
A Semantic Least Privilege and
Semi-Automated Approach to

Preventing Cyber Attacks
on Web Applications

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Stuart Steiner

Major Professor: Dr. Daniel Conte de Leon

Committee Members: Dr. Jim Alves-Foss, Dr. Robert Rinker,
Dr. Yacine Chakhchoukh

Department Administrator: Dr. Terence Soule

August 2018

ii

Authorization to Submit Dissertation

This dissertation of Stuart Steiner, submitted for the degree of Doctor of Philosophy with a
major in Computer Science and entitled “A Semantic Least Privilege and Semi-Automated
Approach to Preventing Cyber Attacks on Web Applications,” has been reviewed in
final form. Permission, as indicated by the signatures and dates given below, is now granted to
submit final copies to the College of Graduate Studies for approval.

Major Professor: Date:
Dr. Daniel Conte de Leon

Committee Member: Date:
Dr. Jim Alves-Foss

Committee Member: Date:
Dr. Robert Rinker

Committee Member: Date:
Dr. Yacine Chakhchoukh

Department
Administrator: Date:

Dr. Terence Soule

iii

Abstract

Structured Query Language injection attacks still remain one of the most commonly occurring
and exploited types of web application vulnerabilities. A considerable amount of research
concerning Structured Query Language injection attacks mitigation techniques has found that
the primary solution requires developers to utilize secure development techniques. However, the
standard practice for many current web applications, including web application coding tutorials,
does not implement well-known secure design principles or secure development techniques.

Because most websites do not use secure development techniques or do not apply them
correctly, within the last three years, hundreds of millions of private data records have been
compromised in high-profile data breaches, resulting in billions of dollars in economic losses and
unrecoverable privacy losses. One commonality of the data breaches is the standard practice,
in a web application, for the front-end and middleware processes to have root privileges to the
complete database management system. This practice is in stark opposition to the well-known
secure design principle of least privilege introduced 40 years ago. Enforcing least privilege at
all levels of a web application would help prevent and mitigate future data breaches.

This dissertation describes a systematic, semi-automated, formal and repeatable process for
converting a web application and its corresponding back-end database from a non-least privilege
implementation into a least privilege implementation. The steps needed for this redesign and
semi-automated refactoring process are explained through the use of two case studies. Case
study one is based on the SEED Labs Structured Query Language injection attack web ap-
plication. Case study two is based on the OWASP Mutillidae II web application. Each case
study also describes the formal access control modeling and associated toolset used to aid and
partially automate this systematic conversion.

The evaluation of the results suggests that this novel process is effective at modeling web
applications security policies, as well as mitigating and preventing attacks. With the help of
the modeling and automation capabilities provided by this approach and associated toolset,
least-privilege-based web application hardening may be implemented by web developers on
current and new web applications regardless of their knowledge of secure design principles.
This novel systematic modeling approach shows great promise toward helping web developers
better understand the security model of web applications. Furthermore, the associated toolset
may lead to further automating the web application hardening process through the application
of the principle of least privilege.

iv

Acknowledgments

I would like to extend my gratitude to my major professor, Dr. Daniel Conte de Leon. His

guidance concerning this dissertation has been invaluable to me time and time again. His pa-

tience and direction have always kept me pushing forward.

In addition, I would like to thank my committee members, Dr. Jim Alves-Foss, Dr. Robert

Rinker, and Dr. Yacine Chakhchoukh for their acceptance, guidance, encouragement and input

in the process of completing this dissertation.

I would also like to thank Ananth Jillepalli for being an incredible research partner that has

always been there to discuss ideas, encourage me and for being great person.

Finally, I would like to thank Arvilla Daffin for being there to provide the proper guidance. I

would also like to thank every student past and present that I worked with in some capacity.

It was always a pleasure in whatever we were working on.

Dedication

I would like to thank my beautiful wife Shirlee Steiner. She has always been by my side

encouraging me and pushing me. The last 10 years have not been an easy journey and I could

not have completed the journey without your continuous and unconditional love and support.

Without you this journey would not have been remotely possible.

vi

Table of Contents

Authorization to Submit Dissertation . ii

Abstract . iii

Acknowledgments . iv

Dedication . v

Table of Contents . vi

List of Figures . x

List of Tables . xv

List of Code Listings . xvi

List of Acronyms . xix

Chapter 1: Introduction . 1

1.1 The Problem: SQL Injection Attacks in Web Applications 1

1.2 The Proposed Approach and Solution: Lest Privilege Design and Semi-Automated

Refactoring . 2

1.3 Objectives of this Dissertation . 3

1.4 Contributions of this Dissertation . 4

1.5 Scope of Achieved Mitigation and Defense . 6

1.6 Organization of this Dissertation . 10

Chapter 2: Background . 12

2.1 Cyber Attack Definitions and Security Policies 12

2.2 The Principle of Least Privilege . 13

2.3 The Hierarchical Policy Model (HPol) . 13

2.4 High-Level Easily Reconfigurable Machine Environment Specification (HERMES) 14

2.5 Formal Concept Analysis (FCA) . 16

vii

Chapter 3: Investigation of the Current State of the Art in Web Application

Security . 19

3.1 Current State of Web Application Security . 19

3.2 Why SQL Injection Attacks (SQLIAs) are Still an Unsolved Problem 20

3.3 Runtime Mitigation Techniques for SQLIAs . 22

3.4 Structured Analysis of Runtime Mitigations for SQLIAs 24

3.5 Static Mitigation Techniques for SQLIAs . 27

Chapter 4: Manually Applying Least Privilege with HPol for Web

Application Security . 30

4.1 Manually Applying the Principle of Least Privilege 31

4.2 Manually Creating the HPol Formal Security Policy Model 33

4.3 The HERMES Specification for a Web Application 35

4.4 Manually Building a Formal Web Application Security Model 37

4.5 Manually Building a Formal Web Application Security Model: Filesystem 38

4.6 Manually Building a Formal Web Application Security Model: DBMS 40

4.7 Applied Case Study: Mutillidae - Manually Applying HPol 43

Chapter 5: Enhancements to HPol and HERMES for Increased Web

Application Security . 52

5.1 Enhancing the HPol Formal Security Model . 53

5.2 Enhancing and Formally Defining the HERMES Language 54

5.3 Applied Case Study: Mutillidae - Applying HPol and HERMES Enhancements . 55

Chapter 6: Automating Learning the Least Privilege Policy for a Web

Application . 58

6.1 Systematic Inference of DB Table and SQL Command Level Access Control . . . 59

6.2 Applied Case Study: SEED Labs - Inferring Non-Least Privilege 64

6.3 Applied Case Study: Mutillidae - Inferring Non-Least Privilege 71

viii

Chapter 7: Automating the Transformation of a Web Application to a Least

Privilege Implementation . 79

7.1 Automated Process for Creating Least Privilege SQL Database Commands . . . 80

7.2 Applied Case Study: SEED Labs - Automating a Least Privilege Implementation 85

7.3 Applied Case Study: Mutillidae - Automating a Least Privilege Implementation . 86

Chapter 8: Systematic Process for Refactoring PHP Code to Implement Least

Privilege . 89

8.1 Systematic Step-by-Step for Refactoring PHP Code to Secure the Web Application 90

Chapter 9: Applied Case Study: SEED Labs - Systematic Process for PHP

Code Refactoring to Implement Least Privilege 92

9.1 SQL Injection Attack: SELECT Command Attack: Non-Least Privilege 96

9.2 SQL Injection Attack: SELECT Command Attack: Least Privilege 99

9.3 SQL Injection Attack: UPDATE Command Attack Against Admin From Login

Screen: Non-Least Privilege . 102

9.4 SQL Injection Attack: SELECT Command Attack Against Admin From Login

Screen: Least Privilege . 105

9.5 SQL Injection Attack: UPDATE Command Attack Against Admin From Non-

Privileged Account: Non-Least Privilege . 106

9.6 SQL Injection Attack: SELECT Command Attack Against Admin From Un-

privileged Account: Least Privilege . 109

9.7 SQL Injection Attack: UNION Command Attack: Non-Least Privilege 111

9.8 SQL Injection Attack: UNION Command Attack: Least Privilege 114

Chapter 10: Applied Case Study: Mutillidae - Systematic Process for PHP

Code Refactoring to Implement Least Privilege115

10.1 SQL Injection Attack: SELECT Statement Attack: Non-Least Privilege 117

10.2 SQL Injection Attack: SELECT Statement Attack: Least Privilege 118

ix

Chapter 11: Related Work .120

11.1 Least Privilege Models . 120

11.2 Secure Web Application By Design . 121

11.3 Scanning Web Applications for Security Vulnerabilities 121

11.4 Reverse Engineering Web Applications . 122

11.5 Survey of Dynamic and Static Mitigation Techniques Papers 122

11.6 Domain-Specific Languages . 125

Chapter 12: Conclusion and Future Work .126

12.1 Summary of the Contributions of this Dissertation 126

12.2 Value of this Dissertation . 127

12.3 Assumptions and Limitations of this Dissertation 127

12.4 Threats to Validity of this Dissertation . 129

12.5 Future Work . 130

12.6 Conclusions . 131

References .132

Chapter A: Complete Listing of Mutillidae SQL Log143

Chapter B: Complete Listing of SEED SQL Log156

x

List of Figures

1.1 Architectural Overview: The complete architectural overview for this research. . 2

2.1 HPol Non-Least Privilege: An HPol example illustrating a non-least privilege

database user dbRoot . 14

2.2 HERMES: A HERMES specification example illustrating the HPol model. 15

2.3 FCA Lattice: The FCA lattice corresponding to Table 2.1 18

3.1 FCA Lattice: The FCA lattice illustrating all objects containing the “GET/-

POST” attribute . 26

3.2 FCA Lattice: The FCA lattice illustrating dynamic SQL injection mitigation

techniques . 27

4.1 Contribution 1: A manual but formal, systematic and repeatable process for

securing current web applications based on the principle of least privilege. 31

4.2 Current Practice Database Configuration: An excerpt of standard available code

tutorial for logging into a MySQL database . 32

4.3 HPol Model: A simple example of the HPol formal model for a file system 34

4.4 HERMES: The formal specification of the HERMES grammar 36

4.5 HERMES Usage: The formal usage specification for the HERMES grammar . . . 37

4.6 Manual HPol: The manual process of building the security model. 38

4.7 HPol model of the Mutillidae Filesystem: This figure illustrates the insecure

file-system privileges . 39

4.8 Web Application Root: A code excerpt illustrating the connection from the

middleware to the DBMS using root level privileges 40

4.9 Web Application Query: This figure illustrates the query string in

SQLQueryHandler.php for a login attempt . 41

4.10 HPol Model of the Current Mutillidae Web Application: Illustrating Non-Least

Privilege (insecure) Mutillidae DBMS (MySQL) Access Permissions. 42

4.11 Least Privilege HPol Model: This figure illustrates the least privilege model of

the web page index.php and the interaction with the web server. 45

xi

4.12 Mutillidae Login: This figure illustrates the Mutillidae login screen as displayed

from the Mutillidae Web application. 47

4.13 Principle Of Least Privilege Database: The POLP applied to the nowasp MySQL

database . 48

4.14 Principle Of Least Privilege Web Page: This figure illustrates the POLP applied

to login.php . 49

4.15 Principle Of Least Privilege Web Page - addToBlog: This figure illustrates the

updated PHP code enforcing the POLP for the addToBlog page 51

5.1 Contribution 2: Formal web application security policy modeling. Contribution

3: Formal HERMES Specification. 52

5.2 Original HERMES: This figure illustrates the original version of HERMES before

the formal specification as outlined in this research. 56

5.3 New HERMES: This figure illustrates the new version of HERMES after the

formal specification as outlined in this research. 57

6.1 Contribution 4: The associated tools for automatically learning the database-

level permissions needed to operate with least privilege as represented from the

architectural overview of this dissertation. 58

6.2 The SEED Web Application: This figure is an example of the SEED web appli-

cation being exercised in a non-malicious manner [1] Version: February 2018 . . . 60

6.3 Example Dynamic HPol: The HPol security model generated from the clean

database logs . 61

6.4 SEED Labs Login: The login page as displayed on index.html 65

6.5 Example LP HPol: The LP HPol security model generated from the LP PKB . . 70

6.6 Example NLP HPol: The non-LP HPol security model generated from the

database logs . 75

6.7 Example LP HPol: The LP HPol security model generated from the LP PKB . . 78

xii

7.1 Contribution 5: A developed formal, repeatable, and automated approach and

associated toolset for determining and applying least privilege permissions at the

database level for securing web applications. 79

7.2 Unsecured HPol DB Example: This figure illustrates a non-least privilege database

interaction . 81

7.3 Secured HPol DB Example: This figure illustrates a least privilege database

interaction . 83

8.1 Contribution 6: A developed systematic process for PHP code modification to

assist the web developer in applying least privilege permissions for securing web

applications. 89

8.2 Secured Web Application DB Example: This figure illustrates the lookup of the

least privilege user. 91

9.1 The page unsafe home.php. 92

9.2 The page unsafe edit frontend.php. 93

9.3 SEED Least Privilege Users: The mysql.user table illustrating that the new

SEED users have no privileges on the DBMS middleware. 94

9.4 SEED Least Privilege Users: The SEED Users.credential table illustrating

the new SEED users with the appropriate privileges. 94

9.5 NLP SELECT Command Attack: Tautology - simple tautology attack ‘or 1=1

-- against the SELECT database statement. 97

9.6 NLP SELECT Command Attack: Tautology - the tautology attack was success-

ful. The first record of the database is displayed to the screen. 97

9.7 NLP SELECT Command Attack: Tautology - using the edit page unsafe edit -

frontend.php Alice‘s name is changed to sandy. 98

9.8 NLP SELECT Command Attack: Tautology - the results illustrating the nick-

name has been changed. 98

9.9 LP SELECT Command Attack: Tautology - simple tautology attack ‘or 1=1

-- against the SELECT database statement. 100

xiii

9.10 LP SELECT Command Attack: Tautology - the tautology attack was successful.

The first record of the database is displayed to the screen. 100

9.11 LP SELECT Command Attack: Tautology -the malicious actor attempts to add

the nicknameAlice‘s. 101

9.12 LP SELECT Command Attack: Tautology - the results illustrating the nickname

has NOT been changed. 101

9.13 NLP UPDATE Command Attack: Login - the injection attack illustrating mul-

tiple queries in one SQL statement as entered into the username field. 103

9.14 NLP UPDATE Command Attack: Login - the results of the attack were success-

ful; however, the only information displayed is for the user 104

9.15 NLP UPDATE Command Attack: Login - the results after the malicious actor

logged in as the Admin user with the password of ownd. 104

9.16 LP UPDATE Command Attack: Login - the user profile screen for stu, Behind

the scenes the attack FAILED. 105

9.17 LP UPDATE Command Attack: Login - the results of the attack were successful;

however, the only information displayed is for the user 106

9.18 NLP UPDATE Command Attack: Non-Privileged User - the stu‘s Profile

Edit screen with the injection attack entered.. 107

9.19 NLP UPDATE Command Attack: Non-Privileged User - the resulting profile for

stu profile after the injection attack occurred. 108

9.20 NLP UPDATE Command Attack: Login - the database table of users illustrating

the Admin password was changed. 108

9.21 NLP UPDATE Command Attack: Non-Privileged User - The malicious actor

logged in as the Admin with the password ownd. 109

9.22 LP UPDATE Command Attack: Non-Privileged User - the resulting profile for

stu profile after the injection attack FAILED. 110

9.23 LP UPDATE Command Attack: Non-Privileged User - the results indicating the

malicious actor DID NOT login as the Admin user with the password of 123. . . 111

9.24 NLP UNION Command Attack: The malicious actor enters a complicated UNION

attack as illustrated in Figure 9.6. 112

xiv

9.25 NLP UNION Command Attack: The results after the malicious actor executed

the UNION injection . 113

9.26 LP UNION Command Attack: Tthe results after the malicious actor attempted

to execute the UNION injection . 114

10.1 Secured Mutillidae DBMS Example: The DBMS has been updated to include

the new SQL users. 116

10.2 Unsecured Mutillidae Web Application Example: Simple tautology attack against

the Mutillidae database admin user. 117

10.3 Unsecured Mutillidae Web Application Example: The tautology attack was suc-

cessful. The malicious actor is logged in as admin. 118

10.4 Secured Mutillidae Web Application Example: The results of exercising the Mu-

tillidae web application regardless of the user as long as the user was not the

root user. 118

xv

List of Tables

2.1 Formal Concept Analysis example illustrating object/attributes relationship . . . 17

3.1 Summary of SQL injection runtime mitigation techniques 23

3.2 Formal Concept Analysis of SQL injection mitigation techniques 25

3.3 Summary of SQL injection static mitigation techniques 28

4.1 Non-least privilege and least privilege Linux file-system permissions 44

4.2 Principle of Least Privilege permissions for each web page and new user 47

7.1 Summary of least privilege SQL users for the SEED web application 85

7.2 Summary of least privilege SQL users for the Mutillidae web application 87

11.1 Survey of dynamic mitigation technique papers 124

xvi

List of Code Listings

6.1 Web Developer Exercises Web Application: The resulting SQL query resulting

from a non-malicious login . 60

6.2 The referrer query required by the toolset of this dissertation 60

6.3 Example Python Code: The Python code from example.py that creates the

db-example-hpol.hermes file . 61

6.4 Example Dynamic HERMES: A portion of the HERMES generated from the

clean database logs . 62

6.5 Example Dynamic LP SQL: The SQL commands to create a new user and to

assign that new user the appropriate permissions for the appropriate tables. . . . 64

6.6 SEED Log Header: The header to the seed.log file 65

6.7 Referrer Page: The PHP code added to the SEED Labs 66

6.8 SEED Labs Unsafe DB Query: The SQL query from the unsafe_home.php . . . 66

6.9 SEED Labs Data Structure: The users, tables, and databases being utilized by

the SEED Labs web application . 67

6.10 SEED Labs HPol: Subjects - The dynamic creation of HPol data structure . . . 67

6.11 SEED Labs HPol: Actions - The dynamic creation of HPol data structure 68

6.12 SEED Labs HPol: Objects - The dynamic creation of HPol data structure 68

6.13 SEED Labs HPol: Policies - The dynamic creation of HPol data structure 68

6.14 SEED Labs PKB: The dynamic creation of Prolog Knowledge Base as interpreted

from the non-least privilege HERMES file. 69

6.15 Mutillidae Log Header: The header to the mutillidae.log file 71

6.16 Mutillidae Log: The SQL queries from the Mutillidae web application clean

database log . 72

6.17 Mutillidae Data Structure: The users, tables, and databases being utilized by

the Mutillidae web application, as determined from the database log. 72

6.18 Mutillidae HPol: Subjects - From the file: db mutillidae hpol.py - The dynamic

creation of HPol data structure as determined from the Mutillidae database log. 73

xvii

6.19 Mutillidae HPol: Actions - From the file: db mutillidae hpol.py - The dynamic

creation of HPol data structure as determined from the Mutillidae database log. 73

6.20 Mutillidae HPol: Objects - From the file: db mutillidae hpol.py - The dynamic

creation of HPol data structure as determined from the Mutillidae database log. 74

6.21 Mutillidae HPol: Policies - From the file: db-mutillidae-hpol.py - The dynamic

creation of HPol data structure as determined from the Mutillidae database log. 74

6.22 Mutillidae HERMES: From the file: db-mutillidae-hpol.hermes - The dynamic

creation of HERMES as interpreted from the non-least privilege HPol file. 76

6.23 Mutillidae PKB: From the file: db-mutillidae-hpol.pro - The dynamic creation

of Prolog Knowledge Base as interpreted from the non-least privilege HERMES

file. 76

6.24 Mutillidae LP PKB: From the file: db mutillidae hpol.pro - The dynamic cre-

ation of least privilege PKB as interpreted from the non-least privilege PKB

file. 77

6.25 Mutillidae LP HERMES: From the file: db mutillidae hpol.hermes - The dy-

namic creation of LP HERMES as interpreted from the LP PKB file. 77

7.1 Non-Least Privilege Policy 1001: A portion of the HERMES that illustrates

Policy 1001 . 82

7.2 Least Privilege Policy 1001: A portion of the HERMES that illustrates

Policy 1001 . 84

7.3 LP SQL (db-example-hpol.sql): The SQL commands that are automatically gen-

erated from the correct and complete LP HERMES. 85

7.4 SEED LP SQL: The SQL commands that are automatically written from the

correct and complete LP HERMES . 86

7.5 SEED LP SQL: The SQL CREATE commands that are automatically generated

from the correct and complete LP HERMES . 87

7.6 SEED LP SQL: The SQL GRANT commands that are automatically generated

from the correct and complete LP HERMES . 88

8.1 Unsecured Web Application DB Example: This database configuration illustrates

a non-least privilege generic root user that is common for database interaction . 91

xviii

8.2 New PHP File: This new PHP file determines the correct least privilege. 91

9.1 SEED Users: The SQL commands creating new database users 93

9.2 LP DB Credentials: The LP SQL updated for unsafe home.php 95

9.3 LP DB Credentials: The LP SQL credentials updated for unsafe edit frontend.php 95

9.4 LP DB Credentials: The LP SQL credentials updated for unsafe edit backend.php 95

9.5 The code modifications to the SEED Labs web application 95

9.6 NLP: Union Attack: The injection that will provide the MySQL hash code of the

mysql root password.The code modifications to the SEED Labs web application 112

9.7 NLP: Union Attack: The resulting query from the UNION injection attack. . . . 113

10.1 NLP SQL: The database credentials as embedded in the single PHP file for the

Mutillidae web application. 116

10.2 LP DB Credentials: The SQL credentials have been updated in the single PHP

file for the database credentials . 116

A.1 Mutillidae SQL Log: Complete listing of the non-least privilege non-malicious

run of the Mutillidae web application. 143

B.1 Mutillidae SQL Log: Complete listing of the non-least privilege non-malicious

run of the Mutillidae web application. 156

xix

List of Acronyms

DAG Directed Acyclic Graph

DB Database

DBMS Database Management Systems

DSL Domain Specific Language

FQN Fully Qualified Name

FSA Finite State Automata

HERMES High-Level Easily Reconfigurable Machine Environment Specification

HPol The Hierarchical Policy Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IT Information Technology

JSON JavaScript Object Notation

LP HERMES Least Privilege High-Level Easily Reconfigurable Machine Environment

Specification

LP PKB Least Privilege Prolog Knowledge Base

Mutillidae The Mutillidae II Web Application

OT Operational Technology

OWASP Open Web Application Security Project

PC Personal Computer

PHP PHP: Hypertext Preprocessor

PID Policy Identifier

xx

POLP The Principle of Least Privilege

SQL Structured Query Language

SQLIA Structured Query Language Injection Attack

SQLIAD Structured Query Language Injection Attack Detection

SQLIAP Structured Query Language Injection Attack Prevention

URL Uniform Resource Locator

XSB Logic Programming and Deductive Database System

1

Chapter 1: Introduction

This chapter introduces some of the key challenges in securing existing web applications from the

common problem of Structured Query Language Structured Query Language (SQL) Injection

[2]. Section 1.1 introduces the key concepts concerning web security and SQL injection attacks.

Section 1.2 introduces the proposed solution to preventing cyber attacks on web applications.

Section 1.3 discusses the objectives of this dissertation. Section 1.4 discusses the contributions

of this dissertation. Section 1.6 provides the structure for the rest of the dissertation.

1.1 The Problem: SQL Injection Attacks in Web Applications

Over the past 18 years, the number of websites has grown from 29 million in 2001 to more

than 1.9 billion in 2018 [3]. At the beginning of the 21st century the Web, known as Web 1.0,

consisted of websites that were static pages. Around 2002, Web 2.0 was created and with it

came new ideas for exchanging dynamic information. Web 2.0 allows developers to create new

dynamic web applications that utilize services and data stored in back-end databases.

Websites with back-end databases are often susceptible to web attacks, in particular Struc-

tured Query Language SQL Injection Attacks (SQLIAs). Over the past 15 years SQLIAs have

been actively studied. As a result various approaches to solutions have been proposed; however,

these approaches have yet to successfully solve the problem of combating SQLIAs.

Since 2004, the Open Web Application Security Project Open Web Application Security

Project (OWASP) [2, 4] has published the Top 10 list of web vulnerabilities every three years.

In 2004, SQL injection was number six, in 2007, it was number two, and since 2010 it remained

the number one security risk facing organizations as it relates to web applications.

Seventeen years ago, Web 1.0 statically linked web pages were typically created by experi-

enced web developers [5]. As Internet usage grew the demand for more dynamic content also

grew. The explosive growth in the demand for websites caused a transition from experienced

developers to an expanded base of developers with limited knowledge of programming or secure

development techniques [6]. Currently, web pages no longer contain just statically linked con-

tent that seldom changes. Most modern web pages contain fully interactive user experiences,

2

with high levels of user interaction and dynamic data hosted by back end database management

systems Database Management Systems (DBMS).

1.2 The Proposed Approach and Solution: Lest Privilege De-

sign and Semi-Automated Refactoring

This dissertation presents a systematic method and associated tool-set for protecting web ap-

plications. The proposed solution for securing an existing web application is performed in three

phases. In the first phase, the non-least privilege behavior of the web application is learned

and modeled. In the second phase, the web application is automatically converted to a least

privilege model based on the functionality learned in the first phase. In the third phase, the

new web application is evaluated in two different case studies against different SQL injection

attacks. Figure 1.1 illustrates the flow of the proposed solution. It is a continual flow that

checks and then enforces a least privilege model.

4) BuildDBQueries
 script cleans the
 DB logs

4) BuildDBQueries
 script cleans the
 DB logs

5) Dynamic2HPol
 script creates
HPol and HERMES

5) Dynamic2HPol
 script creates
HPol and HERMES

HPol ModelHPol Model

HERMES fileHERMES file

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

7) Prolog
calculates Least
Privilege (LP)
PKB

7) Prolog
calculates Least
Privilege (LP)
PKB

PKB

8 a) Prolog2
HERMES script
creates LP
HERMES

8 a) Prolog2
HERMES script
creates LP
HERMES

8 b) Prolog2
HPol script
creates LP
HPol Model

8 b) Prolog2
HPol script
creates LP
HPol Model

LP HERMESLP HERMES

LP HPol ModelLP HPol Model

9) Hermes2SQL
 script creates
 LP SQL

9) Hermes2SQL
 script creates
 LP SQL

RAW
SQL logs

RAW
SQL logs

Cleaned
SQL logs
Cleaned
SQL logs

 LP PKB LP PKB

1) DBMS Admin
enables logs for
all DB queries

3) DBMS Admin
provides log file

LP SQL for

DBMS Admin

LP SQL for

DBMS Admin

10) DBMS installs LP SQL

Web Dev verifies
and modifies LP
HERMES

if needed

Web Dev verifies complete
and correct HERMES.

2) Web Dev exercises the web site non-maliciously

Web
Developer

Web Dev verifies complete
and correct LP HPol model.
Web Dev uses LP HPol
model to output new PHP
code that enforces Least
Privilege

DBMS
Admin

Figure 1.1: Architectural Overview: The complete architectural overview
and the six contributions described in this dissertation.

3

1.3 Objectives of this Dissertation

The goal of this dissertation is to answer the primary question: How can the large number of

existing web applications be secured with limited resources and without manually

rewriting millions of lines of code? The primary question was divided into the following

research objectives.

• Objective 1: Identify the current research on SQLIA from the ACM digital library and

the IEEE Explore digital library.

• Objective 2: Evaluate the current research on SQLIA mitigation techniques.

• Objective 3: Evaluate which technologies and programming languages are currently

used to develop dynamic web applications.

• Objective 4: Evaluate the applicability and fitness of the Hierarchical Policy Model

(HPol) and the High-Level Easily Reconfigurable Machine Environment Specification

(HERMES) approaches for modeling web application security.

• Objective 5: Develop a novel method for securing web applications using the principle

of least privilege and the HPol formal security model.

• Objective 6: Develop a novel method of semi-automatically securing web applications

using a least privilege approach.

• Objective 7: Evaluate the performance of this new method for mitigating SQL injection

attacks using two case study web applications.

In summary the goal of this research is to provide a semi-automated process to secure a web

application using the principle of least privilege, and with a minimal need to manually modify

the web application source code.

4

1.4 Contributions of this Dissertation

To provide a semantic least privilege semi-automated approach to preventing cyber attacks on

web applications the following contributions were completed as part of this dissertation.

• Contribution 1: A manual but formal, systematic and repeatable process for

securing current web applications based on the principle of least privilege.

Once the appropriate HPol model was created for web applications, that model was man-

ually applied to two different case web applications as case studies. The developed model

follows the typical Subject, Action, Object structure that all HPol formal models follow.

These details are described in Chapter 4.

• Contribution 2: Formal web application security policy modeling

I developed enhancements to HPol that enabled HPol to model web application security

and access control policies. I applied these enhancements to enforce the principle of least

privilege in web applications. This contribution is described in Chapter 5.

• Contribution 3: Formal High-Level Easily Reconfigurable Specification.

The HERMES specification language was enhanced to enable it to represent web appli-

cation security models. In addition, I developed the formal grammar and a new updated

parser that supports the latest language improvements. The formal grammar and speci-

fications for HERMES were created in order to ensure a human readable easily reconfig-

urable high-level specification that could be used by a DBMS administrator. HPol was

modularized and new first order predicates were added. The details of HERMES and the

enhancements to HPol are described in Chapter 5.

5

• Contribution 4: Developed an approach and associated tools for automatically

learning the database-level permissions needed on the database management

system for a web application to operate with the least privilege possible.

SQL logs are the record of the transactions between the web pages, the database user, the

database queries and the database tables. I conducted and logged non-attack database

queries. Based on the logs an inference of the non-least privilege model was created.

Chapter 6 explains the process of automatically creating the security model of the web

application by using the SQL logs.

• Contribution 5: Developed a formal, repeatable, and automated approach and

associated toolset for determining and applying least privilege permissions at

the database level for securing web applications.

The next step in the process was to automatically enforce the principle of least privilege

on the web application. Chapter 7 explains the process of creating the least privilege

model, and then enforcing the least privilege model on the web application via limited

SQL users with limited permissions. Once the SQL users were updated the web appli-

cation was attacked and the results were documented. The results are illustrated by two

different case studies using educational real world web applications.

• Contribution 6: Developed a systematic process for PHP code modification

to assist the web developer in applying least privilege permissions for securing

web applications.

The final step in the process was to develop a systematic step-by-step process for enforcing

the principle of least privilege on the web application. Chapter 8 explains the step-by-step

process of modifying the PHP code needed to enforce the least privilege model on the web

application via utilization of the limited SQL users with limited permissions. The results

are illustrated by two different case studies using educational real world web applications.

6

This dissertation provides a least privilege semi-automated approach to preventing cyber

attacks on web applications. This work provides a formal, repeatable, and semi-automated

approach and associated toolset for determining and applying least privilege permissions at the

database level.

1.5 Scope of Achieved Mitigation and Defense

This section provides an understanding of the SQL injection attacks and how each attack is mit-

igated by the work of this dissertation. The following summarizes the types of attacks, and how

this dissertation may mitigate the attack. An example of each query and attack are represented

below with the attack portion of the query represented as blue text. Information concerning SQL

injection can be found on the OWASP web site at https://www.owasp.org/index.php/SQL In-

jection [7].

• Tautology Attacks - These injections allow unauthorized access to the database by

ensuring the final query always returns true.

SELECT * FROM user WHERE uname = ’’OR 1=1 -- ...

This approach does not mitigate the simple tautology attack, because the simple tautology

attack is restricted to the same permissions on the same table. If a more advanced query

is stacked with a simple tautology attack, and that attack references a different set of

tables, then that attack would be mitigated by our work. If the attack uses the same

tables originally used in the query then the attack will not be mitigated. If the attack

uses any other tables or any other databases then the attack will be mitigated. If the

attack uses special functions, or procedures, or read and write from file, because most

pages don’t need that access, then those attacks will also be mitigated.

7

• Logically Incorrect Attacks also called Blind Attacks - These injections are intended

to trigger errors in the database, in such a way that the malicious actor can gather

information about the database.

SELECT * FROM user WHERE uname = ’11’ AND password = ’123’ AND

CONVERT(int,(SELECT name FROM system WHERE type = ’u’)); -- ...

The research presented in this dissertation will mitigate most of these types of attacks,

because these attacks usually need to execute database functions, which under a least

privilege scenario, most pages are not granted access to database functions.

• Union Attacks - These queries contain separate queries, where each query is executed

separately, and the results of each query are then combined using the keyword UNION.

These types of attacks are intended to subvert the original query to add to the result sets

the results of another query. Union queries can be utilized to bypass the restriction of

stacked queries. Union queries are restricted to the select statement; while stacked queries

are not.

SELECT id FROM user WHERE uname=’admin

UNION SELECT id FROM db.table WHERE uname=’admin’; ’-- ...

The work in this dissertation possibly mitigates this attack. If the attack uses the same

tables originally used in the query then the attack will not be mitigated. If the attack

uses any other tables or any other databases then the attack will be mitigated. If the

attack uses special functions, or procedures, or read and write from file, because most

pages don’t need that access, then those attacks will also be mitigated. An example of

this attack and the resulting mitigation is illustrated in Section 9.8.

8

• Stored Procedures Attacks - A stored procedure attack attempts to create stored

procedures or functions.

CREATE PROCEDURE DB @uname, @passwd, AS EXEC (SELECT * FROM user WHERE

id= "’+@uname+"’ and password = "’+@passwd+"’); GO

The work in this dissertation will prevent these attacks. In general it is extremely rare

that any web application middleware will need permissions to create stored procedures.

Creating stored procedures should only be left to the database administrator. This work

should prevent any creation of stored procedures. Execution of stored procedures should

be mitigated for which the page doesn’t have permissions. The type of defense for stored

procedure attacks is similar to the type of defense of logically incorrect attacks. In MySQL

there is no distinction between procedures and functions.

• Piggy-Backed Attacks also called Stacked Queries Attacks This attack attaches a

separate, different malicious query to the existing query by adding a semicolon at the end

of the original query.

SELECT * FROM user WHERE uname = ’111’ and passwd = ’abc’; DROP TABLE

user;

The work in this dissertation most likely mitigates this attack. If the attack uses the same

tables originally used in the query then the attack will not be mitigated. If the attack

uses any other tables or any other databases then the attack will be mitigated. If the

attack uses special functions, or procedures, or read and write from file, because most

pages don’t need that access, then those attacks will also be mitigated. An example of

this attack and the resulting mitigation is illustrated in Section 9.4.

9

• Inference Attacks - An inference attack is an SQL injection containing a conditional

construct. It uses a specific instruction, such as time delay, to trigger noticeable database

behavior. This type attack allows the malicious actor to infer if the tested expression was

true or false.

DECLARE @s varchar(8000) SELECT @s = db_name() IF (ascii(substring(@s, 1,

1)) & (power(2, 0))) > 0 WAITFOR delay ’0:0:5’

The work in this dissertation should mitigate most of these attacks. If the attack uses

the same tables originally used in the query then the attack will not be mitigated. If the

attack uses any other tables or any other databases then the attack will be mitigated. If

the attack uses special functions, or procedures, or read and write from file, because most

pages don’t need that access, then those attacks will also be mitigated.

• Alternate encoding - Encode attacks in such a way to avoid standard input filtering.

The original query of SELECT info FROM user WHERE login=’login’ AND

pin=’pin’; [8] can be represented with the input of a 0 for the pin as

"0; DECLARE @a char(20) SELECT @a=0x73687574646f6776e EXEC(@a)"

Alternate encoding attacks are considered the most advanced attacks for SQL injection.

If the attack uses the same tables originally used in the query then the attack will not be

mitigated. If the attack uses any other tables or any other databases then the attack will

be mitigated. If the attack uses special functions, or procedures, or read and write from

file, because most pages don’t need that access, then those attacks will also be mitigated.

10

1.6 Organization of this Dissertation

The remainder of this dissertation is organized as follows.

Chapter 2 explains the background of cyber attacks on a web application. Part of under-

standing cyber attacks includes an explanation of web application security policies including

a basic understanding of SQL injection and the Principle Of Least Privilege The Principle of

Least Privilege (POLP). A formal policy model and a formal high-level easily reconfigurable

specification are introduced.

Chapter 3 explains the current state-of-the-art solutions in web application security. This

chapter includes a formal concept analysis model of different runtime solutions. This chapter

also includes an analysis of the current static solutions.

Chapter 4 explains how the POLP was manually applied to a case study web application.

This chapter contains the details for Contribution 1.

Chapter 5 explains the enhancements to HPol and HERMES. These enhancements allow

for future work to revisit previous HPol work, unrelated to this dissertation. Contribution 2

and 3 are discussed in this chapter.

Chapter 6 explains the automated process to dynamically build a non-least privilege security

model. This involves running the web application without injection attacks. A baseline was

developed by running the web application attack free, and identifying the users, the pages

executing database commands, and the database tables being accessed. This chapter contains

the details for Contribution 4.

Chapter 7 explains the process to dynamically build the new Least Privilege HPol model.

As part of the automation process SQL grant statements are created. The web application

administrator executes the provided SQL statements. These statements are used to enforce

least privilege. This chapter explains the details of Contribution 5.

Chapter 8 explains the process to refactor the PHP code to fully move the web application

from non-least privilege to least privilege. This chapter contains the details for Contribution 6.

Chapter 9 explains the process of refactoring the SEED Labs web application. The details

of Contribution 6 are explained in this chapter.

11

Chapter 10 explains the process of refactoring the Mutillidae II web application (Mutillidae).

This chapter also contains details for Contribution 6.

Chapter 11 discusses the related works that are also mitigating similar problems. This

chapter describes some of the limitations of trying to solve SQL injection without sanitization

of inputs.

Chapter 12 summarizes and concludes the work and contributions completed in this disser-

tation. This chapter discusses the assumptions and limitations, threats to validity and potential

future work.

12

Chapter 2: Background

This chapter examines web security, web application cyber attacks, including the concept of SQL

injection attacks, and the concept of the principle of least privilege. This chapter also explains

the security model for web applications via the Hierarchical Policy Model. The High-Level

Easily Reconfigurable Machine Environment Specification is also introduced as a mechanism to

easily modify the security policy model.

2.1 Cyber Attack Definitions and Security Policies

Since SQL injection first appeared on the OWASP Top 10 list in 2006 there have been more than

400 papers written about vulnerability and attack type classification systems and mitigation

techniques. SQLIAs occur in various ways; however, SQLIAs most commonly occur when

malicious user-provided data is passed through the web application as SQL commands, and

is executed as SQL code by the backend database. In 2006 Halfond et al. [8] characterized

seven types of SQLIAs, based on the goal and the intent of the attacker. Those seven types are

tautologies, incorrect queries, union query, piggy-backed queries, stored procedures, inference,

and alternate encoding.

Others have extended Halfond’s et al. work. Since SQLIAs are initiated through a web

page, in 2009 Seixas et al. [9] identified and classified the most common security vulnerabilities

in web programming languages. In 2012 Ray and Ligatti [10] formally defined web applications

and code-injection attacks. In 2013 Shar and Tan [11] broadly classified SQL injection defenses

into three categories, defensive coding, SQL injection vulnerabilities detection, and SQLIA

runtime prevention. Shar and Tan [11] state, “The best strategy for combating SQL injection

. . . calls for integrating defensive coding practices with both vulnerability detection and

runtime attack prevention methods.” Defensive coding practices are important; however, most

developers typically have less than five years of professional experience (57%) [6]. Furthermore,

of the hundreds of different SQL injection research mitigation techniques, no technique has

technologically transferred to enterprise use.

13

Teaching secure development techniques to the next generation of web developers is very

important; however, implementing secure development practices will potentially take years.

An immediate solution is needed, specifically a systematic and semi-automated least privilege

solution, that helps today’s developers secure today’s web applications.

2.2 The Principle of Least Privilege

A major root problem contributing to vulnerabilities in web applications is the widespread usage

of the highest privilege design pattern. In such a pattern, users and applications are given the

highest level of privileges needed to execute the union of all needed tasks. In the case of web

applications, this design pattern translates into the practice of granting the web application

and/or middleware processes root privileges over the back-end database management system

(DBMS). The same pattern can also used to grant the middleware processes root-level privileges

over the file system within the web application server.

Because of the problem described above, once a web application has been compromised an

attacker can easily gain root-level access to the back-end database. Using such a design pattern

violates two of the most basic principles of secure system design: (1) Least Privilege and (2)

Layering or Defense in Depth [12].

2.3 The Hierarchical Policy Model (HPol)

The Hierarchical Policy (HPol) formal model enables the representation of access control and

security policies using a hierarchical graph structure. In HPol, subjects, actions, and objects

are represented by a hierarchical graph. Policies are represented by links, or relation tuples,

which state that a given subject has been granted permission to perform a given action on a

given subject. HPol represents each subject, action, and object with a node within a directed

acyclic graph (DAG). Policy links between nodes connect subject, action, object nodes within

the DAG to indicate what policies are allowed [13].

Figure 2.1 shows a portion of the resulting HPol model for the highest privilege design of

the Mutillidae II web application (Mutillidae) [14]. In the model the user dbRoot is granted

administrative-level permissions for all objects within all databases within the DBMS.

14

HPolStart

dbRoot

1001

HPolEnd

Subject

databaseEngine

all1001

users

dbCommands

privilegeType

databaseEngine

Action

star

1001

1001

Object

databaseEngine

Unsecured-Login

Figure 2.1: HPol Non-Least Privilege: An HPol example illustrating a
non-least privilege database user dbRoot. The dbRoot user has full access

to the entire DBMS.

Policy number 1001 indicates the granting of such permissions to the corresponding subject,

action, and object tuple.

2.4 High-Level Easily Reconfigurable Machine Environment

Specification (HERMES)

The High-Level Easily Reconfigurable Machine Environment Specification (HERMES) enables

modern organizations to design and implement highly-specific tailored security configurations.

HERMES is an enterprise-wide and policy-oriented, rather than configuration-oriented, security

configuration management system. HERMES is a high-level security policy description language

15

Node: Example
{
 FQN: Example.Example.Example;
 Description: "HPol Root Node";
 Path: "Example";
 Type: "HPolRoot";
}.

Node: Subjects
{
 FQN: Example.Example.Example.Subjects;
 Description: "Subjects";
 Path: "Example/Subjects";
 Type: "Subjects";
}.

Node: databaseEngine
{
 FQN: Example.Example.Example.Subjects.databaseEngine;
 Description: "databaseEngine";
 Path: "Example/Subjects/databaseEngine";
 Type: "subject";
}.

Node: users
{
 FQN: Example.Example.Example.Subjects.databaseEngine.users;
 Description: "users";
 Path: "Example/Subjects/databaseEngine/users";
 Type: "subject";
}.

Node: dbRoot
{
 FQN: Example.Example.Example.Subjects.databaseEngine.users.dbRoot;
 Description: "dbRoot";
 Path: "Example/Subjects/databaseEngine/users/dbRoot";
 Type: "subject";
}.

Policy: PID_1001
{
 FQN: Example.Example.PID_1001;
 Description: 'Policy';
 Status: ENABLED;
 AbsolutePath: [HPolStart,
 Example.Subjects.databaseEngine.users.dbRoot,
 Example.Actions.databaseEngine.privilegeType.all,
 Example.Objects.databaseEngine.star,
 HPolEnd];
 RelativePath: [HPolStart, dbRoot, all, star, HPolEnd];
}.

Figure 2.2: HERMES: A HERMES specification example illustrating the
HPol model represented by Figure 2.1, which illustrates that a non-least
privilege database user dbRoot that has full access to the entire database

system.

16

that enables system administrators to write security policies that can then be implemented

across the IT/OT ecosystem [15].

HERMES allows IT/OT security personnel to describe their organization and security poli-

cies based on the description of two domains: Nodes and Policies. Each of these domains can be

defined using a hierarchical structure. Nodes encompass organizational domains and devices,

groups of users and roles, applications, and actions. Policies are declared as actions applied to

a given combination of nodes. HERMES is used to easily convert a HPol security model from

the DAG to Prolog, and from Prolog back to a HPol security model. HERMES also allows for

easy and simple additions or changes to the current structure. Simply stated HERMES is the

high-level text representation of a HPol security model.

Figure 2.2 shows a portion of the resulting HERMES language for the highest privilege de-

sign of the Mutillidae web application from Figure 2.1. In the specification policy, identification

number 1001 (PID 1001) specifies the user dbRoot is granted administrative-level permissions

for all objects (symbolized as star meaning all) within all databases within the DBMS.

2.5 Formal Concept Analysis (FCA)

Formal Concept Analysis (FCA) is “. . . a mathematical formalism which analyses the data

in a context and attempts to extract the concepts embodied within that data [16].” FCA is a

method for creating a context hierarchy from a collection of objects and their properties. Each

concept in the hierarchy represents the set of objects sharing the same values for a certain set

of properties or attributes. A hierarchy is a mathematical concept where a set is ordered. For

example, the set of integers is one such mathematical hierarchy. For FCA, the ordered set is

determined by all objects belonging to a concept, and by the collection of all attributes shared

by the object [17].

Context [16] is the triplet (G, M, I) where G represents the objects, M represents the at-

tributes, and I represents the relationship of objects to the attributes I ⊆ (G ×M). Content

is a pair of sets defined as (A ⊆ G, B ⊆ M), where A is the set of all objects that have all the

attributes in B. B represents the set of all attributes that apply to all objects in A.

17

The context of objects and attributes is constructed as a two-dimensional array of binary

values representing the binary relations between the objects and the attributes. Table 2.1 is a

simple example illustrating the FCA of animals (objects) and the locations where the animals

live (attributes). The rows represent the objects (animals) and the columns represent attributes

(the locations).

Table 2.1: Formal Concept Analysis example illustrating object/attributes
relationship

Object Name Land Water Trees
Humans X

Frogs X X
Monkeys X X
Giraffes X

Fish X
Turtles X X

Concepts are understood as “. . . the basic units of thought formed in dynamic processes

within social and cultural environments [17].” Concepts and concept hierarchies, are used to

create a mathematical model that allows a lexical relationship between objects, attributes,

and the relationships of the objects to the attributes. The lexical relationship indicates that

an object has an attribute. A lattice is created using the relationship between objects and

attributes and the theory of concepts, which is rooted in philosophy and psychology. Although,

there are twelve aspects to the theory of concepts, those aspects can be summarized in the

following statements.

• The mathematical notion of a formal context converts to the logical meaning of a domain

of interest based on object-attribute-relationships.

• The mathematical order-relationship that a formal concept is less than another formal

concept is logically understood as a subconcept-superconcept-relationship.

• The mathematical derivation of a set of formal attributes is logically viewed as the iden-

tification of all objects having all attributes of a given attribute collection.

18

Figure 2.3: FCA Lattice: The FCA lattice corresponding to Table 2.1.

• The labeled line diagram of a concept lattice is logically considered as a hierarchical

network linking nodes with object names to nodes with attribute names and thereby

establishing conceptual meanings.

• Formal object and attribute implications lead to the recognition of conceptual dependen-

cies within the given domain of interest.

The lattice [17] is a visual representation of all objects that share the given attributes, and

the relationship of all attributes shared by the given objects. Figure 2.3 illustrates the lattice

generated by the set of concepts illustrated in Table 2.1.

Structured analysis is defined as the process of studying a system in order to identify the

system’s structure, goals and purposes, as well as create systems and procedures that will

achieve the structure, goals and purposes in an efficient manner. As previous stated Formal

Concept Analysis is “. . . a mathematical formalism which analyses the data in a context and

attempts to extract the concepts embodied within that data [16].” FCA is a method for creating

a context hierarchy that identifies the system’s structure.

FCA was utilized as a means to apply mathematical representations to runtime mitigation

techniques. By using a FCA it was possible to identify a solution for runtime mitigation

techniques that could used to mitigate SQLIAs with minimal programmer involvement.

19

Chapter 3: Investigation of the Current State of the

Art in Web Application Security

This chapter presents an overview of the current state-of-the-art techniques in web application

security. These techniques involve different mechanisms to mitigate SQL injection, including

dynamic techniques, static techniques, and hybrid techniques. This chapter also explains how

and why SQL injection remains on the OWASP Top 10 list [2]. This chapter further defines

the common dynamic techniques including categorizing those techniques as the most promising

mitigation techniques via in-depth analysis known as Formal Concept Analysis. This chapter

also further describes static techniques and hybrid techniques.

3.1 Current State of Web Application Security

The current state-of-the-art techniques for mitigating web application vulnerabilities and at-

tacks, specifically SQL injection, can be categorized into one of three areas:

1. Dynamic solutions attempt to detect and possibly handle the SQL injection attack during

the runtime of the web application.

2. Static solutions scan the web application source code or the web application structure to

identify all possible locations where the source code or structure could be vulnerable to

SQL injection.

3. Hybrid solutions are a combination of static and dynamic solutions.

Dynamic solutions can be categorized as string analysis approaches. String analysis ap-

proaches typically involve data input searching or filtering for malicious SQL keywords that

can be used to attack the database. If the data inputs are detected as compromised, the web

application does not pass the query string to the database engine. A key problem with string

analysis approaches is the extreme difficulty in detecting all data input variations related to

SQL injection attacks.

20

Static solutions can be categorized as black box analysis or white box analysis. Black box

analysis first involves identifying weak points in the web application by using a web crawler

to detect the application’s workflow, including vulnerable points. Second the black box test

generates an attack for one of the vulnerable points. As the attack occurs, the black box test

monitors the behavior of the application to determine if the attack was successful. White box

analysis is based on examining the web application’s source code and its structure to detect the

vulnerable points.

Hybrid solutions involve both dynamic and static solutions. A hybrid solution typically

involves black box analysis as the static solution. The black box test identifies the vulnerabilities

and then generates SQL injection attacks to test the vulnerability. The dynamic solution

typically is then an input validation solution that attempts to sanitize the user inputs to prevent

a SQL injection.

3.2 Why SQL Injection Attacks (SQLIAs) are Still an Unsolved

Problem

Although SQL injection attacks have been discussed since 1998 [18], SQLIAs still remains on

the OWASP Top 10 List [2] and it is still prevalent in many web applications. SQL injection

may occur when the web application’s backend web server and the database servers interact.

The two main interactions between the web application’s backend web server and the

database server are:

1. Directly entering database parameters into the URL string, typically via the HTTP GET

command.

2. Data entered by the user into a web application form is passed to database server.

Considering modern highly interactive web application experiences there are dozens, if not

hundreds of places across the web application that satisfy one of the above scenarios. The

web is a set of intertwined web pages with intertwined technologies that is very complicated to

ensure the web application works correctly across multiple devices. Therefore, SQL injection

remains a problem for the following equally important reasons:

21

• The web is a complicated intertwined set of web pages with millions of lines of unval-

idated and unsanitized code. Furthermore, most projects have budget and/or schedule

constraints that prevent them from having adequate code reviews. Simply stated, it is

not cost effective to manually rewrite millions of lines of code to properly secure it.

• There are a large number of developers that have less than five years of professional

experience (57%) [6] and may not have knowledge of secure coding techniques. Part of

the problem is the lack of adequate and cybersecurity focused online tutorials. Many

of online tutorials either don’t discuss SQL injection or the tutorial uses outdated or

deprecated libraries. Furthermore, most tutorials illustrate a maximum privilege model

instead of a least privilege model.

• Open-source and free tools that can be applied to the millions of lines of insecure code and

be used without developer interaction have only been developed in research and have not

transitioned to enterprise use. What is urgently needed is an environment that requires

little to no programmer involvement, yet still detects a majority of SQLIAs. This type

of approach has already been implemented with other security vulnerabilities. A good

example is the mitigation of most, but not all, buffer overflow attacks with tools such

as StackGuard or Address Space Layout Randomization (ASLR), where both techniques

helped raise the security barrier, without requiring major code modifications.

• Most web applications contain a database with user demographics, possibly including

credit card numbers, birthdays and other sensitive information. This data is know as

“a juicy target;” once it has been retrieved from the database it can be sold and used

maliciously.

• With the surge of fully interactive web applications it is difficult for experienced developers

to become and stay current on the new technologies. With the increased use of JavaScript,

a new set of vulnerabilities have been introduced.

22

Almost 20 years later SQL injection still remains a problem for the reasons stated above.

The research presented here develops a systematic, semi-automated, formal and repeatable sys-

tem which is effective at modeling the security polices of web applications as well as preventing

attacks. Furthermore, the system can be utilized by web application developers regardless of

experience.

3.3 Runtime Mitigation Techniques for SQLIAs

Previous research into SQLIA mitigation techniques, broadly classified runtime mitigation tech-

niques as SQLIA Detection (SQLIAD) or SQLIA Prevention (SQLIAP). Halfond et al. [8] define

detection techniques as “ . . techniques that detect attacks mostly at runtime.” This section

summarizes some of the most popular runtime SQLIA Detection mitigation techniques. Ta-

ble 3.1 details the 10 runtime techniques that require little to no programmer involvement, yet

still detect a majority of SQLIAs. These techniques were chosen based on the following criteria:

• Number of citations

• Limited programmer involvement

• Limited additional resources

• Considered to be only runtime techniques

• Number of times a technique is mentioned in previous survey papers [8, 11, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] (See Section 11.5 for a discussion of these

papers.)

Furthermore, identifying which mitigation techniques and characteristics were important

for SQLIADs Formal Concept Analysis, a case study of similar types of security vulnerabilities

was conducted. The most closely related vulnerability is buffer overflow attack mitigation tech-

niques. Similar to SQLIADs, buffer overflow attacks can easily be mitigated by the developer

through secure development techniques. Unlike buffer overflow mitigation techniques SQLIADs

techniques have not successfully transitioned to enterprise use.

23

Table 3.1: Summary of SQL injection runtime mitigation techniques

Technique Brief Technique Summary
CANDID [34] CANDID combats SQL injection via obfuscation and de-

obfuscation of SQL commands. SQL injection attacks can be
detected based on dynamic verification performed on the obfus-
cated queries.

CSSE [35] Context-Sensitive String Evaluation uses a modified PHP inter-
preter to track precise per-character taint information through the
system. A context sensitive analysis is used to detect and reject
queries.

SQLCheck [36] SQLCheck checks queries at runtime for conformity to a model of
expected queries. The model is expressed as a grammar that will
only accept legal queries. In order to check queries at runtime a
key is used to delimit user input.

SQLGuard [37] SQLGuard compares the parse tree of the SQL statement before
inclusion of user input with the SQL statement after inclusion of
user input. The developer must use a special library.

SQLProb [38] SQLProb extracts user query inputs with a pairwise alignment
algorithm to compare user queries against legitimate queries. It
then uses a SQL parser to check each extracted input. The query
is only sent to the database if the user input is syntactically con-
fined.

SQLrand [39] SQLrand provides a proxy server between the web server and the
database server which is used to decipher the received queries.
The proxy server un-randomizes the SQL queries and then for-
wards the converted SQL query to the database server for execu-
tion. It also hides any database server error messages.

WASP [40] WASP uses positive tainting, and tracking techniques for syntax-
aware evaluation of queries string.

Header Sanitization [41] Header Sanitization sanitizes received variables inside HTTP
header request methods. The sanitized content is replaced back
into the original header field.

Network Analyzer [42] Network Analyzer builds a detection system between the attacker
and the web server. This system analyzes headers and payload
via “Deep Packet Inspection” of the packet.

Web Application Web Application analyzes the received variables inside HTTP
Firewall [43] header request methods. The sanitized content is either rejected

or passed to the SQL engine if no SQL injection is detected.

24

3.4 Structured Analysis of Runtime Mitigations for SQLIAs

The attributes for the FCA were chosen from a combination of attributes in prior survey papers

and criteria identified in selecting the 10 mitigation techniques. Not all attributes were chosen

from prior survey papers since those attributes did not add value to the FCA. For example a

prior survey paper classified the SQLIAD mitigation techniques based on the ability to generate

test suites for attacks. Since only SQLIA runtime techniques are being considered, the ability

to generate test suites was not considered during attributes selection. To be considered an

attribute from a prior survey paper the attribute had to appear in at least four survey papers.

The attributes chosen from the most commonly discussed in survey papers were:

• Classification of the technique as SQL detection

• Code base modification

• Additional infrastructure requirements

• The types of SQL injection attacks for which the technique would mitigate

Recall the focus of the structured analysis and FCA is to identify which SQL injection run-

time mitigation techniques would be the best candidates for preventing SQLIAs with minimal

developer involvement; therefore, additional attributes needed to be identified. The identified

additional attributes that did not appear in any prior survey papers included:

• Was the technique language specific?

• Did the implementation require tracking or tainting?

• Did the implementation utilize the GET or POST references?

• Was the technique open source?

• Was the technique in active development?

• What was the level of required developer involvement?

25

Table 3.2: Formal Concept Analysis of SQL injection mitigation techniques

Mitigation Name C
A

N
D

ID

C
SS

E

SQ
LC

he
ck

SQ
LG

ua
rd

SQ
LP

ro
b

SQ
Lr

an
d

W
A

SP

H
ea

de
r

Sa
ni

tiz
at

io
n

N
et

wo
rk

A
na

ly
ze

r

W
eb

A
pp

Fi
re

wa
ll

Low Programmer Involvement X X X
High Programmer Involvement X X X X X
Automatic Code Modification X X
Manual Code Modification X X
No Code Modification X X X X X
Additional Infrastructure X X X X
Open Source X X X X X X X
Language Specific X X X X X X
Active Development X X X X
Tracking X X
GET/POST X X X X
Tautology * X X X X X X X X X X
Logically Incorrect * X X X X X X X X
Union Query * X X X X X X X
Stored Procedures * X
Piggy-Back Query * X X X X X
Inference * X X X X X X
Alternative Encodings * X X X X

In order to be classified as a runtime technique a majority of all attributes must be met.

These SQL injection attack types were classified as very important because the ultimate goal

is to mitigate SQL injection attacks with minimal developer involvement. Table 3.2 illustrates

the relationship between the mitigation techniques (objects) and the analysis of each technique

(attributes). The attributes includes a mapping of the mitigation techniques to the types of

SQL injection and are denoted by the asterisk (*).

The free open source software Concept Explorer developed by Yevtushenko [44] was used

to construct a two-dimensional array structure. This two-dimensional array structure is a

binary structure represented with ones and zeros, a zero is represented by a blank and a one is

represented by a check mark. The objects appear as individual rows and the columns are the

individual attributes. The illustration of the objects and attributes is illustrated in Table 3.2.

26

Figure 3.1: FCA Lattice: The Formal Concept Analysis lattice that
illustrates the relationship for all objects that contain the attribute

“GET/POST”, generated by Concept Explorer [44].

A concept lattice is uniquely determined by its formal context, meaning every structural

property can be read based on the incidence relation. An incidence relation is defined as the

binary relationship between different types of objects, captured by the idea being expressed.

For example “a point lies on a line” is an incidence relationship. For FCA lattices the binary

relationship is derived from the binary table. Table 3.2 clearly illustrates the relationship

expressed in the full lattice. Figure 3.1 illustrates the attributes and objects that contain

the characteristic “GET/POST”. Figure 3.2 illustrates the lattice derived for every structural

property based on the incidence relation.

27

Figure 3.2: FFCA Lattice: The FCA lattice illustrating dynamic SQL
injection mitigation techniques.

3.5 Static Mitigation Techniques for SQLIAs

Just as SQLIA Detection (SQLIAD) is for runtime mitigation techniques, then SQLIA Pre-

vention (SQLIAP) is for static mitigation techniques. Halfond et al. [8] define prevention

techniques as “. . . techniques that statically identify vulnerabilities in the code, propose a

different development paradigm for applications that generate SQL queries, or add checks to

the application to enforce defensive coding best practices.”

28

Table 3.3: Summary of SQL injection static mitigation techniques

Technique Brief Technique Summary
SQLUnitGen [45] SQLUnitGen locates vulnerabilities though automated pene-

tration testing, which generates test reports that require the
developer to manually correct the vulnerability.

Ardilla [46] Ardilla incorporates symbolic logic execution into randomized
test inputs to identify previously undetected SQL injection vul-
nerabilities. Ardilla generates sample inputs, and creates at-
tack vectors that are symbolically tracked as tainted inputs.

SAFELI [47] SAFELI inspects Microsoft bytecode for an ASP.NET Web ap-
plication, using symbolic execution. For each SQL query, a
hybrid constraint solver is used to identify corresponding user
inputs.

JDBC Checker [48] JDBC Checker verifies the correctness of dynamically gener-
ated SELECT query strings. The string is analyzed via a Fi-
nite State Automata (FSA), that uses a framework to parse
class files and compute inter-procedural control flow graphs.

TASA [49] TASA is an ASP static analyzer that utilizes path-sensitive,
inter-procedural and context-sensitive data flow analysis
through taint propagation.

Pixy [50] Pixy is a static analyzer that utilizes flow-sensitive, inter-
procedural and context-sensitive data flow analysis to discover
vulnerable points in the web application. Pixy targets general
classes of taint-style vulnerabilities including SQL injection.

SecuBat [51] SecuBat is a generic web vulnerability scanner, similar to a port
scanner, that automatically analyzes web sites for exploitable
SQL injection vulnerabilities.

PHP Static Detection [52] PHP Static Detection captures information at decreasing levels
of granularity at the intra-block, intra-procedural, and inter-
procedural levels.

Prevention techniques can be further classified into two categories: white box (compile-

time) analysis or black box (both static and runtime) analysis. For white box analysis the

mitigation technique involves tools to examine the code and identify the potential SQL injec-

tion vulnerabilities. The developer needs to manually modify the vulnerable code to fix the

vulnerability. Black box analysis requires an input generator that creates automated test cases.

Those tests are executed against the existing code and are monitored during execution. The

results of the execution are used to identify previously undiscovered vulnerabilities. Once the

vulnerability is detected, correction requires developer involvement. Table 3.3 displays a brief

summary of the eight static mitigation techniques.

29

The techniques were chosen based on the following criteria:

• Number of citations

• Considered to be a static technique (black box or white box analysis)

• Number of times a technique was mentioned in previous survey papers [21, 25, 53, 54, 55]

The techniques described in this dissertation differ from previous runtime and static tech-

niques. Recall that runtime techniques detect attacks typically using string searching or string

filtering. Static techniques involve scanning the source code for vulnerabilities. Based on the

results of the static technique, detected code vulnerabilities are then modified before the web

application is placed into production. This work is different from dynamic mitigation tech-

niques in that this work does not detect attacks at runtime, nor does this work conduct string

searching or string filtering. This work is different from static techniques in that this work does

not scan the source code for vulnerabilities.

This work provides a least privilege implementation to SQL injection attacks. This solution

infers the privilege model from from the SQL database transactions. It then dynamically

builds the least privilege model and provides the system administrator the SQL statements to

secure the database. This solution builds a systematic, semi-automated, formal and repeatable

system that is effective at modeling the security polices of web applications as well as preventing

attacks. This system can be implemented by developers, regardless of experience and knowledge

of secure development practices.

30

Chapter 4: Manually Applying Least Privilege with

HPol for Web Application Security

This chapter explains the Principle of Least Privilege (POLP) and how many web applications

violate the POLP. Section 4.1 explains the process of manually applying least privilege. Section

4.2 explains the Hierarchical Policy Formal Security Model (HPol) and Section 4.3 presents

High-Level Easily Reconfigurable Machine Environment Specification (HERMES). Using HPol

and HERMES to build a formal web application security model is explained in Section 4.4. Us-

ing HPol and HERMES to build a formal web application filesystem security model is explained

in Section 4.5 and a formal web application DBMS security model is explained in Section 4.6.

With an understanding of the HPol formal security model and the specification outlined from

HERMES, Section 4.7 discusses the application of HPol and HERMES to a case study of the

Mutillidae II web application (Mutillidae). Figure 4.1 illustrates Contribution 1: A manual

but formal, systematic and repeatable process for securing current web applications

based on the principle of least privilege.

31

4) BuildDBQueries
 script cleans the
 DB logs

5) Dynamic2HPol
 script creates
HPol and HERMES

HPol Model

HERMES file

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

7) Prolog
calculates Least
Privilege (LP)
PKB

PKB

8 a) Prolog2
HERMES script
creates LP
HERMES

8 b) Prolog2
HPol script
creates LP
HPol Model

LP HERMES

LP HPol Model

9) Hermes2SQL
 script creates
 LP SQL

RAW
SQL logs

Cleaned
SQL logs

 LP PKB

1) DBMS Admin
enables logs for
all DB queries

3) DBMS Admin
provides log file

LP SQL for

DBMS Admin

10) DBMS installs LP SQL

Web Dev verifies
and modifies LP
HERMES

if needed

Web Dev verifies complete
and correct HERMES.

2) Web Dev exercises the web site non-maliciously

Web
Developer

Web Dev verifies complete
and correct LP HPol model.
Web Dev uses LP HPol
model to output new PHP
code that enforces Least
Privilege

DBMS
Admin

Contribution 1
Manual Process

Contribution 1
Manual Process

Figure 4.1: Contribution 1: A manual but formal, systematic and
repeatable process for securing current web applications based on the

principle of least privilege.

4.1 Manually Applying the Principle of Least Privilege

One of the primary reasons that many current Web applications contain security vulnerabilities

is the widespread practice of highest privilege design or high watermark security policy. This

widespread practice of highest privilege configuration entails giving the computing processes the

highest level of privilege possible, instead of restricting the access permissions with the highest

possible granularity and lesser privilege. For example, it is common practice today, that Web

application middleware processes are given the highest level of access privilege (root) to the

database management system (DBMS) containing the back-end database. Figure 4.2 illustrates

the current practice for database configuration. This is an excerpt of standard available code

tutorial for logging into a MySQL database from a PHP Web application. Observe that the

32

Figure 4.2: Current Practice Database Configuration: An excerpt of
standard available code tutorial for logging into a MySQL database.

(Mutillidae:2.6.42 GPL mutillidae/classes/MySQLHandler.php)

connection to the database is made with DBMS root privileges. If the Web Application is

compromised then the attacker will have administrative-level privileges to all data within the

DBMS.

The principle of least privilege (POLP) is a computer security concept that promotes min-

imal user privileges based on users’ role. The POLP was originally described by Saltzer and

Schroeder [12] to limit the potential damage of any security breach, whether accidental or mali-

cious. The POLP should be applied to individual system components. Each system component

should have the least authority necessary to perform the appropriate tasks. This helps reduce

the vulnerabilities of the computer system by eliminating unnecessary privileges that can result

in exploits and compromises [56, 57, 58, 59].

In the case of Web applications, for example, an index page that only displays basic infor-

mation should not have write access to the file-system or the backend DBMS. Applying the

POLP to the index page dictates the page should be read only and have no access to the back-

end DBMS. By correctly enforcing the POLP, an attack on the basic index page would mitigate

unintended information disclosure. When adequately implementing least privilege, vulnerabil-

ities in one part of an application are more difficult to leverage in order to gain access to other

parts of the same system.

33

4.2 Manually Creating the HPol Formal Security Policy Model

The Hierarchical Policy (HPol) formal model, and its associated tool-set, was developed to

enable a formal representation of a system’s security and access control policy. HPol enables

the formal representation of permissions in the form of tuples: Who, What, Which. It also

enables the formal response to the generic access control question of Who (the subject) can

perform What action on Which resource or object. HPol represents each (Subject, Action,

Object) tuple with a node within a directed acyclic graph (DAG). Policy links between nodes

connect subject, action, object nodes within the DAG to indicate what policies are allowed. In

an HPol formal model, if a policy can be traced from the Start node to the End node then

the nodes in the policy path describe the allowed access. In implementing a Mandatory Access

Control (MAC) scheme, permissions not explicitly allowed are disallowed.

A primary advantage of HPol, in contrast with all other known access control models, is that

the model’s structure organizes subjects, actions, and objects using graph-based hierarchies.

This enables the model to formalize these organizational hierarchies and enables the formal

definition of abstraction and other formal or algebraic operations with system security policies

such as policy concatenation and merging. An article describing the HPol formal model in a

comprehensive manner, and all its potential uses, is currently under preparation.

Figure 4.3 displays the HPol model for a simplified file-system access control policy example.

In the model the user Alice is allowed read permissions (or actions), by policy 1001, to her

home directory /home/alice and write permissions, by policy 1002, also to her home directory

/home/alice.

34

HPolStart

Alice

1001 1002

HPolEnd

Bob Oscar

Role_User

Subject

Role_AdminUsers

write

1002

read

1001

alice

1002

read_write

1001

Action

1001 1002

Object

fs_root

home

Example

Figure 4.3: HPol Model: A simple example of the HPol formal model for a
file system containing three different users, two permission types (file

system read and write), and a single home directory.

35

4.3 The HERMES Specification for a Web Application

The High-Level Easily Reconfigurable Machine Environment Specification (HERMES) and its

associated tool-set, was developed as a high-level security policy description language that

enables system administrators to write web browser security policies that could then be im-

plemented across the organization. HERMES enables the specification of organizational and

domain hierarchies and the specification of policies at any desired level of abstraction. Origi-

nally, HERMES allows a policy designer to specify a given action or prohibition that applies to

all browsers within an organization or to a single browser, for a single device, for a single user.

HERMES has evolved from a browser only specification to systemwide specification that

enables the automatic generation of policy configurations based on a high-level policy specifi-

cation. HERMES was designed with a goal of being written and read by humans rather than

computers; therefore, HERMES is a text-based language capable of specifying security policies

for many different system wide configurations including security configurations, including all

browsers in any platform in any type of organization.

A HERMES policy specification is written in entity blocks. Entities have two components:

head and body. An Entity Head corresponds to entity type and an identifier. An Entity Head

contains only node, policy, or link. The Entity Body defines a set of fields or attributes and

the order of these does not change the semantics. HERMES was designed using a context-free

[60], definite-clause [61] , and block-like grammar format [62]. The BNF (Backus-Naur Form)

specification of HERMES is provided in Figure 4.4. Figure 4.5 provides the syntactic usage.

36

HERMES BNF GRAMMAR

〈File〉 ::= 〈EntityList〉
| EOF

〈EntityList〉 ::= 〈Entity〉 〈EntityList〉
| 〈Entity〉

〈Entity〉 ::= 〈EntityHead〉 〈EntityBody〉

〈EntityHead〉 ::= 〈EntityType〉 : 〈EntityTypeIdentifier〉

〈EntityType〉 ::= Node
| Policy
| Link

〈EntityTypeIdentifier〉 ::= 〈Symbol〉

〈EntityBody〉 ::= { 〈EntityBlockList〉 } .

〈EntityBlockList〉 ::= 〈EntityBlock〉 〈EntityBlockList〉
| 〈EntityBlock〉

〈 EntityBlock〉 ::= 〈BlockMemberIdentifierName〉 : 〈BlockMemberIdentifierValue〉 ;

〈BlockMemberIdentifierName〉 ::= 〈IdentifierSymbol〉

〈BlockMemberIdentifierValue〉 ::= 〈IdentifierSymbol〉
| 〈IdentifierString〉
| 〈IdentifierList〉
| 〈IdentifierDictionary〉

〈IdentifierSymbol〉 ::= 〈IdentifierChar〉 〈IdentifierSymbol〉

〈IdentifierChar〉 ::= A - Z
| a - z
| 0 - 9
| .

〈IdentifierString〉 ::= 〈String〉

〈IdentifierList〉 ::= [〈ItemList〉]
| [None]

〈ItemList〉 ::= 〈item〉 , 〈ItemList〉
| 〈item〉

〈item〉 ::= 〈Symbol〉
| 〈String〉

〈IdentifierDictionary〉 ::= { 〈KeyValuePairList〉 }

〈KeyValuePairList〉 ::= 〈Key〉 : 〈Value〉, 〈KeyValuePairList〉
| 〈Key〉 : 〈Value〉

〈Key〉 ::= 〈Symbol〉
| 〈String〉

〈Value〉 ::= 〈Symbol〉
| 〈String〉

〈Symbol〉 ::= SymbolLiteral

〈String〉 ::= ’StringLiteral’
| "StringLiteral"

1Figure 4.4: HERMES: The formal specification of the HERMES grammar

37

HERMES BNF SYNTACTIC USAGE

Node: TypeIdentifier
{

SymbolLiteral: SymbolLiteral ;
SymbolLiteral: ‘StringLiteral’ ;
SymbolLiteral: “StringLiteral” ;
SymbolLiteral: [IdentifierList] ;
SymbolLiteral: { IdentifierDictionary } ;

} .

Policy: TypeIdentifier
{

SymbolLiteral: SymbolLiteral ;
SymbolLiteral: ‘StringLiteral’ ;
SymbolLiteral: “StringLiteral” ;
SymbolLiteral: [IdentifierList] ;
SymbolLiteral: { IdentifierDictionary } ;

} .

IdentifierList = [None] or [item] or [item1, item2, item3, ..., itemN]

item = SymbolLiteral or ‘StringLiteral’ or “StringLiteral”

IdentifierDictionary = { Key : Value } or
{ Key1 : Value1, Key2 : Value2, ..., KeyN : ValueN }

Key = SymbolLiteral or ‘StringLiteral’ or “StringLiteral”

Value = SymbolLiteral or ‘StringLiteral’ or “StringLiteral”

1

Figure 4.5: HERMES Usage: The formal usage specification for the
HERMES grammar as previously outlined.

4.4 Manually Building a Formal Web Application Security Model

In this section the HPol security model is applied to the Mutillidae Web application. In order to

create a security model, the Mutillidae Web application was reverse engineered. In reverse engi-

neering the Web application the subjects, actions, and objects were identified. In this instance

the subjects are identified as the individual Web pages, and either the Mutillidae database

user (dbRoot) or the Mutillidae Web application Apache user (www-data). The actions are

identified as the permissions allowed on the Mutillidae file-system or the SQL query allowed

on the DBMS. The objects are identified as the individual Web pages of the Mutillidae Web

application and the Mutillidae MySQL database tables. Figure 4.6 illustrates the manual pro-

cess for building the formal web application security model. The web application was reversed

engineered for the filesystem and database queries.

38

Figure 4.6: Manual HPol: The manual process of building the security
model.

4.5 Manually Building a Formal Web Application Security Model:

Filesystem

The Mutillidae Web application Apache was installed on a Linux Ubuntu server. The location

of the Apache configuration files is /etc/apache2 . Within these configuration files, Apache

describes a single user known as www-data. The actual location of any files within the Web server

are located in /var/www/html. By default www-data does not have the proper permissions to

take action on the directories in /var/www/html. For ease of access, the Mutillidae installation

directions recommend changing the permission on /var/www/html to be readable, writable,

and executable for all users and all groups (rwx) [14].

The Mutillidae file-system resides in /var/www/html/mutillidae within the host Linux sys-

tem. Within the Mutillidae directory is a set of Web pages and other directories. The Web

pages with the Mutillidea directory are index.php, login.php, register.php, addToBlog.php, up-

loadFile.php, captureData.php, viewBlog.php, and userInfo.php. The subdirectories within the

Mutillidae directory are classes, data, and includes. The classes subdirectory contains the PHP

code connectivity to the Mutillidae MySQL database. The includes directory contains the

common PHP files that all Web pages in the Mutillidae Web application use.

Figure 4.7 illustrates the policies for the uploadFile.php Web page. The Web page up-

loadFile.php has filesystem access via the Mutillidae Apache user www-data. The Mutillidae

39

Apache user www-data can perform the action rwx on the object Mutillidae file-system directory

html. Although Mutillidae is a subdirectory of /var/www/html the permissions are applied to

/var/www/html/ and all of the subdirectories below the html directory.

Figure 4.7 illustrates that the permissions on the Mutillidae directory of /var/www/html/-

mutillidae, including the Web pages and the subdirectories, are read, write, and execute (rwx)

for the www-data user. This is problematic because the classes subdirectory contains the PHP

file RemoteFileHandler.php. This PHP file contains the code and permissions to upload a file.

A malicious user could use the security misconfiguration of RemoteFileHandler.php to upload

a malicious file that could corrupt the Linux server.

HPolStart

uploadFile

1001

HPolEnd

databaseEngine

users

www-data

rwx

1001

middleware

phpEngine apache

subject

dbRoot 1001

filesystem

uploadFile

databaseEngine

privilegeType

all

html

1001

action

filesystem

var

databaseEngine

star

starDotStar

object

nowaspDotStar

1001

mutillidae

www

unsecured

Figure 4.7: HPol model of the Mutillidae File-system: This figure
illustrates the insecure file-system privileges.

40

4.6 Manually Building a Formal Web Application Security Model:

DBMS

For the Mutillidae Web application, the database management system (DBMS) is MySQL.

The set of available MySQL commands are, show databases, select, alter, drop, create,

delete, insert, shutdown, process, execute, and update. The Mutillidae Web application

contains a class classes/MySQLHandler.php with a single privileged user named root. This

root user has full access to all commands in the DBMS. Figure 4.8 illustrates the creation of

the single privileged root user in the file MySQLHandler.php.

A Mutillidae Web page executes a query into the database via the PHP file classes/SQL-

QueryHandler.php. The Web page calls SQLQueryHandler.php which constructs the MySQL

query. Once the query is constructed the root user issues the query. The action is the SQL

query. The HPol Mutillidae object is the database table, database procedure, or the database

function referenced by the SQL query.

For example an end-user attempting to login to their Mutillidae account would execute

the page login.php. This login page prompts the user for their username and password. Once

the username and password are entered and the submit button is pressed the function au-

thenticateAccount is called in the file SQLQueryHandler.php. This PHP file builds the SQL

query. Figure 4.9 illustrates the constructed SQL query after the user inputs their username

and password on the login.php page.

Figure 4.8: Web Application Root: A code excerpt illustrating the
connection from the middleware to the DBMS using root level privileges.

(Mutillidae:2.6.42 GPL mutillidae/classes/MySQLHandler.php)

41

Figure 4.9: Web Application Query: This figure illustrates the the query
string in SQLQueryHandler.php for a login attempt. (Mutillidae:2.6.42

GPL mutillidae/classes/SQLQueryHandler.php)

Figure 4.10 illustrates the DBMS access permissions of the Mutillidae web application.

In this figure it can be observed that root can perform any SQL command on any database,

table, function or procedure within the MySQL DBMS. In the HPol Mutillidae security model

the dbRoot user is the subject. The actions are the possible SQL queries such as select,

update, insert. The objects are a hierarchical structure under the MySQL DBMS. At the

top of hierarchy is the regular expression star which represents zero or more databases or

database tables. Below star is starDotStar. Below starDotStar is the mysqlDotStar. Below

mysqlDotStar are the database tables, functions and procedures for that database.

42

HPolStart

dbRoot

1001

HPolEnd

Subject

databaseEngine

all1001

users privilegeType

Action

databaseEngine

dbCommands

star

1001

procedures

starDotStar

dbEngineDotStar

tables functions

databaseEngine

Object

1001

Unsecured

Figure 4.10: HPol Model of the Current Mutillidae Web Application:
Illustrating Non-Least Privilege (insecure) Mutillidae DBMS (MySQL)

Access Permissions.

43

4.7 Applied Case Study: Mutillidae - Manually Applying HPol

In Section 4.4 the process of reverse engineering and applying the HPol formal security model

is described. In this section, a step by step process using the case study of the Mutillidae web

application is described. The step by step process is applied to the filesystem, and then the

database management system.

OWASP Mutillidae II is a deliberately vulnerable Web application. Mutillidae II may be

used by developers to learn secure Web coding practices. It uses a Web Server, such as Apache,

plus PHP for middleware and a DBMS back-end, such as MySQL or MariaDB. Mutillidae II

may be installed on Linux, Windows, or MacOS using a LAMP, WAMP, or XAMMP application

stack [14]. Mutillidae II was used as a case study for this research for the following reasons: (1)

Richness of available instructional code examples; (2) Ability to change the security-level and

implement and test different vulnerability mitigation strategies; (3) Availability of complete

source code and flexible license (GPL3); and (4) Uses PHP, the current target language of this

research due to its widespread use in Web applications.

Mutillidae II was developed to teach secure Web application development and it does not

implement a least-privilege secure design approach. Rather it uses the widespread practice of

highest privilege approach of granting administrative-level permissions to the middleware on the

DBMS. In other words, Mutillidae, similarly to most other learning-focused Web applications,

focuses its instructional approach on bettering the practice of secure coding but not on bettering

the practice of secure application design. We believe the latter to be as important or more than

the former, however, likely harder to master and implement.

Manually Applying HPol to the Filesystem

Step 1: Identify the file-system permissions required to move from non-least privilege

to least privilege. The appropriate file-system permissions for each Web page in the

Mutillidae Web application are displayed in Table 4.1.

44

Subject: Object: Object: Actions: Actions:
Linux Type Name Current New
User Non-POLP POLP

www-data Page index.php read, write, execute read, execute
www-data Page login.php read, write, execute read, execute
www-data Page register.php read, write, execute read, execute
www-data Page addToBlog.php read, write, execute read, execute
www-data Page captureData.php read, write, execute read, execute
www-data Page viewBlog.php read, write, execute read, execute
www-data Page userInfo.php read, write, execute read, execute
www-data Page fileUpload read, write, execute read, execute
www-data Directory classes, includes read, write, execute read, execute
www-data Directory images read, write, execute read

Table 4.1: Current (Non Least Privilege) and New (Least Privilege or
POLP) Linux file-system permissions for each PHP web-page file and file

storage directories in the Mutillidate Web application.

For example the index.php page displays information about the Mutillidae Web applica-

tion as well as it contains links to open other Web pages. The column labeled Actions:

Current Non-POLP, in Table 4.1 shows that the current file-system permissions are set

to read, write, and execute. The principle of least privilege states the appropriate file-

system permissions for the index.php page should be read only, to display the contents

of the page, and execute only for opening the links to other pages. This is shown in the

column labeled Actions:New POLP.

Step 2: Modify the Web application file-system permissions for the file-system directo-

ries and PHP files. The appropriate HPol security model for the POLP requires the

permissions of rwx be broken into read and execute permissions (rx) and write only per-

missions under the node rwx. The node rx (read and execute) is further broken in to read

only and execute only permissions. The permissions on /var/www/html are changed to

read and execute, with no write permissions.

Furthermore, the permissions must be changed on other files that are not Web pages

and directories, using the command sudo chown -R $USER:www-data /var/www and the

command sudo chmod -R 640 /var/www. The Mutillidae Web application has subdirec-

tories named classes, data, and includes. Recall the classes subdirectory contains the

45

PHP files for handling file uploads, building query strings, and database connectivity.

The required permissions on the classes subdirectory are required to be read only and

execute only (rx). To move the index.php page from non-least privilege to least privilege

the file-system permissions were changed to be read and execute (rx) for the Linux system

user and Linux system group only. Figure 4.11 illustrates how the file-system permissions

have been corrected for the index.php page.

HPolStart

www-data

1001

HPolEnd

middleware

apache

rx1001

Subject

read execute

filesystem

rwx

index

1001

write

Action

mutillidae

www

html

var

1001

filesystem

Object

Secured

Figure 4.11: Least Privilege HPol Model: This figure illustrates the least
privilege model of the web page index.php and the interaction with the

web server.

46

Step 3: Modify the Linux file-system permissions for the Apache user. Recall the Apache

Web server runs under a Linux system user named www-data. This www-data Linux

system user resides outside the Mutillidae Web application, this user currently contains

read, write and execute permissions. The www-data user should have read and execute

permissions only. The permissions on the www-data user were modified by the command

chmod g+s. This command allows all new files and subdirectories created by the www-

data user to inherit the group ID of the directory. Since the group ID permissions were

changed for all directories and subdirectories in Step 2, any changes to the file-system

by the www-data user by default are read and execute (rx). This is important for file

uploads. Any file that is uploaded is now uploaded without write permissions, which

prevents malicious code that is uploaded from making changes to the Linux file-system.

Table 4.1 illustrates the new permissions for the fielUpload page are now set to read and

execute.

Manually Applying HPol to the Database

Step 1: Identify the DBMS and Mutillidae database permissions required to move from

non-least privilege to least privilege. The appropriate database permissions, including

least privilege database users, and least privilege database commands for each Web page

in the Mutillidae Web application are displayed in Table 4.2.

For example, the login.php page, from Figure 4.12, prompts the user to enter their user-

name and password. Recall that once the username and password are entered and the

submit button is pressed, the function authenticateAccount is called. The authenticateAc-

count function creates a query using only the select statement. Since only the select

statement is issued the HPol subject specifies the loginSelectAccounts only has permissions

to issue the select database command. Figure 4.14 illustrates the updated HPol model.

The new user loginSelectAccounts has been created and applied to the page login.php.

Step 2: Remove the root user from the DBMS connection. The single privileged root

user used to connect the DBMS and shown in Figure 4.8 is abandoned. A new set of least

privilege users are created with the permissions needed for each individual Web page.

47

Subject: Subject: Action: Object:
Page POLP POLP DBMS
Name User Permissions Table

index.php none none none
login.php loginSelectAccounts select accounts

userInfo.php userInfoSelectAccounts select accounts
viewBlog.php viewBlogSelectAccBlogs select accounts

blogs table
addToBlog.php addToBlogSelectAccInsBlogs select accounts

insert blogs table
register.php registerSelectInsertAccounts select accounts

insert accounts
captureData.php captureDataInsertCaptureData insert capture data

Table 4.2: New POLP permissions for each web page and the
corresponding new user and restricted permissions on the DBMS.

Continuing the example of index.php the mysql.users table within the database was

updated to include the new user. The new user was created by using the page name login,

the SQL command select, and the database table accounts. Figure 4.13 illustrates the

new least privilege user. Figure 4.13 illustrates the updated HPol model where the new

user loginSelectAccounts has been created and applied to the page login.php.

Figure 4.12: Mutillidae Login: This figure illustrates the Mutillidae login
screen as displayed from the Mutillidae Web application.

48

Figure 4.13: Principle Of Least Privilege Database: The POLP applied to
the nowasp MySQL database. This figure illustrates the MySQL

commands to grant the user limited privileges on the accounts table within
the database.

Step 3: The modification of the database commands. The appropriate HPol security

model for the POLP requires that the action dbCommands be broken into individual

database commands such as select_insert. Subsequently, the newly created action

node select_insert is further broken into select only and insert only. This occurs

for all database commands allowed in the MySQL database engine (DBMS).

As an example, returning to the login.php page the individual required database com-

mand is select. In Step 2 the specific least privilege subject loginSelectAccounts was

created. In Step 3 the least privilege action select is called by the least privilege subject

loginSelectAccounts.

49

HPolStart

accounts

1001

HPolEnd

users

root login

select

1001

select

databaseEngine

Subject

insert

databaseEngine

privilegeType

accounts

1001

all

insert_select

Action

tables

captured_data blogs_table

1001

star

starDotStar

databaseEngine

nowaspDotStar

Object

Secured-Login

Figure 4.14: Principle Of Least Privilege Web Page: This figure illustrates
the POLP applied to login.php. The POLP illustrates the subject and

action only has permissions for the SELECT statement and the object is
only for the accounts table.

50

Step 4: Modification of the the Mutillidae database tables. The appropriate HPol se-

curity model for the POLP requires that the object star be restricted to the individual

database tables in the Mutillidae Web application.

For example, the login.php page in Step 2 requires a loginSelectAccounts as the HPol

subject. In Step 3 the login.php page requires only the database command select as the

HPol action. In Step 4 the HPol object for the login.php page, requires access only to the

accounts table.

Step 5: Systematically apply the POLP to each subject web page that requires database

access. This requires understanding the SQL commands required for each page, and

understanding each database table that the page accesses. Similar to Step 4, a new

SQL user is created representing the page, the SQL command and the database table.

For example, the add-to-your-blog requires two new SQL users. First, add-to-your-blog

queries the accounts table for the blog user. Once the user is authenticated, the add-to-

your-blog page inserts the blog comment into the blogs_table. This set of queries can

be summarized as add-to-your-blog page, executes a select command on the accounts

table. Once the user is authenticated the add-to-your-blog page, executes an insert

command on the accounts table.

Figure 4.15 illustrates the principle of least privilege applied to the add-to-your-blog.php

page. The new users are illustrated with the path Subject/databaseEngine/users/

addToYourBlog. The HPol security model defines two policies for this add-to-your-blog

Mutillidae Web page. Policy 1001 illustrates the subject addToYourBlogSelectAccounts

can only perform the action of executing the database select command for the database

table accounts. After Policy 1001 completes, then Policy 1002 allows the subject addToY-

ourBlogInsertBlogsTable to only perform the action of executing the database insert

command for the database table blogs table.

51

HPolStart

accounts

1001

blogs_table

1002

HPolEnd

select

1001

insert

1002

addToYourBlog

select insert

Subject

databaseEngine

users

accounts

1001

privilegeType

all

blogs_table

1002

insert_select

databaseEngine

Action

1001

databaseEngine

star

starDotStar

nowaspDotStar

tables

captured_data

Object

1002

Secured-Blog

Figure 4.15: Principle Of Least Privilege Web Page - addToBlog: This
figure illustrates the updated PHP code enforcing the Principle of Least

Privilege for the page addToBlog.

52

Chapter 5: Enhancements to HPol and HERMES for

Increased Web Application Security

This chapter explains the enhancements to HPol and HERMES developed for this dissertation.

These enhancements were required for the semi-automated approach presented in this disser-

tation. This chapter outlines Contribution 2: Formal web application security policy

modeling explained in Section 5.1. and Contribution 3: Formal High-Level Easily Re-

configurable Specification explained in Section 5.2. Both contributions are illustrated in

Figure 5.1. The practical application of HPol and HERMES is demonstrated in Section 5.3.

4) BuildDBQueries
 script cleans the
 DB logs

5) Dynamic2HPol
 script creates
HPol and HERMES

HPol Model

HERMES file

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

7) Prolog
calculates Least
Privilege (LP)
PKB

PKB

8 a) Prolog2
HERMES script
creates LP
HERMES

8 b) Prolog2
HPol script
creates LP
HPol Model

LP HERMES

LP HPol Model

9) Hermes2SQL
 script creates
 LP SQL

RAW
SQL logs

Cleaned
SQL logs

 LP PKB

1) DBMS Admin
enables logs for
all DB queries

3) DBMS Admin
provides log file

LP SQL for

DBMS Admin

10) DBMS installs LP SQL

Web Dev verifies
and modifies LP
HERMES

if needed

Web Dev verifies complete
and correct HERMES.

2) Web Dev exercises the web site non-maliciously

Web
Developer

Web Dev verifies complete
and correct LP HPol model.
Web Dev uses LP HPol
model to output new PHP
code that enforces Least
Privilege

DBMS
Admin

Contribution 2
and

Contribution 3

Figure 5.1: Contribution 2: Formal web application security policy
modeling. Contribution 3: Formal HERMES Specification.

53

5.1 Enhancing the HPol Formal Security Model

The purpose of The Hierarchical Policy (HPol) formal model, and its associated tool-set, was

to enable a formal representation of a system’s security and access control policy. In order to

model web application security the following enhancements were made to HPol:

Step 1: The concepts of domains was added to HPol. Domain names are used to identify

the particular website. The domain was added to separate one web application from

another web application with the same name. An example would one web application with

the URL of http://www.somewebapp.com/ versus a completely different web application

with the URL http://www.somewebapp.net/.

Step 2: A hierarchical namespace was added to HPol. Similar to the domain the purpose

of the namespace was to group like structures (web pages, networks, etc.) to avoid name

collisions for multiple identifiers that might share the same name within a domain.

Step 3: The Node class was originally embedded inside the HPol Python file. This class

was extracted into its own stand alone class. This now allows for an HPol object to be

created without having to create a node. Since HERMES can be tightly coupled (not

required) with HPol, having the first order predicate Node separated enabled ease of use

for both HPol and HERMES.

Step 4: Parts of the Policy class were originally embedded inside the HPol Python file.

The parts necessary for this dissertation were extracted into a stand alone class file.

Similar to the Node class, Policy is a first order predicated and will eventually become a

complete stand alone class.

Step 5: A rudimentary Link class was added to HPol. Similar to the Policy class and

the Node class, the Link class is also a first order object. The Link class will also aid in

previous research concerning Cisco router policy [63] when the class is complete.

Step 6: A fully qualified name (FQN) was added to HPol. By default, a node’s path

goes from the start of the HPol DAG to the terminal node. That path, coupled with the

namespace and the domain define a unique FQN.

54

Step 7: User numbered policies were added to HPol. The original default behavior was to

number policies starting from 1000. In order to convert from a non-least privilege security

model to a least privilege security model the ability to add a policy with a predefined

number was required. The HPol consistency checker ensures there are no duplicate policy

numbers.

Step 8: The ability to create a HERMES file was added to HPol. In order to be a

semi-automated approach the ability to create a HERMES file was required.

Step 9: Minor code cleanup and refactoring was done to aid in the research in this

dissertation.

HPol was an excellent stand alone tool set that was being utilized in many different research

activities. These enhancements were necessary to create the semi-automated approach of this

dissertation to prevent cyber attacks on web applications.

5.2 Enhancing and Formally Defining the HERMES Language

Recall that the purpose of the High-Level Easily Reconfigurable Machine Environment Speci-

fication (HERMES) language, and its associated tool-set, was originally for granular browser

configuration. The HERMES specification was originally defined by Jillepalli and Conte de

Leon [64]. In order to be able to move from non-least privilege to least privilege the following

changes to HERMES were made:

Step 1: A formalized Entity Head was added to HERMES. HERMES contained an En-

tity Head; however, the values could be anything. By formalizing the values as Node,

Policy, or Link, then these values can be coupled with HPol to provided dedicated first

order predicates.

Step 2: A formalized Entity Body was added to HERMES. Although HERMES con-

tained an Entity Body, that body could also be anything. By formalizing the body to be

only symbols, stings, lists, or dictionaries allowed for ease of using HERMES to create a

Prolog Knowledge Base (PKB).

55

Step 3: A formalized data structure similar to the HPol data structure was created for

HERMES. This data structure allows for a HERMES file to be written in plain text by

anyone; however, the HERMES data structure objects can be created from the text file

and used for various purposes for this dissertation.

Step 4: The fully qualified name (FQN) was also added to HERMES. This name, similar

to HPol FQN, allows for the exact Nodes, Files, or Policies to be specified.

Step 5: Minor refactoring and additional specifications were added. Every HERMES

Entity Body starts with a left curly bracket ({) and ends in a right curly bracket and a

period (}.) Furthermore, each line in the body ends in a semicolon.

Similar to HPol, the enhancements to HERMES were required for the work in this disser-

tation and to allow for the security model to move from non-least privilege to least privilege.

For reference, the original HERMES specification is shown in Figure 5.2 and a portion of the

new HERMES specification is shown in Figure 5.3.

5.3 Applied Case Study: Mutillidae - Applying HPol and

HERMES Enhancements

In Chapter 4, the process of creating the security model for the Mutillidae web application was

manually completed by reverse engineering the web application. In order to semi-automate the

process, the enhancements to HPol and HERMES had to be completed. This section details

how the enhancements of HPol and HERMES were tested for the Mutillidae web application.

The original version of HERMES allowed for any value at the Entity Head. Originally the

Mutillidae web application contained a domain, subdomain, node and policy. Figure 5.2 illus-

trates the original version of HERMES which allowed any Entity Head. This old configuration

made it difficult to build a HERMES data structure as well as convert the HERMES file to

Prolog and from Prolog to least privilege.

The fully qualified name (FQN) does not match the entity, and the body contained a list of

the children for the entity. Creating a FQN, and restricting the Entity Head to Node, Policy,

or Link, simplified the conversion to least privilege.

56

Domain: HPol
{
 FQN: mutillidae.HPol.unsecured;
 Description: "HPol Root Node";
 Path: "unsecured";
 Type: "HPolRoot";
 Children: [object, subject, action];
}

SubDomain: object
{
 FQN: mutillidae.HPol.unsecured.object;
 Description: "object";
 Path: "unsecured/object";
 Type: "object";
 Children: [database];
}

Node: database
{
 FQN: mutillidae.HPol.unsecured.object.database;
 Description: " database ";
 Path: "unsecured/object/database";
 Type: "object";
 Children: [var];
}

Policy: PID_1001
{
 Description: "HPol Policy";
 Status: ENABLED;
 Path: [HPolStart, object, database, HPolEnd];
}

Figure 5.2: Original HERMES: This figure illustrates the original version
of HERMES before the formal specification as outlined in this research.

The original HPol was created manually after reverse engineering the web application. In

the original HPol the web pages were modeled as objects. This was problematic in that the web

pages were being executed, and during that execution the web pages were building the queries

that were being executed by the root web application user. Creating the enhancements to HPol

and removing the Node Python class, allowed for quickly and easily changing the web pages

from objects to subjects.

These changes allowed for simple but efficient data structures that quickly built the dynamic

HPol security model and the dynamic HERMES model. Once these models were built, the

conversion to and from Prolog allowed for easy conversion to least privilege.

57

Figure 5.3: New HERMES: This figure illustrates the new version of
HERMES after the formal specification as outlined in this research.

In summary, this chapter explained the enhancements to both the HPol security model and

the HERMES language. These changes allowed for a more robust dynamic solution for building

the models and converting the models from non-least privilege to least privilege.

58

Chapter 6: Automating Learning the Least Privilege

Policy for a Web Application

With a robust set of tools, the next step in the process is the inference of the exact non-least

privilege security model for the web application. The process of automating the inference

is explained in Section 6.1. The practical application of determining the non-least privilege is

applied in two case studies. The inference of the Security Education (SEED) Labs is explained in

Section 6.2 and the inference of the Mutillidae web application is explained in Section 6.3. Figure

6.1 illustrates Contribution 4: The associated tools for automatically learning the

database-level permissions needed to operate with least privilege of this dissertation.

4) BuildDBQueries
 script cleans the
 DB logs

4) BuildDBQueries
 script cleans the
 DB logs

5) Dynamic2HPol
 script creates
HPol and HERMES

5) Dynamic2HPol
 script creates
HPol and HERMES

HPol ModelHPol Model

HERMES fileHERMES file

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

7) Prolog
calculates Least
Privilege (LP)
PKB

7) Prolog
calculates Least
Privilege (LP)
PKB

PKB

8 a) Prolog2
HERMES script
creates LP
HERMES

8 a) Prolog2
HERMES script
creates LP
HERMES

8 b) Prolog2
HPol script
creates LP
HPol Model

8 b) Prolog2
HPol script
creates LP
HPol Model

LP HERMESLP HERMES

LP HPol ModelLP HPol Model

9) Hermes2SQL
 script creates
 LP SQL

9) Hermes2SQL
 script creates
 LP SQL

RAW
SQL logs

RAW
SQL logs

Cleaned
SQL logs
Cleaned
SQL logs

 LP PKB LP PKB

1) DBMS Admin
enables logs for
all DB queries

3) DBMS Admin
provides log file

LP SQL for

DBMS Admin

LP SQL for

DBMS Admin

10) DBMS installs LP SQL

Web Dev verifies
and modifies LP
HERMES

if needed

Web Dev verifies complete
and correct HERMES.

2) Web Dev exercises the web site non-maliciously

Web
Developer

Web Dev verifies complete
and correct LP HPol model.
Web Dev uses LP HPol
model to output new PHP
code that enforces Least
Privilege

DBMS
Admin

Contribution 4

Figure 6.1: Contribution 4: The associated tools for automatically learning
the database-level permissions needed to operate with least privilege as

represented from the architectural overview of this dissertation.

59

6.1 Systematic Inference of DB Table and SQL Command Level

Access Control

To infer the exact non-least privilege security model the general database log of the web ap-

plication must be provided. These database logs contain all the database commands of the

website, with the website exercised in a non-malicious manner.

Step 1: The DBMS administrator turns on the general logs with the following commands,

in no specific order.

• SET GLOBAL log_output = ’FILE’;

• SET GLOBAL general_log = ’ON’;

• SET GLOBAL general_log_file = ’/var/lib/mysql/filename.log’;

After logging is enabled, the DMBS administrator notifies the web developer that general -

log for the database is enabled.

Step 2: The web developer exercises the website in a non-malicious manner. For exam-

ple, if there is a login page the web developer logs in as a registered user. Figure 6.2

illustrates the web developer exercising the login page in a non-malicious manner. Listing

6.1 illustrates the execution of the SELECT command that was written to the general log

file for the database. Once the web developer has fully exercised every page within the

web application, the web developer notifies the DBMS administrator.

Step 3: : The DBMS disables general log and then provides the logs for analysis.

Step 4: Once the logs are provided the script BuildDBQueries is executed.

The BuildDBQueries script removes duplicate entries from the log file. The script keeps

the entries in the log file that start with Query. As stated in Chapter 12 - Section 12.3

the referrer page must also be an entry into the log file. Listing 6.2 illustrates the referrer

line that is required for the BuildDBQueries to execute correctly.

60

Figure 6.2: The SEED Web Application: This figure is an example of the
SEED web application being exercised in a non-malicious manner [1]

Version: February 2018

Listing 6.1: Web Developer Exercises Web Application: The resulting
SQL query resulting from a non-malicious login in to the web

application, exercised by the web developer� �
1 2018 -06 -04 T23 :38:44.913532 Z 150 Query SELECT id , name , eid , salary ,

birth , ssn , phoneNumber , address , email ,nickname , Password
2 FROM credential
3 WHERE name= 'stu ' and Password = '36

da2c7673be09d05daa028d25741b0d186913d5 '� �
Listing 6.2: The referrer query required by the toolset of this

dissertation� �
1 2018 -06 -04 T23 :38:44.913752 Z 150 Query INSERT INTO track(ref) VALUES

(' page_name = unsafe_home .php ')� �
Step 5: After the database log file has been cleaned, the script Dynamic2HPol.py exe-

cutes, reading the clean database log, and creates a dynamic Python file. The dynamic

Python file is executed creating the HPol security model and a HERMES file. The Python

script named example.py creates the two files db-example-hpol.pdf, shown in Figure

6.3, and db-example-hpol.hermes. Listing 6.3 illustrates a portion of the example.py

Python code to create db-example-hpol.pdf.

The created HERMES file follows the specification as defined in Section 4.3. Listing 6.4

illustrates an Entity Head and Entity Body from the HERMES grammar. In this example

the Entity Head is a first order predicate of Node and Policy.

61

HPolStart

dbRoot

1001

HPolEnd

users

Subject

databaseEngine

all1001

Action

databaseEngine

privilegeType

dbCommands

star

1001

1001

Object

databaseEngine

Example

Figure 6.3: Example Dynamic HPol (db-example-hpol.pdf): The HPol
security model generated from the clean database logs. This security
model represents the web application as a non-least privilege model.

Listing 6.3: Example Python Code: The Python code from
example.py that creates the db-example-hpol.hermes file� �

1 #-------------------- Create Dot
2 hpol. createDot ('example ')
3
4 #-------------------- Convert To Hermes
5 HPol2Hermes . convert2Hermes (hpol)� �

62

Listing 6.4: Example Dynamic HERMES: A portion of the HERMES
generated from the clean database logs. This file represents the
Nodes and Policies of the non-least privilege web application.� �

1 Node: Example
2 {
3 FQN: Namespace . Domain . Example ;
4 Description : "HPol Root Node ";
5 Path: " Example ";
6 Type: " HPolRoot ";
7 }.
8
9 Policy : PID_1001

10 {
11 FQN: Namespace . Domain . PID_1001 ;
12 Description : 'Policy ';
13 Status : ENABLED ;
14 AbsolutePath : [HPolStart , Example . Subjects . databaseEngine .users.

dbRoot , Example . Actions . databaseEngine . privilegeType .all ,
Example . Objects . databaseEngine .star , HPolEnd];

15 RelativePath : [HPolStart , dbRoot , all , star , HPolEnd];
16 }.� �

Step 6: Once the non-least privilege HERMES file is created it needs to be converted into

a Prolog Knowledge Base (PKB). Recall that HERMES is a specification that contains at

least one Entity. Each Entity is comprised of an Entity Head and an Entity Body. Each

Entity Head and Entity Body from the HERMES grammar becomes a set of unique Prolog

statements. A Prolog fact is a predicate expression that makes a declarative statement

about the problem domain [65]. All Prolog sentences must end with a period. An example

of a simple prolog fact is “likes(alice, bob)". Which is read as “alice likes bob”. In

this simple example, alice and bob are not quoted since each is atom. A Prolog data

structure can be one of the following types:

• A string atom, for example ,‘This is a string’ or "This is also a string".

• A symbol atom, for example, alice and bob are symbols. Prolog symbols must start

with a lower case letter and then a symbol can include digits and the underscore

character.

• An empty list atom, for example, []. Lists that contain data are not considered

atoms.

• A list, for example, [1, 2, 3]. A Prolog list is a comma-separated sequence of

items, between square brackets.

63

In this case, LP HERMES is converted to a LP Prolog Knowledge Base (LP PKB).

Step 7: The automation process for converting from non-least privilege to least privilege

is completed via a PKB. After the HERMES conversion to a PKB, the Prolog program

XSB is executed. The PKB file is loaded via XSB and converted to a LP PKB.

An alternative option of converting from HERMES to LP HERMES (not shown in Figure

6.1) is to convert the non-least privilege HERMES output file via a Python script. The

Python script Hermes2LPHermes performs such a conversion.

Step 8 a): The LP PKB is converted to an LP HERMES file via a Python script

Prolog2Hermes. The web developer reviews the LP HERMES file to ensure it is complete

and correct. If the file is not correct or complete the web developer can edit the HER-

MES file. Once the HERMES file is edited, it is considered to be a non-least privilege

specification. The process of converting the HERMES file to LP HERMES starts again

from Step 6.

Step 8 b): Once the LP HERMES file has been verified as correct and complete, then

the LP PKB is converted to an LP HPol security model via a Python script Prolog2HPol.

Since the HERMES was verified as correct and complete this is the final version of the

HPol security model that the web developer will use to modify the web application code

to enforce the Principle of Least Privilege.

Step 9: Once the LP HERMES file has been verified as correct and complete, the LP

HERMES file is passed to the Python script Hermes2SQL, which constructs a new text file

containing the least privilege SQL (LP SQL) commands. These LP SQL commands will

create a new user, and grant the appropriate permissions on the appropriate table. This

LP SQL file is provided to the DBMS administrator. Note the GRANT SQL commands

and the UPDATE commands in Listing 6.5. The GRANT commands limit the permissions

of the new user to a certain database and a certain table within that database. Since the

new user is created in the global database mysql and the global table user , the UPDATE

commands allow the user to execute commands on the databases specified with the grant

commands.

64

Listing 6.5: Example Dynamic LP SQL: The SQL commands to
create a new user and to assign that new user the appropriate

permissions for the appropriate tables.� �
1 CREATE USER IF NOT EXISTS 'newuser '@'localhost ' identified by '

passwd ';
2 GRANT SELECT on database .table to 'newuser '@'localhost ';
3 GRANT UPDATE on database . table2 to 'newuser '@'localhost ';
4 FLUSH PRIVILEGES ;� �

Step 10: The DBMS administrator changes the new user’s password in the provided LP

SQL file, if desired. (The new user’s password was set to ‘passwd’ by default.) The DBMS

administrator imports the LP SQL file.

Once LP SQL has been imported by the DBMS administrator, the web developer must refactor

the code and then the web application can be tested for non-malicious and malicious operation.

The process of creating the LP SQL file and importing it is explained in Chapter 7. The process

of systematically refactoring the web application via the LP HPol security model is explained

in Chapter 8.

6.2 Applied Case Study: SEED Labs - Inferring Non-Least

Privilege

Security Education (SEED) Labs is similar to Mutillidae, in that SEED Labs is a set of hands-

on labs for teaching security education. SEED Labs contains a small SQL injection attack

lab. The SEED Labs SQL Injection is a deliberately vulnerable Web application. SEED Labs

supplies a Virtual Box image [66]. The image contains an Apache Web Server, plus PHP for

middleware and a MySQL DBMS back-end. SEED Labs may be installed on Linux, Windows,

or MacOS using a LAMP, WAMP, or XAMMP application stack [1].

SEED Labs is a much smaller application than Mutillidae. The SEED Labs SQL injection

lab contains the following four web pages.

• index.html (index)

• unsafe_home.php (home)

65

• unsafe_edit_frontend.php (frontend)

• unsafe_edit_backend.php (backend)

The index page displays the home page. The user attempts to login using the form from the

index page. Once the user clicks on the login button the home.php page is executed. This

home page contains the database code to execute the database query. Appendix B displays

the full raw SEED log. Listing 6.6 displays a portion of the database log that is cleaned by

BuildDBQueries. Figure 6.4 displays the standard SEED Labs login page.

Listing 6.6: SEED Log Header: The header to the seed.log file. These
headers are ignored since it does not contain SQL queries.� �

1 /usr/sbin/mysqld , Version : 5.7.19 -0 ubuntu0 .16.04.1 ((Ubuntu)).
started with:

2 Tcp port: 3306 Unix socket : /var/run/ mysqld / mysqld .sock
3 Time Id Command Argument
4 2018 -06 -04 T23 :38:04.148578 Z 149 Query set global general_log = 'ON '� �

The SEED Labs PHP code did not contain information on the referrer page. The referrer

page was added to the PHP code to allow for proper execution of the Least Privilege toolset.

The referrer page was passed as a PHP $_SESSION variable. Listing 6.7 illustrates the PHP

code added to each PHP page. This code was used to obtain the referrer page.

In the SEED web application [1] version: February 2018, the PHP code for the home page

connects to the MySQL database Users. Once the connection is verified the SELECT database

query is executed. Since the database user is root, then the connection is a non-least privilege

connection.

Figure 6.4: SEED Labs Login: The login page as displayed on index.html
for the SEED Labs SQL Injection lab. [1] Version: February 2018

66

Listing 6.7: Referrer Page: The PHP code added to the SEED Labs to
capture the referrer page.� �

1 <?php
2 session_start ();
3 $incoming = $_SESSION ['page ']; // who called this page?
4 $_SESSION ['page '] = 'unsafe_home .php '; // setting the name for

the next page
5 $conn = getDB ();
6 $sqlr = " INSERT INTO track (ID , ref) VALUES (NULL , 'page_name

= ', $incoming);";
7 $conn ->query($sqlr)� �

Listing 6.8 displays the MySQL connection and the SELECT database query from the home

page. The successful query returns a JavaScript Object Notation (JSON) object which is parsed

to fill in the data on the frontend page.

Similar to Mutillidae the general log in the database was enabled, and the web applica-

tion was exercised in a non-malicious manner. The log file seed.log was produced from the

MySQL database. Executing the Python script ./Dynamic2HPol seed.log performs the fol-

lowing steps:

Step 1: The Python script BuildDBQueries cleans seed.log and stores the results of

the clean log internal as an HPol object. BuildDBQueries also stores the results as a text

file for verification by the DBMS administrator. Listing 6.9 illustrates the data structures

gleaned from the SEED Labs database log.

Listing 6.8: SEED Labs Unsafe DB Query: The SQL query from the
unsafe_home.php. This query user the root user to execute the query.� �

1 $dbhost =" localhost ";
2 $dbuser =" root ";
3 $dbpass =" seedubuntu ";
4 $dbname =" Users ";
5 // Create a DB connection
6 $conn = new mysqli ($dbhost , $dbuser , $dbpass , $dbname);
7
8 $sql = " SELECT id , name , eid , salary , birth , ssn , phoneNumber ,

address , email ,nickname , Password
9 FROM credential

10 WHERE name= '$input_uname ' and Password =' $hashed_pwd '";
11 if (! $result = $conn ->query($sql)) {
12 echo "</div >";
13 echo "</nav >";
14 echo "<div class=' container text -center '>";
15 die('There was an error running the query [' . $conn ->error

. ']\n ');
16 echo "</div >";
17 }
18 $return_arr = array ();
19 while($row = $result -> fetch_assoc ()){
20 array_push ($return_arr ,$row);
21 }� �

67

Listing 6.9: SEED Labs Data Structure: The users, tables, and
databases being utilized by the SEED Labs web application, as

determined from the database log.� �
1 pages
2 unsafe_home .php
3 unsafe_edit_frontend .php
4 unsafe_edit_backend .php
5
6 users
7 root@localhost
8
9 dbCommands

10 SELECT
11 UPDATE
12 tables
13 Users -[' credential ']� �

Step 2: Once the data structures are determined, the Python script WriteDynamicHPol

is executed. This script writes the standard HPol header. This header is hardcoded except

for the namespace, domain, and web application name. The header is hardcoded because

every HPol model must contain Subject, Action, and Object. Listing 6.10 illustrates the

HPol Subjects. Listing 6.11 illustrates the HPol Actions, Listing 6.12 illustrates the HPol

Objects, and Listing 6.13 illustrates the policies. Furthermore, the filesystem and web

server are presumed to be located in the standard locations, so these values are also hard-

coded. The execution of WriteDynamicHPol creates the Python script db-seed-hpol.

Step 3: The file db-seed-hpol.hermes is passed as an input to the Python script

Hermes2Prolog which produces the Prolog Knowledge Base (PKB) named

db-seed-hpol.pro. Listing 6.14 illustrates the first two nodes from the HERMES file

and the first policy in the HERMES file.

Listing 6.10: SEED Labs HPol: Subjects - The dynamic creation of
HPol data structure as determined from the SEED Labs database log.� �

1 hpol. addNode (type='subject ', name=' databaseEngine ', path ='/'. join (['
db ', 'Subject ']))

2 hpol. addNode (type='subject ', name='users ', path ='/'. join (['db ', '
Subject ',' databaseEngine ']))

3 subUser0 = hpol. addNode (type='subject ', name=' rootATlocalhost ', path
='/'. join (['db ', 'Subject ',' databaseEngine ', 'users ']))

4 hpol. addNode (type='subject ', name=' filesystem ', path ='/'. join (['db ',
'Subject ']))

5 hpol. addNode (type='subject ', name='var ', path ='/'. join (['db ', '
Subject ', 'filesystem ']))

6 hpol. addNode (type='subject ', name='www ', path ='/'. join (['db ', '
Subject ', 'filesystem ', 'var ']))� �

68

Listing 6.11: SEED Labs HPol: Actions - The dynamic creation of
HPol data structure as determined from the SEED Labs database log.� �

1 actDBEngine_path = hpol. addNode (type='action ', name=' databaseEngine
', path ='/'. join (['db ', 'Action ']))

2 actPrivilegeType_path = hpol. addNode (type='action ', name='
privilegeType ', path ='/'. join (['db ', 'Action ',' databaseEngine '])
)

3 actPrivilegeTypeAll_path = hpol. addNode (type='action ', name='all ',
path ='/'. join (['db ', 'Action ',' databaseEngine ', 'privilegeType
']))

4 actUser0 = hpol. addNode (type='action ', name='select ', path ='/'. join
(['db ', 'Action ',' databaseEngine ', 'privilegeType ', 'all ']))

5 actUser1 = hpol. addNode (type='action ', name='update ', path ='/'. join
(['db ', 'Action ',' databaseEngine ', 'privilegeType ', 'all ']))� �

Listing 6.12: SEED Labs HPol: Objects - The dynamic creation of
HPol data structure as determined from the SEED Labs database log.� �

1 hpol. addNode (type='object ', name=' databaseEngine ', path ='/'. join (['
db ', 'Object ']))

2 hpol. addNode (type='object ', name='star ', path ='/'. join (['db ', '
Object ', 'databaseEngine ']))

3 hpol. addNode (type='object ', name=' starDotStar ', path ='/'. join (['db ',
'Object ', 'databaseEngine ', 'star ']))

4 hpol. addNode (type='object ', name=' UsersDotStar ', path ='/'. join (['db
', 'Object ', 'databaseEngine ', 'star ', 'starDotStar ']))

5 hpol. addNode (type='object ', name='tables ', path ='/'. join (['db ', '
Object ', 'databaseEngine ', 'star ', 'starDotStar ', 'UsersDotStar
']))

6 hpol. addNode (type='object ', name='credential ', path ='/'. join (['db ',
'Object ', 'databaseEngine ', 'star ', 'starDotStar ', 'UsersDotStar
','tables ']))� �

Listing 6.13: SEED Labs HPol: Policies - The dynamic creation of
HPol data structure as determined from the SEED Labs database log.� �

1 dbSub_path = '/'. join (['db ', 'Subject ', 'databaseEngine ', 'users ', '
rootATlocalhost '])

2 dbAct_path = '/'. join (['db ', 'Action ', 'databaseEngine ', '
privilegeType ', 'all ', 'select '])

3 dbObj_path = '/'. join (['db ', 'Object ', 'databaseEngine ', 'star ', '
starDotStar ', 'UsersDotStar ', 'tables ', 'credential '])

4 fsSub_page = '/'. join (['db ', 'Subject ', 'filesystem ', 'var ', 'www ',
'html ', 'seed ', 'unsafe_home .php '])

5
6 ppid2 = hpol. createEmptyPolicyPath (type=' Database Policy ')
7 hpol. addStartLinkToPolicyPath (ppID = ppid2 , toNode = fsSub_page)
8 hpol. addLinkToPolicyPath (ppID = ppid2 , fromNode =fsSub_page , toNode =

dbSub_path)
9 hpol. addLinkToPolicyPath (ppID = ppid2 , fromNode =dbSub_path , toNode =

dbAct_path)
10 hpol. addLinkToPolicyPath (ppID = ppid2 , fromNode =dbAct_path , toNode =

dbObj_path)
11 hpol. addEndLinkToPolicyPath (ppID = ppid2 , fromNode = dbObj_path)� �

69

Listing 6.14: SEED Labs PKB: The dynamic creation of Prolog
Knowledge Base as interpreted from the non-least privilege

HERMES file.� �
1 node ("db -seed -hpol. hermes ", seed_hpol_db , description , "HPol Root

Node ").
2 node ("db -seed -hpol. hermes ", seed_hpol_db , path , "db").
3 node ("db -seed -hpol. hermes ", seed_hpol_db , type , " HPolRoot ").
4 node ("db -seed -hpol. hermes ", seed_hpol_db_Subject , description , "

Subject ").
5 node ("db -seed -hpol. hermes ", seed_hpol_db_Subject , path , "db/ Subject

").
6 node ("db -seed -hpol. hermes ", seed_hpol_db_Subject , type , " Subject ").
7 policy ("db -seed -hpol. hermes ", seed_hpol_PIDUNSC1001 , description , '

Database Policy ').
8 policy ("db -seed -hpol. hermes ", seed_hpol_PIDUNSC1001 , status , eNABLED

).
9 policy ("db -seed -hpol. hermes ", seed_hpol_PIDUNSC1001 , relativePath , [

hPolStart , unsafeUNSChomeDOTphp , rootATlocalhost , select ,
credential , hPolEnd]).

10 policy ("db -seed -hpol. hermes ", seed_hpol_PIDUNSC1003 , description , '
Database Policy ').

11 policy ("db -seed -hpol. hermes ", seed_hpol_PIDUNSC1003 , status , eNABLED
).

12 policy ("db -seed -hpol. hermes ", seed_hpol_PIDUNSC1003 , relativePath , [
hPolStart , unsafeUNSCeditUNSCbackendDOTphp , rootATlocalhost ,
update , credential , hPolEnd]).� �

Step 4: The file db-seed-hpol.pro is loaded into XSB Prolog. The least privilege algo-

rithm converts the non-least privilege PKB to a least privilege PKB (LP PKB). The LP

PKB file in this case study is named db_seed_hpol.pro.

Step 5: The Python script db-seed-hpol executes and produces two files as output.

The first file db-seed-hpol.pdf is the graphical representation of the non-least privilege

SEED Labs web application. This graphical representation is created in the form of a

directed acyclic graph (DAG). The second file db-seed-hpol.hermes is the HERMES

grammar representation of the non-least privilege SEED Labs web application.

Step 6: The Python script Prolog2Hermes converts the LP PKB file db_seed_hpol.pro

into a HERMES file named db_seed_hpol.hermes. This file is examined by the web

developer to determine if the HERMES file is correct and complete. The web developer can

make modifications to the HERMES file. If modifications are made, then the HERMES

file must be rerun through the process by converting it to a non-least privilege Prolog file.

70

Step 7: Once the db_seed_hpol.hermes file is determined to be correct and complete,

the Python script Prolog2HPol is executed. This execution creates two Least Privilege

HPol security models (LP HPOL) the first file is named db_seed_hpol.py and the second

file is named db_seed_hpol.pdf. The Python file db_seed_hpol.py creates the HPol se-

curity model. The file db_seed_hpol.pdf is the DAG representation of LP HPol security

model. Figure 6.5 illustrates the full LP DAG for the SEED Labs web application.

HPolStart

unsafe_home.php

1001

unsafe_edit_frontend.php

1002

unsafe_edit_backend.php

1003

HPolEnd

Subject

databaseEngine filesystem

select

credential

rootATlocalhost

users

unsafe_home.php unsafe_edit_backend.php unsafe_edit_frontend.php

credential

update

1003

update select

credential

1001

seed

var

select

1001

html

www

1002

10021003

all

credential

1001 1002

Action

databaseEngine

privilegeType

1003

1001 1002 1003

Object

databaseEngine

starDotStar

UsersDotStar

star

tables

db

Figure 6.5: Example LP HPol: The LP HPol security model generated
from the LP PKB. This security model represents the web application as a

least privilege model.

71

The root database user remains in the DAG; however, it is not referenced by any pol-

icy. The Subject rootATlocalhost is represented as the clear node in the Subject HPol

security model.

6.3 Applied Case Study: Mutillidae - Inferring Non-Least

Privilege

Recall from Section 4.7 that OWASP Mutillidae II (version: 2.6.42) is a deliberately vulnerable

Web application. Mutillidae II may be used by developers to learn secure Web coding practices.

It uses a Web Server, such as Apache, plus PHP for middleware and a DBMS back-end, such

as MySQL or MariaDB. Mutillidae II may be installed on Linux, Windows, or MacOS using a

LAMP, WAMP, or XAMMP application stack [14].

To initiate the process of converting Mutillidae from non-least privilege to least privilege,

the general log of the MySQL Mutillidae database was enabled. Once the logs were enabled,

the Mutillidae web application was systematically exercised in a non-malicious manner.

The full raw Mutillidae log is displayed in Appendix A. Listing 6.15 illustrates the header of

the Mutillidae log file. Since the header does not contain SQL commands it is completely ignored

by the BuildDBQueries. Listing 6.16 illustrates repeated log entries in the file mutillidae.log.

These repeated entries are reduced to a single entry.

Listing 6.15: Mutillidae Log Header: The header to the mutillidae.log file.
These headers are ignored since it does not contain SQL queries.� �

1 /usr/sbin/mysqld , Version : 5.7.20 -0 ubuntu0 .16.04.1 ((Ubuntu)).
started with:

2 Tcp port: 3306 Unix socket : /var/run/ mysqld / mysqld .sock
3 Time Id Command Argument
4 2017 -12 -26 T18 :59:18.029648 Z 7 Quit� �

72

Listing 6.16: Mutillidae Log: The SQL queries from the Mutillidae web
application database log. These queries were created when the Mutillidae

web application was exercised in a non-malicious manner.� �
1 2017 -12 -26 T18 :59:28.522673 Z 8 Connect root@localhost on using

Socket
2 2017 -12 -26 T18 :59:28.523446 Z 8 Init DB nowasp
3 2017 -12 -26 T18 :59:28.523505 Z 8 Query SELECT 'test connection '
4 2017 -12 -26 T18 :59:28.523577 Z 8 Query SELECT cid FROM blogs_table
5 2017 -12 -26 T18 :59:28.528773 Z 8 Quit
6 2017 -12 -26 T18 :59:28.529031 Z 9 Connect root@localhost on using

Socket
7 2017 -12 -26 T18 :59:28.529095 Z 9 Init DB nowasp
8 2017 -12 -26 T18 :59:28.531037 Z 10 Connect root@localhost on using

Socket
9 2017 -12 -26 T18 :59:28.531098 Z 10 Init DB nowasp

10 2017 -12 -26 T18 :59:28.531412 Z 11 Connect root@localhost on using
Socket

11 2017 -12 -26 T18 :59:28.531465 Z 11 Init DB nowasp
12 2017 -12 -26 T18 :59:28.531780 Z 12 Connect root@localhost on using

Socket� �
In this example the duplicated “Connect root@localhost on using Socket” on lines 1,

6, 8, 10, 12, becomes a single entry in the cleaned log file that is used by BuildDBQueries.

Executing the Python script ./Dynamic2HPol mutillidae.log performs the following actions:

Step 1: The Python script BuildDBQueries cleans mutillidae.log and stores the re-

sults of the clean log internally as an HPol object. BuildDBQueries also stores the results

as a text file for verification by the DBMS administrator. Listing 6.17 illustrates the data

structures gleaned from the Mutillidae database log.

Listing 6.17: Mutillidae Data Structure: The users, tables, and
databases being utilized by the Mutillidae web application, as

determined from the database log.� �
1 show -log.php
2 add -to -your -blog.php
3 view -someones -blog.php
4 test.php
5 apage.php
6
7 users
8 root@localhost
9

10 databases
11 nowasp
12
13 dbCommands
14 SELECT
15 INSERT� �

73

Step 2: Once the data structures are determined, the Python script WriteDynamicHPol

is executed. This script writes the standard HPol header. This header is hardcoded ex-

cept for the namespace, domain, and web application name. The header is hardcoded

for filesystem and web server locations, and because every HPol model contains a Sub-

ject, Action, and Object. The execution of WriteDynamicHPol creates the Python script

db-mutillidae-hpol.py. Listing 6.18 illustrates the HPol Subjects, Listing 6.19 the

HPol Actions, Listing 6.20 the HPol Objects and Figure 6.21 illustrates the HPol Policies.

Listing 6.18: Mutillidae HPol: Subjects - From the file:
db mutillidae hpol.py - The dynamic creation of HPol data structure

as determined from the Mutillidae database log.� �
1 hpol. addNode (type='subject ', name=' databaseEngine ', path ='/'. join (['

db ', 'Subject ']))
2 hpol. addNode (type='subject ', name='users ', path ='/'. join (['db ', '

Subject ',' databaseEngine ']))
3 subUser0 = hpol. addNode (type='subject ', name=' rootATlocalhost ', path

='/'. join (['db ', 'Subject ',' databaseEngine ', 'users ']))
4 hpol. addNode (type='subject ', name=' filesystem ', path ='/'. join (['db ',

'Subject ']))
5 hpol. addNode (type='subject ', name='var ', path ='/'. join (['db ', '

Subject ', 'filesystem ']))
6 hpol. addNode (type='subject ', name='www ', path ='/'. join (['db ', '

Subject ', 'filesystem ', 'var ']))
7 hpol. addNode (type='subject ', name='html ', path ='/'. join (['db ', '

Subject ', 'filesystem ', 'var ', 'www ']))
8 hpol. addNode (type='subject ', name=' mutillidae ', path ='/'. join (['db ',

'Subject ', 'filesystem ', 'var ', 'www ', 'html ']))� �
Listing 6.19: Mutillidae HPol: Actions - From the file:

db mutillidae hpol.py - The dynamic creation of HPol data structure
as determined from the Mutillidae database log.� �

1 actDBEngine_path = hpol. addNode (type='action ', name=' databaseEngine
', path ='/'. join (['db ', 'Action ']))

2 actPrivilegeType_path = hpol. addNode (type='action ', name='
privilegeType ', path ='/'. join (['db ', 'Action ',' databaseEngine '])
)

3 actPrivilegeTypeAll_path = hpol. addNode (type='action ', name='all ',
path ='/'. join (['db ', 'Action ',' databaseEngine ', 'privilegeType
']))

4 actUser0 = hpol. addNode (type='action ', name='select ', path ='/'. join
(['db ', 'Action ',' databaseEngine ', 'privilegeType ', 'all ']))

5 actUser1 = hpol. addNode (type='action ', name='insert ', path ='/'. join
(['db ', 'Action ',' databaseEngine ', 'privilegeType ', 'all ']))� �

74

Listing 6.20: Mutillidae HPol: Objects - From the file:
db mutillidae hpol.py - The dynamic creation of HPol data structure

as determined from the Mutillidae database log.� �
1 hpol. addNode (type='object ', name=' databaseEngine ', path ='/'. join (['

db ', 'Object ']))
2 hpol. addNode (type='object ', name='star ', path ='/'. join (['db ', '

Object ', 'databaseEngine ']))
3 hpol. addNode (type='object ', name=' starDotStar ', path ='/'. join (['db ',

'Object ', 'databaseEngine ', 'star ']))
4 hpol. addNode (type='object ', name=' nowaspDotStar ', path ='/'. join (['db

', 'Object ', 'databaseEngine ', 'star ', 'starDotStar ']))
5 hpol. addNode (type='object ', name='tables ', path ='/'. join (['db ', '

Object ', 'databaseEngine ', 'star ', 'starDotStar ', 'nowaspDotStar
']))

6 hpol. addNode (type='object ', name=' blogs_table ', path ='/'. join (['db ',
'Object ', 'databaseEngine ', 'star ', 'starDotStar ', '

nowaspDotStar ','tables ']))
7 hpol. addNode (type='object ', name='accounts ', path ='/'. join (['db ', '

Object ', 'databaseEngine ', 'star ', 'starDotStar ', 'nowaspDotStar
','tables ']))� �

Listing 6.21: Mutillidae HPol: Policies - From the file:
db-mutillidae-hpol.py - The dynamic creation of HPol data structure

as determined from the Mutillidae database log.� �
1 dbSub_path = '/'. join (['db ', 'Subject ', 'databaseEngine ', 'users ', '

rootATlocalhost '])
2 dbAct_path = '/'. join (['db ', 'Action ', 'databaseEngine ', '

privilegeType ', 'all ', 'select '])
3 dbObj_path = '/'. join (['db ', 'Object ', 'databaseEngine ', 'star ', '

starDotStar ', 'nowaspDotStar ', 'tables ', 'blogs_table '])
4 fsSub_page = '/'. join (['db ', 'Subject ', 'filesystem ', 'var ', 'www ',

'html ', 'mutillidae ', 'home.php '])
5 ppid2 = hpol. createEmptyPolicyPath (type=' Database Policy ')
6 hpol. addStartLinkToPolicyPath (ppID = ppid2 , toNode = fsSub_page)
7 hpol. addLinkToPolicyPath (ppID = ppid2 , fromNode =fsSub_page , toNode =

dbSub_path)
8 hpol. addLinkToPolicyPath (ppID = ppid2 , fromNode =dbSub_path , toNode =

dbAct_path)
9 hpol. addLinkToPolicyPath (ppID = ppid2 , fromNode =dbAct_path , toNode =

dbObj_path)
10 hpol. addEndLinkToPolicyPath (ppID = ppid2 , fromNode = dbObj_path)� �

Step 3: The Python script db-mutillidae-hpol.py executes and produces two out-

put files. The first file db-mutillidae-hpol.pdf, shown in Figure 6.6 is the graphi-

cal representation of the non-least privilege Mutillidae web application. The second file

db-mutillidae-hpol.hermes is the HERMES grammar representation of the non-least

privilege Mutillidae web application. Listing 6.22 illustrates a node and a policy from the

non-least privilege HERMES.

Step 4: The file db-mutillidae-hpol.hermes is passed as an input to the Python script

Hermes2Prolog which produces db-mutillidae-hpol.pro. Listing 6.23 illustrates a non-

least privilege Prolog fact for a node and a policy.

75

HPolStart

home.php

1001 1005

captured-data.php

1006

login.php

1002

register.php

1003 1004

show-log.php

1007

add-to-your-blog.php

1008

view-someones-blog.php

1009 1010 1011

HPolEnd

www

html

filesystem

var

rootATlocalhost

1001 1005

mutillidae

1006 1002 1003 1004

Subject

databaseEngine

1007 1008

users

1009 1010 1011

select

1001 1002 1003 1005 1006 1007 1008 1009 1010 1011

insert

1004

blogs_table

1001 1002 1003 1008 1010 1011

captured_data

1006

accounts

1009 1005 1007

databaseEngine

privilegeType

1004

all

Action

databaseEngine

star

starDotStar

nowaspDotStar

tables

Object

1001 1002 1003 1008 1010 1011 1006 1009 1004 1005 1007

db

Figure 6.6: Example NLP HPol: The generated non-LP HPol security
model.

76

Listing 6.22: Mutillidae HERMES: From the file:
db-mutillidae-hpol.hermes - The dynamic creation of HERMES as

interpreted from the non-least privilege HPol file.� �
1 Node: db
2 {
3 FQN: mutillidae .hpol.db;
4 Description : "HPol Root Node ";
5 Path: "db";
6 Type: " HPolRoot ";
7 }.
8 Policy : PID_1001
9 {

10 FQN: mutillidae .hpol. PID_1001 ;
11 Description : 'Database Policy ';
12 Status : ENABLED ;
13 AbsolutePath : [HPolStart , db. Subject . filesystem .var.www.html.

mutillidae .homeDOTphp , db. Subject . databaseEngine .users.
rootATlocalhost , db. Action . databaseEngine . privilegeType .all.
select , db. Object . databaseEngine .star. starDotStar . nowaspDotStar .
tables . blogs_table , HPolEnd];

14 }.� �
Listing 6.23: Mutillidae PKB: From the file: db-mutillidae-hpol.pro -
The dynamic creation of Prolog Knowledge Base as interpreted from

the non-least privilege HERMES file.� �
1 node ("db -mutillidae -hpol. hermes ", mutillidae_hpol_db_Subject , path ,

"db/ Subject ").
2 node ("db -mutillidae -hpol. hermes ", mutillidae_hpol_db_Subject , type ,

" Subject ").
3 policy ("db -mutillidae -hpol. hermes ", mutillidae_hpol_PIDUNSC1010 ,

status , eNABLED).
4 policy ("db -mutillidae -hpol. hermes ", mutillidae_hpol_PIDUNSC1011 ,

relativePath , [hPolStart , viewDASHsomeonesDASHblogDOTphp ,
rootATlocalhost , select , blogsUNSCtable , hPolEnd]).

5 policy ("db -mutillidae -hpol. hermes ", mutillidae_hpol_PIDUNSC1007 ,
description , 'Database Policy ').

6 policy ("db -mutillidae -hpol. hermes ", mutillidae_hpol_PIDUNSC1007 ,
status , eNABLED).� �

Step 5: The file db-mutillidae-hpol.pro is loaded into XSB Prolog. XSB Prolog con-

verts the non-least privilege PKB to a least privilege PKB (LP PKB). The LP PKB file

in this case study is named db_mutillidae_hpol.pro. Listing 6.24 illustrates the least

privilege PKB file while

Step 6: The Python script Prolog2Hermes converts db_mutillidae_hpol.pro into a

HERMES file named db_mutillidae_hpol.hermes. This file is examined by the web

developer to determine if the HERMES file is correct and complete. The web developer

can make modifications to the HERMES file. Modifications require the HERMES file

be rerun through the process as a non-least privilege file. Listing 6.25 illustrates the LP

HERMES file constructed from the LP PKB file.

77

Listing 6.24: Mutillidae LP PKB: From the file:
db mutillidae hpol.pro - The dynamic creation of least privilege PKB

as interpreted from the non-least privilege PKB file.� �
1 node (" db_mutillidae_hpol . hermes ", mutillidae_hpol_db , description , "

HPol Root Node ").
2 node (" db_mutillidae_hpol . hermes ", mutillidae_hpol_db , path , "db").
3 node (" db_mutillidae_hpol . hermes ", mutillidae_hpol_db , type , "

HPolRoot ").
4 node (" db_mutillidae_hpol . hermes ", mutillidae_hpol_db_Subject ,

description , " Subject ").
5 policy (" db_mutillidae_hpol . hermes ", mutillidae_hpol_PIDUNSC1001 ,

description , 'Database Policy ').
6 policy (" db_mutillidae_hpol . hermes ", mutillidae_hpol_PIDUNSC1001 ,

status , eNABLED).
7 policy (" db_mutillidae_hpol . hermes ", mutillidae_hpol_PIDUNSC1001 ,

relativePath , [hPolStart , homeDOTphp ,
homeDOTphp_select_blogsUNSCtable , select , blogsUNSCtable ,
hPolEnd]).� �

Listing 6.25: Mutillidae LP HERMES: From the file:
db mutillidae hpol.hermes - The dynamic creation of LP HERMES as

interpreted from the LP PKB file.� �
1 Node: db
2 {
3 FQN: mutillidae .hpol.db;
4 Description : "HPol Root Node ";
5 Path: "db";
6 Type: " HPolRoot ";
7 }.
8 Policy : PID_1001
9 {

10 FQN: mutillidae .hpol. PID_1001 ;
11 Description : 'Database Policy ';
12 Status : ENABLED ;
13 RelativePath : [HPolStart , homeDOTphp , homeDOTphp . select .

blogs_table , select , blogs_table , HPolEnd];
14 }.� �

Step 7: Once the db_mutillidae_hpol.hermes file is determined to be correct and com-

plete, the Python script Prolog2HPol is executed. This execution creates two Least Priv-

ilege HPol security models (LP HPOL) the first file is named db_mutillidae_hpol.py.

This is the Python code to create the HPol security model. The second file is named

db_mutillidae_hpol.pdf which is the DAG representation of LP HPol security model.

Figure 6.7 db_mutillidae_hpol.pdf illustrates the full LP DAG for the Mutillidae web

application. Although the root database user remains in the DAG, the root user is not

referenced by any policy. The Subject rootATlocalhost is the empty node in the Subject

HPol security model.

78

HPolStart

show-log.php

1007

captured-data.php

1006

view-someones-blog.php

1009 1010 1011

register.php

1003 1004

add-to-your-blog.php

1008

login.php

1002

home.php

1001 1005

HPolEnd

html

mutillidaeblogs_table

select

1001

users

show-log.phprootATlocalhost login.php captured-data.php add-to-your-blog.php register.php view-someones-blog.php home.php

select

accounts

1007

accounts

1005

captured_data

1006

insert

accounts

select

1006

accounts

1009

blogs_table

1010 1011

blogs_table

insert

1004

select

blogs_tableblogs_table

1008 1003 1002

1004 10031008

select

Subject

databaseEngine filesystem

1002

selectselect

1009

var

1007 1010 1011

www

select

1001 1005

all

privilegeType

accounts

1009 1005 1007

captured_data

1006

blogs_table

1001 1002 1003 1008 1010 1011

Action

databaseEngine

1004

1009 1004 1005 1007

tables

databaseEngine

star

Object

starDotStar

nowaspDotStar

1006 1001 1002 1003 1008 1010 1011

db

Figure 6.7: Example LP HPol: The LP HPol security model generated
from the LP PKB. This security model represents the web application as a

least privilege model.

This case study illustrates the repeatable, systematic, semi-automated toolset of scripts

that moved the Mutillidae web application from a non-least privilege application to a least

privilege application.

79

Chapter 7: Automating the Transformation of a Web

Application to a Least Privilege Implementation

With a robust toolset, the next step in the process is the partial transformation to a least

privilege web application via Least Privilege SQL (LP SQL). Section 7.1 explains the process of

automating the conversion from LP HERMES to LP SQL. The practical application of LP SQL

is applied in two case studies. Section 7.2 explains the application of LP SQL to the Security

Education (SEED) Labs. Section 7.3 explains the application of LP SQL to the Mutillidae

web application. Figure 7.1 illustrates Contribution 5: A developed formal, repeatable,

and automated approach and associated toolset for determining and applying least

privilege permissions at the database level for securing web applications.

4) BuildDBQueries
 script cleans the
 DB logs

4) BuildDBQueries
 script cleans the
 DB logs

5) Dynamic2HPol
 script creates
HPol and HERMES

5) Dynamic2HPol
 script creates
HPol and HERMES

HPol ModelHPol Model

HERMES fileHERMES file

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

7) Prolog
calculates Least
Privilege (LP)
PKB

7) Prolog
calculates Least
Privilege (LP)
PKB

PKB

8 a) Prolog2
HERMES script
creates LP
HERMES

8 a) Prolog2
HERMES script
creates LP
HERMES

8 b) Prolog2
HPol script
creates LP
HPol Model

8 b) Prolog2
HPol script
creates LP
HPol Model

LP HERMESLP HERMES

LP HPol ModelLP HPol Model

9) Hermes2SQL
 script creates
 LP SQL

9) Hermes2SQL
 script creates
 LP SQL

RAW
SQL logs

RAW
SQL logs

Cleaned
SQL logs
Cleaned
SQL logs

 LP PKB LP PKB

1) DBMS Admin
enables logs for
all DB queries

3) DBMS Admin
provides log file

LP SQL for

DBMS Admin

LP SQL for

DBMS Admin

10) DBMS installs LP SQL

Web Dev verifies
and modifies LP
HERMES

if needed

Web Dev verifies complete
and correct HERMES.

2) Web Dev exercises the web site non-maliciously

Web
Developer

Web Dev verifies complete
and correct LP HPol model.
Web Dev uses LP HPol
model to output new PHP
code that enforces Least
Privilege

DBMS
Admin

Contribution 5

Figure 7.1: Contribution 5: A developed formal, repeatable, and
automated approach and associated toolset for determining and applying

least privilege permissions at the database level for securing web
applications.

80

7.1 Automated Process for Creating Least Privilege SQL Database

Commands

A typical web application contains a single privileged user root that has full privileges to the

filesystem and the database. Allowing full privileges to the database from a login page, or a

similar page, could allow for a malicious user to completely compromise the web application.

In order to enforce the POLP the root user should be deactivated and less privileged users

should be created. Creating such least privileged users is derived via the following steps.

Step 1: Determine the web page that passes the query to the database.

Step 2: Determine the query to the database, such as SELECT, INSERT, or any of the

other SQL commands.

Step 3: Determine the database table that is queried.

Step 4: Concatenate the name of the PHP page, the name of the database query, and

the name of the database table to create the new user.

Step 5: Create the new user in the database.

Step 6: Grant the appropriate privileges to the new user.

Based on the HPOL security model, the policy represented in Figure 7.2 illustrates the

non-least privilege access to the database. In this example, the page login.php issues a database

query as the user rootATlocalhost using the SELECT command.

The HPol security model is also represented as a specification in a HERMES file. In this

instance, Figure 7.2 illustrates Policy 1001 as defined by Listing 7.1. The one line in Policy

1001, in Figure 7.2, of: [HPolStart, loginDOTphp, rootATlocalhost, select, accounts,

HPolEnd] indicates that the policy starts with a link from the start node HPolStart to the Sub-

ject login.php. The policy continues from the Subject login.php to the Subject rootATlocalhost,

to the Action SELECT , to the Object accounts which is a table in the database, and terminates

at the end node HPolEnd. Stated another way, the login.php page creates a SELECT query

that is executed by rootATlocalhost on the table accounts.

81

HPolStart

login.php

1001

HPolEnd

html

webApp

rootATlocalhost

select

1001

www

users

filesystem

var

Subject

databaseEngine

1001

privilegeType

all

update

accounts

1001

Action

databaseEngine

tables

1001

databaseEngine

star

starDotStar

UsersDotStar

Object

db

Figure 7.2: Unsecured HPol DB Example: This figure illustrates a
non-least privilege database interaction. The HPol model representing the
login.php queries the database via rootATlocalhost which issues the SELECT

command on the table accounts.

82

Listing 7.1: Non-Least Privilege Policy 1001: A portion of the HERMES
that illustrates Policy 1001 indicating the policy starts with a link from the

start node to login.php, login.php is linked to rootATlocalhost,
rootATlocalhost is linked to SELECT, SELECT is linked to the table accounts,

and the table accounts is linked to the end node of the policy.� �
1 Policy : PID_1001
2 {
3 FQN: example .hpol. PID_1001 ;
4 Description : 'Database Policy ';
5 Status : ENABLED ;
6 AbsolutePath : [HPolStart , db. Subject . filesystem .var.www.html.

webApp . loginDOTphp , db. Subject . databaseEngine .users.
rootATlocalhost , db. Action . databaseEngine . privilegeType .all.
select , db. Object . databaseEngine .star. starDotStar . UsersDotStar .
tables .accounts , HPolEnd];

7 }.� �
In order to move from non-least privilege to least privilege, a non-privileged set of database

users needs to be created. For this dissertation, the specification creates a new database user

with the following property. The user will be created based on (1) the name of the web page

initiating the query, (2) the name of the SQL command being issued in the database query, and

(3) the name of the table being accessed by the query. The creation of the new users occurs

after the conversion of NLP HERMES to a non-Least Privilege Prolog Knowledge Base (NLP

PKB) and after the execution of Prolog queries on the NLP PKB, yielding LP PKB. Next the

LP PKB is converted to LP HERMES and LP HPol.

In this instance Figure 7.3 illustrates the new Least Privilege Policy 1001 as defined by

Listing 7.2. The one line in Policy 1001, in Figure 7.3, of: [HPolStart, loginDOTphp,

loginDOTphp.select.accounts, select, accounts, HPolEnd] indicates the policy starts

with a link from the start node HPolStart to the Subject login.php. The policy continues

from the Subject login.php to the Subject loginDOTphp.select.accounts. The Subject login-

DOTphp.select.accounts is a non-privileged user that can only execute the the Action SELECT

on the table accounts. The policy continues from the Action SELECT to the Object accounts

which is a table in the database, and terminates at the end node HPolEnd. Stated another

way, the login.php page creates a SELECT query executed by the new least privilege user login-

DOTphp.select.accounts, which has only SELECT permissions on the accounts table.

83

HPolStart

login.php

1001

HPolEnd

accounts

1001

databaseEngine

users var

www

Subject

filesystem

rootATlocalhost

select

1001

login.php

select html

webApp

privilegeType

all

accounts

1001

update

databaseEngine

Action

starDotStar

UsersDotStar

databaseEngine

star

tables

1001

Object

db

Figure 7.3: Secured HPol DB Example: This figure illustrates a least
privilege database interaction. The HPol model representing the login.php
queries the database via login.select.accountsATlocalhost which issues the

SELECT command on the table accounts.

84

Listing 7.2: Least Privilege Policy 1001: A portion of the HERMES that
illustrates Policy 1001 indicating the policy starts with a link from the

start node to login.php, login.php is now linked to the non privileged user
loginDOTphp.select.accounts, loginDOTphp.select.accounts is linked to

SELECT, SELECT is linked to the table accounts, and the table accounts
is linked to the end node of the policy.� �

1 Policy : PID_1001
2 {
3 FQN: example .hpol. PID_1001 ;
4 Description : 'Database Policy ';
5 Status : ENABLED ;
6 RelativePath : [HPolStart , loginDOTphp , loginDOTphp . select .

accounts , select , accounts , HPolEnd];
7 }.� �

Once the web developer approves the LP HERMES file, the Python script Hermes2SQL is

executed. This Python script reads the HERMES file and completes the following:

Step 1: Creates a file named the <root node>-<namespace>-<domain>.sql. For this

example the file is named db-example-hpol.sql.

Step 2: In the db-example-hpol.sql, shown in Listing 7.3, file a new database user is cre-

ated for each new Subject graph from Subject - databaseEngine - users. In this example

the new user resides in the HPol security model under Subject - databaseEngine - users -

login.php - select - accounts. In the sql file the command issued is CREATE USER IF NOT

EXISTS ’login.select.accounts’@’localhost’ IDENTIFIED BY ’passwd’;. Note the

.php is removed from the username.

Step 3: in the db-example-hpol.sql the new user is granted permission for a certain

database and a certain table with that database. In the sql file the command issued is

GRANT SELECT on Users.accounts to ’login.select.accounts’@’localhost’;. In

this example the database is Users and the table is accounts.

Step 4: In the db-example-hpol.sql file the database is changed to the global database of

mysql via the command USE mysql;

85

Listing 7.3: LP SQL (db-example-hpol.sql): The SQL commands that
are automatically generated from the correct and complete LP

HERMES.� �
1 CREATE USER IF NOT EXISTS 'login. select .accounts '@'localhost '

IDENTIFIED BY 'passwd ';
2 GRANT SELECT on Users. accounts to 'login. select .accounts '@'localhost

';
3 FLUSH PRIVILEGES ;� �

Step 5: After the new user is created then the database mysql and the table user need to

be updated for the appropriate permissions. In the sql file the command issued is UPDATE

‘user‘ SET ‘Select_priv‘ = ’Y’ WHERE ‘user‘.‘Host‘ = ’localhost’ AND

‘user‘.‘User‘ = ’login.select.accounts’;.

With LP SQL, the DBMS administrator can install the SQL statements to move the

database from non-least privilege to least privilege.

7.2 Applied Case Study: SEED Labs - Automating a Least

Privilege Implementation

This section describes the process of creating LP SQL from LP HERMES for the case study

of SEED. Recall from Figure 6.5 a new set of least privilege users were created for the SEED

web application. Table 7.1 illustrates the created new least privilege user, for this case study,

and Listing 7.4 displays the appropriate SQL commands to create and assign the new users the

appropriate permissions.

Table 7.1: Applied SEED LP SQL Users: A manually extracted list, from
the HERMES file, of the policy numbers and new users that were added to

LP SQL. The LP SQL file is imported by the DBMS administrator as a
partial solution to move the web application from non-least privilege to

least privilege.

Policy Number New LP User
Policy 1001 unsafe home.select.credential
Policy 1002 unsafe edit frontend.select.credential
Policy 1003 unsafe edit backend.update.credential

86

Listing 7.4: SEED LP SQL: The SQL commands that are automatically
written from the correct and complete LP HERMES for the SEED web

application. The SQL file is named db-seed-hpol.sql.� �
1 CREATE USER IF NOT EXISTS 'unsafe_home . select .credential '@'localhost

' IDENTIFIED BY 'passwd ';
2 CREATE USER IF NOT EXISTS 'unsafe_edit_frontend . select .credential '@'

localhost ' IDENTIFIED BY 'passwd ';
3 CREATE USER IF NOT EXISTS 'unsafe_edit_backend . update .credential '@'

localhost ' IDENTIFIED BY 'passwd ';
4 GRANT SELECT on Users. credential to 'unsafe_home . select .credential '@

'localhost ';
5 GRANT SELECT on Users. credential to 'unsafe_edit_frontend . select .

credential '@'localhost ';
6 GRANT UPDATE on Users. credential to 'unsafe_edit_backend . update .

credential '@'localhost ';
7 FLUSH PRIVILEGES ;� �

LP SQL contains the commands the DBMS administrator imports into the SEED web

application database. Importing the commands into the database from LP SQL, the DBMS

partially moved the web application from non-least privilege to least privilege. The illustration

and analysis that the application has moved to least privilege is explained in Chapter 9.

7.3 Applied Case Study: Mutillidae - Automating a Least

Privilege Implementation

This section describes the process of creating LP SQL from LP HERMES for the case study of

Mutillidae. In Figure 6.7 a new set of least privilege users were created for the Mutillidae web

application. Table 7.2 illustrates the created new least privilege user, for this case study.

Policy 1010 and Policy 1011 have the same new LP user account; however, only a single

account was added to LP SQL. The SQL clause CREATE USER IF NOT EXISTS would prevent

duplicates from being added to the database. Listing 7.5 illustrates the CREATE SQL commands

within the file LP SQL. Listing 7.6 illustrates the GRANT SQL commands within the file LP SQL.

The file LP SQL contains the commands for the DBMS administrator to import into the

Mutillidae web application database. Importing the users from LP SQL into the database,

partially moves the web application from non-least privilege to least privilege. The illustration

and analysis that the application has moved to least privilege is explained in Chapter 10.

87

Policy Number New LP User
Policy 1001 home.select.blogs table
Policy 1002 login.select.blogs table
Policy 1003 register.select.blogs table
Policy 1004 register.insert.accounts
Policy 1005 home.select.accounts
Policy 1006 captured-data.select.captured data
Policy 1007 show-log.select.accounts
Policy 1008 add-to-your-blog.select.blogs table
Policy 1009 view-someones-blog.select.accounts
Policy 1010 view-someones-blog.select.blogs table
Policy 1011 view-someones-blog.select.blogs table

Table 7.2: Applied Muttilidae LP SQL Users: A manually extracted list,
from the HERMES file, of the policy numbers and new users that were

added to LP SQL. The LP SQL file is imported by the DBMS
administrator as a partial solution to move the web application from

non-least privilege to least privilege.

Listing 7.5: SEED LP SQL: The SQL CREATE commands that are
automatically generated from the correct and complete LP HERMES for

the Mutillidae web application. The SQL file is named
db-mutillidae-hpol.sql.� �

1 CREATE USER IF NOT EXISTS 'login. select . blogs_table '@'localhost '
IDENTIFIED BY 'passwd ';

2 CREATE USER IF NOT EXISTS 'register . select . blogs_table '@'localhost '
IDENTIFIED BY 'passwd ';

3 CREATE USER IF NOT EXISTS 'register . insert .accounts '@'localhost '
IDENTIFIED BY 'passwd ';

4 CREATE USER IF NOT EXISTS 'home. select .accounts '@'localhost '
IDENTIFIED BY 'passwd ';

5 CREATE USER IF NOT EXISTS 'captured -data. select . captured_data '@'
localhost ' IDENTIFIED BY 'passwd ';

6 CREATE USER IF NOT EXISTS 'show -log. select .accounts '@'localhost '
IDENTIFIED BY 'passwd ';

7 CREATE USER IF NOT EXISTS 'add -to -your -blog. select . blogs_table '@'
localhost ' IDENTIFIED BY 'passwd ';

8 CREATE USER IF NOT EXISTS 'view -someones -blog. select .accounts '@'
localhost ' IDENTIFIED BY 'passwd ';

9 CREATE USER IF NOT EXISTS 'view -someones -blog. select . blogs_table '@'
localhost ' IDENTIFIED BY 'passwd ';

10 CREATE USER IF NOT EXISTS 'view -someones -blog. select . blogs_table '@'
localhost ' IDENTIFIED BY 'passwd ';� �

88

Listing 7.6: SEED LP SQL: The SQL GRANT commands that are
automatically generated from the correct and complete LP HERMES for

the Mutillidae web application. The SQL file is named
db-mutillidae-hpol.sql.� �

1 GRANT SELECT on nowasp . blogs_table to 'login. select . blogs_table '@'
localhost ';

2 GRANT SELECT on nowasp . blogs_table to 'register . select . blogs_table '@
'localhost ';

3 GRANT INSERT on nowasp . accounts to 'register . insert .accounts '@'
localhost ';

4 GRANT SELECT on nowasp . accounts to 'home. select .accounts '@'localhost
';

5 GRANT SELECT on nowasp . captured_data to 'captured -data. select .
captured_data '@'localhost ';

6 GRANT SELECT on nowasp . accounts to 'show -log. select .accounts '@'
localhost ';

7 GRANT SELECT on nowasp . blogs_table to 'add -to -your -blog. select .
blogs_table '@'localhost ';

8 GRANT SELECT on nowasp . accounts to 'view -someones -blog. select .
accounts '@'localhost ';

9 GRANT SELECT on nowasp . blogs_table to 'view -someones -blog. select .
blogs_table '@'localhost ';

10 GRANT SELECT on nowasp . blogs_table to 'view -someones -blog. select .
blogs_table '@'localhost ';

11 FLUSH PRIVILEGES ;� �

89

Chapter 8: Systematic Process for Refactoring PHP

Code to Implement Least Privilege

With a robust set toolset, LP HERMES and LP SQL, the next step in the process is to

refactor the PHP code to fully the transform the web application from a non-least privilege

to a least privilege model. This chapter explains the general process of manually refactoring

the PHP code. Figure 8.1 illustrates Contribution 6: A developed systematic process

for PHP code modification to assist the web developer in applying least privilege

permissions for securing web applications. Furthermore, the practical application of

refactoring the PHP code is applied in two case studies, the SEED Labs web application in

Chapter 9 and the Mutillidae web application in Chapter 10.

4) BuildDBQueries
 script cleans the
 DB logs

4) BuildDBQueries
 script cleans the
 DB logs

5) Dynamic2HPol
 script creates
HPol and HERMES

5) Dynamic2HPol
 script creates
HPol and HERMES

HPol ModelHPol Model

HERMES fileHERMES file

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

6) Hermes2
 Prolog script
 creates Prolog
 Knowledge
 Base (PKB)

7) Prolog
calculates Least
Privilege (LP)
PKB

7) Prolog
calculates Least
Privilege (LP)
PKB

PKB

8 a) Prolog2
HERMES script
creates LP
HERMES

8 a) Prolog2
HERMES script
creates LP
HERMES

8 b) Prolog2
HPol script
creates LP
HPol Model

8 b) Prolog2
HPol script
creates LP
HPol Model

LP HERMESLP HERMES

LP HPol ModelLP HPol Model

9) Hermes2SQL
 script creates
 LP SQL

9) Hermes2SQL
 script creates
 LP SQL

RAW
SQL logs

RAW
SQL logs

Cleaned
SQL logs
Cleaned
SQL logs

 LP PKB LP PKB

1) DBMS Admin
enables logs for
all DB queries

3) DBMS Admin
provides log file

LP SQL for

DBMS Admin

LP SQL for

DBMS Admin

10) DBMS installs LP SQL

Web Dev verifies
and modifies LP
HERMES

if needed

Web Dev verifies complete
and correct HERMES.

2) Web Dev exercises the web site non-maliciously

Web
Developer

Web Dev verifies complete
and correct LP HPol model.
Web Dev uses LP HPol
model to output new PHP
code that enforces Least
Privilege

DBMS
Admin

Contribution 6

Figure 8.1: Contribution 6: A developed systematic process for PHP code
modification to assist the web developer in applying least privilege

permissions for securing web applications.

90

8.1 Systematic Step-by-Step for Refactoring PHP Code to Se-

cure the Web Application

Currently, most online sites with code examples recommend using the same non-least privilege

authentication pattern. This non-least privilege root user needs to be replaced with a least

privilege user, for each query to the database. Since every web application is unique, this

section explains the general process of refactoring the PHP code to move the web application

to least privilege. The following general steps are:

Step 1: Identify the PHP file that holds the credentials for database connectivity. Listing

8.1, illustrates the common non-least privilege credentials.

Step 2: Create a PHP include file that contains a function to determine the appropriate

user. This function will need to be passed the referrer web page. Listing 8.2 illustrates a

simple function to determine the user.

Step 3: Locate all include filename.php that call the root configuration. These files will

need to be commented out, and the determine user function will need to be referenced.

Step 4: The executeQuery function call shown in Figure 8.2 is now passed the least

privilege user.

Step 5: The least privilege user makes the connection to the database and then the

query is executed by the least privileged user instead of being executed by the non-least

privileged user root.

These general step-by-step instructions should be applicable to most web applications; how-

ever, the process of refactoring the code is entirely dependent on the original web application.

In Chapter 12, Section 12.5 automating this general process is discussed. The following two

chapters will illustrate the refactoring process as part of two applied case studies.

91

Listing 8.1: Unsecured Web Application DB Example: This database
configuration illustrates a non-least privilege generic root user that is

common for database interaction.� �
1 /* --
2 * DATABASE HOST
3 * --
4 static public $mMySQLDatabaseHost = "127.0.0.1";
5
6 /* --
7 * DATABASE USER NAME
8 * --
9 static public $mMySQLDatabaseUsername = "root ";

10
11 /* --
12 * DATABASE PASSWORD
13 * --
14 static public $mMySQLDatabasePassword = "";� �

Listing 8.2: New PHP File: This new PHP file determines the correct least
privilege.� �

1 <?php
2 function determineUser ($refPage)
3 {
4 if($refPage == "login.php ") return loginSelectAccounts ;
5 }
6 ?>� �

Figure 8.2: Secured Web Application DB Example: This figure illustrates
the lookup of the least privilege user. This user will execute the database

query instead of the root user.

92

Chapter 9: Applied Case Study: SEED - Systematic

Process for Refactoring PHP Code to Implement

Least Privilege

This chapter describes the process of refactoring the PHP code for the case study of the SEED

Labs web application. The SEED Labs is open source, and licensed under the GNU General

Public License v3.0; however, I did not want to publish their labs as part of this dissertation so

I modified the code and the examples. The SEED Labs manual discussed multi_query as an

option. I chose to turn on multi_query for this case study. This allowed me to emulate one of

their attacks as well as create my own attack.

It is important to understand the flow of the SEED web application. The first page loaded

is unsafe home.php. After the user enters their credentials and the login button is pressed then

unsafe home.php, shown in Figure 9.1, calls the page unsafe edit frontend.php, shown in Figure

9.2. The page unsafe edit frontend.php does not display a web page, instead it calls the page

unsafe edit backend.php when either the Edit Profile button or the Save button is clicked. The

unsafe edit backend.php page updates the database and then calls unsafe edit frontend.php until

the logout button is clicked.

Figure 9.1: The page unsafe home.php.

93

Figure 9.2: The page unsafe edit frontend.php.

Also recall that a new set of least privilege users were created for the SEED Labs web appli-

cation as shown in Chapter 7 - Section 7.2. Due the limitation of the SEED Labs mysql database

user table allowing a maximum of 20 characters, the new users that were created for the

SEED Labs web application are home.select.credential, frontend.select.credential,

and backend.update.credential. Furthermore, the SEED web application embeds the database

credentials in each page. Listing 9.1 illustrates the least privileged SQL users credentials, which

are slightly different than the credentials from Section 7.2 because of the character limitation.

Figure 9.3 illustrates the mysql.user table after creation of the new users. The new users have

no permissions on the mysql.user table, while Figure 9.4 illustrates that the new users have

permissions only on the SEED Users database and credentials table.

Listing 9.1: SEED Users: The SQL commands creating new database users.� �
1 CREATE USER IF NOT EXISTS 'home. select .credential '@'localhost '

IDENTIFIED BY 'passwd ';
2 CREATE USER IF NOT EXISTS 'frontend . select .credential '@'localhost '

IDENTIFIED BY 'passwd ';
3 CREATE USER IF NOT EXISTS 'backend . update .credential '@'localhost '

IDENTIFIED BY 'passwd ';
4 GRANT SELECT on Users. credential to 'home. select .credential '@'

localhost ';
5 GRANT SELECT on Users. credential to 'frontend . select .credential '@'

localhost ';
6 GRANT UPDATE on Users. credential to 'backend . update .credential '@'

localhost ';� �

94

Figure 9.3: SEED Least Privilege Users: The mysql.user table illustrating
that the new SEED users have no privileges on the DBMS middleware.

Figure 9.4: SEED Least Privilege Users: The SEED Users.credential table
illustrating the new SEED users with the appropriate privileges.

Once the new users are created the next step is to refactor the web application to in-

clude the new least privileged users in place of the non-least privileged user root. Listing

9.2 displays the new user home.select.credential has replaced the user root for the page

unsafe home.php, while Listing 9.3 displays the new user frontend.select.credential has re-

placed the user root for the page unsafe edit frontend.php and Listing 9.4 displays the new user

backend.update.credential has replaced the user root for the page unsafe edit backend.php.

95

Listing 9.2: LP DB Credentials: The LP SQL credentials updated for
unsafe home.php.� �

1 $dbhost =" localhost ";
2 $dbuser =" home. select . credential ";
3 $dbpass =" passwd ";
4 $dbname =" Users ";� �

Listing 9.3: LP DB Credentials: The LP SQL credentials updated for
unsafe edit frontend.php.� �

1 $dbhost =" localhost ";
2 $dbuser =" frontend . select . credential ";
3 $dbpass =" passwd ";
4 $dbname =" Users ";� �

Listing 9.4: LP DB Credentials: The LP SQL credentials updated for
unsafe edit backend.php.� �

1 $dbhost =" localhost ";
2 $dbuser =" backend . select . credential ";
3 $dbpass =" passwd ";
4 $dbname =" Users ";� �

The SEED Labs SQLIA web application code was slightly modified, for the pages un-

safe home.php, unsafe edit frontend.php and unsafe edit backend.php. Each page had the code

$conn→query($sql) line of code which was changed to $conn→multi query($sql). The difference

between query and multi query is the query function in PHP does not allow stacked queries

while the multi query function allows stacked queries. Listing 9.5 illustrates the PHP multi -

query modification for all pages.

Listing 9.5: The code modifications to the SEED Labs web application� �
1 if (! $result = $conn -> multi_query ($sql)) {
2 $result = $conn -> use_result ();� �

96

9.1 SQL Injection Attack: SELECT Command Attack: Non-

Least Privilege

The following steps outline a successful attack against the original SEED Labs web application.

The attack is a tautology attack, also know as ‘or 1=1 -- attack, against the SELECT database

command. The steps of the attack and the results of the attack are outlined below.

Step 1: Open the SEED Labs web application and execute a simple tautology

‘or 1=1 -- attack. Figure 9.5 displays the tautology attack on the non-least privilege

web application.

Step 2: The unsafe home.php web page issued the SELECT database command which

allowed the tautology attack to succeed.

Step 3: The results returned the first record in the database table credential. Figure

9.6 displays the first record of the table credential which contains the user Alice.

Step 4: Once the tautology attack was successful the malicious actor can execute a sep-

arate attack. In this instance the malicious actor can select the Edit Profile button at the

top of the page.

Step 5: After selecting the Edit Profile button, the malicious actor has full privileges to

the change the record of Alice. Note: Alice could be a privileged user.

Step 6: From the Edit Profile page, the malicious actor can modify any information for

this user, including changing the user’s password. Figure 9.7 illustrates the edit page

where the malicious actor modified the nickname for Alice to become sandy.

Step 7: The malicious actor saves the changes. Once the changes are saved, the updated

profile is displayed. Figure 9.8 illustrates Alice’s nickname has been changed.

97

Figure 9.5: NLP SELECT Command Attack: Tautology - simple tautology
attack ‘or 1=1 -- against the SELECT database statement.

Figure 9.6: NLP SELECT Command Attack: Tautology - the tautology
attack was successful. The first record of the database is displayed to the

screen.

98

Figure 9.7: NLP SELECT Command Attack: Tautology - using the edit
page unsafe edit frontend.php Alice‘s name is changed to sandy.

Figure 9.8: NLP SELECT Command Attack: Tautology - the results
illustrating the nickname has been changed.

99

The tautology attack was successful. The malicious actor was able to access and modify

the first record from the database table. The reason the malicious actor was able to access the

first record was the tautology attack is executed on the SELECT statement. In this case the user

root had full permissions to execute the SELECT command. Since the UPDATE command was

being executed to modify the user’s information the command succeeded because the user root

also had UPDATE permissions.

9.2 SQL Injection Attack: SELECT Command Attack: Least

Privilege

In this section the web application has been modified to enforce least privilege. The following

steps outline a partially successful attack against the modified LP SEED web application. The

attack is a tautology attack, also know as ‘or 1=1 -- attack, against the SELECT database

command. The steps of the attack and the results of the attack are outlined below.

Step 1: Open the SEED Labs web application and execute a simple tautology

‘or 1=1 -- attack. Figure 9.9 displays the tautology attack on the least privilege web

application.

Step 2: Since the unsafe home.php web page is executing the SELECT database command,

the tautology attack was successful. The results return the first record in the database

table credential. Figure 9.10 displays the first record of the table credential which

contains the user Alice.

Step 3: Once the tautology attack was successful, the malicious actor can attempt to

execute a separate attack. In this instance the malicious actor can select the Edit Profile

button at the top of the page.

Step 4: After selecting the Edit Profile button, the malicious actor DID NOT have

privileges to change the information for Alice, since the least privilege database user is

home.select.credential. Recall from Listing 9.1 the database users were changed.When

the malicious actor attempts to modify the information for this user the command FAILS.

100

Step 5: From the Edit Profile page the malicious actor attempted to edit the nickname

for the user Alice. Since the permissions on the web page unsafe edit frontend.php are set

to frontend.select.credential the UPDATE command fails. This edit page appears to

allow the malicious actor to set the nickname for Alice. Figure 9.11 displays the attempt

to set the nickname to Alice. Figure 9.12 displays the information was NOT set.

Figure 9.9: LP SELECT Command Attack: Tautology - simple tautology
attack ‘or 1=1 -- against the SELECT database statement.

Figure 9.10: LP SELECT Command Attack: Tautology - the tautology
attack was successful. The first record of the database is displayed to the

screen.

101

Figure 9.11: LP SELECT Command Attack: Tautology -the malicious
actor attempts to add the nicknameAlice‘s.

Figure 9.12: LP SELECT Command Attack: Tautology - the results
illustrating the nickname has NOT been changed.

102

The tautology attack was successful from the SELECT statement being executed. The mali-

cious actor was able to access the first record from the database table; however, attempting to

change the profile for Alice, FAILED. Since the unsafe edit frontend.php first authenticates the

user and then calls unsafe edit backend.php, eith the multi query enabled and only the SELECT

permissions, the authentication fails and the unsafe edit backend.php page is never called. The

user frontend.select.credential only had permissions to execute the SELECT command not

the UPDATE command.

9.3 SQL Injection Attack: UPDATE Command Attack Against

Admin From Login Screen: Non-Least Privilege

The following steps outline a successful stacked query attack against the admin account of

the modified SEED Labs web application. This attack is not published in the SEED Labs

instructor’s manual [67]. In the manual, the author discusses enabling multi_query to allow

for attacks from the login screen. This attack is only allowed via the use of multi query. The

attack is considered a stacked query attack, meaning two SQL statements are executed one

after the other. The attack appears as the following:

stu’; UPDATE credential SET Password=’4b176b7bc0111ca7ba730bf6be5415f20b7b6c01’

WHERE name=’admin’;#

where ’4b176b7bc0111ca7ba730bf6be5415f20b7b6c01’ represents the SHA1 [68] has for the pass-

word ownd. The steps of the attack and the results of the attack are outlined below.

Step 1: Determine the SHA1 encoding for the password ownd.

Step 2: From the unsafe home.php page, in the username field enter the stacked query

attack as shown above. Figure 9.13 illustrates the attack as entered.

Step 3: Press the Login button.

103

Figure 9.13: NLP UPDATE Command Attack: Login - the injection attack
illustrating multiple queries in one SQL statement as entered into the

username field.

Step 4: The Profile form displays the information for the user. In this case the user was

stu. Although the user profile is displayed, the Admin password was modified. In this

instance the password was set to ownd. Figure 9.14 illustrates the profile screen for the

user stu, but behind the scenes the Admin password was modified.

Step 5: The malicious actor can now login into the system as the Admin user, utilizing

the newly set password of ownd. Figure 9.15 illustrates that the malicious actor has logged

in with Admin and now has full access to the database.

Step 6: The results after the malicious actor logged in as Admin. The malicious actor

now has full privileges to the database.

The login attack, utilizing stacked SQL queries was fully successful. The malicious actor

was able to login as a standard user; however, the malicious actor was able to modify the Admin

password using a stacked SQL UPDATE command. The reason the malicious actor was able to

modify the information was the UPDATE command was being executed by the non-least privilege

root user.

104

Figure 9.14: NLP SELECT Command Attack: Login - the results of the
attack were successful; however, the only information displayed is for the

user. In this case the profile is for the user stu.

Figure 9.15: NLP UPDATE Command Attack: Login - the results after
the malicious actor logged in as the Admin user with the password of ownd.

105

9.4 SQL Injection Attack: SELECT Command Attack Against

Admin From Login Screen: Least Privilege

The SEED web application has been reset and the Admin password has been restored. The

PHP code has been refactored for each page in the SEED web application, and the database

credentials were modified to enforce the least privilege users. The following steps outline an

unsuccessful attack against the admin account of the modified SEED Labs web application.

Step 1 - 3: Repeat the steps as shown in Section 9.3.

Step 4: The Profile form displays the information for the user. In this case the user was

stu. Although the user profile is displayed the Admin password was NOT modified. In

this instance the password remains set to password. Figure 9.16 illustrates the profile

screen for the user stu, but behind the scenes the Admin password was NOT modified.

Step 5: The malicious actor CANNOT login into the system as the Admin user, utilizing

the attempted set password of ownd.

Step 6: The results after the malicious actor FAILED to login as Admin. Figure 9.17

illustrates that the malicious actor COULD NOT login with Admin.

Figure 9.16: LP UPDATE Command Attack: Login - the user profile
screen for stu, Behind the scenes the attack FAILED.

106

Figure 9.17: LP SELECT Command Attack: Login - the results of the
attack were successful; however, the only information displayed is for the

user. In this case the profile is for the user stu.

The login attack, utilizing stacked SQL queries was NOT successful. The malicious actor

was able to login as a standard user; however, the malicious actor attempted to modify the Admin

password using a stacked SQL UPDATE command. The unsafe home.php first authenticates

the user and then calls unsafe edit frontend.php. With the multi query enabled and only the

SELECT permissions, the authentication fails and the unsafe home.php page is never called. The

user home.select.credential only had permissions to execute the SELECT command not the

UPDATE command.

9.5 SQL Injection Attack: UPDATE Command Attack Against

Admin From Non-Privileged Account: Non-Least Privilege

The following steps outline a successful attack against the admin account of the modified SEED

Labs web application, utilizing multi_query to allow for attacks from a non-privileged account.

The concept is to issue an UPDATE command from a logged in general user account. The attack

appears as the following:

Step 1: In the username field enter stu. In the password field enter passwd. The stu

Profile screen displays the logged in non-privileged user.

Step 2: The non-privileged user presses the Edit Profile button at the top of the page.

Step 3: Determine the SHA1 encoding [68] for the password ownd.

107

Step 4: In the NickName field enter a command similar to the following.

’, Password= ’40bd001563085fc35165329ea1ff5c5ecbdbbeef’ where

name=’Admin’ ;#

Figure 9.18 illustrates the SQL injection that will be entered in the NickName field.

Step 5: Press the Save button.

Step 6: The Profile form displays the information for the user. In this case the user was

stu. Although the user profile was displayed the Admin password was modified. In this

instance the password was set to ownd. Figure 9.19 illustrates the profile screen for the

user stu, but behind the scenes the Admin password was modified. Figure 9.20 illustrates

the password was updated in the database.

Step 7: The malicious actor can now login into the system as the Admin user, utilizing

the newly set password of ownd.

Step 8: The results after the malicious actor logged in as Admin. The malicious actor

now has full privileges to the database. Figure 9.21 illustrates that the malicious actor

could login with Admin and now has full access to the database.

Figure 9.18: NLP UPDATE Command Attack: Non-Privileged User - the
stu‘s Profile Edit screen with the injection attack entered..

108

Figure 9.19: NLP UPDATE Command Attack: Non-Privileged User - the
resulting profile for stu profile after the injection attack occurred.

Figure 9.20: NLP UPDATE Command Attack: Login - the database table
of users illustrating the Admin password was changed.

109

Figure 9.21: NLP UPDATE Command Attack: Non-Privileged User - The
malicious actor logged in as the Admin with the password ownd.

The login attack, utilizing a non-least privileged account to issue an UPDATE injection query

was fully successful. A non-least privileged user logged in. Once the user was logged, in the

non-least privileged user became a malicious actor. The malicious actor was able to modify the

Admin password by injecting a new password via a simple SQL UPDATE command. The reason

the malicious actor was able to modify the information was the UPDATE command was being

executed by the non-least privilege root user.

9.6 SQL Injection Attack: SELECT Command Attack Against

Admin From Unprivileged Account: Least Privilege

The SEED web application has been reset and the Admin password has been restored. The

PHP code has been refactored for each page in the SEED web application, and the database

credentials were modified to enforce the least privilege users. The following steps outline a

partially successful attack from a non-privileged account.

110

Step 1 - 5: Repeat the steps as shown in Section 9.5.

Step 6: The Profile form displays the information for the user. In this case the user was

stu. Although the user profile was displayed the Admin password was NOT modified. In

this instance the password was NOT set to 123. Figure 9.22 illustrates the profile screen

for the user stu.

Step 7: The malicious actor can now attempt login into the system as the Admin user,

utilizing the newly set password of 123.

Step 8: The results after the malicious actor logged in as Admin. The malicious actor

now has no privileges to the database. Figure 9.23 illustrates that the malicious actor

could NOT login with Admin and now has NO access to the database.

Figure 9.22: LP UPDATE Command Attack: Non-Privileged User - the
resulting profile for stu profile after the injection attack FAILED.

111

Figure 9.23: LP UPDATE Command Attack: Non-Privileged User - the
results indicating the malicious actor DID NOT login as the Admin user

with the password of 123.

The login attack, utilizing a least privileged account to issue an UPDATE injection query

was NOT successful. A least privileged user logged in. Once the user was logged in the non-

privileged user became a malicious actor. The malicious actor was NOT able to modify the

Admin password by injection a new password via a simple SQL UPDATE command. Since the

UPDATE command was being executed to modify the user’s information the command failed be-

cause the user frontend.select.credential did not have UPDATE permissions. Furthermore,

using only query instead of multi query a least privileged user that logs in a non-malicious

manner, will not be able to modify their own information. This is because the page unsafe -

edit frontend.php is restricted to only the SELECT command. The ability to edit the profile

is not granted because the call appears to be coming from the page unsafe edit frontend.php

but in reality, the unsafe edit frontend.php is not making the UPDATE, it is passing the UPDATE

information to the page unsafe edit backend.php.

9.7 SQL Injection Attack: UNION Command Attack: Non-

Least Privilege

The following steps outline a successful attack against the root account of mysql. This attack

utilized the original unmodified SEED web application, including the original query PHP com-

mand. This attack is more complicated than a basic injection attack. The steps to initiate this

attack are outlined as follows.

112

Step 1: Open the SEED Labs web application

Step 2: From the page unsafe home.php, in the username field enter the injection shown

in Listing 9.6.

Listing 9.6: NLP: Union Attack: The injection that will provide the
MySQL hash code of the mysql root password.The code modifications to

the SEED Labs web application� �
1 ' OR 1=1 UNION (SELECT 'pwned ' AS id , 'MySQL -root ' AS name , 0 as eid

, 'millions ' AS salary , '1900 ' as birth , '999 -99 -9999 ' AS ssn ,
'555 -555 -5555 ' as phonenumber , '1234 Pawn Road.' as address ,
authentication_string AS email , User AS nickname , NULL AS
Password FROM mysql.user WHERE User='root ') ORDER BY eid ;#� �

Figure 9.24 illustrates the UNION injection typed into the username of the login form.

Step 3: Press the Login button.

Step 4: The results of the UNION injection are shown in Figure 9.25. The injection was

successful and the SHA1 hash code for the mysql root is displayed. The resulting query

of the UNION injection is shown in Listing 9.7.

The UNION attack, succeeded because the command was being executed by the non-least

privilege root user.

Figure 9.24: NLP UNION Command Attack: The malicious actor enters a
complicated UNION attack as illustrated in Figure 9.6.

113

Figure 9.25: NLP UNION Command Attack: Non-Privileged User - the
results after the malicious actor executed the UNION injection. The mysql

root user hash code is displayed.

Listing 9.7: NLP: Union Attack: The resulting query from the UNION
injection attack.� �

1 SELECT id , name , eid , salary , birth , ssn , phonenumber , address ,
email , nickname , Password FROM credential WHERE name='' OR 1=1
UNION (SELECT 'pwned ' AS id , 'MySQL -root ' AS name , 0 as eid , '
millions ' AS salary , '1900 ' as birth , '999 -99 -9999 ' AS ssn ,
'555 -555 -5555 ' as phonenumber , '1234 Pawn Road.' as address ,
authentication_string AS email , User AS nickname , NULL AS
Password FROM mysql.user WHERE User='root ') ORDER BY eid ;# ' and

password ='$input_pwd ';� �

114

9.8 SQL Injection Attack: UNION Command Attack: Least

Privilege

The following steps outline a FAILED attack against the root account of mysql. This

attack utilized a modified version of the original SEED web application, including the original

query PHP command. The PHP code has been refactored for each page in the SEED web

application, and the database credentials were modified to enforce the least privilege users.

The steps to initiate this attack are outlined as follows.

Step 1 - 3: Repeat the steps as shown in Section 9.7.

Step 4: The results of the UNION injection are shown in Figure 9.26. The injection was

NOT successful. The reason the attack was not successful was the user home.select.credential

only has SELECT on the table credential and not the database and table of mysql.user.

The UNION attack, FAILED because the command was being executed by the least priv-

ilege home.select.credential user who does not have privileges on the mysql.user

database and table.

Figure 9.26: LP UNION Command Attack: The results after the malicious
actor attempted to executed the UNION injection. The PHP error message
is displayed. This PHP error indicates the user home.select.credential

does not have privileges on the mysql.user database and table.

115

Chapter 10: Applied Case Study: Mutillidae -

Systematic Process for PHP Code Refactoring to

Implement Least Privilege

This chapter discusses the attempted process and the subsequent challenges of refactoring the

PHP code for the case study of Mutillidae (2.6.42). Recall that a new set of least privilege

users were created for the Mutillidae web application. The new users that were created for the

Mutillidae web application are:

• home.select.blogs_table

• login.select.blogs_table

• register.select.blogs_table

• register.insert.accounts

• home.select.accounts

• captured-data.select.captured_data

• show-log.select.accounts

• add-to-your-blog.select.blogs_table

• view-someones-blog.select.accounts

• view-someones-blog.select.blogs_table

For the Mutillidae web application, the database credentials are embedded in a single page.

Listing 10.1 illustrates the non-least privileged SQL credentials per page for the Mutillidae web

application.

116

Listing 10.1: NLP SQL: The database credentials as embedded in the
single PHP file for the Mutillidae web application.� �

1 /* --
2 * DATABASE USER NAME
3 * --
4 * This is the user name of the account on the database
5 * which OWASP Mutillidae II will use to connect . If this is set
6 * incorrectly , OWASP Mutillidae II is not going to be able to

connect
7 * to the database .
8 * */
9 static public $mMySQLDatabaseUsername = "root ";� �

An illustration of the process to convert the web application to least privilege is as follows:

Step 1: The DBMS installed the LP SQL file into the database and created the set of new

users. Figure 10.1 illustrates the DBMS has been updated with the new least privilege

users.

Step 2: The root user was replaced by the user home.select.accounts Listing 10.2 il-

lustrates the least privilege user home.select.accounts has replaced the non-least priv-

ileged user root.

Step 3: An attempt to use the web application with a simple tautology SQL injection.

Figure 10.1: Secured Mutillidae DBMS Example: The DBMS has been
updated to include the new SQL users.

Listing 10.2: LP DB Credentials: The SQL credentials have been updated
in the single PHP file for the database credentials. This single file will

utilize the least privilege user in place of the non-least privileged user root.� �
1 * This is the user name of the account on the database
2 * which OWASP Mutillidae II will use to connect . If this is set
3 * incorrectly , OWASP Mutillidae II is not going to be able to

connect
4 * to the database .
5 * */
6 static public $mMySQLDatabaseUsername = "home. select . accounts ";� �

117

10.1 SQL Injection Attack: SELECT Statement Attack: Non-

Least Privilege

The following steps outline a successful attack against the Mutillidae web application. The

attack is against the admin database user. The steps of the attack and the results of the attack

are outlined below.

Step 1: Open the Mutillidae web application and execute a simple tautology

’or 1=1 -- attack. Figure 10.2 displays the tautology attack on the non-least privilege

web application.

Step 2: The tautology attack was successful. Figure 10.3 displays a web page verifying

the malicious actor is logged in as admin. From this page the malicious actor has access

to the entire web application.

Step 3: The malicious actor has full privileges to the database. The malicious actor can

modify any information within the web application.

Figure 10.2: Unsecured Mutillidae Web Application Example: Simple
tautology attack against the Mutillidae database admin user.

118

Figure 10.3: Unsecured Mutillidae Web Application Example: The
tautology attack was successful. The malicious actor is logged in as admin.

10.2 SQL Injection Attack: SELECT Statement Attack: Least

Privilege

The following are the results after refactoring the PHP code and adding the least privi-

lege user to the Mutillidae web application. To enforce the Principle of Least Privilege the

database user was modified from the non-least privilege user root to the least privilege user

home.select.accounts. Once the user was updated an attempt to load the login.php page

was performed. Figure 10.4 illustrates the results of the attempt to load the login.php web

page for the attack from Section 10.1. The solution required granting more privileges to

home.select.accounts then the least privilege model specifies.

Figure 10.4: Secured Mutillidae Web Application Example: The results of
exercising the Mutillidae web application regardless of the user as long as

the user was not the root user.

119

Changing the users from non-least privilege to least privilege prevented any SQL injection

attacks from occurring. This was true for any attack, including a tautology attack. In this case

study, the least privilege formal security model was identified and implemented; however, the

implement prevented attacks that were unknown. It also prevented normal execution of the

web application. For the web developer to truly secure the application is currently beyond the

scope of this dissertation.

120

Chapter 11: Related Work

This chapter discusses current existing work related to this dissertation. Existing work for

securing Web applications can be categorized into Least Privilege Models discussed in Section

11.1, Secure Web Applications by Design discussed in Section 11.2, Scanning Web Applications

for Security Vulnerabilities explained in Section 11.3, Reverse Engineering Web Applications

discussed in Section 11.4, Dynamic and Static Mitigation Techniques discussed in Section 11.5,

and Domain Specific Languages explained in Section 11.6.

11.1 Least Privilege Models

The principle of least privilege (POLP) is a well known design principle to which access control

models and systems should adhere during construction or policy implementation [12, 56].

Papers concerning the least privilege model focus on applying the principle of least privilege

during design, authentication, or at the operating system for hardware protection. Wang et al.

[59] proposed applying the POLP at authentication time. Elliott and Knight [58, 69] proposed

applying POLP during the design process. Jerbi et al. [70] proposed applying POLP to the

operating system for hardware protection.

Blankenship and Freedman applied the POLP to develop Passe a replacement for the Django

Web framework [57]. Passe differs from our work in that it relies on developer-supplied end-to-

end test cases to learn the program flow. Our work analyzes the current Web application via

our HPol security model.

The current research on the principle of least privilege differs significantly from our research,

in that most of the research conducted does not address the issue of securing already developed

Web applications, including addressing the issue of how to fix the current Web applications

without having to completely rewrite the web.

121

11.2 Secure Web Application By Design

One approach for securing Web applications is the concept of building a secure Web application

from the beginning. One such approach is from the company Galois.

Galois developed a secure standalone Web server with Haskell [71]. The Web applications

resided separately from the Web server [72, 73]. Any new Web applications are built fresh with

the concept of security built into the application.

Galois differs from our research in that our work presumes the Web application has already

been built potentially without security as a focus. For example, it is difficult to determine if

there are security flaws in already deployed Web applications; although, there are tools such as

the burp suite [74], these tools do not illustrate all security flaws or a least privilege model.

11.3 Scanning Web Applications for Security Vulnerabilities

Scanning Web applications for security vulnerabilities is one method for identifying and cor-

recting the existing security flaws. Fonseca et al. [75], Makino and Klyuev [76], Qianqian

and Xiangjun [77], and Viera et al. [78] discussed scanning existing Web applications for vul-

nerabilities. Fong et al. [79] discussed building test suites for evaluation of Web application

scanners. Fong et al. scanning techniques were performed against a test suite where the number

of vulnerabilities was known.

Web scanners differs from our research, in that Web scanning does not have access to

the original server-side application source code. Without the original source code, certain

vulnerabilities cannot be identified and the POLP cannot be applied. Our research includes

the original source code which allows for identification of the design vulnerabilities and better

enforcement of the principle of least privilege.

Other scanners that use attack graphs are important tools for analyzing security vulnera-

bilities. Ou et al. [80] discusses MulVAl which uses logical attack graphs, to directly illustrate

logical dependencies among attack goals and configuration information. Saha [81] discusses

attack graphs by logical formulation of vulnerability analysis in an existing framework.

122

11.4 Reverse Engineering Web Applications

There are tools that are readily available for reverse engineering Web applications. These tools

are available as browser plugins and typically only provide reverse engineering of the client-side

application including the HTML, CSS, and JavaScript. Bouhissi and Malki [82], Draheim et al.

[83], and Hamou-Lhadj et al. [84] report on research primarily focused on reverse engineering

the client application.

Another reverse engineering technique focuses on reverse engineering the server-side applica-

tions to identify the structure of the Web application, such as the PHP code or SQL statements.

Cloutier et al. [85], Guan and Yang [86], Lucca et al. [87], Tramontana [88], Tramontana et al.

[89], and Weijun and Xianming [90] propose solutions that reverse engineer the Web application

where the structure of the Web application is extracted and visualized as an attempt to recover

the architecture of the Web application.

This research differs from the research in reverse engineering Web applications in that our

research focuses on reverse engineering the Web application to create a complete security model.

Furthermore, the papers on reverse engineering typically do not have access to the server-side

source code, while this research assumed there was access to the server-side source code.

11.5 Survey of Dynamic and Static Mitigation Techniques

Papers

Dynamic and static mitigation technique papers can be loosely grouped into three categories:

papers that classify the mitigation technique to the seven SQLIA types, papers that discuss

the strengths and weaknesses of each mitigation technique, including whether the technique

is defensive and/or preventive, and papers that discuss the classification of SQLIAs with an

analysis of the risks associated with each attack. Table 11.1 displays the classification of each

survey paper. The summary of each paper is as follows:

Abirami et al. [91] provide a review of the types of SQL injection attacks as well as an

analysis of several mitigation techniques.

123

Amirtahmasebi et al. [19] review the defense mechanisms for six mitigation techniques by

discussing very specific details of the defense technique including which SQL injection type the

technique protects.

Grupta et al. [20] propose a classification of the defense techniques of the static analysis

based approaches. This survey paper explores eleven techniques from 2005 through 2012.

Halfond et al. [8] classify the SQL injection attack types. These attack types became the

standard attack types that papers cite. In this survey paper, 17 SQLIA mitigation techniques

are compared to the SQL injection attack type, including a classification of the technique as

a detection or prevention technique. This paper also includes additional information about

modifying the code base and additional infrastructure.

Johari and Sharma [21] present a survey of 14 prevention techniques that are either SQL

injection prevention techniques or cross site scripting prevention techniques. This paper presents

a description of each technique. The authors state this “. . . should not excuse developers from

applying preventive coding techniques . . . ”

Junjin [26] presents an approach for SQL injection vulnerability detection; however, one half

of the paper is dedicated to analyzing two other detection techniques. The analysis includes a

description of manual approaches and automated approaches for prior SQL injection detection.

Kaur and Kour [22] identify and analyze the various reasons for SQL injection attacks.

The paper presents the attack and an example of the attack, but does not present individual

mitigation techniques.

Kindy and Pathan’s [24] paper provides a detailed review of the various types of SQLIAs

including an attempt to classify the individual vulnerabilities into types. These vulnerability

types are mapped to the SQLIA types. This paper describes 13 mitigation techniques, including

tables mapping each technique to SQL prevention or SQL detection technique, and the SQL

injection attack types.

Kumar and Pateriya’s [25] survey provides a review of the various types of SQLIAs in-

cluding an example of each type. The 21 surveyed papers are mapped to the SQLIA types,

including mapping the technique to SQL prevention or SQL detection technique, and whether,

the technique generates a report.

124

Table 11.1: A survey and self classification of dynamic mitigation
technique papers, presented in alphabetical order by author.

Authors M
it

ig
at

ed
SQ

L
IA

T
yp

es

St
re

ng
th

s
&

W
ea

kn
es

se
s

R
is

k
A

na
ly

si
s

Y
ea

r

Amirtahmasebi et al. [19] X 2009
Grupta et al. [20] X 2014
Halfond et al. [8] X 2006

Johari and Sharma [21] X 2012
Junjin [26] X 2009

Kaur and Kour [22] X 2015
Kindy and Pathan [24] X 2011

Kumar and Pateriya [25] X 2012
Mukherjee et al. [27] X 2015
Sadeghian et al. [28] X 2013

Sajjadia and Pour [29] X 2013
Shar and Tan [11] X 2013

Sharma and Jain [30] X 2014
Tajpour et al. [31, 32, 33] X 2010

Mukherjee et al. [27] provides a review of the SQLIA problem, including the attack type and

an example of each attack type. The paper reviews 17 defensive techniques with a classification

of each technique as either a prevention or detection technique.

Sadeghian et al. [28] presents a review of 15 mitigation techniques. This paper classifies

each mitigation as either a best coding practice technique, a detection technique, or a prevention

technique.

Sajjadia and Pour [29] provides a taxonomy of prevention and detection techniques. The

paper classifies the SQLIA based on the vulnerability type. The paper also addresses prevention

techniques as solely static or as hybrid, both static and runtime. This review of eight techniques

classifies each technique as prevention or detection, and it includes whether the code base is

modified or if there is additional required information for the developer.

Shar and Tan [11] present an analysis of fifteen SQLIA defensive techniques. This paper sep-

arates each technique into the categories of defensive coding, detection techniques and runtime

techniques, and it reclassifies prevention as runtime techniques and detection as static analysis

techniques. This paper states that “Numerous off-the-shelf offerings are useful for quickly de-

125

tecting the presence of SQLIVs [SQL injection vulnerabilities] in websites.” The paper briefly

mentions one runtime technique is being commercialized.

Sharma and Jain’s [30] paper discusses the classification of SQL injection attacks, including

the risk of each attack type. The paper also classifies the vulnerability of each SQLIA, and

discusses the anatomy of orderwise injection types. This paper does not examine any specific

defensive technique.

The three papers of Tajpour et al. [31, 32, 33] present the definition of SQLIAs, and the

different attack types, including an example of the attack type. The papers discuss 23 mitigation

techniques including mapping the technique to the seven attack types.

11.6 Domain-Specific Languages

A computer language specialized to a particular application domain is known as a domain-

specific language (DSL). Hypertext Markup Language (HTML) is an example of a domain-

specific language. HERMES is another example of a DSL. This section discusses a few of the

domain-specific languages related to this dissertation.

The majority of flaws found in software originates during the specification stage of the

system requirements. The use of domain-specific languages has shown to be a valuable resource

in this part of the process. Hamdi et al. [92] introduces a DSL that is a combination of

a special-purpose language and a general-purpose language. The proposed DSL is meant to

reuse security infrastructure for new policies while easily allowing the expression of complicated

security policies. Visic et al. [93] discusses a solution to modeling the acquisition of domain

knowledge and requirements, via the deployment of a usable modeling tool. Bergel et al. [94]

discusses a DSL for visualizing software dependencies as graphs. The DSL and the graph

visualizes the dimensions to software metrics, the composition of the graph layout, and the

graph’s hierarchical edges.

This chapter provided a summary of related works as related to this dissertation. The main

concepts related to this dissertation were least privilege models, security by design, scanning

of web applications to identify vulnerabilities, reverse engineering web applications, dynamic

mitigation techniques, static mitigation techniques, and domain specific languages.

126

Chapter 12: Conclusion and Future Work

This chapter summarizes the work discussed in this dissertation. Section 12.1 summarizes the

contributions discussed in this dissertation, Section 12.2 discusses the value of this dissertation,

Section 12.6 states the conclusions of this dissertation, Section 12.3 discusses the assumptions

and the limitations of this dissertation, Section 12.4 discusses the threats to the validity of the

work in this dissertation, and Section 12.5 discusses avenues for future work.

12.1 Summary of the Contributions of this Dissertation

This dissertation provides a least privilege semi-automated approach to preventing cyber attacks

on web applications. Furthermore, the work presented in this dissertation provides a formal,

repeatable, and automated approach and associated toolset for determining and applying least

privilege permissions at the database level for securing web applications. This dissertation

provided:

Contribution 1 was a manual but formal, systematic and repeatable process for securing

current web applications based on the principle of least privilege.

Contribution 2 was formal web application security policy modeling.

Contribution 3 was a formal High-Level Easily Reconfigurable Specification.

Contribution 4 described the approach and associated tools for automatically learning

the database-level permissions needed on the database management system for a web

application to operate with the least privilege possible.

Contribution 5 explained the formal, repeatable, and automated approach and associ-

ated toolset for determining and applying least privilege permissions at the database level

for securing web applications.

Contribution 6 described the systematic process for PHP code modification to assist

the web developer in applying least privilege permissions for securing web applications,

as well as the evaluation of the system.

127

12.2 Value of this Dissertation

The value of the work in this dissertation is two-fold. The first value of this dissertation is

derived from the existing immediate need to fix the large number of unsecure websites today.

Most modern solutions attempt to mitigate the process via new techniques of string sanitization.

Query sanitization only focuses on the database, and ignores the filesystem. The solution

provided is an all inclusive systematic, formal and repeatable process that was created to

help developers determine how to systematically fix the web application. This solution does

not just focus solely on the database, this solution also helps mitigate the filesystem. This

solution implements a holistic view of the database, including the SQL code, and the filesystem.

Although, the process is systematic, formal and repeatable, it is still a manual process for the

code. The web developer has to manually change some code in the web application. If the web

developer implements this approach, with minimal code modifications to the web application

source code, the web application be can be secured.

The second value of this dissertation is this is the first attempt to automate the process. In

the past, the attempt to automate the process focused solely on different attempts to sanitize

the input strings. No other approach describes a semi-automated approach to holistically secure

the web application via least privilege. Although a portion of the process is minimally modifying

the web application source code. In Section 12.5 there is a discussion to completely secure the

web application by modifying the web application source code automatically.

12.3 Assumptions and Limitations of this Dissertation

In order to create a least privilege semi-automated approach to securing web applications the

following assumptions and limitations were made. The limitations are clearly outlined below,

otherwise the statement is an assumption.

• The web application administrator must allow access to the source code of the web ap-

plication. Limitation: Without this information a baseline non-least privilege security

model can’t be created.

• The web application administrator must enable full database logging. The database log

128

must include the referrer page, the database user, and the database tables. Limitation:

Without this information the semi-automated tools to dynamically create the formal non-

least privilege security model, as well as the least privilege security model will fail.

• The web application administrator will need to log into the database and grant the proper

permissions that enforce the principle of least privilege.

• The web application administrator will either need to change the source code or allow

a third party to change the source code. The source code needs to be updated so any

database call indicates the appropriate least privilege user.

• The web application must be written in PHP. Limitation: with minor changes the ap-

proach could handle other web application programming languages.

• The database for the web application must be a SQL type database. Limitation: with

minor changes the approach could handle other database types than SQL.

• It is presumed the web application will be located in /var/html/www/web-application-

directory. If the application resides in a different location, the HPol hardcoded value

must be changed.

• The web server should be Apache, if it is something different the HPol hardcoded value

must be changed.

• Maintainability of the large number of new users is possible my using PHP include files.

These PHP include files will allow for easily adding and removing database users.

In summary if any of the above limitation items are not included, then the semi-automated

approach to securing the web application will not produce a least privilege model.

129

12.4 Threats to Validity of this Dissertation

Threats to validity of this dissertation are defined as any factors that reduce the generality of

the results. Therefore, the threats to this dissertation can be defined by:

• Selection Bias - Selection bias [95] is defined as “the selection of individuals, groups

or data for analysis in such a way that proper randomization is not achieved, thereby

ensuring that the sample obtained is not representative of the population intended to be

analyzed.” In this dissertation there could be selection bias based on the case studies.

The case studies were chosen from web applications that were educational in nature, and

because the web applications were susceptible to being completely compromised. This

work did not include an actual running website. We queried a few web developer and

DBMS administrators that were colleagues to provide the database logs; however, no logs

were provided.

• Constructs and Methods Bias - Constructs and Methods bias [96] is defined as “in a

research study you are likely to reach a conclusion that your program was a good op-

erationalization of what you wanted and that your measures reflected what you wanted

them to reflect.” Similar to Selection Bias, this dissertation could contain constructs and

methods bias. For the same reason as selection bias, the case studies, from an academic

point of view this research reached conclusions based solely on web applications that

were educational in nature, and because the web applications were susceptible to being

completely compromised.

In summary, there may be threats to the validity of this dissertation based on the selection

of web applications that were educational in nature; however, although educational in nature,

it is believed that the case study selections emulate the ’real world’ unsecured web applications.

130

12.5 Future Work

This dissertation proposed a systematic method and associated tool-set for protecting web

applications with a minimal need to manually modify the web application source code. This

tool-set is still in its infancy. In order to be a fully formal, systematic, and automated process

the following future work is considered.

HPol Further Enhancements

HPol is still in its infancy, and although enhancements were made further enhancements need

to be considered.

• The first enhancement should be the full extraction of HPol policies. Recall HPol nodes

were removed from the HPol structure as part of this dissertation. This should also occur

for HPol policies. By extracting policies the application would allow for greater flexibility.

• The second enhancement should be the full addition of HPol links. Additional links, such

as wildcard links were not utilized in this dissertation; however, in past research there

was such a need for HPol links. Fully adding HPol links would allow for that past work

to be revisited.

HERMES Enhancements

HERMES is even more in its infancy than HPol. The data structure for HERMES is a sim-

ple non-robust data structure. The data structure for HERMES needs to be enhanced so it is

similar to HPol. This will naturally occur as others continue the research of HPol and HERMES.

Full Automation

Currently, the web administrator needs to manually modify select portions of the web appli-

cation. The ultimate future work would be to develop a web application scanner that would

identify the SQL users and the SQL query strings. Once the users and query strings were

identified, then the automated process could rewrite the code to move the web application from

non-least privilege to least privilege without involvement from the web developer.

131

12.6 Conclusions

In conclusion, this dissertation proposed and developed a systematic method and associated

tool-set for protecting web applications with a minimal need to manually modify the web

application source code. The problem of securing an existing web application was illustrated

in three phases. In the first phase the non-least privilege behavior of the web application

is learned and modeled provided by Contribution 1: A manual but formal, systematic and

repeatable process for securing current web applications based on the principle of least privilege.

Contribution 2: Formal web application security policy modeling. Contribution 3: A formal

High-Level Easily Reconfigurable Specification.

In the second phase the web application is automatically converted to a least privilege

model based on the behavior from the first phase, provided by Contribution 4: The approach

and associated tools for automatically learning the database-level permissions needed on the

database management system for a web application to operate with the least privilege possible.

Contribution 5: The formal, repeatable, and automated approach and associated toolset for

determining and applying least privilege permissions at the database level for securing web

applications.

In the third phase the web application is manually modified and the system is evaluated,

provided by Contribution 6: The systematic process for PHP code modification to assist the

web developer in applying least privilege permissions for securing web applications, as well as

the evaluation of the system.

132

Bibliography

[1] W. Du. (2018) Seed labs. [Online]. Available: http://www.cis.syr.edu/∼wedu/seed/

[2] OWASP, “Category:OWASP Top Ten Project,” 2017. [Online]. Available: https:

//www.owasp.org

[3] NetCraft, “Total number of Websites,” 2017. [Online]. Available: https://news.netcraft.

com/archives/category/web-server-survey/

[4] J. Kravitz, L. Kessem, S. Moore, L. Wiggins, and V. Paliwal, “IBM Security

IBM X-Force Threat Intelligence Report 2016,” 2016, IBM Security IBM X-Force Threat

Intelligence Report 2016. [Online]. Available: https://developer.ibm.com/identitydev/

2016/02/24/ibm-security-ibm-x-force-threat-intelligence-report-2016/

[5] S. Murugesan, “Understanding Web 2.0,” IT Professional, vol. 9, pp. 34–41, jul 2007.

[6] “Stack Overflow Developer Survey Results,” 2018. [Online]. Available: https:

//insights.stackoverflow.com/survey/2018

[7] OWASP, “SQL Injection.” [Online]. Available: https://www.owasp.org/index.php/

SQL Injection

[8] W. G. J. Halfond, J. Viegas, and A. Orso, “A Classification of SQL-Injection Attacks

and Countermeasures,” in Proceedings of the IEEE International Symposium on Secure

Software Engineering, Arlington, VA, USA, mar 2006.

[9] N. Seixas, J. Fonseca, M. Vieira, and H. Madeira, “Looking at Web Security Vul-

nerabilities from the Programming Language Perspective: A Field Study,” in Software

Reliability Engineering, 2009. ISSRE ’09. 20th International Symposium on, nov 2009, pp.

129–135.

[10] D. Ray and J. Ligatti, “Defining code-injection attacks,” in Proceedings of the 39th

annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ser.

POPL ’12. New York, NY, USA: ACM, 2012, pp. 179–190.

http://www.cis.syr.edu/~wedu/seed/
https://www.owasp.org
https://www.owasp.org
https://news.netcraft.com/archives/category/web-server-survey/
https://news.netcraft.com/archives/category/web-server-survey/
https://developer.ibm.com/identitydev/2016/02/24/ibm-security-ibm-x-force-threat-intelligence-report-2016/
https://developer.ibm.com/identitydev/2016/02/24/ibm-security-ibm-x-force-threat-intelligence-report-2016/
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection

133

[11] L. K. Shar and H. B. K. Tan, “Defeating SQL Injection,” Computer, vol. 46, pp. 69–77,

2013.

[12] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer

systems,” Proceedings of the IEEE, vol. 63, pp. 1278–1308, 1975.

[13] D. Conte de Leon, M. G. Brown, A. A. Jillepalli, A. Q. Stalick, and

J. Alves-Foss, “High-level and formal router policy verification,” Journal of Computing

Sciences in Colleges, vol. 33, pp. 118–128, October 2017. [Online]. Available:

https://dl.acm.org/citation.cfm?id=3144605.3144631

[14] OWASP, “OWASP mutillidae 2 project,” 2018, visited: May 2018. License CC-BY-SA.

[Online]. Available: https://www.owasp.org/index.php/OWASPMutillidae2Project

[15] A. Jillepalli, D. C. de Leon, S. Steiner, and F. T. Sheldon, “HERMES: A high-

level policy language for high-granularity enterprise-wide secure browser configuration

management,” in 2016 IEEE Symposium Series on Computational Intelligence (SSCI),

dec 2016, pp. 1–9.

[16] T. Sutton, “A Complete Idiot’s Introduction to Formal Concept Analysis for Dummies

to Teach Themselves,” GitHub Speaker Deck, Tech. Rep., 2013.

[17] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations, 1st ed.

Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1997.

[18] R. Puppy, “NT Web Application Vulnerabilities,” Phrack Magazine, pp. 1–4, dec 1998.

[Online]. Available: http://phrack.org/issues/54/8.html

[19] K. Amirtahmasebi, S. R. Jalalinia, and S. Khadem, “A survey of SQL injection

defense mechanisms,” in Internet Technology and Secured Transactions, 2009. ICITST

2009. International Conference for, 2009, pp. 1–8.

[20] M. K. Gupta, M. C. Govil, and G. Singh, “Static analysis approaches to detect SQL

injection and cross site scripting vulnerabilities in web applications: A survey,” in Recent

Advances and Innovations in Engineering (ICRAIE), 2014, 2014, pp. 1–5.

https://dl.acm.org/citation.cfm?id=3144605.3144631
https://www.owasp.org/index.php/OWASPMutillidae2Project
http://phrack.org/issues/54/8.html

134

[21] R. Johari and P. Sharma, “A Survey on Web Application Vulnerabilities (SQLIA, XSS)

Exploitation and Security Engine for SQL Injection,” in Communication Systems and

Network Technologies (CSNT), 2012 International Conference on, 2012, pp. 453–458.

[22] P. Kaur and K. P. Kour, “SQL injection: Study and augmentation,” in Signal Pro-

cessing, Computing and Control (ISPCC), 2015 International Conference on, 2015, pp.

102–107.

[23] J. G. Kim, “Injection Attack Detection Using the Removal of SQL Query Attribute Val-

ues,” in Information Science and Applications (ICISA), 2011 International Conference on,

2011, pp. 1–7.

[24] D. A. Kindy and A.-S. Pathan, “A survey on SQL injection: Vulnerabilities, attacks, and

prevention techniques,” in Consumer Electronics (ISCE), 2011 IEEE 15th International

Symposium on, jun 2011, pp. 468–471.

[25] P. Kumar and R. K. Pateriya, “A survey on SQL injection attacks, detection and pre-

vention techniques,” in Computing Communication Networking Technologies (ICCCNT),

2012 Third International Conference on, jul 2012, pp. 1–5.

[26] M. Junjin, “An Approach for SQL Injection Vulnerability Detection,” in Proceedings of

the 2009 Sixth International Conference on Information Technology: New Generations,

ser. ITNG ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 1411–1414.

[27] S. Mukherjee, P. Sen, S. Bora, and C. Pradhan, “SQL Injection: A sample re-

view,” in 2015 6th International Conference on Computing, Communication and Network-

ing Technologies (ICCCNT), 2015, pp. 1–7.

[28] A. Sadeghian, M. Zamani, and A. A. Manaf, “A Taxonomy of SQL Injection Detec-

tion and Prevention Techniques,” in Informatics and Creative Multimedia (ICICM), 2013

International Conference on, sep 2013, pp. 53–56.

[29] S. M. S. Sajjadi and B. T. Pour, “Study of SQL Injection Attacks and Countermea-

sures,” International Journal of Computer and Communication Engineering, vol. 2, 2013.

135

[30] C. Sharma and S. C. Jain, “Analysis and classification of SQL injection vulnerabilities

and attacks on web applications,” in Advances in Engineering and Technology Research

(ICAETR), 2014 International Conference on, 2014, pp. 1–6.

[31] A. Tajpour, M. Massrum, and M. Z. Heydari, “Comparison of SQL injection detection

and prevention techniques,” in Education Technology and Computer (ICETC), 2010 2nd

International Conference on, vol. 5, jun 2010, pp. V5——–174——–V5——–179.

[32] A. Tajpour and M. JorJor Zade Shooshtari, “Evaluation of SQL Injection Detection

and Prevention Techniques,” in Computational Intelligence, Communication Systems and

Networks (CICSyN), 2010 Second International Conference on, jul 2010, pp. 216–221.

[33] A. Tajpour, M. Z. Heydari, M. Masrom, and S. Ibrahim, “SQL injection detec-

tion and prevention tools assessment,” in Computer Science and Information Technology

(ICCSIT), 2010 3rd IEEE International Conference on, vol. 9, 2010, pp. 518–522.

[34] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “CANDID: Dynamic Can-

didate Evaluations for Automatic Prevention of SQL Injection Attacks,” ACM Trans. Inf.

Syst. Secur., vol. 13, pp. 14:1–39, mar 2010.

[35] T. Pietraszek and C. V. Berghe, “Defending Against Injection Attacks Through

Context-sensitive String Evaluation,” in Proceedings of the 8th International Conference

on Recent Advances in Intrusion Detection, ser. RAID’05. Berlin, Heidelberg: Springer-

Verlag, 2006, pp. 124–145.

[36] Z. Su and G. Wassermann, “The Essence of Command Injection Attacks in Web Ap-

plications,” in Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ser. POPL ’06. New York, NY, USA: ACM, 2006,

pp. 372–382.

[37] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using Parse Tree Validation

to Prevent SQL Injection Attacks,” in Proceedings of the 5th International Workshop on

Software Engineering and Middleware, ser. SEM ’05. New York, NY, USA: ACM, 2005,

pp. 106–113.

136

[38] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb: A Proxy-based Ar-

chitecture Towards Preventing SQL Injection Attacks,” in Proceedings of the 2009 ACM

Symposium on Applied Computing, ser. SAC ’09. New York, NY, USA: ACM, 2009, pp.

2054–2061.

[39] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL Injection Attacks,” in

In Proceedings of the 2nd Applied Cryptography and Network Security (ACNS) Conference,

2004, pp. 292–302.

[40] W. G. J. Halfond, A. Orso, and P. Manolios, “WASP: Protecting Web Applica-

tions Using Positive Tainting and Syntax-Aware Evaluation,” Software Engineering, IEEE

Transactions on, vol. 34, pp. 65–81, jan 2008.

[41] A. Sadeghian, M. Zamani, and A. A. Manaf, “SQL injection vulnerability general

patch using header sanitization,” in Computer, Communications, and Control Technology

(I4CT), 2014 International Conference on, 2014, pp. 239–242.

[42] A. Pramod, A. Ghosh, A. Mohan, M. Shrivastava, and R. Shettar, “SQLI detec-

tion system for a safer web application,” in Advance Computing Conference (IACC), 2015

IEEE International, 2015, pp. 237–240.

[43] A. Makiou, Y. Begriche, and A. Serhrouchni, “Improving Web Application Firewalls

to detect advanced SQL injection attacks,” in Information Assurance and Security (IAS),

2014 10th International Conference on, 2014, pp. 35–40.

[44] S. A. Yevtushenko, “System of data analysis ”Concept Explorer”. (In Russian),” in

Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, 2000, pp.

127–134.

[45] Y. Shin, L. Williams, and T. Xie, “SQLUnitGen: Test Case Generation for SQL In-

jection Detection,” Computer Science Dept., North Carolina State University, Tech. Rep.,

2006.

[46] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic Creation of

SQL Injection and Cross-site Scripting Attacks,” in Proceedings of the 31st International

137

Conference on Software Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE Com-

puter Society, 2009, pp. 199–209.

[47] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, “A Static Analysis

Framework For Detecting SQL Injection Vulnerabilities,” in Computer Software and Ap-

plications Conference, 2007. COMPSAC 2007. 31st Annual International, vol. 1, 2007, pp.

87–96.

[48] C. Gould, Z. Su, and P. Devanbu, “JDBC checker: a static analysis tool for SQL/JDBC

applications,” in Proceedings. 26th International Conference on Software Engineering, may

2004, pp. 697–698.

[49] J. Huang, B. Liang, J. Zhong, Q. Wang, and J. Cai, “Vulnerabilities static detec-

tion for Web applications with false positive suppression,” in 2010 IEEE International

Conference on Information Theory and Information Security, dec 2010, pp. 574–577.

[50] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for detecting

Web application vulnerabilities,” in 2006 IEEE Symposium on Security and Privacy (S

P’06), may 2006, pp. 6 pp.–263.

[51] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “SecuBat: A Web Vulnerability

Scanner,” in Proceedings of the 15th International Conference on World Wide Web,

ser. WWW ’06. New York, NY, USA: ACM, 2006, pp. 247–256. [Online]. Available:

http://doi.acm.org.ezproxy.library.ewu.edu/10.1145/1135777.1135817

[52] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in scripting languages,”

in Proceedings of the 15th conference on USENIX Security Symposium - Volume 15, ser.

USENIX-SS’06. Berkeley, CA, USA: USENIX Association, 2006. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1267336.1267349

[53] Y. Gomaa, A. E. A. Ahmed, M. A. Mahmood, and H. Hefny, “Survey on securing a

querying process by blocking SQL injection,” in 2015 Third World Conference on Complex

Systems (WCCS), nov 2015, pp. 1–7.

http://doi.acm.org.ezproxy.library.ewu.edu/10.1145/1135777.1135817
http://dl.acm.org/citation.cfm?id=1267336.1267349

138

[54] M. K. Gupta, M. C. Govil, and G. Singh, “Static analysis approaches to detect SQL

injection and cross site scripting vulnerabilities in web applications: A survey,” in Inter-

national Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014),

may 2014, pp. 1–5.

[55] M. Khari, P. Sangwan, and Vaishali, “Web-application attacks: A survey,” in 2016 3rd

International Conference on Computing for Sustainable Global Development (INDIACom),

mar 2016, pp. 2187–2191.

[56] F. B. Schneider, “Least privilege and more [computer security],” IEEE Security Privacy,

vol. 1, pp. 55–59, sep 2003.

[57] A. Blankstein and M. J. Freedman, “Automating Isolation and Least Privilege in Web

Services,” in 2014 IEEE Symposium on Security and Privacy, may 2014, pp. 133–148.

[58] A. Elliott and S. Knight, “Towards Managed Role Explosion,” in Proceedings of the

2015 New Security Paradigms Workshop, ser. NSPW ’15. New York, NY, USA: ACM,

2015, pp. 100–111.

[59] H. Wang, L. Liu, and W. Tian, “An authorization model of quantitative analysis of

the least privilege,” in 2012 6th International Conference on New Trends in Information

Science, Service Science and Data Mining (ISSDM2012), oct 2012, pp. 283–288.

[60] N. Chomsky, “Three models for the description of language,” in Proc. Information The-

ory, IRE Transactions - Volume: 2, Issue: 3, 1956, pp. 113–124.

[61] H. Shimazu and Y. Takashima, “Multimodal definite clause grammar,” in Proc. COL-

ING ’94 Proceedings of the 15th conference on Computational linguistics - Volume 2,

Stroudsburg, PA, USA, 1994, pp. 832–836.

[62] M. Johnson, “Two ways of formalizing grammars,” in Proc. Linguistics and Philosophy -

Kluwer Academic Publishers - Volume 17, Netherlands, 1994, pp. 221–248.

[63] M. Brown, “Hierachical Formal Modeling and Verification of Router Policies with an

Applied Case Study to Cisco Router Con gurations,” Ph.D. dissertation, University of

Idaho, 2016.

139

[64] A. A. Jillepalli and D. Conte de Leon, “An Architecture for a Policy-Oriented Web

Browser Management System: HiFiPol: Browser,” in 2016 IEEE 40th Annual Computer

Software and Applications Conference (COMPSAC), vol. 2, jun 2016, pp. 382–387.

[65] The XSB System - Version 3.8.x - Volume 1 -Programmerś Manual,

http://xsb.sourceforge.net/manual1/manual1.pdf.

[66] Oracle. (2018) Oracle vm virtualbox. [Online]. Available: http://www.virtualbox.org

[67] W. Du, SEED Labs Instructor Manual, Syracuse University, 2018.

[68] SHA1. (2018) Sha1 and other hash functions online generator. [Online]. Available:

http://www.sha1-online.com/

[69] A. Elliott and S. Knight, “Start Here: Engineering Scalable Access Control Systems,”

in Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies,

ser. SACMAT ’16. New York, NY, USA: ACM, 2016, pp. 113–124. [Online]. Available:

http://doi.acm.org.ezproxy.library.ewu.edu/10.1145/2914642.2914651

[70] A. Jerbi, E. Hadar, C. Gates, and D. Grebenev, “An Access Control Reference Ar-

chitecture,” in Proceedings of the 2nd ACM Workshop on Computer Security Architectures,

ser. CSAW ’08. New York, NY, USA: ACM, 2008, pp. 17–24.

[71] Galois, “Galois,” 2017. [Online]. Available: https://galois.com/

[72] D. Burke, J. Hurd, and A. Tomb. (2010) High assurance software development. [Online].

Available: http://code.galois.com/paper/2010/HighAssuranceSoftwareDevelopment.pdf

[73] J. Launchbury, “Cross-domain WebDAV Server,” in Proceedings of the 4th ACM SIG-

PLAN Workshop on Commercial Users of Functional Programming, ser. CUFP ’07. New

York, NY, USA: ACM, 2007, pp. 1 – 2.

[74] P. W. Security. (2018) Burp suite. [Online]. Available: https://portswigger.net/

[75] J. Fonseca, M. Vieira, and H. Madeira, “Evaluation of Web Security Mechanisms

Using Vulnerability & Attack Injection,” IEEE Transactions on Dependable and Secure

Computing, vol. 11, pp. 440–453, sep 2014.

http://www.virtualbox.org
http://www.sha1-online.com/
http://doi.acm.org.ezproxy.library.ewu.edu/10.1145/2914642.2914651
https://galois.com/
http://code.galois.com/paper/2010/HighAssuranceSoftwareDevelopment.pdf
https://portswigger.net/

140

[76] Y. Makino and V. Klyuev, “Evaluation of web vulnerability scanners,” in 2015 IEEE

8th International Conference on Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications (IDAACS), vol. 1, sep 2015, pp. 399–402.

[77] W. Qianqian and L. Xiangjun, “Research and design on Web application vulnerability

scanning service,” in 2014 IEEE 5th International Conference on Software Engineering

and Service Science, jun 2014, pp. 671–674.

[78] M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners to detect vul-

nerabilities in web services,” in 2009 IEEE/IFIP International Conference on Dependable

Systems Networks, jun 2009, pp. 566–571.

[79] E. Fong, R. Gaucher, V. Okun, P. E. Black, and E. Dalci, “Building a Test Suite

for Web Application Scanners,” in Proceedings of the 41st Annual Hawaii International

Conference on System Sciences (HICSS 2008), jan 2008, p. 478.

[80] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to attack

graph generation,” in Proceedings of the 13th ACM Conference on Computer and

Communications Security, ser. CCS ’06. New York, NY, USA: ACM, 2006, pp. 336–345.

[Online]. Available: http://doi.acm.org.ezproxy.library.ewu.edu/10.1145/1180405.1180446

[81] D. Saha, “Extending logical attack graphs for efficient vulnerability analysis,” in

Proceedings of the 15th ACM Conference on Computer and Communications Security,

ser. CCS ’08. New York, NY, USA: ACM, 2008, pp. 63–74. [Online]. Available:

http://doi.acm.org.ezproxy.library.ewu.edu/10.1145/1455770.1455780

[82] H. E. Bouhissi and M. Malki, “Reverse Engineering Existing Web Service Applications,”

in 2009 16th Working Conference on Reverse Engineering, oct 2009, pp. 279–283.

[83] D. Draheim, C. Lutteroth, and G. Weber, “A Source Code Independent Reverse

Engineering Tool for Dynamic Web Sites,” in Ninth European Conference on Software

Maintenance and Reengineering, mar 2005, pp. 168–177.

[84] A. Hamou-Lhadj, A. En-Nouaary, and K. Sultan, “Reverse Engineering of Web

http://doi.acm.org.ezproxy.library.ewu.edu/10.1145/1180405.1180446
http://doi.acm.org.ezproxy.library.ewu.edu/10.1145/1455770.1455780

141

Based Systems,” in 2007 Innovations in Information Technologies (IIT), nov 2007, pp.

193–197.

[85] J. Cloutier, S. Kpodjedo, and G. E. Boussaidi, “WAVI: A reverse engineering tool

for web applications,” in 2016 IEEE 24th International Conference on Program Compre-

hension (ICPC), may 2016, pp. 1–3.

[86] H. Guan, H. Yang, and H. Hakeem, “Reverse Engineering Web Applications for Secu-

rity Mechanism Enhancement,” in 2014 IEEE 38th International Computer Software and

Applications Conference Workshops, jul 2014, pp. 492–497.

[87] G. A. D. Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and U. D. Carlini,

“WARE: a tool for the reverse engineering of Web applications,” in Proceedings of the Sixth

European Conference on Software Maintenance and Reengineering, 2002, pp. 241–250.

[88] P. Tramontana, “Reverse engineering Web applications,” in 21st IEEE International

Conference on Software Maintenance (ICSM’05), sep 2005, pp. 705–708.

[89] P. Tramontana, D. Amalfitano, and A. R. Fasolino, “Reverse engineering tech-

niques: From web applications to rich Internet applications,” in 2013 15th IEEE Interna-

tional Symposium on Web Systems Evolution (WSE), sep 2013, pp. 83–86.

[90] S. Weijun, L. Shixian, and L. Xianming, “An Approach for Reverse Engineering of Web

Applications,” in 2008 International Symposium on Information Science and Engineering,

vol. 2, dec 2008, pp. 98–102.

[91] R. D. J. Abirami and C. Valliyammai, “A top web security vulnerability sql injec-

tion attack - survey,” in 2015 Seventh International Conference on Advanced Computing

(ICoAC), Oct 2015, pp. 1–9.

[92] H. Hamdi, M. Mosbah, and A. Bouhoula, “A domain specific language for

securing distributed systems,” 2007 Second International Conference on Systems

and Networks Communications (ICSNC 2007), pp. 76–76, 2007. [Online]. Available:

http://ieeexplore.ieee.org/document/4300048/

http://ieeexplore.ieee.org/document/4300048/

142

[93] N. Visic, H.-G. Fill, R. A. Buchmann, and D. Karagiannis, “A domain-specific

language for modeling method definition: From requirements to grammar,” 2015 IEEE

9th International Conference on Research Challenges in Information Science (RCIS), pp.

286–297, 2015. [Online]. Available: http://ieeexplore.ieee.org/document/7128889/

[94] A. Bergel, S. Maass, S. Ducasse, and T. Girba, “A domain-specific

language for visualizing software dependencies as a graph,” 2014 Second IEEE

Working Conference on Software Visualization, pp. 45–49, 2014. [Online]. Available:

http://ieeexplore.ieee.org/document/6980212/

[95] Wikipedia. (2018) Selection bias. [Online]. Available: https://en.wikipedia.org/wiki/

Selection bias

[96] T. Cook and D. Campbell, Quasi-Experimentation: Design and Analysis Issues for

Field Settings. Houghton Mifflin, 1979.

http://ieeexplore.ieee.org/document/7128889/
http://ieeexplore.ieee.org/document/6980212/
https://en.wikipedia.org/wiki/Selection_bias
https://en.wikipedia.org/wiki/Selection_bias

143

Appendix A: Complete Listing of Mutillidae SQL

Log
Listing A.1: Mutillidae SQL Log: Complete listing of the non-least

privilege non-malicious run of the Mutillidae web application.� �
1 /usr/sbin/mysqld , Version : 5.7.20 -0 ubuntu0 .16.04.1 ((Ubuntu)).

started with:
2 Tcp port: 3306 Unix socket : /var/run/ mysqld / mysqld .sock
3 Time Id Command Argument
4 2017 -12 -26 T18 :59:18.029648 Z 7 Quit
5 2017 -12 -26 T18 :59:28.522673 Z 8 Connect root@localhost on

using Socket
6 2017 -12 -26 T18 :59:28.523446 Z 8 Init DB nowasp
7 2017 -12 -26 T18 :59:28.523505 Z 8 Query SELECT 'test connection '
8 2017 -12 -26 T18 :59:28.523577 Z 8 Query SELECT cid FROM

blogs_table
9 2017 -12 -26 T18 :59:28.528773 Z 8 Quit

10 2017 -12 -26 T18 :59:28.529031 Z 9 Connect root@localhost on
using Socket

11 2017 -12 -26 T18 :59:28.529095 Z 9 Init DB nowasp
12 2017 -12 -26 T18 :59:28.531037 Z 10 Connect root@localhost on

using Socket
13 2017 -12 -26 T18 :59:28.531098 Z 10 Init DB nowasp
14 2017 -12 -26 T18 :59:28.531412 Z 11 Connect root@localhost on

using Socket
15 2017 -12 -26 T18 :59:28.531465 Z 11 Init DB nowasp
16 2017 -12 -26 T18 :59:28.531780 Z 12 Connect root@localhost on

using Socket
17 2017 -12 -26 T18 :59:28.531833 Z 12 Init DB nowasp
18 2017 -12 -26 T18 :59:28.535597 Z 9 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : /var/www/html/
mutillidae /home.php ', now ())

19 2017 -12 -26 T18 :59:28.538616 Z 10 Quit
20 2017 -12 -26 T18 :59:28.539283 Z 12 Quit
21 2017 -12 -26 T18 :59:28.539291 Z 9 Quit
22 2017 -12 -26 T18 :59:28.539296 Z 11 Quit
23 2017 -12 -26 T18 :59:33.663113 Z 13 Connect root@localhost on

using Socket
24 2017 -12 -26 T18 :59:33.663196 Z 13 Init DB nowasp
25 2017 -12 -26 T18 :59:33.663257 Z 13 Query SELECT 'test connection '
26 2017 -12 -26 T18 :59:33.663336 Z 13 Query SELECT cid FROM

blogs_table
27 2017 -12 -26 T18 :59:33.663516 Z 13 Quit
28 2017 -12 -26 T18 :59:33.663703 Z 14 Connect root@localhost on

using Socket
29 2017 -12 -26 T18 :59:33.663765 Z 14 Init DB nowasp
30 2017 -12 -26 T18 :59:33.663914 Z 15 Connect root@localhost on

using Socket
31 2017 -12 -26 T18 :59:33.663970 Z 15 Init DB nowasp
32 2017 -12 -26 T18 :59:33.664220 Z 16 Connect root@localhost on

using Socket
33 2017 -12 -26 T18 :59:33.664326 Z 16 Init DB nowasp
34 2017 -12 -26 T18 :59:33.664499 Z 17 Connect root@localhost on

using Socket
35 2017 -12 -26 T18 :59:33.664546 Z 17 Init DB nowasp
36 2017 -12 -26 T18 :59:33.675667 Z 16 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
37 level_1_help_include_files .

level_1_help_include_file_description

144

38 FROM page_help
39 INNER JOIN level_1_help_include_files
40 ON page_help . help_text_key =
41 level_1_help_include_files .

level_1_help_include_file_key
42 WHERE page_help . page_name = 'login.php ' ORDER BY

page_help . order_preference
43 2017 -12 -26 T18 :59:33.681025 Z 14 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : login.php ', now ())

44 2017 -12 -26 T18 :59:33.684425 Z 15 Quit
45 2017 -12 -26 T18 :59:33.684476 Z 17 Quit
46 2017 -12 -26 T18 :59:33.684509 Z 14 Quit
47 2017 -12 -26 T18 :59:33.684542 Z 16 Quit
48 2017 -12 -26 T18 :59:45.042399 Z 18 Connect root@localhost on

using Socket
49 2017 -12 -26 T18 :59:45.042541 Z 18 Init DB nowasp
50 2017 -12 -26 T18 :59:45.042603 Z 18 Query SELECT 'test connection '
51 2017 -12 -26 T18 :59:45.042682 Z 18 Query SELECT cid FROM

blogs_table
52 2017 -12 -26 T18 :59:45.042930 Z 18 Quit
53 2017 -12 -26 T18 :59:45.043069 Z 19 Connect root@localhost on

using Socket
54 2017 -12 -26 T18 :59:45.043136 Z 19 Init DB nowasp
55 2017 -12 -26 T18 :59:45.043271 Z 20 Connect root@localhost on

using Socket
56 2017 -12 -26 T18 :59:45.043314 Z 20 Init DB nowasp
57 2017 -12 -26 T18 :59:45.043456 Z 21 Connect root@localhost on

using Socket
58 2017 -12 -26 T18 :59:45.043501 Z 21 Init DB nowasp
59 2017 -12 -26 T18 :59:45.043656 Z 22 Connect root@localhost on

using Socket
60 2017 -12 -26 T18 :59:45.043719 Z 22 Init DB nowasp
61 2017 -12 -26 T18 :59:45.052658 Z 21 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
62 level_1_help_include_files .

level_1_help_include_file_description
63 FROM page_help
64 INNER JOIN level_1_help_include_files
65 ON page_help . help_text_key =
66 level_1_help_include_files .

level_1_help_include_file_key
67 WHERE page_help . page_name = 'register .php ' ORDER BY

page_help . order_preference
68 2017 -12 -26 T18 :59:45.053602 Z 19 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : register .php ', now
())

69 2017 -12 -26 T18 :59:45.054585 Z 22 Quit
70 2017 -12 -26 T18 :59:45.054590 Z 20 Quit
71 2017 -12 -26 T18 :59:45.054683 Z 19 Quit
72 2017 -12 -26 T18 :59:45.054712 Z 21 Quit
73 2017 -12 -26 T19 :00:08.913937 Z 23 Connect root@localhost on

using Socket
74 2017 -12 -26 T19 :00:08.914024 Z 23 Init DB nowasp
75 2017 -12 -26 T19 :00:08.914075 Z 23 Query SELECT 'test connection '
76 2017 -12 -26 T19 :00:08.914153 Z 23 Query SELECT cid FROM

blogs_table
77 2017 -12 -26 T19 :00:08.914319 Z 23 Quit
78 2017 -12 -26 T19 :00:08.914604 Z 24 Connect root@localhost on

using Socket
79 2017 -12 -26 T19 :00:08.914736 Z 24 Init DB nowasp

145

80 2017 -12 -26 T19 :00:08.914967 Z 25 Connect root@localhost on
using Socket

81 2017 -12 -26 T19 :00:08.915024 Z 25 Init DB nowasp
82 2017 -12 -26 T19 :00:08.915186 Z 26 Connect root@localhost on

using Socket
83 2017 -12 -26 T19 :00:08.915232 Z 26 Init DB nowasp
84 2017 -12 -26 T19 :00:08.915367 Z 27 Connect root@localhost on

using Socket
85 2017 -12 -26 T19 :00:08.915412 Z 27 Init DB nowasp
86 2017 -12 -26 T19 :00:08.916416 Z 26 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
87 level_1_help_include_files .

level_1_help_include_file_description
88 FROM page_help
89 INNER JOIN level_1_help_include_files
90 ON page_help . help_text_key =
91 level_1_help_include_files .

level_1_help_include_file_key
92 WHERE page_help . page_name = 'register .php ' ORDER BY

page_help . order_preference
93 2017 -12 -26 T19 :00:08.916777 Z 24 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'Attempting to add account for:
satan ', now ())

94 2017 -12 -26 T19 :00:08.917615 Z 26 Query INSERT INTO accounts (
username , password , mysignature) VALUES ('satan ', '123456 ' ,
'Satan Test Account ')

95 2017 -12 -26 T19 :00:08.919651 Z 24 Query INSERT INTO hitlog (
hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'Added account for: satan ', now ()
)

96 2017 -12 -26 T19 :00:08.920730 Z 24 Query INSERT INTO hitlog (
hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : register .php ', now
())

97 2017 -12 -26 T19 :00:08.921062 Z 25 Quit
98 2017 -12 -26 T19 :00:08.921119 Z 27 Quit
99 2017 -12 -26 T19 :00:08.921146 Z 24 Quit

100 2017 -12 -26 T19 :00:08.921169 Z 26 Quit
101 2017 -12 -26 T19 :00:11.825664 Z 28 Connect root@localhost on

using Socket
102 2017 -12 -26 T19 :00:11.825733 Z 28 Init DB nowasp
103 2017 -12 -26 T19 :00:11.825776 Z 28 Query SELECT 'test connection '
104 2017 -12 -26 T19 :00:11.825836 Z 28 Query SELECT cid FROM

blogs_table
105 2017 -12 -26 T19 :00:11.826013 Z 28 Quit
106 2017 -12 -26 T19 :00:11.826168 Z 29 Connect root@localhost on

using Socket
107 2017 -12 -26 T19 :00:11.826214 Z 29 Init DB nowasp
108 2017 -12 -26 T19 :00:11.826355 Z 30 Connect root@localhost on

using Socket
109 2017 -12 -26 T19 :00:11.826398 Z 30 Init DB nowasp
110 2017 -12 -26 T19 :00:11.826705 Z 31 Connect root@localhost on

using Socket
111 2017 -12 -26 T19 :00:11.826804 Z 31 Init DB nowasp
112 2017 -12 -26 T19 :00:11.826997 Z 32 Connect root@localhost on

using Socket
113 2017 -12 -26 T19 :00:11.827048 Z 32 Init DB nowasp
114 2017 -12 -26 T19 :00:11.827686 Z 31 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
115 level_1_help_include_files .

level_1_help_include_file_description

146

116 FROM page_help
117 INNER JOIN level_1_help_include_files
118 ON page_help . help_text_key =
119 level_1_help_include_files .

level_1_help_include_file_key
120 WHERE page_help . page_name = 'login.php ' ORDER BY

page_help . order_preference
121 2017 -12 -26 T19 :00:11.828256 Z 29 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : login.php ', now ())

122 2017 -12 -26 T19 :00:11.828975 Z 30 Quit
123 2017 -12 -26 T19 :00:11.829030 Z 31 Quit
124 2017 -12 -26 T19 :00:11.829586 Z 29 Quit
125 2017 -12 -26 T19 :00:11.829625 Z 32 Quit
126 2017 -12 -26 T19 :00:20.009520 Z 33 Connect root@localhost on

using Socket
127 2017 -12 -26 T19 :00:20.009641 Z 33 Init DB nowasp
128 2017 -12 -26 T19 :00:20.009738 Z 33 Query SELECT 'test connection '
129 2017 -12 -26 T19 :00:20.009856 Z 33 Query SELECT cid FROM

blogs_table
130 2017 -12 -26 T19 :00:20.010056 Z 33 Quit
131 2017 -12 -26 T19 :00:20.010261 Z 34 Connect root@localhost on

using Socket
132 2017 -12 -26 T19 :00:20.010362 Z 34 Init DB nowasp
133 2017 -12 -26 T19 :00:20.010538 Z 35 Connect root@localhost on

using Socket
134 2017 -12 -26 T19 :00:20.010579 Z 35 Init DB nowasp
135 2017 -12 -26 T19 :00:20.010682 Z 36 Connect root@localhost on

using Socket
136 2017 -12 -26 T19 :00:20.010714 Z 36 Init DB nowasp
137 2017 -12 -26 T19 :00:20.010964 Z 37 Connect root@localhost on

using Socket
138 2017 -12 -26 T19 :00:20.011067 Z 37 Init DB nowasp
139 2017 -12 -26 T19 :00:20.017749 Z 34 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User satan attempting to
authenticate ', now ())

140 2017 -12 -26 T19 :00:20.018906 Z 36 Query SELECT username FROM
accounts WHERE username ='satan '

141 2017 -12 -26 T19 :00:20.019180 Z 36 Query SELECT username FROM
accounts WHERE username ='satan ' AND password = '123456 '

142 2017 -12 -26 T19 :00:20.019351 Z 36 Query SELECT * FROM accounts
143 WHERE username ='satan ' AND password = '123456 '
144 2017 -12 -26 T19 :00:20.019575 Z 34 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'Login Succeeded : Logged in user:
satan (27) ', now ())

145 2017 -12 -26 T19 :00:20.020492 Z 36 Quit
146 2017 -12 -26 T19 :00:20.020553 Z 35 Quit
147 2017 -12 -26 T19 :00:20.020577 Z 37 Quit
148 2017 -12 -26 T19 :00:20.020598 Z 34 Quit
149 2017 -12 -26 T19 :00:20.027025 Z 38 Connect root@localhost on

using Socket
150 2017 -12 -26 T19 :00:20.027093 Z 38 Init DB nowasp
151 2017 -12 -26 T19 :00:20.027137 Z 38 Query SELECT 'test connection '
152 2017 -12 -26 T19 :00:20.027209 Z 38 Query SELECT cid FROM

blogs_table
153 2017 -12 -26 T19 :00:20.027437 Z 38 Quit
154 2017 -12 -26 T19 :00:20.027717 Z 39 Connect root@localhost on

using Socket
155 2017 -12 -26 T19 :00:20.027782 Z 39 Init DB nowasp

147

156 2017 -12 -26 T19 :00:20.027957 Z 40 Connect root@localhost on
using Socket

157 2017 -12 -26 T19 :00:20.028011 Z 40 Init DB nowasp
158 2017 -12 -26 T19 :00:20.028169 Z 41 Connect root@localhost on

using Socket
159 2017 -12 -26 T19 :00:20.028212 Z 41 Init DB nowasp
160 2017 -12 -26 T19 :00:20.028420 Z 42 Connect root@localhost on

using Socket
161 2017 -12 -26 T19 :00:20.028514 Z 42 Init DB nowasp
162 2017 -12 -26 T19 :00:20.028613 Z 41 Query SELECT * FROM accounts

WHERE cid ='27'
163 2017 -12 -26 T19 :00:20.029557 Z 39 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : /var/www/html/
mutillidae /home.php ', now ())

164 2017 -12 -26 T19 :00:20.030496 Z 40 Quit
165 2017 -12 -26 T19 :00:20.031139 Z 39 Quit
166 2017 -12 -26 T19 :00:20.031191 Z 42 Quit
167 2017 -12 -26 T19 :00:20.031216 Z 41 Quit
168 2017 -12 -26 T19 :00:28.684125 Z 43 Connect root@localhost on

using Socket
169 2017 -12 -26 T19 :00:28.684210 Z 43 Init DB nowasp
170 2017 -12 -26 T19 :00:28.684258 Z 43 Query SELECT 'test connection '
171 2017 -12 -26 T19 :00:28.684333 Z 43 Query SELECT cid FROM

blogs_table
172 2017 -12 -26 T19 :00:28.684510 Z 43 Quit
173 2017 -12 -26 T19 :00:28.684803 Z 44 Connect root@localhost on

using Socket
174 2017 -12 -26 T19 :00:28.684896 Z 44 Init DB nowasp
175 2017 -12 -26 T19 :00:28.685244 Z 45 Connect root@localhost on

using Socket
176 2017 -12 -26 T19 :00:28.685338 Z 45 Init DB nowasp
177 2017 -12 -26 T19 :00:28.685690 Z 46 Connect root@localhost on

using Socket
178 2017 -12 -26 T19 :00:28.685778 Z 46 Init DB nowasp
179 2017 -12 -26 T19 :00:28.686073 Z 47 Connect root@localhost on

using Socket
180 2017 -12 -26 T19 :00:28.686148 Z 47 Init DB nowasp
181 2017 -12 -26 T19 :00:28.686253 Z 46 Query SELECT * FROM accounts

WHERE cid ='27'
182 2017 -12 -26 T19 :00:28.688267 Z 46 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
183 level_1_help_include_files .

level_1_help_include_file_description
184 FROM page_help
185 INNER JOIN level_1_help_include_files
186 ON page_help . help_text_key =
187 level_1_help_include_files .

level_1_help_include_file_key
188 WHERE page_help . page_name = 'captured -data.php '

ORDER BY page_help . order_preference
189 2017 -12 -26 T19 :00:28.688730 Z 46 Query SELECT ip_address ,

hostname , port , user_agent_string , referrer , data ,
capture_date

190 FROM captured_data
191 ORDER BY capture_date DESC
192 2017 -12 -26 T19 :00:28.690708 Z 44 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : captured -data.php ',

now ())
193 2017 -12 -26 T19 :00:28.691652 Z 45 Quit
194 2017 -12 -26 T19 :00:28.691728 Z 47 Quit
195 2017 -12 -26 T19 :00:28.691756 Z 44 Quit

148

196 2017 -12 -26 T19 :00:28.691786 Z 46 Quit
197 2017 -12 -26 T19 :00:30.874212 Z 48 Connect root@localhost on

using Socket
198 2017 -12 -26 T19 :00:30.874273 Z 48 Init DB nowasp
199 2017 -12 -26 T19 :00:30.874313 Z 48 Query SELECT 'test connection '
200 2017 -12 -26 T19 :00:30.874376 Z 48 Query SELECT cid FROM

blogs_table
201 2017 -12 -26 T19 :00:30.874564 Z 48 Quit
202 2017 -12 -26 T19 :00:30.874655 Z 49 Connect root@localhost on

using Socket
203 2017 -12 -26 T19 :00:30.874695 Z 49 Init DB nowasp
204 2017 -12 -26 T19 :00:30.874924 Z 50 Connect root@localhost on

using Socket
205 2017 -12 -26 T19 :00:30.875018 Z 50 Init DB nowasp
206 2017 -12 -26 T19 :00:30.875323 Z 51 Connect root@localhost on

using Socket
207 2017 -12 -26 T19 :00:30.875417 Z 51 Init DB nowasp
208 2017 -12 -26 T19 :00:30.875598 Z 52 Connect root@localhost on

using Socket
209 2017 -12 -26 T19 :00:30.875655 Z 52 Init DB nowasp
210 2017 -12 -26 T19 :00:30.875748 Z 51 Query SELECT * FROM accounts

WHERE cid ='27'
211 2017 -12 -26 T19 :00:30.877088 Z 51 Query SELECT * FROM `hitlog `

ORDER BY date DESC
212 2017 -12 -26 T19 :00:30.877911 Z 51 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
213 level_1_help_include_files .

level_1_help_include_file_description
214 FROM page_help
215 INNER JOIN level_1_help_include_files
216 ON page_help . help_text_key =
217 level_1_help_include_files .

level_1_help_include_file_key
218 WHERE page_help . page_name = 'show -log.php ' ORDER BY

page_help . order_preference
219 2017 -12 -26 T19 :00:30.879437 Z 49 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : show -log.php ', now
())

220 2017 -12 -26 T19 :00:30.880177 Z 50 Quit
221 2017 -12 -26 T19 :00:30.880216 Z 52 Quit
222 2017 -12 -26 T19 :00:30.880313 Z 49 Quit
223 2017 -12 -26 T19 :00:30.880352 Z 51 Quit
224 2017 -12 -26 T19 :00:35.126199 Z 53 Connect root@localhost on

using Socket
225 2017 -12 -26 T19 :00:35.126284 Z 53 Init DB nowasp
226 2017 -12 -26 T19 :00:35.126331 Z 53 Query SELECT 'test connection '
227 2017 -12 -26 T19 :00:35.126414 Z 53 Query SELECT cid FROM

blogs_table
228 2017 -12 -26 T19 :00:35.126625 Z 53 Quit
229 2017 -12 -26 T19 :00:35.126773 Z 54 Connect root@localhost on

using Socket
230 2017 -12 -26 T19 :00:35.126835 Z 54 Init DB nowasp
231 2017 -12 -26 T19 :00:35.126976 Z 55 Connect root@localhost on

using Socket
232 2017 -12 -26 T19 :00:35.127033 Z 55 Init DB nowasp
233 2017 -12 -26 T19 :00:35.127170 Z 56 Connect root@localhost on

using Socket
234 2017 -12 -26 T19 :00:35.127209 Z 56 Init DB nowasp
235 2017 -12 -26 T19 :00:35.127347 Z 57 Connect root@localhost on

using Socket
236 2017 -12 -26 T19 :00:35.127385 Z 57 Init DB nowasp
237 2017 -12 -26 T19 :00:35.127445 Z 56 Query SELECT * FROM accounts

WHERE cid ='27'

149

238 2017 -12 -26 T19 :00:35.128285 Z 54 Query INSERT INTO hitlog (
hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : home.php ', now ())

239 2017 -12 -26 T19 :00:35.129310 Z 54 Quit
240 2017 -12 -26 T19 :00:35.130070 Z 55 Quit
241 2017 -12 -26 T19 :00:35.130117 Z 57 Quit
242 2017 -12 -26 T19 :00:35.130146 Z 56 Quit
243 2017 -12 -26 T19 :01:01.463371 Z 58 Connect root@localhost on

using Socket
244 2017 -12 -26 T19 :01:01.463475 Z 58 Init DB nowasp
245 2017 -12 -26 T19 :01:01.463527 Z 58 Query SELECT 'test connection '
246 2017 -12 -26 T19 :01:01.463605 Z 58 Query SELECT cid FROM

blogs_table
247 2017 -12 -26 T19 :01:01.463803 Z 58 Quit
248 2017 -12 -26 T19 :01:01.464003 Z 59 Connect root@localhost on

using Socket
249 2017 -12 -26 T19 :01:01.464061 Z 59 Init DB nowasp
250 2017 -12 -26 T19 :01:01.464670 Z 60 Connect root@localhost on

using Socket
251 2017 -12 -26 T19 :01:01.464731 Z 60 Init DB nowasp
252 2017 -12 -26 T19 :01:01.464904 Z 61 Connect root@localhost on

using Socket
253 2017 -12 -26 T19 :01:01.464995 Z 61 Init DB nowasp
254 2017 -12 -26 T19 :01:01.465150 Z 62 Connect root@localhost on

using Socket
255 2017 -12 -26 T19 :01:01.465206 Z 62 Init DB nowasp
256 2017 -12 -26 T19 :01:01.465289 Z 61 Query SELECT * FROM accounts

WHERE cid ='27'
257 2017 -12 -26 T19 :01:01.473508 Z 61 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
258 level_1_help_include_files .

level_1_help_include_file_description
259 FROM page_help
260 INNER JOIN level_1_help_include_files
261 ON page_help . help_text_key =
262 level_1_help_include_files .

level_1_help_include_file_key
263 WHERE page_help . page_name = 'add -to -your -blog.php '

ORDER BY page_help . order_preference
264 2017 -12 -26 T19 :01:01.474348 Z 61 Query SELECT * FROM

blogs_table
265 WHERE blogger_name like 'satan%'
266 ORDER BY date DESC
267 LIMIT 0 , 100
268 2017 -12 -26 T19 :01:01.474595 Z 59 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'Selected blog entries for satan ',

now ())
269 2017 -12 -26 T19 :01:01.475676 Z 59 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : add -to -your -blog.php
', now ())

270 2017 -12 -26 T19 :01:01.476233 Z 60 Quit
271 2017 -12 -26 T19 :01:01.476298 Z 59 Quit
272 2017 -12 -26 T19 :01:01.476331 Z 62 Quit
273 2017 -12 -26 T19 :01:01.476962 Z 61 Quit
274 2017 -12 -26 T19 :01:05.623728 Z 63 Connect root@localhost on

using Socket
275 2017 -12 -26 T19 :01:05.623802 Z 63 Init DB nowasp
276 2017 -12 -26 T19 :01:05.623853 Z 63 Query SELECT 'test connection '
277 2017 -12 -26 T19 :01:05.623958 Z 63 Query SELECT cid FROM

blogs_table

150

278 2017 -12 -26 T19 :01:05.624239 Z 63 Quit
279 2017 -12 -26 T19 :01:05.624318 Z 64 Connect root@localhost on

using Socket
280 2017 -12 -26 T19 :01:05.624442 Z 64 Init DB nowasp
281 2017 -12 -26 T19 :01:05.624777 Z 65 Connect root@localhost on

using Socket
282 2017 -12 -26 T19 :01:05.624902 Z 65 Init DB nowasp
283 2017 -12 -26 T19 :01:05.625236 Z 66 Connect root@localhost on

using Socket
284 2017 -12 -26 T19 :01:05.625340 Z 66 Init DB nowasp
285 2017 -12 -26 T19 :01:05.625636 Z 67 Connect root@localhost on

using Socket
286 2017 -12 -26 T19 :01:05.625753 Z 67 Init DB nowasp
287 2017 -12 -26 T19 :01:05.625875 Z 66 Query SELECT * FROM accounts

WHERE cid ='27'
288 2017 -12 -26 T19 :01:05.634138 Z 66 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
289 level_1_help_include_files .

level_1_help_include_file_description
290 FROM page_help
291 INNER JOIN level_1_help_include_files
292 ON page_help . help_text_key =
293 level_1_help_include_files .

level_1_help_include_file_key
294 WHERE page_help . page_name = 'view -someones -blog.php '

ORDER BY page_help . order_preference
295 2017 -12 -26 T19 :01:05.634773 Z 66 Query SELECT username FROM

accounts
296 2017 -12 -26 T19 :01:05.635526 Z 64 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : view -someones -blog.
php ', now ())

297 2017 -12 -26 T19 :01:05.636690 Z 65 Quit
298 2017 -12 -26 T19 :01:05.636764 Z 66 Quit
299 2017 -12 -26 T19 :01:05.637395 Z 67 Quit
300 2017 -12 -26 T19 :01:05.637444 Z 64 Quit
301 2017 -12 -26 T19 :01:12.046302 Z 68 Connect root@localhost on

using Socket
302 2017 -12 -26 T19 :01:12.046377 Z 68 Init DB nowasp
303 2017 -12 -26 T19 :01:12.046526 Z 68 Query SELECT 'test connection '
304 2017 -12 -26 T19 :01:12.046668 Z 68 Query SELECT cid FROM

blogs_table
305 2017 -12 -26 T19 :01:12.046895 Z 68 Quit
306 2017 -12 -26 T19 :01:12.047122 Z 69 Connect root@localhost on

using Socket
307 2017 -12 -26 T19 :01:12.047188 Z 69 Init DB nowasp
308 2017 -12 -26 T19 :01:12.047520 Z 70 Connect root@localhost on

using Socket
309 2017 -12 -26 T19 :01:12.047575 Z 70 Init DB nowasp
310 2017 -12 -26 T19 :01:12.047921 Z 71 Connect root@localhost on

using Socket
311 2017 -12 -26 T19 :01:12.048043 Z 71 Init DB nowasp
312 2017 -12 -26 T19 :01:12.048279 Z 72 Connect root@localhost on

using Socket
313 2017 -12 -26 T19 :01:12.048339 Z 72 Init DB nowasp
314 2017 -12 -26 T19 :01:12.048416 Z 71 Query SELECT * FROM accounts

WHERE cid ='27'
315 2017 -12 -26 T19 :01:12.049370 Z 71 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
316 level_1_help_include_files .

level_1_help_include_file_description
317 FROM page_help
318 INNER JOIN level_1_help_include_files
319 ON page_help . help_text_key =

151

320 level_1_help_include_files .
level_1_help_include_file_key

321 WHERE page_help . page_name = 'view -someones -blog.php '
ORDER BY page_help . order_preference

322 2017 -12 -26 T19 :01:12.049743 Z 71 Query SELECT username FROM
accounts

323 2017 -12 -26 T19 :01:12.050219 Z 71 Query SELECT * FROM
blogs_table

324 WHERE blogger_name like 'stusteiner %'
325 ORDER BY date DESC
326 LIMIT 0 , 100
327 2017 -12 -26 T19 :01:12.050468 Z 69 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : view -someones -blog.
php ', now ())

328 2017 -12 -26 T19 :01:12.051585 Z 71 Quit
329 2017 -12 -26 T19 :01:12.051651 Z 70 Quit
330 2017 -12 -26 T19 :01:12.051699 Z 72 Quit
331 2017 -12 -26 T19 :01:12.051726 Z 69 Quit
332 2017 -12 -26 T19 :01:14.481944 Z 73 Connect root@localhost on

using Socket
333 2017 -12 -26 T19 :01:14.482087 Z 73 Init DB nowasp
334 2017 -12 -26 T19 :01:14.482143 Z 73 Query SELECT 'test connection '
335 2017 -12 -26 T19 :01:14.482220 Z 73 Query SELECT cid FROM

blogs_table
336 2017 -12 -26 T19 :01:14.482504 Z 73 Quit
337 2017 -12 -26 T19 :01:14.482637 Z 74 Connect root@localhost on

using Socket
338 2017 -12 -26 T19 :01:14.482700 Z 74 Init DB nowasp
339 2017 -12 -26 T19 :01:14.482995 Z 75 Connect root@localhost on

using Socket
340 2017 -12 -26 T19 :01:14.483091 Z 75 Init DB nowasp
341 2017 -12 -26 T19 :01:14.483360 Z 76 Connect root@localhost on

using Socket
342 2017 -12 -26 T19 :01:14.483418 Z 76 Init DB nowasp
343 2017 -12 -26 T19 :01:14.483568 Z 77 Connect root@localhost on

using Socket
344 2017 -12 -26 T19 :01:14.483611 Z 77 Init DB nowasp
345 2017 -12 -26 T19 :01:14.483695 Z 76 Query SELECT * FROM accounts

WHERE cid ='27'
346 2017 -12 -26 T19 :01:14.484559 Z 76 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
347 level_1_help_include_files .

level_1_help_include_file_description
348 FROM page_help
349 INNER JOIN level_1_help_include_files
350 ON page_help . help_text_key =
351 level_1_help_include_files .

level_1_help_include_file_key
352 WHERE page_help . page_name = 'add -to -your -blog.php '

ORDER BY page_help . order_preference
353 2017 -12 -26 T19 :01:14.485190 Z 76 Query SELECT * FROM

blogs_table
354 WHERE blogger_name like 'satan%'
355 ORDER BY date DESC
356 LIMIT 0 , 100
357 2017 -12 -26 T19 :01:14.485413 Z 74 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'Selected blog entries for satan ',

now ())
358 2017 -12 -26 T19 :01:14.486377 Z 74 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko

152

/20100101 Firefox /57.0 ' , 'User visited : add -to -your -blog.php
', now ())

359 2017 -12 -26 T19 :01:14.486895 Z 77 Quit
360 2017 -12 -26 T19 :01:14.486959 Z 76 Quit
361 2017 -12 -26 T19 :01:14.487579 Z 74 Quit
362 2017 -12 -26 T19 :01:14.487656 Z 75 Quit
363 2017 -12 -26 T19 :01:30.014890 Z 78 Connect root@localhost on

using Socket
364 2017 -12 -26 T19 :01:30.014963 Z 78 Init DB nowasp
365 2017 -12 -26 T19 :01:30.015011 Z 78 Query SELECT 'test connection '
366 2017 -12 -26 T19 :01:30.015086 Z 78 Query SELECT cid FROM

blogs_table
367 2017 -12 -26 T19 :01:30.015310 Z 78 Quit
368 2017 -12 -26 T19 :01:30.015427 Z 79 Connect root@localhost on

using Socket
369 2017 -12 -26 T19 :01:30.015486 Z 79 Init DB nowasp
370 2017 -12 -26 T19 :01:30.015809 Z 80 Connect root@localhost on

using Socket
371 2017 -12 -26 T19 :01:30.015892 Z 80 Init DB nowasp
372 2017 -12 -26 T19 :01:30.016097 Z 81 Connect root@localhost on

using Socket
373 2017 -12 -26 T19 :01:30.016152 Z 81 Init DB nowasp
374 2017 -12 -26 T19 :01:30.016297 Z 82 Connect root@localhost on

using Socket
375 2017 -12 -26 T19 :01:30.016340 Z 82 Init DB nowasp
376 2017 -12 -26 T19 :01:30.016423 Z 81 Query SELECT * FROM accounts

WHERE cid ='27'
377 2017 -12 -26 T19 :01:30.017469 Z 81 Query INSERT INTO blogs_table (

blogger_name , comment , date) VALUES ('satan ', 'now is the
time for all good men to come to the aid of their country ',

now ())
378 2017 -12 -26 T19 :01:30.018556 Z 79 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'Blog entry added by: satan ', now
())

379 2017 -12 -26 T19 :01:30.019088 Z 81 Query SELECT
level_1_help_include_files . level_1_help_include_file_key ,

380 level_1_help_include_files .
level_1_help_include_file_description

381 FROM page_help
382 INNER JOIN level_1_help_include_files
383 ON page_help . help_text_key =
384 level_1_help_include_files .

level_1_help_include_file_key
385 WHERE page_help . page_name = 'add -to -your -blog.php '

ORDER BY page_help . order_preference
386 2017 -12 -26 T19 :01:30.019843 Z 81 Query SELECT * FROM

blogs_table
387 WHERE blogger_name like 'satan%'
388 ORDER BY date DESC
389 LIMIT 0 , 100
390 2017 -12 -26 T19 :01:30.020062 Z 79 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'Selected blog entries for satan ',

now ())
391 2017 -12 -26 T19 :01:30.021008 Z 79 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : add -to -your -blog.php
', now ())

392 2017 -12 -26 T19 :01:30.021379 Z 80 Quit
393 2017 -12 -26 T19 :01:30.021433 Z 82 Quit
394 2017 -12 -26 T19 :01:30.021519 Z 79 Quit

153

395 2017 -12 -26 T19 :01:30.021554 Z 81 Quit
396 2017 -12 -26 T19 :01:31.786764 Z 83 Connect root@localhost on

using Socket
397 2017 -12 -26 T19 :01:31.786840 Z 83 Init DB nowasp
398 2017 -12 -26 T19 :01:31.786891 Z 83 Query SELECT 'test connection '
399 2017 -12 -26 T19 :01:31.786970 Z 83 Query SELECT cid FROM

blogs_table
400 2017 -12 -26 T19 :01:31.787202 Z 83 Quit
401 2017 -12 -26 T19 :01:31.787333 Z 84 Connect root@localhost on

using Socket
402 2017 -12 -26 T19 :01:31.787383 Z 84 Init DB nowasp
403 2017 -12 -26 T19 :01:31.787521 Z 85 Connect root@localhost on

using Socket
404 2017 -12 -26 T19 :01:31.787565 Z 85 Init DB nowasp
405 2017 -12 -26 T19 :01:31.787740 Z 86 Connect root@localhost on

using Socket
406 2017 -12 -26 T19 :01:31.787794 Z 86 Init DB nowasp
407 2017 -12 -26 T19 :01:31.787921 Z 87 Connect root@localhost on

using Socket
408 2017 -12 -26 T19 :01:31.787966 Z 87 Init DB nowasp
409 2017 -12 -26 T19 :01:31.788028 Z 86 Query SELECT * FROM accounts

WHERE cid ='27'
410 2017 -12 -26 T19 :01:31.788943 Z 86 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
411 level_1_help_include_files .

level_1_help_include_file_description
412 FROM page_help
413 INNER JOIN level_1_help_include_files
414 ON page_help . help_text_key =
415 level_1_help_include_files .

level_1_help_include_file_key
416 WHERE page_help . page_name = 'view -someones -blog.php '

ORDER BY page_help . order_preference
417 2017 -12 -26 T19 :01:31.789327 Z 86 Query SELECT username FROM

accounts
418 2017 -12 -26 T19 :01:31.789806 Z 84 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : view -someones -blog.
php ', now ())

419 2017 -12 -26 T19 :01:31.790806 Z 87 Quit
420 2017 -12 -26 T19 :01:31.790817 Z 85 Quit
421 2017 -12 -26 T19 :01:31.790873 Z 86 Quit
422 2017 -12 -26 T19 :01:31.790973 Z 84 Quit
423 2017 -12 -26 T19 :01:36.820845 Z 88 Connect root@localhost on

using Socket
424 2017 -12 -26 T19 :01:36.820930 Z 88 Init DB nowasp
425 2017 -12 -26 T19 :01:36.820992 Z 88 Query SELECT 'test connection '
426 2017 -12 -26 T19 :01:36.821072 Z 88 Query SELECT cid FROM

blogs_table
427 2017 -12 -26 T19 :01:36.821201 Z 88 Quit
428 2017 -12 -26 T19 :01:36.821402 Z 89 Connect root@localhost on

using Socket
429 2017 -12 -26 T19 :01:36.821459 Z 89 Init DB nowasp
430 2017 -12 -26 T19 :01:36.821602 Z 90 Connect root@localhost on

using Socket
431 2017 -12 -26 T19 :01:36.821644 Z 90 Init DB nowasp
432 2017 -12 -26 T19 :01:36.821778 Z 91 Connect root@localhost on

using Socket
433 2017 -12 -26 T19 :01:36.821820 Z 91 Init DB nowasp
434 2017 -12 -26 T19 :01:36.821945 Z 92 Connect root@localhost on

using Socket
435 2017 -12 -26 T19 :01:36.821986 Z 92 Init DB nowasp
436 2017 -12 -26 T19 :01:36.822049 Z 91 Query SELECT * FROM accounts

WHERE cid ='27'

154

437 2017 -12 -26 T19 :01:36.823081 Z 91 Query SELECT
level_1_help_include_files . level_1_help_include_file_key ,

438 level_1_help_include_files .
level_1_help_include_file_description

439 FROM page_help
440 INNER JOIN level_1_help_include_files
441 ON page_help . help_text_key =
442 level_1_help_include_files .

level_1_help_include_file_key
443 WHERE page_help . page_name = 'view -someones -blog.php '

ORDER BY page_help . order_preference
444 2017 -12 -26 T19 :01:36.823411 Z 91 Query SELECT username FROM

accounts
445 2017 -12 -26 T19 :01:36.823879 Z 91 Query SELECT * FROM

blogs_table
446 WHERE blogger_name like 'satan%'
447 ORDER BY date DESC
448 LIMIT 0 , 100
449 2017 -12 -26 T19 :01:36.824087 Z 89 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : view -someones -blog.
php ', now ())

450 2017 -12 -26 T19 :01:36.825653 Z 90 Quit
451 2017 -12 -26 T19 :01:36.825794 Z 92 Quit
452 2017 -12 -26 T19 :01:36.825846 Z 91 Quit
453 2017 -12 -26 T19 :01:36.825954 Z 89 Quit
454 2017 -12 -26 T19 :01:40.446977 Z 93 Connect root@localhost on

using Socket
455 2017 -12 -26 T19 :01:40.447054 Z 93 Init DB nowasp
456 2017 -12 -26 T19 :01:40.447106 Z 93 Query SELECT 'test connection '
457 2017 -12 -26 T19 :01:40.447184 Z 93 Query SELECT cid FROM

blogs_table
458 2017 -12 -26 T19 :01:40.447429 Z 93 Quit
459 2017 -12 -26 T19 :01:40.447509 Z 94 Connect root@localhost on

using Socket
460 2017 -12 -26 T19 :01:40.447556 Z 94 Init DB nowasp
461 2017 -12 -26 T19 :01:40.447837 Z 95 Connect root@localhost on

using Socket
462 2017 -12 -26 T19 :01:40.447908 Z 95 Init DB nowasp
463 2017 -12 -26 T19 :01:40.448099 Z 96 Connect root@localhost on

using Socket
464 2017 -12 -26 T19 :01:40.448151 Z 96 Init DB nowasp
465 2017 -12 -26 T19 :01:40.448285 Z 97 Connect root@localhost on

using Socket
466 2017 -12 -26 T19 :01:40.448329 Z 97 Init DB nowasp
467 2017 -12 -26 T19 :01:40.456152 Z 95 Quit
468 2017 -12 -26 T19 :01:40.456264 Z 97 Quit
469 2017 -12 -26 T19 :01:40.456333 Z 96 Quit
470 2017 -12 -26 T19 :01:40.456374 Z 94 Quit
471 2017 -12 -26 T19 :01:40.462765 Z 98 Connect root@localhost on

using Socket
472 2017 -12 -26 T19 :01:40.462888 Z 98 Init DB nowasp
473 2017 -12 -26 T19 :01:40.463009 Z 98 Query SELECT 'test connection '
474 2017 -12 -26 T19 :01:40.463202 Z 98 Query SELECT cid FROM

blogs_table
475 2017 -12 -26 T19 :01:40.463437 Z 98 Quit
476 2017 -12 -26 T19 :01:40.463702 Z 99 Connect root@localhost on

using Socket
477 2017 -12 -26 T19 :01:40.463802 Z 99 Init DB nowasp
478 2017 -12 -26 T19 :01:40.464162 Z 100 Connect root@localhost on

using Socket
479 2017 -12 -26 T19 :01:40.464267 Z 100 Init DB nowasp
480 2017 -12 -26 T19 :01:40.464588 Z 101 Connect root@localhost on

using Socket

155

481 2017 -12 -26 T19 :01:40.464687 Z 101 Init DB nowasp
482 2017 -12 -26 T19 :01:40.464995 Z 102 Connect root@localhost on

using Socket
483 2017 -12 -26 T19 :01:40.465048 Z 102 Init DB nowasp
484 2017 -12 -26 T19 :01:40.465823 Z 101 Query SELECT

level_1_help_include_files . level_1_help_include_file_key ,
485 level_1_help_include_files .

level_1_help_include_file_description
486 FROM page_help
487 INNER JOIN level_1_help_include_files
488 ON page_help . help_text_key =
489 level_1_help_include_files .

level_1_help_include_file_key
490 WHERE page_help . page_name = 'login.php ' ORDER BY

page_help . order_preference
491 2017 -12 -26 T19 :01:40.466519 Z 99 Query INSERT INTO hitlog (

hostname , ip , browser , referer , date) VALUES ('::1', '::1',
'Mozilla /5.0 (X11; Ubuntu ; Linux x86_64 ; rv :57.0) Gecko
/20100101 Firefox /57.0 ' , 'User visited : login.php ', now ())

492 2017 -12 -26 T19 :01:40.467454 Z 100 Quit
493 2017 -12 -26 T19 :01:40.468167 Z 101 Quit
494 2017 -12 -26 T19 :01:40.468216 Z 102 Quit� �

156

Appendix B: Complete Listing of SEED SQL Log
Listing B.1: Mutillidae SQL Log: Complete listing of the non-least

privilege non-malicious run of the Mutillidae web application.� �
1 /usr/sbin/mysqld , Version : 5.7.19 -0 ubuntu0 .16.04.1 ((Ubuntu)).

started with:
2 Tcp port: 3306 Unix socket : /var/run/ mysqld / mysqld .sock
3 Time Id Command Argument
4 2018 -06 -04 T23 :38:04.148578 Z 149 Query set global general_log =

'ON '
5 2018 -06 -04 T23 :38:09.717757 Z 149 Query set global log_output =

'FILE '
6 2018 -06 -04 T23 :38:44.913379 Z 150 Connect root@localhost on

Users using Socket
7 2018 -06 -04 T23 :38:44.913532 Z 150 Query SELECT id , name , eid ,

salary , birth , ssn , phoneNumber , address , email ,nickname ,
Password

8 FROM credential
9 WHERE name= 'stu ' and Password = '36

da2c7673be09d05daa028d25741b0d186913d5 '
10 2018 -06 -04 T23 :38:44.913752 Z 150 Query INSERT INTO track(ref)

VALUES (' page_name = unsafe_home .php ')
11 2018 -06 -04 T23 :38:44.914121 Z 150 Quit
12 2018 -06 -04 T23 :38:49.140716 Z 151 Connect root@localhost on

Users using Socket
13 2018 -06 -04 T23 :38:49.140912 Z 151 Query SELECT id , name , eid ,

salary , birth , ssn , phoneNumber , address , email ,nickname ,
Password

14 FROM credential
15 WHERE name= 'stu '
16 2018 -06 -04 T23 :38:49.141212 Z 151 Query INSERT INTO track(ref)

VALUES (' page_name = unsafe_edit_frontend .php ')
17 2018 -06 -04 T23 :38:49.141572 Z 151 Quit
18 2018 -06 -04 T23 :39:17.574444 Z 152 Connect root@localhost on

Users using Socket
19 2018 -06 -04 T23 :39:17.574591 Z 152 Query UPDATE credential SET

nickname ='Stu ',email=' ssteiner@ewu .edu ', address = '319F CEB ',
Password ='36 da2c7673be09d05daa028d25741b0d186913d5 ',
PhoneNumber = '5093594296 ' where ID=9

20 2018 -06 -04 T23 :39:17.575571 Z 152 Query INSERT INTO track(ref)
VALUES (' page_name = unsafe_edit_backend .php ')

21 2018 -06 -04 T23 :39:17.577138 Z 152 Quit� �

	Authorization to Submit Dissertation
	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Acronyms
	Introduction
	The Problem: SQL Injection Attacks in Web Applications
	The Proposed Approach and Solution: Lest Privilege Design and Semi-Automated Refactoring
	Objectives of this Dissertation
	Contributions of this Dissertation
	Scope of Achieved Mitigation and Defense
	Organization of this Dissertation

	Background
	Cyber Attack Definitions and Security Policies
	The Principle of Least Privilege
	The Hierarchical Policy Model (HPol)
	High-Level Easily Reconfigurable Machine Environment Specification (HERMES)
	Formal Concept Analysis (FCA)

	Investigation of the Current State of the Art in Web Application Security
	Current State of Web Application Security
	Why SQL Injection Attacks (SQLIAs) are Still an Unsolved Problem
	Runtime Mitigation Techniques for SQLIAs
	Structured Analysis of Runtime Mitigations for SQLIAs
	Static Mitigation Techniques for SQLIAs

	Manually Applying Least Privilege with HPol for Web Application Security
	Manually Applying the Principle of Least Privilege
	Manually Creating the HPol Formal Security Policy Model
	The HERMES Specification for a Web Application
	Manually Building a Formal Web Application Security Model
	Manually Building a Formal Web Application Security Model: Filesystem
	Manually Building a Formal Web Application Security Model: DBMS
	Applied Case Study: Mutillidae - Manually Applying HPol

	Enhancements to HPol and HERMES for Increased Web Application Security
	Enhancing the HPol Formal Security Model
	Enhancing and Formally Defining the HERMES Language
	Applied Case Study: Mutillidae - Applying HPol and HERMES Enhancements

	Automating Learning the Least Privilege Policy for a Web Application
	Systematic Inference of DB Table and SQL Command Level Access Control
	Applied Case Study: SEED Labs - Inferring Non-Least Privilege
	Applied Case Study: Mutillidae - Inferring Non-Least Privilege

	Automating the Transformation of a Web Application to a Least Privilege Implementation
	Automated Process for Creating Least Privilege SQL Database Commands
	Applied Case Study: SEED Labs - Automating a Least Privilege Implementation
	Applied Case Study: Mutillidae - Automating a Least Privilege Implementation

	Systematic Process for Refactoring PHP Code to Implement Least Privilege
	Systematic Step-by-Step for Refactoring PHP Code to Secure the Web Application

	Applied Case Study: SEED Labs - Systematic Process for PHP Code Refactoring to Implement Least Privilege
	SQL Injection Attack: SELECT Command Attack: Non-Least Privilege
	SQL Injection Attack: SELECT Command Attack: Least Privilege
	SQL Injection Attack: UPDATE Command Attack Against Admin From Login Screen: Non-Least Privilege
	SQL Injection Attack: SELECT Command Attack Against Admin From Login Screen: Least Privilege
	SQL Injection Attack: UPDATE Command Attack Against Admin From Non-Privileged Account: Non-Least Privilege
	SQL Injection Attack: SELECT Command Attack Against Admin From Unprivileged Account: Least Privilege
	SQL Injection Attack: UNION Command Attack: Non-Least Privilege
	SQL Injection Attack: UNION Command Attack: Least Privilege

	Applied Case Study: Mutillidae - Systematic Process for PHP Code Refactoring to Implement Least Privilege
	SQL Injection Attack: SELECT Statement Attack: Non-Least Privilege
	SQL Injection Attack: SELECT Statement Attack: Least Privilege

	 Related Work
	Least Privilege Models
	Secure Web Application By Design
	Scanning Web Applications for Security Vulnerabilities
	Reverse Engineering Web Applications
	Survey of Dynamic and Static Mitigation Techniques Papers
	Domain-Specific Languages

	 Conclusion and Future Work
	Summary of the Contributions of this Dissertation
	Value of this Dissertation
	Assumptions and Limitations of this Dissertation
	Threats to Validity of this Dissertation
	Future Work
	Conclusions

	References
	Complete Listing of Mutillidae SQL Log
	Complete Listing of SEED SQL Log

