, η2

B = 0.25, η2
E = 0.125, A = 4 and κ = 0.375. The corresponding Lagrangian multiplier is 0.0187.

increase the communication rate, one must compromise from the equivocation of this communication,

and to increase the achieved equivocation, one must compromise from the communication rate.

Figure 3.6 provides illustrations for the effect of the average intensity constraint on the secrecy-

capacity-achieving input distribution for σ2
B = 1, σ2

E = 2, η2
B = 0.25, η2

E = 0.125 and A = 4. We

observe that for κ > 1
2 , the average intensity constraint is inactive. In this case, in view of Theorem 1,

the optimal input distribution is a ternary distribution with mass points at x = 0, 2.025 and 4 with

probability masses 0.2862, 0.3045 and 0.4093, respectively. We now impose an average intensity constraint

with corresponding κ = 0.375. For this case, a ternary input distribution with mass points located at

x = 0, 2.0869 and 4 with probability masses 0.4770, 0.3093 and 0.2136, respectively, is optimal and the

corresponding Lagrangian multiplier is 0.0187.

Finally, Figure 3.7 plots the exact and asymptotic secrecy capacity results versus the peak-intensity

constraint A for both the peak- and average-intensity constraints in the low-intensity regime. From the

figure, it is observed that the asymptotic results for the secrecy capacity given in (3.23) and (3.47) are

in precise agreement with the numerical results. Furthermore, it is shown that imposing the average

intensity constraint in addition to the peak-intensity constraint reduces the secrecy capacity.

3.8 Conclusions

This chapter studied the optical wiretap channel with input-dependent Gaussian noise under nonneg-

ativity, peak- and average-intensity constraints. It was shown that the secrecy capacity and the boundary

of the entire rate-equivocation region are achieved by discrete input distributions with finite supports.
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Figure 3.7: The asymptotic and exact secrecy capacity for σ2
B = 1, σ2

E = 2, η2
B = 0.25, and η2

E = 0.125
versus A for both peak- and average-intensity constraints.

Furthermore, under such constraints, the optimal input distribution always possessed a mass point at the

origin.

An interesting result that this chapter reveals is that similar to the case for the Gaussian wiretap chan-

nel with a peak-power constraint, here too, it is observed that under nonnegativity and peak-intensity

constraints, the secrecy capacity and the capacity could not be obtained simultaneously in general, i.e.,

there is a tradeoff between the rate and its equivocation in the sense that, to increase the communi-

cation rate, one must compromise from the equivocation rate, and conversely to increase the achieved

equivocation rate, one must compromise from the communication rate.

We extended the discreteness result for the case when both peak- and average-intensity constraints

are active. Finally, an asymptotic analysis on the secrecy capacity was presented. It was shown that

in the low-intensity regime, the secrecy capacity scales quadratically with the peak-intensity constraint,

while in the high-intensity regime, it is upper-bounded by a finite value implying that it does not scale

with the constraints.
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Chapter 4: Results on the Rate-Equivocation

Region of the Degraded Signal-Dependent Noise

Wiretap Channel

M. Soltani and Z. Rezki, “Results on the Rate-Equivocation Region of the Degraded Signal-Dependent

Noise Wiretap Channel,” Submitted to IEEE Communications Letters, undergoing second round review.

4.1 Introduction

In an optical wireless communications (OWC) based on the intensity modulation and direct detection

(IM-DD), the information bits are communicated through light intensity [2]. In this setup, light emitting

diodes (LED) and photodetectors (PD) are used for data transmission and reception, respectively. After

the reception of the light intensity by a PD, an output noisy signal is generated from which information

bits can be extracted. There exist several channel models for OWC, namely the free-space optical (FSO)

model, the signal-dependent noise model, and the Poisson noise model [2].

Broadcast nature of optical wireless signals makes communication of confidential data with trusted

users vulnerable to eavesdropping attacks. To address this issue, Wyner [12] introduced the wiretap

channel (WC). In such channels, a transmitter wishes to communicate secret messages reliably with a

legitimate receiver while preventing the eavesdroppers from inferring the secret messages [12, 34]. In these

channels, the rate-equivocation region is considered as a fundamental performance limit which reflects

the tradeoff between the secrecy and the reliability. A WC is called degraded when the observations of

the eavesdropper and the secret messages given the observations of the legitimate user, are independent.

For this type of channels, the rate-equivocation region is completely known [12].

The work in [14] investigated the Gaussian WC with amplitude and variance constraints and showed

that distributions having a countably finite support set are secrecy-capacity-achieving. We note that the

results pertaining to the Gaussian WC with amplitude and variance constraints can be directly applied

to the FSO WC with peak and average optical power restrictions. Furthermore, Dytso et al. established

that the secrecy-capacity-achieving distribution of the FSO WC with an average optical power restriction

admits a countable support set [35], but did not specify whether the support set is bounded or not. The

rate-equivocation regions of the degraded SDGN-WC [25], the degraded discrete-time Poisson WC [26],

and the degraded continuous-time Poisson WC [15], are all exhausted by distributions having a countably

finite set when input signals are restricted by peak and average optical power constraints.
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This chapter studies the SDGN-WC when an average optical power constraint is active, and confirm

that distributions having a countably infinite support set are optimal in the sense that they exhaust the

entire rate-equivocation region. We start by noting that due to [12], the rate-equivocation region of a

degraded WC is completely known. Next, a convex functional optimization problem, which is addressed

in e.g. [36, 37], is considered and the optimality equations that must be satisfied by an optimal solution

are derived. Using these optimality equations, first, it is shown that distributions with a countable set are

optimal. This is done by providing a similar contradiction argument which appears in [25, Theorem 1].

The difference is that in this chapter, the peak optical power constraint is inactive and the bounds that

were found in the proof of Theorem 1 in [25] are not valid here. Thus, to reach a contradiction, a new

bound (cf. equation (D.19)) is provided. We then show that the support sets must be unbounded which is

done via providing another contradiction argument. In particular, our contradiction argument hinges on

the fact that if the support set is bounded, then the cost function growing linearly in x is lower bounded

by the rate-equivocation density growing quadratically in x, and thus reaching a contradiction. From

these result, it is concluded that distributions with a countably infinite support set are optimal. Finally,

our analysis show that optimal distributions in the FSO WC with an average optical power constraint also

admit a countably infinite support set1. The countability of the sets can be shown using [35, Theorem 3,

Section IV], but a rigorous conclusion regarding the boundedness/unboundedness of the support sets was

not provided.

4.2 SDGN-WC with an Average Optical Power Constraint

4.2.1 Channel Model

In the SDGN-WC, an IM-DD system based on pulse amplitude modulation (PAM) scheme is con-

sidered due to its popularity and simplicity of implementation. In this setup setup along with a high

optical power setting, the received optical signals at the legitimate receiver and the eavesdropper can be

respectively given by [2, 5] 
Y1 = X +NB(X),

Y2 = X +NE(X).

(4.1)

In (3.6), the transmitted signal X is nonnegative, Y1 is the channel output of the legitimate receiver, and

Y2 is the channel output of the eavesdropper; NB(X) is distributed according to a Gaussian distribution

with mean zero and variance σ2
B(X)

4
= σ2

B,0 +σ2
B,1X, where σ2

B,0 and σ2
B,1 are positive constants; likewise,

1This refers to the case when σ2
B,1 = σ2

E,1 = 0 in (4.1).
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NE(X) is a zero-mean Gaussian noise at the eavesdropper with variance σ2
E(X)

4
= σ2

E,0 + σ2
E,1X, where

σ2
E,0 and σ2

E,1 are positive constants. Moreover, the transmitted PAM intensity signal is restricted by

an average optical power constraint due to the optical power consumption considerations [2]. Thus, we

have [7, 4]

E[X] ≤ E , (4.2)

with E > 0 being the average optical power constraint. Observe that if [25]


σ2

B,1 = σ2
E,1

σ2
E,0 > σ2

B,0,

(4.3)

then one can construct a random variable Ỹ2 = X + NB(X) + ND, where ND is a zero-mean Gaussian

distributed random variable with variance σ2
E,0 − σ2

B,0 and it is independent from NB(X). Thus, Ỹ2 =

Y1+ND. Now, observe that Y2|X and Ỹ2|X have same distributions, but Ỹ2 depends only on Y1 and not on

X, i.e., we have the Markov chain X → Y1 → Ỹ2. Since the rate-equivocation region of a wiretap channel

depends only on the marginals [34], the considered wiretap channel becomes stochastically degraded, and

its rate-equivocation region can be single-letterized [12].

4.2.2 Wiretap Codes for the SDGN-WC with an Average Optical Power

Constraint

An (n, 2nR) wiretap code for the SDGN-WC with an average optical power constraint is given by a

set N = {1, 2, . . . , 2nR}, an encoding function en and a decoding function dn. The elements of N are

described by a uniformly distributed random variable N over N . The encoder performs the mapping

en : N → Rn+ subject to the constraint (4.2), and the decoder performs the mapping dn : Rn → N .

The equivocation of N is measured by 1
n H(N |Y n2 ), where H(·|·) is the conditional entropy. The error

probability of the code is Pne = Pr {dn(Y n1 ) 6= N}. If a rate-equivocation pair (R,Req) satisfies

lim
n→∞

Pne = 0, (4.4)

Req ≤ lim
n→∞

1

n
H(N |Y n2 ), (4.5)

it is said to be achievable and the rate-equivocation region is the union of all achievable (R,Req). Fur-

thermore, the supremum of the rates satisfying Req = R is called the secrecy capacity.

Since the SDGN-WC is stochastically degraded due to (4.3), the rate-equivocation region is the union
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of (R,Req) ∈ R2
+ given by [12] 

R ≤ I(X;Y1),

Req ≤ I(X;Y1)− I(X;Y2),

(4.6)

for FX ∈ P+, where I(·; ·) is the mutual information between two random variables and the set P+ is

denoted as

P+ 4=

{
FX :

∫ +∞

0

dFX(x) = 1,

∫ +∞

0

x dFX(x) ≤ E
}
. (4.7)

4.3 Main Results

The rate-equivocation region of the degraded SDGN-WC is convex [34, Theorem 1]. Thus, the bound-

ary of this region can be expressed by the following optimization problem

sup
FX∈P+

fµ(FX)
4
= sup

FX∈P+

[µ I(X;Y1) + (1− µ)
{
I(X;Y1)− I(X;Y2)

}
], ∀µ ∈ [0, 1]. (4.8)

Under the constraints (4.2) and for each µ ∈ [0, 1], a unique solution to (4.8) exists and the support set

of the optimal solution is countably infinite. This is formally stated below.

Theorem 3. The rate-equivocation region of the degraded SDGN-WC with nonnegativity and average

optical power constraints is exhausted by distributions having a countably infinite support set.

Proof. For convenience, the proof is relegated to Appendix D. �

Theorem 3 is established as follows. Firstly, the set P+ is shown to be convex and compact. Secondly,

it is shown that the objective functional is continuous, weakly differentiable and strictly concave in FX ,

and thus, a unique solution to (4.8) exists. Thirdly, the optimality equations for a solution F ∗X is derived.

Fourthly, it is established that the intersection of the support set of F ∗X with any bounded interval

is countably finite. This is done by providing a contradiction argument, i.e., it is assumed that this

intersection has an infinite cardinality. Then, invoking Identity and Bolzano-Weierstrass Theorems, it is

found that a constant and finite value is upper bounded by −∞ which is clearly a contradiction. Lastly,

by resorting to another contradiction argument, the support set is shown to be an unbounded set. This

is done by assuming to the contrary that the support set is bounded. Based on this assumption, it is

found that the cost function, which grows linearly in x, must be lower bounded by the rate-equivocation

density, which grows quadratically in x, and thus reaching a contradiction and the result follows. It is

worth mentioning that a similar analysis can be observed in the work by Fahs et al. [19], but for the

channels with input-independent additive noise and without secrecy constraints.
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Theorem 3 has the following consequences: 1) when µ = 0 (the point corresponding to the secrecy

capacity of the degraded SDGN-WC when input signals are restricted by an average optical power), the

optimal distribution has a countably infinite support set; 2) when µ = 1 (the point corresponding to the

capacity of this channel under the mentioned constraint), the optimal solution also admits a countably

infinite support set.

We note that since the optimal distributions admit a countably infinite support, numerical computa-

tion of the region is not feasible.

4.4 Conclusions

This chapter studied the degraded SDGN-WC with nonnegativity and average-intensity constraints.

It is established that under these constraints, distributions having a countably infinite number of mass

points, but finitely many mass points in any bounded interval, are optimal in the sense that they exhaust

the entire rate-equivocation region. From this result, it was inferred that the secrecy-capacity-achieving

and the capacity-achieving distributions also admit a countably infinite support set.

The obtained results imply that numerical computations of the boundary of the rate-equivocation

region as well as the secrecy capacity of the considered wiretap channel under an average-intensity con-

straint is not feasible. Therefore, to evaluate the secrecy performance of an OWC in such a setting, it is

of great importance to provide inner and outer bounds on the rate-equivocation region based on discrete

distributions with a finite number of mass points. These inner and outer bounds help to characterize

near-optimal secure transmission schemes for OWC systems operating over the optical wiretap channel

with an input-dependent Gaussian noise when only an average-intensity constraint is active.
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Chapter 5: The Degraded Discrete-Time Poisson

Wiretap Channel

M. Soltani and Z. Rezki, “The Discrete-Time Poisson Optical Wiretap Channel with Peak Intensity

Constraints,” in Proceedings of the 2019 IEEE International Symposium on Information Theory

(ISIT’2019), Paris, France, Jun. 2019.

M. Soltani and Z. Rezki, “The Degraded Discrete-Time Poisson Optical Wiretap Channel,” Submitted

to the IEEE Transactions on Information Theory.

5.1 Introduction

Intensity modulation and direct detection (IM-DD) is the simplest and the most commonly used

technique for optical wireless communications. In this scheme, the channel input modulates the intensity

of the emitted light. Thus, the input signal is proportional to the light intensity and is nonnegative. The

receiver is usually equipped with a photodetector which absorbs integer number of photons and generates

a real valued output corrupted by noise. Based on the distribution of the corrupting noise there exist

several models for the underlying optical wireless communication channels. Free space optical (FSO)

channels [2, 3], optical channels with input-dependent Gaussian noise [2, 5], and Poisson optical channels

[2, 7, 8, 18] are the most widely used models for optical wireless communications. Among these models,

the most accurate one that can capture most of the optical channel impairments is the Poisson model. The

studies conducting research on Poisson optical channels are mainly categorized in two mainstreams. The

first category considers the continuous-time Poisson model where the input signals can admit arbitrarily

waveforms and there are no bandwidth constraints on the transmission. The second category concerns

the discrete-time Poisson channel and deals with the cases where stringent transmission bandwidths are

assumed.

For the discrete-time Poisson channel, Shamai [7] studied the single-user channel capacity and showed

that the capacity-achieving distribution under nonnegativity, peak- and average-intensity constraints is

discrete with a finite number of mass points. In [8, 38], authors provided asymptotic analysis of the channel

capacity in the regimes where the peak- and/or average-intensity constraints tend to zero (low-intensity

regime) or to infinity (high-intensity regime). The work in [38] focused on characterizing the channel

capacity in the low-intensity regime of an average-intensity constrained or an average- and peak-intensity

constrained inputs and found upper and lower bounds which in some cases, the bounds coincide. Authors
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in [8] investigated the high-intensity behavior of the channel capacity for a peak- and average-intensity

constrained input and presented tight bounds, thus fully characterizing the channel capacity in the high-

intensity regime. While the capacity of the discrete-time Poisson channel is unknown, the capacity of the

continuous-time Poisson channel where the signaling bandwidth is not restricted is known in closed-form.

For the peak-intensity constrained or peak- and average-intensity constrained inputs the capacity of the

continuous-time Poisson channel is achieved by a binary distribution with mass points located at the

origin and at the peak-intensity constraint [6], however, the channel capacity of the average-intensity

constrained input is infinite and the capacity-achieving input is unknown.

The broadcast nature of optical wireless signals imposes a security challenge especially in the presence

of unauthorized eavesdroppers. This problem has been conventionally addressed by cryptographic encryp-

tion [11] without considering the imperfections introduced by the communication channels. Wyner [12],

on the other hand, proved the possibility of secure communications without relying on encryption by

introducing the notion of a degraded wiretap channel. This result was later generalized by Csiszar and

Korner by dropping the degradedness assumption of the wiretap channel [34].

The wiretap channels are studied with respect to the rate-equivocation region, which is defined as

the set of all rate pairs for which the transmitter can communicate confidential messages reliably with

a legitimate receiver at a certain secrecy level against an eavesdropper [13]. A wiretap channel is called

degraded when the observations of the eavesdropper and the secret messages given the observations of

the legitimate user are independent. For this type of channels, Wyner established that there exists a

single-letter characterization for the rate-equivocation region [12].

Authors in [14] studied the degraded Gaussian wiretap channel under amplitude and variance con-

straints, and prove that the entire rate-equivocation region of this wiretap channel is attained by dis-

crete input distributions with finitely many mass points. Furthermore, the authors observed that the

secrecy-capacity-achieving input distribution may not be identical to the capacity-achieving counterpart

in general, resulting in a tradeoff between the rate and its equivocation. It is worth mentioning that

the results pertaining to the Gaussian wiretap channel with amplitude and variance constraints can be

directly applied to characterize the optimal distributions exhausting the entire rate-equivocation region

of the FSO wiretap channel with peak- and average-intensity constraints. Furthermore, Dytso et al. es-

tablished that the secrecy-capacity-achieving distribution of the FSO wiretap channel with nonnegativity

and average-intensity constraints is discrete with finitely many mass points in any bounded interval, but

did not specify whether the support set of the optimal distribution is bounded or not [35].

The work in [25] considers the degraded optical wiretap channel with input-dependent Gaussian

noise under peak- and average-intensity constraints and verified the optimality of distributions with a
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finitely many mass points for attaining the entire boundary of the rate-equivocation region. Besides,

the authors provided asymptotic behavior of the secrecy capacity in the low- and high-intensity regimes.

For this wiretap channel, authors observed that, in general, there is a tradeoff between the rate and its

equivocation. Finally, [15] examined the degraded continuous-time Poisson wiretap channel (PWC) with

a peak-intensity constraint and gave a closed-form expression for the secrecy capacity. Particularly, the

authors showed that binary input distributions with mass points located at the origin and the peak-

intensity constraint and with a very short duty cycle exhaust the entire rate-equivocation region.

In this chapter, a degraded discrete-time PWC (DT–PWC) is considered. The DT–PWC consists

of a transmitter, a legitimate user and an eavesdropper. In this setup, the input signals are restricted

to have finite bandwidths. This fact distinguishes the DT–PWC from its continuous-time counterpart,

where input signals can have infinite bandwidths. Using an IM-DD system, the photodetectors at the

legitimate user and the eavesdropper counts the number of received photons and output signals that

follow Poisson distribution. Here, the objective is to have secure communication with the legitimate user

over a discrete-time Poisson channel while keeping the eavesdropper ignorant of the transmitted messages

as much as possible.

We start by the secrecy capacity of the degraded DT–PWC and employ the functional optimization

problems addressed in, for example [7, 14, 25, 36], to derive the necessary and sufficient optimality

equations, also known as Karush-Kuhn-Tucker (KKT) conditions, that must be satisfied by an optimal

solution. Using these equations, it is confirmed that a unique distribution with a countably finite number

of mass points achieves the secrecy capacity of the degraded DT–PWC when only peak-intensity or both

peak- and average-intensity constraints are active. This is done by providing a contradiction argument.

We start by assuming, on the contrary, that the support set of the optimal solutions contains an infinite

number of elements. Then recalling the Identity and Bolzano-Weierstrass Theorems from complex analysis

one can conclude that: 1) when the legitimate user’s and the eavesdropper’s channel gains are not

identical, a nonnegative constant must be lower bounded by a logarithmically increasing function in x

where x ≥ 0, which is a contradiction; 2) when the channel gains are identical, the nonnegative constant

must be upper bounded by −∞ and a contradiction occurs. Following along similar lines of the above

mentioned analysis, the optimality of distributions with a finite number of mass points is extended to the

entire boundary of the rate-equivocation.

Additionally, the secrecy capacity of the DT–PWC with nonnegativity and average-intensity con-

straints is investigated, and it is verified that a unique distribution with the following structural properties

is secrecy-capacity-achieving: 1) the support set of the optimal solution contains a finitely many mass

points in any bounded interval; 2) the support set of the optimal solution is an unbounded set. These two
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properties imply that the optimal distribution is discrete with countably infinite number of mass points,

but with finitely many mass points in any bounded interval. The first property is shown by means of con-

tradiction. We assume, on the contrary, that for some bounded interval, the intersection of the support

set of the optimal solution and the bounded interval has an infinite number of mass points. Then, using

the KKT conditions and invoking the Bolzano-Weierstrass and Identity Theorems from complex analysis,

one finds that a nonnegative constant is upper bounded by −∞ which results in a contradiction. The

second property is also shown through a contradiction approach. We assume that the optimal support

set is bounded and the following cases are considered: 1) when legitimate user’s and the eavesdropper’s

channel gains are not identical, our contradiction hinges on the fact that a linearly increasing function in

x must be lower bounded by another function which grows as fast as x log x. This is not possible for large

values of x and hence a contradiction occurs; 2) when the channel gains are identical, one finds that the

Lagrangian multiplier must be lower bounded by a constant and thus, using the Envelope Theorem [39],

it is observed that the secrecy capacity would at least grow linearly in the average-intensity constraint.

However, in Appendix E, it is shown that the secrecy capacity is always upper bounded by a constant

for all values of the average-intensity constraint. Therefore, the desired contradiction is reached and the

result follows. Moreover, following along similar lines, it is established that every point on the boundary

of the rate-equivocation region is also attained by a unique distribution with countably infinite number

of mass points, but finitely many mass points in any bounded interval. This, in turn, implies that the

capacity of the discrete-time Poisson channel with average-intensity constraint is also achieved by a dis-

crete distribution with countably infinite number of mass points and settles down Shamai’s conjecture in

[7].

Furthermore, considering the peak- or both peak- and average-intensity constraints we shed light on

the asymptotic behavior of the secrecy capacity in the low- or high-intensity regimes. In the low-intensity

regime, a full characterization of the secrecy capacity and the secrecy-capacity-achieving distribution is

given. It is observed that the secrecy capacity scales quadratically with the peak-intensity constraint and

the secrecy-capacity-achieving input distribution is binary with mass points located at the origin and the

peak-intensity constraint. We characterize the secrecy capacity in the low-intensity regime by deriving

lower and upper bounds on the secrecy capacity and showing that these bounds coincide. We note that

a valid upper bound on the secrecy capacity of the DT–PWC is the secrecy capacity of the continuous-

time PWC across all intensity regimes. This is because in the continuous-time version, input signals

are not restricted to have a finite transmission bandwidth and can have arbitrary waveforms with an

infinite transmission bandwidth. Thus, under the same constraints, i.e., peak- and/or average-intensity

constraints, the secrecy capacity of the continuous-time PWC is greater than that of the DT–PWC. Also,
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a legitimate lower bound on the secrecy capacity of the DT–PWC is the difference between the capacities

of the legitimate user’s and the eavesdropper’s channels. For the high-intensity regime and when the

legitimate receiver’s and the eavesdropper’s channel gains are identical, it is proved that the secrecy

capacity does not scale with the constraints and hence, it is a constant value. In addition, when the

channel gains are different, the secrecy capacity can be upper bounded by the capacity of a discrete-time

Poisson channel and thus, it cannot scale faster than the logarithm of the square root of the peak- and/or

average-intensity constraints.

Finally, through numerical inspections, it is found that when peak-intensity or both peak- and average-

intensity constraints are active, the secrecy capacity and the capacity of the DT–PWC are not achieved

by the same distributions in general. Therefore, there is a tradeoff between the rate and its equivocation.

This is also true for the continuous-time PWC when peak-intensity or both peak- and average-intensity

constraints are active [15]. However, note that for the continuous-time PWC when the eavesdropper’s

observations are just the thinned version of those of the legitimate receiver’s, the secrecy capacity and

the capacity are attained with identical binary input distributions as pointed out in [15] which implies

that there is no tradeoff between the rate and its equivocation. Lastly, since with only average-intensity

constraint the optimal distributions admit a countably infinite number of mass points, numerical compu-

tation of the secrecy-capacity and the boundary of the rate-equivocation region is not feasible.

The rest of this chapter is structured as follows. The discrete-time degraded PWC is formally defined

in Section 5.2. The main results of the chapter regarding the characterization of the optimal distributions

attaining the secrecy capacity as well as exhausting the entire rate-equivocation region are presented in

Section 5.3. Proofs of the main results are provided in Appendix E. Asymptotic analysis of the secrecy

capacity in the low- and high-intensity regimes are demonstrated in Section 5.3. Numerical results are

shown in Section 5.4, and finally, conclusions are drawn in Section 5.5.

5.2 The Degraded Discrete-Time Poisson Wiretap Channel

We consider a practical optical wireless communication system where IM-DD is employed. In this

setup, the channel input modulates the emitted light intensity from the light emitting diode (LED)

at the transmitter and photodetectors are used for receiving the optical signal at the legitimate user’s

and eavesdropper’s receivers. We assume that there exist line-of-sight (LoS) paths between the optical

transmitter and the receivers. In such a scenario, the received power of the LoS path dominates the

received power of the reflected paths. Hence, the optical wireless channel between the transmitter and

the legitimate user and between the transmitter and the eavesdropper become LoS channels with positive
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and constant channel gains [31, Chapter 2].

In the considered wiretap channel, confidential data are transmitted by sending pulse amplitude

modulated (PAM) intensity signals which are constant in discrete time slots of ∆ seconds. The receiver

is modeled as a photon counter which generates an integer representing the number of received photons.

Specifically, in each time slot of ∆ seconds an input intensity X is corrupted by the LoS channel gains αB

and αE and the combined impact of background radiation as well as the photodetectors’ dark currents

λB and λE at the legitimate user’s and the eavesdropper’s receivers, respectively. The channel outputs

at the legitimate receiver and the eavesdropper are denoted by Y and Z, respectively, and are random

variables related to the number of received photon in ∆ seconds. These channel outputs conditioned on

the input signal obey the Poisson distributions with mean (αBX+λB)∆ and (αEX+λE)∆, respectively,

i.e., [7, equation 16]

pY |X(y|x) = e−(αBx+λB)∆ [(αBx+ λB)∆]
y

y!
, y ∈ N, (5.1)

pZ|X(z|x) = e−(αEx+λE)∆ [(αEx+ λE)∆]
z

z!
, z ∈ N, (5.2)

where N is the set of all nonnegative integers. This model is referred to as the DT–PWC where a

bandwidth constraint is imposed on the input signals by constraining the signals to be rectangular PAM.

We note that this model is in contrast to the continuous-time PWC where the input signals can admit

arbitrary waveforms with very large transmission bandwidth [15, 7].

In the DT–PWC, the channel input X is a nonnegative random variable representing the intensity

of the optical signal. Since intensity is constrained due to practical and safety restrictions by peak- and

average-intensity constraints, the input must satisfy [2]

0 ≤ X ≤ A, (5.3)

E[X] ≤ E . (5.4)

In this chapter, the degraded DT–PWC is studied. Therefore, the case where the following conditions

hold is considered:

αB ≥ αE , (5.5)

λB
αB
≤ λE
αE

, (5.6)

which implies that the random variables X, Y , and Z form the Markov chain X → Y → Z and con-
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sequently, the DT–PWC becomes stochastically degraded [12, 15, 40]. In the sequel, without loss of

generality, it is assumed that at least of the inequalities (5.5) or (5.6) is strict. This is because if both

are tight, then the legitimate receiver’s and eavesdropper’s channels become identical and the secrecy

capacity (defined later in this section) is equal to zero.

5.2.1 The Rate-Equivocation Characterization of the DT–PWC

An (n, 2nR) code for the DT–PWC consists of the random variable W (message set) uniformly dis-

tributed overW = {1, 2, · · · , 2nR}, an encoder at the transmitter fn :W → Rn+ satisfying the constraints

(5.3)–(5.4), and a decoder at the legitimate user gn : Nn → W. Equivocation of a code is measured

by the normalized conditional entropy 1
n H(W |Zn). The probability of error for such a code is defined

as Pne = Pr [gn(Y n) 6= W ]. A rate-equivocation pair (R,Re) is said to be achievable if there exists an

(n, 2nR) code satisfying

lim
n→∞

Pne = 0, (5.7)

Re ≤
1

∆
lim
n→∞

1

n
H(W |Zn), (5.8)

where H(W |Zn) is the conditional entropy of W given the observations Zn. The rate-equivocation region

consists of all achievable rate-equivocation pairs. A rate R is said to be perfectly secure if Re = R, that

is, if there exists an (n, 2nR) code satisfying 1
∆ limn→∞

1
n I(W ;Zn) = 0, where I(W ;Zn) is the mutual

information between the random variables W and Zn. The supremum of such rates is defined to be the

secrecy capacity and is denoted by CS .

Since under the assumptions (5.5)–(5.6), the DT–PWC is degraded, its entire rate-equivocation region,

denoted by R, can be expressed in a single-letter expression and it is given by the union of all rate-

equivocation pairs (R,Re) such that [12]

R =


0 ≤ R ≤ 1

∆I(X;Y ),

0 ≤ Re ≤ 1
∆ [I(X;Y )− I(X;Z)],

(5.9)
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for some input distribution FX ∈ F+ where the feasible set F+ is given by one of the following sets

Ω+
A, E

4
=

{
FX :

∫ A
0

dFX(x) = 1,

∫ A
0

x dFX(x) ≤ E

}
, (5.10)

Ω+
A
4
=

{
FX :

∫ A
0

dFX(x) = 1

}
, (5.11)

Ω+
E
4
=

{
FX :

∫ ∞
0

dFX(x) = 1,

∫ ∞
0

x dFX(x) ≤ E
}
. (5.12)

5.3 Main Results

This section presents the main results related to the DT–PWC. We first consider that both of the

constraints (5.3) and (5.4) are active which happens when E < A. In this case, it is proved that discrete

distributions with finitely many mass points achieve the secrecy capacity and exhaust the entire rate-

equivocation region of the DT–PWC. As a byproduct of this analysis, one can also establish the optimality

of discrete distributions with a finite number of mass points when only a peak-intensity constraint is

active, i.e., the case when E ≥ A. Finally, the case when only an average-intensity constraint is active

(this happens when A → ∞ while E is fixed) is considered and the optimal distributions attaining the

secrecy capacity and exhausting the entire rate-equivocation region are characterized. It is shown that

the support set of the optimal solutions has countably infinite many mass points, but only finitely many

mass points in any bounded interval.

5.3.1 Results on the Secrecy Capacity

For the degraded DT–PWC, the secrecy capacity is given by a single-letter expression as [13, Chap. 3]

CS = sup
FX∈F+

f0(FX)
4
=

1

∆
sup

FX∈F+

[I(X;Y )− I(X;Z)] , (5.13)

where the feasible set F+ is given by one of the sets in (5.10)–(5.12).

We start by characterizing the secrecy-capacity-achieving distribution when F+ = Ω+
A, E in (5.13).

Under the constraints (5.3)–(5.4), the solution to the optimization problem in (5.13) exists, is unique and

is discrete with finitely many mass points. This is formally presented by the following theorem.

Theorem 4. There exists a unique input distribution that attains the secrecy capacity of the DT–PWC

with nonnegativity, peak- and average-intensity constraints. Furthermore, the support set of this optimal

input distribution is a finite set.



52

Proof. For convenience, the proof is relegated to Appendix E. �

The proof of Theorem 4 is sketched as follows. Firstly, the set of input distributions Ω+
A, E is shown

to be sequentially compact in the Lévy metric sense and convex. Secondly, it is shown that the objective

functional is continuous, weakly differentiable and strictly concave in FX . Thus, a unique solution to

(5.13) exists. Thirdly, the necessary and sufficient KKT conditions that must be satisfied by an optimal

solution F ∗X are derived. Fourthly, it is established that the support set of F ∗X contains finitely many

mass points. This is done by providing a contradiction argument. We start by assuming, on the contrary,

that the support set contains an infinite number of elements. Next, we invoke the Identity and Bolzano-

Weierstrass Theorems from complex analysis and we conclude that: 1) when the legitimate user’s and

the eavesdropper’s channel gains are not identical, the Lagrangian multiplier (which is a nonnegative

constant) must be lower bounded by a logarithmically increasing function in x which is a contradiction;

2) when the channel gains are identical, the Lagrangian multiplier is upper bounded by −∞ which again

is a contradiction. Following along similar lines of the proof of Theorem 4, the optimality of distributions

with a finite number of mass points is extended to the entire boundary of the rate-equivocation.

It is worth mentioning that in the continuous-time PWC studied in [15] the secrecy-capacity-achieving

input distribution is always binary with mass points located at the origin and the value of the peak-

intensity constraint [15, Theorem 1]. Furthermore, to achieve the secrecy capacity, input signals must

have very short duty cycle (i.e., ∆→ 0 or equivalently, a very large transmission bandwidth is required).

However, in the DT–PWC the number of mass points of the optimal distribution depends on the value of

∆ and the peak- or both peak- and average-intensity constraints, and in general, it is greater than two.

Next, a corollary which concerns the characterization of the optimal distribution attaining the secrecy

capacity of the DT–PWC with nonnegativity and peak-intensity constraints is presented.

Corollary 1. The secrecy capacity of the DT–PWC with nonnegativity and peak-intensity constraints,

i.e., the case when F+ = Ω+
A in (5.13), is achieved by a unique and discrete input distribution with a

finite number of mass points.

Proof. The proof follows along similar lines of those mentioned in the proof of Theorem 4. �

Next, consider the case where F+ = Ω+
E in (5.13). For this case, it is shown that a discrete distribution

with countably infinite number of mass points, but with finitely many mass points in any bounded interval

achieve the secrecy capacity when nonnegativity and average-intensity constraints (no peak-intensity

constraint) are active.
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Theorem 5. There exists a unique input distribution which attains the secrecy capacity of the DT–PWC

with nonnegativity and average-intensity constraints. The optimal distribution is discrete with countably

infinite number of mass points, but only finitely many mass points in any bounded interval.

Proof. Theorem 5 is established in Appendix E. �

To prove Theorem 5, we first prove that the set of input distributions Ω+
E is compact and convex.

We then invoke similar arguments to those presented in the proof of Theorem 4 to show that the objec-

tive function in (5.13) is continuous, strictly concave and weakly differentiable in the input distribution

FX . Therefore, we conclude that the solution to the optimization problem (5.13) exists and is unique.

We continue the proof by showing that first, the intersection of the support set of the optimal input

distribution denoted by SF∗X with any bounded interval B contains a finite number of mass points, i.e.,

|SF∗X ∩ B| < ∞, where |B| denotes the cardinality of the set B. Next, we show that SF∗X must be an

unbounded set. These structural properties imply that the optimal distribution is discrete with countably

infinite number of mass points, but with finitely many mass points in any bounded interval. The first

property is shown by means of contradiction. We assume that |SF∗X ∩ B| = ∞. Then, using the KKT

conditions and invoking the Bolzano-Weierstrass and Identity Theorems from complex analysis, we find

that the Lagrangian multiplier is upper bounded by −∞ which is a contradiction. The second property

is also shown through contradiction. Assuming that the optimal support set is bounded, we consider

the following cases: 1) if the legitimate user’s and the eavesdropper’s channel gains are not identical,

our contradiction hinges on the fact that a linearly increasing function in x must be lower bounded by

another function which grows as fast as x log x which is a contradiction for large values of x; 2) if the

channel gains are identical, we find that the Lagrangian multiplier would be lower bounded by a constant

and using the Envelope Theorem [39], we observe that the secrecy capacity must at least grow linearly in

the average-intensity constraint. However, in Appendix E we establish that the secrecy capacity is always

upper bounded by a constant for all values of the average-intensity. Therefore, the desired contradiction

occurs.

Finally, we establish the existence of a mass point at x = 0 in the support set of the secrecy-capacity-

achieving input distributions under all the possible choices for F+ given by (5.10)–(5.12).

Proposition 4. Let SF∗X be the support set of the secrecy-capacity-achieving input distribution F ∗X for

the DT–PWC under one of the constraints in (5.10)–(5.12). Then x = 0 always belong to SF∗X .

Proof. The proof is by contradiction and follows along similar lines as in [25, Proposition 1] with the

difference that the conditional channel laws follow Poisson distribution. For completeness, the proof is

relegated to Appendix E. �
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It is worth mentioning that the existence of a mass point at the origin has also been established

in [41, Corollary 2] for the discrete-time memoryless Poisson channel, but with no secrecy constraints.

Furthermore, a modified version of the proof of Proposition 4 can be used to alternatively prove the

existence of a mass point at the origin for the discrete-time memoryless Poisson channel.

5.3.2 Rate-Equivocation Region

By a time-sharing argument, it can be shown that the rate-equivocation region of the DT–PWC is

convex. Therefore, the region can be characterized by finding tangent lines to R which are given by the

solutions of

sup
FX∈F+

fµ(FX)
4
= sup
FX∈F+

µ

∆
I(X;Y ) + sup

FX∈F+

1− µ
∆

[I(X;Y )− I(X;Z)] , ∀ µ ∈ [0, 1], (5.14)

where the feasible set F+ is one of the sets given by (5.10)–(5.12). We start by proving that the entire

boundary of the rate-equivocation region of the DT–PWC with nonnegativity, peak- and average-intensity

constraints (i.e., F+ = Ω+
A, E) is obtained by discrete input distributions with a finite number of mass

points.

Theorem 6. Every point on the boundary of the rate-equivocation region of the DT–PWC with nonnega-

tivity, peak- and average-intensity constraints, is achieved by a unique input distribution which is discrete

with a finite number of mass points.

Proof. For brevity, Theorem 6 is established in Appendix E. �

The proof of Theorem 6 follows along similar lines as the one in the proof of Theorem 4 with the differ-

ence in the contradiction argument. Here, our contradiction is based on the fact that (regardless of having

αB = αE or not) the Lagrangian multiplier is lower bounded by a function that grows logarithmically in

x.

Next, we present a corollary which states that the entire boundary of the rate-equivocation region

of the DT–PWC under nonnegativity and peak-intensity constraints is attained by discrete distributions

with finitely many mass points.

Corollary 2. Every point on the boundary of the rate-equivocation region of the DT–PWC with nonneg-

ativity and peak-intensity constraints is achieved by a unique and discrete input distribution with a finite

number of mass points.

Proof. The proof follows by invoking similar arguments to those in the proof of Theorem 6. �
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Finally, we consider the case where F+ = Ω+
E in (5.13) and characterize the optimal distributions

exhausting the entire rate-equivocation region when nonnegativity and average-intensity constraints are

active.

Theorem 7. Every point on the boundary of the rate-equivocation region of the DT–PWC with non-

negativity and average-intensity constraints is achieved by a unique and discrete input distribution with

countably infinite number of mass points, but finitely many mass points in any bounded interval.

Proof. The proof is presented in Appendix E. �

The proof of Theorem 7 follows along similar lines as the ones in the proof of Theorem 5 with a

difference in the unboundedness proof of the optimal support set. Here, we do not consider different

cases on the channel gains and the desired contradiction occurs by showing that a linearly increasing

function in x would be lower bounded by another function growing as fast as x log x.

A direct consequence of Theorem 7 is that when µ = 1 in (5.14) (the point corresponding to the

capacity of the discrete time Poisson channel with nonnegativity and average-intensity constraints), the

optimal distribution is discrete with a countably infinite number of mass points, but finitely many mass

points in any bounded interval. This result settles down Shamai’s conjecture in [7] using different and

simpler arguments than those appeared in [20, Theorem 15].

5.3.3 Asymptotic Analysis of the Secrecy Capacity

This section provides the asymptotic analysis on the secrecy capacity of the DT–PWC. Firstly, the

secrecy capacity is investigated for asymptotically small values of A and E with their ratio held fixed at

p
4
= E
A . Secondly, the behavior of the secrecy capacity is analyzed in the regime where the constraints

tend to infinity.

5.3.3.1 Low-Intensity Results

The following theorem gives a closed-form expression of the secrecy capacity in the low-intensity

regime.

Theorem 8. In the regime where the peak-intensity constraint A → 0 or both peak- and average-intensity

constraints A → 0, E → 0 while their ratio is fixed at p
4
= E
A , the secrecy capacity is given by

CS =


A2

8

(
α2
B

λB
− α2

E

λE

)
, if 1

2 ≤ p ≤ 1,

A2

2 p (1− p)
(
α2
B

λB
− α2

E

λE

)
, if 0 < p < 1

2 .

(5.15)



56

Proof. The proof is based on deriving tight lower and upper bounds that coincide in the low-intensity

regime. These lower and upper bounds are given by the Lemma 1 and Lemma 2, respectively. �

We note that when 1
2 ≤ p ≤ 1 the average-intensity constraint is inactive, and only the peak-

intensity constraint is active. Furthermore, we observe that in the low-intensity regime when peak- or

both peak- and average-intensity constraints are active the secrecy capacity scales quadratically with the

peak-intensity constraint. Additionally, in this regime the secrecy capacity is independent of the pulse

duration ∆ and thus, there is no tradeoff between the secrecy capacity and the transmission bandwidth.

It is worth mentioning that in the low-intensity regime, the secrecy-capacity-achieving input distri-

bution is F ∗X(x) = 1
2u(x) + 1

2u(x − A) when the peak-intensity constraint is active, and it is F ∗X(x) =

(1− p)u(x) + p u(x−A) when both peak- and average-intensity constraints are active, where u(·) is the

unit step function.

To derive (5.15), we provide lower and upper bounds on the secrecy capacity and show that these

bounds coincide in the low-intensity regime. To that end, we consider the secrecy capacity of the

continuous-time PWC and we note that it is a valid upper bound on the secrecy capacity of the DT–

PWC across all the intensity regimes. This is because in the continuous-time version, input signals are

not restricted to be PAM and can have arbitrary waveforms with an infinite transmission bandwidth.

Furthermore, it can be easily shown that the difference between the capacities of the legitimate user’s

and the eavesdropper’s channels is a valid lower bound on the secrecy capacity.

Based on these arguments, we present two lemmas that provide closed-form expressions for the lower

and the upper bounds on the secrecy capacity in the low-intensity regime.

Lemma 1. The secrecy capacity of the DT–PWC in the low-intensity regime when peak- or both peak-

and average-intensity constraints are active is lower bounded by

CS ≥ CB − CE ≥


A2

8

(
α2
B

λB
− α2

E

λE

)
, if 1

2 ≤ p ≤ 1,

A2

2 p (1− p)
(
α2
B

λB
− α2

E

λE

)
, if 0 < p < 1

2 .

(5.16)

where CB is the capacity of the legitimate receiver’s channel and CE is the capacity of the eavesdropper’s

channel.

Proof. The proof is presented in Appendix E. �

Lemma 2. The secrecy capacity of the DT–PWC in the low-intensity regime when peak- or both peak-
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and average-intensity constraints are active is upper bounded by

CS ≤ CCTS =


A2

8

(
α2
B

λB
− α2

E

λE

)
, if 1

2 ≤ p ≤ 1,

A2

2 p (1− p)
(
α2
B

λB
− α2

E

λE

)
, if 0 < p < 1

2 .

(5.17)

where CCTS is the secrecy capacity of the degraded continuous-time PWC with either peak- or both peak-

and average-intensity constraints.

Proof. The proof is relegated to Appendix E. �

We observe that the lower and upper bounds on the secrecy capacity of the DT–PWC coincide, when

peak- or both peak- and average-intensity constraints are active. Thus, we can fully characterize the

secrecy capacity of the DT–PWC in this regime.

5.3.4 High-Intensity Results

This section presents the behavior of the secrecy capacity of the DT–PWC when the constraints tend

to infinity. We consider two scenarios: 1) the condition in (5.5) is tight and the condition in (5.6) is

strict; 2) the condition in (5.5) is strict and the condition in (5.6) is either strict or tight.

We observe that the secrecy capacity of scenario 1 can be upper bounded by a constant across all

intensity regimes which implies that in the high-intensity regime, the secrecy capacity of the DT–PWC

does not scale with the constraints. However, the secrecy capacity of scenario 2 in the high-intensity

regime cannot scale faster than the logarithm of the square root of the constraints. Before we present

the main results regarding the asymptotic behavior of the secrecy capacity in the high-intensity regime,

we state a lemma which we frequently use in our analysis throughout this section.

Lemma 3. For a degraded DT–PWC (i.e., when the conditions in (5.5)–(5.6) hold true), the mutual

information difference f0(FX) = I(X;Y )− I(X;Z) can be upper bounded as

f0(FX) = I(X;Y )− I(X; Ỹ ) + I(X; Ỹ )− I(X;Z) ≤ I(X;Y )− I(X; Ỹ ) + I(X; Z̃). (5.18)

where Ỹ
4
= Y + ND, with ND being a Poisson distributed random variable with mean λD∆ indepen-

dent of X and Y , where λD
4
= αB

αE
λE − λB. Moreover, Z̃|X is a Poisson random variable with mean[

(αB − αE)X +
(
αB
αE
− 1
)
λE

]
∆ independent of Z|X and such that Ỹ |X = Z|X + Z̃|X.

Proof. The proof is given by [15, Lemma 1, Lemma 7]. �
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5.3.5 Scenario 1: αB = αE and λB
αB

< λE
αE

For this case observe that Z̃ ≡ 0 and we can write

CS =
1

∆
f0(F ∗X) =

1

∆

[
HY (F ∗X)−HỸ (F ∗X) +HỸ |X(F ∗X)−HY |X(F ∗X)

]
, (5.19)

where F ∗X ∈ F+ with F+ being one of the feasible sets defined in (5.10)–(5.12), and HY (F ∗X) and HỸ (F ∗X)

are the entropies of the discrete random variables Y and Ỹ , respectively, induced by the optimal input

distribution F ∗X . Furthermore, HY |X(F ∗X) and HỸ |X(F ∗X) are the conditional entropies of Y |X and Ỹ |X,

respectively, induced by F ∗X . Now, we are ready to present the upper bound on the secrecy capacity of

the DT–PWC in the high-intensity regime.

Proposition 5. The secrecy capacity of the DT–PWC with either of the considered constraints in (5.10)–

(5.12) can be upper bounded by

CS ≤
λ2
D

2 + λD
∆

λB
, (5.20)

Proof. For convenience the proof is relegated to Appendix E. �

First, notice that the upper bound in (5.20) holds for all the values of the peak- and/or average-

intensity constraints. This implies that the secrecy capacity of the DT–PWC in the regimes where either

of the constraints A → ∞ or E → ∞ does not scale with the constraints and approaches a positive

constant, i.e.,

CS = O(1). (5.21)

Observe that in the unconstrained bandwidth regime (∆ → 0), the upper bound in (5.20) diverges to

infinity.

5.3.6 Scenario 2: αB > αE and λB
αB
≤ λE

αE

In this case, first note that using the upper bound in (5.20), the secrecy capacity of the DT–PWC is

upper bounded by

CS ≤
λ2
D

2 + λD
∆

λB
+

1

∆
I(X∗; Z̃∗), (5.22)

where I(X∗; Z̃∗) is mutual information between X and Z̃ induced by the secrecy-capacity-achieving

distribution F ∗X ∈ F+. Now, observe that I(X∗; Z̃∗) can be upper bounded by the capacity of a discrete-

time Poisson channel whose input is X and output is Z̃. Therefore, in the high-intensity regime and

following along similar lines of [8, Theorem 3, Theorem 4, Theorem 7], one can upper bound I(X∗; Z̃∗)
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Figure 5.1: Illustration of CS − cS(x;F ∗X) + γ(x − E) yielded by the optimal input distribution when
A = 10, E = A

4 , αB = 2, λB = 1, αE = 1, λE = 2, and ∆ = 0.5 seconds.

by

I(X∗; Z̃∗) ≤ 1

2
log [(αB − αE)A∆] , for constraints (5.10)–(5.11),

I(X∗; Z̃∗) ≤ 1

2
log [(αB − αE)E∆] , for constraint (5.12). (5.23)

Therefore, CS is upper bounded by

CS ≤
λ2
D

2 + λD
∆

λB
+

1

2∆
log [(αB − αE)A∆] , for constraints (5.10)–(5.11), (5.24)

CS ≤
λ2
D

2 + λD
∆

λB
+

1

2∆
log [(αB − αE)E∆] , for constraint (5.12). (5.25)

As can be seen the secrecy capacity of the DT–PWC cannot scale faster than the logarithm of the square

root of constraints, i.e.,

CS = O
(

log
(√
A
))

, for constraints (5.10)–(5.11), (5.26)

CS = O
(

log
(√
E
))

, for constraint (5.12). (5.27)

5.4 Numerical Results

In this section, we provide numerical results for the secrecy capacity and the entire rate-equivocation

region of the DT–PWC.

Figure 5.1 provides a plot of the KKT conditions given by (E.28)–(E.29) for an optimal input dis-
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Figure 5.2: The secrecy capacity when E = A
4 , αB = 2, λB = 1, αE = 1, λE = 2, and ∆ = 0.5 seconds

versus the peak-intensity constraint A.

tribution when A = 10, E = A
4 , αB = 2, λB = 1, αE = 1, λE = 2, and ∆ = 0.5 seconds. We

numerically found that for these parameters, the optimal input distribution has four mass points lo-

cated at x = 0, 3.2541, 6.3032, and 10 with probability masses 0.4799, 0.3630, 0.0683, and 0.0888,

respectively. Furthermore, the corresponding Lagrange multiplier is γ = 0.0513. We observe that

CS − cS(x;F ∗X) + γ(x − E) is generally nonnegative and is equal to zero at the optimal mass points;

verifying the optimality conditions in (E.28)–(E.29).

Figure 5.2 illustrates the secrecy capacity CS and the difference CB − CE versus the peak-intensity

constraint A, where CB and CE are the legitimate user’s and the eavesdropper’s channel capacities,

respectively. First, we observe that the secrecy capacity is an increasing function in A. Furthermore, we

see that this difference is a lower bound on the secrecy capacity CS . We also observe that, for small values

of A, CB−CE and CS are identical. However, as A increases CB−CE and CS become different. Similar to

the secrecy capacity results of the FSO wiretap channel and optical wiretap channel with input-dependent

Gaussian noise under a peak- and average-intensity constraints provided in [14, 25], here too, I(X;Y )

and I(X;Z) are maximized by the same discrete distribution, however, I(X;Y )− I(X;Z) is maximized

by a different distribution. As a specific example, when A = 4, while both I(X;Y ) and I(X;Z) are

maximized by the same binary distribution with mass points at x = 0 and 4 with probability masses

0.75 and 0.25, respectively, I(X;Y ) − I(X;Z) is maximized by a ternary distribution with mass points

at x = 0, 2.6848, and 4 with probability masses 0.6884, 0.1872, and 0.1244, respectively. This explains

the difference between CS and CB − CE at A = 4 in this figure.

In Figure 5.3, we plot the effect of pulse duration ∆ on the secrecy capacity of the DT–PWC with

nonnegativity, peak- and average-intensity constraints. From the figure, we observe that, in the low-



61

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.3: The secrecy capacity of the DT–PWC when E = A
4 , αB = 2, λB = 1, αE = 1, and λE = 2

versus the peak-intensity constraint A for different values of pulse duration ∆.
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Figure 5.4: The rate-equivocation region when E = A
4 , αB = 2, λB = 1, αE = 1, λE = 2, and ∆ = 0.5

for peak-intensity constraints A = 3 and A = 4. Point M refers to the case when secrecy capacity and
capacity are achieved simultaneously.

intensity regime, the effect of decreasing ∆ on the secrecy capacity is not significant. However, in the

moderate- to high-intensity regime, ∆ becomes significantly influential and the decrease in ∆ results in

a higher secrecy capacity. Furthermore, we see that the secrecy capacity of the continuous-time PWC

(when ∆→ 0) is always an upper bound on the secrecy capacity of the DT–PWC.

Figure 5.4 depicts the entire rate-equivocation region of the DT–PWC with nonnegativity, peak- and

average-intensity constraints when E = A
4 , αB = 2, λB = 1, αE = 1, λE = 2, and ∆ = 0.5 for two

different values of A. When A = 3, it is clear from the figure that both the secrecy capacity and the

capacity can be attained simultaneously (Point “M” in the figure). In particular, for A = 3, the binary

input distribution with mass points located at x = 0 and 3 with probabilities 0.75 and 0.25, respectively,
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Figure 5.5: The rate-equivocation region when E = A
4 , αB = 2, λB = 1, αE = 1, λE = 0.5, and ∆ = 0.5

for peak-intensity constraints A = 2.8 and A = 4. Point M refers to the case when secrecy capacity and
capacity are achieved simultaneously.

achieves both the capacity and the secrecy capacity. This implies that, when A = 3, the transmitter

can communicate with the legitimate user at the capacity while achieving the maximum equivocation

at the eavesdropper. On the other hand, when A = 4 the secrecy capacity and the capacity cannot be

achieved simultaneously (notice the curved shape in the figure). More specifically, for A = 4 the binary

input distribution with mass points at x = 0 and 4 with probability masses 0.75 and 0.25, respectively,

achieves the capacity, while a ternary distribution with mass points located at x = 0, 2.6848, and 4

with probability masses 0.6884, 0.1872, and 0.1244, respectively, achieves the secrecy capacity. This

implies that the optimal input distributions for the secrecy capacity and the capacity are different. In

other words, there is a tradeoff between the rate and its equivocation in the sense that, to increase the

communication rate, one must compromise on the equivocation of this communication, and to increase

the achieved equivocation, one must compromise on the communication rate.

Figure 5.5 illustrates the entire rate-equivocation region of the DT–PWC with nonnegativity, peak-

and average-intensity constraints for the case when αB > αE and λB
αB

= λE
αE

. In this case, the eaves-

dropper’s observations are just the thinned version of those of the legitimate receiver’s and [15] shows

that for the continuous-time PWC, CS = CB − CE , i.e., there is no tradeoff between the rate and its

equivocation. This is in contrast to the case of the DT–PWC as shown in this figure. We observe that

even in this extreme case, in general, there is a tradeoff between the rate and its equivocation.

Finally, in Figure 5.6, we plot the exact and asymptotic secrecy capacity results in the low-intensity

regime versus the peak-intensity constraint A when peak- or both the peak- and average-intensity con-
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Figure 5.6: The asymptotic and exact secrecy capacity for αB = 2, λB = 1, αE = 1, and λE = 2 versus
A for both peak- and average-intensity constraints.

straints are active. From the figure, we observe that the asymptotic results for the secrecy capacity given

in (5.15) are in precise agreement with the numerical result.

5.5 Conclusions

We studied the DT–PWC where a combination of peak- and average-intensity constraints were con-

sidered. We formally characterized the secrecy-capacity-achieving input distribution to be unique and

discrete with a finite number of mass points when peak-intensity or both peak- and average-intensity

constraints were active. Also, we established that the entire rate-equivocation region of the DT–PWC

under peak- or both peak- and average-intensity constraints is exhausted by discrete distributions with

finitely many mass points. However, when only an average-intensity constraint is imposed we showed

that the secrecy capacity as well as the entire boundary of the rate-equivocation region are attained by

discrete distributions with countably infinite number of mass points, but finitely many mass points in

any bounded interval. In some cases, we also have been able to characterize the optimal distributions for

the continuous-time PWC (i.e., the case where pulse duration is very small).

Besides, we characterized the behavior of the secrecy capacity in the low- and high-intensity regimes.

In the low-intensity regime, we fully characterized the secrecy capacity and the secrecy-capacity-achieving

input distribution when peak- or both peak- and average-intensity constraints are active. It was shown

that in this regime the secrecy capacity scales quadratically with the peak-intensity constraint and the

optimal input distribution is binary. In the high-intensity regime we proved that when the legitimate

receiver’s and the eavesdropper’s channel gains are identical, the secrecy capacity is upper bounded by
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a positive constant, thus, it does not scale with the constraints. Moreover, when the channel gains are

different, the secrecy capacity is upper bounded by the capacity of a discrete-time Poisson channel and

the secrecy capacity cannot scale faster than the logarithm of the square root of the constraints.

Finally, our numerical results indicated that under nonnegativity and peak- and average-intensity

constraints, the secrecy capacity and the capacity of the DT–PWC channel cannot be obtained simulta-

neously in general, i.e., there is a tradeoff between the rate and its equivocation.
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6.1 Introduction

Optical wireless communication (OWC) is a promising technique for supporting high data-rate com-

munication as a complementary or a backup technology to radio-frequency (RF) communications. It

has numerous advantages in comparison to RF, including higher data-rates, more abundant unlicensed

spectrum and being less demanding in terms of system infrastructure. Furthermore, OWC is utilized

in deep-space optical communications and visible light communications [2, 1]. One of the most popular

communication techniques used in OWC is the intensity modulation and direct detection (IM-DD) tech-

nique for its simplicity [2]. In this setup, the channel input modulates the intensity of the emitted light.

Thus, the input signal is proportional to the light intensity and is nonnegative. The receiver is equipped

with a photodetector (PD) which measures the intensity of the received light and generates an output

signal proportional to the detected intensity, corrupted by noise.

6.1.1 Channel Models for OWC

Based on the distribution of the corrupting noise at the output of the receiver’s PD, there are several

channel models for the underlying OWC. Free space optical (FSO) channels [2, 3], optical channels with

input-dependent Gaussian noise (IDGN) [2, 5] and Poisson optical channels [2, 7, 18, 8] are the most

widely used channel models for optical wireless communications.
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The most accurate channel model for OWC based on IM-DD that can capture most of the optical

channel impairments, i.e., nonlinearities of optical devices, the photon counting process at the receiver’s

PD, the ambient light in the environment, and the thermal noise in the electronic devices of the receiver, is

the Poisson optical channel model. In this model, the output is a doubly stochastic Poisson process whose

rate is typically the intensity of the incident light plus a constant called “dark current” [2, 7, 18, 8, 6, 1].

Whether there are restrictions on the bandwidth of the input signal or not, the Poisson optical channel

can be divided into two categories: 1) continuous-time Poisson (CT-P) optical channel model [18, 6],

in which the channel input can have as large as possible bandwidth, i.e., there is no restriction on the

transmission bandwidth; 2) discrete-time Poisson (DT-P) optical channel model [7, 8], which refers to

the cases when there exists a finite transmission bandwidth constraint.

When the mean of the Poisson process in the Poisson channel model is very large, which corresponds

to the cases when the intensity of the incident light plus the dark current is very large, the optical

channel can be well-approximated by an additive Gaussian noise whose variance depends on the signal

intensity [2],[5, Appendix C],[1, 42]. This signal-dependent noise accurately models the ambient light,

thermal noise, and the nonlinearities of the optical devices, but fails to capture the photon arrivals at the

receiver’s PD.

When the ambient light in the environment and the thermal noise at the electronic devices of the re-

ceiver are dominant, the optical wireless channel can be approximated by an input-independent Gaussian

noise. This model is known as the FSO channel. In such a model, the corrupting noise is independent of

the received optical intensity and follows a zero-mean Gaussian distribution [2, 3, 4, 1, 21]. As such, the

channel output is simply the addition of the channel input and the input-independent Gaussian noise.

6.1.2 Single-User OWC

Studying the communications performance limits (such as the channel capacity) of the aforementioned

channel models from an information-theoretic point of view is rather difficult. This is because the channel

input must satisfy nonnegativity, peak- and average-intensity constraints due to eye safety and practical

considerations [2]. Considering the single-user capacity of the aforementioned channel models, the works

in [6, 7, 10, 18] showed that the capacity-achieving input distributions are discrete with a finite number

of mass points when the channel input is constrained by nonnegativity, peak- and average-intensity con-

straints. This is on the contrary to the case of the Gaussian channels with average-power constrained

inputs, where Gaussian input distribution, which is a continuous distribution, is capacity-achieving [9].

Furthermore, when the channel input is only constrained by nonnegativity and average-intensity con-
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straints, the capacity-achieving distributions for FSO channel [19] and DT-P optical channel [20] were

shown to be discrete but with an unbounded support set, i.e., the support set of the optimal distributions

are countably infinite. Finally, although the capacity of the CT-P optical channel is known in closed-form

due to [6, 18], the capacity of the other channel models (FSO, IDGN, and DT-P) are only characterized

in closed-form for the low- and high-intensity regimes [5, 8, 21], and in general, the capacity of these

channels is still unknown.

6.1.3 Mulit-User OWC

6.1.3.1 Optical Intensity Multiple Access Channel

Information-theoretic studies have also been performed for the multiuser OWC. For instance, the work

in [22] considered the Gaussian multiple access channel with amplitude and variance constraints, and es-

tablished that the boundary of the capacity region is obtained by distributions that are discrete with a

finite number of mass points. These results are directly applicable to the free-space optical multiple access

channel (FSO-MAC) with nonnegativity and peak- and average-intensity constraints. Thus, the capacity

region of the FSO-MAC under nonnegativity, peak- and average-intensity constraints is exhausted by

discrete input distributions with a finite support set. Furthermore, [23, 24] provided tight bounds on

the capacity region of FSO-MAC with peak- and/or average-intensity constraints across several intensity

regimes (low, moderate, and high). Specifically, in the regime where both peak- and average-intensity

constraints tend to zero with their ratio held fixed, [23] shows that an ON-OFF keying scheme combined

with successive interference cancellation at the receiver is capacity-achieving. Authors in [24] character-

ized the capacity region of FSO-MAC with nonnegativity and average-intensity constraints in the regime

where the average-intensity tends to infinity. In particular, it was shown that an exponential distribution

is asymptotically optimal and attains the capacity region of the FSO-MAC with an average-intensity

constraint. For a continuous-time Poisson OMAC subject to peak- and average-intensity constraints,

Lapidoth et al. established the capacity region of the Poisson MAC for the two-user case in a closed-form

expression. The authors showed that for achieving every point on the boundary of the capacity region,

the input distributions for both users must be binary with an infinite transmission bandwidth. The

discrete-time Poisson OMAC has also been considered in [16], where authors studied the two-user case

and verified the optimality of discrete inputs with a finite support set for achieving the sum-capacity

when nonnegativity and peak-intensity constraint are considered. However, the authors did not verify

whether or not discrete input distributions exhaust the entire capacity region of discrete-time Poisson

OMAC with peak-intensity constraint.
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6.1.3.2 Optical Intensity Broadcast Channel

Compared to the research that has been conducted for OMAC with a variety of intensity constraints,

results regarding the optical broadcast channel (OBC) are less abundant. The existing results pertaining

to the OBC are limited to free-space OBC (FSOBC) [43, 44, 45] and continuous-time Poisson OBC (CTP-

OBC) [40, 46]. In regards to FSOBC, authors in [43, 44] analyze the performance of an orthogonal code-

division multiple-access in an FSOBC. This orthogonalization allows serving multiple users in the FSOBC

without interference. Thus, the channel from the transmitter to each user reduces to an FSO channel

and the capacity results of [10] can be applied. On the other hand, [9] shows that for a stochastically

degraded broadcast channels, superposition coding (SC) is optimal and orthogonalizing users is not

efficient. Inspired by this fact, the work in [45] studies the N -user FSOBC under peak- and average-

intensity constraints, and finds fairly tight inner and outer bounds for the capacity region. In particular,

it shows that in the low-intensity regime, ON-OFF keying along with time-division multiple-access is

capacity-achieving. However, in general, it does not specify and characterize the capacity-achieving input

distributions. In [40], authors study the CTP-OBC under peak- and average-intensity constraints and

establish the conditions under which the CTP-OBC is degraded; hence the capacity region is achieved

using superposition coding. Furthermore, binary input distributions along with timesharing achieve all

the points on the boundary of the capacity region. In [46], the authors show that superposition coding is

optimal for other classes of CTP-OBC, such as less noisy and more capable broadcast channels when peak-

and average-intensity constraints are active. In particular, the authors proved that binary distributions

are optimal in the sense that they achieve the capacity region of the CTP-OBC.

6.1.3.3 Other Multiuser Optical Intensity Channels

Unfortunately, there exist a few limited studies on other types of multiuser optical intensity channels,

such as interference channel, relay channel, etc. The only existing researches concerning these types of

multiuser channels are the works on the FSO interference channel (FSO-IC) with an average-intensity

constraint [47] and on the CT-P interference channel (CTP-IC) with a peak-intensity constraint [48]. For

the FSO-IC with an average-intensity constraint, inner and outer bounds on the capacity region have

been derived [47]. The bounds were shown to coincide asymptotically at the strong interference regime

when average-intensity constraint tends to infinity, thus characterizing the strong interference capacity

region. Authors in [48] provided the conditions for the strong interference regime and the corresponding

capacity region for the CTP-IC. In particular, they showed that binary distribution achieves the strong

interference capacity region of the CTP-IC.
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In this chapter, a discrete-time IDGN-OMAC which reflects an OWC scenario in which two optical

transmitters wish to communicate their messages to a common optical receiver, is studied. In this setup,

the input signals are restricted by nonnegativity, peak- and average-intensity constraints. Using an IM-

DD system, the photodetector at the receiver counts the number of received photons and outputs a

signal that is corrupted by an additive Gaussian noise whose variance depends on the input signals. The

objective is to have reliable communications with the receiver such that it can decode the messages of

both users reliably. To this end, it is first noted that the capacity region of an OMAC can be characterized

by solving a weighted sum-rate maximization problem [22, Lemma 4].

Next, the optimal input distributions that exhaust the capacity region of the IDGN-OMAC with peak-

and average-intensity constraints is characterized by solving a convex optimization framework addressed

in, e.g., [16, 36, 22]. This is done by deriving the necessary and sufficient Karush-Kuhn-Tucker (KKT)

conditions that the optimal distributions must satisfy. Using these optimality conditions, it is shown

that the optimal distributions must be discrete and admit a finite number of mass points. This step is

established via a proof by contradiction method. In particular, the contradiction argument hinges on the

fact that if the support set of the optimal input distributions has an infinite number of elements, then

the cost function which grows linearly in x should grow faster than the rate-region density which grows

quadratically in x.

Finally, a closed-form expression for the capacity region of the IDGN-OMAC with peak- and average-

intensity constraints in the low-intensity regime is presented, i.e., the regime where both peak- and

average-intensity constraints tend to zero with their ratio held fixed. To this end, the single-user capacity

of the input-dependent Gaussian noise channel with peak- and average-intensity constraints for each user

is considered. The single-user channel capacity of the first user and the second user are respectively

denoted by C1 and C2. It is noted that capacity region of the IDGN-OMAC with peak- and average-

intensity constraints, is contained in the region [0, C1]× [0, C2]. Afterwards, according to [5, Theorem 10],

a closed-form expression for the single-user channel capacity C1 and C2 in the low-intensity regime is given.

Finally, it is shown that the region [0, C1] × [0, C2] is contained in the capacity region of IDGN-OMAC

with peak- and average-intensity constraints in the low-intensity regime. This implies that in the low-

intensity regime, the capacity region of the IDGN-OMAC with peak- and average-intensity constraints

is indeed the rectangular region [0, C1]× [0, C2]. It is worth mentioning that in the low-intensity regime,

the optimal input distributions exhausting the entire capacity region are binary with mass points at the

origin and the peak-intensity constraint.
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6.2 Input-Dependent Gaussian Noise OMAC

In a two-user OMAC based on the IM-DD technique and pulse amplitude modulation scheme, the

channel inputs of both users modulate the emitted light intensity from the light-emitting diode (LED)

at the transmitters and a photodetector is used for receiving the optical signal at the receiver. Thus, the

channel input Xi, i ∈ {1, 2} is a nonnegative random variable representing the intensity of the optical

signal for user i. Since intensity is constrained due to practical and safety restrictions by a peak- and

average-constraints in general, the input has to satisfy [2, Chapter 7], [7]

0 ≤ Xi ≤ Ai, i ∈ {1, 2}, (6.1)

E [Xi] ≤ Ei, i ∈ {1, 2}. (6.2)

In this setup, conditional on the channel inputs Xi’s, the output signal at the receiver Y is Gaussian

distributed with mean X1 +X2 and variance σ2(x1, x2)
∆
= σ2

0 +σ2
1(x1 +x2), where σ2

0 and σ2
1 are positive

constants. Hence, the conditional channel law is given by [5]

pY |X1,X2
(y|x1, x2) =

1√
2πσ2(x1, x2)

exp

[
− (y − x1 − x2)2

2σ2(x1, x2)

]
, y ∈ R. (6.3)

Based on (6.3), the channel output Y can be written as

Y = X1 +X2 +
√
X1 +X2 Z1 + Z0, (6.4)

where Z0 is a zero-mean Gaussian noise component with variance σ2
0 and Z1 is independent of Z0 and is

distributed according to a zero-mean Gaussian distribution with variance σ2
1 . We note that when σ2

1 = 0,

the IDGN-OMAC becomes and OMAC with only input-independent Gaussian noise which corresponds

to an FSO-MAC.

A general coding scheme for the IDGN-OMAC can be described as follows. Transmitter i, i ∈ {1, 2}

wishes to communicate a message Wi chosen uniformly from the message set Wi = {1, . . . , |Wi|} to the

receiver, where |Wi| is the cardinality of the set Wi. This message is encoded into a codeword of length

n ∈ N denoted by Xi ∈ Rn+, and then transmitted, one symbol at a time. The codewords at transmitter

i constitute a codebook that must satisfy the constraints (6.1)–(6.2). The receiver collects the received

symbols over n transmission in Y ∈ Rn, and then uses a decoder to decode Ŵi ∈ Wi, for all i ∈ {1, 2},

from Y. The transmission rate from transmitter i to the receiver is then defined as Ri = log(|Wi|)
n in nats
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per transmission.

We are interested in the set of achievable rate pairs (R1, R2) such that the error probability denoted

by Pr{Wi 6= Ŵi, i ∈ {1, 2}} can be made arbitrarily small by increasing the code length n. The set of all

achievable rate pairs is the capacity region denoted by C. The capacity region of a two-user discrete-time

memoryless MAC is known due to [49] and is given by the closure of the convex-hull of all rate pairs

(R1, R2) ∈ R2
+ satisfying

R1 ≤ I(X1;Y |X2), (6.5a)

R2 ≤ I(X2;Y |X1), (6.5b)

R1 +R2 ≤ I(X1, X2;Y ), (6.5c)

for some input distributions FX1,X2(x1, x2) = FX1(x1)FX2(x2) over F+
1 ×F

+
2 , where I(X1;Y |X2) is the

conditional mutual information between X1 and Y given X2, I(X1, X2;Y ) is the mutual information

between (X1, X2) and Y , FX(·) is the cumulative distribution function of a random variable X, and the

feasible sets F+
i , i ∈ {1, 2} is given by one of the following sets

Ω+
Ai, Ei

4
=

{
FXi :

∫ Ai
0

dFXi(x) = 1,

∫ Ai
0

x dFXi(x) ≤ Ei, i ∈ {1, 2}

}
, (6.6)

Ω+
Ai
4
=

{
FXi :

∫ Ai
0

dFXi(x) = 1, i ∈ {1, 2}

}
, (6.7)

This capacity region is achievable by jointly decoding (W1,W2) at the receiver, or by successive decoding

combined with time-sharing [49].

6.3 IDGN-OMAC Capacity Region Characterization

This section presents the main results of the paper related to the characterization of the input dis-

tributions that exhaust the capacity region of the IDGN-OMAC with nonnegativity, peak- and average-

intensity constraints.

As mentioned in Section 6.2, the capacity region is given by the closure of the convex-hull of the all

the rate pairs satisfying (6.5). Thus, any point on the boundary of this capacity region corresponds to a

solution for the optimization problem sup(R1,R2)∈C R1 +µR2 for some µ > 0. In other words, maximizing

the weighted sum-rate over all the achievable rate pairs yields all the points on the boundary of the

capacity region by letting µ vary in (0,∞). Using the structure of the capacity region, authors in [22,



72

Lemma 4] established that sup(R1,R2)∈C R1 + µR2 can be alternatively given by

sup
(R1,R2)∈C

R1 + µR2 =


supFXi∈F

+
i , i∈{1,2}

I(X1;Y |X2) + µI(X2;Y ), 0 < µ < 1

supFXi∈F
+
i , i∈{1,2}

I(X1, X2;Y ), µ = 1

supFXi∈F
+
i , i∈{1,2}

I(X1;Y ) + µI(X2;Y |X1), µ > 1,

(6.8)

where F+
i is one of the feasible sets in (6.6)–(6.7).

In what follows, we prove that the optimal input distributions that are solutions to the optimization

problem in (6.8) for the possible choices of F+
i mentioned in (6.6)–(6.7) are always discrete with a finite

number of mass points, i.e., their support set is a countable finite set. These results are formally stated

by the following theorems.

Theorem 9. In a two-user IDGN-OMAC with nonnegativity, peak- and average-intensity constraints,

i.e., F+
i = Ω+

Ai,Ei , i ∈ {1, 2}, discrete input distributions with a countably finite support set exhaust the

capacity region.

Proof. The proof is presented in Appendix F. �

We establish Theorem 9 in a few steps. Here, we only provide a proof sketch and the details of the

proof are relegated to Appendix F. The first part of the proof is showing that the supremum in (6.8) is

achievable. This implies that the supremum is actually a maximum and there exists at least one element

FXi ∈ Ω+
Ai,Ei , i ∈ {1, 2} that achieves the maximum. To this end, we need to show that: 1) the set Ω+

Ai,Ei

is compact and convex; 2) the objective functional in (6.8) for all µ > 0 is continuous in FXi . The second

part of the proof is focused on showing that the objective functional in (6.8) is weakly differentiable and

concave in FXi for all µ > 0. Taking the weak derivative of the objective functional with respect to

FXi and using the concavity, in the last part of the proof we derive the necessary and sufficient Karuch-

Kuhn-Tucker (KKT) optimality conditions that an optimal distribution F ∗Xi must satisfy. We continue

the proof by showing that the optimal solution F ∗Xi ∈ Ω+
Ai,Ei must be discrete with a countably finite set.

This is done by proof via a contradiction approach, i.e., we assume to the contrary that the support set of

the optimal solution F ∗Xi contains an infinite number of elements; then we extend the corresponding rate-

region densities (defined later in Appendix F) to the complex plane and observe that these densities are

analytic over some open connected sets in the complex plane; afterward, leveraging the Identity Theorem

from complex analysis and the Bolzano-Weierstrass Theorem, we find that a linearly growing function in

x is lower bounded by another function which grows quadratically in x, and thus reaching the desired

contradiction implying that the support set of F ∗Xi must be countably finite.
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It is noteworthy that our analysis for reaching a contradiction is flexible in the sense that following

along similar lines of the provided analysis, one can show that the capacity region of the FSO-MAC with

nonnegativity, peak- and average-intensity constraints is also exhausted by discrete distributions with a

finite number of mass points. In particular, our contradiction argument holds for the case when σ2
1 = 0,

and thus, the result follows.

In the IDGN-OMAC, when the ratio of the average-intensity constraint to the peak-intensity constraint

is ≥ 1, the average-intensity constraint is inactive and only the peak-intensity constraint is imposed [5].

Therefore, it is of interest to also characterize the optimal input distributions attaining the capacity

region when only the peak-intensity constraint is considered. Remarkably, dropping the average-intensity

constraint does not change the result of Theorem 9. Invoking the KKT conditions and a slight modifi-

cation of the proof of Theorem 9 shows that any point on the capacity region of an IDGN-OMAC with

nonnegativity and peak-intensity constraint can be achieved by discrete input distributions with a finite

number of mass points. This is formally stated by the following corollary.

Corollary 3. In a two-user IDGN-OMAC with nonnegativity and peak-intensity constraints, i.e., F+
i =

Ω+
Ai , i ∈ {1, 2}, discrete input distributions with finitely many mass points achieve all the points on the

boundary of the capacity region.

Next, we characterize the capacity region of the IDGN-OMAC in the low-intensity regime, i.e., in the

regime where both peak- and average-intensity constraints tend to zero while their ratio is held fixed at

αi
4
= Ei
Ai , i ∈ {1, 2}.

Theorem 10. In the regime where Ei → 0 and Ai → 0 with their ratio held fixed at αi with i ∈ {1, 2},

the capacity region of the IDGN-OMAC is given by

C =


R1 ≤

A2
1

2
α1(1− α1)

(
1

σ2
0

+
σ4

1

2σ4
0

)
,

R2 ≤
A2

2

2
α2(1− α2)

(
1

σ2
0

+
σ4

1

2σ4
0

)
,

(6.9)

for αi ∈ (0, 1
2 ], i ∈ {1, 2}, and

C =


R1 ≤

A2
1

8

(
1

σ2
0

+
σ4

1

2σ4
0

)
,

R2 ≤
A2

2

8

(
1

σ2
0

+
σ4

1

2σ4
0

)
,

(6.10)

for αi ∈ [ 1
2 , 1].

Proof. Theorem 10 is proven in Appendix F. �
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Figure 6.1: Illustration of KKT conditions satisfied by the optimal input distributions F ∗X1
and F ∗X2

when
σ2

0 = 1, σ2
1 = 0.25, A1 = A2 = 5, and E1 = E2 = 1.

The proof of Theorem 10 is outlined as follows. First, we note that the capacity region of the IDGN-

OMAC satisfies C ⊂ [0, C1] × [0, C2], where C1 is the single-user capacity of the first user and C2 is

the single-user capacity of the second user. Then, according to [5, Theorem 10], we have a closed-form

expression for the single user capacity Ci, i ∈ {1, 2} in the low-intensity regime as

Ci =


A2
i

2
αi(1− αi)

(
1

σ2
0

+
σ4

1

2σ4
0

)
, αi ∈ (0, 1

2 ),

A2
i

8

(
1

σ2
0

+
σ4

1

2σ4
0

)
, αi ∈ [ 1

2 , 1].

(6.11)

where Ci is attained by a binary input distribution with mass points located at {0,Ai} with corresponding

probability masses {1 − αi, αi} when αi ∈ (0, 1
2 ) and { 1

2 ,
1
2} when αi ∈ [ 1

2 , 1]. We continue the proof by

showing that [0, C1] × [0, C2] ⊂ C which will imply that C = [0, C1] × [0, C2]. To that end, we establish

that the point (C1, C2) is achievable by showing that in the low-intensity regime, the sum-capacity (the

maximum achievable sum-rate) is strictly greater than C1 + C2. This results in the achievability of the

point (C1, C2), and consequently the result follows.

6.4 Numerical Results

This section provides numerical inspections for the capacity region of the IDGN-OMAC with peak-

and average-intensity constraints along with the characterization of the optimal input distributions that

correspond to some points on the boundary of the capacity region.

Figure 6.1 illustrates the rate-region density with respect to the optimal input distributions F ∗X1
and
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Figure 6.2: The capacity region of IDGN-OMAC with with nonnegativity, peak- and average-intensity
constraints for σ2

0 = 1, σ2
1 = 0.25, A1 = A2 = 5, and two sets of values for the average-intensity

constraints E1 and E2.

F ∗X2
for µ = 1, σ2

0 = 1, σ2
1 = 0.25, A1 = A2 = 5 and E1 = E2 = 1. We numerically found that for these

parameters, the optimal input distribution for X1 is ternary with mass points located at {0, 2.6986, 5}

with corresponding probability masses {0.7159, 0.1826, 0.1015} and with the corresponding Lagrangian

multiplier λ1 = 0.1627. Moreover, the optimal input distribution for X2 is binary with mass points at

{0, 5} with corresponding probability masses {0.8, 0.2} and the Lagrangian multiplier λ2 = 0.155. We

observe that Ξ(F ∗Xi)− ξ(xi;F
∗
Xi

) + λ (xi − Ei), i ∈ {1, 2} is generally nonnegative and is equal to zero at

the optimal mass points; verifying the optimality conditions in (F.22)–(F.24).

In Figure 6.2, we plot the entire boundary of the capacity region of the IDGN-OMAC with peak- and

average-intensity constraints for σ2
0 = 1, σ2

1 = 0.25, A1 = A2 = 5 and two different sets of values for

the average-intensity constraints E1 and E2. We note that every point on the boundary of the capacity

region is achieved by discrete input distributions F ∗Xi , i ∈ {1, 2} with finitely many mass points. For

the case when E1 = E2 = 5, the average-intensity constraint is inactive and only the peak-intensity is

imposed. However, when E1 = E2 = 5/3, both the peak- and average-intensity constraints are active.

We observe that the capacity region of the IDGN-OMAC with peak- and average-intensity constraints

is contained in the capacity region of the IDGN-OMAC with only peak-intensity constraints. We would

like to draw the reader’s attention to the geometry of the capacity region in the figure. As can be seen,

due to the existence of an input-dependent noise component, the capacity region of the IDGN-OMAC

is not a pentagon as opposed to the capacity region of the Gaussian multiple access channel with peak-

and/or average power constraint [9, 22].
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Figure 6.3: The capacity region of IDGN-OMAC with with nonnegativity, peak- and average-intensity
constraints in the low-intensity regime for σ2

0 = 1, σ2
1 = 0.01, A1 = A2 = 0.01, and two sets of values for

the average-intensity to peak-intensity ratios α1 and α2.

Finally, Figure 6.3 depicts the capacity region of the IDGN-OMAC with nonnegativity, peak- and

average-intensity constraints in the low-intensity regime. As mentioned in Section 6.3, the capacity

region is a rectangle formed by [0, C1] × [0, C2], where Ci, i ∈ {1, 2} is the single-user capacity of user

i. We note that every point on the boundary of the region is achieve by binary input distributions with

mass points at {0,Ai}, i ∈ {1, 2} with corresponding probability masses {2/3, 1/3} for the case αi = 1/3

and {0.5, 0.5} for the case αi ∈ [0.5, 1]. We note that when αi = 1/3, both peak- and average-intensity

constraints are active. However, when αi ∈ [0.5, 1], only the peak-intensity constraint is active.

6.5 Conclusions

In this chapter, an IDGN-OMAC with nonnegativity, peak- and average-intensity constraints was

considered. The optimal input distributions achieving any point on the boundary of the capacity region

were fully characterized. It was shown that these optimal distributions must be discrete and posses a

finite number of mass points.

Furthermore, the asymptotic behavior of the capacity region in the regime where both peak- and

average-intensity constraints approach zero while their ratio is held fixed at a constant was provided. In

this regime, the capacity region was fully characterized in a closed-form expression and it was shown that

binary distributions with mass points at the origin and the peak-intensity constraint are optimal. We

observed that in the low-intensity regime the capacity region has a rectangular shape which is formed by

the single-user channel capacities of the users.
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The numerical results indicated that due to the existence of an input-dependent noise component,

the geometry of the capacity region of an IDGN-OMAC with nonnegativity, peak- and average-intensity

constraints is not a pentagon, which is in contrast to the case of Gaussian multiple access channel with

peak- and/or average-power constraints.
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Chapter 7: Autoencoder-Based Optical Wireless

Communications Systems

M. Soltani, W. Fatnassi, A. Aboutaleb, Z. Rezki, A. Bhuyan, and P. Titus, “Autoencoder-Based

Optical Communications,” in Proceedings of the 2018 IEEE GLOBECOM Workshops on Machine

Learning, Abu Zhabi, UAE, Dec. 2018.

7.1 Introduction

Optical wireless communications (OWC) is a promising technique for supporting high data-rate com-

munications as a complementary or a backup technology to radio-frequency (RF) communications. It

has numerous advantages in comparison to RF, including higher data-rates, more abundant unlicensed

spectrum and being less demanding in terms of system infrastructure.

One of the most popular communication techniques used in OWC is the intensity modulation and

direct detection (IM-DD) technique for its simplicity [2]. In this setup, information modulate the intensity

of the emitted light from the laser diode at the transmitter. Thus, the transmitted signal is proportional

to the light intensity and is nonnegative. The receiver is usually equipped with a photodetector which

measures the intensity of the received light and generates a signal proportional to the detected intensity,

corrupted by noise.

Studying the communications performance limits (such as the channel capacity) of this simple im-

plementation is rather difficult. The reason is that the transmitted signal must satisfy nonnegativity,

peak and average intensity constraints due to the physical restrictions existing in the optical wireless

channels [3, 21]. More importantly, traditional approaches used in constructing the signal constellations

for RF channels cannot be applied directly to the optical channels due to the mentioned constraints.

Therefore, one should consider designing structured optical signal-space model that can capture all the

physical restrictions in the optical channels [4]. This task is not straightforward and heavily depends on

the considered optical channel model. Hence, seeking for communications techniques (such as modulation,

coding, decoding, etc.) that does not heavily depend on an existing channel model is quite appealing.

Recently, machine learning (ML) and deep learning (DL) approaches have been proposed for problems

related to the physical layer of the communications network, such as modulation classifications [50, 51],

coding and decoding [51, 52, 53], detection of the transmitted symbols [53, 54], channel estimation and

equalization [53, 54]. These learning-based schemes are based on deep neural networks (DNNs) and do

not heavily depend on the communications channel models. Among these techniques, autoencoders are



79

of special interest as they can capture the end-to-end performance of the entire communications sys-

tem building blocks (such as encoding, transmission, reception, detection, equalization and decoding).

In [51], O’Shae et. al. consider single- and multiuser communications over an additive white Gaussian

noise (AWGN) RF channel and show that the performance of the learning-based communications sys-

tems (communications system based on autoencoders) can be competitive with respect to model-based

algorithms, such as Hamming coding with maximum likelihood detector. Additionally, the authors in

[53] demonstrate the feasibility of using autoencoders for practical over-the-air RF communications.

Motivated by the success of DL-based autoencoders in capturing the end-to-end performance of RF

communications system, single- and multiuser OWC scenarios based on the autoencoders are proposed.

For each of these scenarios, a complete OWC system solely composed of DNNs is designed and trained,

and its end-to-end performance are compared with the model-based optical communications systems in

terms of the block error rate (BLER) performance metric. Both single- and multiuser OWC systems

are considered. In the single-user case, the BLER performance of the trained autoencoder is compared

with that of an OWC system employing ON-OFF Keying (OOK) modulations (a modulation scheme

often used in OWC systems [2, 1, 55]) along with Hamming coding scheme and hard- and soft-decision

decoders. According to our obtained results, the learning-based OWC is able to perform as reliable as

the model-based counterpart. In the multiuser case, an optical multiple access channel (MAC) based on

autoencoders is studied and its BLER performance is compared with a multiple access system employing

OOK modulations along with either joint decoding or time-sharing schemes. The numerical results

demonstrate that the learning-based optical MAC can outperform the model-based MAC.

The rest of this chapter is organized as follows. Section 7.2 presents a single-user OWC system based

on autoencoders. Section 7.3 provides the autoencoder-based implementation of an optical MAC (a

multiuser scenario). Section 7.4 compares the end-to-end performance of the autoencoder-based single-

and multiuser OWC systems with the model-based counterparts. Finally, section 7.5 concludes this

chapter.

7.2 Single-user OWC Based on Autoencoders

Consider an autoencoder-based single-user OWC system as shown in Figure 7.1, in which the trans-

mitter sends the message s ∈ M, M = {1, . . . ,M}, to the receiver over an optical channel subject to

nonnegativity and peak intensity constraints. The message s is represented as a one-hot vector 1 (s) ∈ RM .

Then, the NN transmitter encodes the message s according to the mapping g :M→ Rn to generate

the transmitted vector x = g (s). Furthermore, to ensure the nonnegativity and peak intensity constraints
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Figure 7.1: An autoencoder-based single-user OWC system.

Layer Output dimensions
Input M

Dense + linear M
Dense + linear n
Normalization n

Channel n
Dense + linear M
Dense + linear M

Table 7.1: Layout of the autoencoder used in Figure 7.1.

on the transmitted signal, the normalization layer restricts the elements of the encoded vector x ∈ Rn as

0 ≤ x (i) ≤ A, i = 1, . . . , n, using a weighted sigmoid activation function, i.e., A× sigmoid (·), where A is

the peak intensity constraint. The communication rate of this OWC system is R = k/n bits/channel use,

where k = log2M number of bits are transmitted through n channel use (alternatively, this is denoted by

the pair (n, k)). We represent the channel layer by an AWGN with a fixed variance σ2 = (1/Rρ), where

ρ is the signal to noise ratio. This channel model is widely used in OWC systems and is considered to be

an accurate model in scenarios where the ambient light and the thermal noise are the dominant sources

for noise [2, 3, 4]. Finally, the NN receiver decodes the received vector y ∈ Rn and generates the estimate

of the transmitted message ŝ, based on the mapping h : Rn → M. The multiple dense layers at the

transmitter (two dense layers at the transmitter) and the receiver (two dense layer at the receiver) use a

linear activation function. The last layer at the receiver uses a softmax activation function whose output

p ∈ (0, 1)
M

is a probability vector over all possible messages. Then, the decoded message ŝ corresponds

to the index of the element of p with the highest probability.

The structure of the neural networks used in each layer of the considered autoencoder is given in

Table 7.1. We train the autoencoder at a fixed value of ρ to optimize the overall BLER performance

which is defined as Pr {ŝ 6= s}. In Section 7.4, we compare the BLER performance of the learning-based

OWC system with a model-based OWC system that employs OOK modulations along with hard- and
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Figure 7.2: Implementation of an optical MAC based on Autoencoders.

soft-decision decoders.

7.3 Multiuser OWC Based on Autoencoders

It is also possible to express a multiuser OWC system, e.g., multiple access channel (MAC), based on

autoencoders. Figure 7.2 depicts the schematic of an optical MAC channel constructed by deep neural

networks. In this MAC, transmitters 1 and 2 wish to communicate messages s1 ∈ M and s2 ∈ M,

respectively, to the common receiver over an optical channel subject to nonnegativity and peak intensity

constraints. To this end, both of the NN transmitters first encode their messages s1 and s2 to vectors x1 ∈

Rn and x2 ∈ Rn, respectively. Afterwards, the existing normalization layers at each of the transmitters

impose the constraints 0 ≤ x1 (i) ≤ A1 and 0 ≤ x2 (i) ≤ A2, with i = 1, . . . , n, on the transmitted

symbols using weighted sigmoid functions. On the receiver’s side the input y to the NNs is given by

y = x1 + x2 + w, (7.1)

where w ∼ (0, σ2
wIn) is the zero-mean AWGN component and σ2

w = 1/Rρ with R as the sum-rate of both

transmitters. These coupled autoencoders can be trained to minimize the following loss function

L = max (L1, L2) , (7.2)

where Lc = −
∑K
i=1 tc(i) log pc(i), c = {1, 2} are the individual cross-entropy loss functions for the first

and second transmitter, respectively; K is the length of the output vector at the last layers of the receiver,
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Figure 7.3: The BLER performance of the autoencoder and an OWC system employing OOK modulations
with and without Hamming coding for the peak intensity constraint A = 2.

tc(i) ∈ {0, 1} is the ith target label for the transmitter c, and 0 ≤ pc(i) ≤ 1 is the ith output of softmax

activation functions at the last layers of the receiver.

We note that this min-max problem ensures that max (Pr{s1 6= ŝ1},Pr{s2 6= ŝ2}) is minimized. This

in turn, implies that the receiver is able to decode both messages with a small probability of error. We

have observed that the considered min-max problem results in a better BLER performance than the

considered minimization of the combined loss functions presented in [51, Sec. III]. Furthermore, from an

information-theoretic perspective, this min-max problem is indeed considered as the performance metric

for evaluating the reliability of a multiple access setting [9, Ch. 15]. In Section 7.4, we compare the

BLER of the learning-based optical MAC with two multiple access systems. The first system employs

OOK modulations along with joint decoding and the second system employs OOK modulations along

with time-sharing.

7.4 Simulation Results

This section demonstrates the BLER performance of the proposed autoencoder-based single- and

multiuser OWC systems and gives a detailed comparison between the obtained results based on the

learning-based approach and that of the model-based systems. In the simulations, the structure of all

the autoencoders follows the layout given in Table 7.1 and we have used the Stochastic Gradient Descent

Algorithm for optimizing the performance of the autoencoders.

In Figure 7.3, we compare the BLER performance of the autoencoder-based OWC system against the
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Figure 7.4: The BLER performance of the autoencoder and an OWC system employing uncoded OOK
modulations for the peak intensity constraint A = 2.

BLER performance of an OWC system employing OOK modulations and a Hamming code with either

hard- or soft-decision decoding schemes with a fixed peak intensity constraint A = 2 for both systems. We

also provide the BLER of the uncoded OOK modulations with maximum likelihood decoder. The results

indicate that the autoencoder has learned, without any prior knowledge, encoding and decoding functions

that achieve better BLER performance than the hard-decision decoder for ρ > 5 dB. Furthermore, the

BLER performance of the autoencoder-based OWC system is only 1 dB inferior to that of the soft-decision

decoder when ρ exceeds 7 dB. Additionally, we observe that the BLER performance of the autoencoder

is better than the BLER performance of the OWC system employing uncoded OOK modulations with

maximum likelihood decoder. In our simulations, we have trained the autoencoder at a fixed value of

ρ = 10 dB using Adam optimizer with the learning rate of 0.001.

In Figure 7.4, we provide a similar BLER comparison for the (2, 2) and (4, 4) OWC systems. We

observe that the autoencoder outperforms the OWC system employing OOK modulations for both (2, 2)

and (4, 4) cases. Based on this, one can infer that the autoencoder has learned some joint coding and

modulation schemes such that a coding gain is achieved.

In Figure 7.5, we plot the learned representations x of all messages as real constellation points along

with their relative frequency of occurrences for different values of (n, k). Surprisingly, in both (4, 4)

and (7, 4) autoencoder systems, we observe that the autoencoder learned an OOK modulations with

constellation points located at 0 and A = 2. For the (4, 4) autoencoder system, both points occur with

the same relative frequency (i.e., standard OOK modulations) for representing M = 2k messages across

n channel uses. However, for the (7, 4) autoencoder system, the point at 0 has a higher relative frequency
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Figure 7.5: Constellation points along with their relative frequency of occurrence generated by the au-
toencoder for the peak intensity constraint A = 2.
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Figure 7.6: BLER versus ρ for the autoencoder-based optical MAC and optical MAC with OOK modu-
lations with joint decoding and time-sharing settings and with peak intensity constraints A1 = A2 = 2.

of occurrence than the point at A = 2 which differs from the standard OOK modulations.

In Figure 7.6, we compare the BLER performance of the optical MAC based on autoencoders against

the BLER performance of the optical MAC with OOK modulations along with either joint decoding

or time-sharing schemes. First, we observe that, the (4, 4) autoencoder system outperforms the joint

decoding system over the full range of ρ. The reason is that with joint decoding, when OOK modulations

is used, the receiver always fails to decode the received messages. In particular, when both transmitters

send the symbols 0 or A1 = A2, the receiver fails to distinguish the transmitted symbols and therefore, it

cannot do any better than a random guess. However, as mentioned earlier, autoencoders learn through



85

Figure 7.7: Learned constellation points for the (4, 4) autoencoder-based optical multiple access system.

training an efficient coding and representation of the messages which enables them to decode the messages

correctly. Next, we see that the performance of the (4, 4) autoencoder-based multiple access system is the

same as that of the MAC with time-sharing setting until ρ = 10 dB and is only 0.5 dB inferior at ρ = 15

dB. Finally, we observe that the autoencoder-based MAC (both (4, 4) and (7, 4) autoencoder systems)

optimized by our proposed min-max approach outperforms the autoencoder-based MAC optimized by the

minimization of the combined weighted loss functions proposed in [51, Sec. III], where in each mini-batch

the weights are updated.

In the simulations for the MAC scenario, we trained the autoencoders at a fixed value of ρ = 15 dB

using Adam optimizer with the learning rate of 0.0005. It is worth mentioning that in this MAC scenario,

R refers to the sum-rate of both users and a symmetric MAC is considered, where each transmitter

communicates with the rate k/n bits/channel use and therefore, R = 2k/n bits/channel use.

Finally, in Figures 7.7 and 7.8, we illustrate the learned constellation points of each of the users in the

autoencoder-based optical MAC for different communications rates. It is interesting to observe that while

in the single-user case, the learned constellation points for the (4, 4) autoencoder system are located at 0

and A = 2 with equal relative frequency, in the MAC setting, the constellation points of the users, shown

in Figure 7.7, are scattered in the interval [0, 2] with different relative frequencies. A similar observation

can be made for the (7, 4) autoencoder system depicted in Figure 7.8. These results indicate that the

autoencoders successfully learned efficient coding, modulation and decoding schemes in a multiple access

scenario.
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Figure 7.8: Learned constellation points for the (7, 4) autoencoder-based optical multiple access system.

7.5 Conclusions

Since the transmitted signals in an OWC setting must satisfy nonnegativity, peak- and average-

intensity constraints, traditional approaches used in constructing the signal constellations for RF channels

cannot be applied directly to the optical channels. Therefore, one should consider designing a structured

optical signal-space model that can capture all the physical restrictions in an OWC setting. This task

is not straightforward and heavily depends on the considered optical channel model. Hence, seeking

communications techniques (such as modulation, coding, decoding, etc.) that do not heavily depend on

an existing channel model is quite appealing. Motivated by the success of learning-based autoencoders

in capturing the end-to-end performance of the RF communications system, this chapter proposed the

design of the OWC systems in single-user and multiuser scenarios based on the autoencoders. In par-

ticular, a simple and cost-effective autoencoder system with (near-)optimal performance is proposed and

is implemented by merely taking off-the-shelf deep learning models, applying them to an OWC design

problem, and tuning them based on the easily generated training data. According to the obtained results,

using autoencoders for both single- and multiuser OWC scenarios can lead to a reliable OWC systems.

The comparison of the end-to-end BLER performance of the designed and trained autoencoders in both

single- and multiuser OWC scenarios against several baseline model-based OWC systems indicated that

the autoencoders are able to learn efficient encoding, modulation and decoding functions, and in some

cases can outperform the baseline model-based systems in terms of the BLER performance. Therefore,

one can conclude that autoencoders can be a promising solution for OWC system where a precise chan-

nel model and efficient communications techniques, such as coding, modulations and decoding are not

available.
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Chapter 8: Conclusions and Future Work

8.1 Conclusions

This dissertation studies the fundamental performance limits of the multiuser OWC system with and

without secrecy constrains. It presents techniques of secure and reliable system design for OWC for the

input-dependent Gaussian noise and the Poisson noise models. Major contributions are presented in the

following areas: 1) characterization of the optimal input distributions attaining the secrecy capacity and

the entire boundary of the rate-equivocation region of an input-dependent Gaussian noise optical wiretap

channel when peak- and average-intensity constraints are active; 2) asymptotic analysis of the secrecy

capacity of an input-dependent Gaussian noise optical wiretap channel in the low- and high-intensity

regimes when peak- and average-intensity constraints are active; 3) characterization of the optimal in-

put distributions achieving the entire boundary of the rate-equivocation region of the input-dependent

Gaussian noise optical wiretap channel when only an average-intensity constraint is active; 4) character-

ization of the optimal secure transmission schemes for the discrete-time Poisson optical wiretap channel

with peak- and/or average-intensity constraints; 5) asymptotic analysis of the secrecy capacity of the

discrete-time Poisson wiretap channel; 6) characterization of the optimal input distributions exhausting

the entire capacity region of the optical multiple access channel with an input-dependent Gaussian noise

and deriving closed-form expression of the capacity region in the low-intensity regime; 7) proposal of deep

neural network autoencoders for designing reliable single-user and multiuser OWC systems.

The secrecy-capacity-achieving input distribution of the input-dependent Gaussian noise optical wire-

tap channel is shown to be discrete with a finite number of mass points when peak- and average-intensity

constraints are active. Moreover, the entire rate-equivocation region of the considered wiretap channel is

also obtained by discrete input distributions with a finite support set. Finally, the asymptotic behavior

of the secrecy capacity in the low- and high-intensity regimes is analyzed. In the low-intensity regime,

the secrecy capacity scales quadratically with the peak-intensity constraint and it is achieved by a binary

distribution. On the other hand, in the high-intensity regime, the secrecy capacity does not scale with

the constraint and hence, it is constant.

When only nonnegativity and average-intensity constraints are considered, the entire boundary of the

rate-equivocation of the input-dependent Gaussian noise optical wiretap channel is achieved by discrete

input distributions with countably infinite support set, but with finitely many mass points in any bounded

interval. This implies that when the transmitted optical signals are restricted by only an average-intensity

constraint: 1) the secrecy capacity is achieved by a distribution which has a countably infinite support
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set; 2) the channel capacity is also achieved by a distribution having a countably infinite support set.

Since the Poisson noise model is the most accurate model for the underlying OWC based on IM-DD,

studying the fundamental performance limits of such a model is of great importance. To this end, a

discrete-time Poisson wiretap channel subject to nonnegativity, peak- and/or average-intensity, as well

as bandwidth constraints, is considered. It is shown that every point on the boundary of the rate-

equivocation region of this wiretap channel is obtained by a discrete input distribution with finitely many

mass points. Additionally, the analysis is extended to the case where only an average-intensity constraint

is active. In this case, it is found that the boundary of the rate-equivocation region is achieved by discrete

distributions with a countably infinite number of mass points, but with finitely many mass points in any

bounded interval. Finally, asymptotic analysis for characterizing the behavior of the secrecy capacity in

the low- and high-intensity regimes is provided. It is observed in the low-intensity regime, the secrecy

capacity scales quadratically with the peak-intensity constraint. However, in the high-intensity regime

and when the legitimate receiver’s and the eavesdropper’s channel gains are identical, the secrecy capacity

is constant. Moreover, when the channel gains are different, the secrecy capacity cannot scale faster than

the logarithm of the square root of the peak-intensity constraint.

The capacity region of a two-user input-dependent Gaussian noise optical multiple access channel is

considered. It is established that under nonnegativity, peak- and average-intensity constraints, generating

code-books of both users according to discrete distributions with finitely many mass points achieve any

point on the boundary of the capacity region. Furthermore, an asymptotic analysis of the capacity region

is conducted in the low-intensity regime, where the capacity region is explicitly presented in a closed-form

expression and it is shown that binary distributions with mass points at the origin and the peak-intensity

constraint are optimal. Numerical results indicate that due to the existence of an input-dependent

noise component, the geometry of the capacity region under nonnegativity, peak- and average-intensity

constraints is not a pentagon as opposed to the case of the Gaussian multiple access channel with peak-

and/or average-power constraints.

Since the transmitted signals in OWC must satisfy nonnegativity, peak- and average-intensity con-

straints due to the physical restrictions existing in the optical wireless channels, traditional approaches

used in constructing the signal constellations for RF channels cannot be applied directly to the optical

channels. Therefore, one should consider designing a structured optical signal-space model that can cap-

ture all the physical restrictions in an OWC setting. This task is not straightforward and heavily depends

on the considered optical channel model. Hence, seeking communications techniques (such as modula-

tion, coding, decoding, etc.) that do not heavily depend on an existing channel model is quite appealing.

Motivated by the success of learning-based autoencoders in capturing the end-to-end performance of the
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RF communications system, this dissertation proposes the design of the OWC systems in single-user and

multiuser scenarios based on the autoencoders. In particular, a simple and cost-effective learning-based

system with (near-)optimal performance is proposed and is implemented by merely taking off-the-shelf

deep learning models, applying them to an OWC design problem, and tuning them based on the easily

generated training data. According to the obtained results, the learning-based OWC can perform as well

as the model-based counterpart.

8.2 Future Work

In Chapter 3, although the secrecy capacity is shown to be constant in the high-intensity regime,

the value of the constant is not fully determined. Therefore, it would be of interest to fully characterize

the secrecy capacity in this regime and to determine the constant. The reason is this constant is the

maximum possible secrecy capacity that can be achieved in an input-dependent Gaussian noise setting

and therefore, finding it helps to evaluate the potential of secure OWC over the optical wiretap channel

with an input-dependent Gaussian noise.

In Chapter 4, the optimal input distributions are proved to be discrete with an infinite number of

mass points, but with finitely many mass points in any bounded interval. This implies that numerical

computations of the boundary of the rate-equivocation region of the wiretap channel with an input-

dependent Gaussian noise under an average-intensity constraint is not feasible. Therefore, to evaluate

the secrecy performance of an OWC in such a setting, it is of great importance to provide inner and

outer bounds on the rate-equivocation region based on discrete distributions with a finite number of mass

points. These inner and outer bounds help to characterize near-optimal secure transmission schemes for

OWC systems operating over the optical wiretap channel with an input-dependent Gaussian noise when

only an average-intensity constraint is active.

In Chapter 5, the behavior of the secrecy capacity in the high-intensity regime is analyzed only through

providing loose upper bounds, and full characterization of the secrecy capacity that results in a closed-

form expression of the secrecy capacity is missing. Therefore, in order to fully understand the potential

of secure OWC over the discrete-time Poisson wiretap channel in the high-intensity regime, tight inner

and upper bounds need to be sought.

In Chapter 6, the boundary of the capacity region is shown to be achieved by discrete input distri-

butions with finitely many mass points when both peak- and average-intensity constraints are active.

However, it is not known whether the support set of the optimal distributions remains finite for the case

when only an average-intensity constraint is imposed. Furthermore, the capacity region is only charac-
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terized in a closed-form expression in the low-intensity regime and it is shown that binary distributions

achieve the boundary. It would be of great interest to find a closed-form expression of the boundary

of the capacity region in the high-intensity regime and to characterize the optimal distributions in this

regime.

The proposed learning-based autoencoders in Chapter 7 can capture the end-to-end performance of

both single-user and multiuser OWC systems and can perform as good as the model-based OWC system.

In this chapter, the considered channel model for the underlying OWC is the free-space optical channel

which is not an accurate channel model for most of the OWC scenarios. Therefore, other channel models,

such as the input-dependent Gaussian noise model, or the Poisson optical model should be considered

when designing these learning-based autoencoders. Furthermore, the only considered multiuser scenario

in this chapter is the multiple access channel. Therefore, to further investigate the potential of designing

learning-based autoencoders for OWC systems, it is necessary to design, build, and train the autoencoders

for other multiuser settings, such as a broadcast channel, an interference channel, etc., and compare their

performance with the model-based multiuser OWC scenarios.
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Appendix A: Proof of the Main Results in

Chapter 3

In this section, we first provide the required preliminaries for the development of the main results.

We then give the detailed proofs of the theorems stated in Section 3.3.

A.1 Preliminaries and Notation

Since both channels are AWGN with input-dependent noise, the output densities for Y and Z exist

for any input distribution FX , and are given by

pY (y;FX) =

∫ A

0

p(y|x) dFX(x), y ∈ R, (A.1)

pZ(z;FX) =

∫ A

0

p(z|x) dFX(x), z ∈ R, (A.2)

where p(y|x) and p(z|x) are given by [5]

p(y|x) =
1√

2πσ2
B(1 + η2

Bx)
exp

(
− (y − x)2

2σ2
B(1 + η2

Bx)

)
, (A.3)

p(z|x) =
1√

2πσ2
E(1 + η2

Ex)
exp

(
− (z − x)2

2σ2
E(1 + η2

Ex)

)
. (A.4)

We define the rate-equivocation density req(x;FX) as

req(x;FX) = iB(x;FX)− iE(x;FX), (A.5)

where iB(x;FX) and iE(x;FX) are the mutual information densities for the legitimate user’s and eaves-

dropper’s channel, respectively, and are given by

iB(x;FX) =−
∫
R
p(y|x) log (pY (y;FX)) dy − 1

2
log(2πeσ2

B(1 + η2
Bx)), (A.6)

iE(x;FX) =−
∫
R
p(z|x) log (pZ(z;FX)) dz − 1

2
log(2πeσ2

E(1 + η2
Ex)). (A.7)
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The mutual information and the mutual information density are related through

I(X;Y ) =

∫ A

0

iB(x;FX) dFX(x), (A.8)

I(X;Z) =

∫ A

0

iE(x;FX) dFX(x). (A.9)

Since the channel input X satisfies (3.5), it can be shown that the conditional densities in (A.3)

and (A.4) can be bounded as [10, Lemma 3]

exp(−α− β′y2) ≤ p(y|x) ≤ exp(α− βy2), (A.10)

exp(−µ− ξ′z2) ≤ p(z|x) ≤ exp(µ− ξz2), (A.11)

for all x ∈ [0, A], y, z ∈ R, where α, β, β′, µ, ξ and ξ′ are positive constants. Hence, for all FX ∈ A+

exp(−α− β′y2) ≤ pY (y;FX) ≤ exp(α− βy2), (A.12)

exp(−µ− ξ′z2) ≤ pZ(z;FX) ≤ exp(µ− ξz2). (A.13)

Thus, we can write

|log (pY (y;FX))| ≤ α+ β′y2, (A.14)

|log (pZ(z;FX))| ≤ µ+ ξ′z2. (A.15)

Next, we prove Theorem 1 using the preliminaries provided in this section.

A.2 Proof of Theorem 1

A.2.1 The feasible set A+ is compact and convex

The proof follows along similar lines as in [33, Appendix A.1].

A.2.2 g0(FX) is continuous in FX

In order to show that g0(FX) is a continuous function in FX , it is sufficient to show that I(X;Y )

is continuous in FX . The continuity of I(X;Z) in FX can be shown by following along similar lines as

those in the proof of the continuity of I(X;Y ) in FX . To this end, let us consider a sequence {F (n)
X }n∈N
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in A+ such that F
(n)
X → FX for some FX ∈ A+. It is evident that p(y|x) is a continuous and bounded

function in x and y, thus,

lim
n→∞

pY (y;F
(n)
X ) = lim

n→∞

∫ A

0

p(y|x) dF
(n)
X (x)

=

∫ A

0

p(y|x) dFX(x), (A.16)

where (A.16) follows by the Helly-Bray Theorem [56]. Then,

lim
n→∞

p(y|x) log
(
pY (y;F

(n)
X )

)
= p(y|x) log (pY (y;FX)) . (A.17)

Moreover, by observing (A.10) and (A.14), we conclude that

∣∣∣p(y|x) log
(
pY (y;F

(n)
X )

)∣∣∣ ≤ exp(α− βy2)[α+ β′y2]. (A.18)

Since the right hand side of (A.18) is absolutely integrable, we have

∫ +∞

−∞

∣∣∣p(y|x) log
(
pY (y;F

(n)
X )

)∣∣∣ dy <∞. (A.19)

Thus, by applying the Dominated Convergence Theorem, we get

lim
n→∞

−
∫
R
p(y|x) log

(
pY (y;F

(n)
X )

)
dy = −

∫
R

lim
n→∞

p(y|x) log
(
pY (y;F

(n)
X )

)
dy

= −
∫
R
p(y|x) log(pY (y;FX)) dy. (A.20)

Additionally, 1
2 log(2πeσ2

B(1 + η2
Bx)) is a bounded and continuous function for all x ∈ [0, A]. Therefore,

we conclude that iB(x;FX) is a bounded and continuous function in FX . Finally, applying the Helly-Bray

Theorem results in

lim
n→∞

∫ A

0

iB(x;FX) dF
(n)
X (x) =

∫ A

0

iB(x;FX) dFX(x), (A.21)

which implies that I(X;Y ) is continuous in FX . Similar steps lead to the fact that I(X;Z) is also a

continuous function in FX . This further implies that the objective function g0(FX) is continuous in FX .

A.2.3 g0(FX) is strictly concave in FX

To show that g0(FX) is a strictly concave function in FX , we first note that g0(FX) = I(X;Y |Z)

when random variables X, Y and Z form the Markov chain X → Y → Z. Next, we present a lemma
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that establishes that I(X;Y |Z) is a strictly concave function in FX .

Lemma 4. If the random variables X, Y and Z form the Markov chain X → Y → Z, then the

conditional mutual information I(X;Y |Z) is a strictly concave function in input distribution FX . Fur-

thermore, the output distributions are unique, i.e., if FX1 and FX2 are both secrecy-capacity-achieving,

then pY (y;FX1
) = pY (y;FX2

) and pZ(z;FX1
) = pZ(z;FX2

).

Proof. We start the proof by noting that for random variables X, Y and Z that form the Markov chain

X → Y → Z, I(X;Y |Z) is a concave function in FX [57, Appendix A]. Now, let X1 and X2 be two

channel inputs generated by FX1
and FX2

, respectively, and Q be a binary-valued random variable such

that

p(y, z, x|q) =


p(y, z|x) pX1

(x), q = 1,

p(y, z|x) pX2
(x), q = 2,

(A.22)

where pX1
(x) and pX2

(x) be the probability density functions (PDF) of the random variables X1 and

X2. Based on (A.22), we have the following Markov chain

Q→ X → Y → Z. (A.23)

Following along the same lines as [57, Appendix A], one can show that

I(X;Y |Z,Q)− I(X;Y |Z) = −I(Q;Y |Z). (A.24)

Since I(Q;Y |Z) ≥ 0, I(X;Y |Z,Q) ≤ I(X;Y |Z). This implies that I(X;Y |Z) is a concave function in

FX . Now, we prove that with the Markov chain Q→ X → Y → Z, I(X;Y |Z) is strictly concave in FX ,

i.e., I(Q;Y |Z) > 0. Assume, to the contrary, that I(Q;Y |Z) = 0. This implies that random variables Q,

Y and Z also form the Markov chain

Q→ Z → Y. (A.25)

Furthermore, from the Markov chain (A.23), we have

Q→ X → Z. (A.26)

Combining Markov chains (A.25) and (A.26) results in a new Markov chain given by

Q→ X → Z → Y. (A.27)
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Now, based on (A.23) and (A.27), we obtain the following

p(y, z, x)
∣∣
Markov chain (A.23)

= p(y, z, x)
∣∣
Markov chain (A.27)

pX(x) p(y|x) p(z|y) = pX(x) p(z|x) p(y|z)

p(y|x)

p(z|x)
=
p(y|z)
p(z|y)

. (A.28)

We note that (A.28) holds for any y, z ∈ R and x ∈ SFX , where SFX is the support set of FX . As a result,

for fixed values of y and z the right hand side (RHS) of (A.29) is fixed, while the left hand side (LHS) is

a function of x. Since Y |X ∼ N (x, σ2
B(1 + η2

Bx)) and Z|X ∼ N (x, σ2
E(1 + η2

Ex)), (A.28) reduces to

√
σ2

E(1 + η2
Ex)

σ2
B(1 + η2

Bx)
exp

(
(z − x)2

2σ2
E(1 + η2

Ex)
− (y − x)2

2σ2
B(1 + η2

Bx)

)
=
p(y|z)
p(z|y)

. (A.29)

To reach a contradiction, let us choose y = z = 0. For the contradiction, it is sufficient to show that the

LHS of (A.29) is not a constant function in x. To this end, let us denote the LHS of (A.29) for y = z = 0

as f(x). We show that d[log(f(x))]
dx < 0 for all x ∈ SFX 1. The derivate of log(f(x)) is given by

d[log(f(x))]

dx
=
σ2

Eη
2
E

2

[
(σ2

B − σ2
E)

(σ2
E + σ2

Eη
2
Ex)(σ2

B + σ2
Bη

2
Bx)

]
+ x

[
(σ2

B − σ2
E)

(σ2
E + σ2

Eη
2
Ex)(σ2

B + σ2
Bη

2
Bx)

]
+
x2 σ2

Eη
2
E

2

[
(σ4

E − σ4
B) + 2σ2

Eη
2
E(σ2

E − σ2
B)x

(σ2
E + σ2

Eη
2
Ex)2(σ2

B + σ2
Bη

2
Bx)2

]
=
σ2

Eη
2
E

2

[
(σ2

B − σ2
E)

(σ2
E + σ2

Eη
2
Ex)(σ2

B + σ2
Bη

2
Bx)

]
+
x2σ2

Eη
2
E(σ4

B − σ4
E) + 2xσ2

Bσ
2
E(σ2

B − σ2
E)

2(σ2
E + σ2

Eη
2
Ex)(σ2

B + σ2
Bη

2
Bx)

. (A.30)

Now, we note that since σ2
E > σ2

B and x is nonnegative (as x must satisfy the nonnegativity con-

straint), (A.30) is strictly negative for all x ∈ SFX and consequently, df(x)
dx < 0 for all x ∈ SFX . This

implies that for y = z = 0, f(x) is not a constant function of x, which is a contradiction. This,

in turn, implies that I(Q;Y |Z) > 0 and as a result, I(X;Y |Z) is strictly concave in FX . Further-

more, the output distributions are unique, i.e., if FX1
and FX2

are both secrecy-capacity-achieving, then

pY (y;FX1
) = pY (y;FX2

) and pZ(z;FX1
) = pZ(z;FX2

). �

1We note that for y = z = 0, f(x) > 0 for all x ∈ SFX and as a result, the sign of the derivative of
df(x)
dx

is the same as

that of
d[log(f(x))]

dx
.
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A.2.4 g0(FX) is weakly differentiable

Defining FXθ = (1 − θ)FX0
+ θFX , ∀FX ∈ A+, θ ∈ [0, 1], we have to show that the following limit

exists

lim
θ→0

g0((1− θ)FX0
+ θFX)− g0(FX0

)

θ
. (A.31)

Substituting (A.6) and (A.7) into (A.31), we get

lim
θ→0

[∫ A
0
iB(x;FXθ ) dFXθ −

∫ A
0
iE(x;FXθ ) dFXθ

θ
+

∫ A
0
iE(x;FX0) dFX0 −

∫ A
0
iB(x;FX0) dFX0

θ

]

= lim
θ→0

[
(1− θ)

∫ A
0
iB(x;FXθ ) dFX0

+ θ
∫ A

0
iB(x;FXθ ) dFX

θ

−
(1− θ)

∫ A
0
iE(x;FXθ ) dFX0

+ θ
∫ A

0
iE(x;FXθ ) dFX

θ
−
∫ A

0
iB(x;FX0

) dFX0
−
∫ A

0
iE(x;FX0

) dFX0

θ

]
= lim
θ→0

[∫ A
0

[iB(x;FXθ )− iB(x;FX0)] dFX0

θ
+

∫ A

0

iB(x;FXθ ) dFX −
∫ A

0

iB(x;FXθ ) dFX0

−
∫ A

0
[iE(x;FXθ )− iE(x;FX0

)] dFX0

θ
−
∫ A

0

iE(x;FXθ ) dFX +

∫ A

0

iE(x;FXθ ) dFX0

]
. (A.32)

Next, we show that

lim
θ→0

∫ A
0

[iB(x;FXθ )− iB(x;FX0
)] dFX0

θ
= 0, (A.33)

lim
θ→0

∫ A
0

[iE(x;FXθ )− iE(x;FX0)] dFX0

θ
= 0. (A.34)

To this end, we first prove (A.33). The proof of (A.34) follows along a similar line as that of (A.33). We

start the proof by substituting iB(x;FX) =
∫
R p(y|x) log

(
p(y|x)

pY (y;FX)

)
dy into the left hand side (A.33) to

obtain

lim
θ→0

−
∫ A

0

∫
R p(y|x) log

(
pY (y;FXθ )

pY (y;FX0)

)
dy dFX0(x)

θ
. (A.35)
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By noting that pY (y;FXθ ) = (1− θ) pY (y;FX0) + θ pY (y;FX) and substituting this into (A.35), we get

lim
θ→0

−
∫ A

0

∫
R p(y|x) log

(
pY (y;FXθ )

pY (y;FX0)

)
dy dFX0(x)

θ

= lim
θ→0

−
∫ A

0

∫
R p(y|x) log

(
1 + θ

[
pY (y;FX)

pY (y;FX0
)
− 1

])
dy dFX0

(x)

θ

(a)
= lim

θ→0

−
∫ A

0

∫
R p(y|x) θ

[
pY (y;FX)

pY (y;FX0)
− 1

]
dy dFX0

(x)

θ

=−
∫
R

∫ A

0

pY (y;FX)

pY (y;FX0
)
p(y|x) dFX0

(x) dy +

∫
R

∫ A

0

pY (y|x) dFX0
(x) dy

=

∫
R
pY (y;FX0) dy −

∫
R

pY (y;FX)

pY (y;FX0)
pY (y;FX0) dy = 1− 1 = 0, (A.36)

where (a) follows from the fact that when θ → 0, log (1 + θ) → θ and the limit exists. By substitut-

ing (A.33) and (A.34) into (A.32) and noting that FXθ → FX0 as θ → 0, (A.31) becomes

lim
θ→0

g0((1− θ)FX0 + θFX)− g0(FX0)

θ
=

∫ A

0

[
iB(x;FX0

)− iE(x;FX0
)
]
dFX

−
∫ A

0

[iB(x;FX0
)− iE(x;FX0

)] dFX0

=

∫ A

0

req(x;FX0) dFX − g0(FX0), (A.37)

which implies that the objective function g0(FX) is weakly differentiable. Since the feasible set A+

is compact and convex and the objective function g0(FX) is continuous, strictly concave and weakly

differentiable, steps analogous to [10, Theorem 2], [36, Corollary 1] yield the following necessary and

sufficient conditions for the optimality of the distribution F ∗X

req(x;F ∗X) ≤ CS, ∀x ∈ [0, A], (A.38)

req(x;F ∗X) = CS, ∀x ∈ SF∗X , (A.39)

where SF∗X is the support set of F ∗X and the secrecy capacity CS is expressed as

CS = IB(F ∗X)− IE(F ∗X) =hY (F ∗X)− hZ(F ∗X) +
1

2
EF∗X

[
log

(
σ2

E(1 + η2
Ex)

σ2
B(1 + η2

Bx)

)]
, (A.40)

where IB(F ∗X) and IE(F ∗X) are the mutual information for Bob and Eve, respectively, generated by the

optimal input distribution F ∗X . Similarly, hY (F ∗X) and hZ(F ∗X) are the differential entropies of Y and Z,
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respectively, generated by the input distribution F ∗X . Moreover, EF∗X denotes the expectation operator

with respect to the optimal distribution F ∗X . We now prove by contradiction that the secrecy-capacity-

achieving input distribution F ∗X has a finite number of mass points. To reach a contradiction, we use the

KKT conditions in (A.38) and (A.39). To this end, we first show that both iB(x;FX) and iE(x;FX) have

analytic extensions over some open connected set in the complex plane C that includes the nonnegative

real line R+
0 .

A.2.5 The rate-equivocation density req (x;FX) has an analytic extension

to some open connected set in the complex plane C

To prove the analyticity of req (x;FX) over some open connected set in the complex plane C, it is

sufficient to prove that iB(x;FX) has an analytic extension to the open connected set. Invoking similar

steps as those in the proof of the analyticity of iB(x;FX), one can show that iE(x;FX) has also an

analytic extension to the open connected set. We start by denoting iB(w;FX) as the extension of mutual

information density of the legitimate user’s channel to the complex plane. Now, we have

iB(w;FX) = −
∫
R
p(y|w) log (pY (y;FX)) dy − 1

2
log(2πeσ2

B(1 + η2
Bw)), (A.41)

where w is the complex variable. Note that log(2πeσ2
B(1+η2

Bw)) is analytic over D1
4
=
{
w : <(w) > −1

η2B

}
,

where <(·) is the real part of a complex variable. Similarly, log(2πeσ2
E(1 + η2

Ew)) is analytic over D2
4
={

w : <(w) > −1
η2E

}
. Since η2

Bσ
2
B = η2

Eσ
2
E and σ2

E > σ2
B, we have −1

η2B
> −1

η2E
. Defining D as D 4= D1, one

can have both of the logarithm functions to be analytic over D. We note that D is an open connected

set in the complex plane C. Next, we show that the continuation of −
∫
R p(y|w) log (pY (y;FX)) dy to the

complex plane is continuous over D. To this end, let {wn}n∈N be a sequence of of complex numbers in

D converging to w ∈ D, where wn = an + jbn. Since wn converges, there exist a positive real δ > 0 such

that |wn| < δ and for some n > N . This further implies that |bn| < δ for n > N . Now, let σ2
B,X, r(wn)

and σ2
B,X, i(wn) be the real and imaginary parts of σ2

B(1 + η2
Bwn), respectively, i.e.,

σ2
B,X, r(wn) = <(σ2

B(1 + η2
Bwn)), (A.42)

σ2
B,X, i(wn) = =(σ2

B(1 + η2
Bwn)), (A.43)
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where =(·) is the imaginary part of a complex variable. We have

|σ2
B(1 + η2

Bwn)|2 = (σ2
B,X, r(wn))2 + (σ2

B,X, i(wn))2

≥ (σ2
B,X, r(wn))2. (A.44)

Since wn ∈ D, we have <(wn) > −1/η2
B and as a result, σ2

B,X, r(wn) is a positive real value. Now, we can

write

|p(y|wn)| =

∣∣∣∣∣ 1√
2πσ2

B(1 + η2
Bwn)

exp

(
− (y − wn)2

2σ2
B(1 + η2

Bwn)

)∣∣∣∣∣
≤ 1√

2πσ2
B,X, r(wn)

∣∣∣∣∣exp

(
− (y − an − jbn)2

2(σ2
B,X, r(wn) + jσ2

B,X, i(wn))

)∣∣∣∣∣
=

1√
2πσ2

B,X, r(wn)
exp

(
−
σ2

B,X, r(wn)
[
(y − an)2 − b2n

]
2|σ2

B(1 + η2
Bwn)|2

+
2 bn σ

2
B,X, i(wn) (y − an)

2|σ2
B(1 + η2

Bwn)|2

)

=
1√

2πσ2
B,X,r(wn)

exp

(
b2n

2σ2
B,X,r(wn)

)
× exp

(
−
σ2

B,X,r(wn) (y − cn)
2

2|σ2
B(1 + η2

Bwn)|2

)

≤ 1√
2πσ2

B,X, r(wn)
exp

(
δ2

2σ2
B,X, r(wn)

)
× exp

(
−
σ2

B,X, r(wn) (y − cn)
2

2|σ2
B(1 + η2

Bwn)|2

)

≤M(δ) exp

(
− (y − cn)

2

d2
n

)
, (A.45)

where M(δ) is a bounded function of δ, cn
4
= an + bn

σ2
B,X, i(wn)

σ2
B,X, r(wn)

and d2
n
4
=

2|σ2
B(1+η2Bwn)|2
σ2
B,X, r(wn)

. Using (A.45)

and (A.14), we get

|p(y|wn) log(pY (y;FX))| ≤M(δ) exp

(
− (y − cn)2

d2
n

)
[α+ β′y2]. (A.46)

Now, let us define h(y)
4
= M(δ) exp

(
− (y−cn)2

d2n

)
[α+β′y2] for y ∈ R. It is a straightforward task to verify

that
∫
R h(y) dy <∞. Hence, by Dominated Convergence Theorem, iB(w;FX) is continuous over D.

To show that the function iB(w;FX) is analytic overD, it is sufficient to show that if
∮
C
iB(w;FX) dw =

0, for any closed contour C in D, then Morera’s Theorem applies and it results in the analyticity of

iB(w;FX) over D. This contour integral is given by

∮
C

iB(w;FX) dw =

∮
C

∫
R
p(y|w) log (pY (y;FX)) dy dw −

∮
C

1

2
log(2πeσ2

B(1 + η2
Bw)) dw. (A.47)
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Since h(y) is finite, we define Γw as

Γw = max
w∈D

∫
R
|p(y|wn) log (pY (y;FX))| dy, (A.48)

and we can write

∣∣∣∣∮
C

iB(w;FX) dw

∣∣∣∣ =

∣∣∣∣∮
C

∫
R
p(y|w) log (pY (y;FX)) dy dw

∣∣∣∣
≤
∮
C

∫
R
|p(y|w) log (pY (y;FX))| dy dw

≤ Γw`C <∞, (A.49)

where `C is the length of C which is finite as C is a closed curve. Therefore, by applying Fubini

Theorem [56], one can change the order of integration in (A.47) and get

∮
C

iB(w;FX) dw =

∫
R

log (pY (y;FX)) dy

∮
C

p(y|w) dw −
∮
C

1

2
log(2πeσ2

B(1 + η2
Bw)) dw. (A.50)

It is clear that the complex functions p(y|w) and σ2
B(1 + η2

Bw) are analytic over D. This implies that

∮
C

p(y|w) dw = 0, (A.51)∮
C

1

2
log(2πeσ2

B(1 + η2
Bw)) dw = 0, (A.52)

which results in
∮
C
iB(w;FX) dw = 0 and thus by Morera’s Theorem, iB(w;FX) is analytic over D.

Similarly, it can be shown that iE(w;FX) is also analytic over D and therefore, the equivocation density

req(w;FX) = iB(w;FX)− iE(w;FX) is analytic over D.

A.2.6 The secrecy-capacity-achieving input distribution is discrete with

a finite number of mass points

To prove the discreteness of the optimal input distribution F ∗X , we use a contradiction approach.

To this end, let us assume that SF∗X has an infinite number of elements. In view of the optimality

condition (A.39), the analyticity of req(w;FX) over D and the Identity Theorem of complex analysis

along with the Bolzano-Weierstrass Theorem, if SF∗X has an infinite number of mass points, we get

req(w;F ∗X) = CS for all w ∈ D. Since (−1/η2
B,+∞) ⊂ D, any real variable x ∈ (−1/η2

B,+∞) also belongs
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to D. This, in turn, implies that if req(w;FX) = CS, ∀w ∈ D, then

req(x;F ∗X) = CS, ∀x ∈ (−1/η2
B, +∞). (A.53)

Next, we show that (A.53) results in a contradiction. By observing the bounds given in (A.10)–(A.15),

one can easily show that

∫
R

exp(−α− β′y2)[−α− β′y2] dy ≤
∫
R
p(y|x) log(pY (y;F ∗X)) dy

≤
∫
R

exp(α− βy2)[α+ β′y2] dy, (A.54)

for all x ∈ (−1/η2
B, A) ⊂ (−1/η2

B, +∞). Similarly,

∫
R

exp(−µ− ξ′z2)[−µ− ξ′z2] dz ≤
∫
R
p(z|x) log(pZ(z;F ∗X)) dz

≤
∫
R

exp(µ− ξz2)[µ+ ξ′y2] dz, (A.55)

for all x ∈ (−1/η2
B, A). Therefore, we can write

L ≤ −
∫
R
p(y|x) log(pY (y;F ∗X)) dy +

∫
R
p(z|x) log(pZ(z;F ∗X)) dz ≤ U, (A.56)

where the lower bound L and the upper bound U are given respectively as

L =

∫
R

[−µ− ξ′z2] exp(−µ− ξ′z2) dz +

∫
R

[−α− β′y2] exp(α− βy2) dy, (A.57)

U =

∫
R

[µ+ ξ′z2] exp(µ− ξz2) dz +

∫
R
[α+ β′y2] exp(−α− β′y2) dy. (A.58)

Next, we establish that for finite positive real values of β, β′, ξ, ξ′, µ and α, L and U are finite values.

To prove the finiteness of L and U , it is sufficient to prove that L is finite as the finiteness of U follows

along a similar line as that of L. We start by expanding L as L = L1 + L2, where L1 and L2 are given

respectively as

L1 =

∫
R

[−µ− ξ′z2] exp(−µ− ξ′z2) dz, (A.59)

L2 =

∫
R

[−α− β′y2] exp(α− βy2) dy. (A.60)

Since the proof of the finiteness of L2 is quite similar to that of L1, we only show the finiteness of L1.
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By direct integration, one can show that L1 = − exp(−µ) (µ + 1
2 )
√

π
ξ′ , which is a finite value for finite

positive reals µ and ξ′. This implies that L is a finite value for finite positive reals µ, α, ξ′, β and β′.

Next, by substituting (A.6) and (A.7) into (A.53) and using the bounds in (A.57)–(A.58), we can write

L ≤ CS +
1

2
log

(
σ2

B(1 + η2
Bx)

σ2
E(1 + η2

Ex)

)
≤ U. (A.61)

Now, we define the sequence {xn}n∈N of distinct points in the interval S 4= (−1/η2
B, A) such that it is

convergent to a limit point x0 = −1/η2
B. We note that the limit point does not necessarily belong to

(−1/η2
B, A). Based on this, we have the following points:

• xn and σ2
B(1 + η2

Bxn) are real values for all positive integers n.

• The limit of limn→∞ σ2
B(1 + η2

Bxn) exists and is equal 0. This is established as follows:

lim
n→∞

σ2
B(1 + η2

Bxn) = σ2
B(1 + η2

B lim
n→∞

xn)
(a)
= 0, (A.62)

where (a) follows from the fact that limn→∞ xn = x0 = −1/η2
B and (1 + η2

Bx0) = 0.

Following the results in [10, Theorem 3] and using (A.61), we can write

lim
n→∞

(L− CS) ≤ lim
n→∞

1

2
log

(
σ2

B(1 + η2
Bxn)

σ2
E(1 + η2

Exn)

)
≤ lim
n→∞

(U − CS). (A.63)

Now, we note that limn→∞
1
2 log

(
σ2
B(1+η2Bxn)

σ2
E(1+η2Exn)

)
= −∞ (as σ2

E(1 + η2
Ex0) is a positive finite value due to

the fact that η2
B > η2

E) and the limn→∞(L−CS) = L−CS is a finite value2, thus a contradiction occurs.

This, in turn, implies that the support set SF∗X cannot have an infinite number of elements and therefore

the optimal input distribution F ∗X is discrete with a finite number of mass points.

A.3 Proof of Proposition 1

Suppose, to the contrary, that x = 0 does not belong to the support set of the optimal input dis-

tribution SF∗X . Let 0 < x1 ≤ x2 ≤ . . . ≤ xN be the mass points in the set SF∗X . Consider two optical

wiretap channels with input-dependent Gaussian noises depicted in Figure A.1. Wiretap channel 1 is

the original optical wiretap channel, and wiretap channel 2 is obtained from wiretap channel 1 by ap-

pending a pre-coder and a post-coder before and after the inner optical channel in the legitimate user’s

2It is shown in Section 3.4.B that CS ≤ 1
2

log

(
σ2
E

σ2
E

)
. Furthermore, as CS ≥ 0, we have 0 ≤ CS ≤ 1

2
log

(
σ2
E

σ2
E

)
. This

implies that CS is a finite value.
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Figure A.1: Two optical wiretap channels with input-dependent Gaussian noise.

link. Specifically, X̂ = X − x1 and Y = Ŷ + N̂B, where N̂B is an additive Gaussian noise with mean x1

and variance x1σ
2
Bη

2
B and is independent from Ŷ . For any x ≥ x1, the conditional probability density

functions p(y|x) and p(z|x) are the same in both wiretap channels. Thus, the joint probability density

functions of p(y, x) and p(z, x) in the two wiretap channels are also the same, if the input distribution is

F ∗X . As a result, CS is identical in both wiretap channels.

In the second wiretap channel, asX, X̂, Ŷ , Y and Z form the Markov chainX → X̂ → Ŷ → Y → Z, we

have I(X̂; Ŷ |Z) ≥ I(X;Y |Z) by the data processing inequality. This indicates that I(X̂; Ŷ )− I(X̂;Z) ≥

I(X;Y ) − I(X;Z). Now, let F ∗
X̂

be the distribution function of X̂ when the distribution function of X

is F ∗X . Clearly, F ∗
X̂

satisfies the nonnegativity and peak-intensity constraints. Hence, F ∗
X̂

is also secrecy-

capacity-achieving for wiretap channel 1. Based on Lemma 4, the secrecy-capacity-achieving output

distribution is unique, as a result, pY (y;F ∗X) = pY (y;F ∗
X̂

). Therefore, for wiretap channel 2, given the

input distribution function of X is F ∗X , the probability density functions for Y and Ŷ are the same, which

is not possible since E[Y ] = E[Ŷ ] + x1. Hence, we reach a contradiction and the proposition follows.

A.4 Proof of Theorem 2

This section presents the proof of Theorem 2 by extending the analysis in the previous section to

the entire rate-equivocation region. This extension entails generalizing the contradiction argument in

the proof of Theorem 1 to the case when an additional mutual information term is present in the objec-

tive function. We start by noting that the objective function gλ(FX) in (3.15) is strictly concave, and

the feasible set A+ is compact and convex, therefore, the optimization problem in (3.15) has a unique
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maximizer. We denote the optimal input distribution for (3.15) as F ∗X which depends on the value λ.

Now, we obtain the KKT optimality conditions for the optimal input distribution of the optimization

problem in (3.15). Since the objective function gλ is weakly differentiable, we have

lim
θ→0

gλ((1− θ)FX0
+ θFX)− gλ(FX0

)

θ

=

∫ A

0

[λ iB(x;FX0
) + (1− λ) req(x;FX)] dFX(x)− gλ(FX0

). (A.64)

Following similar steps mentioned in the proof of Theorem 1, the KKT optimality conditions for the

optimality of F ∗X are obtained as follows

λ iB(x;F ∗X) + (1− λ) req(x;F ∗X) ≤ λIB(F ∗X) + (1− λ)(IB(F ∗X)− IE(F ∗X)), ∀x ∈ [0, A], (A.65)

λ iB(x;F ∗X) + (1− λ) req(x;F ∗X) = λ IB(F ∗X) + (1− λ)(IB(F ∗X)− IE(F ∗X)), ∀x ∈ SF∗X . (A.66)

Now, we show that the optimal input distribution F ∗X has a finite support. To this end, we use similar

steps mentioned in the proof of Theorem 1 and prove the discreteness of F ∗X by a contradiction approach

and using the optimality conditions in (A.65)–(A.66).

Let us assume that SF∗X has an infinite number of elements. Under such an assumption, (A.66), the

analyticity of iB(w;F ∗X) and iE(w;F ∗X) over D in the complex plane and the Identity Theorem of complex

analysis imply that

λ iB(x;F ∗X) + (1− λ) req(x;F ∗X) = λ IB(F ∗X) + (1− λ)(IB(F ∗X)− IE(F ∗X)), ∀x ∈ (−1/η2
B,+∞).

(A.67)

Next, we show that (A.67) results in a contradiction. To this end, by using (A.54) and (A.55) and the

fact that (1− λ) is nonnegative for all λ ∈ [0, 1], we can bound (A.67) as

L̃ ≤ IB(F ∗X)− (1− λ) IE(F ∗X) +
1

2
log

(
σ2

B(1 + η2
Bx)

σ2
E(1 + η2

Ex)

)
+
λ

2
log(2πeσ2

E(1 + η2
Ex)) ≤ Ũ , (A.68)

where L̃ and Ũ are given by

L̃ = (1− λ)

∫
R

[−µ− ξ′z2] exp(−µ− ξ′z2) dz +

∫
R

[−α− β′y2] exp(α− βy2) dy, (A.69)

Ũ = (1− λ)

∫
R

[µ+ ξ′z2] exp(µ− ξz2) dz +

∫
R
[α+ β′y2] exp(−α− β′y2) dy. (A.70)

Invoking similar arguments for the proving the finiteness of L and U given in (A.57)–(A.58), one can show
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that the lower bound L̃ and the upper bound Ũ are also finite values. Now, let {xn}n∈N be a convergent

sequence of distinct points in S with a limit point x0 = −1/η2
B. It is clear that 1) xn and σ2

B(1 + η2
Bxn)

are real for all positive integers n; 2) limn→∞ σ2
B(1 + η2

Bxn) = 0. Following the results in [10, Theorem 3]

and using (A.68), we get

lim
n→∞

[
L̃− IB(F ∗X) + (1− λ) IE(F ∗X)

]
≤ lim
n→∞

[
1

2
log

(
σ2

B(1 + η2
Bxn)

σ2
E(1 + η2

Exn)

)
+
λ

2
log(2πeσ2

E(1 + η2
Exn))

]
≤ lim
n→∞

[
Ũ − IB(F ∗X) + (1− λ) IE(F ∗X)

]
, (A.71)

We note that limn→∞
1
2 log

(
σ2
B(1+η2Bxn)

σ2
E(1+η2Exn)

)
= −∞, while λ

2 log(2πeσ2
B(1 + η2

Ex0)) and L̃ − IB(F ∗X) + (1 −

λ) IE(F ∗X) are finite values. Hence, we reach a contradiction; implying that the optimal input distribution

F ∗X has a finite support.
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Appendix B: Secrecy Capacity in the

Low-Intensity Regime Under a Peak-Intensity

Constraint

In the low-intensity regime, the secrecy capacity can be written as

CS =
1

2
[JB(0)− JE(0)] max

FX∈A+
Var (X) + o(A2). (B.1)

Therefore, the optimal input distribution that attains the secrecy capacity under nonnegativity and peak-

intensity constraints in the low-intensity regime, also maximizes the variance of the input random variable

Var (X). One can show that Var (X) = E[X2]− (E [X])2 is a strictly concave function in FX . Since the

set A+ is compact and convex and the functional Var (X) is continuous and strictly concave in FX , the

maximizer of the optimization problem in (B.1) exists and is unique. Moreover, the condition for the

optimality of F ∗X is as follows [9, Chapter 12]

δVar (X)

δ f∗X(x)
= x2 − 2x

∫ A

0

t f∗X(t) dt = 0, (B.2)

where f∗X(x) is the optimal probability density function (PDF) of random variable X and δVar (X)
δ f∗X(x) is

the functional derivative of Var (X) with respect to f∗X(x). Now, let us assume that the optimal input

distribution that satisfies (B.2) is f∗X(x) = p0 δ(x−x0)+p1 δ(x−x1), where δ(·) is the dirac delta function.

Substituting this distribution into (B.2) results in

x2
0 − 2x2

0 p0 − 2x0x1 p1 = 0, (B.3)

x2
1 − 2x2

1 p1 − 2x1x0 p0 = 0. (B.4)

One can verify that the optimal mass points are located at {x0 = 0, x1 = A} and their corresponding

probabilities are {p0 = p1 = 0.5}. Hence, maxFX∈A+ Var (X) = A2

4 .
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Appendix C: Secrecy Capacity in the

Low-Intensity Regime Under Peak- and

Average-Intensity Constraints

In the low-intensity regime, the secrecy capacity can be written as

CS =
1

2
[JB(0)− JE(0)] max

FX∈M+
Var (X) + o(A2). (C.1)

Therefore, the optimal input distribution that attains the secrecy capacity under both the peak- and

average-intensity constraints for low-intensity regime, also maximizes the variance of the input random

variable Var (X). Since the set M+ is compact and convex and the functional Var (X) is continuous

and strictly concave in FX , the maximizer of the optimization problem in (C.1) exists and is unique.

Moreover, the optimization problem in (C.1) is equivalent to the following

h(fX , `) = max
FX∈M+

Var (X) = max
FX∈A+

Var (X)− `(E [X]− P ), (C.2)

where ` is the Lagrangian multiplier and positive. Therefore, the optimality conditions for F ∗X can be

given by [9, Chapter 12]

δ h(f∗X , `)

δ f∗X(x)
= 0, (C.3)

∂h(f∗X , `)

∂`
= 0. (C.4)

Next, let us consider that the optimal input distribution that satisfies (C.3)–(C.4) is f∗X(x) = p0 δ(x −

x0) + p1 δ(x− x1), where δ(·) is the dirac delta function. Substituting this distribution into (C.3)–(C.4)

results in

x2
0 − 2x2

0 p0 − 2x0x1 p1 − ` x0 = 0, (C.5)

x2
1 − 2x2

1 p1 − 2x1x0 p0 − ` x1 = 0, (C.6)

x0 p0 + x1 p1 = P. (C.7)

One can show that for ` = A(1− 2κ) the optimal mass points are located at {x0 = 0, x1 = A} and their

corresponding probabilities are {p0 = 1−κ, p1 = κ}. Thus, maxFX∈A+ Var (X) = κ(1−κ)A2. Since ` > 0
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(average intensity constraint is active), then κ ∈ (0, 1
2 ). When κ ∈ [ 1

2 , 1] the average intensity constraint

is not active and the result follows from Appendix B. That is, in the low-intensity regime, κ ∈ (0, 1
2 ). A

similar observation has been made in [5], but for the case with no secrecy constraint.
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Appendix D: Proof of Theorem 3

D.1 Preliminaries

As mentioned, the conditional probability laws of Y1 and Y2 given X are described as

pY1|X(y|x) =
1√

2πσ2
B(x)

exp

[
− (y − x)2

2σ2
B(x)

]
, (D.1)

pY2|X(t|x) =
1√

2πσ2
E(x)

exp

[
− (t− x)2

2σ2
E(x)

]
, (D.2)

and we have

pY1(y;FX) =

∫ +∞

0

pY1|X(y|x) dFX(x), y ∈ R, (D.3)

pY2(t;FX) =

∫ +∞

0

pY2|X(t|x) dFX(x), t ∈ R. (D.4)

We define the secrecy-rate density as cS(x;FX)
4
= iB(x;FX)− iE(x;FX), where

iB(x;FX)
4
=

∫
R
pY1|X(y|x) log

1

pY1
(y;FX)

dy − 1

2
log(2πeσ2

B(x)), (D.5)

iE(x;FX)
4
=

∫
R
pY2|X(t|x) log

1

pY2
(t;FX)

dt− 1

2
log(2πeσ2

E(x)). (D.6)

Observe that I(X;Y1) = EX [iB(x;FX)] and I(X;Y2) = EX [iE(x;FX)].

D.2 Proof of the Theorem

Theorem 3 is proved as follows.

D.2.1 The set P+ is convex and compact

Invoking similar argument that appeared in [58, Theorem 3], one can show that the set P+ satisfies

the desired property.

D.2.2 fµ(FX) is continuous in FX

We need to show that I(X;Y1) and I(X;Y2) are both continuous in FX . To this end, we only show

that I(X;Y1) is continuous in FX , as one can similarly show that I(X;Y2) is continuous. We start by
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noting that I(X;Y1) = h(Y1)−h(Y1|X), where h(·) is the differential entropy and h(·|·) is the conditional

differential entropy. Now, observe that pY1
(y;FX) ≤ k0

∫ +∞
0

φ(y, x) dFX(x), where k0
4
= 1√

2πσ2
B,0

and

φ(y, x)
4
= exp

(
− (y−x)2

2σ2
B(x)

)
∈ [0, 1]. Therefore, we have

|pY1(y;FX) log pY1(y;FX)| ≤ |k0 log k0|ψ(y) + k0|ψ(y) logψ(y)|, (D.7)

where ψ(y)
4
=
∫∞

0
φ(y, x) dFX(x) ∈ [0, 1]. Note that |ψ(y) logψ(y)| ≤ e−1 for ψ(y) ∈ [0, e−1] and

|ψ(y) logψ(y)| ≤ ψ(y) for ψ(y) ∈ [e−1, 1]. Furthermore, φ(y, x) is increasing in x for y > x > 0 and

decreasing in x for 0 < y < x. Next, we show that (D.7) can be bounded above by an integrable function

β(y), i.e.,
∫
R β(y) dy <∞. To that end, observe that based on (D.7) and the arguments appear after it,

one can write

β(y)
4
=


k′0ψ(y), |y| > y0

k′′0 , |y| ≤ y0

(D.8)

where y0, k
′
0, k

′′
0 are positive constants. Note that when y < −y0, we have φ(y, x) ≤ exp

(
− y2

2σ2
B(x)

)
∈

[0, 1] and

ψ(y) =

∫ ∞
0

φ(y, x) dFX(x) ≤
∫ |y| 32

0

exp

(
− y2

2σ2
B(x)

)
dFX(x) +

∫ ∞
|y|

3
2

exp

(
− y2

2σ2
B(x)

)
dFX(x)

≤ exp

(
− y2

2σ2
B(|y| 32 )

)
+
E
|y| 32

, (D.9)

where the first term in (D.9) follows since σ2
B(x) is linearly increasing in x, and the second term is due

to Markov’s inequality. Also, when y > y0 we get

ψ(y) =

∫ y/2

0

φ(y, x) dFX(x) +

∫ ∞
3y/2

φ(y, x) dFX(x) +

∫ 3y/2

y/2

φ(y, x) dFX(x)

≤ 2 exp

(
− y2

8σ2
B(3y/2)

)
+

32σ4
B(3y/2)

y4
, (D.10)

where the first term (D.10) follows because φ(y, x) is increasing in x for 0 < x < y/2 and decreasing in

x for 0 < 3y/2 < x, and the second terms is due to the inequality e−u ≤ u−2, where u
4
=

2σ2
B(3y/2)

(y−x)2 > 0,

and noting that u is decreasing in x. From (D.9)–(D.10), we can conclude that β(y) is integrable.

As such, the reasoning in [37, Appendix I.B] establishes that h(Y1) is continuous in FX .
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Additionally, since h(Y1|X = x) = 1
2 log(2πeσ2

B(x)), we observe that

−∞ <
1

2
log 2πeσ2

B,0 ≤ h(Y1|X = x) ≤ k1 + k2

√
x, (D.11)

where k1 and k2 are some positive constants. Now, we have
∫ +∞
b

h(Y1|X = x) dFX(x) ≤ E/
√
b for

all FX(x) ∈ M+ and b large enough. Thus, by invoking similar arguments that appeared in [37, Ap-

pendix I.B], one can show that h(Y1|X) is continuous in FX .

Steps 1 and 2 imply that the supremization in (4.8) is a maximization problem.

D.2.3 Strict concavity of fµ(F
∗
X)

This step can be proved by a similar contradiction argument which is appeared in [25, Appendix A].

This step implies that the answer to (4.8), denoted by F ∗X , is unique.

D.2.4 fµ(FX) is weakly differentiable in P+

Following along similar lines of [25], one can show the weak differentiability of the functional fµ(FX)

in FX ∈ P+ and the weak derivative at F oX ∈ P+, denoted by f ′µ(FX , F
o
X), is

f ′µ(FX , F
o
X)
4
= lim
θ→0

fµ((1− θ)F oX + θFX)− fµ(F oX)

θ

=

∫ +∞

0

[µiB(x;F oX) + (1− µ)cS(x;F oX)]dFX(x)− fµ(F oX), θ ∈ [0, 1]. (D.12)

After establishing the steps 1 through 4 and following along similar lines of [37, Appendix II.B], the

optimal solution F ∗X must satisfy the following necessary and sufficient optimality equations

µiB(x;F ∗X) + (1− µ)cS(x;F ∗X)− γx ≤ fµ(F ∗X)− γE , ∀x ∈ [0,+∞), (D.13)

µiB(x;F ∗X) + (1− µ)cS(x;F ∗X)− γx = fµ(F ∗X)− γE , ∀x ∈ SF∗X , (D.14)

where γ ≥ 0 is the Lagrangian multiplier and SF∗X is the optimal solution’s support set.

We now prove by contradiction that SF∗X must be in such a way that the cardinality of SF∗X ∩ B,

where B ⊂ [0,+∞) is any bounded interval, is finite. For reaching a contradiction, we use the equations

in (D.13)–(D.14). We first show that both iB(x;FX) and iE(x;FX) are analytic in the complex plane.
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D.2.5 The analyticity of cS(x;FX)

Following along similar lines of [25], we have the analyticity of iB(z;FX) over C1
4
= {z : <(z) >

−σ2
B,0/σ

2
B,1}, and the analyticity of iE(z;FX) over C2

4
= {z : <(z) > −σ2

E,0/σ
2
E,1}, where z is the complex

variable and <(·) is the real part operator. Thus, By virtue of the conditions (4.3), cS(z;FX) is analytic

in C1 ∩ C2 = C1.

D.2.6 The intersection of SF ∗
X
with any bounded interval has a finite car-

dinality

Assume, to the contrary, that there exists a bounded interval B such that SF∗X ∩ B has an infinite

cardinality. Using (D.14), the analyticity of cS(z;F ∗X) and iB(z;F ∗X), Identity and Bolzano-Weierstrass

Theorems, we have that if |SF∗X ∩ B| = ∞, where |A| is the cardinality of set A, then µiB(z;F ∗X) +

(1 − µ)cS(z;F ∗X) − γz = fµ(F ∗X) − γE for all z ∈ C1. Since (−σ2
B,0/σ

2
B,1,+∞) ⊂ C1, any real variable

x ∈ (−σ2
B,0/σ

2
B,1,+∞) also belongs to C1. This implies

µiB(x;F ∗X) + (1− µ)cS(x : F ∗X)− γx = fµ(F ∗X)− γE , ∀x ∈ (−σ2
B,0/σ

2
B,1,+∞). (D.15)

Substituting (D.5) and (D.6) into (D.15) and rearranging the terms, one obtains

1

2
log

σ2
B(x)

σ2
E(x)

+
µ

2
log(2πeσ2

E(x)) + γ(x− E) + fµ(F ∗X) =

∫
R
pY1|X(y|x) log

1

pY1
(y;F ∗X)

dy

− (1− µ)

∫
R
pY2|X(t|x)× log

1

pY2
(t;F ∗X)

dt

4
=L(x), ∀x > −σ2

B,0/σ
2
B,1. (D.16)

Observe that pY1
(y;F ∗X) ≤ k0 for all y ∈ R. Thus − log pY1

(y;F ∗X) ≥ 1
2 log(2πσ2

B,0). Furthermore, let A

be a constant such that Pr(X ≤ A) ≥ 1
2 . Therefore,

pY2(t;F ∗X) ≥
∫ A

0

pY2|X(t|x) dF ∗X(x)
(a)

≥ g(t), (D.17)

where (a) follows from [59], with g(t) given by

g(t)
4
=


1√

8πσ2
E(A)

e−(t−A)2/2σ2
E,0 , t ≤ A/2,

1√
8πσ2

E(A)
e−t

2/2σ2
E,0 , t > A/2.

(D.18)
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Hence, L(x) can be lower bounded as

L(x) ≥ 1

2
log(2πσ2

B,0) + (1− µ)

[
log(k3)−

∫
R
pY2|X(t|x)× t2

2σ2
E,0

dt+
A

2σ2
E,0

∫ A/2

−∞
(2t−A)pY2|X(t|x) dt

]

≥ 1

2
log(2πσ2

B,0) + (1− µ)

[
log(k4)− x2 + σ2

E(x)

2σ2
E,0

+
A

σ2
E,0

(
x− σ2

E(x)
pY2|X(A/2|x)

PY2|X(A/2|x)

)]
, (D.19)

where k3 = 1√
8πσ2

E(A)
and k4 = k3e

−A2/2σ2
E,0 are constants, PY2|X(·|x) is the cumulative distribution

function of Y2|X, and the last term in (D.19) is obtained using integration by parts. Now, observe that

in (D.19), when x→ −σ
2
B,0

σ2
B,1

+

, L(x) is lower bounded by a finite and constant value, say k5, due to (4.3).

Thus, taking the limit from the sides of (D.16) as x→ −σ
2
B,0

σ2
B,1

+

results in

k5 ≤ lim

x→−
σ2
B,0

σ2
B,1

+

1

2
log

σ2
B(x)

σ2
E(x)

+
µ

2
log
[
2πe(σ2

E,0 − σ2
B,0)

]
+ γ

(
−
σ2

B,0

σ2
B,1

− E

)
+ fµ(F ∗X). (D.20)

Observe that in light of (4.3), we have

lim

x→−
σ2
B,0

σ2
B,1

+

1

2
log

σ2
B(x)

σ2
E(x)

(b)
=

1

2
log

 lim

x→−
σ2
B,0

σ2
B,1

+

σ2
B(x)

σ2
E(x)

 =
1

2
log

0+

σ2
E,0 − σ2

B,0

= −∞, (D.21)

where (b) is justified because of the continuity of the logarithm. Combining (D.20) and (D.21) results in

the desired contradiction. Therefore, SF∗X ∩B must have a finite cardinality.

D.2.7 The unboundedness of SF ∗
X

To prove this, we again resort to a contradiction approach. Assume, to the contrary, that SF∗X is

bounded, i.e., SF∗X ⊆ [0, h], where h < +∞. In the previous section, we proved that the intersection of

SF∗X with any bounded interval has a finite cardinality. Since, we are assuming that SF∗X is bounded,

thus, it has a finite cardinality. This implies that F ∗X(x) =
∑N
i=1 piu(x− xi), where N < +∞, 0 ≤ x1 <

x2 < · · · < xN ≤ h are the mass points with corresponding probabilities {p1, . . . , pN}. Furthermore, we

can write

pY2
(t;F ∗X) =

N∑
i=1

pipY2|X(t|xi) > pNpY2|X(t|xN ). (D.22)
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Therefore, log pY2(t;F ∗X) > log pN + log pY2|X(t|xN ), and −iE(x;F ∗X) can be lower bounded as

− iE(x;F ∗X) ≥ −
∫
R
pY2|X(t|x)

(t− xN )2

2σ2
E(xN )

+
1

2
log

e σ2
E(x)

σ2
E(xN )

+ log pN = − x2

2σ2
E(xN )

+ o(x2), (D.23)

where o(x2) is a function which satisfies limx→+∞
o(x2)
x2 = 0. Furthermore, since x ∈ [0, xN ], we can write

pY1
(y;F ∗X) ≤ G(y) [59], where G(y) is given by

G(y) =



1√
2πσ2

B,0

e
− y2

2σ2
B

(xN ) , y < 0,

1√
2πσ2

B,0

e
− (y−xN )2

2σ2
B

(xN ) , y > xN ,

1√
2πσ2

B,0

, 0 ≤ y ≤ xN .

(D.24)

As a result, iB(x;F ∗X) can be lower bounded as

iB(x;F ∗X) ≥ 1

2
log

σ2
B,0

e σ2
B(x)

+

∫
R
pY1|X(y|x)

y2

2σ2
B(xN )

dy −
∫ xN

0

pY1|X(y|x)
y2

2σ2
B(xN )

dy︸ ︷︷ ︸
≥−

x2
N

2σ2
B

(xN )
as y≤ xN ,

∫ xN
0 pY1|X(y|x) dy≤ 1

−
∫ +∞

xN

xN y pY1|X(y|x)

σ2
B(xN )

dy +
x2
N

2σ2
B(xN )

∫ +∞

xN

pY1|X(y|x) dy

(c)

≥ 1

2
log

σ2
B,0

e σ2
B(x)

+
x2 + σ2

B(x)

2σ2
B(xN )

dy − x2
N

2σ2
B(xN )

− xN
σ2

B(xN )

[
x− σ2

B(x) Ξ(x)
]
, (D.25)

where (c) follows because pY1|X(y|x) ≥ 0, and Ξ(x)
4
=

pY1|X(+∞|x)−pY1|X(xN |x)

1−PY1|X(xN |x) . Note that pY1|X(+∞|x) ≥

0, and pY1|X(xN |x) ≤ k0. Furthermore, PY1|X(xN |x) ≈ 0 for large values of x and 1− PY1|X(xN |x) ≈ 1.

Hence, for large values of x, (D.25) can be further lower bounded as

iB(x;F ∗X) ≥ x2

2σ2
B(xN )

+ o(x2). (D.26)

Combining (D.13), (D.23), and (D.26), we find

fµ(F ∗X) + γ(x− E) ≥µ iB(x;F ∗X) + (1− µ) cS(x;F ∗X)

≥µ x2

2σ2
B(xN )

+ (1− µ)

[
x2

2σ2
B(xN )

− x2

2σ2
E(xN )

]
+ o(x2). (D.27)

Notice that in light of the degradedness conditions in (4.3), the left-hand-side of (D.27) grows linearly in

x, but the right-hand-side of it grows quadratically in x for all µ ∈ [0, 1]. Thus, we reach a contradiction

implying that SF∗X must be an unbounded set. From Steps 6 and 7, we infer that F ∗X must have a countably
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infinite support set. Finally, we note that the contradiction in (D.27) also holds for σ2
B,1 = σ2

E,1 = 0, i.e.,

the support set of optimal solutions for the FSO WC with an average optical power is also unbounded.

This conclusion cannot be reached using [35, Theorem 3, Section IV]. Combining this result along with

the countability of the support (discreteness of the distributions) shown in [35, Theorem 3, Sec. (iv)], we

conclude that in FSO WC with an average optical power constraint, optimal inputs admit a countably

infinite support set.



121

Appendix E: Proof of the Main Results in

Chapter 5

In this section, we first provide the required preliminaries for the development of the main results.

We then give the detailed proofs of theorems and the proposition mentioned in Sec. 5.3.

E.1 Preliminaries

Since both legitimate user’s and eavesdropper’s channels are discrete-time Poisson channels, the output

densities for Y and Z exist for any input distribution FX , and are given by

PY (y;FX) =

∫ A
0

p(y|x) dFX(x), y ∈ N, (E.1)

PZ(z;FX) =

∫ A
0

p(z|x) dFX(x), z ∈ N, (E.2)

where p(y|x) and p(z|x) are given by (5.1)–(5.2). We define the secrecy rate density cs(x;FX) as

cS(x;FX)
4
=

1

∆
[iB(x;FX)− iE(x;FX)] , (E.3)

where iB(x;FX) and iE(x;FX) are the mutual information densities for the legitimate user’s and the

eavesdropper’s channels, respectively, and are as follows

iB(x;FX) =

+∞∑
y=0

p(y|x) log
p(y|x)

PY (y;FX)
, (E.4)

iE(x;FX) =

+∞∑
z=0

p(z|x) log
p(z|x)

PZ(z;FX)
. (E.5)

Plugging (5.1)–(5.2) and (E.1)–(E.2) into (E.4)–(E.5) and after some algebra, we get

iB(x;FX) = [(αBx+ λB)∆] log[(αBx+ λB)∆]− αBx∆−
+∞∑
y=0

p(y|x) log gB(y;FX), (E.6)

iE(x;FX) = [(αEx+ λE)∆] log[(αEx+ λE)∆]− αEx∆−
+∞∑
z=0

p(z|x) log gE(z;FX), (E.7)
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where gB(y;FX) and gE(z;FX) are respectively defined as

gB(y;FX)
4
=

∫ A
0

e−αBx∆ [(αBx+ λB)∆] y dFX(x), (E.8)

gE(z;FX)
4
=

∫ A
0

e−αEx∆ [(αEx+ λE)∆] z dFX(x). (E.9)

Furthermore, we have the following identities

I(X;Y ) =

∫ A
0

iB(x;FX) dFX(x)
4
= IB(FX), (E.10)

I(X;Z) =

∫ A
0

iE(x;FX) dFX(x)
4
= IE(FX), (E.11)

f0(FX) =

∫ A
0

cS(x;FX) dFX(x). (E.12)

Next, we prove Theorem 4 using the preliminaries provided in this section.

E.2 Proof of Theorem 4

We start by proving that the set of input distributions Ω+
A, E is compact and convex. We then show

that the objective functions f0(FX) in (5.13) is continuous, strictly concave and weakly differentiable in

the input distribution FX and hence, we conclude that the optimization problems in (5.13) has a unique

solutions. We continue the proof by deriving the necessary and sufficient conditions (KKT conditions)

for the optimality of the optimal input distribution F ∗X . Finally, by means of contradiction we show

that the optimal input distributions are discrete with a finite number of mass points. The proof is then

streamlined into a few lemmas which we state below.

Lemma 5. The feasible set Ω+
A, E is convex and sequentially compact in the Levy metric sense.

Proof. The proof follows along similar lines as [7, Lemma 1] �

Lemma 6. The functional f0 : Ω+
A, E → R, f0(FX) = IB(FX)− IE(FX) is continuous in FX .

Proof. The proof follows along similar lines as presented in [7, Lemma 3]. �

From Lemma 5 and Lemma 6, f0(FX) is continuous in FX over Ω+
A, E which itself is a compact set,

then by the Extreme Value Theorem, f0(FX) is bounded above and attains its supremum. That is, the

supremum in (5.13) is actually a maximum which is achievable by at least one input distribution FX .

Lemma 7. The functional f0(FX) is strictly concave in FX .
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Proof. The proof is by contradiction and follows along similar lines as in [25, Appendix A] with the

difference that the conditional channel laws follow Poisson distribution.

We start the proof by noting that for random variables X, Y and Z that form the Markov chain

X → Y → Z, I(X;Y |Z) = I(X;Y )− I(X;Z) is a concave functional in FX [57, Appendix A]. Now, let

X1 and X2 be two channel inputs generated by FX1
and FX2

, respectively, and Q be a binary-valued

random variable such that

p(y, z, x|q) =


p(y, z|x) pX1(x), q = 1,

p(y, z|x) pX2
(x), q = 2,

(E.13)

where pX1
(x) and pX2

(x) are the probability density functions of the random variables X1 and X2. Based

on (E.13), we have the following Markov chain

Q→ X → Y → Z. (E.14)

Following along the same lines as [57, Appendix A], one can show that

I(X;Y |Z,Q)− I(X;Y |Z) = −I(Q;Y |Z). (E.15)

Since I(Q;Y |Z) ≥ 0, I(X;Y |Z,Q) ≤ I(X;Y |Z). This implies that I(X;Y |Z) is a concave function in

FX . Now, we prove that with the Markov chain Q→ X → Y → Z, I(X;Y |Z) is strictly concave in FX ,

i.e., I(Q;Y |Z) > 0. Assume, to the contrary, that there exists an FX such that I(Q;Y |Z) = 0. This

implies that random variables Q, Y and Z also form the Markov chain

Q→ Z → Y. (E.16)

Furthermore, from the Markov chain (E.14), we have

Q→ X → Z. (E.17)

Combining Markov chains (E.16) and (E.17) results in a new Markov chain given by

Q→ X → Z → Y. (E.18)
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Now, based on (E.14) and (E.18), we obtain the following

p(y, z, x)
∣∣
Markov chain (E.14)

= p(y, z, x)
∣∣
Markov chain (E.18)

pX(x) p(y|x) p(z|y) = pX(x) p(z|x) p(y|z)

p(y|x)

p(z|x)
=
p(y|z)
p(z|y)

. (E.19)

We note that (E.19) holds for any y, z ∈ N and x ∈ SFX , where SFX is the support set of FX . As a result,

for fixed values of y and z the RHS of (E.19) is fixed, while the left hand side (LHS) is a function of x.

Since Y |X and Z|X are Poisson distributed with mean (αBx + λB)∆ and (αEx + λE)∆, respectively,

(E.19) reduces to
e−(αBx+λB)∆[(αBx+ λB)∆] y/y!

e−(αEx+λE)∆[(αEx+ λE)∆] z/z!
=
p(y|z)
p(z|y)

. (E.20)

To reach a contradiction, let us choose y = z = 1. Now, it is sufficient to show that the LHS of (E.20)

is not a constant function in x. To this end, let h(x) denote LHS (E.20) for y = z = 1. In this case,

we have h(x) = e[(αE−αB)x+(λE−λB)]∆ αBx+λB
αEx+λE

. It is clear that h(x) is not a constant function in x, for

x ∈ SFX . This is because at leas one of the inequalities in (5.5) or (5.6) is strict. Therefore, we reach a

contradiction. This, in turn, implies that I(Q;Y |Z) > 0 and as a result, I(X;Y |Z) is strictly concave

in FX . Furthermore, the output distributions are unique, i.e., if FX1
and FX2

are both secrecy-capacity-

achieving, then pY (y;FX1
) = pY (y;FX2

) and pZ(z;FX1
) = pZ(z;FX2

). �

Lemma 7 implies that the answer to the optimization problem in (5.13) for F+ = Ω+
A, E , denoted by

F ∗X , is unique.

Lemma 8. The functional f0(FX) is weakly differentiable in Ω+
A, E and its weak derivative at the point

F oX , denoted by f ′0(F oX) is given by

f ′0(FX , F
o
X)
4
= lim
t→0

f0((1− t)F oX + tFX)− f0(F oX)

t
=

∫ A
0

cS(x;F oX) dFX(x)− f(F oX), (E.21)

where t ∈ [0, 1].

Proof. The proof is based on the definition of the weak derivative and follows along similar lines as the

one in [25]. �

From Lemma 5, Lemma 7, and Lemma 8, we have a strictly concave and weak-differentiable func-

tion f0(FX) over Ω+
A, E which is a convex set, then the necessary and sufficient conditions for an input



125

distribution F ∗X to be optimal is

f ′0(FX , F
∗
X) ≤ 0, ∀ FX , F ∗X ∈ Ω+

A, E . (E.22)

Now, we define the mapping

g(FX) =

∫ A
0

x dFX(x)− E , (E.23)

from Ω+
A, E to R. This mapping is linear in FX and hence convex. Furthermore, the weak-derivative of

g(FX) at the point F oX is given by

g′(FX , F
o
X) = g(FX)− g(F oX). (E.24)

Using the Lagrangian Theorem, and noting that f0(FX) − γg(FX) (where γ ≥ 0 is the Lagrangian

coefficient) is weakly differentiable and strictly concave in FX , the necessary and sufficient conditions for

F ∗X ∈ Ω+
A, E to be optimal is

f ′0(FX , F
∗
X)− γg′(FX , F ∗X) ≤ 0, ∀ FX , F ∗X ∈ Ω+

A, E , (E.25)

that is ∫ A
0

[cS(x;F ∗X)− γx] dFX(x) ≤ CS − γE , (E.26)

where the secrecy capacity is CS = IB(F ∗X)−IE(F ∗X) = f0(F ∗X). Next, we present a theorem which states

the KKT conditions for the optimality of F ∗X ∈ Ω+
A, E .

Theorem 11. Let SF∗X ⊂ [0,A] be the support set of F ∗X , then

∫ A
0

[cS(x;F ∗X)− γx] dFX(x) ≤ CS − γE , (E.27)

for all FX ∈ Ω+
A, E if and only if

cS(x;F ∗X)− γx ≤ CS − γE , ∀ x ∈ [0,A], (E.28)

cS(x;F ∗X)− γx = CS − γE , ∀ x ∈ SF∗X . (E.29)

Proof. The implication from (E.28) to (E.27) is immediate. For the converse, assume (E.28) is false.

Then there exists an x̂ such that

cS(x̂;F ∗X) > CS + γ(x̂− E). (E.30)
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If FX(x) = u(x− x̂), where u(·) is the unit step function, then

∫ A
0

[cS(x;F ∗X)− γx] dFX(x) = cS(x̂;F ∗X)− γx̂ > CS − γE , (E.31)

which contradicts (E.27). Now, assume that (E.28) is true, but (E.29) is false, i.e., there exists x̂ ∈ SF∗X
such that

cS(x̂;F ∗X) < CS + γ(x̂− E). (E.32)

Since all the functions in the above equation are continuous in x, the inequality is satisfied strictly on a

neighborhood S ′ of x̂. Now, by definition of a support set, the set S ′ necessarily satisfies
∫
S′ dF

∗
X(x) =

ε ∈ [0, 1]. Hence,

CS − γE = f0(F ∗X)− γE =

∫ A
0

[cS(x;F ∗X)− γx] dF ∗X(x)

=

∫
S′

[cS(x;F ∗X)− γx]dF ∗X(x) +

∫
SF∗
X
−S′

[cS(x;F ∗X)− γx]dF ∗X(x)

< ε(CS − γE) + (1− ε)(CS − γE) < (CS − γE), (E.33)

which is a contradiction, and hence the result follows. �

We now prove by contradiction that the secrecy-capacity-achieving input distribution F ∗X has a finite

number of mass points. To reach a contradiction, we use the KKT conditions in (E.28)–(E.29). To this

end, the following lemma establishes that both iB(x;FX) and iE(x;FX) have analytic extensions over

some open connected set in the complex plane C.

Lemma 9. The secrecy rate density cS(x;FX)− γx has an analytic extension to the open connected set

O 4= {w ∈ C : <(w) > − λB
αB
}, where <(w) is the real part of the complex variable w.

Proof. The mutual information densities iB(w;FX) and iE(w;FX) have analytic extension to the open

connected sets OB
4
= {w ∈ C : <(w) > − λB

αB
} and OE

4
= {w ∈ C : <(w) > − λE

αE
}, respectively, according

to [7]. Therefore, the secrecy rate density cS(w;FX)−γw has an analytic extension to the open connected

set O = OB ∩ OE . Since λE
αE
≥ λB

αB
(based on (5.6)), we have O = OB . This completes the proof of

Lemma 9. �

Now, we are ready to prove the discreteness and finiteness of the support set of F ∗X using a contra-

diction argument. We start by assuming that SF∗X has an infinite number of elements. In view of the

optimality condition (E.29), the analyticity of cS(w;FX) − γw over O and the Identity Theorem from
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complex analysis along with Bolzano-Weierstrass Theorem, if SF∗X has an infinite number of mass points,

we deduce that re(w;F ∗X)− γw = CS − γE for all w ∈ O. Since (− λB
αB
,+∞) ⊂ O, we conclude that

cS(x;F ∗X)− γx = CS − γE , ∀x > −λB
αB

. (E.34)

Next, we show that (E.34) results in a contradiction. Observe that (E.34) implies that cS(x;F ∗X) − γx

is a constant function in x for all x ∈ (− λB
αB
,+∞). Therefore, to reach a contradiction, we show that

cS(x;F ∗X)− γx is not a constant function over this interval. To that end, we take the derivative of both

sides of (E.34) with respect to x and we find

dcS(x;F ∗X)

dx
= γ, ∀x > −λB

αB
. (E.35)

Substituting (E.6)–(E.7) into (E.3) and taking the derivative with respect to x, we can write

dcS(x;F ∗X)

dx
=αB log[(αBx+ λB)∆] + αB

+∞∑
y=0

p(y|x) log
gB(y;F ∗X)

gB(y + 1;F ∗X)

− αE log[(αEx+ λE)∆]− αE
+∞∑
z=0

p(z|x) log
gE(z;F ∗X)

gE(z + 1;F ∗X)
, ∀x > −λB

αB
. (E.36)

It can be easily shown that

λB∆ ≤ gB(y + 1;F ∗X)

gB(y;F ∗X)
≤ (αBA+ λB)∆, (E.37)

λE∆ ≤ gE(z + 1;F ∗X)

gE(z;F ∗X)
≤ (αEA+ λE)∆, (E.38)

Using the bounds in (E.37)–(E.38), one obtains

dcS(x;F ∗X)

dx
≥ (αB − αE) log[(αBx+ λB)∆] + αE log

αBx+ λB
αEx+ λE

− αB log[(αBA+ λB)∆]

+ αE log(λE∆)

= (αB − αE) log
αBx+ λB
αBA+ λB

+ αE log
αBx+ λB
αEx+ λE

+ αE log
λE

αBA+ λB
,∀x > −λB

αB
. (E.39)

Finally, we consider two cases and for each case we provide a contradiction argument.

• Case 1: αB > αE

In this case, we note that for sufficiently large values of x, the right-hand-side (RHS) of (E.39)

scales logarithmic in x, i.e.,
dcS(x;F∗X)

dx = Ω(log x) which means that there exist constants c > 0 and
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x0 > − λB
αB

such that
dcS(x;F∗X)

dx ≥ c log x for all x > x0. However, this results in a contradiction

since based on (E.35),
dcS(x;F∗X)

dx must be a constant function in x for all x > − λB
αB

.

• Case 2: αB = αE

For this case, using the bounds in (E.37)–(E.38), we first upper bound
dcS(x;F∗X)

dx as follows

dcS(x;F ∗X)

dx
≤ (αB − αE) log

αBx+ λB
αEA+ λE

+ αE log
αBx+ λB
αEx+ λE

+ αB log
αEA+ λE

λB

=αB log
x+ λB

αB

x+ λE
αE

+ αB log
αEA+ λE

λB
, ∀ x > −λB

αB
. (E.40)

Recall that at least one of the inequalities in (5.5)–(5.6) is strict (due to the degradedness assump-

tion). Therefore, in this case, (5.6) is strict. Now, to reach a contradiction, it suffices to compute

the limit of the RHS of (E.40) as x→ − λB
αB

+
. For this purpose and in regard of (E.35), we have

γ ≤ lim
x→− λBαB

+
αB log

x+ λB
αB

x+ λE
αE

+ αB log
αEA+ λE

λB
. (E.41)

Observe that since λE
αE

> λB
αB

, the limit lim
x→− λBαB

+ log
x+

λB
αB

x+
λE
αE

= −∞ and therefore, we get γ ≤ −∞

which is a contradiction because γ is a nonnegative constant.

Hence, for each case we reach a contradiction which implies that the support set SF∗X must have finitely

many mass points in the interval [0,A]. This completes the proof of Theorem 4.

We note that since our bounds in (E.39) and (E.40) do not depend on ∆, the result also holds true for

the case where ∆ → 0. That is, the optimal input distribution for the degraded continuous-time PWC

with nonnegativity, peak- and average-intensity constraints is also discrete with a finite number of mass

points in the interval [0,A].

E.3 Proof of Theorem 5

This section presents the proof of Theorem 5 by extending the analysis in the previous section to the

case where only an average-intensity constraint is active. We start the proof by noting that the feasible

set Ω+
E is convex and sequentially compact in the Lévy metric sense [37, Appendix I.A]. Furthermore,

the functional f0 : Ω+
E → R, f0(FX) = IB(FX) − IE(FX) is continuous in FX . This is because each one

of the mutual information terms IB(FX) and IE(FX) are continuous in FX based on [20, Lemma 17].

Therefore, we conclude that the supremum in (5.13) for F+ = Ω+
E is achieved by at least one element

FX ∈ Ω+
E . Furthermore, the functional f0(FX) is strictly concave, and weakly differentiable by following
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along similar lines of Lemma 7 and Lemma 8. Hence, the maximum is achieved by a unique distribution.

Finally, invoking similar arguments that appear in the statement of Theorem 11, we find the following

necessary and sufficient KKT conditions for the optimality of the input distribution F ∗X as

cS(x;F ∗X)− γx ≤ CS − γE , ∀ x ∈ [0,+∞), (E.42)

cS(x;F ∗X)− γx = CS − γE , ∀ x ∈ SF∗X . (E.43)

Next, we prove that the secrecy-capacity-achieving input distribution F ∗X has the following structural

properties: 1) the intersection of SF∗X with any bounded interval B contains a finite number of mass

points, i.e., |SF∗X ∩ B| < ∞; 2) the support set of the optimal distribution is an unbounded set. These

two properties imply that SF∗X is a countably infinite set. The first property is shown by means of

contradiction. We assume, on the contrary, that for some bounded interval B, SF∗X ∩ B contains an

infinite number of elements. Then, using the KKT conditions in (E.42)–(E.43), the analyticity of the

secrecy rate density cS(x;F ∗X) over O, and invoking the Bolzano-Weierstrass and Identity Theorems, we

find that γ ≤ −∞ which is not possible, and hence results in a contradiction. The second property is

also shown through a contradiction approach. We consider two cases for the channel gains αB and αE

and for each case, we provide a contradiction arguments. These cases are as follows: 1) when αB > αE ,

our contradiction hinges on the fact that if SF∗X is a bounded set, then the cost function which grows

linearly in x must be lower bounded by the secrecy rate density which grows as fast as x log x. This is not

possible for large values of x and hence a contradiction occurs; 2) when the channel gains are identical, we

find that the Lagrangian multiplier must be lower bounded by a constant and thus, using the Envelope

Theorem [39] we observe that the secrecy capacity must at least grow linearly in the average-intensity

constraint. However, in this section, it is shown that the secrecy capacity is always upper bounded by a

constant for all values of the average-intensity. Therefore, the desired contradiction is reached and the

result follows.

E.3.1 The support set of the optimal solution has finitely many mass

points in any bounded interval

Let B be a bounded interval and assume, to the contrary, that SF∗X ∩ B has an infinite number of

elements. Now based on the optimality equation (E.43), the analyticity of cS(x;F ∗X) over O, and the
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Bolzano-Weierstrass and Identity Theorems from complex analysis, one can find

cS(x;F ∗X)− γx = CS − γE , ∀x > −λB
αB

. (E.44)

Next, we show that this results in a contradiction. To this end, we note that

gE(z + 1;F ∗X) =

∫ +∞

0

e−αEx∆ [(αEx+ λE)∆] z+1 dFX(x) = eλE∆(z + 1)!

∫ +∞

0

p(z|x) dF ∗X(x)︸ ︷︷ ︸
≤ 1 as p(z|x)≤1

≤ eλE∆(z + 1)!. (E.45)

Furthermore, observe that

gE(z;F ∗X) ≥ (λE∆)z EF∗X [e−αEX∆]
(i)

≥ (λE∆)z e
−αE∆EF∗

X
[X]

= (λE∆)z e−αEE∆, (E.46)

where (i) is due to the Jensen’s Inequality as e−αBx∆ is a convex function in x. Plugging the bounds in

(E.45)–(E.46) into (E.36), we get

dcS(x;F ∗X)

dx
≤ (αB − αE) log[(αBx+ λB)∆] + αE log

αBx+ λB
αEx+ λE

+ αB

+∞∑
y=0

p(y|x) log
gB(y;F ∗X)

gB(y + 1;F ∗X)︸ ︷︷ ︸
4
= ΞB(x)

+αE

+∞∑
z=0

p(z|x) log
eλE∆(z + 1)!

e−αEE∆(λE∆)z︸ ︷︷ ︸
4
= ΞE(x)

. (E.47)

Next, we provide upper bounds on ΞB(x) and ΞE(x) as follows

ΞB(x)
(ii)

≤
+∞∑
y=0

p(y|x) log
1

λB∆
= − log(λB∆) (E.48)

ΞE(x) = EZ|X [log(Z + 1)!− Z log(λE∆)] + (αEE + λE)∆

= EZ|X [log Z!] + EZ|X [log(Z + 1)]− [(αEx+ λE)∆] log(λE∆) + (αEE + λE)∆

(iii)

≤ EZ|X [log Z!] + log(EZ|X [Z] + 1)− [(αEx+ λE)∆] log(λE∆) + (αEE + λE)∆

(iv)

≤ 1

2
log[2πe(EZ|X [Z] +

1

12
)]− EZ|X [Z] + EZ|X [Z] log(EZ|X [Z]) + log(EZ|X [Z] + 1)

− [(αEx+ λE)∆] log(λE∆) + (αEE + λE)∆

≤ [(αEx+ λE)∆] log[(αEx+ λE)∆]− [(αEx+ λE)∆](1 + log(λE∆))

+
3

2
log[(αEx+ λE)∆ + 1] + (αEE + λE)∆ +

1

2
log(2πe), (E.49)
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where (ii) follows from (E.37), (iii) is due to the Jensen’s Inequality as log x is a concave function,

and (iv) follows from an upper bound on the entropy of the Poisson random variable [8, Lemma 10].

Combining (E.47)–(E.49), we get

dcS(x;F ∗X)

dx
≤ (αB − αE) log[(αBx+ λB)∆] + αE log

x+ λB
αB

x+ λE
αE

+ αE log
αB
αE

+ αE
(
[(αEx+ λE)∆] log[(αEx+ λE)∆]− [(αEx+ λE)∆](1 + log(λE∆))

+
3

2
log[(αEx+ λE)∆ + 1] + (αEE + λE)∆ +

1

2
log(2πe)

)
− αB log(λB∆), ∀x > −λB

αB
. (E.50)

In order to see a contradiction it suffices to compute the limit of the RHS of (E.50) as x→ − λB
αB

+
. For

this purpose and in regard of (E.35) and (E.50), we have

γ ≤ lim
x→− λBαB

+
(αB − αE) log

αBx+ λB
λB

+ lim
x→− λBαB

+
αE log

x+ λB
αB

x+ λE
αE

+ αE log
αB
αE

+ αE lim
x→− λBαB

+
[[(αEx+ λE)∆] log[(αEx+ λE)∆]− [(αEx+ λE)∆](1 + log(λE∆))]

︸ ︷︷ ︸
finite value for

λE
αE
≥ λBαB

+ αE lim
x→− λBαB

+

[
3

2
log[(αEx+ λE)∆ + 1] + (αEE + λE)∆ +

1

2
log(2πe)

]
︸ ︷︷ ︸

finite value for
λE
αE
≥ λBαB

− αE log(λB∆). (E.51)

Thus, we obtain that γ ≤ −∞ which is a contradiction as γ is a nonnegative constant. Therefore, the

SF∗X ∩B has a finite cardinality. This implies that the optimal input distribution F ∗X possess a countably

finite number of mass points in any bounded interval. It is noteworthy that the upper bound in (E.51)

depends on ∆. Therefore, in this case we cannot conclude that the secrecy-capacity-achieving distribution

of the continuous-time PWC with nonnegativity and average-intensity constraints admits a finite number

of mass points in any bounded interval.

E.3.2 The support set of the optimal distribution SF ∗
X

is unbounded

To prove this, we again resort to a contradiction approach. Assume, to the contrary, that SF∗X is a

bounded set, i.e., SF∗X ⊆ [0, h], where h is some finite positive constant. In the previous section, we proved

that the intersection of SF∗X with any bounded interval has a finite cardinality. Since, we are assuming
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that SF∗X is bounded, thus, it has a finite cardinality. This implies that F ∗X(x) =
∑N
i=1 piu(x − xi),

where N < +∞, 0 ≤ x1 < x2 < · · · < xN ≤ h are the mass points with corresponding probabilities

{p1, . . . , pN}. Furthermore, we can write

gE(z;F ∗X) =

∫ h

0

e−αEx∆ [(αEx+ λE)∆] z dF ∗X(x) =

N∑
i=1

pie
−αExi∆ [(αExi + λE)∆] z

> pNe
−αExN∆ [(αExN + λE)∆] z. (E.52)

gB(y;F ∗X) =

∫ h

0

e−αBx∆ [(αBx+ λB)∆] y dF ∗X(x) =

N∑
i=1

pie
−αBxi∆ [(αBxi + λB)∆] y

≤ [(αBxN + λB)∆] y (E.53)

Therefore, log gE(z;F ∗X) > log pN −αExN∆ + z log[(αExN + λE)∆] and log gB(y;F ∗X) ≤ y log[(αBxN +

λB)∆]. In light of the optimality equation (E.42) and using these bounds we obtain

CS + γ(x− E) ≥ (αBx+ λB) log[(αBx+ λB)∆]− (αEx+ λE) log[(αEx+ λE)∆]

+ (αE − αB)x+
1

∆

+∞∑
z=0

p(z|x) log gE(z;F ∗X)− 1

∆

+∞∑
y=0

p(y|x) log gB(y;F ∗X)

> (αBx+ λB) log[(αBx+ λB)∆]− (αEx+ λE) log[(αEx+ λE)∆]

+ (αE − αB)x+
log pN

∆
− αExN + (αEx+ λE) log[(αExN + λE)∆]

− (αBx+ λB) log[(αBxN + λB)∆]

= (αB − αE)x log[(αBx+ λB)∆] + αEx log
αBx+ λB
αEx+ λE

+ x

[
(αE − αB) + (αE − αB) log[(αExN + λE)∆] + αB log

αExN + λE
αBxN + λB

]
+ λB log

αBx+ λB
αBxN + λB

− λE log
αEx+ λE
αExN + λE

+
log pN

∆
− αExN , ∀x ≥ 0. (E.54)

Now, we consider the following cases and for each case we provide a contradiction argument.

• Case 1: αB > αE

Observe that in this case, the RHS of (E.54) scales like x log x for sufficiently large values of x, i.e.,

CS + γ(x− E) = Ω(x log x). However, this is clearly a contradiction because CS + γ(x− E) grows

linearly in x. Thus, the optimal support set SF∗X must be an unbounded set.

• Case 2: αB = αE
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In this case, (E.54) can be simplified further as

CS + γ(x− E) ≥αBx

[
log

xN + λE
αE

xN + λB
αB

+ log
x+ λB

αB

x+ λE
αE

]
+ λB log

x+ λB
αB

xN + λB
αB

− λE log
x+ λE

αE

xN + λE
αE

+
log pN

∆
− αExN , ∀x ≥ 0. (E.55)

Observe that the RHS of (E.55) grows linearly in x for large values of x. Thus, dividing the sides

of (E.55) into x > 0 and taking the limit as x→∞, we find

γ ≥ αB log
xN + λE

αE

xN + λB
αB

. (E.56)

We note that since αB = αE , the inequality in (5.6) is strict, i.e., λE
αE

> λB
αB

and therefore,

αB log
xN+

λE
αE

xN+
λB
αB

> 0. Next, we show that this lower bound on the Lagrangian multiplier γ results

in a contradiction. To that end, we first note that the Lagrangian multiplier γ and the location

of the last mass point in the support set of the optimal distribution depend on the value of the

average-intensity constraint. Thus, in (E.56) one must replace γ by γ(E) and xN by xN (E). Now,

we recall the Envelope Theorem [39] which shows that the Lagrangian multiplier γ and the secrecy

capacity (the optimal value of the objective functional) are related as follows

dCS(E)

dE
= γ(E). (E.57)

In light of this relationship and the lower bound in (E.56), the following lower bound can be found

CS(E) =

∫ E
0

γ(t) dt ≥
∫ E

0

αB log
xN (t) + λE

αE

xN (t) + λB
αB

dt =

∫ E
0

αB log

[
1 +

λE
αE
− λB

αB

xN (t) + λB
αB

]
dt. (E.58)

Now, based on the contradiction assumption we have xN (E) < h with h being a finite positive

constant. Therefore, (E.58) can be further lower bounded as

CS(E) ≥
∫ E

0

αB log

[
1 +

λE
αE
− λB

αB

h+ λB
αB

]
dt = αB log

[
1 +

λE
αE
− λB

αB

h+ λB
αB

]
E , (E.59)

which must hold for all E ≥ 0. Since h > 0 and λE
αE

> λB
αB

, the logarithm term is always positive

implying that CS(E) must at least grow linearly in E . However, later in this section, it is shown that

the secrecy capacity of the DT–PWC with nonnegativity and average-intensity constraints when

αB = αE is upper bounded by a constant for all E ≥ 0. Therefore, the implication in (E.59) results
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Figure E.1: Two discrete-time Poisson wiretap channels.

in a contradiction. This implies that the optimal support set SF∗X must be an unbounded set.

Showing that SF∗X is an unbounded set for these considered cases completes the proof of Theorem 5.

E.4 Proof of Proposition 4

Suppose, to the contrary, that x = 0 does not belong to the support set of the optimal input distribu-

tion SF∗X . Let 0 < x1 ≤ x2 ≤ . . . ≤ xN ≤ ∞ be the mass points in the set SF∗X . Consider two DT–PWC

depicted in Figure E.1. Wiretap channel 1 is the original optical wiretap channel, and wiretap channel 2

is obtained from wiretap channel 1 by appending a pre-coder and a post-coder before and after the inner

optical channel in the legitimate user’s link. Specifically, X̂ = X − x1 and Y |X = Ŷ |X + N̂B , where

N̂B is a Poisson random variable with mean αBx1∆ and is independent from Ŷ |X. For any x ≥ x1,

the conditional probability density functions p(y|x) and p(z|x) are the same in both wiretap channels.

Thus, the joint probability density functions of p(y, x) and p(z, x) in the two wiretap channels are also

the same, if the input distribution is F ∗X . As a result, CS is identical in both wiretap channels.

In the second wiretap channel, asX, X̂, Ŷ , Y and Z form the Markov chainX → X̂ → Ŷ → Y → Z, we

have I(X̂; Ŷ |Z) ≥ I(X;Y |Z) by the data processing inequality. This indicates that I(X̂; Ŷ )− I(X̂;Z) ≥

I(X;Y ) − I(X;Z). Now, let F ∗
X̂

be the distribution function of X̂ when the distribution function of

X is F ∗X . Clearly, F ∗
X̂

satisfies either of the constraints in (5.10)–(5.12) that are active. Hence, F ∗
X̂

is

also secrecy-capacity-achieving for wiretap channel 1. Based on Lemma 7, the secrecy-capacity-achieving

output distribution is unique, as a result, pY (y;F ∗X) = pY (y;F ∗
X̂

). Therefore, for wiretap channel 2, given

the input distribution function of X is F ∗X , the probability density functions for Y |X and Ŷ |X are the

same, which is not possible since E[Y |X] = E[Ŷ |X] + αBx1∆. Hence, we reach a contradiction and the
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proposition follows.

E.5 Proof of Theorem 6

We start the proof by noting that the feasible set Ω+
A, E is compact and convex, and the objective

function fµ(FX) in (5.14) is continuous in FX , strictly concave, and weakly differentiable. Therefore, the

optimization problem in (5.14) has a unique maximizer. We denote the optimal input distribution for

(5.14) by F ∗X which depends on the value µ.

Next, we obtain the KKT conditions for the optimal input distribution of the optimization problem

in (5.14). Following along similar lines of the proof of Theorem 4 and noting that the objective function

fµ(FX) is weakly differentiable with a weak derivative given as

f ′µ(FX , F
∗
X) =

∫ A
0

[ µ
∆
iB(x;F ∗X) + (1− µ) cS(x;F ∗X)

]
dFX(x)− fµ(F ∗X), (E.60)

the KKT conditions for the optimality of F ∗X are obtained as follows

µ

∆
iB(x;F ∗X) + (1− µ) cS(x;F ∗X)− γx ≤ µ

∆
IB(F ∗X) +

1− µ
∆

[IB(F ∗X)− IE(F ∗X)]− γE , ∀ x ∈ [0,A],

(E.61)

µ

∆
iB(x;F ∗X) + (1− µ) cS(x;F ∗X)− γx =

µ

∆
IB(F ∗X) +

1− µ
∆

[IB(F ∗X)− IE(F ∗X)]− γE , ∀ x ∈ SF∗X .

(E.62)

Next, we show that the optimal input distribution F ∗X has a finite support. To this end, assume to the

contrary, that SF∗X has an infinite number of elements. Under such an assumption, (E.62), the analyticity

of iB(w;F ∗X) and iE(w;F ∗X) over O in the complex plane and the Bolzano-Weierstrass and Identity

Theorems of complex analysis, one obtains

µ

∆
iB(x;F ∗X) + (1− µ) cS(x;F ∗X)− γx =

µ

∆
IB(F ∗X) +

1− µ
∆

[IB(F ∗X)− IE(F ∗X)]− γE , ∀ x > −λB
αB

.

(E.63)

We continue the proof by showing that (E.63) results in a contradiction. To do so, we first observe that

RHS of (E.63) does not depend on x and hence, it is a constant function in x. Taking the derivative of

both sides of (E.63) with respect to x, we get

µ

∆

diB(x;F ∗X)

dx
+ (1− µ)

dcS(x;F ∗X)

dx
= γ, ∀ x > −λB

αB
, (E.64)
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or equivalently

γ =µ

[
αB log[(αBx+ λB)∆] + αB

+∞∑
y=0

p(y|x) log
gB(y;F ∗X)

gB(y + 1;F ∗X)

]
+ (1− µ)

[
(αB − αE)

× log[(αBx+ λB)∆] + αE log
αBx+ λB
αEx+ λE

+ αB

+∞∑
y=0

p(y|x) log
gB(y;F ∗X)

gB(y + 1;F ∗X)

− αE
+∞∑
z=0

p(z|x) log
gE(z;F ∗X)

gE(z + 1;F ∗X)

]
, ∀ x > −λB

αB
. (E.65)

Using the bounds in (E.37)–(E.38), the RHS of (E.64) can be lower bounded as

γ ≥µαB log
αBx+ λB
αBA+ λB

+ (1− µ)

[
(αB − αE) log

αBx+ λB
αBA+ λB

+ αE log
αBx+ λB
αEx+ λE

+ αE log
λE

αBA+ λB

]
, ∀ x > −λB

αB
. (E.66)

Observe that the RHS of (E.66) scales logarithmically, i.e., Ω(log x) for large values of x. This is clearly a

contradiction because the constant value γ cannot be greater than a logarithmically increasing function.

This implies that SF∗X cannot have infinite elements in the interval [0,A]. Hence, F ∗X is discrete with a

finite number of mass points. Additionally, we note that for µ = 0, F ∗X must be discrete with a finite

support according to Theorem 4, and for µ = 1 (the point corresponding to the capacity of the discrete-

time Poisson channel with peak- and average-intensity constraints), F ∗X is also discrete with a finite

number of mass points; reproving the results presented in [7]. Consequently, the entire rate-equivocation

region of the DT–PWC with peak- and average-intensity constraints is exhausted by discrete input

distributions with finitely many mass points. This completes the proof of Theorem 6.

Finally, observe that the lower bound in (E.66) does not depends on ∆. Thus, the result also holds

true for the case where ∆ → 0. That is, every point on the boundary of the rate-equivocation region of

the degraded continuous-time PWC with nonnegativity, peak- and average-intensity constraints is also

achieved by a unique and discrete input distribution with a finite number of mass point in the interval

[0,A].

E.6 Proof of Theorem 7

We start the proof by noting that the feasible set Ω+
E is compact and convex, and the objective

function fµ(FX) in (5.14) is continuous in FX , strictly concave, and weakly differentiable. Therefore, the

optimization problem in (5.14) has a unique maximizer. We denote the optimal input distribution for
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(5.14) by F ∗X which depends on µ.

The KKT conditions for the optimal input distribution F ∗X of the optimization problem in (5.14) is

given by

µ

∆
iB(x;F ∗X) + (1− µ) cS(x;F ∗X)− γx ≤ µ

∆
IB(F ∗X) +

1− µ
∆

[IB(F ∗X)− IE(F ∗X)]− γE , ∀x ≥ 0, (E.67)

µ

∆
iB(x;F ∗X) + (1− µ) cS(x;F ∗X)− γx =

µ

∆
IB(F ∗X) +

1− µ
∆

[IB(F ∗X)− IE(F ∗X)]− γE , ∀x ∈ SF∗X (E.68)

We show that the optimal input distribution F ∗X has the following structural properties: 1) the intersection

of the optimal support set with any bounded interval contains finitely many mass points; 2) The optimal

support set itself is an unbounded set. Theses properties are proved via similar contradiction approaches

that appear in the proof of Theorem 5.

E.6.1 The intersection of the optimal support set with any bounded in-

terval contains a finite number of elements

Let B be a bounded interval and assume, to the contrary, that SF∗X ∩ B has an infinite number of

elements. Now based on the optimality equation (E.68), the analyticity of iB(x;F ∗X) and cS(x;F ∗X) over

O, the Bolzano-Weierstrass and Identity Theorems from complex analysis, we get

µ

∆
iB(x;F ∗X) + (1− µ) cS(x;F ∗X)− γx =

µ

∆
IB(F ∗X) +

1− µ
∆

[IB(F ∗X)− IE(F ∗X)]− γE , ∀x > −λB
αB

,

(E.69)

and we show that (E.69) results in a contradiction. By taking the derivative of both sides of (E.69) with

respect to x we find
µ

∆

diB(x;F ∗X)

dx
+ (1− µ)

dcS(x;F ∗X)

dx
= γ, ∀x > −λB

αB
. (E.70)

Using the bounds in (E.47)–(E.49) the RHS of (E.70) can be upper bounded as

γ ≤µαB log
αBx+ λB

λB
+ (1− µ)

[
(αB − αE) log[(αBx+ λB)∆] + αE log

αB
αE

+ αE log
x+ λB

αB

x+ λE
αE

+ αE
(
[(αEx+ λE)∆] log[(αEx+ λE)∆]− [(αEx+ λE)∆]

× (1 + log(λE∆)) +
3

2
log[(αEx+ λE)∆ + 1] + (αEE + λE)∆ +

1

2
log(2πe)

)
− αB log(λB∆)

]
, ∀x > −λB

αB
. (E.71)
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Taking the limit from both sides of (E.71) as x → − λB
αB

+
, we obtain γ ≤ −∞. This is a contradiction

and we conclude that SF∗X ∩ B must contain finitely many mass points. Notice that this holds true for

all µ ∈ [0, 1] implying that the support set of the capacity-achieving input distribution for the discrete-

time Poisson channel with nonnegativity and average-intensity constraints has a finite number of mass

points in any bounded interval. Notice that the upper bound in (E.71) depends on ∆ for all µ ∈

[0, 1) and surprisingly does not depend on ∆ for µ = 1. Therefore, in this case we conclude that the

capacity-achieving distribution of the continuous-time PWC with nonnegativity and average-intensity

constraints admits a finite number of mass points in any bounded interval. Nevertheless, the capacity of

the continuous-time version under an average-intensity constraint is infinite [6].

E.6.2 The support set of the optimal distribution SF ∗
X

for all µ ∈ [0, 1] is

unbounded

Assume, to the contrary, that SF∗X is a bounded set, i.e., SF∗X ⊆ [0, h] where h is some finite positive

constant. In the previous section, we proved that the intersection of SF∗X with any bounded interval

has a finite number of elements for all µ ∈ [0, 1]. Since we are assuming that SF∗X is bounded, thus, it

must contain finitely many mass points. This implies that F ∗X(x) =
∑N
i=1 piu(x − xi), where N < +∞,

0 ≤ x1 < x2 < · · · < xN ≤ h are the mass points with corresponding probabilities {p1, . . . , pN}. Following

along similar lines of the proof of Theorem 5 and in view of the optimality condition (E.67), one can

write

Ψ(µ,∆, F ∗X) + γ(x− E) ≥ (1− µ) cS(x;F ∗X) +
µ

∆
iB(x;F ∗X)

> (1− µ)

[
(αB − αE)x log[(αBx+ λB)∆] + αEx log

αBx+ λB
αEx+ λE

+ x

[
(αE − αB)(1 + log[(αExN + λE)∆]) + αB log

αExN + λE
αBxN + λB

]
+ λB log

αBx+ λB
αBxN + λB

− λE log
αEx+ λE
αExN + λE

+
log pN

∆
− αExN

]
+ µ

[
(αBx+ λB) log

αBx+ λB
αBxN + λB

− αBx
]
, ∀x ≥ 0, (E.72)

where Ψ(µ,∆, F ∗X)
4
= µ

∆IB(F ∗X) + 1−µ
∆ [IB(F ∗X) − IE(F ∗X)]. Observe that the RHS of (E.72) scales like

x log x for large values of x and for all µ ∈ (0, 1], but the LHS of (E.72) is a linear function in x.

Therefore, for all µ ∈ (0, 1] we reach a contradiction and we have that SF∗X must be an unbounded set.

Furthermore, we have already established in Theorem 5 that when µ = 0 (the point corresponding to the

secrecy capacity) SF∗X is also unbounded. Consequently, we conclude that SF∗X is an unbounded set for
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all µ ∈ [0, 1]. This completes the proof of Theorem 7.

Lastly, observe that the bound in (E.72) does not depend on ∆ for µ = 1 implying that the support

set of the capacity-achieving distribution for the continuous-time PWC with nonnegativity and average-

intensity constraint is an unbounded set. Combining this with the results in the previous section, we find

that the capacity-achieving distribution for the continuous-time version is discrete and has a countably

infinite number of mass points, but finitely many mass points in any bounded interval.

E.7 Lower Bound on the Secrecy Capacity of the DT–PWC

in the Low-Intensity Regime

We start the proof by noting that CB ≥ 1
∆I(Xb;Y ) where Xb is the channel input with a binary

distribution. We choose the input distribution to be either FX(x) = 1
2u(x) + 1

2u(x − A) when only the

peak-intensity constraint is active or to be FX(x) = (1−p)u(x)+pu(x−A), 0 < p < 1
2 , when both peak-

and average-intensity constraints are active and they both go to zero with their ratio held fixed at p.

Now, we follow along similar lines of [38, Proposition 2] to find the closed-form expression of the mutual

information I(Xb;Y ) in the low-intensity regime when both peak- and average-intensity constraints are

active, i.e., 0 < p < 1
2 . We note that

I(Xb;Y ) =H(Y )−H(Y |X) = −
+∞∑
y=0

[(1− p)p(y|0) + p p(y|A)] log [(1− p)p(y|0) + p p(y|A)]

+ (1− p)
+∞∑
y=0

p(y|0) log(p(y|0)) + p

+∞∑
y=0

p(y|A) log(p(y|A))

=− p
+∞∑
y=0

p(y|A)

(
log

p(y|0)

p(y|A)
+ log

(
(1− p) + p

p(y|A)

p(y|0)

))
− (1− p)

+∞∑
y=0

p(y|0)

× log

(
(1− p) + p

p(y|A)

p(y|0)

)
= p

+∞∑
y=0

p(y|A) log
p(y|A)

p(y|0)︸ ︷︷ ︸
4
=T1(A)

−
+∞∑
y=0

((1− p)p(y|0) + pp(y|A)) log

(
(1− p) + p

p(y|A)

p(y|0)

)
︸ ︷︷ ︸

4
=T2(A,y)

. (E.73)

Note that T1(A) = −pαBA∆ + p (λB + αBA)∆ log
(

1 + αBA
λB

)
. Now, consider the Taylor expansion of

T1(A) around A = 0 to get

T1(A) = −p∆αBA+ p∆

(
αBA+

α2
B

2λB
A2 + o(A2)

)
= p∆

(
A2

2λB
α2
B + o(A2)

)
, (E.74)



140

where o(A2) contains all the term that tend to zero faster than A2, i.e., limA→0
o(A2)
A2 = 0. Furthermore,

observe that T2(A, y) = log
(

(1− p) + p e−αBA∆
(

1 + αBA
λB

)y)
, and the Taylor expansion of T2(A, y)

around A = 0 gives

T2(A, y) = pαB

(
y

λB
−∆

)
A+

[
p

(
α2
B∆2

2
− α2

By

2λ2
B

+
α2
By

2

2λ2
B

− α2
By∆

λB

)
− p2α2

B

(∆− y
λB

)2

2

]
A2 + o(A2y). (E.75)

Plugging (E.75) into (E.73), the second term in (E.73) denoted by T3(A) becomes

T3(A)
4
= −

+∞∑
y=0

((1− p)p(y|0) + pp(y|A))T2(A, y) = −(1− p)p
(
λB∆

λB
−∆

)
A− (1− p)p

×
(
α2
B∆2

2
− α2

B∆

2λB
+
α2
B∆2

2
+
α2
B∆

2λB
− α2

B∆2

)
A2 + (1− p)p2α2

B

A2

2λB
∆

− p2α2
B

A2

λB
∆− p2A2

(α2
B∆2

2
− α3

BA∆

2λ2
B

− α2
B∆

2λB
+
α4
BA2∆2

2λ2
B

+
α3
BA∆2

λ2
B

+
α2
B∆2

2
+
α3
BA∆

2λ2
B

+
α2
B∆

2λB
− α3

BA∆2

λB
− α2

B∆2
)

+ p3α2
B

A2

2

(
∆2 − 2αBA∆

λB
− 2∆2

+
α2
BA2∆2

λ2
B

+ ∆2 +
2αBA∆2

λB
+
αBA∆

λB
+

∆

λB

)
+ o(A2)

= − p2 A2

2λB
α2
B∆ + o(A2). (E.76)

Combining this with T1(A), one obtains

I(Xb;Y ) =
A2

2λB
α2
B p (1− p)∆ + o(A2). (E.77)

Hence, in the regime where A → 0, CB ≥ 1
∆I(Xb;Y ) ≥ A2

2λB
α2
Bp(1 − p). Note that when only the

peak-intensity constraint is active, we choose p = 1
2 . Thus, we have

CB ≥


A2

8
α2
B

λB
, if 1

2 ≤ p ≤ 1,

A2

2 p (1− p)α
2
B

λB
, if 0 < p < 1

2 .

(E.78)

Next, we observe that CE can be upper bounded by the capacity of the continuous-time Poisson channel

since in this case, the channel input admits infinite bandwidth and is not restricted to be a PAM signal.
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Therefore, in the low intensity regime CE can be upper bounded by [6, Theorem 2]

CE ≤


A2

8
α2
E

λE
, if 1

2 ≤ p ≤ 1,

A2

2 p (1− p)α
2
E

λE
, if 0 < p < 1

2 .

(E.79)

Finally, from (E.78) and (E.79), we find that

CS ≥


A2

8

(
α2
B

λB
− α2

E

λE

)
, if 1

2 ≤ p ≤ 1,

A2

2 p (1− p)
(
α2
B

λB
− α2

E

λE

)
, if 0 < p < 1

2 .

(E.80)

This completes the proof of the lemma.

E.8 Upper Bound on the Secrecy Capacity of the DT–PWC in

the Low-Intensity Regime

We start the proof by noting that the secrecy capacity of the DT–PWC with peak- and average-

intensity constraints is upper bounded by the secrecy capacity of the continuous-time PWC with peak-

and average-intensity constraints. This is because in the continuous-time version, the input signals are not

restricted to be PAM signals and can admit any waveform with very large transmission bandwidth. Now,

we recall the secrecy capacity of the degraded continuous-time PWC with a peak-intensity constraint

from [15, Theorem 3]

CCTS = pK(A) + (1− p)K(0)−K(pA), 0 ≤ p ≤ 1, (E.81)

where K(x) = (αBx+λB) log(αBx+λB)− (αEx+λE) log(αEx+λE) and where p is the solution of the

equation

K(A)−K(0) = AK ′(pA). (E.82)

The secrecy capacity CCTS is achieved by a binary input distributions with mass points at {0,A} and

respective probabilities {(1− p), p}. We now find the closed-form expression of CCTS in the regime where

A → 0. To this end, we expand K(A) around A = 0 and we get

K(A) = log
λλBB
λλEE

+

(
(αB − αE) + log

λB
λE

)
A+

(
α2
B

λB
− α2

E

λE

)
A2

2
+ o(A2). (E.83)
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Therefore, plugging this expansion into (E.82), the optimal p in the regime where A → 0 is given by

(
α2
B

λB
− α2

E

λE

)
A2

2
=

(
α2
B

λB
− α2

E

λE

)
pA2 ⇒ p =

1

2
. (E.84)

Thus, CCTS in the regime where A → 0 is given by

CCTS =
A2

8

(
α2
B

λB
− α2

E

λE

)
. (E.85)

Furthermore, we observe that when both peak- and average-intensity constraints are active, the optimal

input distribution is also binary with mass points {0,A} and respective probabilities {(1 − p), p} where

p = E
A . Therefore, in the regime where A → 0 and E → 0 with their ratio held fixed at p, CCTS is

CCTS =
A2

2
p(1− p)

(
α2
B

λB
− α2

E

λE

)
. (E.86)

Finally, note that since p = 1
2 is the optimal value of (E.82), we conclude that when E

A ≥
1
2 , p = 1

2 and

the average-intensity constraint is not active. This completes the proof of the lemma.

E.9 Upper Bound on the Secrecy Capacity in the High-Intensity

Regime For Equal Channel Gains

We start the proof by noting that the output of the eavesdropper’s channel Z can be written as

Z = Ỹ = Y +ND, whereND is defined in the statement of Lemma 3. Therefore, HZ(F ∗X) > HZ|ND (F ∗X) =

HY (F ∗X), and consequently HY (F ∗X) − HZ(F ∗X) < 0 for any nontrivial input distribution F ∗X ∈ F+.

Furthermore, we can expand HZ|X(F ∗X)−HY |X(F ∗X) as follows

HZ|X(F ∗X)−HY |X(F ∗X) = EX,Z
[
− log pZ|X(z|x)

]
− EX,Y

[
− log pY |X(y|x)

]
(a)
= EZ|X,Y

[
EX,Y

[
log pY |X(y|x)

]]
− EY |X,Z

[
EX,Z

[
log pZ|X(z|x)

]]
= EX,Y,Z

[
log pY |X(y|x)

]
− EX,Y,Z

[
log pZ|X(z|x)

]
= EX,Y,Z

[
log

pY |X(y|x)

pZ|X(z|x)

]
, (E.87)
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where (a) follows as log pY |X(y|x) and log pZ|X(z|x) do no depend on Z and Y , respectively. Plugging

(5.1) and (5.2) into (E.87), we get

HZ|X(F ∗X)−HY |X(F ∗X) =EX,Y,Z
[
log

e−(αBx+λB)∆[(αBx+ λB)∆] y/y!

e−(αEx+λE)∆[(αEx+ λE)∆] z/z!

]
=λD∆ + EX

[
(αBx+ λB)∆ log[(αBx+ λB)∆]− (αEx+ λE)∆

× log[(αEx+ λE)∆]
]

+ EX,Y,Z
[
log

Z!

Y !

]
, (E.88)

Next, we consider the last term in (E.88) and try to find an upper bound on it. To this end, we first note

that

EX,Y,Z
[
log

Z!

Y !

]
= EX

[
EY |X

[
EZ|Y

[
log

Z!

Y !

]]]
(E.89)

as X → Y → Z is a Markov chain. Now, we have to find the conditional PDF of Z|Y . We proceed by

observing that Z = Y +ND, hence, one can show that

pZ|Y (z|y) =


0, if z < y,

e−λD∆ (λD∆)(z−y)

(z−y)! , if z ≥ y.
(E.90)
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In what follows, we present chain of inequalities based on (E.90) which leads to the upper bound in (5.20),

EX,Y,Z
[
log

Z!

Y !

]
= EX

[
EY |X

[
+∞∑
z=0

pZ|Y (z|y) log
z!

y!

]]

= EX

[
EY |X

[
+∞∑
z=y

e−λD∆ (λD∆)(z−y)

(z − y)!
log

z!

y!

]]

= EX

[
EY |X

[
+∞∑
t=0

e−λD∆ (λD∆)t

t!
log

(t+ y)!

y!

]]

= EX

[
EY |X

[
+∞∑
t=0

e−λD∆ (λD∆)t

t!

t∑
i=1

log(y + i)

]]
(b)

≤ EX

[
+∞∑
t=0

e−λD∆ (λD∆)t

t!

t∑
i=1

log[(αBx+ λB)∆ + i]

]

= EX
[+∞∑
t=0

e−λD∆ (λD∆)t

t!

[
t log[(αBx+ λB)∆]

+

t∑
i=1

log

[
1 +

i

(αBx+ λB)∆

] ]]
(c)

≤ EX

[
+∞∑
t=0

e−λD∆ (λD∆)t

t!

[
t log[(αBx+ λB)∆] +

t∑
i=1

i

(αBx+ λB)∆

]]

= EX
[

log[(αBx+ λB)∆]

+∞∑
t=0

e−λD∆ (λD∆)t

t!
t+

1

(αBx+ λB)∆

×
+∞∑
t=0

e−λD∆ (λD∆)t

t!

t(t+ 1)

2

]
= EX

[
(λD∆) log[(αBx+ λB)∆] +

1

(αBx+ λB)∆

[
(λD∆)2

2
+ λD∆

]]
, (E.91)

where (b) follows from sliding the expectation EY |X through the summations and then applying the

Jensen’s Inequality (as log(y+i) is a concave function in y), and (c) follows from the fact that log(1+x) ≤

x, ∀x ≥ 0. Now, using the upper bound in (E.91), HZ|X(F ∗X)−HY |X(F ∗X) can be upper bounded as

1

∆

[
HZ|X(F ∗X)−HY |X(F ∗X)

]
≤ λD + EX

[
(αBx+ λB) log[(αBx+ λB)∆]− (αEx+ λE)

× log[(αEx+ λE)∆]
]

+ EX [λD log[(αBx+ λB)∆]]

+ EX
[

1

(αBx+ λB)∆2

[
(λD∆)2

2
+ λD∆

]]
= λD + EX

[
(αEx+ λE) log

αBx+ λB
αEx+ λE

]
+

[
λ2
D

2
+
λD
∆

]
EX

[
1

αBx+ λB

]
.

(E.92)



145

We note that since x ≥ 0, EX
[

1
αBx+λB

]
≤ 1

λB
. Furthermore, denoting ψ(x) = (αEx + λE) log αBx+λB

αEx+λE
,

we observe that ψ(x) is strictly negative as αB = αE and λE
αE

> λB
αB

. Furthermore, ψ(x) is a strictly

increasing function in x due to the fact that

dψ(x)

dx
= αB

[
− log

[
1 +

λD/αB
x+ λB/αB

]
+

λD/αB
x+ λB/αB

]
> 0, ∀ x ≥ 0. (E.93)

This implies that the maximum value of ψ(x) is located at the end point of the interval [0,A], if the

peak-intensity is active, and is located at x = +∞, if the average-intensity is the only active constraint.

In either of these case, we can write

ψ(x) ≤ lim
x→+∞

(αEx+ λE) log
αBx+ λB
αEx+ λE

= −λD. (E.94)

From the upper bound on EX
[

1
αBx+λB

]
and (E.94), one can upper bound (E.91) as

HZ|X(F ∗X)−HY |X(F ∗X) ≤
λ2
D

2 + λD
∆

λB
. (E.95)

We note that this upper bound is valid for all values of the peak- and/or average-intensity constraints.

This completes the proof of the proposition.
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Appendix F: Proof of the Main Results in

Chapter 6

We dedicate this section to the proofs of Theorem 9 and Theorem 10. To this end, we first review

some preliminaries that are used throughout the proofs. Then, we present a few lemmas that are used

to establish the theorems.

F.1 Preliminaries

We start by noting that the channel output distribution pY (y;FX1 , FX2) is given by

pY (y;FX1
, FX2

) =

∫ A1

0

∫ A2

0

p(y|x1, x2) dFX2
dFX1

, y ∈ R, (F.1)

where p(y|x1, x2) is given by (6.3). since the channel input i, i ∈ {1, 2} is constrained by a peak-intensity

constraint as (6.1), the following bounds on the conditional channel law can be found [59]

k1e
−k2(y−x1−x2)2 ≤ p(y|x1, x2) ≤ k3e

−k4(y−x1−x2)2 , (F.2)

for some positive finite values k1, k2, k3, k4, where

k1
4
=

1√
2πσ2(A1,A2)

, k2
4
=

1

2σ2
0

, (F.3)

k3
4
=

1√
2πσ2

0

, k4
4
=

1

2σ2(A1,A2)
. (F.4)

Next, we define γ(y) and Γ(y) as follows

γ(y)
4
= min

0≤x1≤A1
0≤x2≤A2

k1e
−k2(y−x1−x2)2 , (F.5)

Γ(y)
4
= max

0≤x1≤A1
0≤x2≤A2

k3e
−k4(y−x1−x2)2 . (F.6)

It is straightforward to show that

γ(y) =


k1e
−k2(y−A1−A2)2 , y ≤ A1+A2

2 ,

k1e
−k2y2 , otherwise.

(F.7)
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and

Γ(y) =


k3e
−k4y2 , y ≤ 0,

k3e
−k4(y−A1−A2)2 , y > A1 +A2,

k3, otherwise.

(F.8)

Now, based on (F.1), the bounds in (F.2), and (F.7)–(F.8), one can find that pY (y;FX1
, FX2

) is bounded

as follows

γ(y) ≤ pY (y;FX1 , FX2) ≤ Γ(y). (F.9)

Furthermore, we note that the marginals pY |Xi(y|xi;FXi), i ∈ {1, 2} can be written as

pY |Xi(y|xi;FXi) =

∫ Ai
0

p(y|x1, x2) dFXi , (F.10)

where i = {1, 2} − i. Similar to the lower and upper bounds given by (F.9) for pY (y;FX1
, FX2

), one can

find the lower bound φ(y, xi) and the upper bound Φ(y, xi) on pY |Xi(y|xi;FXi) as

φ(y, xi) ≤ pY |Xi(y|xi;FXi) ≤ Φ(y, xi), i ∈ {1, 2}, (F.11)

where

φ(y, xi)
4
= min

0≤xi≤Ai
p(y|x1, x2), i ∈ {1, 2} (F.12)

Φ(y, xi)
4
= max

0≤xi≤Ai
p(y|x1, x2), i ∈ {1, 2}. (F.13)

It can be easily shown that for i ∈ {1, 2}

φ(y, xi) =


1√

2πσ2(xi,Ai)
exp

(
− (y−xi−Ai)

2

2σ2(xi,0)

)
, y − xi ≤ Ai2 ,

1√
2πσ2(xi,Ai)

exp
(
− (y−xi)2

2σ2(xi,0)

)
, otherwise.

(F.14)

and

Φ(y, xi) =



1√
2πσ2(xi,0)

exp
(
− (y−xi)2

2σ2(xi,Ai)

)
, y − xi ≤ 0,

1√
2πσ2(xi,0)

exp
(
− (y−xi−Ai)

2

2σ2(xi,Ai)

)
, y − xi > Ai,

1√
2πσ2(xi,0)

, otherwise.

(F.15)
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Considering the conditional entropy h(Y ;FX1 , FX2) and h(Y |Xi;FXi), i ∈ {1, 2}, one can write

h(Y ;FX1
, FX2

) = −
∫ Ai

0

∫ Ai
0

∫
R
p(y|x1, x2) log pY (y;FX1

, FX2
) dy dFXi︸ ︷︷ ︸

4
= Θ(xi;FXi )

dFXi , i ∈ {1, 2} (F.16)

h(Y |Xi;FX1
, FX2

) = −
∫ Ai

0

∫ Ai
0

∫
R
p(y|x1, x2) log pY |Xi(y|xi;FXi) dy dFXi︸ ︷︷ ︸

4
= Λ(xi;FXi )

dFXi , i ∈ {1, 2} (F.17)

where Θ(xi;FXi) : [0,Ai] × Ω+
Ai,Ei → R, i ∈ {1, 2} and Λ(xi;FXi) : [0,Ai] × Ω+

Ai,Ei → R, i ∈ {1, 2} and

denote the entropy density functionals.

F.2 Proof of Theorem 9

In this section, we present the details for the proof of Theorem 9. First, notice that the optimization

problem in (6.8) is symmetric in the input distributions FX1
and FX2

in the sense that one can first

consider finding the solution of the optimization problem with respect to one of the distributions, say

FX1
, considering the other distribution function is fixed. After finding the optimal solution with respect

to FX1
, which we denote by F ∗X1

, we can choose FX1
to be F ∗X1

and solve the optimization problem with

respect to FX2 . Therefore, without loss of generality, we will fix FX2 and establish that the answer to the

optimization problem in (6.8) with respect to FX1
is discrete and it admits a countably finite number of

mass points, i.e., the optimal distribution F ∗X1
is discrete with a countably finite support set. We then

show that following along similar lines of the proof for the optimality of discrete distributions with a finite

support set for F ∗X1
, the answer to the optimization problem (6.8) with respect to FX2

is also discrete

with a finite support set.

We start the proof by defining the mapping Ξ : (0,∞)× Ω+
A1,E1 → R such that

Ξ(µ;FX1) =



µh(Y ;FX1
, FX2

) + (1− µ)h(Y |X2;FX1
, FX2

)

−h(Y |X1, X2;FX1
, FX2

), 0 < µ < 1

h(Y ;FX1 , FX2)− h(Y |X1, X2;FX1 , FX2), µ = 1

h(Y ;FX1 , FX2) + (µ− 1)h(Y |X1;FX1 , FX2)

−µh(Y |X1, X2;FX1 , FX2), µ > 1,

(F.18)

Next, we extend the approach taken in [36] and show that the optimal input distribution F ∗X1
is discrete
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with a finite number of mass points. To that end, we first show that the optimization problem in (6.8)

is convex and the supremum can be achieved by at least one element FX1
∈ Ω+

A1,E1 . To achieve this

goal, we will show that: 1) the set Ω+
A1,E1 is compact and convex; 2) the objective functional Ξ(µ;FX1

)

is continuous in FXi for all µ > 0. Afterwards, we will focus on showing that the objective functional

Ξ(µ;FX1
) is weakly differentiable and concave in FXi for all µ > 0. Taking the weak derivative of

Ξ(µ;FX1
) with respect to FX1

and using the concavity, we derive the necessary and sufficient KKT

optimality conditions that the optimal distribution F ∗X1
must satisfy. We continue the proof by showing

that the optimal solution FX1
∗ must be discrete with a countably finite support set. This is done by

proof via a contradiction approach, i.e., we assume to the contrary that the support set of the optimal

solution F ∗X1
contains an infinite number of elements; then we extend the corresponding rate-region

density (defined later in this Section) to the complex plane and observe that it is analytic over some

open connected set in the complex plane. Finally, leveraging the Identity Theorem from complex analysis

and the Bolzano-Weierstrass Theorem, we will find that a linearly growing function in x would be lower

bounded by another function which grows quadratically in x, and thus reaching the desired contradiction.

This implies that the support set of F ∗X1
cannot have infinitely many elements and therefore, it must be

contain a finite number of mass points in the interval [0,A1].

For convenience, the proof is streamlined into a few lemmas which we state below.

Lemma 10. The feasible set Ω+
A1,E1 is convex and compact in the Levy metric sense.

Proof. The proof follows along similar lines as [60, Appendix A.1]. �

Lemma 11. The functional Ξ(µ;FX1
) is continuous in FX1

∈ Ω+
A1,E1 .

Proof. The proof uses the bounds in (F.2) and (F.9), and follows along similar lines of [25, Section IV]. �

From Lemma 10 and Lemma 11, Ξ(µ;FX1
) is continuous in FX1

over Ω+
A1,E1 which itself is a compact

and convex set, then by Extreme Value Theorem, Ξ(µ;FX1) is bounded above and attains its supremum.

That is, the supremum in (6.8) is achievable by at least one input distribution FX1
∈ Ω+

A1,E1 .

Lemma 12. The functional Ξ(FX1
) is concave in FX1

.

Proof. It is a well-known fact that h(Y ;FX1
, FX1

) is concave in FX1
[9]. Furthermore, for a fixed

p(y|x1, x2), pY |X2
(y|x2;FX1

) is linear in FX1
. Hence, h(Y |X2) which is concave in pY |X2

(y|x2;FX1
),

is a concave functional of FX1 . Finally, h(Y |X1) is a linear functional in FX1 . As a result, Ξ(µ;FX1) is a

concave functional in FX1
for all µ > 0. �
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Lemma 13. Defining FX1,t = (1− t)F ∗X1
+ tFX1 , ∀F ∗X1

, FX1 ∈ Ω+
A1,E1 , t ∈ [0, 1], the weak derivative of

Ξ(FX1
) at F ∗X1

denoted by D(Ξ(F ∗X1
)) exists and is equal to

D(Ξ(F ∗X1
))
4
= lim
t→0

Ξ
(
(1− t)F ∗X1

+ tFX1

)
− Ξ(F ∗X1

)

t

=

∫ A1

0

ξ(µ, x1;F ∗X1
) dFX1 − Ξ(F ∗X1

), µ > 0 (F.19)

where ξ(µ, x1;F ∗X1
) is called the rate-region density with respect to F ∗X1

and is given by

ξ(µ, x1;F ∗X1
)
4
=



µΘ(x1;F ∗X1
) + (1− µ)Λ(x1;F ∗X1

)− 1
2EX2 [log 2πeσ2(x1, x2)], 0 < µ < 1

Θ(x1;F ∗X1
), µ = 1

Θ(x1;F ∗X1
)− (µ− 1)

∫
R pY |X1

(y|x1) log pY |X1
(y|x1) dy

− µ
2EX2 [log 2πeσ2(x1, x2)], µ > 1

(F.20)

Proof. The proof is based on the definition of the weak derivative and follows along similar lines of [36]. �

Now, from Lemma 10, Lemma 12, and Lemma 13, we have a concave and weakly differentiable

functional Ξ(FX1
) over Ω+

A1,E1 which is a convex set, then the necessary and sufficient conditions for an

input distribution F ∗X1
∈ Ω+

A1,E1 to be optimal is

D(Ξ(F ∗X1
)) ≤ 0. (F.21)

Furthermore, the mapping defined as g(FX1)
4
=
∫ A1

0
x1 dFX1(x1)−λ1 E[X1] from Ω+

A1,E1 → R is continuous

in FX1
, concave, and weakly differentiable, where λ1 > 0 denotes the Lagrangian multiplier. As a result,

following along the similar steps of, e.g., [22],[36, Corollary 1], the necessary and sufficient conditions for

the optimality of F ∗X1
can be given as

ξ(µ, x1;F ∗X1
)− λ1x1 ≤ Ξ(F ∗X1

)− λ1 E[X1], ∀x1 ∈ [0,A1], (F.22)

ξ(µ, x1;F ∗X1
)− λ1x1 = Ξ(F ∗X1

)− λ1 E[X1], ∀x1 ∈ SF∗X1
, (F.23)

λ1 (E[X1]− E1) = 0. (F.24)

where SF∗X1
⊂ [0,A1] is the support set of F ∗X1

. We are now ready to establish that the optimal input

distribution F ∗X1
is discrete with a finite number of mass points. To prove the discreteness, we resort

to a contradiction argument using the KKT conditions in (F.22)–(F.24). To this end, we first present
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a lemma that states that the extension of ξ(x1;F ∗X1
) − λx1 to some open connected set in the complex

plane C is analytic.

Lemma 14. The extension of ξ(µ, x1;F ∗X1
)− λx1 to the open connected set O 4= {w ∈ C : <{w} ≥ 0} is

analytic, where <{w} is the real part of the complex variable w.

Proof. This can be established by using the bounds on pY (y;FX1
, FX2

) that are given by (F.9) and

following along a similar line of [4, 25]. �

Next, we assume that SF∗X1
has an infinite number of elements. In view of the optimality condition

(F.23), the analyticity of ξ(w;F ∗X1
)−λ1w over O, and the Identity Theorem from complex analysis along

with the Bolzano-Weierstrass Theorem, if SF∗X1
has an infinite number of elements, we can deduce that

ξ(w;F ∗X1
)− λ1w = Ξ(F ∗X1

)− λ1 E1, ∀w ∈ O. Since [0,∞) ⊂ O, we have

ξ(x1;F ∗X1
)− λ1x1 = Ξ(F ∗X1

)− λ1 E1, ∀x1 ≥ 0. (F.25)

We show that the conclusion in (F.25) results in a contradiction. To this end, we fix µ ∈ (0, 1) and

expand ξ(µ, x1;F ∗X1
) based on (F.20) to get

µΘ(x1;F ∗X1
) + (1− µ)Λ(x1;F ∗X1

) =
1

2
EX2

[
log
(
2πeσ2(x1, x2)

)]
+ Ξ(F ∗X1

) + λ1 (x1 − E1), (F.26)

for all x1 ≥ 0. Denoting the left-hand-side of (F.26) by T (x1;F ∗X1
) and using the bounds in (F.9) and

(F.11), next, we find that for large values of x1, T (x1;F ∗X1
) grows quadratically in x1, i.e., for some

positive constants c′ and k′ we have T (x1;F ∗X1
) ≥ k′x2

1, ∀x1 > c′, therefore, we have T (x1;F ∗X1
) = Ω(x2

1).

To this end, we lower bound Θ(x1;F ∗X1
) by upper bounding pY (y;FX1

, FX2
) based on (F.9). Thus, we
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have that

Θ(x1;F ∗X1
) ≥ −

∫ A2

0

∫
R
p(y|x1, x2) log Γ(y) dFX2

dy

=

∫ A2

0

∫ 0

−∞
p(y|x1, x2)k4y

2 dy dFX2
+

∫ A2

0

∫ ∞
A

p(y|x1, x2)k4(y −A)2 dy dFX2

− log k3

=

∫ A2

0

∫ +∞

−∞
k4 y

2 p(y|x1, x2) dy dFX2
−
∫ A2

0

∫ A
0

k4 y
2 p(y|x1, x2) dy︸ ︷︷ ︸

≤ k4A2 since
∫A
0
p(y|x1, x2) dy≤ 1

dFX2

−
∫ A2

0

∫ +∞

A
2A k4y p(y|x1, x2) dy dFX2

+

∫ A2

0

∫ +∞

A
A2 k4 p(y|x1, x2)︸ ︷︷ ︸

≥ 0

dy dFX2

− log k3

=

∫ A2

0

k4 EY |X1,X2
[y2] dFX2

−
∫ A2

0

2Ak4 EY |X1,X2
[y|y ≥ A] dFX2

− k4A2 − log k3

= k4EX2
[σ2(x1, x2) + (x1 + x2)2]− k4A2 − log k3

− EX2

[
(x1 + x2)− σ2(x1, x2)

p(+∞|x1, x2)− p(A|x1, x2)

1− P (A|x1, x2)

]
, (F.27)

where A 4= A1 +A2 and P (y|x1, x2) is the cumulative density function of the Gaussian random variable

Y |X1, X2. Observe that p(+∞|x1, x2) ≥ 0 and p(A|x1, x2) ≤ k3. Furthermore, P (A|x1, x2) ≈ 0 for large

values of x1. Hence, for large values of x1, (F.27) can be further lower bounded as

Θ(x1;F ∗X1
) ≥ k4x

2
1 + o(x2

1), (F.28)

where o(x2
1) is a function which satisfies limx1→+∞

o(x2
1)

x2
1

= 0. This implies that for some positive constants

β1 and β2 we have Θ(x1;F ∗X1
) ≥ β2x

2
1, ∀x1 > β1, therefore, we have Θ(x1;F ∗X1

) = Ω(x2
1).

Next, we show that Λ(x1;F ∗X1
) also grows quadratically in x1 for large values of x1. To this end, we
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lower bound Λ(x1;F ∗X1
) using the upper bound on pY |X2

(y|x2) given by (F.15). As such, we can write

Λ(x1;F ∗X1
) ≥ −

∫ A2

0

∫
R
p(y|x1, x2) log Φ(y, x2) dy dFX2

=

∫ A2

0

∫ x2

−∞
p(y|x1, x2)

(y − x2)2

2σ2(A1, x2)
dy dFX2

+ EX2

[
1

2
log 2πσ2(0, x2)

]
+

∫ A2

0

∫ ∞
A1+x2

p(y|x1, x2)
(y − x2 −A1)2

2σ2(A1, x2)
dy dFX2

≥
∫ A2

0

∫ x2

−∞
p(y|x1, x2)

(y − x2)2

2σ2(A1,A2)
dy dFX2

+
1

2
log 2πσ2

0

+

∫ A2

0

∫ ∞
A1+x2

p(y|x1, x2)
(y − x2 −A1)2

2σ2(A1,A2)
dy dFX2

= β3

∫ A2

0

∫
R
p(y|x1, x2)y2 dy dFX2

− β3

∫ A2

0

∫ A1+x2

x2

p(y|x1, x2)y2 dy︸ ︷︷ ︸
≤ (A1+x2)2

dFX2

− β3

∫ A2

0

∫ x2

−∞
p(y|x1, x2)2x2y dy︸ ︷︷ ︸

≤ 2x2
2

dFX2
+ β3

∫ A2

0

∫ x2

−∞
p(y|x1, x2)x2

2 dy dFX2︸ ︷︷ ︸
≥ 0

− β3

∫ A2

0

∫ ∞
A1+x2

p(y|x1, x2)(2(A1 + x2)y) dy dFX2
+

1

2
log 2πσ2

0

+ β3

∫ A2

0

∫ ∞
A1+x2

p(y|x1, x2)(x2 +A1)2 dy dFX2︸ ︷︷ ︸
≥ 0

≥ β3 EX2 [σ2(x1, x2) + (x1 + x2)2]− β3A2 − 2β3A2
2 − 2β3 EX2

[
(A1 + x2)

×
(

(x1 + x2)− σ2(x1, x2)
p(∞|x1, x2)− p(A1 + x2|x1, x2)

1− P (A1 + x2|x1, x2)

)]
+

1

2
log 2πσ2

0 , (F.29)

where β3
4
= 1

2σ2(A1,A2) . Since p(∞|x1, x2) ≥ 0, p(A1 +x2|x1, x2) ≤ k3 and P (A1 +x2|x1, x2) ≈ 0 for large

values of x1, we can write

Λ(x1;F ∗X1
) ≥ β3x

2
1 + o(x2

1), (F.30)

which implies that for some positive constants β4 and β5 we have Λ(x1;F ∗X1
) ≥ β5x

2
1, ∀x1 > β4, there-

fore, we have Λ(x1;F ∗X1
) = Ω(x2

1). Now, based on (F.28) and (F.30) and the fact that T (x1;F ∗X1
) =

µΘ(x1;F ∗X1
) + (1− µ)Λ(x1;F ∗X1

), µ ∈ (0, 1), we conclude that T (x1;F ∗X1
) = Ω(x2

1).

However, observe that for large values of x1, the right-hand-side of (F.26) grows linearly in x1.

Hence, the left-hand-side and the right-hand-side of (F.26) do not grow with the same rate and we reach

a contradiction. This implies that the support set of the optimal distribution SF∗X1
⊂ [0,A1] contains a

finite number of element, which in turn, implies that the optimal input distribution F ∗X1
is discrete with
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a finite number of mass points in the interval [0,A1].

We note that the case m = 1 (boundary points of the capacity region corresponding to the sum-

capacity) can be treated similarly, i.e., following along similar lines of the proof of the discreteness of F ∗X1

for m ∈ (0, 1), one can show that the optimal input distribution F ∗X1
which achieves the sum-capacity of

the IDGN-OMAC with peak- and average-intensity constraints, is discrete with a finite number of mass

points in [0,A1].

Finally, for the case m > 1, (F.25) is given by

Θ(x1;F ∗X1
)− (µ− 1)

∫
R
pY |X1

(y|x1) log pY1|X1
(y|x1) dy =

µ

2
EX2

[
log
(
2πeσ2(x1, x2)

)]
+ Ξ(F ∗X1

) + λ1 (x1 − E1), ∀x1 ≥ 0 (F.31)

Next, we show that (F.31) results in a contradiction for large values of x1. To that end, we first observe

that since pY |X1
(y|x1) =

∫ A2

0
p(y|x1, x2) dFX2

≤ k3, one can find

− (µ− 1)

∫
R
pY |X1

(y|x1) log pY1|X1
(y|x1) dy ≥ (µ− 1)

2
log 2πσ2

0 , ∀x1 ≥ 0. (F.32)

Since Θ(x1;F ∗X1
) = Ω(x2

1) for large values of x1, combining this fact along with (F.32), we conclude that

for large values of x1, the left-hand-side of (F.31) grows quadratically in x1, but the right-hand-side of

it grows linearly in x1. This results in a contradiction, and therefore, the optimal input distribution

achieving the boundary of the capacity region for m > 1 must be discrete with a finite number of mass

points in [0,A1]. This completes the proof of Theorem 9.

Finally, we note that the growth rate of Θ(x1;F ∗X1
) and Λ(x1;F ∗X1

) do not change when the variance

of the input-dependent noise component σ2
1 is zero. This implies that invoking the same contradiction

argument for IDGN-OMAC will result in establishing that any point on the boundary of the capacity

region of the FSO-MAC with nonnegativity, peak- and average-intensity constraints is achieved by discrete

distributions with finitely many mass points.

F.3 Proof of Theorem 10

We start the proof of Theorem 10 by noting that the capacity region of the IDGN-OMAC with peak-

and average-intensity constraints satisfies C ⊂ [0, C1] × [0, C2], where Ci, i ∈ {1, 2} is the single-user

capacity of user i. In the regime where Ai → 0, i ∈ {1, 2} and Ei → 0, i ∈ {1, 2} while their ratio held

fixed at αi, the single-user capacity Ci is known in a closed-form expression due to [5, Theorem 10] and



155

is given by

Ci =


A2
i

2
αi(1− αi)

(
1

σ2
0

+
σ4

1

2σ4
0

)
, αi ∈ (0, 1

2 ),

A2
i

8

(
1

σ2
0

+
σ4

1

2σ4
0

)
, αi ∈ [ 1

2 , 1].

(F.33)

where Ci is attained by a binary input distribution with mass points located at {0,Ai}, i ∈ {1, 2} with

corresponding probability masses {1− αi, αi} when αi ∈ (0, 1
2 ) and { 1

2 ,
1
2} when αi ∈ [ 1

2 , 1].

Next, we show that [0, C1]× [0, C2] ⊂ C in the low-intensity regime. To this end, we need to show for

the rate Ri = Ci, i ∈ {1, 2} to be achievable, it is required that R1+R2 ≤ supFXi∈F
+
i , i∈{1,2}

I(X1, X2;Y ).

We observe that due to (6.4), we can write I(X1, X2;Y ) = I(X1 +X2;Y ). Therefore, we have

sup
FXi∈F

+
i , i∈{1,2}

I(X1, X2;Y ) = sup
FX∈F+

I(X;Y ), (F.34)

where X
4
= X1 +X2 and the feasible set is given by one of the following sets

Ω+
A, E

4
=

{
FX :

∫ A
0

dFX(x) = 1,

∫ A
0

x dFX(x) ≤ E

}
, (F.35)

Ω+
A
4
=

{
FX :

∫ A
0

dFX(x) = 1

}
, (F.36)

where A = A1 + A2 and E = E1 + E2. Now, we note that in the regime where A → 0 and E → 0 with

their ratio held fixed at α = A
E = A1+A2

E1+E2 , the sum-capacity defined as CSum
4
= supFX∈F+ I(X;Y ) is given

by [5, Theorem 10]

CSum =


A2

2
α(1− α)

(
1

σ2
0

+
σ4

1

2σ4
0

)
, α ∈ (0, 1

2 )

A2

8

(
1

σ2
0

+
σ4

1

2σ4
0

)
, α ∈ [ 1

2 , 1]

(F.37)

and the optimal input distribution F ∗X that attains CSum is a binary input distributions with mass points

at {0,A} with corresponding probability masses {1− α, α} when α ∈ (0, 1
2 ) and { 1

2 ,
1
2} when α ∈ [ 1

2 , 1].

Observe that α(1−α)A2 > α1(1−α1)A2
1 +α2(1−α2)A2

2. This implies that in the low-intensity regime,

when Ri = Ci, i ∈ {1, 2}, then R1 + R2 < CSum. Consequently, (C1, C2) is achievable and the sum-

capacity constraint becomes redundant. That is, in the low-intensity regime [0, C1] × [0, C2] ⊂ C. This

implies that in the low-intensity regime, the capacity region of the IDGN-OMAC with peak- and average-

intensity constraints is given by the rate pair (R1, R2) satisfying (6.9)–(6.10). This completes the proof

of Theorem 10.
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Appendix G: Authorization to Reuse IEEE

Published Material

Chapter 3 to Chapter 7 are all published by the Institute of Electrical and Electronics Engineering

(IEEE) and the following provides the permission to reuse the published material in this dissertation.

G.1 Thesis/Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,

you may print out this statement to be used as a permission grant.

G.1.1 Requirements to be followed when using any portion (e.g., figure,

graph, table, or textual material) of an IEEE copyrighted paper

in a thesis

• In the case of textual material (e.g., using short quotes or referring to the work within these papers)

users must give full credit to the original source (author, paper, publication) followed by the IEEE

copyright line 2011 IEEE.

• In the case of illustrations or tabular material, we require that the copyright line [Year of original

publication] IEEE appear prominently with each reprinted figure and/or table.

• If a substantial portion of the original paper is to be used, and if you are not the senior author,

also obtain the senior author’s approval.

G.1.2 Requirements to be followed when using an entire IEEE copyrighted

paper in a thesis

• The following IEEE copyright/ credit notice should be placed prominently in the references: [year

of original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE

publication title, and month/year of publication]

• Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or

your thesis on-line.

• In placing the thesis on the author’s university website, please display the following message in

a prominent place on the website: In reference to IEEE copyrighted material which is used with
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permission in this thesis, the IEEE does not endorse any of the University of Idaho’s products or ser-

vices. Internal or personal use of this material is permitted. If interested in reprinting/republishing

IEEE copyrighted material for advertising or promotional purposes or for creating new collective

works for resale or redistribution, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply

single copies of the dissertation.
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