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Abstract

This dissertation is a continuation of an Air Force Research Laboratory (AFRL) project

focused on the development of a new security tagged microprocessor architecture and a

supporting operating system. Security tagging schemes are promising mechanisms for

enhancing the security of computer systems. The idea behind security tagging schemes

is to attach metadata tags to memory and registers to carry information about the data.

These tags are then used to protect the system and user software from security attacks

and invalid information access. Research has shown that tagging schemes can be used to

enhance the traditional protection mechanisms of microprocessors, going beyond basic

memory management and supervisor/user mode (and even beyond protection rings).

This dissertation summarizes the major security tagging schemes proposed in recent

years, introduces a security tagging scheme, and proposes new research to implement,

evaluate and improve the security tagging scheme.

The AFRL project used the open source Real-Time Executive for Multiprocessor

Systems (RTEMS), a single-user and multi-threaded runtime executive as the base op-

erating system in the security tagged architecture. Therefore, the design of the new

security tagging scheme addressed key features of RTEMS that required modification

in order to provide enhanced security. The tag checking and propagation rules are de-

signed for both C language level and assembly instruction level programs. A SPARC

instruction simulator has been improved to simulate instruction execution as well as tag

checking and propagation. To ensure tagging rules were properly designed and that tag

propagations were implemented correctly, several test cases were developed. In addition,

RTEMS was expanded from a single user system to a multiuser system, and an advanced

tagging scheme was designed to support multiple users. Lastly, this dissertation presents

a discussion of a formal model of the security policy enforced by the tagged system and

proves security properties of the proposed formalization.
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Chapter 1: Introduction

Computers play an increasingly important role in modern life and it is now widely rec-

ognized that people need to pay more attention to computer security issues. Over the

years, researchers and developers have devised various techniques including encryption,

firewalls, and virus scanners to provide secure computing environments. The idea of en-

hancing these mechanisms by using hardware to provide security features for operating

systems and user applications is not new. Decades ago researchers proposed techniques

to add security labels (tags) at the hardware level to help with the enforcement of system

security properties [5, 10]. Unfortunately, these techniques required more computing re-

sources and memory than was feasible at the time. As hardware speeds have improved,

the idea of security tagging has resurfaced as a promising mechanism for enhancing se-

curity.

The research in this dissertation grew out of an Air Force Research Laboratory project

focused on the development of a new hardware-based security tagging processor architec-

ture and a supporting operating system. It is part of a larger University of Idaho tagging

project called UITags. There are many types of data tags in use, and being investigated,

from hardware-based tags up through attribute tags on data in a cloud server. Data tags

are used during both runtime execution and security decision making, as well as during

system implementation and analysis. The purpose of the UITags project is to investigate

the use of data tags by security mechanisms in support of system security policies. The

specific hardware based tagging described in this dissertation is referred to as the UI

tagging scheme.

There are several operational scenarios where tagging could be used. For the purposes

of this work, consider a simple run-time executive that supports execution of tasks for

one or more users, or one or more applications in different security domains. This could

be part of an embedded control system, or a network appliance. As the system receives

data from the network, or from user applications, the hardware-based security tagging
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scheme ensures that the core software of the run-time executive is protected from user

software and from malicious network inputs. In addition, the hardware provides sep-

aration and information-flow controls that facilitate access control mechanisms of the

run-time executive, as well as protecting the system from buffer overflows. Such support

would simplify the design of a runtime executive, giving it the security features of a full

operating system without the additional software overhead.

Security tagging schemes attach labels to memory and/or registers to carry informa-

tion about data during program execution. These labels are also called tags. They have

been used by researchers to ensure that the semantics of computations are correctly im-

plemented; to isolate code and data, users and system; and to enforce security policies at

the hardware level. The implementation of tagging in hardware provides developers with

enhanced security mechanisms without a penalty on performance, as compared to tradi-

tional microprocessors. Therefore, tagging schemes are seen as promising mechanisms to

help processors and OSs implement security properly.

Modern security tagging schemes were first designed and implemented to protect

against a few low-level attacks, such as buffer overflow and format string attacks [16, 18,

27, 25]. Recently, security tagging schemes have been developed that claim to prevent

high-level attacks, which include SQL (Structured Query Language) injection and cross-

site scripting [6, 13]. Tags are also implemented in some architectures to support memory

access control [26, 29, 20, 19]. To support and speed-up the tagging schemes, several

hardware-based security tagged architectures have been proposed [26, 25, 13, 20].

The goal of this dissertation is to design, implement, and evaluate a new security

tagging mechanism for a “zero-kernel operating system” (ZKOS [20]) (See Section 2.1)

running on the new security tagged architecture (STA). RTEMS [15], which is a run-

time executive system, was chosen to evaluate the new security tagging scheme, since

it has been designed with almost no security protections. The tagging scheme secures

RTEMS by providing access control for code and data by using an efficient hardware-
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based tagging scheme. Unfortunately, as of the writing of this dissertation, this type of

specially designed hardware is not fully functional. Therefore the implementation of our

tagging scheme was performed in a hardware simulator.

In this chapter, Sections 1.1 and 1.2 introduce basic concepts related to security

tagging schemes and security tagged architecture. Section 1.3 indicates the problems

that the proposed security tagging scheme was designed to solve. The motivation and

objectives of this research are presented in Section 1.4. Section 1.5 concludes with an

overview of the remaining parts of the dissertation.

1.1 Security Tagging Schemes

The idea behind security tagging schemes is to attach labels to memory and/or registers

which will carry information about the tagged data. These tags are checked and prop-

agated throughout the system during runtime. This section introduces several security

tagging schemes that have been presented in the literature. The purpose of using these

approaches can be divided into two categories: using security tags for attack prevention

and using security tags for access control. The review presented here first appeared in de-

tail in an MS thesis by this dissertation’s author [22] and was summarized in a conference

paper [21].

1.1.1 Implementing security tags for attack prevention

This section provides information about tagging schemes for attack prevention. These

schemes include Dynamic information flow tracking (DIFT) [25], Raksha [6], LIFT [16],

Low overhead architecture for security tag [18], Invalid pointer dereference tool [27] and

Decoupling dynamic information flow tracking [13]. All of these tagging schemes can pre-

vent low-level attacks, such as buffer overflow and/or format string attacks. In addition

to protection against low-level attacks, Raksha [6] and Decoupling dynamic information
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flow tracking [13] claim to prevent high-level attacks, such as SQL injection and OS

command injection.

In DIFT, designed by Suh et al. [25], registers and memory are tagged with a 1-bit

tag to differentiate between spurious data and authentic data. All untrusted I/O inputs

are tagged as spurious. Then, by using information flow tracking, all information flows

from this untrusted data are tracked by the processor. If a dangerous use of a spurious

value is found, the processor generates a trap to a software handler for further checks.

If the spurious data is not permitted under the enforced security policy, the handler will

terminate the application. This approach is focused on securing the system against buffer

overflow and format string types of attacks.

LIFT [16] is an information flow tracking system that uses dynamic binary instru-

mentation and optimizations to detect attacks. LIFT is a software only system, requiring

no hardware extensions. It uses a 1-bit tag to tag the data in memory and general data

registers. LIFT provides tag checks of the data in the execution region before performing

the execution and merges multiple tag checks of consecutive memory locations into one

check to reduce the check overhead.

Shioya et al. [18] presented a new security tagged architecture (STA) that uses a tag

table, a multilevel table, and tag caches to reduce overhead. This architecture exploits

two features of tags, non-uniformity and locality of reference. Non-uniformity indicates

that some of the memory cells have tags associated with them and others do not. Locality

of reference means that tags are used locally in code similar to data. Therefore, tags are

cached more effectively. Compared to a traditional STA, the authors show that the new

architecture significantly reduces the memory overhead.

Yong and Horwitz [27], proposed a security-enforcement tool for C programs that

protects against attacks via unchecked pointer dereference. This tool can identify unsafe

pointers and uses a 1-bit tag to indicate appropriate and inappropriate pointer usage. It

tags each byte of memory to show whether it is an appropriate location that an unsafe
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pointer can point to. If the memory location being written to or freed is not tagged as

appropriate, an error message is raised and the program is halted.

According to Dalton, Kannan, and Kozyrakis [6], Raksha is a flexible architecture

based on DIFT. It uses information flow tracking to enforce software security. Since DIFT

only uses one security policy, which focuses on preventing memory corruption attacks,

it cannot detect other attacks such as SQL injection, cross-site scripting, and command

injections. In order to detect these types of attacks, Raksha adds a 4-bit tag to registers,

cache and memory locations. Within the 4 bits, 2 bits are used for detecting high-level

attacks, 1 bit is for detecting memory corruption and the other 1 bit is for low-overhead

security exceptions. Beyond buffer overflow, Dalton et al. [6] claim that Raksha is able

to detect directory traversal, command injection, SQL injection, and cross-site scripting

attacks. We argue that this approach just moves the problem from application-level

software to the OS without any true improvement [2, 1] (see Section 1.1.3).

Decoupling dynamic information flow tracking (Decoupling DIFT), presented by Kan-

nan, Dalton, and Kozyrakis [13], checks tags associated with the instruction’s memory

location. This scheme is focused on making DIFT [25] more efficient by changing the

hardware. Decoupling DIFT proposes to use a small coprocessor that implements DIFT,

that is, it stores register tags and tag caches, and also performs the tag propagation and

tag checks. The system attaches an asynchronous coprocessor to the main processor core

and synchronizes between these two cores when there is a system call.

1.1.2 Implementing security tags for access control

The previous section surveyed tagging schemes for attack prevention and information

flow control. In addition to use of tags for attack prevention, researchers have also used

tags as security labels for access control and protection of memory and objects. Major

tagging schemes for access control include Mondrian memory protection (MMP) [26],

Sentry [19], Loki [29], and TIARA [20].
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According to Witchel, Cates, and Asanovic [26], Mondrian memory protection (MMP)

is a fine-grained memory protection scheme that extends the traditional memory protec-

tion scheme. Compared with traditional memory protection, which uses access permis-

sions at the page level, MMP allows arbitrary access control for individual memory words.

MMP uses two permission bits to support different access control for individual words,

representing four meanings: no permission, read-only, read/write, and execute/read. In

addition, MMP uses a compressed permissions table and two levels of permissions cache

to lower the space overheads and performance overheads.

Sentry, designed by Shriraman and Dwarkadas [19], is a virtual memory tagging

scheme that provides lightweight auxiliary memory access control that can be controlled

at the user level. Sentry implements a permissions metadata cache (M-cache) to intercept

L1 misses. The metadata cache also controls whether data is allowed to be stored into

the L1 cache. Since data stored in L1 has been checked, access to L1 cache does not need

any additional checks. Each entry in the metadata cache has 2-bit permission metadata

to represent access permission to a specific virtual page, representing four different access

permissions: read-only, read/write, no access, and execute.

Loki [29], is a hardware architecture that supports a word-level memory tagging

approach. Loki has been ported to Histar, an operating system that has a small trusted

kernel. Loki tags every 32-bits of physical memory with a 32-bit tag. To avoid the high

overhead incurred by using large tags, it allows a page of memory to be tagged with

only one 32-bit tag. By using a permission cache (P-cache), Loki enforces fine-grained

permission checks. This cache stores the security tags and a 3-bit permission, which

represents read, write, and execute.

According to Shrobe, DeHon and Dwarkadas [20], Trust-management, intrusion-

tolerance, accountability, and reconstitution architecture (TIARA) is a co-design of hard-

ware, operating system, and applications. TIARA implements access control at different

levels. At the hardware level, the tag management unit enforces fine-grained access con-
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trol for individual words in memory and registers. At the system level, there is an access

control layer which supports a variety of role-based access control models. TIARA is an

example of a ZKOS in that it has separate OS modules that run in user mode, but are

protected by hardware tagging.

1.1.3 Hardware Tagging for Semantic Attack Prevention

There have been claims in the literature that some hardware tagging schemes can assist

in the prevention of semantic attacks, such as SQL-injection and cross-site scripting

(XSS) [6, 13]. The concept is understandable; this is user supplied data that is being

processed in an unexpected manner, resulting in a violation of the security policy.

As mentioned in the previous section, prevention of a semantic attack requires proper

handling of user input. This is similar to the problem of a buffer overflow, which can be

handled by hardware tagging. However, there are key differences that are important to

understand.

A buffer overflow occurs when there is a violation of the run-time semantics of the

programming language. The semantics of the language are usually well understood and

standardized. The concept of a buffer is also standard and exists across many languages.

The semantics of the run-time stack and the storage of the return address on the stack

are intrinsic to the microprocessor. For each microprocessor, it is then possible to develop

a mechanism that detects if user data overwrote a return address, or even just overflowed

a buffer.

Similar arguments can be made about uninitialized memory, integer overflows, or

other microprocessor intrinsic run-time semantic violations.

Security Tagging and SQL Injection Attacks

As discussed in [2], there are limitations to hardware based tagging. Detecting an

application-level injection attack is different from detecting a buffer overflow attack.
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Take SQL injection attacks as an example. If we use a hardware-based security tagging

approach we need a process that receives user input and tags it - similar to the buffer

overflow use case. That user input is then combined with server code to create the SQL

query which is then sent to an interpreter. This means that the tag must propagate with

the generated query to the interpreter. At some point, probably in the interpretation of

the query, security tagging hardware must evaluate the use of the tagged user data and

determine if a security exception should be thrown.

What information does the hardware have to make that decision? Instructions are

being executed with user data as operands. A jump or branch to an address that was

specified by a user would be a violation, but normal processing of SQL queries would

not run into that case. Is there something else? For example, is a comparison operation

a security violation? Is addition? The answer is that the hardware cannot know the

semantic intent of the operation, and there is no fundamental concepts that we can

extract from query processing to configure the hardware to generate an error. Therefore,

the approach taken in the literature is to cause a security exception every time user data

is encountered in an SQL query, and then send the request to a software handler to

manage it. The impact of this is:

� There needs to be a software handler that tags user input data. This requirement

already exists in most tagging systems, and fits into the model of low-level common

functionality.

� There has to be a handler that can differentiate between the processing of an SQL

query and processing of the raw input data for filtering purposes. In other words,

there needs to be software controls to tell the tagging hardware to monitor this

processing; which requires the application programmer to be involved in configuring

and appropriately using the mechanism.

� Since hardware will not be able to differentiate what part of the query processing is
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occurring, all queries with user data will cause a security exception. This exception

requires a handler to know that the code was processing an SQL query (and not

html code for a cross-site scripting attack) and appropriately process the SQL query

to remove errors. This is actually more complex than requiring the programmer to

use a standard SQL query library with security features.

Given the preceding impact it is clear that we have to trust the developer to under-

stand the underlying tagging mechanism and how to tailor it for each type of semantic

attack that is a threat to their application. This is just a new flavor on the current

problem and does not improve the situation for the developers.

There is a need for further research to determine common elements of high level

semantic attacks and common security mechanisms for them. At this point, it appears

that the high-level semantic nature of the attacks - they are attacking the functional

behavior of the code - is beyond the capability of inherent security mechanisms.

1.1.4 Summary of tagging schemes

Table 1.1 summarizes the reviewed tagging schemes, indicating the types of attacks that

can be prevented1, if the scheme is used for access control and if it has hardware support.

The Y’s in the access control column indicate that those five tagging schemes support

access control. Some of the schemes are implemented only at the software level and some

need support from hardware level, which requires design of tagging engines and changes

to the hardware. The UI tagging scheme is shown in the last row, details of this are

provided in Chapter 3.

1The attack list is based on claims by the cited authors, the claims for “semantic level” attacks are
unable to be verified.
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Table 1.1: Summary of Tagging Schemes

Buffer Format SQL Cross-site Access HW

overflow string injection1 scripting1 control support

DIFT [25] Y Y Y

Raksha [6] Y Y Y Y Y

LIFT [16] Y

Dereference Y

pointers [27]

Decoupling Y Y Y Y

DIFT [13]

Low-overhead Y Y Y

tagging [18]

MMP [26] Y Y

Sentry [19] Y Y

Loki [29] Y Y

TIARA [20] Y Y

UI tagging [21] Y Y Y Y

1.2 Security Tagged Architecture (STA)

The concept of hardware-based memory tagging can be traced back to the Burroughs

B5000, which was introduced in 1961. It used a 1-bit code to differentiate between data

and instructions, partially to protect from corruption of the stack. Later the 1-bit code

grew to a 3-bit tag in the B6500 [1]. In 1973, Feustel proposed expanding this to 5-bit

tag [11]. However, this approach has not received significant attention until recent years.

As computer hardware has been getting faster and more functionality is put on chips,

it is becoming easier to use hardware to provide functionality currently implemented in

software.

An STA is an architecture that supports tagging capabilities such as tag storage, tag

propagation, and tag checking in hardware. Therefore, by using an STA, the mainte-

nance of correctness and security of the system can be performed at the hardware level.

This reduces the consumption of system resources, provide a common platform for secu-
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rity, and reduces the possibility of successfully bypassing or tampering with the security

mechanism.

The STA, defined by Shrobe, DeHon and Knight [20], is a hardware architecture that

allows metadata to be used during runtime to enforce security policies and to maintain

the semantics of the computation. The metadata can be represented with a tag. It is

usually associated with a word of memory and carries information about the word, such

as access rules, permissions, and data types. There have been a few STAs designed to

implement tagging schemes. Four of them are discussed below.

1.2.1 Mondrian memory protection architecture

In the architecture of Mondrian memory protection (MMP) [26], every allocated memory

region is owned by a protection domain. Each running thread has a protection domain ID

and each domain has a corresponding permission table. The permission table is stored in

memory, it specifies the permission of each address that the domain has. Every access to

memory requires a check of the permission table. The processor checks the permissions

in the sidecars, which are registers that hold information for one table segment. Each ad-

dress register has one sidecar register associated with it that caches the last table segment

accessed by this address register. If the sidecars do not have the permissions information,

the processor will then reload the sidecar from a permission lookaside buffer (PLB). If

the permission information needed is not in the PLB, the permission information will

be retrieved from the permissions table resident in memory, by means of hardware or

software, and refilled into both the PLB and sidecars.

1.2.2 Dynamic information flow tracking architecture

DIFT [25] implements the security tagging scheme in a processor. The on-chip architec-

ture has new structures (ITag TLB, DTag TLB, T$L1, T$L2) that support the tagging
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scheme. In DIFT, each register has an additional bit to store the tag. DIFT also adds

two separate tag caches, T$L1 and T$L2. Because of the introduction of the new tag

caches, a new translation table between L2 cache and memory is needed. DIFT adds two

new registers: propagation control register (PCR) and trap control register (TCR). PCR

has a bit vector that controls the propagation of tags based on the security policies. TCR

has information about whether or not to generate a trap for a specific kind of values.

Both registers are configured by the execution monitor, which is a software module used

to enforce the security policies. The PCR and TCR in the STA provide DIFT with the

ability to evaluate and propagate tags at the hardware level and raise an exception to

the software level when an error occurs.

1.2.3 Dedicated coprocessor architecture

Kannan, Dalton, and Kozyrakis [13] proposed the decoupling dynamic information flow

tracking architecture based on a dedicated small coprocessor. Compared with using a

separate general core, the small coprocessor is a better choice because it is sufficient

for doing tag propagation and tag checking, and does not impact normal CPU (central

processing unit) operations. DIFT functionality is implemented in the small attached

coprocessor. The main processor core will be synchronized with the small coprocessor

when doing system calls. The small attached coprocessor includes a tag pipeline for tag

propagation and a tag cache to store and maintain the tags.

1.2.4 TIARA architecture

In TIARA[20], the Tag Management Unit (TMU) runs parallel with the data path. It

operates on the tag of the data and makes decisions on whether or not to send a trap

signal based on the enforced security policies. The TMU takes certain fields of the

operands, the program counter, and the instruction to compose the tags for the data. In
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TIARA, every word in memory and all of the processor registers are tagged with their

data type and security context information. In addition, the program counter is tagged,

which helps handle conditional branch instructions. TIARA implements a policy table

in main memory. When the main data path is executing an instruction, the TMU deals

with the tags of the two operands, the program counter’s tag, the instruction, and the

principal register, which stores the privileges of the running process. If the execution of

the instruction does not violate the access control policies, the resulting tag is derived

from the tags of the input operands. However, if the execution violates the security

policies, then the TMU forces the process to the trap handler.

1.3 Security Problems

Due to the increasing reliance on technology, a wide variety of software applications

are installed on computers, smart phones, tablets and other computing devices. As

attacks can exploit the vulnerabilities either in operating systems or in the installed

software, security issues of computer systems have become one of the biggest concerns

in today’s systems. This section summarizes some common security attacks in today’s

computing environments. They can be addressed by the UI tagging scheme proposed

in this dissertation (see Chapter 3), and some can also be addressed by other tagging

schemes found in the literature.

� Memory corruption attack. A memory corruption attack causes the system to

violate the standard programming language semantics by overwriting unexpected

areas of memory. The buffer overflow attack is the most common type of memory

corruption attack. If the data written to a buffer exceeds the capacity of the buffer,

the extra data will overwrite the memory space adjacent to the allocated buffer.

The attack stems from insufficient bounds checking. If the memory where the

return address is stored is overwritten, then once the currently executing function



14

returns, execution will resume at the address specified by the attacker, which can

result in the execution of malicious code. This kind of attack can be prevented by

security tagging schemes such as DIFT [25], Raksha [6], LIFT [16], Low overhead

architecture for security tag [18], Invalid pointer dereference tool [27], Decoupling

dynamic information flow tracking [13] and the new UI tagging scheme proposed

in this dissertation.

� SQL injection. SQL injection attack may be used to attack a website by sending

malicious SQL statements to it, so as to get the defective website to release private

contents of the database to the attacker. This attack is due to the use of badly

designed query language interpreters. When a user input is incorrectly filtered

or not strongly typed, malicious SQL commands sent to the website’s software

can be used to exploit security vulnerabilities of the website. According to their

authors, SQL injection can be prevented by using tagging schemes like Raksha [6]

and Decoupling dynamic information flow tracking [13]. However, this claim is

disputed in Section 1.1.3 [2, 1]. Software extensions are being explored in the UI

tagging project to address this problem.

� Data isolation. Attackers may forge pointer values to access the contents of

unauthorized memory space, such as critical memory blocks owned by the operating

system. The attackers can then use this access to read from or write into the

memory space pointed to by the forged pointer. If the system does not check the

validity of the pointer and allows the attacker to write the value of the memory

space, then the attacker may gain complete control of the system. This attack can

be prevented by the UI tagging scheme, Invalid pointer dereference tool [27], and

memory access controls such as those found in TIARA [20].

� Forged index or reference value. Most operating systems manage a large

number of resources for multiple users. System calls used to access these resources
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are usually passed through a reference or index to indicate which resource the user

wishes to access. It might be possible for an attacker to forge an index which refers

to a resource not owned by the attacker. If the system does not validate that the

reference belongs to the user, the attacker could force the system to corrupt, delete,

or release contents of this resource. To prevent this kind of attack, access controls

are need. This attack can be prevented by the UI tagging scheme (see Chapter 3).

1.4 Motivation and Contributions

This dissertation describes the implementation and verification of the new hardware

based UI tagging scheme, a related security policy, and its implementation in a real-time

operating system to support a new STA microprocessor. It is part of a larger project

investigating the properties of security tagging schemes and operating system support

for them. This dissertation is an extension of an earlier MS thesis by the dissertation

author [22].

The initial objectives of the project team are listed below for context and complete-

ness, and which objectives were achieved by this dissertation are pointed out.

� Objective 1: Evaluate existing tagging schemes. Many different security tagging

schemes have been proposed and implemented. The understanding of the current

scope of tagging schemes, their strengths and weaknesses, is important for the

designing.

– Task 1.1 Survey existing tagging schemes.

– Task 1.2 Compare the different tagging schemes.

– Deliverables: This objective is complete; results are documented in the MS

Thesis [22] and in a conference paper [21].

� Objective 2: Evaluate the RTEMS source code to find places for security enhance-

ments. RTEMS is a set of runtime executives which provide different functionalities.
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Reviewing the source code of RTEMS helped in understanding its architecture and

how the system works. This understanding was used to guide the modifications of

RTEMS in support of the new tagging scheme.

– Task 2.1 Review RTEMS security implications.

– Task 2.2 Define changes that need to be made to RTEMS to enhance security.

– Task 2.3 Document features the tagging scheme will need to support RTEMS

security.

– Deliverables: This objective is complete; results are documented in the MS

Thesis [22] and in a conference paper [21].

� Objective 3: Develop a new security policy and corresponding tagging scheme for

RTEMS. A new security tagging scheme has been designed to address the current

security concerns in RTEMS while using as much hardware support as possible to

keep performance overhead low. This includes designing the bit representation of

tags, developing the security hierarchy of the system and specifying rules for it and

the C language level tagging rules.

– Task 3.1 Design the security tagging scheme.

– Task 3.2 Design C language specific rules for tagging.

– Task 3.3 Evaluate the security of the new tagging scheme.

– Deliverables: The first two tasks of this objective were documented in the MS

Thesis [22] and in a conference paper [21]. The third task is addressed in this

dissertation.

� Objective 4: Apply the tagging rules to SPARC (Scalable Processor ARChitec-

ture) instructions at the assembly language level. The new security tagging scheme

will be eventually implemented in the SPARC architecture by the Cornell team

partners. Therefore, whether or not the design is able to be implemented on the
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hardware architecture needs to be considered. The review of the assembly code

generated by GCC revealed that the previous C language level tagging definition

is incomplete and a refinement on the definition to enable the hardware implemen-

tation is required.

– Task 4.1 Enhance the tagging scheme with respect to SPARC.

– Task 4.2 Design SPARC ISA specific rules for tagging.

– Deliverables: This objective is complete; results are documented in the MS

Thesis [22] and in a journal paper [23].

� Objective 5: Add a new tag manager in RTEMS to support the UI tagging scheme.

To support tagging, a tag manager is needed in RTEMS to allow the OS to handle

the tagging issues, for example checking if the copy bit is set or not in some specific

functions and take or release the ownership of some data.

– Task 5.1 Define the APIs of the tag manager.

– Task 5.2 Implement the tag manager in RTEMS.

– Task 5.3 Test and evaluate tag manager (completed as part of Objective 7).

– Deliverables: This objective is complete; results are documented in the MS

Thesis [22] and a project status report [2]. Source code is available.

� Objective 6: Expand the tagging scheme to support multiple users. RTEMS needs

to be enhanced to support multiple users. Therefore, a user manager needs to be

implemented in RTEMS to make tagging work properly for multiple users.

– Task 6.1 Develop a model of user tags and support in RTEMS.

– Task 6.2 Develop APIs of the user manager.

– Task 6.3 Implement User manager in RTEMS.

– Task 6.4 Test and evaluate user manager.
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– Deliverables: This objective is complete; results are documented in this dis-

sertation, a project status report [2] and source code is available.

� Objective 7: Implement the UI tagging scheme in the SPARC simulator2. The

SPARC instruction simulator was modified to make it support the modified RTEMS

and the security tagging scheme. New instructions needed to be implemented to

support tag checking and tag propagation. This objective is in partnership with

other team members.

– Task 7.1 Add hooks and additional instruction interpretations in SIS to sup-

port a tagging coprocessor.

– Task 7.2 Implement tagging coprocessor in SIS.

– Task 7.3 Test and evaluate tagging coprocessor simulation comparing with

theoretical model of tagging scheme.

– Deliverables: This objective is complete for both the initial tagging scheme

and the multiuser tagging scheme. The test cases (over 2000 test cases) provide

a coverage test of simulator functionality and tagging rules, which resulted in

some changes to the tagging scheme and the simulator. Additional changes to

the simulator and the tagging system have been finished. The final deliverable

includes documentations in an MS thesis [28] and this dissertation, project

status report [2] and source code.

� Objective 8: Implement test cases to evaluate application level use of the tagging

scheme and RTEMS modifications. This objective is in partnership with other

team members.

2The overarching AFRL project involved a partnership with Cornell University. The team at Cornell
was tasked with implementing the tagging scheme in an FPGA model of the SPARC process. Changes
in the scope of work and funding resulted in an incomplete implementation that halts the machine upon
a single security exception. This made testing very difficult, and resulted in a move to the use of a
software simulator for the tagging engine.
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– Task 8.1 Port sample test programs into RTEMS (including some of the SPEC

CPU benchmarks), to assist in evaluation of new tagging scheme.

– Task 8.2 Evaluate and implement changes needed in RTEMS libraries to sup-

port applications.

– Task 8.3 Run and document tests.

– Deliverables: The deliverable will be a process document on how to port

benchmarks and enhance RTEMS libraries, a separate technical report and

source code (when permitted - for example we cannot release SPEC benchmark

source code).

� Objective 9: Develop Formal Models of the security policy enforced using the new

tagging scheme, and prove security properties of the system architecture. The

intent of these models is to allow people to understand and document the pros and

cons of this and related tagging schemes.

– Task 9.1 Develop formal model of tagging scheme, prove related lemmas.

– Task 9.2 Develop formal model of abstract system architecture (a model of a

multiuser RTEMS using tagging) and prove related lemmas.

– Task 9.3 Develop formal model of the security policy(s) supported by this

architecture and tagging scheme and prove related lemmas.

– Task 9.4 Prove that the formal model supports the security policy(s) within

the abstract architecture.

– Deliverables: Source code is available, results are documented in this disser-

tation, a project status report [2], and academic paper(s) in preparation.

In summary, the UI tagging scheme presented in this dissertation provides a way

to protect the system and user software from security attacks and invalid information

access by using tags. The UI tagging scheme proposed is designed for the RTEMS
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runtime operating system to provide security enhancements to RTEMS. It expands prior

work from a MS thesis [22]. In the earlier work, RTEMS source code was examined to

evaluate potential security problems and tags were designed to fix these problems for

the system. In addition, the studies of the SPARC architecture refined the security rules

that was proposed for the C programming language at software level to SPARC assembly

language instructions. By being implemented in hardware, it will achieve a performance

increase as well as a common security mechanism to support all of the code, alleviating

the OS (Operating System) from the responsibility of ensuring that all OS code correctly

implements security features.

During this dissertation work, RTEMS was expanded to a multiuser system. As a

result, the tagging scheme required a modification to support multiple users. In order to

handle multiple users, a new USER manager needs to be added to the system. To check

that the new designs and implementations are correct, test cases are generated to test

tag checking and propagation. Lastly, by using A Computational Logic for Applicative

Common Lisp (ACL2), a formal model of the security policy enforced by the UI tagging

scheme has been created and several related security properties and theorems have been

proven.

1.5 Dissertation Overview

The remainder of this dissertation is organized as follows. Since the new tagging scheme

is going to be implemented in RTEMS, Chapter 2 provides background on the zero kernel

operating system concept, RTEMS and its architecture. Modifications are going to be

made to the SPARC architecture to support the new tagging scheme and it has some

special structures that are important to understand. Therefore, the SPARC architecture

and the SPARC instruction simulator are also discussed in Chapter 2 as well.

Chapter 3 presents the 32-bit tag and the security tagging scheme. This chapter

defines the format of the tag and illustrates how each field in the tag is used to help
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secure RTEMS. This chapter also introduces a lattice which illustrates the security classes

and the information flow in RTEMS. The information flow rules for the C programming

language semantics are also discussed in detail. In addition, because some of the high level

rules cannot be mapped to assembly level correctly, the tag checking and propagation

rules for assembly instruction level are also explained.

Chapter 4 presents the work expanding RTEMS from a single user system to a multiple

user system, adding code to the USER manager and TAG manager to support tagging

for multiple users, and testing the correctness of tag checking and propagation rules and

implementation.

A formal model of the security policy enforced by the UI tagging system is set up

successfully in Chapter 5. Based on the formal model that has been set up, by using

ACL2, security properties of the tagging system and related theorems were proved.

Chapter 6 concludes the security tagging system work that has been done. It is

followed by the future work section, which proposes the possible future work.

In summary, this dissertation proposes an extension of the UI tagging scheme which

supports fine-grain access control, and multiple users by using tags. The tags are associ-

ated with memory and registers, by giving specific tag checking and propagation rules,

they could help prevent security attacks and invalid data access. This dissertation de-

scribes the process of implementing the tagging scheme, initially from a high level and

then down to the assembly instruction level. The UI tagging scheme provides a way

to isolate the OS modules from users and also further isolate different OS modules and

different users in the system. It can be implemented in a general OS to enforce the in-

formation isolation and access control. In addition, a formal model of the security policy

enforced by the new tagging scheme is given. It helps with proving related properties

and theorems.
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Chapter 2: Background

This chapter provides background on the concepts of zero kernel operating systems

(ZKOS), RTEMS (Real-Time Executive for Multiprocessor Systems) and the SPARC

(Scalable Processor ARChitecture) architecture. The basic idea of a ZKOS is to decom-

pose the whole system into many smaller components. Each component is isolated from

other components and has its own privileges, therefore avoiding having ultimate privi-

leges on all of the system code. The operating system components run as part of user

code, like library routines, but with special protections provided by a tagging mechanism.

This structure avoids the need for an OS kernel and associated overhead, such as context

switches.

The goal of the UI tagging project is to design and evaluate a security tagging mecha-

nism for implementation in an operating system running on a security tagged architecture.

RTEMS [15] is a real-time executive that has 18 managers, each of which can be viewed

as an individual module. Since the architecture of RTEMS is very similar to the idea of

a ZKOS, RTEMS was chosen to implement the new security tagging scheme. Because

RTEMS implements almost no protection, the purpose of the new tagging scheme is to

secure RTEMS without requiring a major rewrite and to reduce the overhead incurred

by implementing the tags in hardware.

The Cornell University team on this project was implementing the tagging scheme on

a SPARC processor. Therefore, this chapter highlights important features of the SPARC

processor that must be noted in the design and evaluation of the UI tagging scheme. For

example, SPARC uses a sliding register window to help pass parameters to subroutines

and return values to the caller. The PC (Program Counter), parameters, return value,

frame pointer, and stack pointer are stored in specific registers within the window. For

that reason, this style of parameter passing must be taken into account.

In this chapter, the basic concepts of a ZKOS are introduced in Section 2.1. Section 2.2

gives a brief introduction to the RTEMS system and its important data structures. In the
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last section, Section 2.3, the SPARC’s architecture, register window and memory stack

are briefly introduced. The SPARC instruction simulator is discussed in Section 2.4. And

Section 2.5 summarizes this chapter.

2.1 Zero Kernel Operating System

A good operating system protects system code from modification by user or software.

Conventionally, as shown in Figure 2.1, to satisfy this requirement, systems separate

memory into user space and kernel space. To further control separation, systems also

support the concept of virtual memory, which allows user code to run unmodified as the

operating system reallocates memory regions or even swaps memory out of RAM to disk.

Programs running in kernel space typically have ultimate privileges, while programs run-

ning in user space have only limited privileges. To be able to support the separation of

user space from kernel space, separate kernel and user execution modes are traditionally

required. However, the transition between kernel mode and user mode, or between dif-

ferent users’ spaces, namely the context switch, incurs a huge performance overhead [20],

as registers need to be saved and restored and memory maps need to be reloaded. In

addition, the current implementations of virtual memory cause multiple memory accesses

upon page misses.

Shrobe, DeHon, and Knight [20], designed a new operating system architecture called

a zero-kernel operating system (ZKOS) to address performance and security issues of cur-

rent operating systems. Along with the support of a new security tagged architecture, a

ZKOS provides fine-grained memory protection by using tags. As shown in Figure 2.2, a

ZKOS decomposes the whole operating system into many smaller components based on

an object-oriented design philosophy. In their ZKOS implementation, TIARA, each com-

ponent has its own compartment and principal. A compartment defines the resources and

memory used by the compartment to store data and the principal specifies the authority

of operations. A component’s principal can access the data of its own compartment, but
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Figure 2.1: Traditional operating system model

cannot access other components’ data and user’s data. If data needs to be shared among

two or more components, then shared compartments are used to support it.

In traditional memory protection, protected and supervisor modes give the programs

running in supervisor mode ultimate privileges and the programs running in protected

mode limited privileges. Different from the protected mode and supervisor mode, a ZKOS

decomposes the whole operating system into many smaller components, each having its

own limited privileges. This ensures that each component has the least privileges needed,

preventing any of the components from having complete authority. Therefore, even if

a component is compromised, the whole system will not be compromised. By using

smaller components, the system has better isolation in code and data and also a better

separation of the system from users. According to Shrobe, DeHon, and Knight [20],

because the components have their own privileges and compartments, a ZKOS supported

by a security tagged architecture avoids the expensive context switches between kernel

mode and user mode that occur in traditional operating systems. What is more, the

decomposed components help ensure fine-grained memory protection of the system.

Shrobe, DeHon, and Knight [20] require that each component consist of not only

compartments and principals, but a set of access rules as well. Access rules are used

to restrict access from other components that do not have the appropriate privileges.
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Figure 2.2: Zero kernel operating system model

Therefore operating system components are unable to access data in other operating

system compartments and even the user’s compartments. The interaction and sharing

among different ZKOS components are also well structured. In simple terms, each compo-

nent establishes a set of gates that include a procedure, a compartment, and a principal

to indicate the entry points of the service. With the help of the TMU (discussed in

Section 1.2.4), the invocation of the gate is only allowed by the components that are

authorized.

In summary, compared with a traditional OS, a ZKOS allows better separation of user

data and code from the system data and code, and a better separation between system

modules. It also avoids the expense of performing context switches between kernel mode

and user mode. The components turn the system into a multilevel system, which helps

provide better control of information flow. With the support of an enhanced security

tagged architecture, a tagged ZKOS would be more flexible and powerful [20].

2.2 RTEMS

RTEMS [15] is a real-time executive that provides a runtime environment to allow various

types of services and applications to be embedded. It can perform a set of services that
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Figure 2.3: RTEMS Architecture

includes multitasking, inter-task communication, and dynamic memory allocation. There

are two versions of RTEMS, one version is written in the ADA programming language

and the other one is written in the C programming language; the C language version has

been modified and ported to other processor families, such as ARM, MIPS, PowerPC,

SPARC, Atmel AVR etc. In this project, the C language implementation was used for

testing and evaluation.

2.2.1 RTEMS architecture

As shown in Figure 2.3, RTEMS consists of a super core (SCORE) and 18 managers.

The 18 managers provide different services and the SCORE provides kernel functions

that support the managers. In this dissertation, two new managers were added, Tag

manager and User manager, to support the UI tagging scheme.

The original 18 managers of RTEMS provide services to user code in support of
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Figure 2.4: SCORE services

concepts such as tasks, memory, timers, and communications. Each manager provides

a well-defined set of services through directives that take the place of traditional system

calls. Each manager also has internal functions that it uses to support implementation,

some of these are private to the specific manager, and some are intended to be used by

other managers. In either case, these manager internal functions are not intended to be

used by user code.

In addition to each manager, RTEMS has a set of modules that make up the SCORE

subsystem. The SCORE provides services for all managers, and all managers interact

with the SCORE via directives. As shown in Figure 2.4, some major SCORE modules are:

object, thread, chain, interrupt service routine (ISR), error handler, heap and protected

heap, workspace, initialization, message, time, watch dog, and user extension. These

modules are key to the internal working of RTEMS, but are not intended for use by user

code.

Conceptually the APIs are meant to be externally accessible, internally restricted to
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other RTEMS modules or internal to specific modules. However, RTEMS currently does

not restrict access to any of these functions or their private data structures. The following

sections outline the major security concerns that need to be addressed to secure RTEMS.

2.2.2 Security Concerns in RTEMS

The examination of RTEMS’s source code reveals several major security concerns.

No separation between user and system. In RTEMS, there is no separation be-

tween user resources and system resources. In traditional operating systems, the system

has ultimate privileges while the user has limited privileges. In RTEMS, both the user

and system have ultimate privileges. Currently user code can use all of the SCORE code,

internal functions, and directives. This means that the user can do everything that the

RTEMS system can. For example, the user has privileges to change the system configu-

ration, delete system tasks, etc. This is a design decision since RTEMS is intended for

embedded systems and is built for high performance. Unfortunately, this limits the use

of RTEMS in secure environments or from safely running untrusted code.

As critical system data must not be changed by users, user code should be separate

from system code and user data should be separate from system data. Therefore, a secure

RTEMS needs a mechanism to distinguish user data and system data first, and then to

restrict users to the minimal privileges.

System has no protection from users. RTEMS has no protection from users and

no concept of multiple users. Take the directive, rtems task delete, as an example.

There is no check of the identity of the caller of this directive. This means that other

system managers can use this directive, other system code can use it, and even users can

delete any task by calling this directive. There is no restriction on who can delete which

task, which means that users could even delete system threads.
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As RTEMS has other directives and internal functions that can delete, create, or

change user data and system data, it is very dangerous to let users have permission to

use these important system functions. Therefore, in order to protect system data from

users, it is necessary to implement a mechanism to limit the capabilities of users.

No separation of RTEMS code. There is no isolation among RTEMS managers,

directives and SCORE. In RTEMS, SCORE works as the micro kernel of the system. If

the SCORE code is misused by a user or attacked by a malicious user, critical security

problems may occur. Therefore it is important that SCORE code be separated from

other system code and user code.

RTEMS has 18 managers and each manager has its own functionality. Each manager

has specific directives that support the manager. RTEMS has internal functions that

help RTEMS managers function correctly, inline routines that speed up the running of

RTEMS, and library functions supporting some of the functionalities. In the current

version of RTEMS, every directive of a RTEMS module can call any function, including

internal functions of other RTEMS modules. This may cause security problems if any

application in user code is modified by an attacker, because the attacked code can use

any other RTEMS code that the attacker wants. With a STA, mechanisms can be im-

plemented in RTEMS to prevent unintended or malicious usage of manager and SCORE

code.

No separation of different users. Although RTEMS has a single user multi-threaded

model of execution, it can be expanded to be a multiuser system. To be extended to

a multiuser system, the system must have a method to identify the owner of user data

and keep it separated from other users’ data. However, RTEMS cannot tell which user

is the owner of specific user data. For a thread, it might be a thread generated by user

1, a thread generated by user 2, or a system thread. Since the owner of the thread is

unknown, who has the permission to change or delete it can not be specified. Currently
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RTEMS is a single user system that contains no rules to specify who can do what. This

becomes a problem when RTEMS is extended to allow more than one user.

2.3 SPARC Architecture

The Cornell team chose to use SPARC as their target architecture [7], therefore it is

used in this project. SPARC has an instruction set architecture that is derived from a

reduced instruction set computer (RISC) lineage [24]. RTEMS is designed to be portable

to multiple processor architectures, and SPARC is one of them. SPARC provides flexible

register window management by using separate instructions for window management and

function call and return. The main features of SPARC are:

� The address space is 32-bit, linear.

� All instructions are 32 bits, and the number of instructions is reduced.

� A separate floating-point register file.

� A program can see a register window which contains 24 registers and 8 global

registers at any time.

� The processor fetches the next instruction after a delayed control-transfer instruc-

tion.

� The architecture defines a coprocessor instruction set.

� It has instructions for a synchronizing multiprocessor.

� A trap causes the allocation of a new register window.

2.3.1 SPARC register set and register windows

At a given time, an instruction can see 8 global registers and a register window which

contains 24 registers: 8 in registers, 8 local registers and 8 out registers. In and out
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registers are used for passing parameters and getting return values, because the caller’s

out registers become the callee’s in registers when there is a normal function call1.

Registers %i0-%i7 are in registers. The first six in registers (%i0-%i5) are used to store

incoming parameters, %i6 is for storing the frame pointer (%fp), and %i7 is for storing

the return address. In addition, %i0 is also used to store the return value to the caller.

Registers %l0-%l7 are local registers that are mostly used for temporary values. The

current PC and the next PC (nPC) are copied to %l1 and %l2 when a trap occurs.

Registers %o0-%o7 are the out registers. Among these registers, %o0-%o5 are used to

store the parameters being passed to a called subroutine, %o6 stores the stack pointer,

and %o7 stores a temporary value or the return address. The CALL instruction writes its

own address into %o7 and the address is then used as the basis for the return address for

the callee as %i7 when the register window shifts. The global registers are %g1-%g7 and

have global scope. The %g0 register has the hardwired value of zero; any write to it has

no effect.

In the SPARC architecture, partially overlapping windowed integer registers are pro-

vided. The current window pointer (CWP) indicates the current window and walks a

circular buffer of windows2. The execution of instruction SAVE or trap decreases the CWP

by 1 and instruction RESTORE or RETT increases the window by 1. The overlap of windows

allows each window to share its in and out registers with adjacent windows. As shown

in Figure 2.5 (adapted from SPARC International Inc. [24]), when the CWP decreases

by one, the out registers of the previous register window become the in registers of the

new register window and the caller’s stack pointer (%sp) becomes the current procedure’s

frame pointer (%fp). When executing RESTORE or RETT, the CWP increases by one and

the window moves back to the previous window. The local registers are unique to each

window. A return value is stored in %i0, therefore, after moving the register window

1The CALL instruction does not cause this register mapping, rather the SAVE instruction slides the
register window – allowing more flexibility for the compiler, but decoupling parameter passing from the
actual function call. The RESTORE instruction is used to slide the window back before a return.

2The Leon3 processor, the SPARC processor used in this project, supports 32 register windows.
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Figure 2.5: Change of the register window

with a RESTORE, the caller can access the return value that is stored in its out register

%o0, which was callee’s in register %i0. Window overflows and underflows cause a trap

to the operating system.

2.4 SPARC Instruction Simulator (SIS)

The SPARC Instruction Simulator (SIS) [9] was developed by European Space Research

and Technology Center (ESTEC). It has now been incorporated into the GNU Debugger

(GDB) [12]. SIS emulates an ERC32 system (a variant of the OpenSparc processor),

containing the IU, FPU, MEC, up to 16 MByte ROM and up to 32 MByte RAM. The

source for the simulator is included as part of the standard GDB source distribution.

In a companion project to this dissertation, a modified SIS is used to allow for sim-

ulation of a variety of tag engines. A tagging coprocessor has been added to the simu-

lator [28]. Hooks were placed inside SIS that call a set of tagging engine functions with

instruction information, and implemented a set of coprocessor instructions that assist in
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programming the tagging coprocessor. The tagging functions perform the relevant prop-

agation and checking operations, as defined by the specific tagging rules. If an error is

detected, the tag coprocessor throws an exception, which is then handled by the regular

simulator. The implementation of the tagging rules specified in this dissertation was part

of the work for the corresponding MS Thesis [22] and were further modified as part of

this dissertation to support multiple users, and in response to tests conducted as part of

this dissertation. The following assumptions were made with respect to the simulator:

� All exceptions are precise. When a tagging error occurs, the exception will be

thrown during the instruction that generated the exception.

� Exceptions prevent instruction completion. When an exception is thrown, the

instruction is not completed, and no changes are made to the registers or memory.

� The exception handler is part of the RTEMS code.

2.5 Summary

The chapter provides background on the UI hardware-based security tagging project. It

first introduces the concept of ZKOS. The idea of a ZKOS is to decompose the whole

system into smaller components. Supported by a security tagged architecture, a compo-

nent has its own privilege and is isolated from other components. RTEMS was chosen

to implement the new security tagging scheme because its architecture is very similar to

the ZKOS’s. RTEMS has 18 managers and 13 SCORE services, each of the manager or

SCORE service can be seen as a component of the system. By using tags, each manager

or SCORE service can be isolated from other managers and SCORE services. In addi-

tion, different privileges can be given to a manager or SCORE service based on its role

in the system.

A SPARC processor was used by the Cornell University team to implement the tagging

scheme on it. Therefore, the important features of the SPARC processor are discussed
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in this chapter. Understanding these features help with the design and implementation

of the UI tagging scheme. Because the hardware tagged architecture was not available,

a SPARC instruction simulator is used in this project. Modifications have been made on

the SIS to make it support the UI tagging scheme at the instruction level.
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Chapter 3: UI Tagging Scheme Design

As discussed in the evaluation of the source code of RTEMS, RTEMS has many security

concerns that need to be resolved if it is to be used in a multiuser, secure environment.

This chapter proposes a three-field tag consisting of the Owner field, the Code-space field,

and the Control-bits field to be used in a hardware based tagging scheme in support of

security for RTEMS. Each of these three fields helps maintain the correctness and security

of RTEMS. This tagging scheme will allow the use of the principle of least privilege [17]

in protecting resources in the system with a finer-granularity than traditional hardware-

based supervisor and user modes.

In addition to using tags to control data access, the idea of access control is imple-

mented in the tagging scheme to control the execution of functions. To prevent malicious

use of critical functions, specific rules are provided to specify who can call which func-

tions. A security hierarchy in a lattice is defined to support the access control mechanism

and information flows within RTEMS.

The security tagging scheme was first designed to be implemented in the C language.

Tagging rules for different statements and operations in the C language are given to

check tags and propagate tags. On an execution of a statement or an operation, the

corresponding tagging rules are checked first to ensure the statement or operation is

allowed to be executed. If it is allowed, then the tagging rules help propagate the tags.

Since one goal of this project is to implement tagging on the SPARC processor, the

important features of SPARC, such as register windows and special purpose registers,

have to be considered. What is more, at the assembly language level there are more

things that need to be considered, such as the runtime stack, use of registers, and the

program counter (PC). As a result, the remaining part of this chapter provides an as-

sembly language level implementation of the tagging scheme. Rules are provided for

assembly language instructions that have direct C language counterparts.

The remainder of this chapter is organized as follows: The design of the tag format
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Figure 3.1: Tag format

is illustrated in Section 3.1. The security lattice is presented in Section 3.2. Section 3.3

discusses the low level bit representation of the tags, and the tagging rules for C lan-

guage are in Section 3.4. Section 3.5 presents the SPARC instructions and divides the

instructions into four groups, with associated tagging rules. Some concerns about the

security of the runtime stack are discussed in Section 3.6. Lastly, Section 3.7 summarizes

this chapter.

3.1 Tag Format and its Composition

As shown in Figure 3.1, the tag consists of three fields: Owner, Code-space, and Control-

bits. The tag can be written as (〈Owner〉, 〈Code-space〉, 〈Control-bits〉).

The second field of the tag specifies which code space can manipulate the data. For

example, the task manager can create tasks and task data structures which will be tagged

with ownership from the calling user, and tagged with the task manager code space. A

subsequent call by another user cannot have the task manager access data structures

tagged for a different user even if manipulated by the same manager (i.e., same code

space). This provides good least privilege protections.

The Owner field and Code-space field are used to provide a measure of modularity

to the operating system. Secure systems require a design that uses the concept of least

privilege, where data and code are designed in modular units controlling only limited
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resources of the operating system. The Owner field is used to indicate the entity that

owns the resource managed by the code module. The Code-space field indicates the code

modules that are currently executing and/or the code modules that are authorized to

access specific operating system resources (e.g., data structures and OS functions), in

support of least privilege.

For example, the task manager code space is authorized to manage tasks of the

system, but tasks may be created on behalf of different users or managers. Therefore

the Owner field is used to further refine privileges so that the task manager will have

hardware supported access control that ensures that the task manager manages tasks

only for users who own those tasks (e.g., a user can not request the deletion of another

user’s task.)

The Control-bits field is used to further support least privilege by providing some

typing and access control information to the system resources. This field may be extended

with some of the attack prevention technologies of Suh [25]. The bit representation in

Figure 3.1 is a current recommendation.

3.1.1 Owner field

In the implemented tagging scheme, the first field, the Owner field, helps separate sys-

tem code/data and user code/data. It indicates the identity of the owner of the data or

code. As shown in Figure 3.2, the values of the Owner field can be classified into six ma-

jor classes: SCORE internal, SCORE, Manager internal, Manager, Startup and User.

The SCORE internal class can be further divided into three groups: SCORE internal

init group, SCORE internal private group and SCORE internal group. The Manager

internal class is also broken into three groups: Manager internal init, Manager

internal private and Manager internal. The possible values of each class are listed

in Table 3.2.

By using the Owner field, the owner of data or code can be easily identified. For
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example, the first field in the tag (object, 〈Code-space〉, 〈Control-bits〉) indicates

that the data or code associated with this tag is object code or object data; where object is

one of the SCORE modules. A tag (task manager, 〈Code-space〉, 〈Control-bits〉)

shows that the data or code is owned by the task manager. In the remaining sections,

〈SCORE〉 in the tag means this field could be one of the possible values in the SCORE class,

and the same holds for the Startup class, SCORE internal class, Manager class, Manager

internal class and User class. Although RTEMS currently only supports a single user, it

is expanded to a multiuser system as part of this dissertation (see Section 4.1). Therefore,

multiple users are listed in the possible values of the User class. Having different users for

the Owner field ensures that a user can only access its own data and code, but not other

users’ resources. The bit representation for the Owner field can be found in Section 3.3.1.

3.1.2 Code-space field

The second field of the tag is the Code-space field. This field shows which code space

should manage the data or code. In addition to this, the Code-space field is also critical

for information flow control and memory access control. The possible values of the

Code-space field are the same as the Owner field (see Table 3.2). The Code-space can

be 〈User〉, 〈Manager〉, 〈Manager internal〉, 〈SCORE〉, 〈SCORE internal〉 and 〈Startup〉.

For example, the tag (User1, Manager1, 〈Control-bits〉) means the data is created

in manager1’s code for user1. Manager1 is used as a place holder for a specific manager

name, such as task manager, partition manager, etc.

Code-space is used to show the class of the code or data and helps control function

calls. Users in the system should only use some of the system functions, and not directly

use SCORE, SCORE internal, and Manager internal functions. Therefore, firstly, Code-

space is used to indicate which class the code belongs to, and then rules can be provided to

control which classes of code can use which other classes of code. The bit representation

for the Code-space field can be found in Section 3.3.1.
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Table 3.1: Possible values of the memory type

Memory type Read or read/write

Data memory (x00) 000 read-only

100 - read/write

Stack memory (x01) 001 read-only

101 - read/write

Code memory (executable) 010 read-only

not entry point (x10) 110 - read/write

Code memory (executable) 011 read-only

entry point (x11) 111 - read/write

3.1.3 Control-bits field

The Control-bits field is used for further control. It starts with a single copy bit which

indicates whether a return value has been modified. The copy bit allows user code to

have a copy of a trusted data value (i.e., a task ID) as long as it is not changed. The

notation cp means the copy bit is not set while cp indicates the copy bit is set. The

return value to a user will be tagged with the security class of the directive and will have

the copy bit set. If the copy bit remains set, this means that user has not made any

change to the value. If the copy bit is not set, the data is treated as modified data and

will not be accepted when used as a parameter to a directive. This allows user programs

to store copies of system IDs and handles while maintaining security of the values. For

example, if user1 uses directive code from the task manager to get a tag identifier, the

directive returns an identifier tagged (user1, task manager, cp). If the user modifies

this returned ID, the tag will be changed to (user1, user1, cp) to indicates this ID

has been changed; and the OS will no longer trust the ID. This allows the system to trust

IDs that come from users without having to keep an internal table of indirect identifiers

or separate tables for each user, and thereby improve performance and simplify system

code.

Three of the control bits are allocated for memory type. To further protect data in
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memory, memory is divided into three classes: stack memory, code memory, and data

memory. These three bits specify the memory type, such as readable, writable, read-only,

executable, entry point, data memory, and stack memory.

� Stack Memory. Stack memory is readable and writable, and is treated using

register expression rules for stores, instead of assignment rules.

� Code Memory. Code memory stores the executable and readable code. The

“entry point” of a function has a special tag with it to indicate the correct starting

address for executing a function.

� Data Memory. All other memory is data memory which is readable and writable,

and it is treated using assignment rules.

The possible values of the memory type are shown in Table 3.1.

A world-readable bit is used to indicate that the tagged data can be read by all entities;

used when the system (higher level) wants to give the user (lower level) permission to

access some data, such as configuration data.

The other 3 bits are reserved for future use. The complete bit representation for the

Control-bits field can be found in Section 3.3.2.
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Figure 3.2: Classification of RTEMS code and users
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Table 3.2: Possible values of the Owner field and Code-space field

Class Group Count Possible values

SCORE
private
internal

13

thread private internal, object private internal, chain private internal, initial-
ization private internal, heap private internal, protected heap private internal,
message private internal, error private internal, time private internal, ISR
private internal, workspace private internal, watch dog private internal, user
extension private internal

SCORE
internal

SCORE
internal

13
thread internal, object internal, chain internal, initialization internal, heap in-
ternal, protected heap internal, message internal, error internal, time internal,
ISR internal, workspace internal, watch dog internal, user extension internal

SCORE
internal
init

13
thread init, object init, chain init, initialization init, heap init, protected heap
init, message init, error init, time init, ISR init, workspace init, watch dog init,
user extension init

SCORE
external

13

thread external, object external, chain external, initialization external, heap
external, protected heap external, message external, error external, time ex-
ternal, ISR external, workspace external, watch dog external, user extension
external

Continued on next page. . .
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Class Group Count Possible values

Manager
private
internal

20

initialization private internal, task private internal, interrupt private internal,
clock private internal, timer private internal, semaphore private internal, mes-
sage private internal, event private internal, signal private internal, partition
private internal, region private internal, dual ported memory private internal,
I/O private internal, fatal error private internal, rate monotonic private inter-
nal, user extensions private internal, multiprocessing private internal, barrier
private internal, tag private internal, user private internal

Manager
internal

Manager
internal

20

initialization internal, task internal, interrupt internal, clock internal, timer
internal, semaphore internal, message internal, event internal, signal internal,
partition internal, region internal, dual ported memory internal, I/O internal,
fatal error internal, rate monotonic internal, user extensions internal, multi-
processing internal, barrier internal, tag internal, user internal

Manager
internal
init

20

initialization init, task init, interrupt init, clock init, timer init, semaphore
init, message init, event init, signal init, partition init, region init, dual ported
memory init, I/O init, fatal error init, rate monotonic init, user extensions
init, multiprocessing init, barrier init, tag init, user init

Manager
external

20

initialization external, task external, interrupt external, clock external, timer
external, semaphore external, message external, event external, signal exter-
nal, partition external, region external, dual ported memory external, I/O
external, fatal error external, rate monotonic external, user extensions exter-
nal, multiprocessing external, barrier external, tag external, user external

Startup 4 startup, manager INIT, SCORE INIT, Tag INIT

User N
user1, user2, ..., userN (Where N=118 for the implementation proposed in
Chapter 4)
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3.2 The Lattice for the UI Tagging Scheme

Since the Owner field and Code-space field are used to define the security class of the data,

the ideas similar to those of the Data Mark Machine (DMM) [10] can be implemented

to control the information flows within RTEMS. The solution is a bit different from

DMM since a hierarchy is defined for confidentiality and integrity controls, and it is not

for traditional multi-level security. However, accesses still can be controlled to prevent

“lower-level” entities from unauthorized access to higher level entities.

The lattice model of information flow deals with channels of information flow and

policies. For the lattice model of information flow, there exists a lattice with a finite set

of security classes and a partial ordering between the classes. The nodes of the lattice

represent the individual security classes. The notation ≤ denotes the partial ordering

relation between two classes of information. For example, A ≤ B means class A is at a

lower or equal level than class B. The notation ⊕ denotes the least upper bound (LUB)

operation. In a lattice, there exists a unique class C = A⊕B such that:

A ≤ C and B ≤ C, and

A ≤ D and B ≤ D implies C ≤ D for all D in the lattice.

Two parallel lattices are defined for information flow control within RTEMS, for each

of the Owner and Code-space fields of the tags (Figure 3.3). These are extensions of the

tag hierarchy of Figure 3.2. To simplify the diagram, assume that boxes higher on the

figure have higher integrity and security classes than those below them, and that the ≤,

=, ⊕ (least upper bound) and other operators support that hierarchy. In Figure 3.3,

the Startup modules (STARTUP, MANAGER INIT, SCORE INIT, TAG INIT, and

init functions of each RTEMS modules) connected by dashed lines are only used during

the system initialization. They can be removed from the lattice and will not affect the

information flow after the system starts running. This dual-use (security and integrity) is
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Figure 3.3: The lattice designed for Owner field and Code-space field
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different from traditional security classes, but maps well to the standard use of privilege

rings or supervisor/user execution modes in hardware.

In addition, the private internal and other internal functions are merged into a single

box. An expanded version of these boxes is shown in Figure 3.4. The connections

between managers and the internal functions of other managers will be restricted to the

non-private internal functions. Connections between users and managers are described

in Section 3.4.7.

The security class of an entity in the model, a, will be denoted as a, and it can

be written as a = (Owner(a), Code-space(a)). The Control-bits are ignored in this

discussion since they are used separately from the lattice-based controls and formulas.

Owner(a) refers to just the Owner field of a’s tag, Code-space(a) refers to the Code-

space field of the tag of a.

The definition of the least upper bound, ⊕, of the security classes of two tags is:

� If a = (Owner(a), Code-space(a)), and b = (Owner(b), Code-space(b)), then

a ⊕ b = (Owner(a) ⊕ Owner(b), Code-space(a) ⊕ Code-space(b)).

For example, if x = (user1, semaphore manager) and y = (user2, semaphore

manager) then according to the lattice, x⊕ y = (user, semaphore manager).

The definition of the equality of the security classes of two tags is:

� If a = (Owner(a), Code-space(a)), and b = (Owner(b), Code-space(b)), then

if Owner(a) = Owner(b) and Code-space(a) = Code-space(b), then the secu-

rity class of a and b are the same.

The similar rules for ≤, <, ≥ and > operations can be defined similarly and are not

shown here.
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3.3 A Proposed Representation of Tags

Section 3.1 introduces a possible high-level representation of the tags which is used in

the rest of this dissertation. A proposed low-level representation of the tags is described

here to show how to map the system into a 32-bit tag (Figure 3.1).

3.3.1 Bit representation for Owner field and Code-space field

In a tag, each of the Owner and Code-space fields is represented with 12 bits, with the

remaining 8 bits for the Control-bits. For Owner field and Code-space field, the higher 4

of the 12 bits are used to indicate if the tagged data or code is a system resource or not.

If the higher 4 bits are 1111, this means that the tagged data or code is from the system,

otherwise it is from users. For system code (tags that start with 1111), the lower eight

bits are used to divide the code into smaller classes. Among the 8 lower bits, the higher

3 bits indicate the level of the class, and the lower 5 bits represent which component.

Table 3.3 gives a general overview of the tag bit representation by only showing the levels

of RTEMS system code.

The detailed component ID (lower 5 bits) can be found in Table 3.4. By doing this,

the security class of a tag can be easily identified. For example, if the Owner field is

1111 100 00010 and the Code-space field is 1111 100 00010, then the security class of

the code is {object, object}. If two Owner fields are given, such as 0010 000 10010

(User) and 1111 001 01101 (user extensions manager), then the least upper bound of

these two classes is 1111 001 01101 (user extensions manager). The least upper bound of

1111 100 00110 (heap) and 1111 100 01001 (message) is 1111 111 11111 (SCORE).

For RTEMS, this configuration is sufficient for all the security classes that are needed.
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Table 3.3: Overview of tag bit representation for Owner field and Code-space field

Bits (12 bits) Representation
RTEMS Level

RTEMS/ RTEMS Component RTEMS
USER Level ID Representation
(4 bits) (3 bits) (5 bits)

11111 Tag INIT, SCORE, HIGH
111 00001-11110 SCORE private internal functions

00000
11111

110 00001-11110 SCORE internal functions
00000
11111

101 00001-11110 SCORE internal init functions
00000 SCORE INIT
11111

100 00001-11110 SCORE external functions
1111 00000

(RTEMS) 11111 MANAGER
011 00001-11110 Manager private internal functions

00000
11111

010 00001-11110 Manager internal functions
00000
11111

001 00001-11110 Manager internal init functions
00000 Manager INIT
11111

000 00001-11110 Manager external functions
00000 Startup

USER LEVEL
1110 111 11111 USER

... User1, User2, UserN
0000 000 00000 LOW
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Table 3.4: Using tags to represent security classes

Class Bit representation

HIGH /
SCORE / 1111 111 11111
Tag INIT

1111 111 00001 thread private internal 1111 111 00010 object private internal
1111 111 00011 initialization private internal 1111 111 00100 chain private internal

SCORE 1111 111 00101 protected heap private internal 1111 111 00110 heap private internal
private 1111 111 00111 workspace private internal 1111 111 01000 error private internal
internal 1111 111 01001 message private internal 1111 111 01010 ISR private internal

1111 111 01011 watch dog private internal 1111 111 01100 time private internal
1111 111 01101 user extension private internal
1111 110 00001 thread internal 1111 110 00010 object internal
1111 110 00011 initialization internal 1111 110 00100 chain internal

SCORE 1111 110 00101 protected heap internal 1111 110 00110 heap internal
internal 1111 110 00111 workspace internal 1111 110 01000 error internal

1111 110 01001 message internal 1111 110 01010 ISR internal
1111 110 01011 watch dog internal 1111 110 01100 time internal
1111 110 01101 user extension internal
1111 101 00001 thread init 1111 101 00010 object init
1111 101 00011 initialization init 1111 101 00100 chain init

SCORE 1111 101 00101 protected heap init 1111 101 00110 heap init
internal 1111 101 00111 workspace init 1111 101 01000 error init

init 1111 101 01001 message init 1111 101 01010 ISR init
1111 101 01011 watch dog init 1111 101 01100 time init
1111 101 01101 user extension init

SCORE INIT 1111 101 00000
Continued on next page. . .
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Class Bit representation
1111 100 00001 thread external 1111 100 00010 object external
1111 100 00011 initialization external 1111 100 00100 chain external

SCORE 1111 100 00101 protected heap external 1111 100 00110 heap external
external 1111 100 00111 workspace external 1111 100 01000 error external
functions 1111 100 01001 message external 1111 100 01010 ISR external

1111 100 01011 watch dog external 1111 100 01100 time external
1111 100 01101 user extension external

MANAGER 1111 011 11111
1111 011 00001 initialization private internal 1111 011 00010 task private internal
1111 011 00011 semaphore private internal 1111 011 00100 message private internal
1111 011 00101 interrupt private internal 1111 011 00110 barrier private internal

Manager 1111 011 00111 rate monotonic private internal 1111 011 01000 clock private internal
private 1111 011 01001 dual ported memory private internal 1111 011 01010 timer private internal
internal 1111 011 01011 multiprocessing private internal 1111 011 01100 I/O private internal

1111 011 01101 user extensions private internal 1111 011 01110 event private internal
1111 011 01111 fatal error private internal 1111 011 10000 signal private internal
1111 011 10001 partition private internal 1111 011 10010 region private internal
1111 011 10011 tag private internal 1111 011 10100 user private internal
1111 010 00001 initialization internal 1111 010 00010 task internal
1111 010 00011 semaphore internal 1111 010 00100 message internal
1111 010 00101 interrupt internal 1111 010 00110 barrier internal
1111 010 00111 rate monotonic internal 1111 010 01000 clock internal

Manager 1111 010 01001 dual ported memory internal 1111 010 01010 timer internal
internal 1111 010 01011 multiprocessing internal 1111 010 01100 I/O internal

1111 010 01101 user extensions internal 1111 010 01110 event internal
1111 010 01111 fatal error internal 1111 010 10000 signal internal
1111 010 10001 partition internal 1111 010 10010 region internal
1111 010 10011 tag internal 1111 010 10100 user internal

Continued on next page. . .
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Class Bit representation
1111 001 00001 initialization init 1111 001 00010 task init
1111 001 00011 semaphore init 1111 001 00100 message init
1111 001 00101 interrupt init 1111 001 00110 barrier init

Manager 1111 001 00111 rate monotonic init 1111 001 01000 clock init
internal 1111 001 01001 dual ported memory init 1111 001 01010 timer init

init 1111 001 01011 multiprocessing init 1111 001 01100 I/O init
1111 001 01101 user extensions init 1111 001 01110 event init
1111 001 01111 fatal error init 1111 001 10000 signal init
1111 001 10001 partition init 1111 001 10010 region init
1111 001 10011 tag init 1111 001 10100 user init

Manager INIT 1111 001 00000
1111 000 00001 initialization external 1111 000 00010 task external
1111 000 00011 semaphore external 1111 000 00100 message external
1111 000 00101 interrupt external 1111 000 00110 barrier external

Manager 1111 000 00111 rate monotonic external 1111 000 01000 clock external
external 1111 000 01001 dual ported memory external 1111 000 01010 timer external
functions 1111 000 01011 multiprocessing external 1111 000 01100 I/O external

1111 000 01101 user extensions external 1111 000 01110 event external
1111 000 01111 fatal error external 1111 000 10000 signal external
1111 000 10001 partition external 1111 000 10010 region external
1111 000 10011 tag external 1111 000 10100 user external

Startup 1111 000 00000
User 1110 111 11111
Users see Section 4.1 for details
LOW 0000 000 00000
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3.3.2 Bit representation for Control-bits field

In addition to 12 bits for each of the User and Code-space fields, the 8-bit Control-bits

field is used for further control. A copy bit (bit 7) is used to indicate whether a return

value has been modified. The copy bit allows user code to have a copy of a trusted data

value (i.e., a task ID) and be able to propagate the trust as long as the value is not

changed.

Bit 6 to 4 are allocated for memory type, divided into three classes: stack memory,

code memory, and data memory. All memory can be marked as read-only. Normally

only stack memory and data memory can be writable. Within the 3 bits, bit 6 indicates

it is read-only or readable and writable memory (1 indicates readable and writable and

0 indicates read-only). Code memory stores executable and readable code. The “entry

point” of a function has a special tag to indicate the correct starting address for executing

a function. Therefore for the lower 2 bits, 11 indicates an entry point to an executable

function, 10 means the memory is executable but not an entry point, 01 indicates stack

memory while 00 indicates data memory. For example, read-only data memory will be

presented by 000.

A world-readable bit (bit 3) represents whether the tagged data can be read by all

entities or not; it is used when the system (higher level) wants to give the user (lower

level) permission to access some data, such as configuration data. For this bit, 1 indicates

the world-readable bit is set while 0 means the bit is not set.

The remaining 3 bits (bit 2 to 0) are reserved for future use (e.g., DIFT-style protec-

tion [25]).

3.4 C Language Tagging Rules

At the start of the system, and as each subroutine is called, data and code tags are ini-

tialized with the correct security classification and memory types. This section discusses
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how those classifications can be used, in the context of the C programming language, to

define tagging rules needed to satisfy the security concerns based on the partial ordering

and lattice concepts. Full details can be found in the corresponding MS Thesis [22].

3.4.1 Tagging rules for the basic values in C

This section introduces the basic concepts of using tags at the C language level.

� During execution of a program, the tag of the current running thread is the same

as the security class of the program counter, denoted as PC.

� The tag of the variable a is the tag of the memory location of a and its security

class is denoted a.

� The tag of a literal, or constant, n, is the same as the tag of the PC. This is because

the use of the literal is controlled by the current thread.

� The security class of the tag of an array item, a[i] is the least upper bound of

the security class of the index to the array and the security class of the memory

location referenced by the array: a[i] = i ⊕ [[a+i]] where [[a+i]] denotes the

memory address referenced by a[i]. In cases where the copy bit of the memory

location is set, the tag of that memory location is used instead of the LUB.

� The tag of a value referenced by a pointer, *p or structure p->fld or p.fld is

the tag of the memory location referenced. For example, *p = [[p]] where [[p]]

denotes the memory address referenced by the pointer p.

� All code will be tagged as read-only, executable memory, and all entry points to

functions will be tagged as function entry points (to avoid problems with the misuse

of function pointers).

� All data memory will be tagged as read-write data memory.
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3.4.2 Rules for the arithmetic and logic operations

For the arithmetic and logic operations, the first thing that needs to be checked is that

all the variables can be accessed by the current running thread. Take mathematical

expression a + b as an instance. To calculate the value of the expression, the value of a

and b must be read. Therefore the security levels of a and b have to be lower than the

security level of PC’s tag.

� To be able to access the values stored in a and b, the conditions a ≤ PC and b ≤

PC have to be satisfied.

The rules for arithmetic and logic operations are used to specify the tag of the resulting

value of the operation. For example, for the expression a + b, a and b are two operands,

and the security class of the result depends on the copy bits and the security classes of

the two operands. A set copy bit indicates that the tag of a value consists of the tag of

the directive that created the value. Any change to the value ignores the directive’s tag.

Therefore the copy bit in the tag of a is cp and the copy bit of b is cp, then only the

security class of b needs to be considered. If the copy bit of both operands are cp, then

the security classes of both a and b need to be used and the security class of the result

will be a ⊕ b. The notation ⊕ denotes the least upper bound (LUB) operation. If a or

b are constants, they have the same tag as the PC. In the tag of the result of arithmetic

and logic operations, the copy bit is always reset, since the value has been modified. The

particular rules for arithmetic and logic operations are shown in Table 3.5.

3.4.3 Rules for the comparison

In the C programming language, a comparison expression gets an integer value as the

result. For the comparison a > b, to make sure that the proper tag is maintained, the

result of the comparison should get the appropriate security class. Similar to the rules
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Table 3.5: Rules for arithmetic, logic and comparison operations

Copy bit Copy bit Security class Copy bit of

of a of b of the result the result

cp cp PC cp

cp cp b cp

cp cp a cp

cp cp a⊕ b cp

for arithmetic and logic operations, the security class of the result depends on the copy

bits and the security classes of a and b. The copy bit of the result of the comparison

is always reset since it is a new value. The explicit rules for comparing a and b are the

same as the rules for arithmetic and logic operations shown in Table 3.5.

3.4.4 Information flow rules for the assignment statements

For assignment statements, such as y = x;, whether the information is allowed to flow

from x to y needs to be checked. In the lattice model of information flow, the assignment

statement of y = x requires the relation x ≤ y to ensure confidentiality. In addition,

the security class of the current thread is also important to ensure integrity. To avoid

unauthorized copying or modification of data, y ≤ PC is required for integrity. The value

x can be a variable, a constant, a complex expression, etc. The rules for the assignment

statement (y = x;) are:

� If the copy bit in the tag of y is cp:

– When the copy bit in the tag of x is cp and if y ≤ PC and Owner(x) =

Owner(y), the assignment statement is allowed and the tag of x is copied to

y’s tag, otherwise it is not allowed.

– When the copy bit in the tag of x is cp and x ≤ PC and y ≤ PC, the

information flow is allowed to flow from x to y and the tag of y is unchanged,
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otherwise it is not allowed.

� If the copy bit in the tag of y is cp:

– When the copy bit in the tag of x is cp and if Owner(PC) > Owner(y) and

Owner(x) = Owner(y), the assignment statement is allowed and the tag of x

is copied to y’s tag, otherwise it is not allowed.

– When the copy bit in the tag of x is cp and x ≤ PC and Owner(PC) >

Owner(y), the information flow is allowed to flow from x to y and the Code-

space field of the tag of y is reset, otherwise it is not allowed.

If an assignment is not allowed, the hardware will generate a security exception and

execute code in a specified exception handler.

When performing an assignment statement (y = x;), x might be the result of an

arithmetic operation or a result of several arithmetic operations. Therefore, the rules

for arithmetic and logic operations (Section. 3.4.2) are used to define the tag of the

expression that x represents. The information flow check can be done by checking the

relation between the tags of y and the result of the operation, x.

Note that the check of y ≤ PC seems to violate the traditional security “no write

down” model of Bell-LaPadula [3], however, it satisfies the integrity controls of Biba [4].

3.4.5 Information flow rules for the if statements

For the information flow rules for the if statements, such as if(expression) commands;

and if(expression) commands1; else commands2;, whether the expression can be

read by code executing this if statement needs to be checked. To ensure that the

expression can be read by code the relation between PC and expression needs to be

checked before running the if statement. Therefore, the rule for if statement is:

� If expression ≤ PC, then the statement is allowed.
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As with assignment, the expression can be a variable, a constant, a result of com-

parisons etc., and the tag of the expression is calculated using the rules for comparison

operations (Section. 3.4.3). The commands in the then and else statements are con-

trolled by their appropriate rules.

3.4.6 Information flow rules for the while statements

The while statement, such as while(expression) commands;, requires a check on

whether the expression can be read by code executing the while statement, similar

to the rule for the if statement. The rule for while statement is:

� If expression ≤ PC, then the statement is allowed.

Again, the expression can be a variable, a constant, or a result of comparisons;

and its tag is set using the appropriate rules. The commands in the while statement

are controlled under other specific rules. Different from the if statement, the while

statement body could be a loop of commands if the expression is true. Therefore, the

information flow rules for the while statement will be used at every loop iteration.

3.4.7 Information flow rules for the function calls

The idea of functional access control is implemented in the UI tagging scheme. When

executing a function call, the tag manager will first check the access control rules for

function calls to see if the code has permission to call the function. This is called “function

execution control”.

By performing access control for the function calls, the control of who can execute

which function can be ensured.

Figure 3.4 shows a detailed view of a single kernel module. In the module, all of

the APIs are classified into four groups: external APIs, init APIs, internal APIs and
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Figure 3.4: A detailed kernel module

private APIs. This classification can be applied to different modules on either Manager

level or SCORE level. Among these APIs, only the external APIs can be used by lower

Manager level APIs, and the other three groups of kernel APIs are not allowed to be

used by lower levels. The init APIs are used to initialize the kernel module and it can

be used by the startup module and manager level init APIs. The difference between

the private APIs and internal APIs is that the internal APIs are allowed to be used by

other kernel modules, while the private APIs can be used only by the APIs of the same

kernel module. With the help of tags, these access control rules can be enforced by using

function execution control rules.

In addition to the rules for different groups of kernel APIs, there exist rules to deal

with access of entities from different levels. For example, user1 code, which is created in

user1, is only allowed to call its own functions and manager external APIs (directives)

but not SCORE APIs and other APIs. Both Manager APIs, Manager internal APIs

and Manager private internal APIs are allowed to use SCORE external APIs. All the

system functions (Startup, SCORE, SCORE internal, Manager, Manager internal) are

not allowed to call user functions. Note that Manager internal functions are divided into
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Manager internal functions and Manager private internal functions.

When performing a function call, function execution control rules are checked first.

If the function is allowed to be called by the caller, then whether the parameters passed

to the function are allowed to be accessed by the code will be checked. Therefore, the

security classes of the parameters and the security class of the caller, which is the security

class of the current PC, are used. The information flow rule for function calls is very

similar to the rule for testing the expression in the while statement. The information

flow rule for a function call like foo(parameter1,parameter2); is:

� If the function execution control rules allow the call and if parameter1 ≤ PC and

parameter2 ≤ PC, then the function call is allowed to execute.

The tags of the parameter variables in the function will follow the expression and

assignment rules.

3.4.8 Other C constructs

The tagging rules for other C language constructs are not defined, such as the for loop or

switch statement since they can be mapped to other constructs which we have defined.

In addition, rules for break and continue are not defined, since their only function is

to change location of execution within the same code space and therefore do not have

information flow concerns for the tagging model.

3.5 Implementation of the UI Tagging Scheme at the Assembly

Language Level

Section 3.4 introduced the implementation of the UI tagging scheme at the C program-

ming language level. However, the higher-level abstraction of the C language ignores

important implementation details that will affect the security of the tagging scheme. As
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a result this section explains the implementation of the UI tagging scheme at the assem-

bly language level; more complete details can be found in corresponding MS Thesis [22].

From the study of the SPARC instruction set, instructions are divided into five major

groups:

(1) Branch instructions

(2) Call related instructions

(3) Arithmetic, logic and shifting instructions

(4) Load and store instructions

(5) Save and restore instructions

Tagging rules have been specified for each of these groups.

3.5.1 Rules for branch instructions

Branch instructions are either unconditional branches or conditional branches. Uncon-

ditional branch instructions are BA (branch always), which means always execute the

branch, and BN (branch never), which means never execute the branch (effectively a

NOP). Conditional branches are based on the condition codes, which are updated by com-

pare instructions, to decide whether or not take the branch. Therefore, whether or not

the current running thread is permitted to access the condition code has to be checked.

For the execution of the target code, a check is needed to make sure the current

thread is allowed to execute (jump to) the target code. Consequently, for branch instruc-

tions such as Bicc address, the tags of the address and PC must be checked to ensure

the jump is appropriate. Since this is a jump and a jump should be made in the same

Code-space, the Code-space should not change. Therefore, the Code-space(address)

(Code-space(address) refers to the Code-space field of the address’s tag) and the

Code-space(PC) must be checked to make sure the current thread is allowed to execute

the target code. In addition, the target address must be an executable code memory, but

not data memory or stack. The rule for branch instructions is:
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� if [condition code] ≤ PC, and Code-space(address) = Code-space(PC), and

the target address is an executable code memory then the branch is allowed; oth-

erwise, throw an exception.

3.5.2 Rules for call related instructions

The four call related instructions are CALL, JMPL, RETT and Ticc. When making a

function call (CALL address), the tag system must check whether or not the function is

allowed to be called by the current program, using the function execution control rules.

The function execution control rules specify that if the current program is not allowed to

call the function, then the call will not be executed. If it is allowed under the rules and

the target code is the entry point of an executable function, then the call is allowed. The

call will save the value of PC into %o7, PC into %o7, set the copy bit of %o7, update the

PC and tag of the PC, and then start execution of the function. The tag of the updated

PC will follow the function execution control rules. The rule for CALL instruction is:

� If the function call is allowed under the function execution control rule, and if

the target code is tagged as entry point to an executable function, then the CALL

instruction is allowed.

The JMPL instruction is used to save the current PC in a specified register and then

jump to any specified address. There are two usages of JMPL instruction. The first

is JMPL address, %g0 which copies the current PC to %g0 before making the jump.

However, because %g0 always has value 0 in it and cannot be overwritten, the write

to it has no effect. As a result this is a true jump with no expected return. As with

branch instructions, the current running programs must have the permissions to jump

and execute the target code. For that reason the security class of PC and the target

address must be compared. The rule for the first usage of the JMPL instruction is:
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� If Code-space(address) = Code-space(PC), and the target address is an exe-

cutable code memory then the JMPL is allowed.

The second usage, JMPL address, %o7 will write the current PC to %o7. Since

SPARC uses JMPL %o7+8, %g0 to jump back (i.e., the return statement) according to the

return address stored in %o7, a check is needed to ensure the return address has not been

modified. However, JMPL has many other usages, so a restrictive rule can not be applied

to JMPL. Consequently a new instruction is required to be implemented, RET, which is

used for return from subroutines. The format of RET instruction pseudo-op could be

RET %o7+8, %g0 (SPARC specifies a RET instruction that is just a shorthand notation for

JMPL %o7+8, %g0, this will be replaced with a separate instruction). For return from a

subroutine, if the copy bit of the tag of %o7 is not set, then the return is not allowed.

If the copy bit is set, which ensures that the return address was not modified, then the

checks of the PC and the return address stored in %o7 are required. The rule for RET is:

� when the copy bit of %o7 is not set, the RET instruction is not allowed.

� If the copy bit of %o7 is set, and Code-space([%o7+8]) = Code-space(%o7) and

the target address ([%o7+8]) is executable code, then the RET is allowed, with the

new PC = %o7+8, and the new security class of the tag of PC is security class of

%o7.

RETT is used to return from a trap handler. Ticc is used to generate a trap to the

trap handler based on an integer condition code. For this initial tagging system, same

rules are applied to CALL and RET for these instructions; understanding that they will

have to be modeled and possibly changed for a fully secure system.

3.5.3 Rules for arithmetic, logic and shifting instructions

For arithmetic instructions, logic instructions and shifting instructions, tags are propa-

gated during execution. For example, the instruction ADD %g2, %g1, %g3 adds the value
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Table 3.6: Rules for arithmetic, logic and comparison instructions

Copy bit Copy bit Security class Copy bit of

of %g2 of %g1 of the %g3 the %g3

cp cp PC cp

cp cp %g1 cp

cp cp %g2 cp

cp cp %g2 ⊕ %g1 cp

in %g2 to the value in %g1, then stores the result in %g3. To propagate tags, the copy

bit in the tags of the value in %g1 and %g2 need to be checked, and the result value

stored in %g3 has a new tag associated with it. Whether or not the result can be stored

in %g3 is not checked, instead the registers are used as temporary storage. Taking ADD

%g2, %g1, %g3 as an example, the new tag of %g3 is calculated based on the tags of %g2

and %g1, with the copy bit unset. The particular rules for arithmetic, logic, and shifting

instructions are shown in Table 3.6. Instructions that modify the condition code, such

as ANDcc, ORcc, SUBcc, and UMULcc, set the tag of the condition code to the tag of the

result. For example, after executing the instruction ADDcc %g2, %g1, %g3, the condition

code’s tag will be the tag of %g3. If %g1 is an immediate value, then %g1’s tag is PC’s

tag with the copy bit not set.

3.5.4 Rules for load and store instructions

Load instructions are used to load a value from a memory space and store it to a register.

For example, the instruction LD [%fp], %o1 loads the content of the memory address

[%fp] to the %o1 register. A check of whether the current program can read and use the

value is needed. What is more, whether the current running thread can access the value

of %fp needs to be checked. Therefore the security classes of PC and the tag of the value

and the tag of the %fp need to be checked. The load instruction is allowed when [%fp]

≤ PC, where [%fp] denotes the security class of the tag of the value stored in [%fp]. The
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rules for load instructions enforce these checks of expressions and parameters. The rules

for load instructions (LD [%fp], %o1) are:

� If the world readable bit of the memory address’s tag is set, and the memory type

is data memory or stack memory, then the LD is allowed. The tag of the memory

location will be copied to the register’s tag.

� If the copy bit in the tag of [%fp] is cp, and %fp ≤ PC, and Owner([%fp]) ≤

Owner(PC), and [%fp] is readable memory, then the LD is allowed and the tag of

the data will be copied to the register’s tag.

� If the copy bit in the tag of [%fp] is cp, and if [%fp] ≤ PC and %fp ≤ PC, and

[%fp] is readable memory, then the LD instruction is allowed and the tag of the

data will be copied to the register’s tag.

Store instructions are used to store the value from a register to memory. The rules for

store instructions check whether or not the value of the register is allowed to be stored in

that location. For example, for the instruction ST %g1, [%fp], which stores the content

of %g1 to memory space [%fp], a check is needed to make sure the current running thread

can access the value of %fp and write to the memory space. Rules for store instructions

(ST %g1, [%fp]) are:

� When the copy bit in the tag of [%fp] is cp and the copy bit in the tag of %g1

is cp, if [%fp] ≤ PC and %fp ≤ PC and [%fp] is writable data memory, the store

instruction is allowed. The tag of the [%fp] is unchanged.

� When the copy bit in the tag of [%fp] is cp and the copy bit in the tag of %g1

is cp, if [%fp] ≤ PC and %fp ≤ PC and Owner(%g1) = Owner([%fp]) and [%fp]

is writable data memory, the store instruction is allowed. The tag of the [%fp] is

copied from the tag of %g1.
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� When the copy bit in the tag of [%fp] is cp and the copy bit in the tag of %g1 is cp,

if Owner([%fp]) ≤ Owner(PC) and %fp ≤ PC and [%fp] is writable data memory,

the store instruction is allowed. The Code-space of the tag of the [%fp] will be

reset to the Owner field of the tag and the copy bit will be unset.

� When the copy bit in the tag of [%fp] is cp and the copy bit in the tag of %g1 is cp,

if Owner([%fp]) ≤ Owner(PC) and %fp ≤ PC and Owner(%g1) = Owner([%fp])

and [%fp] is writable data memory, the store instruction is allowed. The tag of

the [%fp] is changed to the tag of %g1. If [%fp] is writable stack memory, then

write is allowed and tag of [%fp] is tag of %g1.

3.5.5 Rules for SAVE and RESTORE instructions

The SAVE and RESTORE instructions are used to slide the register window between the

caller and callee windows. It is possible but rare, to use these instructions without a

corresponding subroutine call. The execution of the SAVE instruction causes the system

to subtract one from the CWP. Therefore, the instruction automatically allocates a new

window of registers and a new stack frame in main memory. The out registers of the

caller become the in registers of the callee.

In addition to sliding the register window, the SAVE instruction acts like an ADD

instruction, which adds a number to %sp. The number indicates the size of the stack

for the new function. The caller’s stack pointer %sp automatically becomes the frame

pointer %fp of the callee. The instruction RESTORE is used to restore the caller’s window.

The instruction adds one to CWP, therefore the callee’s in registers become the caller’s

out registers.

The user can use SAVE and RESTORE instructions, which brings about issues concerning

the security of the windows. The user may use the RESTORE instruction to change the

register window to get data used in the caller’s subroutine. Therefore, every register
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window will be associated with a tag to indicate who created the register window. On

every SAVE instruction, the tag of the PC is copied to the tag of the new window. On

every RESTORE instruction, a check on the tag of the caller’s window is required. If the

tag indicates that the creator of the window is not the one who wants to restore (pop)

the register window, then the restore instruction is not allowed to execute. During traps

and exceptions, SCORE code is given the ability to manage the register window. As a

result SCORE code has permission to restore any register window without any check of

the window’s tag. If the tag of the register window is identical to the tag of the PC, then

the restore is allowed.

The rules for SAVE and RESTORE instructions are:

� On every SAVE instruction, the tag of the PC will be copied to the tag of the register

window.

� For the RESTORE instruction, if the tag of the register window and the PC’s tag

are the identical or if Code-space(PC) > MANAGER, then the RESTORE is allowed.

Otherwise the RESTORE is not allowed.

3.6 Concerns about the Memory and Stack in the SPARC Ar-

chitecture

Assembly language implementation of the C programming language requires memory

to store local variables, functions, parameters, and linkage information in support of

procedure calls. This memory region for each procedure is called a frame. Normally,

these frames are allocated on a runtime stack, and pushed and popped with procedure

calls and returns. For the SPARC architecture, the frame contains space for registers,

parameters, PC, and so on. To access the frame, the frame pointer, %fp, is normally

used.
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Stack memory is used to store frames, and the frames on the same stack in a ZKOS

can belong to directive code or users. Therefore, frames can not be treated the same as

regular memory. For example, after return from a directive, the memory that has been

used for that directive frame will be tagged with a tag containing Manager Code-space.

If the user tries to call a new user function, the same memory can not be used for the

user function frame without violating the assignment tagging rules unless the stack is

treated differently from regular memory. Stack memory is treated as if the copy bit is

set for all write access to the stack, and must therefore be limited to specific pages of

memory. The specification of the memory pages for stacks can be implemented as secure

API’s of the tag manager and as functionality in the tag coprocessor.

3.7 Summary

As discussed in the previous chapter, RTEMS has many security concerns that need to

be addressed. Therefore the goal of this part of the UITags project is to use a hardware

based security tagging scheme to secure RTEMS. Although the new tagging scheme is

focused on the security concerns of RTEMS, the concerns are common to many types

of operating systems and thus the tagging scheme should be usable for other operating

systems as well. This chapter introduces the UI tagging scheme by first illustrating the

tag format. Then the tagging rules for the C language have been presented, including

tagging rules for assignment statement, if statements, while statements, and arithmetic

operations.

A study of SPARC instructions revealed that the information flow control rules de-

signed for the C programming language needed to be refined to fit into the SPARC

architecture. Some of the rules for SPARC instructions are similar to the rules for the

C language, but some of the security features require refinements of the tagging rules

for instructions at the assembly level. Therefore, this chapter presents the tagging rules

for different groups of assembly instructions. These rules have been implemented in the
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simulator, hence when executing an instruction, the specific tagging rules will be used to

check the tags of the operands and propagate the tags.
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Chapter 4: Multiuser system and test cases

One of the goals of this project is to expand RTEMS to support multiple users. To enable

this, a new “user” construct has been added to RTEMS, similar to the task construct.

All references to users in this chapter refer to this construct and not any real individuals.

To manage the users, a “superuser” has been defined to have the authority to create,

delete and control non-privileged users. Non-privileged users are isolated from each other

and do not have authority to control other users. All control is managed through a new

user manager.

With no hardware implementation available, modifications of the SPARC instruction

simulator (SIS) was required to support tag checking and tag propagation. In addition,

some tagging functions must be added to RTEMS to provide software support for tag

handling. Hooks must be added in SIS, and additional modified instruction interpreta-

tions are required. For example, the normal LD instruction loads data from memory to

registers. However, the modified LD instruction checks tags first to make sure the current

running thread can access the data, and then loads data from memory if the access is

allowed according to the tagging rules. New instructions simulations were also needed

for coprocessor control and communication and for the new RET instruction.

Test cases have been generated to ensure that the tagging rules and the modified in-

terpretations of instructions are correct. In total, 76 test cases were generated (consisting

of more than 2000 smaller tests) which tested the modified instructions.

The remainder of this chapter is organized as follows: Section 4.1 introduces the

design of a multiuser system and the tagging issues related to changing RTEMS. A test

case for tagging multiple users is illustrated in this section. The test cases developed

to test the simulator and the tagging rules are explained in Section 4.2. Section 4.3

summarizes the whole chapter.
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4.1 Implementation of the Multiple User System

Before our work, RTEMS implemented a single-user multi-threaded model of execution.

To expand it to a multiuser system, the concepts of “non-privileged user” and “superuser”

have to be supported. A superuser is a user who has authority to create, delete, and

control non-privileged users. Non-privileged users are isolated from each other and can

only control themselves, but have no abilities to create, delete or control other users.

The new RTEMS user model allows for 117 non-privileged user IDs and one superuser.

For an embedded system, 118 users each with 32 possible subtasks should be sufficient.

Each user can have up to 32 separated task IDs. To have more control over users and their

tasks, a set of task IDs is provided to each user. This allows additional secure isolation

between the tasks within a single user. To implement this, the user levels’ Owner field of

the tag is divided into two parts – users and tasks. The higher 7 bits among the 12 bits

are used to represent separate user IDs and the lower 5 bits are used to indicate task IDs

for those users. For example, the 12 bits for the superuser are 1110 110 XXXXX, where

the 1110 110 indicates superuser ID and the XXXXX represents task IDs. Since only 7

bits are used to represent different users, this limits the number of users in the system

to be user1 to user117 (0000 001 XXXXX to 1110 101 XXXXX), recalling that 1111 XXX

XXXXX is reserved for RTEMS code. Including the superuser, there are 118 possible users

in the system. This does not influence the levels above the general user (USER) level,

because separate controls are made for users and their tasks. The new bit representation

for Owner field of tags are shown in Table 4.1.

4.1.1 User manager

To change RTEMS to a multiuser system, system code needs to be modified to support

multiple users. This includes adding a user manager to RTEMS to handle the superuser

and its abilities to create, delete and control non-privileged users and corresponding
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Table 4.1: New bit representation for Owner field of USER and LOW levels

USER 1110 111 11111

Superuser 1110 110 XXXXX

user117 1110 101 XXXXX

... ...

user1 0000 001 XXXXX

LOW 0000 000 00000

changes to the tag manager. The code displayed in Figure 4.1 creates a user in RTEMS.

In addition, the simulator needed modification of the tag engine code to support the user

hierarchy rules.

The rtems user create function first checks that the calling user is the superuser,

because only the superuser is authorized to create, control and delete the non-privileged

users. If this is the case, rtems user allocate gets the next available user id, start-

ing at 1, and updates its internal data structures. After getting the user number, the

get user tag is called to get a specific tag associated with the task ids and task names

for that user. For example, if user number is 1, then a tag (USER1, USER1, true

| READWRITE | DATA MEMORY | WORLD NOT READABLE) is returned. If user number is

2, the function get user tag will return a tag, (USER2, USER2, true | READWRITE |

DATA MEMORY | WORLD NOT READABLE). Further in the function, rtems tag word is used

to tag the Task ids and Task names. (Although tags are associated with pointers, they

are actually being attached to the memory location referenced by the pointer.)

In multiuser RTEMS, a user program is assigned a primary application with task id 0.

This is the first application to execute for the user. The primary application for a user first

declares an array of task id and another array of task name. When creating a task, the

user application passes two pointers to the rtems task create directive which point to

the task id and task name. Then the directive creates the task for the user application

and returns a system-wide unique task id back. By using the system task id, the user

application is able to start, suspend, resume, or delete the task.
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1 r t ems s ta tu s code r t e m s u s e r c r e a t e ( r t ems id * u s e r i d p t r , rtems name *

user name ptr , int user memsize )
2 {
3 int i , user num = 0 ;
4 char c ;
5 t a g t u s e r t a g ;
6 i f ( ! r t ems superuse r check ( ) )
7 {return RTEMS INVALID USER;}
8 user num = r t e m s u s e r a l l o c a t e ( ) ;
9 u s e r t a g = g e t u s e r t a g ( user num ) ;

10 c = (char ) ( user num + 48) ;
11 for ( i=user memsize ; i >0; i−−)
12 {* u s e r i d p t r = user num ;
13 *user name ptr = rtems bui ld name ( ’U ’ , ’S ’ , ’R ’ , c ) ;
14 rtems tag word ( ( addr t ) u s e r i d p t r , u s e r t a g ) ;
15 rtems tag word ( ( addr t ) user name ptr , u s e r t a g ) ;
16 u s e r i d p t r ++;
17 user name ptr++;
18 }
19 return RTEMS SUCCESSFUL;
20 }

Figure 4.1: RTEMS user create function

4.1.2 Test for multiuser tagging system

Figure 4.2 shows an Init function that uses the rtems user create function twice to

create two non-privileged users. In this example the PC’s tag is manually set to the

SUPERUSER. Normally this will happen in the kernel prior to calling Init. The result

of calling the rtems user create function is shown in Figure 4.3. The Task id[1] to

Task id[4] are tagged with user1’s tag, and Task id[5] to Task id[7] are tagged with

user2’s tag.

As shown in Figure 4.4, the user application sends Task id[1] to Task id[4] to the

rtems task create directive to create four new tasks separately. The directive then

creates four tasks and stores the RTEMS task ids into the Task id[1] to Task id[4]

respectively. The copy bit of the tags associated with Task id[1] to Task id[4] will be

set. Similarly, another three tasks will be created by user2 for Task id[5] to Task id[7].
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1 rtems task I n i t ( rtems task argument argument )
2 { . . .
3 t a g t pc tag = make tag (SUPERUSER, SUPERUSER, f a l s e , READWRITE |

DATAMEMORY | WORLD NOT READABLE) ;
4 r t ems tag pc ( pc tag ) ;
5
6 /*CREATE user1 and user2 */
7 s t a t u s = r t e m s u s e r c r e a t e ( id p t r , name ptr , NODE1 NUM) ;
8 i f ( s t a t u s )
9 { p r i n t f ( ”\n user1 c rea ted ! ! \ n i d p t r tag : %s \n” , t a g t o s t r i n g ( s t r ,

rtems get memory tag ( ( addr t ) i d p t r ) ) ) ;
10 for ( i = SUPERUSER TASK NUM; i <= NODE1 NUM; i++ )
11 { p r i n t f ( ” Task id [ %d ] tag : %s \n” , i , t a g t o s t r i n g ( s t r1 ,

rtems get memory tag(&Task id [ i ] ) ) ) ; }
12 }
13 else { p r i n t f ( ”\n Fa i l ed to c r e a t e user1 ! ! \ n” ) ;}
14
15 i d p t r 2 = i d p t r + NODE1 NUM;
16 name ptr2 = name ptr + NODE1 NUM;
17
18 s t a t u s = r t e m s u s e r c r e a t e ( id pt r2 , name ptr2 , NODE2 NUM) ;
19 i f ( s t a t u s )
20 { p r i n t f ( ”\nuser2 c rea ted ! ! \ n id pt r2 tag : %s \n” , t a g t o s t r i n g ( s t r ,

rtems get memory tag ( ( addr t ) i d p t r 2 ) ) ) ;
21 for ( i = SUPERUSER TASK NUM + NODE1 NUM; i <= NODE1 NUM + NODE2 NUM;

i++ )
22 { p r i n t f ( ” Task id [ %d ] tag : %s \n” , i , t a g t o s t r i n g ( s t r1 ,

rtems get memory tag(&Task id [ i ] ) ) ) ; }
23 }
24 else { p r i n t f ( ”\n Fa i l ed to c r e a t e user2 ! ! \ n” ) ;}
25
26 s t a t u s = r t e m s t a s k i d e n t ( RTEMS SELF, RTEMS SEARCH ALL NODES, &t i d )

;
27 i n i t i n d e x = task number ( t i d ) ;
28 p r i n t f ( ”\nThe cur rent running task i s %d\n” , i n i t i n d e x ) ;
29 }

Figure 4.2: A test of the user create function
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Figure 4.3: Result of a successful call of user create function

The four tasks created for user1 are different from the three tasks for user2. User1’s

tasks keep printing out the time every five seconds. After starting user2’s tasks, the tasks

are suspended for 15 seconds and then wake up to attempt to delete user1’s tasks.

The seven tasks run concurrently. Figure 4.5 shows output of the tasks running

without the tag engine turned on. At the first 15 seconds, tasks 1 to 4 are running and

printing time information every five seconds. After 15 seconds, task 5 starts to delete

task 1, task 6 deletes task 3 and task 7 deletes task 4. After successful deletion of these

tasks, only task 2 is still alive and running.

With tag engine turned on, the output of running the seven tasks is displayed in

Figure 4.6. The first part of this figure is almost identical to what was shown in Fig-

ure 4.5. This shows that user1’s four tasks are running concurrently. The difference

occurs when user2’s task (task 5) wants to delete user1’s task (task 1); the tag engine

generates an exception, prints an error message and stops the system. From the in-

formation given by the tag engine, the call is successfully made and the new PC’s tag

is generated correctly ((USER2, TASK EXTERNAL, false | READWRITE | DATA MEMORY

| WORLD NOT READABLE)). However the exception is raised on a LD instruction that the
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1 /* c r ea t e and s t a r t t a s k s 1 to 4 f o r user1 */
2 void App task ( )
3 {
4 Task name [ 1 ] = rtems bui ld name ( ’T ’ , ’A ’ , ’ 1 ’ , ’ ’ ) ;
5 s t a t u s = r t e m s t a s k c r e a t e ( Task name [ 1 ] , 1 , RTEMS MINIMUM STACK SIZE

,
6 RTEMS INTERRUPT LEVEL(0) , RTEMS DEFAULT ATTRIBUTES, &

Task id [ 1 ] ) ;
7 i f ( ! s t a t u s ) { p r i n t f ( ”\nTask 1 crea ted ” ) ;}
8 else { p r i n t f ( ”\ nFai led to c r e a t e task 1” ) ;}
9 . . .

10 s t a t u s = r t e m s t a s k s t a r t ( Task id [ 5 ] , Test task , 5 ) ;
11 i f ( ! s t a t u s ) { p r i n t f ( ”\nTask 5 s t a r t i n g ” ) ;}
12 else { p r i n t f ( ”\ nFai led to s t a r t task 5” ) ;}
13 . . .
14 }
15
16 /* c r ea t e and s t a r t t a s k s 5 to 7 f o r user2 */
17 void t i c k t e s t ( )
18 {
19 s t a t u s = r t e m s t a s k c r e a t e (
20 Task name [ 5 ] , 1 , RTEMS MINIMUM STACK SIZE * 2 ,

RTEMS DEFAULT MODES,
21 RTEMS DEFAULT ATTRIBUTES, &Task id [ 5 ]
22 ) ;
23 i f ( ! s t a t u s ) { p r i n t f ( ”\nTask 5 crea ted ” ) ;}
24 else { p r i n t f ( ”\ nFai led to c r e a t e task 5” ) ;}
25 . . .
26 s t a t u s = r t e m s t a s k s t a r t ( Task id [ 5 ] , Test task , 5 ) ;
27 i f ( ! s t a t u s ) { p r i n t f ( ”\nTask 5 s t a r t i n g ” ) ;}
28 else { p r i n t f ( ”\ nFai led to s t a r t task 5” ) ;}
29 }

Figure 4.4: Create and start tasks for user1 and user2
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Figure 4.5: User2 delete user1’s task without tag engine turned on
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Figure 4.6: User2 delete user1’s task with tag engine turned on

Owner field of the PC’s tag (USER2) does not dominate the Owner field of the address’s tag

(USER1). This is because when task 5 tries to delete task 1, it uses the rtems task delete

directive and passes Task id[1] to it. Then, rtems task delete directive tries to get

the specific thread by using Task id[1], which is tagged with user1’s tag, and therefore

generates a LD error message.

Although RTEMS is not fully tagged and the tag engine has to be turned on manually

in the code, the test case shows that the security tagging scheme for multiple users is

working and can be used to help isolate tasks of different users.



78

4.2 Tagging Test Cases

To support the UI tagging scheme presented in this dissertation, modifications to SIS

were required for tag checking and tag propagation when executing instructions. In order

to test that all tag checking and propagations worked as intended, 76 test cases (around

68000 lines of C code) were manually generated, each containing up to 64 smaller tests.

In these test cases, the memory locations of the variables and the PC were manually

tagged when the tag engine is off, then the test turns on the tag engine and executes the

statement. After that, the test turns off the tag engine and prints the results of the tag

propagation, or security exception.

Table 4.2 shows the basic utility functions developed for dealing with tags and special

bits. For example, tags are specified by using make tag(), and a word of memory is

tagged with a specific tag using rtems tag word(). The rtems get memory tag()

function can be used to return the tag of a specific memory. The PC is tagged and the tag

of the PC can be checked with rtems tag pc() and rtems get pc tag() respectively.

In addition, the domination relationship of two labels (label represents a 12 bits Owner

field or Code-space field of a tag) or security classes of two tags can be checked. Function

tag lub() is used to calculate the least upper bound of two tags. In addition, there are

functions that set or unset the copy bit and world readable bit, and change the memory

types for testing purposes only.

4.2.1 Tagging test cases for assignment in C language

To help explain the test cases, sample tests are listed in Figure 4.7. The figure shows

part of a test case for assignment in the C language. Different tags are associated with

variables and the PC to test the tag engine rules.

� On lines 3 to 6, four tags are created. The variable tag4 ucp stores the tag (USER1,

WATCHDOG EXT, false, READWRITE | DATAMEMORY). The Owner field of the tag
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Table 4.2: Summary of test case utility functions

make tag()
Make a 32-bit tag of three fields. (Owner,
Codespace, Control)

set copy bit() Set the copy bit of a tag.

reset copy bit() Unset the copy bit of a tag.

rtems tag pc() Tag the PC (Program Counter) with a specific tag.

rtems get pc tag() Get the tag of the PC.

rtems tag word() Tag the word with a specific tag.

rtems get memory tag() Get the tag of a memory.

label lub() Calculate the LUB of two labels.

label glb() Calculate the GLB of two labels.

label dominates or eq() Give the domination relationship of two labels.

tag lub() Calculate the LUB of two tags.

tag glb() Calculate the GLB of two tags.

tag dominates or eq() Give the domination relationship of two tags.

set world readable() Set the world readable bit of a tag.

reset world readable() Unset the world readable bit of a tag.

set read write() Set the memory type to read/write.

set read only() Set the memory type to read-only.

set code mem entry()
Set the memory type to a entry point of a code
memory.

set code mem not entry()
Set the memory type to a non-entry point of a code
memory.

set stack memory() Set the memory type to stack memory.

set data memory() Set the memory type to data memory.
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1 void t e s t 4 ( )
2 { . . .
3 tag4 ucp = make tag (USER1,WATCHDOGEXT, f a l s e ,READWRITE|DATAMEMORY)

;
4 tag2 ucp = make tag (USER1,REGION EXT, f a l s e ,READWRITE|DATAMEMORY) ;
5 tag4 = make tag (USER1,WATCHDOGEXT, true ,READWRITE|DATAMEMORY) ;
6 tag1 ucp = make tag (USER1,USER1, f a l s e ,READWRITE|DATAMEMORY) ;
7 asm(CPOP DEBUG ON) ;
8 p r i n t f ( ”****** 4−1. value2 < value1 < PC ******\n” ) ;
9 value1 = 1 ; value2 = 10 ;

10 p r i n t f ( ” value1 = %d , value2 = %d\n” , value1 , va lue2 ) ;
11 rtems tag word ( ( addr t )&value1 , tag2 ucp ) ;
12 rtems tag word ( ( addr t )&value2 , tag1 ucp ) ;
13 r t ems tag pc ( tag4 ucp ) ;
14 p r i n t f . . .
15 s t a r t t a g g i n g ( ) ;
16 value1 = value2 ;
17 asm(CPOP TURN OFF TAGGING) ;
18 new tag = rtems get memory tag ( ( addr t )&value1 ) ;
19 p r i n t f ( ”OPERATION: value1 = value2 , new tag o f value1(%d) i s :\n %s \

n” , value1 , t a g t o s t r i n g ( s t r , new tag ) ) ;
20 . . .
21 p r i n t f ( ”****** 4−32. va lue1 < pc < value2 ******\n” ) ;
22 value1 = 32 ; value2 = 320 ;
23 p r i n t f ( ” value1 = %d , value2 = %d\n” , value1 , va lue2 ) ;
24 rtems tag word ( ( addr t )&value1 , tag1 ucp ) ;
25 rtems tag word ( ( addr t )&value2 , tag4 ) ;
26 r t ems tag pc ( tag2 ucp ) ;
27 p r i n t f . . .
28 s t a r t t a g g i n g ( ) ;
29 value1 = value2 ;
30 asm(CPOP TURN OFF TAGGING) ;
31 new tag = rtems get memory tag ( ( addr t )&value1 ) ;
32 p r i n t f ( ”OPERATION: value1 = value2 , new tag o f value1 (%d) i s :\n %s

\n” , value1 , t a g t o s t r i n g ( s t r , new tag ) ) ;
33 . . .
34 asm(CPOP DEBUG OFF) ;
35 }

Figure 4.7: Sample test case
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is USER1, Code-space field is WATCHDOG EXT (watchdog external function). The

Control-bits field shows the tagged data is read/write data memory with the copy

bit not set. The variable tag4 stores a tag that similar to tag4 ucp, but has the copy

bit set. The variable tag2 ucp stores a tag with Code-space field is REGION EXT

(region external function). Variable tag1 ucp has a tag with both Owner field and

Code-space field set to USER1, and copy bit not set.

� On line 7, a CPOP DEBUG ON instruction is used to turn on the debugging. After

turning on the debugging, error information will be printed when a tagging excep-

tion is generated.

� Lines 8 to 20 show one of the 42 subcases (test 4-1) in test 4, and lines 21 to 33 are

for another subcase (test 4-32) from test 4. The outputs of these tests are shown

in Figure 4.8.

� On line 9, the two variables: value1 and value2, are initialized to 1 and 10 re-

spectively.

� On lines 11 to 12, the rtems tag word() function is used to give tags to value1

and value2. After executing lines 11 and 12, value1 will be tagged with (USER1,

REGION EXT, false, READWRITE | DATAMEMORY), and value2 will be associated

with tag (USER1, USER1, false, READWRITE | DATAMEMORY).

� On line 13, rtems tag pc() function gives the PC a tag (USER1, WATCHDOG EXT,

false, READWRITE | DATAMEMORY).

� Before turning on the tagging scheme, line 14 prints out the tags of value1, value2

and PC.

� On line 15, the tagging scheme is turned on. The function start tagging() di-

rects GCC to not use values previously stored in registers1, and then executes

1There may be unexpected interruptions if GCC uses the values stored in the registers.
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the CPOP TURN ON TAGGING instruction (asm (CPOP TURN ON TAGGING);) to turn

on tag engine in the simulator.

� Line 16 performs the assignment value1 = value2;.

� On line 17, asm(CPOP TURN OFF TAGGING); is used to turn off the tag engine.

� After executing the assignment with the tag engine turned on, the tag should be

propagated correctly as specified by the tagging rules.

� On line 19, the function rtems get memory tag((addr t) &value1) is used to get

the new tag associated with value1. According to the tagging rules for assignment

(See Section. 3.4.4), if both value1 and value2 have copy bit not set, to allow the

information flow from value2 to value1, the security level of value1 and value2

have to be lower than the level of the PC’s security level. On line 13, the PC

is tagged with tag (USER1, WATCHDOG EXT, false, READWRITE | DATAMEMORY).

Since value1 has tag (USER1, REGION EXT, false, READWRITE | DATAMEMORY)

and value2 is tagged with (USER1, USER1, false, READWRITE | DATAMEMORY),

both security levels of value1 and value2’s tags are lower than the security level

of the PC’s tag. Therefore the assignment is allowed and no exception will be

generated. The value of value2 will be stored in value1, but the tag of value1

should not be changed based on the tagging rules. This is confirmed by the output

in Figure 4.8.

� Figure 4.8 shows the output of the sample test in lines 1 to 9. For test 4-1, when both

copy bits of value1 and value2’s tags are not set, after executing the assignment

(value1 = value2;), value1 gets value2’s value but its tag doesn’t change (see

line 8 in Figure 4.8).

� In the other small test (test 4-32), the values stored in value1 and value2 are

changed to 32 and 320, and different tags are given to value1, value2 and the PC.
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� Lines 24 to 26 show that in this test (test 4-32), the variable value1 is tagged

(USER1, USER1, false, READWRITE | DATAMEMORY), the variable value2 has tag

(USER1, WATCHDOG EXT, true, READWRITE | DATAMEMORY) associated with it and

the PC has tag (USER1, REGION EXT, false, READWRITE | DATAMEMORY).

� On lines 29 to 30, the tagging scheme is turned on and the assignment is exe-

cuted. According to the tagging rules, if the copy bit of value1’s tag is cp and the

copy bit of value2’s tag is cp, the conditions value1 ≤ PC and Owner(value1) =

Owner(value2) have to be met. The owner in both tags is USER1, and the security

level of the tag of value1 (USER1, USER1) is lower than the security level of the

PC’s tag (USER1, REGION EXT), therefore the assignment is allowed. The tag of

value2 will be copied to the tag of value1.

The output for test 4-32 is shown in Figure 4.8 starting at line 11. For test 4-32, the

copy bit of value2’s tag is cp while cp for value1’s tag. Since the copy bit of value2’s

tag is set, value2’s tag will be copied to value1’s tag (see line 19 in Figure 4.8).

In another test, test 4-33 (source is not shown, but output is in Figure 4.9), the

PC has tag (USER1, USER1, false, READWRITE | DATAMEMORY). The variable value1

has tag (USER1, REGION EXT, false, READWRITE | DATAMEMORY) and value2 has tag

(USER1, WATCHDOG EXT, true, READWRITE | DATAMEMORY). Similar to tests 4-32, the

copy bit of value2’s tag is cp while cp for value1’s tag. However, the assignment will

not be allowed, because the condition value1 ≤ PC is not met. Therefore, a security

exception will be raised. A tagging exception handler will handle this and print out

information about the error. As shown in Figure 4.9, lines 7 to 14 are information about

the violation. It indicates that the violation is caused by the ST instruction and the

reason is the relationship of the PC’s tag and value1’s tag is not satisfied.

Because of the violation, the assignment will not be executed. Therefore, on lines 15

and 16 (Figure 4.9), the new tag of value1 is its original tag and the value of value2

(330) is not copied to value1.
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1 −value1 cp not set , va lue2 cp not set−
2 ****** 4−1. value2 < value1 < PC ******

3 value1 = 1 , value2 = 10
4 PC tag : <User 1 , Watchdog External ,CP=f a l s e , WorldReadable=f a l s e , Read−

Write Data Memory>
5 value1 tag : <User 1 , Region External ,CP=f a l s e , WorldReadable=f a l s e , Read−

Write Data Memory>
6 value2 tag : <User 1 , User 1 ,CP=f a l s e , WorldReadable=f a l s e , Read−Write Data

Memory>
7
8 OPERATION: value1 = value2 , new tag o f value1 (10) i s :
9 <User 1 , Region External ,CP=f a l s e , WorldReadable=f a l s e , Read−Write Data

Memory>
10
11 −value1 cp set , va lue2 cp not set−
12 ****** 4−32. va lue1 < pc < value2 ******

13 value1 = 32 , value2 = 320
14 pc tag i s : <User 1 , Region External ,CP=f a l s e , WorldReadable=f a l s e , Read−

Write Data Memory>
15 value1 tag : <User 1 , User 1 ,CP=f a l s e , WorldReadable=f a l s e , Read−Write Data

Memory>
16 value2 tag : <User 1 , Watchdog External ,CP=true , WorldReadable=f a l s e , Read−

Write Data Memory>
17
18 OPERATION: value1 = value2 , new tag o f value1 (320) i s :
19 <User 1 , Watchdog External ,CP=true , WorldReadable=f a l s e , Read−Write Data

Memory>

Figure 4.8: Sample test case output without exception
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1 ****** 4−33. pc < value1 < value2 ******

2 value1 = 33 , value2 = 330
3 pc tag i s : <User 1 , User 1 ,CP=f a l s e , WorldReadable=f a l s e , Read−Write Data

Memory>
4 value1 tag : <User 1 , Region External ,CP=f a l s e , WorldReadable=f a l s e , Read−

Write Data Memory>
5 value2 tag : <User 1 , Watchdog External ,CP=true , WorldReadable=f a l s e , Read−

Write Data Memory>
6
7 ST IMM2 CHECK ERROR when copy b i t o f source i s s e t and addr i s not set ,

non−s tack memory
8 tag pc = <User 1 , User 1 ,CP=f a l s e , WorldReadable=f a l s e , Read−Write Data

Memory> does NOT DOMINATE
9 tag addr = <User 1 , Region External ,CP=f a l s e , WorldReadable=f a l s e , Read−

Write Data Memory>
10
11 . . .
12 Hit vec to r 0x28 ! ! @ PC = 0x 20EE484 with NPC = 0x20EE488
13 RETT at 0 x20fb900 with addr =0x20ee48c
14 V io l a t i ng I n s t r u c t i o n : 0xC227BFFC : : ST
15 OPERATION: value1 = value2 , new tag o f value1 (33) i s :
16 <User 1 , Region External ,CP=f a l s e , WorldReadable=f a l s e , Read−Write Data

Memory>

Figure 4.9: Sample test case output with exception
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1 void t e s t 6 3 ( )
2 { . . .
3 tag2 ucp = make tag (USER1,TASK EXT, f a l s e ,READWRITE | DATAMEMORY) ;
4 tag2 ucp use r2 = make tag (USER2,TASK EXT, f a l s e ,READWRITE |

DATAMEMORY) ;
5 asm(CPOP DEBUG ON) ;
6 . . .
7 p r i n t f ( ” t e s t 63−4: value1 cp not set , va lue1 =/= imm = PC (USERS) \n” )

;
8 rtems tag word ( ( addr t )&value1 , tag2 ucp use r2 ) ;
9 p r i n t f ( ” value1 ’ s tag i s :\n %s \n” , t a g t o s t r i n g ( s t r ,

rtems get memory tag ( ( addr t )&value1 ) ) ) ;
10 r t ems tag pc ( tag2 ucp ) ;
11 p r i n t f ( ”PC tag i s :\n %s \n\n” , t a g t o s t r i n g ( s t r , r t e m s g e t p c t a g ( ) )

) ;
12
13 s t a r t t a g g i n g ( ) ;
14 i f ( value1 ) { ;}
15 asm(CPOP TURN OFF TAGGING) ;
16 p r i n t f ( ”ASSIGNMENT: i f ( va lue1 ) { ;} , tag o f va lue1 (%d) i s :\n %s \n\n\

n” , value1 , t a g t o s t r i n g ( s t r , rtems get memory tag ( ( addr t )&
value1 ) ) ) ;

Figure 4.10: Sample test case for if statement

4.2.2 Tagging test cases for different users

Because the tagging scheme has been redesigned from the original version [22] to support

multiple users, additional test cases are generated to test multiuser tags. Figure 4.10

shows one of the multiuser test cases.

In this test case, the if statement is tested using different user tags (USER1 and

USER2). The variable value1 is tagged with a tag that belongs to user2 (line 8). The PC

is tagged with a tag with the Owner field set to USER1 (line 10). Then the tag engine is

started on line 13, and the if statement, if(value1) ; is tested on line 14. The result

is shown in Figure 4.11; the if statement is not allowed. Because the PC’s tag does not

dominate the address’s tag, value1 can not be read by the current running thread.
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Figure 4.11: Output for If statement test for different users

4.3 Summary

This chapter first discusses the enhanced tagging scheme which supports a multiuser

system. It applies the idea of superuser and non-privileged user to RTEMS. By using

different user tags, users and their resources can be isolated from other users and re-

sources. A user manager has been added to RTEMS and a sample test of multiuser

support is illustrated in the first section of this chapter.

The test cases shown in the second section are a small sample of the whole suite of

test cases. There are test cases for different groups of operations which include arith-

metic, logic, shifting operations, assignment, if/while statements, function call and re-

turn, pointers, and so on. These test cases cover many possibilities of tag checking and

propagation, including many combinations of relationships between the PC’s tag and the

variable tags, memory types and control bits. These test cases were used to help refine

the tagging rules and debug the implementation of the tag engine.

The test cases for arithmetic, logic and shifting operations ensure that the new tag is

correctly propagated from the two operands’ tags. The assignment tests verify that the

tag checking and propagation rules are completely implemented in the tag engine. The

test cases for function call and return make sure the function execution control rules are
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correctly implemented and the PC’s tag is propagated successfully. In addition, knowing

how important the pointers are, test cases for pointers are generated to ensure correctness

of pointers’ tags.

As the hardware which could support the UI tagging scheme is not available, the tag

engine had to be implemented in the simulator of the SPARC architecture. Therefore,

these test cases test the correctness of the tag engine and help verify the tag checking

and propagation rules are properly designed. These test cases were designed to easily

port to the hardware once it is available.
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Chapter 5: ACL2 Models and Proofs

One of the objectives of the UI tagging project is to develop a formal model of the security

policy enforced using the UI tagging scheme and prove security properties of the tagging

system. This chapter describes the process of developing a formal model for the UI

tagging scheme in ACL2. ACL2 [14] stands for “A Computational Logic for Applicative

Common LISP”. The language is based on Common LISP. In addition to providing an

execution engine, ACL2 provides a reasoning engine to help prove theorems about the

models. The theorem prover is based on rewriting terms. The process includes specifying

the tag format, propagation and checking rules in ACL2. Then these tag checking and

propagation functions have been applied to corresponding assembly instructions. There

is a state list in ACL2 which keeps track of the system states and resources. When

executing an instruction, the system first checks the tagging rules to determine whether

the instruction is allowed. If it is allowed, the corresponding register or memory location

and its tag will be updated in the state list. Otherwise, the model generates a security

exception and stops the evaluation.

Since, in the lattice, security classes are arranged in a partial ordering, lemmas are

proven that the reflexive, transitive and antisymmetric properties hold for all the classes.

In addition, the model for the UI tagging scheme has been proven to be a lattice. Other

security related lemmas and theorems have also been proven and are described.

The remainder of this chapter is organized as follows: Section 5.1 introduces the ACL2

model of the tag, and shows some tagging related utility functions. Then in Section 5.2,

the ACL2 model of tag checking functions for various instructions are described. The

formal model of the security policy enforced by the UI tagging system is discussed in

Section 5.3. Section 5.4 describes the instruction execution and tag propagation functions

for different groups of instructions in ACL2. Some security properties of the system

architecture are proven in Section 5.5 and Section 5.6. Lastly, Section 5.7 summarizes

this chapter.
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5.1 Tag Representation in ACL2

This chapter discusses the ACL2 model of the tagging engine. A security tag is repre-

sented as the list (LABEL1 LABEL2 (CPSET RANDW DATAMEM WORLDSET)) in ACL2. The

first and second elements in the list, LABEL1 and LABEL2, define the Owner field and the

Code-space field. The third part models the Control-bits field. In this example, LABEL1

and LABEL2 are place holders and the Control-bits field shows possible values. There

are more possible values for this field, such as: CPNOTSE, RONLY, STACKMEM, EXEENTRY,

WORLDNOTSET, etc, described in Section 5.1.2.

5.1.1 Owner field and Code-space field in ACL2

For the Owner field and Code-space field, ACL2 constants are used to represent different

entities in the tagging system. For example, USER1, USER2, SUPERUSER, USER are used

to represent different users and the general user level. On the manager level, TASK EXT,

TASK INIT, TASK INT and TASK PINT, represent task external class, task initialization

class, task internal class and task private internal class accordingly. Similar labels, such

as PARTITION EXT, CLOCK INT, MESSAGE INIT exist for all other managers. Above the

manager level, the SCORE services are divided into the same internal, external, ini-

tialization, and private internal classifications, such as OBJECT EXT, THREAD INIT and

WORKSPACE INT. The complete list of services and managers is shown in Table 3.4.

Since ACL2 provides both a theorem prover and an execution engine, the tagging

scheme is able to be modeled as well as user code can be interpreted. To facilitate

this, user assembly language is converted into a lisp data structure, whose representation

includes the actual data bits for tags. The ACL2 model therefore includes functions to

map these bit representations to the ACL2 labels. The mapping is defined in a “code-

table” and facilitates the dominates and other utility functions.

As shown in Section 3.3.1, each of the Owner and Code-space fields is represented with
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12 bits, which can be divided into RTEMS/USER bits (4 bits), RTEMS level bits (3 bits)

and Component ID bits (5 bits). This is mapped into lists of the form (TASK EXT 1 0 2)

for task manager external class, which has bit representation 1111 000 00010. The bit

representation for task private internal class is 1111 011 00010, in ACL2, (TASK PINT

1 3 2) is assigned to it. Compare the representations for both task manager external

class (1 0 2) and task manager private internal class (1 3 2) in ACL2. The 1s in

both representations indicate they are RTEMS data/code instead of user data/code.

The third numbers, which represent RTEMS component IDs are the same, since both of

them are for task manager. The difference between the two representations is the second

number, which indicates the RTEMS levels. Manager external functions are at level 0,

while manager private internal functions are at level 3. Similarly, (THREAD INT 1 6 1)

represents thread initialization class at the SCORE level, (WORKSPACE EXT 1 4 7) shows

the workspace external class and LOW is represented by (0 0 0). The code table used

for labels in ACL2 is shown in Table 5.1.

Comparing two labels can be done by simply comparing the numbers in the code table.

The label-dominate function (See Section 5.1.3) checks the dominate relationship be-

tween two labels based on the code table and the lattice. The security-class-dominate

function uses the label-dominate function to check both Owner field labels and Code-

space field labels.

5.1.2 Control-bits field in ACL2

As discussed in Section 3.1.3, the control-bit field takes 8 bits. The highest bit (bit 7)

is used as a copy bit, is represented with labels CPSET and CPNOTSET. The copy bit is

followed by 3 bits which indicate the memory type and are represented with two separate

label fields. Label RONLY means the memory is read only, while label RANDW allows read

and write on the tagged data/code. After the read/write control labels, another four

labels (DATAMEM, STACKMEM, EXEENTRY, EXENONEENTRY) are used to show the memory
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Table 5.1: Code table for labels of Owner field and Code-space field in ACL2

Code representation Functions
RTEMS Level

RTEMS/ RTEMS Component RTEMS
USER Level ID Representation
(4 bits) (3 bits) (5 bits)

31 Tag INIT, SCORE, HIGH
7 1-13 SCORE private internal functions

0
31

6 1-13 SCORE internal functions
0
31

5 1-13 SCORE internal init functions
0 SCORE INIT
31

4 1-13 SCORE external functions
1 0

(RTEMS) 31 MANAGER
3 1-20 Manager private internal functions

0
31

2 1-20 Manager internal functions
0
31

1 1-20 Manager internal init functions
0 Manager INIT
1

0 1-20 Manager external functions
0 Startup
USER LEVEL

1 1 USER
0 SUPERUSER
n USERn
... ...

0 0 2 USER2
1 USER1
0 LOW
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types. DATAMEM and STACKMEM indicate data memory and stack memory. Both EXEENTRY

and EXENONEENTRY represent code memory, however EXEENTRY differentiates entry point

to a function from non-entry point code memory. The world readable bit (bit 3) is

represented with WORLDSET or WORLDNOTSET indicating whether or not the tagged data is

world readable. The list of Control-bits field is formed by choosing one label from each of

the four groups respectively. For instance, a Control-bits field shown as (CPNOTSET RONLY

EXEENTRY WORLDNOTSET) in ACL2 indicates a read only entry point of code memory with

the copy bit not set and it is not world readable.

5.1.3 Utility functions for tagging

After developing the tag model in ACL2, several utility functions were written to help

with the tag checking and propagation, such as checking the tag format, checking the

dominates relation between two tags. These functions made the tag checking and modi-

fication much easier.

Figure 5.1 shows some functions which are used to check whether or not the format

of a tag is correct. The parameter spec is used to represent the static specification of

the system and is described in Section 5.3.

� The first function (label-format-check) is a format check function for the Owner

field label and Code-space field label. It is a predicate that compares the given

label with the code table to find out whether it is a valid label.

� The second function (control-label-check) is a predicate that checks the format

of the Control-bits field label. The code checks the length of the Control-bits label,

which should be four, and the copy bit label, the read/write permission label,

memory type label and world readable label. These checks make sure that all the

labels are in correct format.

� The tag-format-check function is a predicate that uses label-format-check and
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1 (defun label− format−check ( code− labe l spec )
2 ( l et ( ( code−table ( second ( assoc ’TABLE spec ) ) ) )
3 ( is−a−member code− labe l ( au to− l i s t code−table ) ) ) )
4
5 (defun contro l− labe l−check ( con t ro l− l abe l )
6 (and ( equal ( length con t ro l− l abe l ) 4)
7 ( control−copybit−check con t ro l− l abe l )
8 ( control−rw−check cont ro l− l abe l )
9 ( control−type−check cont ro l− l abe l )

10 ( control−world−check cont ro l− l abe l ) ) )
11
12 (defun tag−format−check ( one−tag spec )
13 (and ( equal ( length one−tag ) 3)
14 ( label− format−check ( get−owner− label one−tag ) spec )
15 ( label− format−check ( get−code− label one−tag ) spec )
16 ( contro l− labe l−check ( get−contro l− l abe l one−tag ) ) ) )

Figure 5.1: Format check functions in ACL2

control-label-check functions to verify that the format for the three fields are

correct. It also checks that the length of the tag is three, since the tag in ACL2

consists of one Owner field label, one Code-space field label and one list which

represents the Control-bits field.

In Figure 5.2, part of the label-dominate function is shown. The function is a

predicate that checks whether label1 dominates label2 following the lattice discussed

in Section 3.2. This function first checks if one label is LOW or HIGH or both labels are

the same, for a simple response. If this is not the case, then the function checks the

relationship between levels and then within levels.

In addition to the functions discussed in this section, there are many other functions

that have been written in ACL2 to deal with the tag checking and modification. These

include setting or unsetting the copy bit of a tag, making a tag based on the given labels,

calculating the LUB of two labels and so on.
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1 (defun label−dominate ( l a b e l 1 l a b e l 2 spec )
2 ( l et ( ( labe l1−entry ( get−code−reps l a b e l 1 spec ) )
3 ( labe l2−entry ( get−code−reps l a b e l 2 spec ) )
4 ( s c o r e− l e v e l ( second ( assoc ’SCORE−LEVELS spec ) ) )
5 ( rtems− l eve l ( second ( assoc ’RTEMS−LEVELS spec ) ) ) )
6 ( l et ( ( label1−name ( f i r s t l abe l1−entry ) )
7 ( labe l1−rtems− f lag ( second l abe l1−entry ) )
8 . . .
9 ( label2−component ( fourth l abe l2−entry ) ) )

10 (cond ( ( or ( equal label2−name ’LOW)
11 ( equal label1−name ’HIGH)
12 ( equal label1−name label2−name ) ) t )
13 . . .
14 ( (and ( equal label1−name ’SCORE)
15 (not ( equal label2−name ’TAG STARTUP) )
16 (not ( equal label2−name ’HIGH) ) ) t )
17 ( (and ( equal label1−name ’USER)
18 ( equal labe l2−rtems− f lag 0) ) t )
19 ( (and ( equal labe l1−rtems− f lag 1)
20 ( equal labe l2−rtems− f lag 0) ) t )
21 ( (and ( equal labe l1−rtems− f lag 1)
22 ( equal labe l2−rtems− f lag 1) )
23 (cond ( (and ( is−a−member l a b e l 1− l e v e l s c o r e− l e v e l )
24 ( is−a−member l a b e l 2− l e v e l r tems− l eve l ) ) t )
25 ( (and ( is−a−member l a b e l 1− l e v e l s c o r e− l e v e l )
26 ( is−a−member l a b e l 2− l e v e l s c o r e− l e v e l ) )
27 (cond ( (and (not ( equal l a b e l 1− l e v e l 4) )
28 ( equal label2−name ’SCORE STARTUP) ) t )
29 ( (and (> l a b e l 1− l e v e l l a b e l 2− l e v e l )
30 ( equal label1−component label2−component ) ) t )
31 ( t n i l ) ) )
32 ( (and ( is−a−member l a b e l 1− l e v e l r tems− l eve l )
33 ( is−a−member l a b e l 2− l e v e l r tems− l eve l ) )
34 (cond . . . )
35 ( t n i l ) ) ) ) ) ) )

Figure 5.2: Label dominate function in ACL2
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5.2 Tag Checking for Different Instructions in ACL2

As mentioned in Section 3.5, SPARC assembly instructions can be divided into five

classes: (1) Branch related instructions, (2) Call related instructions, (3) Arithmetic,

logic and shifting instructions, (4) Load and store instructions and (5) Save and restore

instructions. This section introduces how tag checking is modeled in ACL2 for each class

of instructions.

5.2.1 Tag checking for BRANCH instructions

Whether or not a branch instruction is executed depends on the value of the integer

condition codes (icc). The integer condition codes can be modified by the arithmetic

and logical instructions whose names end with “cc”, such as ANDcc, SUBcc. According

to the tagging rules for branch instructions (see Section 3.5.1), the branch must made to

executable code memory within the same Code-space.

The branch instructions tag checking code in ACL2 is shown in Figure 5.3. The

branch-inst-tag function first checks the Control-bits field of the destination address’s

tag to make sure the memory type label is either EXEENTRY or EXENONEENTRY. If this is

the case, the code further checks that the branch is made in the same code space and

the current running thread is able to read the icc’s value.

5.2.2 Tag checking for CALL related instructions

The code for tag checking for the CALL instruction is shown in Figure 5.4. Whether or not

the CALL instruction is allowed to be executed or not, depends on the function execution

control rule. The function execution control rules (see Section 3.4.7) specify which callers

are allowed to call which specific functions. The ACL2 code for CALL instruction is shown

in Figure 5.4. The call-inst-tag function gets the destination address’s tag, PC’s tag

and the spec which has instruction list information. The code first checks the format of
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1 (defun branch− inst−tag (mem−tag pc−tag icc−tag spec )
2 ( i f (and ( tag−format−check mem−tag spec )
3 ( tag−format−check pc−tag spec )
4 ( tag−format−check icc−tag spec ) )
5 ( l et ( ( mem−tag−control ( get−contro l− l abe l mem−tag) )
6 (mem−tag−code ( get−code− label mem−tag) )
7 ( pc−tag−code ( get−code− label pc−tag ) ) )
8 ( i f (or ( equal ’EXEENTRY ( get−control−type mem−tag−control ) )
9 ( equal ’EXENONEENTRY ( get−control−type mem−tag−control ) ) )

10 ( i f (and ( equal mem−tag−code pc−tag−code )
11 ( tag−dominate pc−tag icc−tag spec ) )
12 pc−tag n i l )
13 n i l ) )
14 n i l ) )

Figure 5.3: Tag checking on BRANCH instruction in ACL2

1 (defun ca l l− in s t− tag ( addr−tag pc−tag spec )
2 ( i f (and ( tag−format−check addr−tag spec )
3 ( tag−format−check pc−tag spec )
4 ( funct ion−contro l−tag pc−tag addr−tag spec ) )
5 ( funct ion−contro l−tag pc−tag addr−tag spec )
6 n i l ) )

Figure 5.4: Tag checking on CALL instruction in ACL2

the address’s tag and PC’s tag to make sure both of them are in correct tag format. Then

the function uses the function-control-tag function to verify that the call is allowed.

This function is based on the function execution control rules. If the call is allowed, the

function combines the tags and returns the new PC’s tag. If it is not allowed, it returns

NIL. If all of the checks are passed, the call-inst-tag function returns the new PC’s

tag from the function-control-tag function, otherwise it returns NIL to indicate a fail

on the tag checking of the function call.
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5.2.3 Tag checking for arithmetic, logic and shifting instruc-

tions

Section 3.5.3 introduced the tag checking rules for arithmetic, logic and shifting instruc-

tions. The tag propagation rules for arithmetic, logic and shifting instructions can be

classified into four groups based on the copy bits of the two operands: (1) both of the

operands have the copy bit set, (2) only operand1 has the copy bit set (3) only operand2

has the copy bit set and (4) neither of the two operands have the copy set). Figure 5.5

shows the ACL2 code for tag checking for arithmetic, logic and shifting instructions.

The arith-inst-tag function checks the copy bits of the two operands and de-

termines the proper tag propagation rule. For instance, lines 13 to 15 deal with the

condition that both of the two operands have the copy bit set, and propagates a new tag

by combining the PC tag’s Owner field label, the PC tag’s Code-space label and a default

Control-bits field label with the copy bit unset. Lines 22 to 24 are good for propagating a

new tag for two operands which have the copy bit not set. Based on the tag propagation

rule shown in Table 3.6, the new tag is formed by calculating the LUB of the two tags.

Therefore on line 24, the code uses label-lub function twice to get the LUB of the two

Owner field labels and the LUB of the two Code-space field labels separately. The code

then combines two labels with another Control-bits field label to form a new tag and

return it.

5.2.4 Tag checking for LD and ST instructions

The code shown in Figure 5.6 indicates how to implement the tag checking rule for LD

instruction in ACL2.

The function gets the tag of the memory and the tag of the PC, then checks each

field of the tags based on the tagging rule described in Section 3.5.4.

The function ld-inst-tag first checks on the tag formats of both tags to ensure
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1 (defun ar i th− inst−tag ( reg1−tag reg2−tag pc−tag spec )
2 ( i f (and ( tag−format−check reg1−tag spec )
3 ( tag−format−check pc−tag spec )
4 ( tag−format−check reg2−tag spec ) )
5 ( l et ( ( reg1−tag−owner ( get−owner− label reg1−tag ) )
6 ( reg1−tag−code ( get−code− label reg1−tag ) )
7 ( reg1−tag−control ( get−contro l− l abe l reg1−tag ) )
8 ( pc−tag−owner ( get−owner− label pc−tag ) )
9 ( pc−tag−code ( get−code− label pc−tag ) )

10 ( reg2−tag−owner ( get−owner− label reg2−tag ) )
11 ( reg2−tag−code ( get−code− label reg2−tag ) )
12 ( reg2−tag−control ( get−contro l− l abe l reg2−tag ) ) )
13 (cond ( (and ( equal ’CPSET ( get−control−copybit reg1−tag−control ) )
14 ( equal ’CPSET ( get−control−copybit reg2−tag−control ) ) )
15 ( make−tag pc−tag−owner pc−tag−code ( make−default−control− label

’CPNOTSET) spec ) )
16 ( (and ( equal ’CPNOTSET ( get−control−copybit reg1−tag−control ) )
17 ( equal ’CPSET ( get−control−copybit reg2−tag−control ) ) )
18 ( make−tag reg1−tag−owner reg1−tag−code (

make−default−control− label ’CPNOTSET) spec ) )
19 ( (and ( equal ’CPSET ( get−control−copybit reg1−tag−control ) )
20 ( equal ’CPNOTSET ( get−control−copybit reg2−tag−control ) ) )
21 ( make−tag reg2−tag−owner reg2−tag−code (

make−default−control− label ’CPNOTSET) spec ) )
22 ( (and ( equal ’CPNOTSET ( get−control−copybit reg1−tag−control ) )
23 ( equal ’CPNOTSET ( get−control−copybit reg2−tag−control ) ) )
24 ( make−tag ( labe l− lub reg1−tag−owner reg2−tag−owner spec ) (

labe l− lub reg1−tag−code reg2−tag−code spec ) (
make−default−control− label ’CPNOTSET) spec ) ) ) )

25 n i l ) )

Figure 5.5: Tag checking on Arithmetic instruction in ACL2
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1 (defun ld− inst−tag (mem−tag pc−tag spec )
2 ( i f (and ( tag−format−check mem−tag spec )
3 ( tag−format−check pc−tag spec ) )
4 ( l et ( ( mem−tag−owner ( get−owner− label mem−tag) )
5 ( mem−tag−control ( get−contro l− l abe l mem−tag) )
6 ( pc−tag−owner ( get−owner− label pc−tag ) ) )
7 ( i f (and ( equal ’WORLDSET ( get−control−world mem−tag−control ) )
8 ( data−stack−mem mem−tag−control ) )
9 mem−tag

10 ( i f ( equal ’CPSET ( get−control−copybit mem−tag−control ) )
11 ( i f ( label−dominate pc−tag−owner mem−tag−owner spec )
12 mem−tag
13 n i l )
14 ( i f ( tag−dominate pc−tag mem−tag spec )
15 mem−tag
16 n i l ) ) ) )
17 n i l ) )

Figure 5.6: Tag checking on LD instruction in ACL2

that they are valid tags. Then the code checks if the world readable bit is set and the

memory location is data memory or stack memory. If this is the case, it returns the

memory tag as the new tag, otherwise the function starts checking the copy bit of the

memory’s tag. If the copy bit is set, then the function checks whether or not the Owner

field of the PC’s tag dominates the Owner field of the memory location’s tag. If the

PC’s Owner tag dominates the memory location’s Owner tag, the function returns the

memory’s tag. Otherwise, the function checks whether or not the PC’s tag dominates

the memory location’s tag, and returns the memory’s tag or NIL respectively.

If the function returns NIL, then the tags failed the tag checking, and the execution

of the LD instruction will be disabled as discussed in Section 5.4. If the instruction is

allowed to execute, then the tag returned from the ld-inst-tag function will be the new

tag of the register where the data is loaded.



101

5.3 Formal Model of the UI Tagging System

In the formal model, a state list is kept to record the state of the tagging system which

includes state of the registers, memory, special registers and a security exception number

(see Figure 5.7). While executing the instructions, the state list is changed and passed

around to keep track of the state of the system. The list of registers (lines 1 to 9)

contains triples that include the register number, the value stored in the registers and

the tag associated with the register. Similarly the memory list (lines 10 to 15) contains

triples that include the memory location, the data stored in the memory location and the

security tag. Special registers’ names, values and tags are stored in the special register

list (lines 16 to 20). The security exception number (line 21), gives information about the

whole system. A 0 indicates the system is running correctly without a security exception.

Any other positive numbers indicate that there is a security exception generated. When a

security exception is generated, the state list is updated with a security exception number

that corresponds to a unique cause of the security exception. Therefore the problem can

be easily identified when a security exception happens.

The registers and the model of sliding the register window in ACL2 is different from

the actual SPARC architecture. In SPARC, the SAVE instruction decreases the CWP, while

RESTORE increases it. However in the ACL2 tagging model, this is done in the opposite

way; the SAVE instruction adds 1 to the CWP and the RESTORE reduces the CWP by 1.

Shown in Figure 5.8, the register list starts from register 0 and grows up. The initial

state has 32 registers (register 0 to register 31). Register 0 to register 7 are global

registers, registers 8 to 15 are in registers, local registers are registers 16 to 23 and

out registers are registers 24 to 31. When sliding forward the register window, the SAVE

instruction zeros these 16 registers and associates the PC’s tag with them. Sliding the

register window back will not cause these registers to be deleted. The special register list

keeps track of the stack pointer, frame pointer, current window pointer, integer condition

code and y register.
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1 ( ( . . .
2 ( (REG 16) 0 (LOW LOW (CPNOTSET RANDW STACKMEM WORLDNOTSET) ) )
3 ( (REG 15) 0 (USER1 USER1 (CPNOTSET RONLY STACKMEM WORLDNOTSET) ) )
4 ( (REG 14) 3000 (USER1 USER1 (CPNOTSET RANDW DATAMEM WORLDNOTSET) ) )
5 . . .
6 ( (REG 3) 111 (USER1 USER1 (CPNOTSET RANDW DATAMEM WORLDNOTSET) ) )
7 ( (REG 2) 0 (LOW LOW (CPNOTSET RANDW STACKMEM WORLDNOTSET) ) )
8 ( (REG 1) 2345 (USER USER (CPNOTSET RANDW DATAMEM WORLDNOTSET) ) )
9 ( (REG 0) 0 (LOW LOW (CPNOTSET RANDW STACKMEM WORLDSET) ) ) )

10 ( ( (MEM 33681632) 4 (LOW LOW (CPNOTSET RANDW DATAMEM WORLDNOTSET) ) )
11 ( (MEM 33680800) 0 (LOW LOW (CPNOTSET RANDW DATAMEM WORLDNOTSET) ) )
12 . . .
13 ( (MEM 33680784) 1413558560 (LOW LOW (CPNOTSET RANDW DATAMEM

WORLDNOTSET) ) )
14 ( (MEM 33680792) 1413559072 (LOW LOW (CPNOTSET RANDW DATAMEM

WORLDNOTSET) ) )
15 ( (MEM 33680788) 1413558816 (LOW LOW (CPNOTSET RANDW DATAMEM

WORLDNOTSET) ) ) )
16 ( ( (SPEC RW) 0 (HIGH HIGH (CPSET RANDW DATAMEM WORLDNOTSET) ) )
17 ( (SPEC FP) 3000 (LOW LOW (CPNOTSET RANDW DATAMEM WORLDNOTSET) ) )
18 ( (SPEC ICC) 0 (LOW LOW (CPNOTSET RANDW DATAMEM WORLDNOTSET) ) )
19 ( (SPEC Y) 0 (LOW LOW (CPNOTSET RANDW DATAMEM WORLDNOTSET) ) )
20 ( (SPEC SP) 3000 (LOW LOW (CPNOTSET RANDW DATAMEM WORLDSET) ) ) )
21 0)

Figure 5.7: Sample state list in ACL2
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Figure 5.8: Register window and registers in ACL2

In the tagging model, all registers are represented by numbers starting from 0 up

to 519. The following formula is used in the tagging model to set up the relationship

between register names and register numbers.

� RegisterNumber = (RW − 1) ∗ 16 + BasicRegisterV alue

By using the value stored in RW (Register Window) register and the basic register

value, the correct register number can be calculated easily. The basic register values are

shown in Table 5.2. For example, if RW is 2, then the %o7 register in that register window

is register 47 (31+16). If RW is 3, then the %l3 register is register 51 (19+32). Whichever

register window the thread in, the global registers %g0 to %g7 are always register 0 to

register 7, and the formula is not used for the global registers.
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Table 5.2: Basic register value

register basic register register basic register register basic register

name value name value name value

%i0 8 %l0 16 %o0 24

%i1 9 %l1 17 %o1 25

%i2 10 %l2 18 %o2 26

%i3 11 %l3 19 %o3 27

%i4 12 %l4 20 %o4 28

%i5 13 %l5 21 %o5 29

%i6 14 %l6 22 %o6 30

%i7 15 %l7 23 %o7 31

Starting from the initial state, the system keeps track of the state list while executing

instructions. For example when executing a LD instruction: LD [%l1 + 8], %o0, that

passes the tag checking rules, the %o0 register’s value and tag will be changed to the

memory location [%l1 + 8]’s value and tag. Similar to this, executing other instructions

causes the system to check corresponding tagging rules and make specific changes on the

state list as described in Section 5.4. If an instruction violates the tagging rules, a security

exception will be generated by updating the security exception number in the state list

with a positive number.

In the ACL2 model, a parameter spec is used to keep all the static values and tables.

It consists of a list of instructions for testing purposes, the code table for comparing the

relationship between labels, etc. Therefore when static information is needed, specific

value or table can be retrieved from the spec easily.

The SPARC architecture has delayed control transfer instructions. This means that

the processor fetches and executes the instruction that is located after the delayed control

transfer instruction, before executing the transfer. The delayed control transfer instruc-

tions include the conditional BRANCH instructions, CALL, RET/RETT, JMPL (Jump&Link)

and Trap/Ticc. Because of the existence of the delayed control transfer instructions, the

system needs to identify these instructions and determine whether or not the next instruc-
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1 (defun i n s t− c l a s s ( inst−name )
2 (cond ( ( equal inst−name ’LD) 1)
3 ( ( equal inst−name ’ST) 2)
4 ( ( equal inst−name ’ADD) 3)
5 ( ( equal inst−name ’SUB) 4)
6 ( ( equal inst−name ’MUL) 5)
7 ( ( equal inst−name ’DIV) 6)
8 ( ( equal inst−name ’JMPL) 7)
9 ( ( equal inst−name ’SAVE) 8)

10 ( ( equal inst−name ’CLR) 9)
11 ( ( equal inst−name ’OR) 10)
12 . . .
13 ( t n i l ) ) )

Figure 5.9: Classification of instructions in ACL2

tion needs to be executed first or ignored. For the delayed control transfer instructions,

such as CALL, RET and JMPL, the next instruction will always be fetched and executed

before the current instruction. However, this rule is not applicable to the conditional

branch instructions. For the conditional branch instructions, the next instruction will

be fetched, but whether or not it is executed depends on the BRANCH instruction itself.

Based on the integer condition code, if the BRANCH is taken, the next instruction will be

executed, otherwise it will be skipped. A processor that provides speculative execution

of branches will have to coordinate with the tag coprocessor to ensure precise exceptions.

As shown in Figure 5.9, the inst-class function goes through the instruction name

list to find the correct classification number for instructions.

The inst-execute function is used to execute the correct instruction based on the

instruction’s classification number. The function uses another function operand-one

to help find the data and tags from the correct locations. If a source operand is %i4,

then the data is stored in register %i4 and its tag should be gathered. The operand

could be [%fp-4], which means the data stored in %fp needs to be found first, and

then add the offset (minus 4) to get the correct location of the operand. For example,

ld [%fp-4], %l2, loads the value stored in [%fp-4] to register %l2. The function



106

1 (defun s p e c i f i c a t i o n ( )
2 ( l i s t ( l i s t ’TABLE ( code−table ) )
3 ( l i s t ’MAX−MEM #x201ce00 )
4 ( l i s t ’MIN−MEM #x2000000 )
5 ( l i s t ’SCORE−LEVELS ( s c o r e− l e v e l ) )
6 ( l i s t ’RTEMS−LEVELS ( rtems− l eve l ) )
7 ( l i s t ’ INST−LIST ( i n s t− l i s t s 4 ) )
8 ( l i s t ’DEFAULT−TAG ( defaul t− tag ) )
9 ( l i s t ’DEFAULT−STACK−TAG ( default−tag2 ) )

10 ( l i s t ’DEFAULT−HIGH−TAG ( default−high−tag ) )
11 ( l i s t ’DEFAULT−PC−CONTROL−LABEL ( defaul t−pc−contro l− l abe l ) ) ) )

Figure 5.10: Specification (spec) format

operand-one gets the value and tags of the 2 operands separately and passes them to

the inst-execute function. The function extracts out the instruction opcode, LD, and

calls the corresponding function for the LD instruction.

In Figure 5.11, part of the code of the inst-execute function is listed. The function

gets one instruction with all the operands from the instruction list. Then it extracts

the instruction name and at most three operands from the instruction. After getting

the instruction classification number by using the inst-class function, the function

starts comparing the classification number with various numbers to figure out which

instruction it is. Then the code chooses the corresponding execution function to execute

the instruction. Note that inst-execute, and many other functions include a final

parameter spec. This parameter defines the static configuration (i.e., specification) of

the system being modeled. This includes the code-table, SCORE levels, RTEMS levels

(see Figure 5.10).

The inst-execute function controls the execution of all the instructions. If an in-

struction is not recognized, a security exception will be thrown by setting the security

exception number of the state list to 44. The exception numbers are part of the model

and are unique for each security exception to facilitate analysis.
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1 (defun ins t−execute ( one− inst s t a t e− l i s t spec )
2 ( l et ( ( i n s t−a l l ( g e t− i n s t− l i s t one− inst ) )
3 ( inst−address ( get− inst−addr one− inst ) ) )
4 ( l et ( ( inst−name ( get−inst−name i n s t− a l l ) )
5 ( op1 ( get−op1 i n s t−a l l ) )
6 ( op2 ( get−op2 i n s t−a l l ) )
7 ( op3 ( get−op3 i n s t−a l l ) ) )
8 ( l et ( ( class−num ( i n s t− c l a s s inst−name ) )
9 ( reg−win ( get−reg−value ( s e a r c h− s p e c i a l− r e g i s t e r ’ rw ( third

s t a t e− l i s t ) ) ) ) )
10 ( l et ( ( pc− l i s t ( s e a r c h− r e g i s t e r ( get−register−num ’ o7 reg−win )

( f i r s t s t a t e− l i s t ) ) )
11 ( i c c− l i s t ( s e a r c h− s p e c i a l− r e g i s t e r ’ i c c ( third s t a t e− l i s t ) )

) )
12 (cond
13 ( ( equal class−num 1) ; l d
14 ( ld−exe ( operand−one op1 s t a t e− l i s t spec ) ( operand−one op2

s t a t e− l i s t spec ) pc− l i s t s t a t e− l i s t spec ) )
15 ( ( equal class−num 2) ; s t
16 ( st−exe ( operand−one op1 s t a t e− l i s t spec ) ( operand−one op2

s t a t e− l i s t spec ) pc− l i s t s t a t e− l i s t spec ) )
17 ( ( equal class−num 3) ; add
18 ( add−exe ( operand−one op1 s t a t e− l i s t spec ) ( operand−one op2

s t a t e− l i s t spec )
19 ( operand−one op3 s t a t e− l i s t spec ) pc− l i s t s t a t e− l i s t spec ) )
20 . . .
21 ( ( equal class−num 7) ; jmpl
22 ( jmpl−exe inst−address ( operand−one op1 s t a t e− l i s t spec ) (

operand−one op2 s t a t e− l i s t spec )
23 pc− l i s t s t a t e− l i s t spec ) )
24 ( ( equal class−num 8) ; save
25 ( save−exe ( operand−one op2 s t a t e− l i s t spec ) ( operand−one op1

s t a t e− l i s t spec )
26 pc− l i s t s t a t e− l i s t spec ) )
27 . . .
28 ( t ( set−multi−exception s t a t e− l i s t 44) ) ) ) ) ) ) )

Figure 5.11: Function for instruction execution in ACL2
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1 (defun st−exe ( reg−op1− l i s t mem−op2−list pc− l i s t s t a t e− l i s t spec )
2 ( l et ( (mem−tag ( get− l i s t− tag mem−op2−list ) )
3 (mem−addr ( get− l i s t−addr ( car mem−op2−list ) ) )
4 ( pc−tag ( get− l i s t− tag pc− l i s t ) )
5 ( reg−value ( get− l i s t−va lue reg−op1− l i s t ) )
6 ( reg−tag ( get− l i s t− tag reg−op1− l i st ) ) )
7 ( i f ( st− inst−tag mem−tag reg−tag pc−tag spec )
8 ( update−mem−state−list ( update−memory−list mem−addr reg−value
9 ( st− inst−tag mem−tag reg−tag pc−tag spec )

10 ( second ( check−ex ist mem−op2−list s t a t e− l i s t spec ) ) )
11 ( check−ex ist reg−op1− l i st s t a t e− l i s t spec ) )
12 ( set−multi−exception s t a t e− l i s t 23) ) ) )

Figure 5.12: Instruction execution of ST instruction

5.4 Execution and Tag Propagation in ACL2

There are 42 individual functions in ACL2 that have been developed for different instruc-

tions. These include the ld, st, call, jump, ret, save, restore, branch instructions,

shifting, logic and arithmetic instructions and the “cc” version of these instructions

(the “cc” version of these instructions modifies the integer condition code in addition to

doing what they should do) and other instructions. In these functions, the tag checking

and propagation functions (see Section 5.2) are used to check whether the instructions

are allowed to be executed or not. The functions then either update the state list and

corresponding tags, or generate a security exception. This section describes the model of

each of these classes of instruction.

5.4.1 Execution for LD and ST instructions

The ST instruction stores data from a register to a memory location. If the tag checking

for ST instruction passes, then the corresponding memory location in the state list needs

to be updated with the value and tag of the register. Figure 5.12 lists the ACL2 code for

executing the ST instruction.



109

1 (defun subcc−exe ( op1− l st op2− l st op3− l st pc− l s t s t a t e− l i s t spec )
2 ( l et ( ( op1−tag ( get− l i s t− tag op1− l st ) )
3 ( pc−tag ( get− l i s t− tag pc− l st ) )
4 ( op2−tag ( get− l i s t− tag op2− l st ) )
5 ( op1−value ( get− l i s t−va lue op1− l st ) )
6 ( op2−value ( get− l i s t−va lue op2− l st ) )
7 (op3−num ( get− l i s t−addr ( car op3− l st ) ) ) )
8 ( i f ( ar i th− inst−tag op1−tag op2−tag pc−tag spec )
9 ( update− s tate l i s t− spec2 ’ i c c (− op1−value op2−value )

10 ( ar i th− inst−tag op1−tag op2−tag pc−tag spec )
11 ( update−reg−state− l i s t
12 ( upda t e− r eg i s t e r− l i s t op3−num
13 (− op1−value op2−value )
14 ( ar i th− inst−tag op1−tag op2−tag pc−tag spec )
15 ( f i r s t s t a t e− l i s t ) )
16 s t a t e− l i s t ) )
17 ( set−multi−exception s t a t e− l i s t 2422) ) ) )

Figure 5.13: Instruction execution of SUBcc instruction

The st-exe function checks the tagging rules of ST instruction using the tags of

memory, register and PC. If the ST instruction is allowed to be executed according to the

tagging rule, the function updates the memory location in the state list with the value of

register that is being stored. The tag of the memory location will be replaced by the tag

returned from the st-inst-tag function. After doing this, the state list will be updated.

However if the ST tag checking rules block the execution of the ST instruction, then a

security exception will be generated.

The idea of the LD instruction is very similar to the ST instruction. The tag checking

function for LD is used to make sure the LD is allowed to be executed. If the LD is allowed,

then the destination register in the state list will be updated with the value and tag of

the memory location where the data is loaded. If it is not allowed, a security exception

will be generated.
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5.4.2 Execution of arithmetic, logic and shifting instructions

When running an arithmetic, logic, or shifting instruction, the result’s tag is calculated

by the arith-inst-tag function. The instruction execution function updates the correct

register in the state list. For “cc” versions, the instructions also modify the value and

tag of the icc in the state list.

To illustrate the execution of this group of instructions, the code for executing the

SUBcc instruction is shown in Figure 5.13.

The SUBcc performs the subtract function, however the difference between a SUB in-

struction and SUBcc instruction is that SUBcc also makes a change to the integer condition

code based on the subtraction (see line 9).

In the subcc-exe function, all the information that is needed for the tag checking

and subtraction function, such as tags and values, are extracted first. Then the tag

checking function, arith-inst-tag, is used to check whether or not the SUBcc is allowed

be executed. If it is allowed, the code updates the destination register’s value and tag.

Furthermore, the icc in the state list will be updated, and the whole updated state

list will be returned. However if the arith-inst-tag function returns NIL, then the

subcc-exe function will generate an exception, and leave the rest of the state unmodified.

For the other instructions in this class, the execution functions are very similar to

the SUBcc-exe function. All of the instructions in this group use the same tag check-

ing function (arith-inst-tag). Therefore only the substraction operation needs to be

changed to other operations such as addition, multiply or logical operations.

5.4.3 Execution of CALL related instructions

In the SPARC architecture, the CALL instruction copies the contents of the PC, which

is the address of the CALL instruction itself, into the %o7 register. The call-exe func-

tion implemented in ACL2 does more than this, since the tags need to be checked and
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1 (defun ca l l−exe ( a d d r e s s− l i s t inst−addr pc− l i s t s t a t e− l i s t spec )
2 ( l et ( ( addr−tag ( get− l i s t− tag a d d r e s s− l i s t ) )
3 ( pc−tag ( get− l i s t− tag pc− l i s t ) )
4 (pc−num ( get− l i s t−va lue ( f i r s t pc− l i s t ) ) ) )
5 ( i f ( ca l l− in s t− tag addr−tag pc−tag spec )
6 ( update−reg−state− l i s t ( update−reg ister−tag (+ pc−num 16) (

ca l l− in s t− tag addr−tag pc−tag spec )
7 ( upda t e− r eg i s t e r− l i s t pc−num inst−addr ( set−cpbit−tag pc−tag

spec )
8 ( f i r s t ( update−16−reg isters (+ pc−num 16) s t a t e− l i s t
9 ( ca l l− in s t− tag addr−tag pc−tag spec ) spec ) ) ) ) s t a t e− l i s t

)
10 ( set−multi−exception s t a t e− l i s t 255) ) ) )

Figure 5.14: Instruction execution of CALL instruction

propagated. The code of call-exe function is shown in Figure 5.14.

Similar to the execution functions introduced before, the call-exe gets parameters

such as the PC’s tag, state list, specification, the calling address and the current running

instruction’s address. The code first uses tag checking to determine whether or not the

function call is allowed. If it is allowed, it continues by changing the state list, otherwise

it raises a security exception. For changing the state list, the code zeros 16 registers and

tags them with the correct PC’s tag, which is calculated by the call-inst-tag function.

In addition to these updates, code sets the copy bit of the PC’s tag and copies the current

address of the CALL instruction and PC’s tag to the %o7 register and its tag.

5.4.4 Execution of BRANCH instructions

The BRANCH instructions execute a branch based on the icc value. Different BRANCH

instructions require different checks on the icc value. However the idea of the execution

of the different BRANCH instructions is almost identical. Take be-exe as an example

(Figure 5.15).

The be-exe executes the BE (branch on equal) instruction. The function first uses
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1 (defun be−exe ( cur−addr op1−addr− l ist p c− l i s t i c c− l i s t s t a t e− l i s t spec )
2 ( l et ( ( op1−tag ( get− l i s t− tag op1−addr− l ist ) )
3 ( icc−tag ( get− l i s t− tag i c c− l i s t ) )
4 ( pc−tag ( get− l i s t− tag pc− l i s t ) ) )
5 ( i f (or ( branch− inst−tag op1−tag pc−tag icc−tag spec )
6 ( check−same−function cur−addr ( car ( second op1−addr− l ist ) )

spec ) )
7 ( i f ( equal 0 ( get− l i s t−va lue ( s e a r c h− s p e c i a l− r e g i s t e r ’ i c c (

third s t a t e− l i s t ) ) ) )
8 s t a t e− l i s t
9 ( set−multi−exception s t a t e− l i s t −1) )

10 ( set−multi−exception s t a t e− l i s t 301) ) ) )

Figure 5.15: Instruction execution of BE instruction

the branch-inst-tag function to verify that the branch is allowed based on the tag

checking rules. If it is not allowed, it generates an exception. Because the BE instruction

executes a branch on equal, the icc value is compared with 0 to determine whether or

not to execute the branch. If the branch is going to be taken, it simply returns the

state-list. However if the branch is not going to be taken, the security exception value

will be changed to -1. In the system, if the security exception value is greater than 0,

the instruction execution will be stopped and the state list will be returned with the

security exception number in it to indicate the violation. The -1 is a security exception

number that is special for branch instructions. The -1 is used to indicate that the BRANCH

instruction will not be executed because of the branch condition. Therefore the system

will not be terminated and the -1 will be reset to 0 later.

The execution functions for other BRANCH instructions, such as BNE (branch on not

equal), BG (branch on greater than), BLE (branch on less than or equal to), are similar to

the code shown in Figure 5.15. The difference will be the check on the branch conditions.
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1 (defun save−exe ( num−op2−list sp−op3− l ist p c− l i s t s t a t e− l i s t spec )
2 ( l et ( ( reg−win ( get− l i s t−va lue ( s e a r c h− s p e c i a l− r e g i s t e r ’ rw ( third

s t a t e− l i s t ) ) ) ) )
3 ( i f ( add−exe−spec sp−op3− l ist num−op2−list sp−op3− l ist p c− l i s t

s t a t e− l i s t spec )
4 ( update− s ta t e l i s t− r egu la r2 ( get−register−num ’ o6 (+ reg−win 1) )
5 (+ ( get− l i s t−va lue num−op2−list ) ( ge t− l i s t−va lue sp−op3− l ist ) )
6 ( get− l i s t− tag pc− l i s t )
7 ( update− s tate l i s t− spec ’ fp sp−op3− l ist
8 ( increase−cwp reg−win
9 ( get− l i s t− tag pc− l i s t )

10 ( add−exe−spec sp−op3− l ist num−op2−list sp−op3− l ist p c− l i s t
s t a t e− l i s t spec ) spec ) ) )

11 ( set−multi−exception s t a t e− l i s t 257) ) ) )

Figure 5.16: Instruction execution of SAVE instruction

5.4.5 Execution of SAVE and RESTORE instructions

In the SPARC architecture, the SAVE instruction decrements the CWP by 1 and RESTORE

instruction increments it. Because the register numbers in the ACL2 model start from

0 and grow up, the modified SAVE instruction increase the CWP by 1 while the RESTORE

instruction decreases the CWP by 1. The SAVE instruction is usually in a format such as

SAVE %sp, -128, %sp. It takes the value in %sp for the current register window, adds

it to the second operand, and then writes the result into the %sp in the CWP+1 register

window. The number indicates the size of the stack for the new function. Figure 5.16

lists the code for instruction execution of the SAVE instruction.

The save-exe function first ensures that the instruction is allowed to be executed

based on the tag checking. If not, it sets the security exception number of the state list

to 257. If the instruction is allowed, the function increases the CWP and returns a new

state list by using the increase-cwp function. After that, the save-exe function writes

the new %sp value (adds the old %sp with the number) to the %sp of the new register

window. Because the %sp is always stored in %o6 register, the new register number is

calculated by the new register window number (the old register number plus 1) and the
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1 ( l i s t
2 ( l i s t ’FUNCTION #x2001284 #x20013a8
3 ( l i s t ’USER1 ’USER1 ( l i s t ’CPNOTSET ’RONLY ’EXEENTRY ’WORLDNOTSET) )
4 ; ”<In i t >:”
5 ( l i s t
6 ’(# x2001284 ( save ( sp ) (−128) ( sp ) ) )
7 ’(# x2001288 ( s e t h i (#x201e400 ) ( g1 ) ) )
8 ’(# x200128c ( ld (IND g1 #x340 ) ( g1 ) ) )
9 ’(# x2001290 ( s e t h i (#x201cc00 ) ( o1 ) ) )

10 ’(# x2001294 ( ld (IND g1 #xc ) ( o0 ) ) )
11 ’(# x2001294 ( s t (10) (IND o0 594) ) )
12 ’(# x2001294 ( ld (IND g0 594) ( o3 ) ) )
13 ’(# x2001294 ( add ( g1 ) ( o3 ) ( o1 ) ) )
14 ’(# x2001298 ( or ( o1 ) (#x210 ) ( o1 ) ) )
15 ’(# x200129c ( s e t h i (#x201cc00 ) ( o2 ) ) )
16 ’(# x20012a0 ( c a l l (#x20119b8 ) ( ) ) )
17 ’(# x20012a4 ( or ( o2 ) (#x218 ) ( o2 ) ) )
18 ’(# x20012a8 ( mov (#x7c4 ) ( g1 ) ) )
19 ’(# x20012ac ( s t ( g1 ) (IND fp −28) ) )
20 . . .
21 ) ) )

Figure 5.17: Sample SPARC instructions for RTEMS code

%o6. Then the new state list will be returned.

The RESTORE instruction decreases CWP to slide the register window back.

5.4.6 Test the tagging system in ACL2

After setting up the tagging model in ACL2, real SPARC assembly instructions are used

to test the system. We wrote our test code in ‘C’, integrated it into RTEMS and ran

the compiler. Then by using sparc-rtems4.10-objdump command, we generated the

assembly for the object files. This assembly was then converted to a LISP notation.

Figure 5.17 displays the instructions for a Init function in RTEMS. The instructions

and other information such as tag, starting address and ending address, are put together

in a list in ACL2 to make it usable by the tagging model.

The code in Figure 5.17 shows a list which includes (1) a FUNCTION label, (2) the
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starting address of the Init function (#x2001284), (3) an ending address of the func-

tion (#x2001318), (4) the tag of the Init function, (USER1 USER1 (CPNOTSET RONLY

EXEENTRY WORLDNOTSET)) and (5) the instructions of the function with their address

(from line 5 to 20).

Our tool generates a separate list for each function in RTEMS. In our testing, many

functions have been put into lists like the list shown in Figure 5.17. The ACL2 model of

the tagging system is able to start running from the first instruction in a function and

keep running through several functions (by CALL and RET) without security exceptions

being generated. For testing purposes, the tested functions cover functions from different

RTEMS levels (MANAGER and SCORE), the LOW level C library functions, and user

functions.

As proof of concept a small portion of RTEMS code has been tested. The tests were

made to cover as many of the tagging possibilities as possible.

5.5 Verifying the Security Lattice

As mentioned in Section 3.2, the security classes in the lattice are arranged in a partial

ordering (using the operator ≤). For the lattice model of information flow, there exists

a lattice with a finite set of security classes and a partial ordering between the security

classes. The symbol ≤ denotes the partial ordering relation between two security classes.

For example, A ≤ B means class A is at a lower or equal level than class B. In a lattice,

the ≤ operator is reflexive, transitive, and antisymmetric:

reflexive: A ≤ A

transitive: if A ≤ B and B ≤ C, then A ≤ C

antisymmetric: if A ≤ B and B ≤ A, then A = B

The ACL2 code for proving these three properties is shown in Figure 5.18, Figure 5.19

and Figure 5.20. The other basic functions which are used for proving these theorems,
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such as label-dominate and security-class-check, are not shown. Also, additional

lemmas needed by the proof engine are not shown.

� Figure 5.18 shows the code for proving the reflexivity theorem. Lines 3 checks the

format of the label1 (label1 means the Owner field or the Code-space field of a tag)

to make sure it is correct and then on line 4, proves that the label1 can dominate

itself.

� Similar to the proof of label-reflexivity theorem, lines 6 to 10 prove the reflexivity

of security class (security class is the combination of Owner field and Code-space

field of a tag). Line 7 checks the format of the sclass1, and implies that sclass1

should dominate itself on line 8.

� In Figure 5.19, the proofs of transitive theorem for labels and security class are

displayed. On line 5 to 7, it checks whether the labels are in valid format. The

code checks that label1 dominates label2, label2 dominates label3 and then implies

that label1 dominates label3 (line 10).

� On lines 13 to 24, the transitive theorem for security classes is proved. If sclass1

dominates sclass2 (line 20) and sclass2 dominates sclass3 (line 21), then implies

sclass1 dominates sclass3 (line 22).

� In Figure 5.20, lines 2 to 10 are used to prove the anti-symmetry theorem for labels.

If label1 dominates label2 (line 5), label2 dominates label (line 6), and if all these

labels’ format are valid, then implies that label1 and label2 are equal (line 7).

� Lines 12 to 21 prove that if sclass1 dominates sclass2 (line 15), sclass2 dominates

sclass1 (line 16), then sclass1 and sclass2 are equal.

After proving these three basic theorems, whether the least upper bound (LUB) and

greatest lower bound (GLB) operations can be implied from the lattice are proven. The

definitions of LUB and GLB [8] are:
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1 ;−−−−−− REFLEXIVITY THEOREM −−−−−−
2 ( defthm labe l− r e f l ex iv i ty− thm
3 ( i m p l i e s ( label− format−check l a b e l 1 spec )
4 ( label−dominate l a b e l 1 l a b e l 1 spec ) ) )
5
6 ( defthm secur i ty−c l a s s− r e f l ex iv i ty− thm
7 ( i m p l i e s ( secur i ty−c las s−check s c l a s s 1 spec )
8 ( secur i ty−c lass−dominate s c l a s s 1 s c l a s s 1 spec ) )
9 : h in t s ( ( ”Goal”

10 : in−theory ( d i s a b l e label− format−check label−dominate ) ) ) )

Figure 5.18: Prove reflexivity theorem in ACL2

1 ;−−−−−− TRANSITIVE THEOREM −−−−−−
2 ( defthm l a b e l− t r a n s i t i v e
3 ( l et ( ( code−table ( second ( assoc ’TABLE spec ) ) ) )
4 ( i m p l i e s
5 (and ( member−equal l a b e l 1 ( auto− l i s t code−table ) )
6 ( member−equal l a b e l 2 ( auto− l i s t code−table ) )
7 ( member−equal l a b e l 3 ( auto− l i s t code−table ) ) )
8 ( i m p l i e s (and ( label−dominate l a b e l 1 l a b e l 2 spec )
9 ( label−dominate l a b e l 2 l a b e l 3 spec ) )

10 ( label−dominate l a b e l 1 l a b e l 3 spec ) ) ) )
11 : h in t s ( ( ”Goal” : in−theory ( d i s a b l e label−dominate ) ) ) )
12
13 ( defthm secur i ty−c la s s− t rans i t ive− thm
14 ( i m p l i e s (and ( s c la s s− i n− tab l e s c l a s s 1 spec )
15 ( sc la s s− i n− tab l e s c l a s s 2 spec )
16 ( sc la s s− i n− tab l e s c l a s s 3 spec ) )
17 ( i m p l i e s (and ( secur i ty−c las s−check s c l a s s 1 spec )
18 ( secur i ty−c las s−check s c l a s s 2 spec )
19 ( secur i ty−c las s−check s c l a s s 3 spec ) )
20 ( i m p l i e s (and ( secur i ty−c lass−dominate s c l a s s 1 s c l a s s 2 spec )
21 ( secur i ty−c lass−dominate s c l a s s 2 s c l a s s 3 spec ) )
22 ( secur i ty−c lass−dominate s c l a s s 1 s c l a s s 3 spec ) ) ) )
23 : h in t s ( ( ”Goal”
24 : in−theory ( d i s a b l e label− format−check label−dominate dominates− l i s t

dominates−subsetp−thm ) ) ) )

Figure 5.19: Prove transitive theorem in ACL2
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1 ;−−−−−− ANTI−SYMMETRY THEOREM −−−−−−
2 ( defthm label−anti−symmetry−thm
3 ( i m p l i e s (and ( label− format−check l a b e l 1 spec )
4 ( label− format−check l a b e l 2 spec )
5 ( label−dominate l a b e l 1 l a b e l 2 spec )
6 ( label−dominate l a b e l 2 l a b e l 1 spec ) )
7 ( equal l a b e l 1 l a b e l 2 ) )
8 : r u l e− c l a s s e s n i l
9 : h i n t s ( ( ”Goal” : in−theory ( d i s a b l e label− format−check label−dominate )

10 : use (LABEL−FORMAT−CHECK−AXIOM1 anti−symmetry−func−lab ) ) ) )
11
12 ( defthm security−class−anti−symmetry−thm
13 ( i m p l i e s (and ( secur i ty−c las s−check s c l a s s 1 spec )
14 ( secur i ty−c las s−check s c l a s s 2 spec ) )
15 ( i m p l i e s (and ( secur i ty−c lass−dominate s c l a s s 1 s c l a s s 2 spec )
16 ( secur i ty−c lass−dominate s c l a s s 2 s c l a s s 1 spec ) )
17 ( secur i ty−c la s s−eq s c l a s s 1 s c l a s s 2 ) ) )
18 : h in t s ( ( ”Goal”
19 : use ( ( : i n s t anc e label−anti−symmetry−thm ( l a b e l 1 ( car s c l a s s 1 ) )

( l a b e l 2 ( car s c l a s s 2 ) ) )
20 ( : i n s t anc e label−anti−symmetry−thm ( l a b e l 1 ( cadr s c l a s s 1 ) )

( l a b e l 2 ( cadr s c l a s s 2 ) ) ) )
21 : in−theory ( d i s a b l e label− format−check label−dominate ) ) ) )

Figure 5.20: Prove anti-symmetry theorem in ACL2
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� Least upper bound: for each pair of classes A and B in the lattice, there exists

a unique class C = A⊕B such that:

A ≤ C and B ≤ C, and

A ≤ D and B ≤ D implies C ≤ D for all D in the lattice.

� Greatest lower bound: for each pair of classes A and B in the lattice, there

exists a unique class E = A⊗B such that:

E ≤ A and E ≤ B, and

D ≤ A and D ≤ B implies D ≤ E for all D in the lattice.

Figure 5.21 shows the code that was used to prove the LUB and GLB properties of

the security lattice. The labels’ format are checked first to ensure the correctness of

the labels. Then label3 dominates label1 and label3 dominates label2, implies that

label3 dominates the LUB of label1 and label2. The function (label-lub label1

label2) on line 7 checks the least upper bound rules for label1 and label2 and returns

the result class.

On lines 8 to 15, the greatest upper bound relation is proven. If all the labels are in

correct format, and if they all satisfy the relations that label1 dominates label3 and

label2 dominate label3, then implies that label3 is dominated by the GLB of label1

and label2. Similar to the label-lub function, label-glb checks the GLB rules and

returns the label which is the greatest upper bound of label1 and label2.

After proving the reflexive, transitive, antisymmetric, LUB and GLB properties, the

proofs can be put together to prove that the model satisfies a lattice. According to

Denning [8], a flow policy is a lattice if the classes are partially ordered and there exist

least upper bound and greatest lower bound relations of the classes. Therefore, to prove

that the system is a lattice, all of the properties: reflexive, transitive, anti-symmetric,

LUB and GLB have to be proved to be satisfied by the system. Figure 5.22 presents the

code for proving that the model is a lattice.
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1 ( defthm lub−thm
2 ( i m p l i e s (and ( label− format−check l a b e l 1 )
3 ( label− format−check l a b e l 2 )
4 ( label− format−check l a b e l 3 )
5 ( label−dominate l a b e l 3 l a b e l 1 )
6 ( label−dominate l a b e l 3 l a b e l 2 ) )
7 ( label−dominate l a b e l 3 ( labe l− lub l a b e l 1 l a b e l 2 ) ) ) )
8
9 ( defthm glb−thm

10 ( i m p l i e s (and ( label− format−check l a b e l 1 )
11 ( label− format−check l a b e l 2 )
12 ( label− format−check l a b e l 3 )
13 ( label−dominate l a b e l 1 l a b e l 3 )
14 ( label−dominate l a b e l 2 l a b e l 3 ) )
15 ( label−dominate ( labe l−g lb l a b e l 1 l a b e l 2 ) l a b e l 3 ) ) )

Figure 5.21: Prove LUB and GLB theorems in ACL2

1 ( defthm i s− l a t t i c e
2 ( i m p l i e s (and ( label− format−check l a b e l 1 )
3 ( label− format−check l a b e l 2 )
4 ( label− format−check l a b e l 3 ) )
5 (and ( t rans i t ive− func− l ab l a b e l 1 l a b e l 2 l a b e l 3 )
6 ( r e f l ex i v i t y− f unc− l ab l a b e l 1 )
7 ( anti−symmetry−func−lab l a b e l 1 l a b e l 2 )
8 ( lub−func−lab l a b e l 1 l a b e l 2 l a b e l 3 )
9 ( glb−func− lab l a b e l 1 l a b e l 2 l a b e l 3 ) ) )

10 : h in t s ( ( ”Goal”
11 : in−theory ( d i s a b l e label− format−check label−dominate

t rans i t ive− func− l ab
12 r e f l ex i v i t y− f unc− l ab anti−symmetry−func−lab
13 lub−func−lab glb−func− lab ) ) ) )

Figure 5.22: Prove the flow policy is a lattice in ACL2
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1 ( defthm ld−exe−exception−thm
2 ( l et * ( (mem−tag ( third mem−op1−list ) )
3 ( pc−tag ( third pc− l i s t ) )
4 (mem−tag−owner ( get−owner− label mem−tag) )
5 ( mem−tag−control ( get−contro l− l abe l mem−tag) )
6 ( pc−tag−owner ( get−owner− label pc−tag ) ) )
7 ( i m p l i e s
8 (and
9 ( s ta t e−va l ida tep s t a t e− l i s t spec )

10 ( va l id−op− l i s t mem−op1−list )
11 (not ( has−secur i ty−except ion s t a t e− l i s t ) ) )
12 ( equal
13 ( has−secur i ty−except ion
14 ( ld−exe mem−op1−list reg−op2− l i s t p c− l i s t s t a t e− l i s t spec ) )
15 (not ( ld− inst−tag mem−tag pc−tag spec ) ) ) ) ) )

Figure 5.23: Prove the security policy for LD instruction

5.6 Verifying the Security Policies for Instructions

As described in Section 5.2, the tag checking rules have been modeled for each class of

the instructions. Other theorems can be proven for the security policies of the instruction

executions.

The code shown in Figure 5.23 proves that the execution of the LD instruction will

throw an exception if and only if the ld-inst-tag function returns NIL. The code first

ensures the initial state list is a valid state, the operands are valid and there is no

security exception generated. Then after execution of the LD instruction, there will be an

exception generated if and only if the tag checking function for LD fails, in other words,

the ld-inst-tag function returns NIL.

Section 5.2.4 presents the detailed tagging rules for LD instruction. The lines 12-15 in

Figure 5.23 can be rewritten with lines in Figure 5.24. The code in Figure 5.24 replaces

the ld-inst-tag with the detailed tag checking rules for LD.

There are similar theorems for the other instruction classes, such as BRANCH instruc-

tions, ST instruction and etc. These theorems provide the formal proofs that the model
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1 ( equal
2 ( has−secur i ty−except ion
3 ( ld−exe mem−op1−list reg−op2− l i s t p c− l i s t s t a t e− l i s t spec ) )
4 (or (not ( tag−format−check mem−tag spec ) )
5 (not ( tag−format−check pc−tag spec ) )
6 (and (not (and ( equal ’WORLDSET ( get−control−world

mem−tag−control ) )
7 ( data−stack−mem mem−tag−control ) ) )
8 (or (and ( equal ’CPSET ( get−control−copybit mem−tag−control )

)
9 (not ( label−dominate pc−tag−owner mem−tag−owner

spec ) ) )
10 (and (not ( equal ’CPSET ( get−control−copybit

mem−tag−control ) ) )
11 (not ( tag−dominate pc−tag mem−tag spec ) ) ) ) ) ) )

Figure 5.24: Prove the security policy for LD instruction 2

satisfies the security policy specified in this dissertation and defines in the xx-inst-tag

formulas.

5.7 Summary

This chapter presents the process of developing an execution model of the UI tagging

system. A tag can be represented in a list in ACL2. There is a state list in the system

which consists of all the registers, memory, special registers and a security exception

number. Tag checking functions for different groups of instructions are written to check

tags to figure out whether the specific instruction is allowed to be executed or not. If

it is permitted, instruction execution functions are used to update the specific lists in

the state list. If it is not permitted, the security exception number will be changed to a

positive number which indicates a invalid instruction execution.

After setting up the execution model, instructions from RTEMS modules have been

extracted and executed in the model. ACL2 starts the model from an initial state list,

and then execute all of the instructions. The state list keeps track of the changes in the
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system by updating the corresponding lists in the state list when executing an instruction.

To prove that the information flow in the model satisfies a lattice, the theorems of

reflexive, transitive, antisymmetric, LUB and GLB have been proven to be satisfied by

the system. In addition we have proven that the model of execution satisfies the security

policies specified in the tag check functions. These proofs rely on the lattice nature of

the system to ensure correctness.
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Chapter 6: Conclusion and Future Work

This chapter concludes the dissertation work and proposes future work that could be

conducted for the UITags project.

6.1 Conclusion

In recent years, security tagging schemes have been seen as promising mechanisms to

enhance the security of computer systems. As a result, a number of security tagging

schemes and corresponding security tagged architectures have been proposed to address

current security problems. However, the majority of them are designed to prevent classes

of runtime attacks on the system and not as a fundamental enhancement to the operation

of the microprocessor.

The goal of this project was to design a new security tagging scheme that enhances

access control through least privilege while enabling good system performance. As a first

step towards this goal, this dissertation introduced a design of the UI tagging scheme that

was focused on securing RTEMS, a single user, multi-thread model runtime executive.

The partner team from Cornell University was responsible for developing the security

tagged microprocessor which could support the tagging scheme.

RTEMS was chosen as the target system of this project because it is effectively a

zero-kernel operating system that was in need of security enhancements. An evaluation

of the RTEMS architecture provided a better understanding of what tags can and cannot

do. According to the security enhancements that were needed, the tag was designed with

three fields: Owner field, Code-space field, and Control-bits field. By using these tags,

the system is able to separate RTEMS (i.e., code and data) and user (i.e., code and

data), divide RTEMS code into different levels, prevent users from using critical system

functions, and protect return values.

Since most of the RTEMS code is written in the C programming language, security
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rules have been developed to control information flow within RTEMS with the support

of tags. These rules cover all of the major C-language constructs, such as assignment

statement, if statement, and while statement. A presentation of a security lattice

is introduced in this dissertation to specify the authorized flow of information. The

combination of Owner field and Code-space field tags represents the security class of the

tagged data. With the security classes, lattice, and security rules, the information flow

can be controlled in RTEMS.

After presentation of a C-language tagging scheme, tagging rules have been refined to

support assembly language level tagging. Specifically, the tagging scheme was developed

for the Leon3 processor, which is based on the SPARC architecture. SPARC instructions

have been divided into logical groups and specific refined security rules were presented.

These refined rules took into consideration the use of registers, register windows, memory

stack, program counter, and differences between code and data in memory.

Because the hardware was not available for this project, a simulator for the SPARC

architecture was enhanced to support the UI tagging scheme by the UI tagging research

team. Hooks and additional instructions were successfully added in SIS for the UI tagging

scheme.

Modifications of RTEMS source code have also been made to support the tagging

scheme. This includes addition of a tag manager which provides tag checking and prop-

agation that can not be done in hardware. Some tagging functions have been inserted

into specific RTEMS functions to satisfy special requirements of the tagging scheme, such

as setting the copy bit of the ID’s tag that is going to be returned from some RTEMS

functions. RTEMS has also been expanded from a single user multi-threaded model of

execution to a multiuser system. RTEMS now supports the concepts of non-privileged

user and superuser, where the superuser has the authority to create, delete, and con-

trol non-privileged users. A user manager has been added into RTEMS to support the

tagging scheme for multiple users.
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In total, 76 test cases (with more than 2000 subcases) were manually developed to

test the design of the UI tagging scheme and the correctness of the SIS simulator that

has modified interpretation of instructions deployed in it. These test cases cover many

possibilities of tag checking and propagation, including all combinations of relationships

between the PC’s tag and the variable tags, memory types, and control bits.

Lastly, a formal model of the security policy enforced by the UI tagging scheme

has been developed in ACL2. With the UI tagging scheme applied, the system state

is monitored while executing different instructions. This model is used to prove the

correctness of the tagging implementation as well as validate that the implemented system

can support higher-level system security properties.

In summary, the work presented in this dissertation proposes a UI tagging scheme

which protects the system and user software from security attacks and invalid information

access. The tagging scheme has been partially implemented for RTEMS. Test cases were

generated to ensure the tagging rules and the modified interpretation of instructions are

correct. A formal model of the security policy enforced by the UI tagging system has

been developed and security related lemmas and theorems have been proven.

6.2 Future Work

This section summarizes the future work that could be conducted as an extension of the

security tagging project.

Fully tag RTEMS code to enable RTEMS to always use tagging. Currently,

all of the test cases work by enabling and disabling tagging as needed. Therefore only

some of the RTEMS code is tagged. For future work, all of the RTEMS functions have

to be tagged, including libraries. The goal is to have a tagged RTEMS running from the

beginning of system initialization. In addition to the RTEMS functions, global variables

need to be tagged with care. This is especially true when RTEMS is modified to a
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multiuser system. Some global variables can be shared among different users while other

global variables cannot, due to the possibility that they may affect other users or the

system. Therefore these global variables need to be made usable only by a specific user

manager.

In addition, the C library functions need to be considered and properly tagged. Be-

cause of time restrictions, not all of the C library functions that are used by RTEMS can

be tagged manually. Therefore software tools will have to be used to generate a list of

the C library functions that are used in the RTEMS benchmarks. These functions will

be given special tags. By doing this, additional checks will be applied when using these

functions, to prevent malicious usage of the important functions.

The process of tagging the complete RTEMS may be time consuming, because RTEMS

requires a fresh build and installation even with a small change of the code, which takes

around 20 minutes.

Reduce the overhead of the tagging system. Since almost every instruction exe-

cution requires tag checking of the source or destination operands’ tag, it increases the

overhead of the system. For example, normally, the LD instruction loads values from

memory space to registers, but in the UI tagging scheme, the LD instruction has to check

the value’s tag and store it as the register’s tag additionally. To minimize the overhead,

tags can be cached as many as possible to speed up the tag checking operations. Another

way that could reduce the overhead of the tagging system is to use a tag compression

scheme, and data and code spatial locality information to reduce the overhead.

Add security rules to floating point instructions. Among SPARC instructions,

tagging rules are only given to the integer instructions, and not to the floating point

instructions. Currently, all of the floating point instructions are left without analysis

and corresponding tagging rules. Future efforts could be made on the floating point

instructions and any other instructions that have not been examined.
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Persistent tags and user-defined tagging rules. The current tagging model focuses

on the protection of code and data from unauthorized access and modification. It is a first

step toward enhanced security tagging, such as user-defined tags. The support of user-

defined tags may require the support of persistent tags (tags that are maintained between

system resets), that may also be used for multi-processor (or multi-core) execution models

and storage of objects in file systems or other permanent storage.

In addition, the UI tagging scheme only supports fixed tagging rules. In the future,

it would be desirable to have user-defined tagging rules. A second manager could be

implemented to support user-defined tagging rules. However, to be able to support user-

defined tagging rules, the system should provide not only the interface for users, but

protections for the system in case a user tries to do something that could violate the

security of the system.

Port sample applications to evaluate the performance of the tagging scheme.

In addition to the test cases, some sample applications could be ported to RTEMS. These

benchmark applications could help evaluate the performance of the UI tagging scheme.

This may require additional changes in RTEMS code. For example, the portions of

RTEMS and C libraries that are needed by the benchmark applications would need to

be tagged. What’s more, RTEMS is only compatible with a few applications and none of

them are usable for evaluation purposes. Additional efforts are needed to port applica-

tions to RTEMS. Based on evaluation results, new methods for improving performance,

may be proposed.
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This appendix summarizes the code implemented in RTEMS for the UITags project.

Section A.1 illustrates the tag manager directives. These directives support the tagging

scheme at the software level, which includes enabling and disabling the tagging copro-

cessor, tagging a word, validating specific tags, etc. Directives for the user manager are

described in Section A.2. The user manager supports multiuser tags for the expanded

RTEMS, helps isolate different users from each other by using tags as described in Sec-

tion 4.1.1.

A.1 Tag Manager Directives

We have developed a tagging scheme for an operating system that utilizes features of a

security tagged architecture microprocessor being developed as part of this larger research

project. To support the operating system level tagging, we need to have a tag manager

in the system. The purpose of the tag manager is to allow system initialization software

to configure the initial tags of the system, to allow trusted software to set and modify

tags, and to manage the tagging exceptions thrown by the hardware when a tag violation

occurs. This section outlines the directives of the tag manager for the RTEMS system.

The directives of the tag manager are:

� rtems tag partition - tag every word in an RTEMS memory partition.

� rtems tag segment - tag every word in an RTEMS memory segment of a specified

memory region.

� rtems tag word - tag a specified memory word.

� rtems tag copy - copy the value and the tag, set the copy bit of the tag.

� rtems take ownership - upgrade the tag to higher level tag, so the higher level code

could manage the tagged data.
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� rtems release ownership - downgrade the tag to PC tag.

� rtems tag enable - enable the tagging mechanism (this may end up being a startup

function that is only accessible as part of the initialization routines and security

exception handler).

� rtems tag disable - disable the tagging mechanism (a dangerous function, and

maybe restricted to just the shutdown phases and security exception handler of

RTEMS).

� rtems tag set handler - set the exception handling function – this is for user-level

security exceptions that are not already processed by the tag manager.

� rtems tag set lattice - set the rules to form a lattice based on both the Owner field

and the Code-space field in the tag.

� rtems tag initialize - initialize the tag manager.

� rtems tag validate copybit - check the copy bit of a tag.

� rtems get user tag - get corresponding user tags for users.

� rtems superuser check - check whether the Owner field is superuser or not.

� rtems tag exception initialize - handle the tagging exception.

A.1.1 TAG PARTITION - Tag an RTEMS memory partition

CALLING SEQUENCE:

rtems_status_code rtems_tag_partition(

rtems_id id,

rtems_tag tag

)
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DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - partition tagged successfully

RTEMS INVALID ID - invalid partition id

RTEMS INVALID TAG - invalid security tag

RTEMS UNAUTHORIZED ACCESS - security permissions will not permit the opera-

tion

DESCRIPTION:

This directive allows the calling program to set the security tags of every word of

memory within the specified memory partition.

A.1.2 TAG SEGMENT - Tag a segment of an RTEMS memory

region

CALLING SEQUENCE:

rtems_status_code rtems_tag_segment(

rtems_id id,

void *segment,

rtems_tag tag

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - segment tagged successfully

RTEMS INVALID ID - invalid region id

RTEMS INVALID ADDRESS - segment is null

RTEMS INVALID TAG - invalid security tag
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RTEMS UNAUTHORIZED ACCESS - security permissions will not permit the opera-

tion

DESCRIPTION:

This directive allows the calling program to set the security tags of every word of

memory within the specified segment of a memory region.

A.1.3 TAG WORD - Tag a word of memory

CALLING SEQUENCE:

rtems_status_code rtems_tag_word(

int32 *word,

rtems_tag tag

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - word tagged successfully

RTEMS INVALID ADDRESS - word is null

RTEMS INVALID TAG - invalid security tag

RTEMS UNAUTHORIZED ACCESS - security permissions will not permit the opera-

tion

DESCRIPTION:

This directive allows the calling program to set the security tag of the specified word

of memory.
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A.1.4 TAG COPY - Set the copy bit and tag of a word of mem-

ory

CALLING SEQUENCE:

rtems_status_code rtems_tag_copy(

int32 value,

int32 *word

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - copy bit set successfully

RTEMS INVALID ADDRESS - word is null

RTEMS UNAUTHORIZED ACCESS - security permissions will not permit the opera-

tion

DESCRIPTION:

This directive allows the calling program to set the copy bit in the security tag of the

specified word of memory, while copying a tag and data value. This bit is used to allow

a user function to possess a tagged identifier for future use by directives, but to ensure

that it cannot be modified.

A.1.5 TAKE OWNERSHIP - Upgrade the tag to higher level

CALLING SEQUENCE:

rtems_status_code _rtems_take_ownership (

addr_t addr,

size_t size
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)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - word tagged successfully

RTEMS INVALID ADDRESS - word is null

RTEMS INVALID TAG - invalid security tag

RTEMS UNAUTHORIZED ACCESS - security permissions will not permit the opera-

tion

DESCRIPTION:

This directive upgrades the security tag of the specified word of memory to the PC’s

tag, therefore the higher level system code could manage the data owned by users or

lower level entities.

A.1.6 RELEASE OWNERSHIP - Downgrade the tag to PC

tag

CALLING SEQUENCE:

rtems_status_code _rtems_release_ownership (

addr_t addr,

size_t size

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - word tagged successfully

RTEMS INVALID ADDRESS - word is null
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RTEMS INVALID TAG - invalid security tag

RTEMS UNAUTHORIZED ACCESS - security permissions will not permit the opera-

tion

DESCRIPTION:

This directive downgrades the security tag of the specified word of memory to the

lower level tags.

A.1.7 TAG ENABLE - Turn on the tagging subsystem of the

hardware

CALLING SEQUENCE:

rtems_status_code rtems_tag_enable(

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - system enabled successfully

RTEMS UNAUTHORIZED ACCESS - security permissions will not permit the opera-

tion

DESCRIPTION:

This directive allows the calling program to turn on the tagging subsystem. This may

end up being a startup function that is only part of the initialization routine and security

exception handler.
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A.1.8 TAG DISABLE - Turn off the tagging subsystem of the

hardware

CALLING SEQUENCE:

rtems_status_code rtems_tag_disable(

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - system disabled successfully

RTEMS UNAUTHORIZED ACCESS - security permissions will not permit the opera-

tion

DESCRIPTION:

This directive allows the calling program to turn off the tagging subsystem. This

is a dangerous directive and may end up being a startup function that is part of the

shut-down routine.

A.1.9 TAG SET HANDLER - Set the user-level security ex-

ception handler

CALLING SEQUENCE:

rtems_status_code rtems_tag_set_handler(

void *handler() /* Need to check syntax of this */

)

DIRECTIVE STATUS CODES:
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RTEMS SUCCESSFUL - handler bit set successfully

RTEMS INVALID ADDRESS - invalid function pointer

RTEMS UNAUTHORIZED ACCESS - security permissions will not permit the opera-

tion

DESCRIPTION:

This directive allows the calling program to set the user-level exception handler for

tagging exceptions not handled by the tag manager.

A.1.10 TAG SET LATTICE - Set the relations in the lattice

CALLING SEQUENCE:

rtems_status_code rtems_tag_set_lattice(

rtems_tag tag1,

rtems_tag tag2

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - lattice set successfully

RTEMS INVALID TAG - invalid security tag

RTEMS INVALID PARAMETER - requested relationship inconsistent with current lat-

tice

DESCRIPTION:

This directive sets rules to form the relationship between two tags based on both of

the Owner field and the Code-space field in the tags.
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A.1.11 TAG INITIALIZE - initialize the tag manager

CALLING SEQUENCE:

rtems_status_code rtems_tag_initialize(

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - RTEMS tagged successfully

RTEMS INVALID TAG - invalid security tag

DESCRIPTION:

This directive initializes the tag manager.

A.1.12 TAG VALIDATE COPYBIT - Check the copy bit of a

tag

CALLING SEQUENCE:

rtems_status_code rtems_tag_validate_copybit(

rtems_tag tag

)

DIRECTIVE STATUS CODES:

RTEMS COPYBIT NOT SET - the copy bit is not set

RTEMS COPYBIT SET - the copy bit is set

RTEMS INVALID TAG - invalid security tag



144

DESCRIPTION:

This directive checks the copy bit of the tag.

A.1.13 GET USER TAG - get corresponding user tags for users

CALLING SEQUENCE:

tag_t rtems_get_user_tag(

int user_num

)

DESCRIPTION:

This directive forms a user tag for a specific user number and returns it. For example,

if the user number is 2, then a tag specific for user 2, (USER2, USER2, true, READWRITE

| DATA MEMORY | WORLD NOT READABLE), will be returned.

A.1.14 SUPERUSER CHECK - check whether the user is su-

peruser or not

CALLING SEQUENCE:

rtems_status_code rtems_superuser_check(

)

DIRECTIVE STATUS CODES:

RTEMS SUPERUSER - the owner of the tag is superuer

RTEMS NOT SUPERUSER - the owner of the tag is not the superuser

RTEMS INVALID TAG - invalid security tag
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DESCRIPTION:

This directive checks whether the owner of the PC’s tag is superuser or not.

A.1.15 TAG EXCEPTION INITIALIZE - handle the tagging

exception

CALLING SEQUENCE:

rtems_status_code rtems_tag_exception_initialize(

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - exception handler initialized successfully

RTEMS INIT FAIL - failed to initialize the exception handler

DESCRIPTION:

This directive initializes the tag exception handler.

A.2 User Manager Directives

Since the RTEMS has been changed from a single user system to a multiuser system, a

user manager has been added to RTEMS to support the UI tagging scheme for multiuser

system. The purpose of the user manager is to provide the superuser authorities to

create, delete and control the non-privileged users. A usertask table is maintained to

keep track of the non-privileged users and their tasks. The directives for user manager

include:

� rtems user create - create a new non-privileged user.
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� rtems user delete - delete a non-privileged user.

� rtems user allocate - determine the next user number.

� rtems user reset - reset the user number when deleting a user.

� rtems usertask allocate - determine the next task number for a specific user.

� rtems usertask reset - reset the next task number for a specific user.

� rtems user manager initialization - initialize the user manager.

A.2.1 USER CREATE - create a new non-privileged user

CALLING SEQUENCE:

rtems_status_code rtems_user_create(

rtems_id *user_id_ptr,

rtems_name *user_name_ptr,

int user_memsize

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - a new user created successfully

RTEMS INVALID USER - invalid user tag

DESCRIPTION:

This directive creates a non-privileged user in the system. It first checks whether the

thread which request creating a user is the superuser. If this is the case, tag all of the

user resources (calculated by using the user memsize) with the proper user tag.
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A.2.2 USER DELETE - delete a specific non-privileged user

CALLING SEQUENCE:

rtems_status_code rtems_user_delete(

rtems_id *user_id_ptr,

rtems_name *user_name_ptr,

int user_memsize

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - specific user deleted successfully

RTEMS INVALID USER - invalid user tag

DESCRIPTION:

This directive deletes a specific non-privileged user from the system. It first checks

whether the thread which request deleting a user is the superuser. If this is the case, tag

the user resources with the LOW tag.

A.2.3 USER ALLOCATE - determine the next user number

CALLING SEQUENCE:

int rtems_user_allocate(

)

DESCRIPTION:

This directive returns the the number for the next user and return the proper user

number. For example, if there are 3 non-privileged users in the system, then the new

allocated user will have a user number 4.
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A.2.4 USER RESET - reset the user number when deleting a

user

CALLING SEQUENCE:

rtems_status_code rtems_user_allocate(

int user_num

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - user number reset successfully

RTEMS INVALID USER NUM - invalid user number

DESCRIPTION:

This directive resets the user number in the usertask table when deleting a non-

privileged user.

A.2.5 USERTASK ALLOCATE - determine the next task num-

ber for a specific user

CALLING SEQUENCE:

int rtems_usertask_allocate(

int user_number

)

DESCRIPTION:

This directive checks the usertask table for a specific non-privileged user and re-

turns the next available task number. For example, if user 2 has 8 tasks already, then

the returned next available task number will be 9.
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A.2.6 USERTASK RESET - reset the next task number for a

specific user

CALLING SEQUENCE:

rtems_status_code rtems_usertask_reset(

int user_number,

int task_number

)

DIRECTIVE STATUS CODES:

RTEMS SUCCESSFUL - task number reset successfully

RTEMS INVALID USER NUM - invalid user number

RTEMS INVALID TASK NUM - invalid task number

DESCRIPTION:

This directive first checks the usertask table to verify that the user is a active user.

If it is, then the directive checks to ensure the task is a active task. If this is the case,

resets the task number for the specific user.

A.2.7 USER MANAGER INITIALIZATION - initialize the user

manager

CALLING SEQUENCE:

rtems_status_code rtems_user_manager_initialization(

)

DIRECTIVE STATUS CODES:



150

RTEMS SUCCESSFUL - user manager initialized successfully

RTEMS INIT FAIL - the initialization is failed

DESCRIPTION:

This directive initializes the usertask table for the user manager.
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