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Abstract 

 The forests of the western United States face profound impacts from shifts in climate, 

natural disturbance regimes, and land management in the 21st century. Under novel 

conditions, forest ecosystem services will be altered, including impacts to forest climate 

moderation, resource provision, and biodiversity. However, the complex processes that 

determine present-day observed forest structure and composition across the complex terrain of 

the region are incompletely understood. As a result, scientists and land managers are 

confronted with considerable uncertainty as to how widespread natural and human impacts 

upon forests will result in changed processes and states.  This dissertation employs model-

observation frameworks to examine and improve upon the understanding of how disturbance 

will impact western U.S. forest carbon balances from site to regional scales.  

 Chapter 1 addresses deficiencies in current process model representations of direct 

emissions and ecosystem mortality transfers during forest fire. In this study, I incorporate 

novel observations and modify an ecosystem biogeochemical model to compare to model 

default assumptions. Projected carbon balance impacts of observation-based vs model-based 

assumption are then quantified in: 1) A carbon dense forest via a modified Daycent 

biogeochemical model; 2) Across the western United States from 2000-2016. At the state 

level, model default assumptions lead to 50-110% overestimates in carbon emissions, 

primarily due to the unrealistic combustion of live tree bole biomass and compounded by a 

lack of standing-dead biomass pool representation. Projections demonstrate that emissions 

overestimates can increase to 300-500% in carbon dense forests (e.g. old growth) in the 

midterm (30 years) due to altered decomposition. 



iv 
 

 

eiv 

 Chapter 2 quantifies the carbon and water balance impacts of an experimental 

selective thinning in a ponderosa pine forest in the University of Idaho Experimental Forest. I 

use automated and traditional ecosystem stock and flux measurements to estimate the impacts 

of treatments from 2016-2019 at contrasting tree and stand scales, with a focus on the balance 

between primary producer density reductions and mitigated summer drought stress. I then 

project the on and off-site carbon balance impacts of treatment through 2050 with a life cycle 

assessment (LCA) and with the Daycent biogeochemical model. Projections allow the 

exploration of whether carbon parity with control stands is reached within common emissions 

reduction time periods. Observations indicated an average 30% increase in thinned stand 

residual tree growth. In contrast to the control stand, treated stand tree transpiration persisted 

through the summer drought period. However, production and water use increases did not 

compensate for tree density reductions and both yearly Net Primary Production (NPP) and 

transpiration decreased in treatment stands. Projections demonstrated that large harvest-event 

emissions pulses from long-lived woody biomass pools led to long carbon deficit legacies; 

treatment carbon storage parity with control stands was not reached by 2050. 

 Chapter 3 employs a dynamic global vegetation model (DGVM) to simulate chapter 2 

stand dynamics and examine model applicability for simulations across a northern Rocky 

Mountain ecoregion domain. The FATES DGVM simulates forest composition and structure, 

disturbance regimes, biogeochemistry, and biophysics, operating within the Community Land 

Model 5 (CLM5) of the Community Earth Systems Model (CESM). I examine FATES 

dynamics in the context of: 1) Variable intensity selective harvests; 2) Historical and future 

control and treatment stands; and, 3) sensitive input parameter variation.  
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Chapter 1: Fixing a snag in carbon emissions estimates from wildfires 

Published in Global Change Biology as: 

Stenzel, J. E., Lutz, J. A., Bartowitz, K. J., Hartman, M. D., Kolden, C. A., Smith, A. M. S., 

… Hudiburg, T. W. (2019). Fixing a snag in carbon emissions estimates from wildfires. 

Global Change, (March), 1–10. https://doi.org/10.1111/gcb.14716 

Abstract 

Wildfire is an essential earth‐system process, impacting ecosystem processes and the 

carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the 

modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide 

(CO2) emissions from wildfires include increasing tree harvest, largely based on the public 

assumption that fires burn live forests to the ground, despite observations indicating that less 

than 5% of mature tree biomass is actually consumed. This misconception is also reflected 

though excessive combustion of live trees in models. Here, we show that regional emissions 

estimates using widely implemented combustion coefficients are 59%–83% higher than 

emissions based on field observations. Using unique field datasets from before and after 

wildfires and an improved ecosystem model, we provide strong evidence that these large 

overestimates can be reduced by using realistic biomass combustion factors and by accurately 

quantifying biomass in standing dead trees that decompose over decades to centuries after fire 

(“snags”). Most model development focuses on area burned; our results reveal that accurately 

representing combustion is also essential for quantifying fire impacts on ecosystems. Using 

our improvements, we find that western US forest fires have emit‐ ted 851 ± 228 Tg CO2 
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(~half of alternative estimates) over the last 17 years, which is minor compared to 16,200 Tg 

CO2 from fossil fuels across the region. 

Introduction 

Temperate forests of the western United States are significant carbon stocks (Buotte et 

al., 2019; Pan et al., 2011) and include some of the most carbon‐dense forests on Earth 

(Hudiburg et al., 2009). Increasing forest fire activity threatens these carbon stores in parts of 

the region because larger burn areas can lead to more tree mortality (Abatzoglou & Williams, 

2016; Hicke, Meddens, & Kolden, 2016; Westerling, Hidalgo, Cayan, & Swetnam, 2006). 

However, contemporary CO2 emissions to the atmosphere from fire are often significantly 

exaggerated because of public and policymaker misconceptions that forests commonly “burn 

to the ground” during fire and that mortality equals emissions (Figure 1) (Mater, 2017; Zinke, 

2018). The reality is instead negligible stem combustion of live, mature trees (i.e., <5%; 

Figure 2), followed by gradual decomposition over years to centuries (Campbell, Donato, 

Azuma, & Law, 2007; Law & Waring, 2015). Modeled estimates of fire emissions reinforce 

public misconceptions, as tree mortality is often mistranslated into 30%–80% of tree carbon 

emitted immediately (van der Werf et al., 2010; Wiedinmyer & Neff, 2007), and is in conflict 

with observations (Lutz et al., 2017). It is important to rectify overestimates because 

governments are currently using mortality and emissions estimates from fire to inform land 

management decisions intended to mitigate climate change (California, Executive 

Department, 2018; Fears & Eilperin, 2019; Nunez, 2006; Oregon, 2005; UNFCCC, 2015; 

U.S. Executive Office of the President, 2018), emphasizing the need for model improvement 

using field observations. 
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While modeling research focuses primarily on improving representation of area 

burned due to the availability of validating satellite products (Hantson et al., 2016; Thonicke 

et al., 2010), it is critical to recognize that simulations can generate inaccurate estimates of 

combustion dynamics through a combination of (a) unrealistic combustion coefficients (i.e., 

the biomass  

fraction that burns) and (b) misrepresentation of forest biomass (i.e., carbon) pools. 

Models use assumed fractions of biomass combusted (combustion coefficients) in fire and 

apply that to the biomass in the area burned. These de‐ fault combustion coefficients 

overestimate pool combustion when they exceed ranges of observed combustion across live 

and dead pools, effectively simulating events where forests “burn to the ground.”  

The largest discrepancies between modeled and observed combustion of aboveground 

biomass exist for live, mature trees, which are the dominant pool of aboveground carbon 

across western US forests (Ghimire, Williams, Collatz, & Vanderhoof, 2012; Hudiburg et al., 

2009; Wilson, Woodall, &  

Most models also lack standing dead tree carbon pools (snags; Table S2), essential for 

representation of forests in the context of disturbance and mortality (Edburg et al., 2012). 

High‐severity fires can kill live trees, which become snags and the dominant stock of 

aboveground carbon in burned areas (Campbell et al., 2007; Figures 1d and 2). When trees die 

in a “no snag” model, the wood instead transfers to the forest floor, becoming downed‐woody 

debris (Figure 1c). In drier climates, snags decompose at slower rates than downed‐woody 

debris (Wirth, Gleixner, & Heimann, 2009), producing relatively slow emissions over decades  
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Figure 1. Conceptual diagram of realistic (observation‐based) versus public perception and model implementation of live 

forest biomass combustion in high‐severity forest fires. A common “public and policymaker perception” (U.S. Executive 

Office of the President, 2018; Zinke, 2018) (a), is that live, mature forests catastrophically “burn to the ground,” with nearly 

all biomass emitted via combustion rather than remaining in the ecosystem as dead biomass (note: photograph from 

grassland). Flawed “model” fire implementations (b) are less extreme in their total ecosystem combustion, with the most 

significant misrepresentation being the over‐combustion of live, mature trees. In “reality” (c), 80%–90% of live stems are 

killed but not combusted; their mass remains as substantial dead ecosystem carbon pools after the fire. *Short‐return interval 

reburned stands can release additional carbon from dead biomass pools, ranging from ~25% (post‐mature burn) to 95% (post‐

young burn) 
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Figure 2. Post‐fire forest landscapes following different, varying severity fires in Oregon. (a) Ponderosa pine—low severity 

patch 4 years after the 2003 B&B Complex mixed severity fire (28,640 ha; photo by G. Meigs), (b) Mixed conifer—moderate 

severity patch 4 years after the 2003 B&B complex (photo by G. Meigs), (c) Ponderosa pine—high‐severity patch 2 years 

after the 2002 Eyerly mixed severity fire (photo by T. Hudiburg) and (d) Ponderosa pine—high‐severity patch 5 years after 

the 2002 Eyerly fire (photo by B.E. Law). 
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Table 1. Observed aboveground carbon stocks and combustion versus default model combustion. Note: All combustion 

percentages are equal to combustion coefficients except for the Rim Fire snag pool, where the percentage combines 

combustion and transfer of snag biomass to downed‐wood pools. Bold italicized numbers highlight discrepancies between the 

range of model coefficients (Table S6, S7, S8; Lawrence et al., 2018; Sturtevant et al., 2009) and field observations for live 

trees. Field observations are from this study and previous studies (Campbell et al., 2007; Lutz et al., 2012). Standard 

deviation of YFDP subplots shown in parentheses where applicable. 
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rather than acute, large pulses through combustion. Further, biomass location matters for 

reburn combustion (Campbell et al., 2007; Ghimire et al., 2012); simulating snags as downed‐

woody debris facilitates higher rates of combustion in subsequent fires.  

Generally, model fire severity is defined by the amount of bio‐ mass killed and 

consumed. Representation of combustion in models varies from a single severity (“static 

severity,” e.g., CLM 5.0; Lawrence et al., 2018) to a range from low‐to‐high (“variable 

severity,” e.g., LANDIS‐II; Sturtevant, Scheller, Miranda, Shinneman, & Syphard, 2009; 

Table 1, and Tables S1 and S2). These dynamic coefficients are either “categorical” or 

calculated through fire sub‐ models that largely depend on fuel moisture and tree or woody 

debris size class (Table S2). Default mortality and combustion coefficients can be 

“parameterized” to be more in line with observations; however, this is often not done, 

especially at large scales (Buotte et al., 2019; Liang, Hurteau, & Westerling, 2018; Tables S6, 

S7, and S8); modeling experiments instead often rely on restricting predicted burn area or fire 

occurrence to achieve realistic combustion (Hudiburg, Law, & Thornton, 2013; Hudiburg, 

Luyssaert, Thornton, & Law, 2013). There is also large variation in the biomass pools 

represented, with a persistent absence of snags. Even models that include dynamic 

combustion coefficients (e.g., LPJ‐GUESS‐SPITFIRE) or variable severity (e.g., LANDIS‐II) 

can overestimate emissions because the rate at which standing wood becomes downed wood 

is too high without a snag pool (Figure 1c). 

 In this study, we compare a range of default combustion coefficients and forest 

structure representations of regional‐to‐global‐ scale models with observation‐based 

combustion coefficients and a newly implemented model snag pool. Our observation‐based 
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refinements utilize carbon stock datasets that span fire events, including new, detailed field 

observations from the 2013 Rim Fire in California (Lutz et al., 2017). We also simulate post‐

fire carbon cycle dynamics using an improved version of the globally recognized 

biogeochemical model DayCent (Hudiburg, Higuera, & Hicke, 2017; Parton, Hartman, 

Ojima, & Schimel, 1998) through addition of snag pools with varying combustion, 

decomposition, and fall rates (Figure S1). We then estimate 2000–2016 fire emissions across 

the western United States with our improved methods. 

Materials and Methods 

 We calculated emissions from forest combustion in the western US states using site 

observations, the monitoring trends in burn severity (MTBS) burn perimeter database, and 

ecosystem modeling. Mortality and combustion coefficients were generated from plot data 

collected before and after fire in the region and from commonly used models. We developed a 

modified version of DayCent (Straube et al., 2018) that introduces a snag pool to improve 

representation of post‐disturbance ecosystem structure and fluxes. DayCent was also used to 

simulate commonly used model combustion coefficients and mortality transfers in both snag‐

free and snag‐enabled versions. Finally, we estimated recent western US forest emissions 

(2000–2016) for the same range of combustion and pool structures using forest inventory‐ 

derived plot biomass carbon estimates combined with the MTBS burn perimeter and severity 

database (Eidenshink et al., 2007).  

Fire combustion coefficients from the 2013 Rim Fire were calculated using the 

Yosemite Forest Dynamics Plot (YFDP; CA; Lutz, Larson, Swanson, & Freund, 2012) 

dataset. The YFDP (37.77°N, 119.82°W) is part of the Smithsonian ForestGEO network of 
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spatially explicit monitoring plots (Anderson‐Teixeira et al., 2015). The YFDP is a carbon‐

dense, mixed‐conifer forest, where live trees contained ~70% of aboveground biomass pre‐

fire (Table 1 and Table S4). The YFDP (800 m × 320 m) was divided into ten, 160 m × 160 m 

quadrats, and pre‐ and post‐fire aboveground carbon pools were calculated for each quadrat 

(Table 1, and Tables S3 and S4). The plot was burned in an unattended backfire set by 

Yosemite National Park to check the advance of the Rim Fire (Lutz, Larson, & Swanson, 

2018; Lutz et al., 2017).  

At plot inception (2009–2010), all trees were identified, mapped, and tagged. Snags 

were measured as to height, diameter, top diameter, and decay class. Shrub patches were 

delineated as poly‐ gons and shrub biomass was calculated by plot‐specific allometric 

equations (Lutz et al., 2014). Due to the 113 year period of fire exclusion (Barth, Larson, & 

Lutz, 2015), herbaceous cover was de minimus. Each pre‐fire year (2011–2013), trees were 

visited to ascertain their status in May–June, and therefore, the 2013 survey provided a com‐ 

prehensive inventory of standing stems. In May 2014, we performed the post‐fire survey, 

noting tree death, whether tree canopies were scorched or combusted, and measuring 

dimensions of partially com‐ busted snags.  

In 2011 and 2014, surface fuels were measured with 1,600 m transects following the methods 

of (Brown, 1974) with additional data taken on large woody debris (1,000 hr fuels, ≥10 cm 

diameter). Live biomass was calculated using the methods of Chojnacky, Heath, and Jenkins 

(2013). Snag biomass was calculated using the same equations as when trees were killed by 

fire when needles were only scorched. Pre‐fire biomass of snags was calculated as the mass of 

the bole only, calculated as a conic frustum.  
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Combustion estimates were also used from published studies in mature Oregon 

forests. (Campbell et al., 2007, 2016; Meigs, Donato, Campbell, Martin, & Law, 2009; Figure 

2; Table 1). Observations from the 2002 Biscuit Fire showed that live tree combustion was 

limited primarily to canopy combustion and bark scorching, resulting in a maximum 7% 

mature tree combustion at high (stand‐replacing) severity. These datasets also contained 

reburned plots that burned 15 years earlier in the 1987 Silver Fire. The authors did not find 

any significant differences between the combustion coefficients of the aboveground pools in 

the reburn versus the initial burn; however, because significantly more of the carbon was in 

snag, downed wood, or small diameter tree pools, more aboveground carbon did combust.  

Simulations were performed using a modified version (developed by the authors) of 

the biogeochemical model DayCent (Chen et al., 2016; Straube et al., 2018) that introduces 

standing dead pools and fluxes. DayCent is the daily time step of CENTURY, simulating 

fluxes of carbon and nitrogen between the atmosphere, ecosystem, and soil (for further model 

description see Figure S1). Our modified DayCent now incorporates standing dead pools of 

leaves, fine branches, and large wood into the forest submodel, as well as accompanying 

fluxes of carbon and nitrogen involved in both background senescence and prescribed fire and 

harvest events (Figure S1). Fluxes in and out of standing dead pools are governed by inputs 

from death of live pools, fall rates of standing dead material, decomposition, 

photodegradation, and removal by har‐ vest or fire. Attached dead leaves that fall to the 

ground are partitioned into surface structural and metabolic litter. When standing dead wood 

falls, it becomes coarse and fine woody debris. Live and dead material involved in fire events 

may now be returned to the system as charcoal. 
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Simulations were performed for each of the combustion and mortality parameter sets 

(Table S5) extracted from the YFDP 2013 Rim Fire, 2002 Oregon Biscuit Fire, and additional 

regional datasets of partial aboveground combustion (e.g., Fahnestock & Agee, 1983; 

Kauffman & Martin, 1989; Knapp, Keeley, Ballenger, & Brennan, 2005; Meigs et al., 2009). 

DayCent pre‐fire carbon pools and fluxes were parameterized to the 2011 and 2013 carbon 

stocks of the YFDP (Table 1, and Tables S3 and S4; Lutz et al., 2012). Model spinup (2,000 

years) was based on a pre‐modern fire return interval of 29 years followed by 120 years of no 

fire, consistent with historical park records. Site soil characteristics were extracted from 

SSURGO (NRCS, 2010). Site climate (temperature and precipitation) was based on location 

data from PRISM (Daly, Taylor, & Gibson, 1997) for 1981–2017. Post‐fire simulation 

periods in model experiments were driven with historical climate conditions. Mortality 

proportions were based on fire severity mortality classes (Campbell et al., 2016; Meigs et al., 

2009) comparable to the mortality in the “variable‐severity” model (below), facilitating 

comparison. Mortality classes include 0%–10%, 10%–50%, 50%–90%, and 90%–100% for 

very low‐, low‐, moderate‐, and high‐severity fire, respectively. 

DayCent was also used to simulate default parameter sets from the Community Land 

Model v 5.0 (CLM; Lawrence et al., 2018; Oleson et al., 2013) and LANDIS‐II with the Net 

Ecosystem Carbon and Nitrogen Succession (NECN) and Dynamic Fuels & Fire System 

(Sturtevant et al., 2009) (Scheller et al., 2007) (Tables S6, S7, and S8). These two models 

represent the range of coefficients and severities used by most other fire‐enabled ecosystem, 

forest landscape, and dynamic vegetation models (Tables S1 and S2). In our results, CLM and 

LANDIS‐II default parameters, respectively, inform our “static” and “variable” severity 

scenarios (combustion and mortality). In total, we performed 18 scenario simulations of the 
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YFDP representing the range of fire severity, pool combustion, and mortality transfer 

assumption scenarios. 

CLM is the land model of the Community Earth System Model (CESM) and simulates 

the fluxes of energy, water, chemical elements, and trace gases between atmosphere, plants, 

and soil. As the land‐model component of CESM, CLM is a globally utilized model in the 

effort to explore land‐climate feedbacks, and has been used to research forest–climate 

interactions throughout the western United States (Buotte et al., 2019; Hudiburg, Law, et al., 

2013; Hudiburg, Luyssaert, et al., 2013). During fire events, CLM employs single se‐ verity 

and mortality. Combustion is therefore governed by burn area. CLM first combusts litter, 

coarse woody debris, and live trees, and then transfers non‐burned tree biomass to dead pools 

(Table S8). 

LANDIS‐II is a forest landscape model simulating growth and succession of tree 

species and age cohorts. LANDIS‐II with NECN (derived from CENTURY/DayCent) is used 

to explore the potential effects of evolving climate, disturbance regimes, and management on 

ecosystem structure and composition. During a grid cell fire event, species cohort mortality is 

determined as a product of fire severity and species tolerance, with up to 100% of species 

cohorts killed and mortality occurring as death of all cohorts below a variable percentage of 

species longevity. Fire reduction parameters deter‐ mine emissions and specify reduction of 

dead wood and litter after the above mortality scheme kills and deposits biomass on the forest 

floor in the same time step (Tables S6 and S7). We calculated LANDIS‐II equivalent biomass 

mortality estimates for the YFDP dominant stand species (White fir and Sugar pine). 
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Western US carbon stocks were calculated from over 80,000 forest inventory plots 

(FIA) containing over 2.5 million tree records in the region following methods developed in 

previous studies (Hudiburg et al., 2009; Hudiburg, Law, Wirth, & Luyssaert, 2011; Law et al., 

2018; Law, Hudiburg, & Luyssaert, 2013). Uncertainty estimates for total regional emissions 

were calculated using a propagation of error approach accounting for error in biomass 

allometrics and the MTBS fire perimeters (Law et al., 2018). 

Western US fire emissions were calculated from 2000 to 2016 using MTBS 

(Eidenshink et al., 2007) estimates of burn area and severity combined with FIA plot biomass 

data aggregated by ecoregion and forest type (30 m pixel resolution; Table S9) and severity‐

specific combustion factors for each pool (large stems, small stems, downed dead wood, 

understory, standing dead, litter pools (Campbell et al., 2007; Meigs et al., 2009; and Rim Fire 

values from this study). Areas of recurring severe fire based on the MTBS re‐ cord (less than 

2% of total burn area included reburns from 1984 to 2016; Table S10) were combusted with 

modified biomass pools reflecting simulated post‐fire conditions using combustion 

observations from reburned plots in the Biscuit Fire study (Campbell et al., 2007, 2016; 

Donato, Fontaine, & Campbell, 2016). Combustion factor scenarios were consistent with 

DayCent YFDP simulation sets by carbon pool (see Tables S5–S8). Observation‐based and 

the variable‐severity model‐based sets were applied by severity. The static‐severity model 

combustion percentages were applied across all severities within burn perimeters. 

Comparisons with fossil fuel emissions were done using Environmental Protection Agency 

state CO2 emissions data (EPA, 2018). 
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Results and Discussion 

Fire emissions in carbon‐dense forests 

The YFDP experienced a mixed‐severity burn in 2013, consuming 22% of aboveground 

carbon, with dead biomass producing 95% of estimated emissions (Table 1). The fire induced 

~71% tree mortality (stems ≥1 cm dbh) within 1 year and combusted Observation‐based 

combustion of aboveground carbon de‐ creased from 22% (80 Mg C/ha) to 6% (22 Mg C/ha) 

from high‐ to very low‐fire severity, reflecting transitions between canopy and ground fire. 

With variable‐severity model coefficients, aboveground carbon combustion decreased from a 

maximum of 87% to a minimum of 10%. This wide range is explained by large modeled de‐ 

creases in emissions with decreasing burn severity, averaging 20% of aboveground carbon per 

severity class (Figure 3a; dotted lines). By contrast, observation‐based changes in emitted 

aboveground car‐ bon averaged 5% per severity class. The static‐ severity model simulation 

overestimated observation‐based emissions by 59%–486% (high‐low observed severity). 

Thirty years’ post‐fire, the static‐severity scenario carbon losses still exceeded those from 

observation‐based severities by 39%– 1010% (Figure 3a). The difference in emissions 

estimates between the variable‐severity model and observation‐based scenarios margin‐ ally 

decreased over time due to a lack of remaining biomass to decom‐ pose (Figure S3). 

Nonetheless, the variable and static‐severity models overestimated observation‐based 

emissions by averages of 150% and 130%, demonstrating persistent unrealistic post‐fire 

emissions over timescales relevant to greenhouse gas management. These results highlight 

that model estimates can both inflate fire emissions and the potential carbon benefits of 

severity‐reduction strategies, such as thinning for fuels reduction. Further, static‐severity  
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Figure 3. Simulated ecosystem carbon losses at the time of fire (Year 0) and 30 years post‐fire at the YFDP. For scenarios 

with variable severity, full bars indicate emissions density at high severity. Dashed lines indicate emissions at very low‐to‐

moderate severity. Points indicate scenario means (or static emissions). (a) Carbon losses for observation‐based and model 

default parameterizations. (b) Carbon losses for observation‐based, observation‐based without snags, and 

“mortality = emissions” scenarios. 
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overestimates increase dramatically at lower severities, undervaluing the persistent carbon 

storage capacity of forests experiencing low‐severity fire. 

Omission of a snag pool resulted in increased combustion of downed‐woody debris 

(vs. snags); net fire‐event carbon losses were 50%–79% greater across no‐snag scenarios 

(Figure 3b). Without snags, fire‐killed biomass was deposited on the forest floor and 

decomposed at a faster rate than in the snag scenarios, where large quantities of killed 

biomass decayed in standing dead pools before reaching the ground (Figure S1). The 

combined effects of altered combustion and decomposition after 30 years yielded an average 

doubling of simulated net emissions across severities when snags were not represented. 

From low‐to‐high severity, “mortality = emissions” scenarios (“public perception”; 

Figure 1b) exceeded observation‐based emissions by 140%–253% (Figure 3b); these results 

were similar to variable‐severity scenario results (Figure 3a). At neither 30 years nor 100 

years, post‐fire did the “mortality = emissions” scenario emissions decrease below the 

observation‐based scenarios. Although up to 95% mortality was implemented in the 

observation‐based scenarios, sub‐ sequent decomposition of dead biomass was largely 

compensated by regrowth. These results show that simulating mortality transfers that are 

distinct from combustion does not simply delay these carbon losses to the future (Figures S2 

and S3); greenhouse gas emissions and impacts to the atmosphere are instead markedly 

decreased. 

Emissions impacts across western US forest fires in the 21st century 

Across the western United States, observation‐based combustion emissions summed to 232 ± 

62 Tg C from 2000 to 2016, emitting 23% of aboveground carbon stocks within ~11 million  
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Figure 4. Western US aboveground carbon pools and pool fire emissions across scenarios, 2000–2016 forest burn area. Pre‐

fire aboveground carbon (AG) pool totals (opaque bars) are compared to fire‐event pool carbon emissions (translucent bars). 

Litter/duff, dead wood, and live trees account for 21%, 26%, and 53% of aboveground stocks, respectively. 

 

 

 

 

 

 

 

 



18 
 

 

e1
8 

 

Figure 5. Total state emissions (2000–2016) estimated from observed combustion coefficients versus coefficients from 

variable and static‐severity models. (a) Western state forest fire emissions and burn area. (b) Western state fire emissions as a 

proportion of fossil fuel (FF) emissions 
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hectares of burned area (Figures 4 and 5), in agreement with estimates for Oregon over 

similar time periods (Law, 2014; Meigs et al., 2009). As at smaller scales, model‐based live 

tree combustion overestimated observation‐based combustion by an order of magnitude 

(Figure 4), leading to regional emissions overestimates of 59% and 83%. Forest fires in 

California, Idaho, and Montana accounted for 54% of total combustion emissions (Figure 5), 

resulting from higher burned area and aboveground carbon density relative to southern 

interior states. Coastal‐state (CA, OR, WA) model‐based scenarios exceeded observation‐

based emissions by 81% and 103%, com‐ pared to overestimates of 35% and 67% in the 

Northern Rockies (ID, MT, WY). This difference stemmed from greater aboveground car‐ 

bon density in coastal versus Northern Rocky states. Thus, carbon loss is most overestimated 

in forests with high tree biomass. Regional observation‐based fire emissions totaled to 5% of 

fossil fuel emissions compared to twice that when using default coefficients (Figure 5b). 

Notably, Idaho and Montana fire emissions accounted for 55% and 24% of yearly fossil fuel 

emissions, respectively, highlighting the importance of correctly calculating fire emissions in 

the Northern Rockies due to large projected increases in fire (Westerling et al., 2006). 

Emissions in California and Washington were extremely low relative to fossil fuel emissions, 

likely because of population density (energy usage). 

Implications 

Our results illustrate that the use of inaccurate combustion coefficients in models can 

double forest fire emissions estimates across the western United States. Overestimates 

increase to three to four times in carbon‐dense forests such as the YFDP, mostly because 

models incorrectly combust live trees. Treating carbon released over years to centuries as an 
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immediate emission by equating combustion with mortality is simply inaccurate. Omitting 

snag representation in models compounds this error, because of altered decay and combustion 

dynamics.  

A warming climate and more frequently recurring fire (Westerling et al., 2006) may alter 

some regional forest carbon stocks from the present. The field data used in this study includes 

area in the 2002 Biscuit Fire that contained the 1987 Silver Fire (15 years earlier), where 

reburned plots showed an additional 26% reduction in standing and downed dead wood due to 

fire com‐ pared to mature single‐burn plots but similar pool combustion coefficients across 

fires (Donato et al., 2016). New observations from reburned lodgepole pine stands in the 

Greater Yellowstone Ecosystem show that young stands can lose a majority of the 

aboveground carbon (basal diameter <4 cm; Turner, Braziunas, Hansen, & Harvey, 2019), 

consistent with Biscuit Fire observations for the small conifer pool (Campbell et al., 2007). 

This suggests a mechanism by which recurrent burning (“reburn”) could in principle lead to 

state changes to treeless vegetation over the mid‐ term because of frequent, repeated 

combustion of aboveground stocks over time (Coop, Parks, McClernan, & Holsinger, 2016). 

The percentage of the regional forest landscape that has recently experienced such severe 

reburn is less than 1% (see regional methods), but could increase in the future with climate 

change (Dale et al., 2001; Turner et al., 2019), and disproportionally in some areas (e.g., 

Southern California and US Southwest). It will be essential to accurately estimate these 

emissions impacts in a regional context by quantifying shifting biomass pools (e.g., dead and 

young pools) upon which realistic combustion coefficients are applied.  
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Resolving modeled inaccuracies is critical because forest fire and CO2 emissions‐

reduction strategies are currently being implemented (California, Executive Department, 

2018; U.S. Executive Office of the President, 2018). Overestimating forest fire emissions 

exacerbates public and policymaker misconceptions (Figure 1). Our simulations highlight the 

need for more studies on pre‐ and post‐fire carbon pools over decadal durations in order to 

capture combustion dynamics in different forest types to provide observations for modelers to 

better constrain and validate their models. At present, even when models correctly estimate 

burned area, their ability to properly inform policy makers about the contributions of fires to 

greenhouse gas budgets can be inadequate, adding fuel to the fire when drafting forest 

management plans. 
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Supporting Information: 

Supporting Methods: 

DayCent Model 

DayCent requires the following inputs: vegetation cover, daily precipitation and air 

temperature (minimum and maximum), soil characteristics, and fire histories. DayCent 

calculates potential plant growth as a function of water, light, and soil temperature. Actual 

plant growth is limited based on soil nutrient availability and leaf area index, with allocation 

dependent on stand age, soil moisture, nutrient availability, and input parameters. DayCent 

has three soil organic matter (SOM) pools (active, slow, and passive), and two litter pools 

(structural and metabolic) each with different decomposition rates. All SOM pools and litter 

pools have above- and belowground components except for the passive pool. The active pool 

(microbial) has short turnover times (1–3 months), and the slow SOM pool (more resistant 

structural plant material) has turnover times ranging from 10 to 50 years depending on the 

climate. The passive pool includes physically and chemically stabilized SOM with turnover 

times ranging from 400 to 4000 years.  

DayCent represents the following aboveground carbon pools: Foliage, fine branch, large live 

wood, large dead wood (course woody debris), fine dead branch (fine woody debris), 

structural litter, and metabolic litter. Plant material entering the litter layer is split into 

structural and metabolic material as a function of the lignin-to-nitrogen ratio of the litter 

(more structural with higher lignin-to-nitrogen ratios). DayCent removal events (including 

fire) are prescribed, allowing simulation of historical fire events with an array of combustion 

parameter sets in the context of site ecosystem dynamics. 

FIA Biomass calculations 

Live and dead tree biomass were calculated using ecoregion and species-specific allometric 

equations that use both height and diameter (DBH) for estimating bole and coarse root 

volume and bark, branch, fine root, and foliage biomass (Law et al., 2018; Li, Kurz, Apps, & 

Beukema, 2003). Ecoregion and species-specific wood density data are used to convert bole 

and coarse root volume to biomass. Standing dead tree carbon is based on recorded biomass 

and decay class and reduced over time by standing dead decay rates. Downed dead wood 

biomass is estimated using the line transect method and species- and size-specific wood 

densities reduced by decay class. Understory carbon was extracted from the FIA database 

where it was modeled from aboveground biomass, forest type, and other attributes (Burrill, 

2017). Litter and duff biomass carbon estimates are also extracted from the FIA database as 

the product of plot average depth and material density that varies by forest type. For all 

calculations, in cases where an ecoregion and or species-specific equation or wood density is 

not available, substitutions can be made by genus, similar form, etc. Conversions to carbon 

are calculated based on carbon density of 0.5 for all pools
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Table S1: Process Model Fire Module overview:  

Model Type Use Fire Source 

CLM 5.0 Process- based Earth System 

Model  

Model emissions 

from historical to 

future fires 

Li et al. 2014 model  

Glob-FIRM, Spitfire 

Thonicke et al. 2001, 

Thonicke et al. 2010, Li et 

al. 2014  

LPJ-GUESS Process- based Earth System 

Model with DGVM 

(Individual or cohort-based) 

Model emissions 

from historical to 

future fires 

Prognostic; 

Glob-Firm 

Spitfire 

Blaze/Simfire 

Smith et al. 2014 

(Spitfire) 

Pellegrini et al. 2017 

(Blaze/Simfire) 

LPJ Process- based Earth System 

Model with DGVM 

(Population- based) 

Model emissions 

from historical to 

future fires 

Prognostic;  

Glob-FIRM Spitfire 

LM-Fire 

Sitch et al. 2003, Pfeiffer 

et al. 2013, Chaste et al. 

2018 

LANDIS-II Process- based forest 

landscape model with 

DGVM 

Model emissions 

from historical to 

future fires 

Prognostic; LANDIS Dynamic 

Fire System Extension  

 

CLM- 

FATES 

Process- based Earth System 

Model with DGVM 

Model emissions 

from historical to 

future fires 

Prognostic; Spitfire Fisher et al. 2018 

ORCHIDEE Process- based Earth System 

Model with DGVM 

Model emissions 

from historical to 

future fires 

Prognostic; Spitfire  Yue et al. 2014 a, b 

GFED Emissions are calculated 

using CASA predicted 

biomass within fire perimeter 

and an assumed static 

combustion 

MODIS collection 5 

(500 m res)  

Diagnostic, satellite-derived 

burned area estimate dataset  

Giglio et al. 2013 

van der Werf et al. 2017 

JSBACH-

Spitfire  

Process-based Earth System 

Model  

Land surface model 

simulating carbon 

and hydrological 

cycles 

Prognostic, Spitfire Lasslop et al. 2014 
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Model Type Use Fire Source 

aDGVM Process-based, individual-

based ecosystem model 

(tropics) 

Simulates 

physiological and 

biogeochemical  

Prognostic, Semi-empirical 

(Higgins et al. 2008) 

Higgins et al. 2008 

Scheiter & Higgins 2009  

MC2/MC1 Process-based regional 

biogeographic-

biogeochemical DGVM 

model (based on MAPSS and 

CENTURY models)  

Simulates species 

composition and C 

and nutrient 

dynamics  

Prognostic; MCFIRE Module  Bachelet et al. 2001  

‘Snagged’ 

DayCent 

(new 

version) 

Ecosystem / Biogeochemical 

model 

Model emissions 

from historical fires 

Diagnostic; fire events are 

prescribed 

This paper 

DOS-TEM Process-based ecosystem 

model (boreal)  

Simulates soil and 

vegetation carbon 

and nitrogen cycling 

Diagnostic; fire events are 

prescribed 

Kelly et al. 2016 

iLand Process-based, individual-

based forest landscape model  

Simulates forest 

dynamics at 

landscape and 

watershed scales 

Prognostic; iLand wildfire 

module 

Seidl et al. 2012 
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Table S2. Fire Model Descriptions (adapted from 1) 

 

FIRE MODEL LAND 
MODEL  

DESCRIPTION VARIABLE FIRE 
INTENSITY 

MORTALITY COMBUSTION SNAGS? SOURCE 

GFED CASA Satellite-derived 
burned severity and 
emissions. Empirical 
modeling between 
burnt area and 
satellite 
observations.  

Yes. Higher tree cover 
leads to higher 
tree mortality; 
lower tree/higher 
grass, lower tree 
mortality All ABG 
grass killed, 90% 
BG grass survives. 

Dependent on fuel 
type (leaf, stem, 
root/ alive, dead), 
life-form. Killed plant 
material goes to litter 
pool.  

No. Killed (but not 
combusted) enters 
litter pool.  

2,3 

GLOB-FIRM CLM, LPJ Empirical fire model. 
First global fire 
model.  

No. PFT-specific 
parameters for 
fractional 
mortality  

All ABG litter and 
living biomass 
completely 
combusted. PFT-
specific resistance 
factors for trees. 

No. Killed stems 
(not combusted) 
enters litter pool.  

4,5 

SPITFIRE LPJ-GUESS, LPJ, 
CLM-ED/FATES, 
ORCHIDEE, 
JSBACH 

Process-based, rate-
of-spread based fire 
model. 

Yes. Fuel 
combustion 
separated by PFTs. 
Fire intensity 
influences tree 
mortality from 
ground fires.  

Residence time 
influence tree 
mortality from 
ground fires via 
crown scorching, 
cambial damage.  
Flame height 
determines 
crown scorch. 
Thicker bark trees 
have greater 
survival rate.  

Dynamic process for 
combustion 
completeness. 
Depends on fire 
characteristics and 
the fuel class 
moisture content 
(PFT & fuel type 
specific combustion). 

No. C retained by 
the surviving, 
resprouting PFTs. 
Scorched 
woodmass enters 
litter pool. 

6,7 
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FIRE MODEL LAND 
MODEL  

DESCRIPTION VARIABLE FIRE 
INTENSITY 

MORTALITY COMBUSTION SNAGS? SOURCE 

LM-FIRE LPJ Process-based, rate-
of-spread based fire 
model. 

Yes. Fuel 
combustion 
separated by PFTs. 

Size cohorts in 
each PFT 

Dynamic process for 
combustion 
completeness. 
Depends on fire 
characteristics and 
the fuel class 
moisture content 
(PFT and fuel type 
specific combustion). 

No. C retained by 
the surviving, 
resprouting PFTs. 
Scorched 
woodmass enters 
litter pool. 

8,9 

LANDIS 
DYNAMIC FIRE 
SYSTEM 
EXTENSION 

LANDIS-II Rate of spread fire 
module 

Yes.      No.   10 

LI ET AL. 2013 CLM 4.5, 5.0  Based off CTEM fire 
module.  

  PFT-specific 
mortality factors.  

Combustion transfers 
C from leaves, stems, 
roots and ABG litter 
to the atmosphere. 
PFT-specific 
combustion factors 
for C pools (leaf, 
stem, root). 

No. Post-fire 
mortality transfers 
C (leaves, stems 
and roots) killed by 
fire to the litter 
pool. 

11,12 

SIMFIRE LPJ-GUESS  Semi-empirical fire 
model 

  Individuals of 
woody PFTs 
within each patch 
selected at 
random to be 
killed/survive 
based on PFT’s 
fire resistance 

100% of dead leaves, 
46-59% live and dead 
ABG grasses burn. In 
woody vegetation, 
100% of dead leaves, 
46-59% of live leaves 
burn. 20% dead and 
0% live wood. 

Transfer of live to 
dead biomass pools 
following a fire (LPJ-
GUESS doesn’t have 
snags. ) 

13 
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FIRE MODEL LAND 
MODEL  

DESCRIPTION VARIABLE FIRE 
INTENSITY 

MORTALITY COMBUSTION SNAGS? SOURCE 

BLAZE LPJ-GUESS Process-based, rate-
of-spread based fire 
model. 

Yes. BLAZE 
calculates fire-line 
intensity from 
meteorological data 
and fuel loads (from 
land model). 

Mortality occurs 
following low or 
negative growth 
efficiency, age, or 
due to a change 
in climate to 
conditions 
beyond the plant 
functional type’s 
(PFT’s) 
bioclimatic limits. 

Combustion based on 
intensity-dependent 
combustion factors.  

Transfer of live to 
dead biomass pools 
following a fire (LPJ-
GUESS doesn’t have 
snags. ) 

14 

MCFIRE MC1 & MC2 Process-based, rate-
of-spread based fire 
model.  

Yes. Fire intensity 
influences tree 
mortality from 
ground fires (crown 
scorching, cambial 
damage).   

Residence time 
influence tree 
mortality from 
ground fires via 
crown scorching 
and cambial 
damage.  Canopy 
height/flame 
height 
determines 
crown scorch. 
Thicker bark trees 
have greater 
chance of 
surviving fire of 
given residence 
time. 

Dynamic process for 
combustion completeness. 
Depends on fire 
characteristics and the fuel 
class moisture content 
(PFT & fuel type specific 
combustion). 

No. Scorched wood 
goes to litter pool  

15,16 

CTEM FIRE 
MODULE 

CTEM  Process-based, rate-
of-spread based fire 
model. 

  PFT-specific 
mortality factor.  

PFT-specific 
combustion 
parameters for 
different woody 
pools (leaf, litter, 
stem, root, 0-70%).  

No. Killed (but not 
combusted) goes to 
litter pool 

17 
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FIRE MODEL LAND 
MODEL  

DESCRIPTION VARIABLE FIRE 
INTENSITY 

MORTALITY COMBUSTION SNAGS? SOURCE 

LPX FIRE 
MODULE 

LPX (based on 
LPJ-SPITFIRE) 

Process-based, rate-
of-spread based fire 
model. 

Fire intensity 
influences tree 
mortality from 
ground fires (from 
crown scorching, 
cambial damage).   

Residence time 
influence tree 
mortality from 
ground fires via 
crown scorching 
and cambial 
damage.  Canopy 
height/flame 
height 
determines 
crown scorch. 
Thicker bark trees 
have greater 
chance of 
surviving fire of 
given residence 
time. 

Fuel combustion split 
into PFTs.  

No. Killed (but not 
combusted) goes to 
litter pool.  

18 
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Table S3. Yosemite Forest Dynamics Plot (YFDP) subplot biomass pool combustion (transfer) proportions. Calculated 2013 Rim Carbon pool combustion in the YFDP is 

based on biomass inventories19,20 for each of ten, 160 m × 160 m quadrats (see ‘methods’ for pool specific methods). Tree accounting entailed tracking of all stems ≥1 cm dbh. 

Ground fuel calculations are based on 160 m of fuel transects per quadrat. The snag field accounts for the decrease in biomass of tracked standing dead stems (≥10 cm dbh); 

however, these stems were not individually followed to ground pools, leading to this field more appropriately representation a combination of transfer and combustion rather than 

combustion alone. *Shrub biomass is based on the aggregate values for the 25.6 ha YFDP. Minor tree combustion was measured that was not large enough to be displayed as non-

zero values here.  

Subplot Litter Duff 1-Hour 10-Hour 100-Hour CWD Tree Shrub* Snag 

1 0.87 0.81 0.94 0.92 1.00 0.96 0.00 0.95 0.62 

2 0.92 0.84 0.70 0.80 1.00 0.58 0.00 0.95 0.73 

3 0.81 0.92 0.97 0.88 0.91 0.71 0.00 0.95 0.68 

4 0.90 0.85 0.79 0.80 1.00 0.87 0.00 0.95 0.65 

5 0.94 0.90 0.83 1.00 1.00 0.56 0.00 0.95 0.66 

6 0.98 0.87 1.00 1.000 1.00 0.80 0.00 0.95 0.67 

7 0.92 0.88 1.00 1.00 1.00 0.01 0.00 0.95 0.46 

8 0.92 0.93 1.00 0.96 1.00 0.92 0.00 0.95 0.54 

9 0.91 0.94 0.96 0.83 1.00 0.15 0.00 0.95 0.66 

10 0.87 0.91 0.84 0.78 1.00 0.28 0.00 0.95 0.49 
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Table S4. Yosemite Forest Dynamics Plot (YFDP) subplot pre-fire biomass pools. Biomass stocks (Mg ha-1) for each of ten, 160 m × 160 m quadrats of the YFDP, pre-Rim 

Fire burn. Inventories are from 2011 & 2014. See ‘methods’ for pool inventory methods. *Shrub biomass is based on the aggregate values for the 25.6 ha YFDP. Study carbon 

stocks were calculated as 0.5 times biomass. 

Subplot Litter Duff 1-Hour 10-Hour 100-Hour CWD Tree Shrub Snag 

1 23.79 78.49 0.38 2.56 3.90 26.51 757.06 5.88 21.44 

2 20.74 81.06 0.73 3.68 2.68 90.97 501.86 5.88 28.96 

3 23.15 112.37 1.35 3.04 5.60 176.84 563.13 5.88 35.56 

4 24.89 81.18 0.81 3.52 4.87 61.95 669.49 5.88 37.98 

5 30.92 80.17 0.59 2.29 8.28 72.50 502.22 5.88 23.01 

6 23.64 92.96 0.41 1.70 2.19 78.61 673.02 5.88 31.76 

7 21.07 90.08 0.50 1.28 1.70 59.97 579.39 5.88 28.59 

8 24.10 98.46 0.74 2.50 3.17 59.57 484.03 5.88 22.70 

9 23.83 81.42 0.27 1.23 1.22 71.76 451.61 5.88 27.89 

10 21.17 76.27 0.35 1.70 2.19 91.94 443.34 5.88 20.96 
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Table S5. Observation-based combustion coefficients. Based on regional aboveground carbon pool inventory spanning 

fire, including the 2013 Yosemite Rim Fire20 and the 2002 Biscuit Fire21,22.  

foliage 
live 

branch 
live large 

wood bark fwd cwd litter duff 

0.69 0.05 0.005 0.2 0.95 0.6 1 0.99 

0.27 0.02 0.001 0.06 0.9 0.55 0.9 0.9 

0.08 0.005 0 0.03 0.7 0.35 0.75 0.65 

0.02 0 0 0.01 0.5 0.05 0.5 0.45 
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Table S6. Landis II default cohort fire mortality reductions (variable severity), from the fire damage table of the 

Dynamic Fire System Extension10,23. The proportion of cohorts killed by a fire event is determined by the severity – species 

fire tolerance differential. All cohorts equal to or below the threshold age percentage are killed. The percentage refers to 

maximum species longevity, a user set parameter. Note: This is not a biomass reduction, which is mediated by the prognostic 

species age and biomass distributions. 

Cohort Ages Killed (% of 
species longevity) 

Severity - Species Fire 
Tolerance Differential 

≤ 20% -2 

≤ 50% -1 

≤ 85% 0 

≤ 100% 1 
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Table S7. Landis-II default Fire Reduction Parameters (variable severity), Net Ecosystem Carbon & Nitrogen 

Succession (formerly Century Succession)24,25. Note: Wood and litter reduction include biomass killed in the same fire event, 

which is transferred to the ground and combusted. 

Fire Severity Wood Reduction Litter Reduction 

1 0 0.5 

2 0.05 0.75 

3 0.2 1.0 

4 0.5 1.0 

5 0.8 1.0 
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Table S8. Default Combustion and Mortality Factors, CLM V5.012 (static severity). Mortality transfers occur as transfer 

of uncombusted leaf and stem pools, and thus do not include live material removal by combustion.  

Pool 
Combustion 

Factor 
Mortality 

Factor 

leaf 0.8 0.8 

stem 0.3 0.15 

dead wood 0.28* na 

litter 0.5* na 
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Table S9. Western U.S. state aboveground forest carbon pools (mean & SD) and fire statistics, 2000-2016. Statistics are estimated for burned forest area26-28.  

State  Live AGC (% AGC)  AGC (Mg ha-1)  Burn Area (km2)  

Mod-High Severity 
Fire (% fire area) 

Arizona (AZ) 60 (11) 75 (24) 14385 34 

California (CA) 62 (9) 133 (54) 19663 48 

       

Colorado (CO) 48 (16) 80 (18) 3945 53 

Idaho (ID) 46 (6) 88 (11) 18883 42 

Montana (MT) 45 (5) 98 (28) 11843 51 

New Mexico (NM) 57 (8) 77 (27) 8912 27 

Nevada (NV) 57 (12) 34 (30) 2143 52 

Oregon (OR) 62 (13) 111 (59) 11154 40 

Utah (UT) 37 (5) 57 (21) 5105 47 

Washington (WA) 55 (8) 110 (34) 8461 46 

Wyoming (WY) 41 (7) 90 (25) 3999 44 
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Table S10. Western U.S. forest burned area that experienced multiple moderate-high severity burns, 1986-2016. Based 

on MTBS fire severity products27 and forest cover from Hicke et al 2013 29.  

Region Severe successive reburn (%) 

AZ/CO/NM/NV/UT 1.0 

CA 3.4 

ID/MT/WY 1.6 

OR/WA 1.8 
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Figure S1. Diagram of modified Daycent standing dead modifications for carbon removals during disturbance events. 

Generalized diagram of carbon pools and removal flows (fire or harvest) in the modified Daycent version used in this study. 

Actual carbon pools correspond to live standing, dead standing, and ground pools for large wood, branches, and leaves. Non-

disturbance fluxes include temperature and moisture moderated decomposition and photodegradation for dead pools and 

senescence for live pools. Modified nitrogen structure not depicted here.  
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Figure S2. Post-fire emissions as the balance between growth and decomposition. Post-fire net carbon losses related to 

tree mortality are the balance of dead mass decomposition and forest regrowth (i.e. Net Primary Production; NPP). Slow 

decomposition, caused in part by standing dead matter, yields post-fire emissions that are largely compensated by rapid 

growth. a. Example of post-high-severity fire cumulative decomposition and total ecosystem carbon losses (i.e. emissions) 

for a simulation with high tree mortality but low tree combustion. b. Post-fire growth (i.e. Net Primary Productivity) and 

decomposition fluxes in the high mortality, low combustion scenario. 
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Figure S3. Scenario total carbon losses due to combustion and decomposition. Example high-severity fire ecosystem 

carbon losses under observation based (with snags, no snags) and high combustion, variable-severity model-based scenarios. 

All scenarios faced high tree mortality (95%) by mass. The high combustion scenario experienced most mortality as fire-

event combustion; observation-based scenarios experienced lower event combustion and post-fire carbon loss trajectories that 

were affected by decomposition with or without snags. Post-fire losses are a balance of component fluxes, as depicted in 

Figure S2. 
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Chapter 2: Restoration Thinning in a Drought‐Prone Idaho Forest Creates a Persistent 

Carbon Deficit 

Published in Journal of Geophysical Research: Biogeosciences as: 
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a drought‐prone Idaho forest creates a persistent carbon deficit. Journal of Geophysical 
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Abstract 

Western US forests represent a carbon sink that contributes to meeting regional and global 

greenhouse gas targets. Forest thinning is being implemented as a strategy for reducing forest 

vulnerability to disturbance, including mortality from fire, insects, and drought, as well as 

protecting human communities. However, the terrestrial carbon balance impacts of thinning 

remain uncertain across regions, spatiotemporal scales, and treatment types. Continuous and 

in situ long‐term measurements of partial harvest impacts to stand‐scale carbon and water 

cycle dynamics are nonetheless rare. Here, we examine post‐thinning carbon and water flux 

impacts in a young ponderosa pine forest in Northern Idaho. We examine in situ stock and 

flux impacts during the 3 years after treatment as well as simulate the forest sector carbon 

balance through 2050, including on and off‐site net emissions. During the observation period, 

increases in tree‐scale net primary production (NPP) and water use persistence through 

summer drought did not overcome the impacts of density reduction, leading to 45% annual 

reductions of NPP. Growth duration remained constrained by summer drought in control and 

thinned stands. Ecosystem model and life cycle assessment estimates demonstrated a net 

forest sector carbon deficit relative to control stands of 27.0 Mg C ha-1 in 2050 due to 

emissions from dead biomass pools despite increases to net ecosystem production. Our results 

demonstrate dynamics resulting in carbon losses from forest thinning, providing a baseline 
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with which to inform landscape‐scale modeling and assess tradeoffs between harvest losses 

and potential gains from management practices. 

Introduction 

Removal of atmospheric CO2 by the world's forests is now an essential component of 

limiting global warming to 1.5°C–2°C in addition to large reductions in fossil fuel emissions 

(IPCC, 2018). Forests remove atmospheric carbon via photosynthesis, accumulating large 

quantities of carbon in long-lived, lignin-dominated pools, most notably tree wood and soils. 

This is particularly evident in regions recovering from historically high levels of harvest 

(Hudiburg et al., 2019; Law et al., 2018). In the Western US, decreases in net carbon uptake 

(i.e., net ecosystem production [NEP]) due to drier conditions in water-limited environments 

and in- creases in mortality events from fire, insects, and drought (Abatzoglou & Williams, 

2016; Allen et al., 2010; Hicke et al., 2012; Schwalm et al., 2012; van der Molen et al., 2011) 

may decrease global greenhouse gas (GHG) mitigation potential of forests by increasing 

carbon losses relative to gains. In part due to concerns over declining carbon sink strength in 

some areas, forest thinning is being explored and implemented as a wide scale mitigation 

strategy (State of California, 2018), particularly in states with GHG reduction man- dates 

(California, Oregon, Washington). However, in situ observations of thinning impacts on 

carbon and water dynamics are limited, especially with measurements spanning the important 

temporal and spatial scales at which these impacts occur (from seconds to years and leaves to 

landscapes). 

 Forest thinning has become a common strategy for reducing individual tree stress and 

potentially decreasing tree mortality (Franklin et al., 2018; Liang et al., 2018; Sohn et al., 

2016; U.S. Executive Office of the Pres- ident, 2018), yet thinning is a management practice 
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with inherent carbon costs because live trees are killed, reducing primary producer density 

and increasing dead biomass available for decomposition or combustion (both within and 

outside of the ecosystem) (James et al., 2018; Law et al., 2013). To justify specific removal 

treatments for carbon storage benefits, the net emissions costs of thinning must be lower than 

the costs of inaction at the temporal and spatial scales of focus, regardless of an ecosystem's 

baseline sink or source strength (Hudiburg et al., 2011; Law et al., 2013; Mitchell et al., 2012; 

Naudts et al., 2016). However, the carbon balance impacts of treatments remain uncertain 

across tree, ecosystem, and regional scales due to large variations in ecosystem processes, 

stochastic landscape disturbances, unclear assessment time scales, variable treatment and 

accounting methods, and historically unprecedented climate. This complexity precludes a 

“one size fits all” approach to prescriptions (Brown et al., 2004; DellaSala et al., 2013; 

Hudiburg et al., 2019; Law et al., 2018). Moreover, sufficient continuous measurements of 

before and after carbon stocks and fluxes in control and thinned stands are often lacking 

(Tsamir et al., 2019), especially measurements that can be used to improve and validate the 

mechanics of the larger scale modeling (M. D. Hurteau et al., 2016; Liang et al., 2018; 

McCauley et al., 2019) that is essential to evaluating landscape outcomes. 

Natural and human disturbances, including fire, insects, drought, and harvest, can 

reduce NEP through altering the balance between ecosystem gross primary production (GPP, 

i.e., photosynthesis) and total eco- system respiration (ER) (Chapin et al., 2006). NEP can be 

reduced in the absence of tree mortality due to greater sensitivity of GPP than respiration to 

stressors, as shown from eddy covariance estimates during turn of the 21st century drought in 

western North America and Europe (Ciais et al., 2005; Schwalm et al., 2010, 2012; Zhao & 

Running, 2010). Mortality events generate large reductions in net primary pro- duction (NPP) 
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(i.e., growth, or GPP minus autotrophic respiration) via decreases in live plant density and 

pulses of dead biomass decomposition that may last years to centuries (J. L. Campbell et al., 

2016; van der Molen et al., 2011). The net ecosystem carbon balance (NECB) represents the 

total ecosystem carbon balance and includes losses from fire emissions or human removals. In 

the case of forest fire, direct emissions result from combustion of biomass stocks, but 

typically account for less than 30% of aboveground carbon, are small in relation to subsequent 

decomposition after high-severity fire, and are primarily limited to dead biomass on the forest 

floor (J. Campbell et al., 2007; J. L. Campbell et al., 2016; Harris et al., 2019; Meigs et al., 

2009; Stenzel et al., 2019). 

In examining disturbance from harvest, however, it is important to recognize that 

NECB is an ecosystem mass balance and does not account for the net emission of ecosystem-

derived carbon to the atmosphere. In other words, “out-of-site” is not “out-of-mind” when 

accounting for net emissions because all removed bio- mass eventually decomposes or is 

combusted (Harmon et al., 1996). The Net Forest Sector Carbon Balance (NSCB; Hudiburg et 

al., 2019) accounts for net emissions of ecosystem carbon from NEP, on-site combustion, and 

off-site emissions estimated via life cycle assessment (LCA). 

Thinning for disturbance mitigation is intended to generally increase residual tree 

resistance to stressors, increasing individual tree carbon and water status and decreasing 

probability of mortality. However, killing live tree biomass can decrease ecosystem carbon 

storage over baseline conditions on decadal scales (Goetz et al., 2012), with storage losses, 

time until recovery, and residual tree growth positively correlated with thinning intensity 

(Zhou et al., 2013). These processes vary regionally and there are few studies that have 

continuously measured water and carbon fluxes both before and after thinning, measured at 
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stand scales, and included control plots (Dore et al., 2010, 2012). Instead, studies have 

primarily relied on single or periodic carbon stock inventories and modeling. This is 

important because modeling studies should be validated against data (measurements) of the 

process-based responses before quantifying carbon emissions for entire regions. 

Thinning can impact forest response to stressors through modifying the availability of 

water, light, and nutrients to the remaining trees as well as altering microclimates. Particularly 

in water limited forests, changes to soil water availability and timing can have significant 

impacts on tree photosynthesis and growth (Tepley et al., 2020). In addition to direct impacts 

on canopy transpiration, thinning has been shown to result in changes to snowmelt volumes 

and infiltration through less canopy interception and subsequent sublimation (Krogh et al., 

2020; Tague et al., 2019; Varhola et al., 2010). These hydrological changes can change soil 

water availability via altering the partitioning of evaporation, transpiration, and runoff, most 

significantly during the spring and summer, when warming temperatures and longer 

daylengths allow for more substantial photosynthesis in higher latitudes. For forests that 

experience summer drought, soil water availability in deeper soil layers is also crucial 

(Brooks et al., 2002) and is affected by the persistence of site snowpack in the spring and 

timing of snowmelt at higher elevations. 

Forest thinning emissions result primarily from the harvest and eventual 

decomposition or combustion of killed above and belowground biomass. Because harvests 

differ from natural disturbances in that large quantities of stem biomass are often removed 

and are emitted off site, conducting a LCA of biomass fates is critical to estimating carbon 

emissions, as no biomass is stored indefinitely (Goetz et al., 2012; Hudiburg et al., 2011, 

2019). Avoided emissions (e.g., combustion during a subsequent or avoided fire) should also 
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be accounted for, but because fire is stochastic, and will occur in only a fraction of a treated 

landscape during treatment lifespans, these avoided emissions are difficult to quantify (J. L. 

Campbell & Ager, 2013). More- over, the emissions avoided can be less than emissions 

associated with harvest, depending on the harvest intensity (Berner et al., 2017). 

To address the biogeochemical impacts of thinning, we performed a density reduction 

treatment (thinning) on a ponderosa pine forest in the Northern Rocky Mountains, a region 

that is underrepresented in long- term forest research networks (e.g., AmeriFlux, LTER, 

NEON) yet contains some of the most carbon dense forests in the western US. The region is 

also characterized by seasonal drought stress and forests with high vulnerability to 

disturbance (Buotte, Law, et al., 2020; Buotte, Levis, et al., 2020). We utilize a novel 

integration of automated tree and soil measurements, traditional inventory techniques, LCA, 

and ecosystem modeling to examine response at multiple spatiotemporal scales. Multidecadal 

ecosystem carbon trajectories in the 21st century are simulated with Daycent (Parton et al., 

1998), the daily timestep version of the CEN- TURY model, to evaluate the consequences of 

thinning at stand and landscape scales through 2050. Our study addresses the following: What 

are the impacts of forest thinning on (1) tree-scale carbon and water dynamics, (2) ecosystem 

scale carbon and water dynamics, and (3) net forest sector carbon balance through 2050? In 

the short term, we hypothesized that moderate live tree removals would increase individual 

tree water use and production yet reduce stand carbon uptake due to reductions in live tree 

density and increases in dead belowground biomass. Moreover, considering the immediate 

and eventual emissions of biomass removals, we expect that carbon parity with the control 

stands would take several decades. 
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Materials and Methods 

Study Site Description 

The study site is a 35-year old (2015) ponderosa pine (Pinus ponderosa) plantation 

located in the University of Idaho Experimental Forest in Northern Idaho 

(46.846°N−116.716°W, Figure 1). Pretreatment average basal area was 36 m2 ha-1 and 

density was 824 trees ha−1. Average tree diameter-at-breast-height (DBH) and height were 23 

cm and 15 m. Site elevation is ∼970 m with slopes from 0° to 5° and aspects ranging from 

∼135° to 270° southeast to west. The 30-years average annual air temperature and 

precipitation are 8.3°C and 883 mm, respectively (DayMet; (Thornton, 2012). The previous 

40 years mean frost free growing period is 113 days, with every year after 2012 being above 

average (Hegewisch & Abatzoglou, 2020). Typically, this region experiences prolonged 

summer drought with consecutive rain free days ranging from 40 to 100 days, resulting in a 

late-summer drought period in which rooting depth soil moisture is depleted and vapor 

pressure deficits are high (SNOTEL; Schaefer & Paetzold, 2001). Soils at this location are a 

silty loam with a volcanic ash layer. Understory shrubs consist of ninebark (Physocarpus 

malvaceus), oceanspray (Holodiscus dumosus), and common snowberry (Symphoricarpus 

albus). Understory tree regeneration is largely nonexistent. 

Study Design 

Six 0.4-ha (1-acre, 35.7 m radius) plots were installed in the Fall of 2016. In each plot, 

four subplots (10 m radius) were established following the FAO Terrestrial Carbon 

Observations protocol (Law et al., 2008), with one subplot in the center and the remaining 

three 15-m from center in the directions of 0°, 120°, and 240°. Three plots were thinned to 6  
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Figure 1. Study location and design. (a) Plot diagram. Locations of sap flow sensors and dendrometers were randomly 

distributed within 4, 10 m radius subplots. (b) Study location in the Northern Rockies ecoregion near Moscow, ID, USA. (c) 

Annotated image of study sites within the University of Idaho Experimental Forest, June 2020 (ArcGIS World Imagery, 1.2 

m). Red circles indicate plot locations (center circles = thinned, triangles = control). Representative photographs were taken 

shortly after the thinning treatment in Spring, 2017 (photo credit: T. Hudiburg). 
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m spacing and a 50% reduction in basal area from December 2016 to April 2017, while the 

remaining three plots remained as control plots. Woody debris and slash from the thinned 

plots were removed, piled, and burned in accordance with University of Idaho Experimental 

Forest protocols to prevent fuels build-up and bark beetle habitat. To capture the stand 

dynamics associated with thinning, we estimated pre and post thinning carbon stocks, carbon 

fluxes, and water dynamics. We statistically modeled stocks, fluxes, and water dynamics as a 

function of time, seasonality, and environmental covariates (Tables S2–S4) to identify data 

patterns and explain intraannual responses. We projected long- term effects of thinning on 

forest ecosystem carbon balance with a biogeochemical model (DayCent) and life cycle 

analysis of harvested carbon. 

Carbon Stock and Biometric Measurements 

Sampling size and frequency differed for the measured biomass pools (see Table 1). 

For all biomass pools, conversions to carbon are calculated based on a carbon to biomass ratio 

of 0.5. Live and dead tree biomass were calculated using regional and species-specific 

allometric equations that use height and DBH for estimating bole and coarse root volume, 

bark, branch, fine root, and foliage biomass (Means et al., 1996). Site-specific wood density 

was used to convert bole and coarse root volume to biomass. Standing dead tree carbon is 

based on recorded biomass and decay class and reduced over time by standing dead decay 

rates.  

Understory woody shrub biomass was estimated using site-specific allometric 

equations based on in situ samples of shrubs. We estimated percent cover and height classes  
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Table 1. Carbon stock and biometric field sampling structure. 

Inventory Year Season Scale Samples (n per Plot) 

Tree 2016, 2019 Summer Subplot Complete 

Understory 2016, 2019 Summer Subplot Complete 

Woody Debris 2016, 2019 Summer Plot A 10-m (fine) and 45-m (coarse) (2) 

Soil 2016 Summer Plot 4 per plot (4) 

Litter and Duff 2019 Fall Plot 4 per plot (4) 

Roots 2016, 2017, 2018, 2019 Spring, Fall Subplot 3 per subplot (12) 

Standard deviations are in parentheses. All carbon pools are in Mg C ha-1 while NPP is in g C m−2 yr−1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

 

e6
1 

Table 2. Average plot-level pre- and post-thinned carbon pools and NPP. Standard deviations are in parentheses. All carbon 

pools are in Mg C ha-1 while NPP is in g C m-2 yr-1. 

 

Total 

Tree 

(live and 

dead)  

Woody 

debris 

Understory 

Vegetation 

Litter 

/ Duff  
Soil 

Total 

Ecosystem 

Carbon 

NPP  
 

2012 -

2016 
       

Control  
102.2 

(3.9) 

33.1 

(1.6) 
5.4 (0.2) 

16.2 

(3.8) 
 56.1  (8.4) 213.1 (13.1) 

784.9 

(84.8) 

Thinned 
101.6 

(15.9) 

34.8 

(4.6) 
5.5 (0.8) 

16.9 

(6.7) 
 51.4 (8.4) 210.2 (19.3) 

794.7 

(67.1) 

2017 -

2019 
       

Control 
104.6 

(4.0) 

33.1 

(1.6) 
5.4 (0.2) 

16.2 

(11.9) 
NA 215.4 (13.2) 

760.7 

(83.8) 

Thinned 
53.8 

(9.1) 

40.5 

(2.6) 
1.4 (0.2) 

16.9 

(6.7) 
NA 164.0 (13.7) 

550.9 

(61.8 
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for a sample of shrubs, then harvested, dried, and weighed samples to develop the biomass 

equations. Subsequently, all shrub percent cover and height class within each subplot were 

measured to estimate total shrub biomass of each plot. Thinning operations destroyed over 

85% of shrub biomass with negligible re-sprout prior to the 2019 sampling. Herbaceous and 

grass biomass were negligible in all the plots and not included in our estimates. Plot level fine 

and coarse woody debris carbon pools were estimated using line-transects that extended in 

each cardinal direction from the center of the plots (Law et al., 2008; Van Wagner, 1968), 

with density modifiers by species and decay class. All stump diameters, heights, species, and 

decay classes were recorded for each plot. Stump volume was calculated as a cylinder and 

converted to biomass with a decay-class constant modifier for density. 

Soil samples (10 cm2) were measured for carbon and nitrogen content at 0–5 cm, 5–10 

cm, 10–20 cm, and 20–30 cm. Litter and duff were separated from these samples (Chojnacky 

et al., 2009), dried, and weighed in the laboratory. Field depth of litter and duff was measured 

and bulk density was calculated; biomass to carbon conversion factors of 0.37 and 0.49, 

respectively were used to estimate carbon stocks of each (M. Hurteau & North, 2009). 

Root biomass cores were collected from the top 20-cm of the soil profile. Roots were 

separated from the soil, dried, sorted into size classes (<2 mm, 2–5 mm, and >5 mm), and 

weighed to get seasonal biomass of fine and coarse roots. Root biomass was used to estimate 

the carbon pool size of roots as well as fine root turnover. 
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Carbon and Water Flux Measurements 

Automated measurements of soil moisture, soil temperature, sap flow, bole 

circumference growth, and soil respiration occurred from 2017 to 2019. Primary data 

collection occurred through the months of March through November and is the focus of 

analysis. 

Meteorological data were captured through a combination of on-site sensors and 

nearby meteorological stations. On site climate and soil measurements were augmented with 

precipitation and air temperature from the Moscow Mountain SNOTEL station located on the 

same ridge as the study site (Schaefer & Paetzold, 2001). Air temperature and relative 

humidity within the mid-canopy (4.5–6 m) of 1 tree per plot were measured using MicroDAQ 

LogTag model HAXO-8 humidity and temperature recorders (MicroDAQ.com Ltd., 

Contoocook, NH, USA). Soil moisture and temperature were measured at half hourly 

intervals with CS650 sensors (Campbell Scientific, Logan, UT, USA). Probes were placed in 

the soil, horizontally at 10, 30, and 80 cm in the soil profile in each plot in a location where 

slope and canopy coverage were representative of the majority of the plot. 

Sap flow was measured in seven trees per plot using paired thermal dissipation sap 

flow probes (Granier et al., 1996) installed to a depth of 2-cm into the sapwood. The upper 

probe was continuously heated while voltage differential between the two probes was 

measured at 5-min intervals using CR1000 dataloggers (Campbell Scientific, Logan, UT, 

USA). Sap flow measurements were reduced to three trees per plot for the winter months 

(November–March) each year due to solar power limitations. Time series data were cleaned 

and converted from differential voltage via the TRACC package for R (Ward et al., 2017). A 
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rolling baseline zero flow was calculated with a zero-flow vapor pressure deficit (VPD) 

threshold of 0.1 kPa on nights in which this threshold was met for a minimum of 2 h and 

linearly interpolated for periods of higher VPD. 

Stand sap flux (Et; cm d−1) was calculated with additional inputs of stand inventory 

observations, including tree DBH and sapwood depth. Plot sap flow was calculated as canopy 

transpiration (Ec; cm m-2 d−1; at ≥ daily scale) divided by area. Canopy transpiration was 

calculated as a product of sap flow (cm h−1), sapwood area, and leaf area at daily and greater 

scales. To account for flow attenuation at depths greater than 2 cm, relative flux by sapwood 

depth was calculated according to similarly aged ponderosa pine stands (Irvine et al., 2004). 

We did not find a relationship between tree size and sap flow at 2 cm (the range of DBH in 

the stands was narrow in the even aged stand). For trees without sensors in each plot, we 

estimated flow based on average flow rates adjusted by tree-size-specific estimates of 

sapwood area and flow attenuation across sapwood depth. 

Stand canopy conductance (Gc; cm s−1; Equation 1) was calculated from stand sap 

flow, intracanopy temperature and relative humidity, and stand LAI, and restricted to periods 

when VPD greater than or equal to 0.6 kPa. (Drake et al., 2011; Ewers et al., 2001): 

(1) 

Where T is temperature (Celsius), VPD is vapor pressure deficit (kPa), LAI is stand leaf area 

index (unitless) and Kg is the conductance coefficient (Drake et al., ). Based on Fick's law, 

carbon uptake can be calculated a function of and the leaf‐atmosphere CO2 gradient. We 

therefore also assessed the degree to which light‐saturated leaf CO2 concentrations (Ci) were 
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conserved in the study stand (Drake et al., ; G. Katul et al., ). Ci across the growing season 

was estimated via leaf starch δ13C, which is the ratio of stable isotopes 13C–12C relative to a 

standard reference and reflects carbon isotope discrimination associated with photosynthesis 

(Equations and ; Farquhar et al. ). Mid‐ and upper canopy sunlit needles were collected across 

plots during the spring and summer drought period of 2018 (n = 38) via the shotgun method, 

reflecting the isotopic composition of recent photosynthate relative to the standard reference. 

Needles were dried and ground and starch was extracted via methanol/chloroform/water 

extraction (Wanek et al., ), then packaged in tin capsules. Analysis of δ13C was performed 

using a coupled elemental analyzer (ECS 4010, Costech Analytical, Valencia, CA) and 

continuous flow isotope ratio mass spectrometer (Delta PlusXP, Thermo Finnigan, Bremen, 

Germany), reported relative to VPD. Ci was calculated as:  

(2) 

 

(3) 

Where ∆ is discrimination relative to air and a and b are the fractionation due to diffusion and 

carboxylation (4.4 and 27)‰. We assumed a δ13Cair of −8‰ and that atmospheric CO2 was 

a stable 415 ppm during day- time hours (G. G. Katul & Albertson, 1999).  

The seasonality of tree growth was determined using self-logging dendrometer bands. 

TreeHugger auto- mated dendrometer bands (Global Change Solutions, LLC) were installed 

on sap flow trees in each plot by March of 2017, ∼2 months prior to typical growing season 

initiation. TreeHugger dendrometer bands record bole circumference changes via shifting 
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stylus depression of a soft potentiometer pad. Dendrometer accuracy is ±10 μm and 

measurement resolution is 6 μm. Prior to installation, outer stem bark was smoothed with a 

rasp and chisel. Bands were installed at ∼2-m in height (above sap flow probes) and 

appropriate spring tension for proper stylus-potentiometer overlap was verified. 

Circumference and band/logger temperature were recorded at 30-min intervals by a dedicated 

logger associated with each band. Band data was analyzed for determining the seasonality 

(i.e., rate of growth, start and cessation) of bole wood NPP and reconciled with increment 

core data to determine annual bole wood NPP. 

Current and historical estimates of wood NPP were derived from measuring radial 

growth increments from 20 trees in each plot, including sap flow trees. NPP of woody 

components is computed from the difference in biomass at two points in time divided by the 

measurement interval. Previous DBH (calculated from the wood increment cores) and height 

(modeled using site-specific diameter height equations) for each tree are used to calculate the 

previous biomass. Foliage NPP was calculated as foliage biomass divide by plot-specific 

average leaf retention times (Hudiburg et al., 2011). We were unable to detect significant 

changes in live and dead root biomass pools between spring and fall sampling periods, and 

therefore could not calculate fine root NPP in our samples. We used the literature reported 

average fine root turner over time for North American conifers (0.641; Li et al., 2003) 

multiplied by fine root biomass to determine fine root NPP. 

Total soil respiration (Rs; including both autotrophic [Ra] and heterotrophic [Rh] 

contributions) was were measured using both automated and survey measurements. Shallow 

10-cm diameter collars were installed to a depth of 2-cm at each subplot in March of 2017. 
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Automated measurements of Rs were taken hourly using eosFD forced diffusion chambers 

(Eosense, Nova Scotia, Canada). Two chambers each were installed at two of the thinned 

plots and one control plot. Automated measurements were primarily used to evaluate and 

develop diurnal gap filling techniques for the survey data and for winter Rs measurements 

while the chambers were under snow and the sites were inaccessible. 

Survey measurements of Rs were taken weekly from April–early November between 

10:00 a.m. and 2:00 p.m. using an EGM-5 SRC portable gas analyzer (PP Systems, 

Amesbury, MA, USA). Survey measurements were gap-filled to attain daily, weekly, 

monthly, and annual totals of Rs using linear interpolation (Gomez-Casanovas et al., 2013). 

Linear interpolation was selected because it outperformed soil temperature and soil moisture 

based models (Reichstein et al., 2003) when compared to automated data for periods in which 

automated Rs data were available. 

Biogeochemical Model Description, Evaluation, and Simulations 

An updated and improved version of the DayCent ecosystem model (Parton et al., 

1998; Stenzel et al., 2019) was implemented to estimate future NEP dynamics post thinning 

and estimate the NSCB along with a LCA. DayCent is the globally recognized daily timestep 

version of the biogeochemical model CENTURY, widely used to simulate the effects of 

climate and disturbance on ecosystem processes including forests worldwide (Bai & Houlton, 

2009; Bartowitz et al., 2019; Hartman et al., 2007; Hudiburg et al., 2017). The current version 

(Stenzel et al., 2019) now includes a standing dead tree pool (i.e., snag pool) because of the 

important biogeochemical consequences of having standing dead wood versus live wood that 

dies and immediately becomes downed coarse woody debris. 
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Required inputs for the model include vegetation cover, daily precipitation and air 

temperature, surface soil texture, site coordinates (for solar inputs), and disturbance histories. 

DayCent calculates potential plant growth as a function of water, light, and soil temperature, 

and limits actual plant growth based on soil nutrient availability. The model includes three 

soil organic matter (SOM) pools (active, slow, and passive) with different decomposition 

rates, above- and below-ground litter pools, and a surface microbial pool as- sociated with the 

decomposing surface litter. Plant material is split into structural and metabolic material as a 

function of the lignin to nitrogen ratio of the litter. The active pool (microbial) has short 

turnover times (1–3 months) and the slow SOM pool (more resistant structural plant material) 

has turnover times ranging from 10 to 50 years depending on the climate. The passive pool 

includes physically and chemically stabilized SOM with turnover times ranging from 400 to 

4,000 years. Model outputs include soil C and N stocks, live and dead biomass, above- and 

below-ground NPP, heterotrophic respiration, fire emissions, and NEP, defined as the 

difference between NPP and heterotrophic respiration. While Daycent does not explicitly 

represent individual trees, it implicitly represents the effects of stand competition, particularly 

with regards to the availability of mineral nitrogen and soil moisture. 

Site simulations were driven with historic (1950–2005) and projected future climate 

(daily maximum temperature, minimum temperature, and precipitation) through 2050 under 

RCP 8.5 (Figure S5). In- put data was obtained as 4 km statistically downscaled CCSM4 

(CMIP5 GCM ensemble member) data from MACAv2-METDATA 

(https://climate.northwestknowledge.net/MACA/data_csv.php; Abatzoglou & Brown, 2012). 

MACA is a statistical downscaling method that has been evaluated for local analysis while 

retaining a large set of climate variables. Parameterization of point runs was based on species 
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and local observation-based ecophysiological traits (e.g., Leaf retention time, leaf nitrogen 

concentration, maximum leaf area index) and site and area specific soil characteristics 

(observations and SSURGO; Abatzoglou & Brown, 2012; NRCS, 2010). Disturbance history 

was prescribed based on the experimental thinning and most recent recorded clear cut of the 

stand in the late 20th century. Model evaluation within the observation period was based on 

comparison with measured live and dead carbon stocks, aboveground NPP, and seasonal soil 

volumetric water content (Table S6, Figures S3 and S4). For 2018–2019, model VWC r2 was 

0.72 (Figure S3); in particular, the timing of summer soil dry down followed observations and 

in turn led to model NPP downregulation. From 2008 to 2016, the r2 of the modeled 

aboveground live carbon stock was 0.90, reflecting similar model-observation live-tree 

trajectories following the 20th century clear cut. 

In addition to prognostic future NEP, the emissions tradeoffs between thinning losses 

and potentially enhanced forest resilience to mortality were evaluated with additional 

disturbance prescriptions. A range of mass mortality scenarios were prescribed for the higher 

density unthinned stands only. Scenarios were intended to represent stress related mortality 

events in which most killed live biomass remains on site (e.g., drought, insect, pathogen, and 

other chronic stress-related mortality), and thus did not include combustion losses. The future 

timing (2020–2045) and intensity (50%–90%) of a single mass mortality event was varied and 

compared to an undisturbed control and thinned stand net emissions by 2050 (Table S1). 

Life-Cycle Assessment and Net Forest Sector Carbon Balance 

A LCA was employed to account for the storage and emission of killed harvested 

biomass that was removed from site or combusted on site. Branches and foliage mass from 

harvested trees were burned as slash on site within 1 year of the thinning. Removed biomass 
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was divided into product pools including wood and paper products with half-lives of 75 and 

2.5 years (Dymond, 2012; Skog, 2008; Smith et al., 2006), respectively. Wood waste (i.e., 

mill wood that does not become a product) is assumed to be burned onsite with energy 

recapture or to decay within 1 year. Fossil fuel emissions for all harvesting activities and 

transport to the mill are also included. We define the Net Forest Sector Carbon Balance 

(NSCB; see Hudiburg et al., 2019) as the net terrestrial balance of carbon within or derived 

from the forest ecosystem (NEP—Fire Emissions—wood product chain emission; Table S5). 

In comparison to NECB (NEP—Fire Emissions—Harvested Biomass), NSCB accounts for 

net vertical transfers of carbon between the atmosphere and land, delaying the subtraction of 

removed carbon until it is combusted or decomposes at the end of the product chain lifespan. 

NEP was modeled with the Daycent ecosystem model, and included decomposition of 

stumps, course roots, and fine roots killed during harvest. 

Statistical Analyses 

Flux differences (except stand scale NPP) between treatments were evaluated using 

generalized linear mixed-effects tree models (GLMM Tree; Fokkema et al., 2018). These 

models estimate a global random effects model, recursively partition the data with respect to a 

set of covariates using model-based recursive partitioning (MOB; Zeileis et al., 2008), and 

apply localized linear mixed-effects models (LMM; Bates et al., 2014) to partitioned data, that 

is, MOB terminal nodes. Global linear mixed-effects models did not describe the data well 

(except for stand scale NPP), partly because of the nonlinear nature of response variables 

within years. The MOB aided in identification of treatment-subgroups, which was beneficial 

for non- arbitrary data partitioning into temporally similar responses and improving LMM 

covariate fitting. Stand scale NPP was modeled for all nontreatment plots for the period 2008–
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2018 to detect effects of climate with- out treatment effects. An LMM without the MOB 

modeling was fit to these data after the MOB model failed to detect subgroupings on the 

partitioning covariates. Model selection for each flux was based on nested covariate models 

and assessment of AIC, BIC, and interpretation of model fit. Covariate significance within the 

selected LMM models was determined using 95% confidence intervals. The nested set of 

covariates with respect to the fixed effects, random effects, and the MOB models differed 

among the fluxes (Tables S2–S4). R was used for data analysis, with the glmertree package 

used for estimation of the GLMM Tree (Fokkema et al., 2018) and the lme4 package used for 

the LMM. 

Uncertainty estimates in model predictions were quantified using a propagation of 

error approach that combines the observation uncertainty (i.e., NPP, biomass) with 

uncertainty in model input parameters and forcing datasets (i.e., climate). Because our climate 

data was specific to our site for historical simulations, we had no reason to assign any 

uncertainty for validation with observations. Moreover, because the model was parameterized 

exclusively with site data, most of our model uncertainty was attributed to variation in our site 

observations for leaf retention time and belowground biomass. 

Results 

Pre- and Post-treatment Carbon Stocks  

Thinning reduced tree biomass by 47 ± 13% across treatment plots, resulting in a 

density of 232 ± 23 trees ha−1. Postthinning spacing increased from ∼13 to 21 ft (3.3–6.6 m). 

Residual tree DBH in thinned plots increased from 23 cm prethinning to 27 cm and heights 

from 14.8 to 16.5 m. Woody debris increased in the thinned plots primarily because of 
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removal operations increased the number of stumps (from ∼4.5 to 9.1 Mg C ha−1; Table S1). 

Thinning reduced understory vegetation biomass by 75%; however, understory vegetation 

was a minor portion of aboveground live biomass pretreatment (<5%) in all plots. Killed 

course root mass was the largest source of on-site dead biomass inputs, ranging from 11 to 13 

Mg C ha−1 per plot. Moderate winter windthrow occurred in treatment plot 6, resulting in 7% 

mortality of remaining live trees. No additional mortality has been observed in control or 

treatment plots since observations began in 2016. In total, an estimated 60% of killed 

aboveground biomass was removed from the site, while most of the remaining portion was 

piled and burned. 

Net Primary Production  

Tree-Level Response to Thinning In thinned plots, average individual tree NPP 

increased 70% ± 12% (2017–2019 growth vs. 2012–2016 growth), with the largest increases 

observed immediately after thinning in 2017 (Figure 2b). In comparison, control plot average 

tree growth declined by 1%–5% in the same period. Increased average tree growth in thinned 

plots was a result of both increased growth of remaining individuals (i.e., within-tree NPP 

increased on average 31% ± 8%) as well as a greater proportion of larger, higher productivity 

trees. Trees remaining after treatment had been on average 30% more productive and 5 cm 

larger in DBH than the prethin plot tree average. In remaining trees, there was not a strong 

relationship between diameter and radial growth (r = 0.05). However, consistent radial growth 

across size classes translated to a geometric positive effect of tree size on volume growth 

(Figure 2a). Treatment response magnitude and direction was variable; 20% of thinned stand 

trees did not display increases in radial growth, 50% displayed increases of less than 25%, and 

15% of trees displayed increases of over 100% (Figure 2a). 
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Figure 2. Tree and stand level thinning NPP response. (a) Tree NPP response by DBH. Triangles indicate mean 2017–2018 

NPP, triangle direction indicates increases (up) or decreases (down) from the 2015–2016 tree NPP mean, represented by the 

start of each line. (b) Plot level NPP by treatment. Bars indicate SE. Vertical dashed line indicates thinning treatment.  
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At the stand scale, decreases in tree density were not compensated by the increases in 

tree growth, and NPP decreased by 45% in thinned stands, (−245 ± 23 g C m-1 yr-1, p < 0.05, 

paired T-test) (Figure 2b). During the same period, control plot NPP declined by 3% (−25 ± 

11 g C m-1 yr−1). Before treatment, average yearly NPP from 2012 to 2016 across all plots 

was 790 ± 75 g C m-1 yr−1. Through the pretreatment period, NPP sensitivity to yearly 

climate was relatively low (Figure 2b). NPP excluding fine roots peaked in 2010 (∼500 g C 

m-1 yr−1) and declined modestly through 2016, with apparent declines in radial growth 

approximately balancing increases in tree size and stand biomass. The primary driver of 

pretreatment stand-level NPP variation was stand age rather than seasonal cli- mate variables 

(Table S2, LME). Even so, site-wide NPP estimates ranged by only 50 g C m-1 yr-1 from 2008 

to 2016. Though 2015 was an exception- ally hot and dry year, with the longest soil drought 

period within the observation period, stand NPP nonetheless increased over 2014 (Figure 2b). 

Automated dendrometer measurements indicated that stem radial growth occurred 

from early May until the beginning of August from 2017 to 2019 (Figure 3; ∼3 months), a 

period receiving an average 11% of yearly precipitation during the last decade (2010–2019 

Moscow Mountain SNOTEL). Spring rain was not sufficient for preventing continual declines 

in soil moisture to 30 cm following snow melt (Figure 3). Neither growth start nor end dates 

varied significantly by treatment (p < 0.05, two-sided t-tests), despite tree level differences in 

treatment growth magnitude (Figure 2a). Growth initiation was more rapid (days) than 

cessation (weeks) and corresponded to the period of soil and air temperature increase 

immediately after snowmelt. Growth cessation was gradual (ap- proximately the month of 

July) and corresponded with the depletion of rooting depth VWC. Drought-period  
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Figure 3. Tree growth and seasonal moisture. (a) 2010–2019 VWC at 20 cm depth (median and range) and daily 

precipitation (daily median). Vertical gray lines indicate median boundaries of the snow‐covered season. Moscow Mountain 

SNOTEL station. (b) Example dendrometer Δ stem circumference series (ΔC; from early spring minimum) for the study site. 
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circumference shrinkage occurred followed growth cessation and continued until the first 

major fall rain events, when rapid (i.e., hours to days) circumference recovery occurred upon 

(Figure 3). 

Respiration 

Soil respiration (Rs) between control and treatment plots was similar from weekly to 

annual time scales (Figure 4), with some seasonal variation. Total annual soil respiration did 

not significantly vary between treatments during 2018 or 2019 (Table S3 and t-test, p > 0.05). 

However, there were periods when control plot means differed from thinned plot means. Rs 

varied significantly during July and August of 2018 with higher Rs in the thinned stands. 

Annual Rs ranged from ∼830 to 1230 g C m-2 yr-1 across plots in 2018–2019. Across all 

years and treatments, concurrent with stem growth, Rs peaked from May through July and 

declined strongly with de- clines in VWC from August onwards (LMM; Table S3).  

Modeled estimates of component soil respiration fluxes showed a concurrent increase 

in Rh and decrease in Ra in the thinned plots for several years after thinning, followed by soil 

Ra recovery and gradual course root decomposition. In both periods, the result was negligible 

net change in total Rs (Figure S1). 
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Figure 4. Survey soil respiration observations for control and thinned plots from 2017 to 2019. Error bars represent the 

standard error for plot‐level mean values on each measurement day. 
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Sap Flow and Canopy Conductance 

Tree-level sap flow (i.e., at sensor depth) from May-October was 55% and 46% higher 

in thinned versus control plots in 2018 and 2019, with distinct predrought and drought periods 

(Figures 5c and 5d, significant treatment effects during all 2018 and 2019 periods, Table S4). 

In thinned plots, tree sap flow was on average 18% & 26% higher until week 28 in 2018 and 

week 29 in 2019, when significant drought divergence was observed (Figures 5c and 5d). 

Spring and early summer sap flow patterns were similar between treatments, with flow under 

well-hydrated conditions corresponding to variations in temperature and VPD, 

Declines in sap flow occurred during rapid soil dry-down (Figure 3) from July through 

August. While trees in all plots demonstrated declines in sap flow along with declines in site 

VWC, control-tree flow declined by ∼65% from predrought maximum flow by August, while 

treatment-tree flow declined by ∼33%. Continued declines were observed through September, 

with 87% and 63% decreases for control and treated plots, respectively, relative to mid-season 

maximums. As a result, tree-level sap flow for trees in the thinned stands from mid-July 

through October were on average 133% and 90% higher than control stand trees sap flow 

during 2018 and 2019. For control and thinned plot trees, this drought period represented an 

average 31%–32% and 40%–48% of measurement period sap flow. Flow past October 

remained low, though temperatures and VPD declined during this period. During all growing 

season periods evaluated, treatment and VPD were significant covariates, while VWC was 

significant across most periods (Table S4). 
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Figure 5. Tree and stand scale sap flow, 2018–2019. (a) Daily and (b) cumulative mean stand transpiration. (c) Daily and (d) 

cumulative mean tree sap flow. 
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In 2019, Gc was estimated with the addition of intracanopy temperature and relative 

humidity measurements. High spring Gc was achieved across treatments by late March to 

early April, with average daytime Gc 19% higher in thinned stand trees (Figure S1). Daytime 

Gc for both treatments began to decline sharply in late July (∼doy 200) and diverged in 

magnitude by early August. Thinned stand Gc was on average 165 % higher than in control 

plots from August through mid-October, with peak differences occurring in early September, 

after which air temperature and VPD declined through the Fall. During the fall, Gc rose 

despite consistently low sap flow due to lowered VPD. Spring and Summer δ13C was also 

evaluated as a proxy for the intraleaf concentration of CO2 and intrinsic water use efficiency 

(i.e., Ci/ Ca). Values of δ13C did not vary significantly between treatments or across the 

spring and summer drought period (p < 0.05, paired and unpaired t-tests). 

Stand-Level Transpiration 

Decreased tree density, sapwood area, and leaf area in the thinned stand (Table 1) 

resulted in lower stand-level transpiration compared to control plots from May-October 

(Figures 5a and 5b). Transpiration in the control plots was 74% higher than the thinned plots, 

varying from 115% higher in early July to 19% more in late October. This difference was 

greater than 100% in the predrought period, when tree-level sap flow was similar be- tween 

treatments. In 2018 and 2019, stand-level sap flow approximately converged beginning in 

August and control stand-level flow decreased below treatment flow in September only 

(Figures 5a and 5b). 
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Net Forest Carbon Balance (NEP and LCA) 

Thinning resulted in an average 48 and 10 Mg C ha-1 of killed above and belowground 

biomass, with 37.4 Mg C ha-1 removed from site (Table 1). ∼35% of killed biomass remained 

on site, 18% was combusted as slash or left as debris, and 65% was removed. 

Ecosystem partial harvest was simulated in DayCent to investigate trends through 

2050 under a warming climate with consistent annual precipitation (Figure S5). Through the 

observation period, modeled tree component carbon stocks and seasonal patterns of soil 

moisture driving summer growth cessation com- pared well to measurements (r2 = 0.90 and 

0.72 respectively. Figures S3 and S4). During the first 5 years postharvest, modeled NEP in 

thinned stands was lower than control stands, resulting in a maximum post- treatment relative 

NEP deficit of 12.1 Mg ha-1 (Figure 6a). The NEP deficit relative to control stands was 

overcome by 2035. Low or negative NEP in the first 5 years postharvest resulted from killed 

belowground biomass decomposition as well as reduced leaf area and NPP (Figure 6a). By 

2050, total posttreatment NEP in the thinned stand was 4.6 Mg ha-1 higher than control stands, 

a relative recovery of 16.7 Mg ha-1 compared to the posttreatment minimum. Increases in NEP 

resulted both from increases in NPP and in- creased allocation to low-turnover wood pools 

that occurred in part due to increased availability of mineral nitrogen. Decomposition of killed 

course roots occurred over several decades and a pulse of postharvest respiration was 

primarily apparent from the smaller fine root pool. Compared to the control simulation 

through 2050, differences in stand carbon stocks declined but did not disappear. Aboveground 

live and total ecosystem carbon in the thinned stand amounted to 75% and 84% of the control 

in 2050. 
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Figure 6. Modeled NFSB post treatment (2017–2050). Vertical gray lines indicate treatment stand recovery to pretreatment 

total ecosystem carbon stock. (a) Cumulative treatment stand NEP and NFSB and component product emissions. (b) 

Cumulative treatment and control NFSB. Dotted line indicates thin NFSB deficit relative to control. 
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Combustion of slash and waste products resulted in 15 Mg C ha-1 of har- vested 

biomass emissions within the first 5 years of treatment (Figure 6a). By 2050, 21.0 Mg C ha- 1 

(56%) of removals and 31.6 Mg C ha-1 (66%) of killed aboveground biomass had been 

emitted. Most remaining product carbon remained in long-term pools, which retained 73% 

(16.4 Mg C ha−1) of inputs in 2050. The NSCB was −26.7 and 33.7 Mg C ha-1 in 2021 (5 

years) and 2050, representing the net balance of stand-derived carbon both on and off site 

relative to pretreatment. Thinned stand carbon parity with pretreatment carbon stocks (2016) 

occurred in less than 20 years. However, the NSCB deficit relative to the control stand was 

27.0 Mg C ha-1 in 2050, representing the simulated net emissions to the atmosphere relative to 

control (Figure 6b). 

Scenarios with prescribed future mass tree mortality in unthinned stands indicated that 

most mortality events before 2050 would not exceed the 27.0 Mg C ha-1 relative emissions 

estimated for thinned stands by 2050 (Table S1). Mortality of 50%–95% of tree biomass 

before 2035 led to control-relative emissions that were 40%–70% of treatment stand relative 

emissions by 2050. Events of 75%–90% and from ∼2035 to 2045 approximately matched or 

exceeded site 2050 thinning-related relative emissions (maximum increase of 22%). In all 

cases, while high mortality yielded greater than 40 Mg C ha-1 killed biomass, gradual on-site 

decomposition as well as regrowth or improved residual forest growth led to control-relative 

2050 emissions equivalent to less than 25% of killed biomass. 

Discussion 

Forest thinning in a young ponderosa pine plantation resulted in observed and 

modeled decreases in ecosystem and forest sector carbon storage over unmanaged control 

plots through the year 2050. Despite increased tree-level production and water use in a 
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location characterized by growing season drought stress, this study affirms inherent site 

tradeoffs between individual tree vigor and stand carbon storage over time. We estimate that 

thinned plot carbon stocks will return to prethinned levels by 2035 (Figure 6), but forest 

sector carbon parity (Mitchell et al., 2012) with untreated plots will not occur by 2050 and 

therefore represents a relative carbon source to the atmosphere in the absence of disturbance. 

After treatment (2017–2019), decreased tree density reduced observed stand biomass 

and NPP over control (Figure 2b, Table 2), while soil respiration remained similar (Figure 4). 

Modeled results suggested that thinned stand NEP would exceed control NEP in subsequent 

years following several years of canopy recovery due to increases in available mineral 

nitrogen and increased allocation of carbon to wood (and a resulting decrease in biomass 

turnover). However, a carbon deficit relative to control remained due to the removal of ∼40% 

of live ecosystem carbon as well as the subsequent release of ∼60% of removed biomass by 

2050. Despite the continued storage of a portion of removed biomass in long-lived wood 

products, large immediate and short-term emissions were associated with slash combustion, 

on-site decomposition, and short-term product chain emissions (i.e., waste and paper), and do 

not represent avoided emissions through 2050. A multidecadal ecosystem biomass (i.e., 

carbon) deficit following moderate and heavy partial harvest is supported by most analyses of 

mid to long-term thinning structural impacts (James et al., 2018; Zhou et al., 2013), though 

we note a general paucity of long-term observations of carbon stocks specific to variable 

thinning treatments and regions (Williams & Powers, 2019). We highlight that moderate 

removals in the productive, even aged study stand (vs. thinning from below, e.g., North & 

Hurteau, 2011) led to net emissions due to biomass removal and turnover that was rapid 

relative to yearly ecosystem production (i.e., “slow in, “fast out," Law et al., 2018). 
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Thinning increased average tree size, diameter growth, and NPP (Figure 2a). Increases 

in average NPP were a function of both increases in individual tree production as well as 

altered stand structure (i.e., lower productivity trees being removed; e.g., M. Ryan et al., 

1997). A ∼70% increase in average tree growth was associated with a more modest ∼30% 

increase in residual tree production. This result highlights the need to differentiate increases in 

tree production (and, presumably, resilience) from averages that are dependent on structural 

changes alone when interpreting previous research and anticipating stand and landscape level 

carbon sequestration and storage (e.g., D'Amato et al., 2013; Sohn et al., 2016; Zhou et al., 

2013). Longitudinal observations of individual trees (e.g., Anderson-Teixeira et al., 2015) are 

generally necessary to isolate tree responses to disturbance and determine the extent to which 

mean responses are representative of over- all stand function and resilience. 

Tree growth magnitude within years was not strongly related to growth duration 

across treatments and individuals, as growth was similarly constrained by mid-summer VPD 

and VWC (Figure 3). However, thinned plot trees displayed higher sap flow and canopy 

conductance through the late summer and early fall drought period, implying higher 

photosynthesis. High-seasonal variability in canopy conductance and a lack of strong 

variation in Ci/Ca are consistent with conductance as the primary determinant of assimilation 

in our stands (Drake et al., 2011). These results are also consistent with higher sensitivity of 

growth (i.e., NPP) than photosynthesis (and GPP) to seasonal moisture stress, a temporary 

decoupling of carbon supply and carbon demand (Körner, 2003; Muller et al., 2011; Sala et 

al., 2012), and a likely improved carbon supply of thinned stand trees through the fall and 

winter. At an individual tree scale, the largest increases in NPP were observed in the growing 

season immediately after the winter thinning treatment. Though growing seasons 2018–2019 
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were preceded by markedly improved tree fall and yearly average gas exchange in treatment 

plots, continued increases in annual stem growth over 2017 were not observed, possibly 

suggesting altered carbon allocation responses across treatments that were not resolved by our 

measurements (Körner et al., 2005; M. Ryan et al., 1997). 

While observed growing season length and growing season stand water use were 

similar between treatments, thinned plot trees displayed less severe downregulation of 

drought-period water use (Figure 5). This implies improved tree carbon and water status 

during drought moisture stress and winter periods, and the potential for improved resistance to 

mortality from regional drought or other disturbance (Adams et al., 2017; N. McDowell et al., 

2008; Schlesinger et al., 2016; Sevanto et al., 2014). However, the only nat- ural tree 

mortality observed since 2015 has been mild windthrow in treatment plots. It will be essential 

to continue current monitoring in order to observe the long-term impacts of thinning on 

carbon and water status and how those dynamics effect potential decreases in mortality from 

disturbance (D'Amato et al., 2013; Sohn et al., 2016; Tepley et al., 2020; van der Molen et al., 

2011) that were not prescribed in our modeling. To date, our site observations have been 

based on treatments in even aged stands of codominant young trees (<40 years). As the stands 

age, the increased relative size and performance of thinned stand trees (Sohn et al., 2016) may 

contribute to stand structure that is more resistant to disturbance impacts (Agee & Skinner, 

2005). However, forest vulnerability to drought is also complicated by vulnerabilities 

associated with larger trees that have been related to hydraulic limitations, canopy 

characteristics, and other factors impacting carbon source strength or sink demand (Bennett et 

al., 2015; N. G. McDowell & Allen, 2015; Pangle et al., 2015; M. G. Ryan et al., 2006) and 

can reverse the direction of responses to density as stands age (D'Amato et al., 2013). 
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Carbon balance tradeoffs between reduced biomass density and increased forest 

resilience to disturbance are uncertain in large part due to the uncertainty of future natural 

disturbances occurring in treated areas. Our simulated mass mortality scenarios indicated that 

2050 thinning emissions approximately equaled the 2050 emissions from stand mortality 

events greater than 75% and occurring after 2035. In these experiments, the gradual 

decomposition of large pools of killed biomass remaining on site highlighted that the 

emissions consequences of near-term natural disturbances will in part be realized beyond 

current GHG reduction timelines (e.g., 2035 or 2050, IPCC, 2018). Thus, when managing for 

forest carbon storage, the timing and magnitude of potential carbon gains or losses, which 

may be offset in time from disturbance events, must be considered. In our simulations, the 

near-parity in carbon emissions from thinning and high natural disturbance late in the 

simulation period occurred at the stand level. However, at the landscape level, the encounter 

rates between treatments and disturbance are typically low (J. L. Campbell et al., 2012). 

Greater areas of forest must therefore be treated than will encounter a disturbance, in turn 

increasing any carbon cost to benefit ratio estimated at the stand scale. Due to the infeasibility 

of landscape level treatment experiments, landscape level predictions of disturbance impacts 

are generally simulated with earth systems models (Buotte, Levis, et al., 2020), which remain 

limited in their ability to represent stochastic disturbance such as wildfire 

Thinning treatment impacts will vary across spatiotemporal scales, meaning our 

results are both site-specific and have future uncertainty. Furthermore, while our experiment 

entailed a single thinning intensity, it is possible that lower biomass harvest would have 

resulted in enhanced residual tree function at lower carbon cost (nonlinear benefits; North & 

Hurteau, 2011; Zhou et al., 2013). Future work in the region should also better characterize 
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snow accumulation and melt (e.g., SWE) and soil water availability both onsite and at higher 

elevations to better understand how changes in hydrology will affect thinned and unthinned 

stands (Krogh et al., 2020). 

This study indicated that moderate forest thinning at a northern Rocky Mountain site 

improved tree function during summer drought at the cost of reduced forest sector carbon 

balance through 2050. Following treatment, growth and water use increased at the tree scale 

but decreased at the stand scale due to density reductions. Ecosystem modeling and LCA 

demonstrated near-term carbon emissions from on and off-site killed biomass that were large 

relative to annual NPP and therefore unlikely to be overcome in the near- term of GHG 

mandates (e.g., Hudiburg 2019); this highlights the importance of accounting for the fates of 

harvested biomass. At a stand level, our results demonstrate that thinning strategies to reduce 

carbon emissions in the next decades (IPCC, 2018) must either overcome inherent and 

persistent carbon deficits over nonmanagement or be sufficiently justified for services other 

than carbon storage (i.e., wood production, human hazard reduction). However, treatments 

intended to increase carbon storage over business-as-usual should also show that they can do 

so at the landscape scale and within potentially limited treatment life- times (J. L. Campbell et 

al., 2012). Because the locations of stochastic disturbances (e.g., fire) will occur over only a 

fraction of a treated area, further landscape (vs. stand) level analyses are ultimately necessary 

to integrate the prevalence and magnitude of carbon balance impacts from human versus 

natural disturbances in managed landscapes. It is particularly important to account for region-

specific ecosystem carbon density, productivity, and vulnerability to disturbance to establish 

where treatments may successfully mitigate car- bon losses (Buotte, Law, et al., 2020). 
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Supplemental Information: 

 

Figure S1. Daycent simulation total soil respiration (Rs) and heterotrophic soil respiration (Rh). Vertical gray line indicates 

treatment year.  
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Figure S2. Treatment average canopy conductance, 2019. 
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Figure S3. Model- Observation Comparison, soil VWC. Observed 20 cm Moscow Mountain Snotel VWC and Daycent 

simulated VWC (10-30cm), 2018-2019. a. Time series. b. Mean Weekly observed vs modeled VWC. 
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Figure S4. Model- Observation Comparison, live aboveground carbon stocks. a. Time series aboveground live C and foliage 

C, all plots. b. Modeled aboveground live c vs observed plot means.  
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Figure S5. Model historical and future climate inputs, 1950-2050. a. Mean annual Tmax and Tmin. b. Mean annual 

precipitation. 
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Table S1. Daycent simulated stand mass mortality events in unthinned stands and carbon emissions relative to undisturbed control stands. Note: Mortality scenarios are intended to 

explore potential mortality as a result of unreduced density and were simulated without direct emissions (e.g. combustion) or site removals. Simulations allow for hypothetical 1:1 

area comparisons with control and treatment stands but do not reflect likely landscape proportions that will follow each trajectory.   

Event Year 

Mortality  

(% Mass) 

Live C  

(Mg/ha) 

C emissions relative to 

control (Mg/ha) 

Δ Live C from 

control (Mg/ha) 

2021 50 149 11 -43 

2021 75 130 15 -63 

2021 90 119 16 -73 

2026 50 141 14 -52 

2026 75 118 18 -75 

2026 90 106 19 -87 

2036 50 125 18 -67 

2036 75 94 26 -99 

2036 90 76 29 -117 

2046 50 100 19 -93 

2046 75 56 27 -137 

2046 90 29 33 -163 
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Table S2. Fixed Effect model parameters for pre-treatment Stand NPPwood (g m-2 yr-1), 2008-2019.  

Stand NPP         

  β CI 5% CI 95% t 

(Intercept) 311.589 298.271484 324.816019 40.004 

Year -11.949 -14.024542 -9.882595 -9.648 

Bold t values indicate a significant parameter based on 95% CI criterion.  

Methods note: Variables examined but excluded by model selection (see Methods) included monthly and seasonal metrics of total and average precipitation, temperature, VPD, 

30cm VWC. Timings included the initiation and cessation of rapid soil moisture depletion and recharge (calculated as weekly second differences). Period lengths included 

potential growing seasons defined by early (temperature) and late (soil moisture) thresholds within the growing season. Stand structure-relevant metrics examined included year 

(age), basal area, volume. 
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Table S3. LME tree model, 2018 survey soil respiration (Rs, g m-2
 hr-1)  

 

Bold t values indicate a significant parameter based on 95% CI criterion.  

 

 

 

 

 

 

Control Thinned Control Thinned Control Thinned Control Thinned

Sapflow (mean) 0.425 0.321 0.637 0.495 0.653 0.636 0.726 0.843

β CI 5% CI 95% t β CI 5% CI 95% t β CI 5% CI 95% t β CI 5% CI 95% t

Intercept -2.663353 -3.110 -2.218 -9.478 7.9237691 5.944 9.896 6.375 1.5674103 0.797 2.339 3.231 0.4774531 -0.489 1.439 0.787

Treatment -0.182052 -0.370 0.005 -1.541 -0.177198 -0.353 -0.002 -1.605 -0.1220292 -0.319 0.075 -0.983 -0.092044 -0.382 0.198 -0.503

DOY 0.0035389 0.002 0.005 5.072 -0.020855 -0.027 -0.015 -5.75 -0.0020593 -0.007 0.003 -0.647 -0.001846 -0.010 0.006 -0.383

TempSoil 0.1629786 0.127 0.199 7.241 -0.060146 -0.103 -0.017 -2.205 0.0761471 0.018 0.135 2.071 0.1800165 0.045 0.317 2.107

Node 2 Node 4 Node 6 Node 7

Soil Temp >10.8 C

VWC 30cm >0.15

VWC 30cm <=0.30 VWC 30cm >0.30

Soil Temp <= 10.8 C
VWC 30cm <=0.15
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Table S4. LME Tree Model, 2018-2019 weekly total sap flow (cm). Fixed effects are listed in table. Plot and tree are random effects. Bold t values indicate a significant parameter 

based on 95% CI criterion.  

2018 Model

Control Thinned Control Thinned Control Thinned

Sapflow (mean) 631.19 880.01 583.91 644.89 788.62 941.81

β CI 5% CI 95% t β CI 5% CI 95% t β CI 5% CI 95% t

Intercept -564.2 -2794.9 1666.4 -0.4 3458.0 1045.8 5871.6 2.3 -265.9 -3017.0 2486.0 -0.2

Treatment 248.4 167.4 329.3 5.0 110.0 29.2 190.6 2.2 139.1 56.1 222.0 2.7

Time 15.3 -22.9 53.6 0.6 -16.0 -26.8 -5.1 -2.4 36.1 18.3 53.9 3.3

VWC.30 764.5 -4404.6 5934.1 0.2 -7119.0 -9237.2 -5002.7 -5.4 1258.0 -2279.4 4793.2 0.6

VPD 938.0 629.7 1246.2 4.9 618.9 392.2 845.3 4.4 323.4 39.5 607.1 1.8

Control Thinned Control Thinned Control Thinned Control Thinned Control Thinned

465.27 1052.08 140.98 541.09 840.37 1212.69 45.19 262.97 17.79 75.56

β CI 5% CI 95% t β CI 5% CI 95% t β CI 5% CI 95% t β CI 5% CI 95% t β CI 5% CI 95% t

203800.0 55149.3 352351.6 2.2 -5614.0 -11264.5 33.8 -1.6 7343.0 -23251.2 37923.4 0.4 4437.0 855.3 8020.5 2.0 1341.0 -1583.3 4264.7 0.7

585.2 493.2 677.0 10.2 391.9 316.6 467.1 8.4 357.4 268.0 446.6 6.4 224.2 144.5 304.0 4.5 2.6 -93.7 98.7 0.0

-4599.0 -7977.4 -1216.8 -2.2 57.3 -6.4 121.0 1.4 -70.8 -794.0 652.9 -0.2 -21.4 -48.3 5.5 -1.3 -15.8 -76.3 44.6 -0.4

-437000.0 -757075.7 -116584.8 -2.2 34770.0 10288.2 59269.1 2.3 -13500.0 -57277.2 30282.3 -0.5 -27060.0 -53054.6 -1090.8 -1.7 -150.4 -7218.6 6918.3 0.0

2136.0 405.7 3863.3 2.0 43.2 -33.7 120.1 0.9 -755.8 -1773.9 261.8 -1.2 95.7 -19.4 210.8 1.3 231.0 -477.6 939.9 0.5

2019 Model

>28 Weeks

Control Thinned Control Thinned Control Thinned Control Thinned

Sapflow (mean) 547.1 660.3 813.3 1004.9 383.9 730.8 131.7 298.3

β CI 5% CI 95% t β CI 5% CI 95% t β CI 5% CI 95% t β CI 5% CI 95% t

Intercept -2351.3 -3494.3 -1207.7 -3.3 -12135.7 -21122.1 -3152.3 -2.2 8281.9 5353.8 11213.3 4.6 -135.2 -5328.2 5060.2 0.0

Treatment 133.8 9.1 258.5 1.7 192.8 67.5 318.0 2.5 279.1 154.1 404.0 3.6 124.3 -9.5 258.1 1.5

Time 18.3 7.6 28.9 2.8 426.4 157.1 695.8 2.6 -148.3 -201.2 -95.4 -4.5 -18.5 -62.6 25.6 -0.7

VWC.30 17407.3 11390.8 23420.7 4.7 17334.6 10319.0 24351.8 4.0 11609.7 3898.3 19320.4 2.4 25724.4 -30319.8 81730.1 0.7

VWC.5 -13869.6 -18175.5 -9561.6 -5.2 -4825.4 -9294.6 -355.2 -1.8 -24324.9 -38278.2 -10386.8 -2.8 284.8 -2532.3 3104.4 0.2

VPD 472.3 340.7 603.9 5.8 670.4 501.6 839.1 6.4 -258.7 -375.3 -142.2 -3.6 649.6 -173.1 1473.0 1.3

<= 32 Weeks > 32 Weeks

Node 4 Node 5 Node 6

Node 10

VPD <= 0.77
VPD > 0.77 

<= 39 Weeks > 39 Weeks

VWC 30cm <= 0.31 VWC 30cm > 0.31

VWC 30cm <= 0.15 VWC 30cm >0.15 <= 43 Weeks >43 Weeks

Node 11 Node 12 Node 14 Node 15

< 28 Weeks

>28 Weeks

Node 3 Node 4 Node 6 Node 7

<= 28 Weeks

<= 22 Weeks > 22 Weeks <= 36 Weeks > 36 Weeks
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Table S5. LCA carbon pool parameters 

Pool mass proportion 

half life 

(years) 

long-lived 0.6 75 

waste  0.12 1 

paper 0.28 2.5 
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Table S6. Model – Observation (mean) comparison, carbon stocks and NPP. Before thinning period (2016) and after thinning 

(2017-2018).  

  

Before 

Thinning   

After 

Thinning   

Variable Modeled Observed Modeled Observed 

Aboveground Live 

C (Mg C ha-1) 71 76 30 32 

NPP (g C m-2 yr-1) 795 785 611 550 

Total C (Mg C ha-

1) 275 222 217 183 

Soil C (Mg C ha-1) 49 53     
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Table S7. Daycent site and tree characteristics and parameter values.  

Site   

Latitude, Longitude 46.84°,  -116.74° (UIEF) 

Soil Texture Silty loam (Sand: 32%; Silt: 53%; Clay: 15%) 

Bulk Density  0.9 (g cm-3) 

Mean Annual Precipitation 883 mm (1988-2017 mean) 

Mean annual temperature 8.3° C (1988-2017 mean) 

Mean N deposition 3.0 kg N ha-1 yr-1 

Site History 

 

 
 

Clear cut mixed conifer stand in 1978. Followed 

by ponderosa pine planting. Study thinning 

treatment in Winter-Spring 2017. 

  
Tree   

leaf C:N minimum 43 

leaf C:N maximum 49 

PRDX(2) (potential production coefficient) 0.7 

Leaf retention time 3 yr 

lai : biomass 0.0045 

live wood background death rate  0.03% month-1 

course root : stem allocation 0.28 
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Chapter 3: Forest thinning and drought dynamics with CLM-FATES: Towards more 

mechanistic modeling of interacting disturbance and dynamic vegetation at a landscape 

scale.   

Abstract: 

Global change in the 21st century will impact the function of much of the Earth’s 

forest cover, altering the state of large pools of sequestered biomass carbon and feeding back 

to further disturbance. However, the representation of dynamic forest disturbance history has 

only recently started to be incorporated into Earth System Models (ESMs) that are used for 

climate projections. Here, we examine the post-disturbance representation of carbon cycling 

and stand structure following selective forest harvest in CLM – FATES, the dynamic 

vegetation model of the CESM ESM. Simulations are parameterized and evaluated against 

field observations from a 2017 pre-commercial thinning operation in a 40 year old ponderosa 

pine plantation in the Northern Rocky Mountain ecoregion. Experiments examine the impacts 

of variable harvest intensity, historical and future climate, and variation of key model 

parameters. We find that selective harvest results in carbon deficits relative to control 

throughout all 70 year simulations and ranges from 10-62 Mg ha-1 by 2050 for historical 

stands despite recovery of Net Primary Production (NPP) after lower intensity harvests. In 

future scenarios, leaf area, NPP and live biomass accumulation decline after 2075 because of 

increasing growing season temperatures and vapor pressure deficits (VPD). We find that post-

disturbance stand structure reorganization and recovery trajectories are dependent on several 

FATES parameters that control horizontal gap creation and canopy plasticity in response to 

changing light competition. Our results both indicate that FATES post-disturbance dynamics 

improve upon previous model representations of field-observed processes and highlight 

several FATES dynamics should be refined prior to regional application.  Study findings will 

serve as bases for scaling to regional-scale, multi-disturbance simulations that explore the 
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carbon balance tradeoffs of natural disturbance and human management interventions through 

the 21st century.  

Introduction: 

Forests dynamics impact human societies in many ways, including the modulation of the 

earth’s energy, water, and carbon balances; provisioning of resources; and direct disturbance 

impacts on communities (Bonan, 2008; Bowman et al., 2017). Because global disruptions are 

impacting essential forest processes, societies are seeking to design and implement ecosystem 

management strategies that mitigate disturbances such fire, drought, and insect outbreaks 

(Forest Climate Action Team, 2018; State of California Executive Department, 2018). The 

large scale and complexity of these impacts means that modeling studies are necessary due to 

the infeasibility of landscape level experimental treatments and measurements (Campbell & 

Ager, 2013). Models need to have sufficient mechanistic complexity to represent disturbance 

drivers and impacts in the context of novel conditions (e.g. climate).  This includes model 

representation of land-atmosphere physical and chemical coupling, vegetation structure and 

function, and realistic management prescriptions among human land use and land cover 

change impacts (Foley et al., 1996; P. J. Lawrence et al., 2012).  

Forest thinning—the harvest and disposal of a fraction of aboveground stand trees – is 

increasingly being implemented as a strategy to mitigate disturbance (Franklin & Johnson, 

2013; James et al., 2018a; U.S. Executive Office of the President, 2018). Particularly, wildfire 

mitigation is in focus due to sharp increases in burned area in recent decades (Abatzoglou & 

Williams, 2016) as well as the direct and visible impacts of fire to communities (Bowman et 

al., 2017). Thinning may directly impact fire dynamics via increasing the height to the forest 

canopy (reducing torching) and decreasing canopy density (reducing crown fire spread); 
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indirectly, thinning may promote the growth of larger, more fire resistant individuals by 

decreasing competition  (Agee & Skinner, 2005). Additionally, fire behavior can be modified 

via coordinated or separate surface fuels reduction treatments, including prescribed burning, 

(Kolden, 2019). Besides being fuels reduction strategies, thinning treatments are inherently 

forest mass-mortality events, altering the structure and function of live biomass remaining on 

site and creating fluxes of killed biomass to onsite ecosystem pools, to offsite waste and 

product pools, and to the atmosphere via decomposition and combustion (Hudiburg, Law, 

Moomaw, Harmon, & Stenzel, 2019; B E Law & Waring, 2015). As a result, terrestrial 

carbon stocks and atmospheric greenhouse gas (GHG) concentrations encounter treatment 

legacies from seconds to centuries (Beverly E. Law et al., 2018). Disturbance-prone forests of 

the western United States currently store large amounts of carbon (Pan et al., 2011). However, 

the potential carbon balance impacts of regional thinning treatments are substantially 

complicated by the spatial complexity of the region, changes to climate, and ongoing impacts 

from human land use and land cover change, precluding “one size fits all” analyses (Brown, 

Agee, & Franklin, 2004; DellaSala et al., 2013).  

The immediacy of annual forest fire seasons in the western U.S. as well as narrowing 

routes to meeting greenhouse gas targets (Intergovernmental Panel on Climate Change, 2018) 

have led to many previous modeling studies on the subject of regional forest thinning and 

resulting net emissions (James et al., 2018b). However, a relative dearth of long term 

experimental measurements (Stenzel, Berardi, Walsh, & Hudiburg, 2021; Williams & Powers, 

2019) in combination with insufficient vegetation modeling capabilities mean that there are 

clearly identifiable shortcomings to previous approaches. Until recently, earth systems 

models—models that couple atmosphere, ocean, land, and ice – have represented the physical 
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and chemical mechanisms that enable feedbacks with forest processes (D. M. Lawrence et al., 

2019), but have not represented dynamic land cell vegetation, including patches and cohorts 

with variable disturbance history (Fisher et al., 2015). In the context of thinning, for instance, 

this means that a prescribed harvest may shrink the mass pool sizes of a vegetation ‘column’ 

and create tree pools that are on average ‘smaller’ (i.e. just reduce LAI and therefore GPP), 

but not generate representations of new gaps in function associated with disturbed patches.  In 

contrast, ecosystem demography models enable prognostic vegetation composition within 

model cells but may not include the biophysics and biogeochemistry necessary for 

mechanistic representation of the evolving earth system. For instance, the biogeochemical 

portion of the forest landscape model, LANDIS II, does not explicitly model radiative transfer 

in vegetation or photosynthesis, instead calculating Net Primary Production (NPP, i.e. 

photosynthesis minus autotrophic respiration, approximately biomass growth) as an empirical 

function of a maximum production modified by temperature, soil moisture, and potential 

monthly incident radiation at the land surface. Combining mechanistic earth systems 

modeling and dynamic cell vegetation composition in dynamic global vegetation models 

(DGVM), as well as robust, prognostic disturbance is necessary for modeling forest 

management scenarios under novel future forcings.  

This study examines site scale thinning treatment impacts within the Community Land 

Model 5 (CLM; D. M. Lawrence et al., 2019), Functionally Assembled Terrestrial Ecosystem 

Simulator (FATES), a model configuration which addresses many of the previous deficiencies 

discussed above. FATES with CLM is a dynamic global vegetation model (DGVM), 

representing the competition of cohorts of tree species and ages within disturbance-history 

patches at each model cell (Fisher et al., 2015; Moorcroft, Hurtt, & Pacala, 2001). An updated 
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selective logging (i.e. thinning) module has recently been implemented (Huang et al., 2020) 

that allows for variably designed thinning treatments across space and time. Critically, 

FATES is integrated with the biogeophysics and biogeochemistry of its land model (CLM), 

which in turn can run with a coupled earth system model (CESM). To date, the selective 

logging module of CLM FATES has been utilized in a single, published tropical study 

(Huang et al., 2020) and there are no published results in the Western United States. This 

study includes initial simulations of FATES at a Northern Rocky Mountain experimental 

forest site, representative of species demographics, climate, and topography found in the 

region. It assesses the impacts of model representation of ecosystem heterogeneity and 

treatment prescriptions as well as variation of sensitive ecosystem and plant functional type 

(PFT) parameters. We ask the following questions: 1) How does selective thinning in FATES 

impact ecosystem component carbon fluxes at an ecosystem scale, including mortality? 2) 

When and if is carbon parity of thinned vs unthinned stands achieved across a range of 

thinning designs (structure and timing)? 3) What varying impacts do historical and future 

climate forcings have on the relative carbon balance of control/treatment stands, including 

mortality from carbon starvation?  

Materials and Methods: 

Model description 

 Experiments were performed with the Community Land Model 5 (CLM5; Lawrence et 

al., 2019) with the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) module 

(Fisher et al., 2015). FATES introduces dynamic vegetation to CLM and its broader earth  
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Figure 1. FATES conceptual diagrams. a. Vegetated column sub-column patch and cohort organization. Cohorts include 

multiple PFTs and height classes. b. Patch cohort canopy structure. Common PFTs share the same shading. Understory is 

denoted by “average trees” in the light yellow sub-canopy environment. Cohort leaf layers are separated by dotted lines.  c. 

Light transmission across canopy layers. Source:  Figure panels modified from NCAR FATES tutorial, 2019, C. Koven. 
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system model (ESM)—the Community Earth System Model (CESM). FATES represents 

dynamic disturbance patches within each land grid-cell, tracking shifting cohorts of trees 

characterized by size (and related canopy position), plant functional type (PFT), and 

disturbance patch (Fig 1). Presently, cohorts compete explicitly for light within the canopy 

and implicitly for soil water.  

 Biogeochemical models (e.g. Daycent; Parton, Hartman, Ojima, & Schimel, 1998; 

Stenzel et al., 2019) have traditionally represented ecosystem disturbances as combinations of 

reduced primary production and reduced biomass-pool size.  Prescribed or prognostic 

disturbances such as harvest or fire cause transfers of live biomass to dead pools, resulting in 

reduced production due to effectively smaller pool-averaged tree organs (e.g. leaf biomass 

and LAI), not gaps in function. Less-acute sources of mortality, including stresses from 

limited access to light, water, or nutrients, are often simply implied by static, user-determined 

background mortality rate parameters.  FATES can represent ecosystem disturbance by 

generating new grid-cell patches (i.e. gaps) as well as variable impacts to existing-patch 

cohorts. Prognostic mortality results from fire (Spitfire; Pfeiffer, Spessa, & Kaplan, 2013; 

Thonicke et al., 2010), carbon starvation, freezing, hydraulic failure, and tree size. Mortality 

rates related to cohort age, harvest, and background mortality are prescribed by the user.  

Prognostic mortality is variably mechanistic—explicit structural and storage carbon budgets 

drive carbon starvation, while hydraulic failure is empirically related to soil water potentials 

due to the lack of explicit plant hydraulic pathway in FATES. Fire impacts, including 

mortality, are driven by the SPITFIRE model; crown damage is a function of scorch height 

and fire intensity, while cambial damage and direct tree mortality are a function of bark 

thickness, fire intensity, and fire duration.  
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 FATES simulates canopy direct and diffuse radiation transfer and the effects of 

variable canopy and leaf layer light absorption on cohort competition (Fig 1c). Cohort growth 

and resulting light access is determined by both PFT physiological characteristics (e.g. 

Specific leaf area, allometry, Vcmax,, and maintenance respiration) and stand characteristics, 

including canopy stratification and variable crown geometry (and self-shading) as the canopy 

closes. Competition for moisture is implicit; during each time step, cohorts independently 

extract water based on root distribution and demand modified by moisture availability. 

Resulting soil column fluxes of water to the atmosphere are the weighted averages of cohort 

use, meaning that future time step soil water pools are impacted by coexisting cohorts.  

Nitrogen cycling and related competition is not yet represented, though PFT nitrogen 

stoichiometry parameters impact photosynthesis.  

Parameterization and input data 

 CLM input variables include sub-daily surface air temperature, humidity, 

precipitation, incoming solar radiation, and windspeed. 3-hourly, 4 km inputs of observation-

based (1950-2016) and MIROC5 historical and RCP 8.5 (1950-2099) climate were extracted 

for the simulation point domain (46.8125, 243.2292) from existing data products (Buotte et al. 

2019). In Buotte 2019, 3-hr historical climate was interpolated from 4 km 

METDATA/GRIDMET datasets (Abatzoglou, 2013). GCM climate was generated from 3 

hourly outputs of MIROC5 historical and RCP 8.5 experiments (CMIP5; (Taylor, Stouffer, & 

Meehl, 2012) and spatially downscaled, 4km daily MACA datasets (Abatzoglou & Brown, 

2012).  CLM requires input surface datasets, including grid cell cover types (e.g. natural 

vegetation, lake, glacier, crop, urban), slope, soil depth, soil texture, soil color, and elevation. 

These sets were also obtained from P. Buotte (Buotte et al., 2019), with soil depth-to-bedrock  
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Table 1. Key parameters, historical stand model control (control 1). Variable definitions directly from parameter file. All 

definitions are available at: https://github.com/NGEET/fates/blob/master/parameter_files/fates_params_default.cdl 

 

Name Definition Unit Value 

seed_dbh_repro_threshold 

the diameter (if any) where the plant will start extra clonal 

allocation  

to the seed pool cm 30 

mort_bmort background mortality rate 1/yr 0.0025 

allom_l2fr Allocation parameter: fine root C per leaf C gC/gC 1.35 

allom_agb_frac Fraction of woody biomass that is above ground fraction 0.8 

comp_excln 

IF POSITIVE: weighting factor (exponent on dbh) for 

canopy  

layer exclusion and promotion, IF NEGATIVE: switch to 

use 

 deterministic height sorting none -1 

fates_recruit_initd 

initial seedling density for a cold-start near-bare-ground 

simulation stems/m2 0.1 

canopy_closure_thresh  

tree canopy coverage at which crown area allometry changes  

from savanna to forest value unitless 0.8 

mort_scalar_cstarvation maximum mortality rate from carbon starvation 1/yr 0.15 

alloc_storage_cushion 

maximum size of storage C pool, relative to maximum size 

of leaf C  

pool fraction 1.5 

mort_disturb_frac 

fraction of canopy mortality that results in disturbance (i.e. 

transfer  

of  area from new to old patch). NOTE: For non-logging 

mortality fraction 0 

phen_evergreen Binary flag for evergreen leaf habit unitless 1 

allom_d2ca_coefficient_max 

max (forest) dbh to area multiplier factor where: 

 area = n*d2ca_coeff*dbh^beta 

m2 cm^(-

1/beta) 0.3 

allom_d2ca_coefficient_min 

min (forest) dbh to area multiplier factor where: 

 area = n*d2ca_coeff*dbh^beta 

m2 cm^(-

1/beta) 0.2 

leaf_long Leaf longevity (ie turnover timescale) yr 3 

leaf_slatop 

Specific Leaf Area (SLA) at top of canopy, projected area 

basis m2/gC 0.0079 

prt_nitr_stoich_p1, leaf nitrogen stoichiometry gN/gC 0.022 

leaf_vcmax25top maximum carboxylation rate of Rub. at 25C, canopy top 

umol 

CO2/m^2/s 43 

leaf_stomatal_model 

switch for choosing between Ball-Berry (1) stomatal 

conductance 

 model and Medlyn (2) model unitless 1 

leaf_stomatal_intercept 

Minimum unstressed stomatal conductance for Ball-Berry 

model 

 and Medlyn model 

umol 

H2O/m^2/s 10000 

leaf_stomatal_slope stomatal slope parameter, as per Ball-Berry uniteless 8 

smpsc Soil water potential at full stomatal closure mm -255000 

smpso Soil water potential at full stomatal opening mm -66000 
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modified for the region from the upland soil depths of a global 1km soil thickness dataset 

(Pelletier et al., 2016). CLM dynamic cover and land use is implemented via timeseries 

surface datasets, including the year and location of harvests that are then implemented by 

FATES selective logging. The FATES module then requires >200 input parameters that 

impact sub-gridcell disturbance dynamics and PFT physiology.  

Initial PFT parameters for a single ponderosa pine PFT were obtained from an in-

progress parameter evaluation project of P. Buotte. Site parameterization for this study was 

then performed based on field site measurement from 2015-2020 (see site information below), 

including leaf nitrogen concentrations, leaf retention time, and tree allometry (Table 1). Initial 

parameter evaluation experiments (not detailed in results) were performed using the 

METDATA-based climate product (observation based). Parameter evaluation for 1979-2020 

was performed based on study site measurements of carbon stocks and fluxes, including 

component Net Primary Production (NPP), and stand structure, including the size (diameter at 

breast height, DBH) and number of canopy and understory trees (Table 2, results section).   

Experiments 

Two categories of modeling experiments were performed: 1) Model sensitivity 

assessments and 2) assessments of treatment and natural disturbance impacts. Initial 

parameter evaluation experiments (~200) resulted in the default historical control stand 

parameter set reported in the results section. All experiments consisted of 72 year run lengths 

beginning from a model cold state (soil carbon stocks were not spun-up with pre-plantation 

vegetation). Historical stand experiments began with the germination of the ponderosa pine 

plantation in 1979 and proceeded through 2050.  In future stand experiments, seed 
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germination occurred in 2028 and simulations ended in 2099. Thinning experiments 

prescribed single selective harvest events of varying intensity. Currently, CLM FATES 

selective harvest can be driven with a combination of spatiotemporal CLM land use timeseries 

harvest areal fraction inputs and FATES selective harvest parameters (e.g. size classes, direct, 

collateral, infrastructure mortality; see: https://github.com/NGEET/fates/wiki/Running-

FATES-with-the-selective-logging-module-activated). Land use timeseries area inputs were 

set to 99% for the study site during the month of harvest. FATES selective harvest direct 

fraction was set to the selective harvest intensity fraction (e.g. 45%), with understory 

collateral mortality fraction set to 100%.  Both the historical and future experiments reported 

in the results section were forced with the downscaled, temporally interpolated MIROC5 

historical-RCP 8.5 product for dataset consistency across the boundary of past and future 

climate.  

Results section experiments examined variable selective thinning intensity (low, 

moderate, and high), historical and future stands harvested at moderate intensity, and crown-

area spread parameter variations, which evaluation experiments highlighted as critical to 

model outcomes. In all reported experiments, we examined carbon stock and flux impacts (net 

and component), stand structure (size, density, and canopy class), and mortality of control and 

experimental stands. We modeled low (25%), moderate (actual; 45%), and high (60%) levels 

of live biomass removal, comparing time-until-carbon parity (Mitchell, Harmon, & 

O’Connell, 2012) with control (i.e. unthinned) stands. We included 2 climate scenarios---

historic and mid-21st century—to examine the impact of varying climate stress on thinning 

efficacy. Crown-area parameter experiments included 3 levels of variation for the maximum 

diameter-to-crown area parameter (‘d2ca_max’), which determines the maximum crown area 
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by DBH when model canopy spread equals 1 (maximum) and determines canopy shape 

plasticity across canopy competitive conditions. Site canopy spread ranges from 0 to 1 and 

incrementally increases or decreases when site overstory canopy area is respectively higher or 

lower than a threshold closure threshold. Here, the closure threshold was set to 0.8 in all 

simulations. Spread value determines the degree to which tree canopies are horizontally vs 

vertically spread, with lower values resulting from site crown area competition and increasing 

canopy self-shading (Fisher et al., 2015). Study default ‘d2ca_max’ values were 150% of 

‘d2ca_min’ (labeled ‘+50%’ in this study). Variation levels included setting the maximum 

parameter equal to the minimum (‘+0%) and to twice the minimum (‘+100%). 

Life cycle assessment: 

The storage and emission of live biomass harvested and removed during thinning 

operations was modeled with a life cycle assessment in which biomass was separated into 

slash, waste, paper, and long-lived product pools. Off-site pool initial fractions from exported 

biomass and half-lives of product pools are the same as chapter 2 (see also: Dymond, 2012; 

Skog, 2008; Smith, Heath, Skog, & Birdsey, 2006; J. E. Stenzel, Berardi, Walsh, & Hudiburg, 

2021). Only stem carbon is currently able to be exported with the FATES selective harvest 

module; To implicitly simulate on-site combustion of stem portions as slash within the year of 

harvest, 15% of harvested stem carbon was immediately subtracted from the model-exported 

fraction.  

 

 



124 
  

 

e1
2
4 

Field observations: 

 Stand stocks, fluxes, and structure were evaluated in part with field observations from 

a 40 year old (2020) ponderosa pine (Pinus ponderosa) plantation in the University of Idaho 

Experimental Forest (UIEF) in the northern rocky mountain ecoregion of Idaho (46.8125, 

243.2292). Detailed descriptions of this evaluation site, study design, and measurements are 

provided in Chapter 2 of this dissertation (J. E. Stenzel et al., 2021). The site has been 

characterized by survey and automated carbon flux and stock measurements spanning the 

years immediately before and after a commercial thinning in winter 2016-2017.   

Carbon cycle terminology: 

 Carbon cycle terms commonly referenced in this chapter include Gross Primary 

Production (GPP), Net Primary Production (NPP), Net Ecosystem Production (NEP) (Chapin 

et al., 2006) and carbon parity (Mitchell et al., 2012). GPP is the photosynthetic gain of 

ecosystem carbon resulting from fixation of atmospheric carbon by primary producers. NPP 

represents plant and ecosystem carbon gain minus autotrophic (plant) maintenance and 

growth respiration. NPP has traditionally be treated as plant carbon available for tissue 

growth, though can also be allocated to storage or export pools that may not ultimately result 

in plant growth (Körner et al., 2005). NEP is GPP minus ecosystem respiration (autotrophic 

and heterotrophic), or NPP minus heterotrophic respiration, and does not include horizontal 

transfers of carbon (e.g. harvest, water transport) or non-respiratory vertical transfers to the 

atmosphere (e.g. combustion). Finally, the terms of carbon debt and parity (Mitchell et al., 

2012) between stands in this study refer to the relative masses of combined on and off site 
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terrestrial, stand-derived carbon. Carbon debts indicate relative decreases in terrestrial carbon 

storage and increases in atmospheric carbon.  

Results: 

 Under simulated historical climate, control stand (Table 3) stocks and fluxes 

approximated observed 2019 field site carbon stock and flux variables (Table 2, Figure 2, 

version: control 1). During parameterization, stand dynamics were sensitive to allometric 

variables (number of allometric parameters = 27). Diameter-based allometrics determined 

recruit (i.e. sapling) starting mass upon germination, allocation to high turnover versus long-

lived ecosystem biomass, ratio of diameter growth to structural biomass, and leaf and crown 

area. The parameters controlling minimum and maximum diameter-to-crown area determined 

canopy closure, canopy demotion (i.e. suppression), and overstory density in conjunction with 

tree count. The leaf-to-fine-root parameter strongly impacted NPP allocation to stem biomass 

and live biomass accumulation due to the highest turnover of any live biomass pool (50% yr-1) 

and no positive feedback to production due to the plant hydraulics submodule being inactive 

in study experiments.  

 In the observed ponderosa pine field site, the 40 year old stand displayed negligible 

tree regeneration, cone production, or tree understory (Chapter 2, Stenzel, Berardi, Walsh, & 

Hudiburg, 2021). Prior to thinning, most available crown area was occupied. Measurements 

indicated that co -dominant tree growth, size, and physiology (e.g. sap flow) began to more 

strongly differentiate in the 2010s. With the assumption that these observations indicated the 

beginning of canopy layer stratification, historical control simulations were parameterized to 

begin canopy tree demotion in the 2010s (Table 3).  Field observations included no overstory 

mortality except mild winter windthrow in thinned stands.  The control simulation was  
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Table 2. Target stand variables. 2019 site observation vs model outputs. For model outputs, fluxes are 2016-2020 ranges. 

Variable Unit Observation Model 

NPP g/m2/yr 650-850 575-825 

NPP_seed g/m2/yr 0 0 

Live C Mg/ha 102 96 

Fine root C g/m2 400-500 378 

Tree density stem/ha 750-900 879 

Mean DBH cm 23 20-30 (class) 

Lai m2/m2 1.5-2.5 2.27 

Timing, max 

Transpiration 

Month 

period 
May-July June-July 

Timing, min growing  

season transpiration 

Month 

period 
Sept+ 

None: Continual 

decline Aug+ 

Crown area m2/m2 Near 1 1 
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Table 3. Experiments and results, carbon stocks, fluxes, and stand structure. Carbon stock units are Mg C ha-1. Carbon flux units are  g C m-2 yr2.  

run  
version 

output 
year 

harvest  
intensity 

stand  
initiation 

crown  
area-
max:min  

NPP 
NPP 
wood 

treeC 
tree 
woodc 

soilc 
litter 
cwd 

total  
eco c 

offsite  
c 

total 
c 

lai 
crown 
area  
index 

 
cstarv 

nplant 
can 

nplant 
under 

control 1 2020 none 1979 1.5 706 325 96 85 19 21 138 0 138 2.3 1 13 762 117 

control 1 2035 none 1979 1.5 828 391 126 114 30 36 195 0 195 2.6 1 68 559 247 

control 1 2050 none 1979 1.5 796 360 144 131 41 49 235 0 235 2.7 1 124 452 330 

harvest 1 2020 moderate 1979 1.5 491 249 54 48 21 31 108 14.6 122 1.3 0.8 1 473 2 

harvest 1 2035 moderate 1979 1.5 658 333 90 82 28 26 147 10.6 157 1.8 0.87 1 478 2 

harvest 1 2050 moderate 1979 1.5 750 374 124 114 33 34 193 9.2 202 2.1 1 8 422 93 

control 2 2020 none 1979 1 694 327 83 73 16 16 118 0 118 2.1 1 0 855 39 

control 2 2035 none 1979 1 820 394 118 106 27 31 178 0 178 2.5 1 50 607 204 

control 2 2050 none 1979 1 791 361 138 126 38 46 222 0 222 2.6 1 110 480 297 

harvest 2 2020 moderate 1979 1 413 201 47 41 18 23 89 12.2 102 1.2 0.59 0 495 0 

harvest 2 2035 moderate 1979 1 609 309 79 71 24 21 126 8.8 135 1.6 0.81 0 476 2 

harvest 2 2050 moderate 1979 1 738 369 114 104 29 29 174 7.7 181 2.1 1 1 469 50 

control 3 2020 none 1979 2 708 324 98 87 20 22 142 0 142 2.3 1 16 747 129 

control 3 2035 none 1979 2 830 391 127 115 31 37 198 0 198 2.6 1 71 551 256 

control 3 2050 none 1979 2 797 360 145 132 42 50 237 0 237 2.7 1 127 446 336 

harvest 3 2020 moderate 1979 2 494 250 55 49 21 32 111 15 126 1.3 0.8 2 469 2 

harvest 3 2035 moderate 1979 2 660 335 91 82 29 27 149 10.9 160 1.8 0.87 2 476 2 

harvest 3 2050 moderate 1979 2 750 374 125 115 34 35 195 9.4 204 2.1 1 10 418 94 

harvest 4 2020 low 1979 1.5 596 284 73 65 20 26 122 8.3 130 1.7 0.86 1 656 1 

harvest 4 2035 low 1979 1.5 797 396 113 102 29 31 176 6 182 2.2 1 8 551 90 

harvest 4 2050 low 1979 1.5 773 367 136 125 38 44 219 5.2 224 2.4 1 53 442 194 

harvest 5 2020 high 1979 1.5 371 192 40 35 21 33 96 19.4 115 0.9 0.69 1 340 4 

harvest 5 2035 high 1979 1.5 548 288 72 65 27 23 123 14 137 1.4 0.8 1 354 4 

harvest 5 2050 high 1979 1.5 619 312 102 94 29 27 160 12.1 172 1.7 0.83 2 393 4 

control 6 2070 none 2028 1.5 761 362 99 88 20 22 143 0 143 2.3 1 33 737 119 

control 6 2085 none 2028 1.5 708 317 116 105 31 38 186 0 186 2.4 1 145 571 154 

control 6 2099 none 2028 1.5 654 269 122 112 40 47 210 0 210 2.3 1 244 491 152 

harvest 6 2070 moderate 2028 1.5 524 270 57 51 22 28 110 13.7 124 1.3 0.8 9 469 2 

harvest 6 2085 moderate 2028 1.5 586 280 88 80 27 24 141 10.3 152 1.7 0.85 10 473 2 

harvest 6 2099 moderate 2028 1.5 620 278 110 100 31 30 173 9 182 2 0.97 11 496 2 



128 
  

 

e1
2
8 

 

Figure 2. Historical control stand growth dynamics, 1979-2050 (control 1, Table 2). a.  Tissue component NPP and carbon 

use efficiency (NPP/GPP). b. Monthly NPP, 2019-2029. c. Number of stems by size class. Top panel denotes overstory 

canopy layer, bottom panel denotes understory. d. Monthly β-Transpiration (soil moisture stress transpiration reduction 

factor), 2019-2029 
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therefore parameterized to prevent overstory carbon starvation morality in the observation 

period by increasing the carbon storage buffer (Table 3). The minimum necessary increase in 

carbon storage allowed carbon starvation of understory trees (Table 3), a hypothetical 

dynamic for the future stand. In 2020, the control run consisted of 20-30 cm DBH trees with a 

sparse initial understory generated from canopy closure and canopy-tree demotion (Table 3, 

Fig 2c).  As in observations, NPP displayed an approximate plateau after 2010 (Fig 2a), 

varying between ~650-850 g C m-2 yr-1. Modeled stem and course root wood allocation 

accounted for ~50% of stand NPP and did not decline through 2050. Carbon use efficiency 

(NPP/GPP) declined from ~0.55 to 0.45 between 1979 and 2050 because of increasing 

biomass and respiration without a proportional increase in GPP following canopy closure.   

 Though yearly model NPP was consistent with observations (Table 3), modeled 

downregulation of growth during the summer drought due to soil moisture stress was 

relatively mild. Field-observed volumetric water content through 80 cm soil depth displayed 

multi-month summer minimums of ~5% (Stenzel et al., 2021). Observed control stand stem 

circumference growth ceased in all years by August and daily sap flow declined by ~65% 

from the spring peak by August. Canopy conductance was reduced by ~80-90% of the 

observed peak from August through October. In comparison, modeled monthly NPP from 

2019-2029 declined by ~50-60% from peak (June) to minimum (Aug-Oct). β-Transpiration 

(BTRAN), the model soil moisture stress factor that modifies stomatal conductance, declined 

on average from 1.0 (Spring) to 0.77 (September) (Figure 2d). BTRAN remained near 1 due 

to modeled soil matric potentials that did not fall below values necessary for PFT-specific 

stomatal closure.   
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Figure 3.  Selective thinning intensity experiments, stand dynamics, 1979-2050. Low harvest = 25%, Moderate harvest = 

40%, High harvest = 60%.  a. NPP and NPPwood. b. Carbon stocks: total (on & off site), live biomass, and off site. c. Stand 

density, overstory and understory. d. Stand LAI and crown area. e. Cumulative natural mortality. Carbon starvation mortality 

as a component of total natural mortality is displayed additionally. 
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In selective harvest intensity experiments, stem density and live biomass were reduced 

by 25%, 40% (as implemented at the field site), and 60% in late-winter 2017. In all 

experiments, NPP was most reduced immediately after the thinning (Table 3, Fig 3). 2020 

NPP was reduced by 16-55% over control from low to high intensity. NPP reductions relative 

to control were 21-34% in 2035 and 3-22% in 2050.  In all experiments and periods, treatment 

reductions in NPPwood were lower than NPP (Fig 3a). By 2050, NPPwood was 2-4% higher than 

control in stands that had low and moderate thinning treatments. Lesser declines in structural 

NPP allocation resulted from increased average tree DBH in treated stands, which resulted 

from increased crown area per tree, decreased stand-level allocation to leaf and root mass, and 

increased diameter growth. Simulated 2020 NPP reduction in the harvested stand (30%) is 

less than reduction estimated from field observations for 2017-2019 (45%) (Stenzel et al., 

2021). Field observations are consistent with lesser declines in simulation NPPwood relative to 

NPP and increased stand-level allocation to wood.  

   Modeled canopy closure was reached prior to treatment (crown area index ~1; Table 

3). Following treatment, a second closure occurred by 2035 and 2050 for low and moderate 

selective harvests (Fig 3d). Treatment LAI remained lower than control through 2050 at all 

intensities.  As a result of a longer period of canopy closure and increased canopy tree 

demotion, 2050 control understory tree count was 330 stems ha-1 in comparison to 4-194 

stems ha-1 in treatment plots. 

Carbon stock parity (on and off site) was not achieved by any treatment stand by 2050 

despite decreased natural mortality and long-lived off-site wood products (Table 3). Relative 

to control, the 2050 total carbon deficits in low, moderate, and high intensity treatment stands 

were 10, 42, and 62 Mg C ha-1. In 2050, treatment stand live carbon stocks were 5-29% lower 
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than the control stand (Fig 3b). Compared to control, live carbon deficits decreased in thinned 

stands despite lower NPP due to increased structural allocation (i.e. reduced tissue turnover) 

and reduced mortality from the understory. Carbon starvation mortality increased in control 

and low harvest stands (Fig 3e) due to a positive relationship between mortality and 

understory density, overstory crown area and leaf area (i.e. decreased light transmission below 

the canopy), and duration of canopy closure (Table 3, Fig 3c). Control stand litter, coarse 

debris, and soil organic carbon pools were larger than all treatment stands due to greater live 

biomass stocks, background turnover (leaf, root, branch), and higher mortality. By 2050, the 

difference between control and treatment dead, on-site carbon pools was greater than 

treatment off-site wood-product pools. Though turnover-based dead biomass was subject to 

decomposition in the control stand, the earlier average timing and waste components of 

harvested biomass (left on site, combusted, or short lived) led to lower dead stocks in 2050.  

FATES parameters ‘d2ca-min’ and ‘d2ca-max’ (corresponding to the minimum and 

maximum diameter-to-crown area values) determine realized tree crown area from DBH and 

site canopy area index (i.e. degree of canopy closure). During model evaluation, model 

canopy demotion, subsequent carbon starvation, and overstory mortality were sensitive to the 

values of this plastic canopy area range during either acute or accumulating disturbance. Low 

‘d2ca’ ranges enacted the hypothesis that canopy-filling of open area only occurred with 

significant diameter growth and that crown architecture was static within size classes; non-

zero ranges of ‘d2ca’ parameters allowed crowns to fill newly-opened canopy space to the 

maximum parameter value within several daily-time steps, representing near-perfect 

architecture plasticity even in the absence of structural growth.  
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Figure 4.  Canopy area parameter experiments, stand dynamics, 1979-2050. For harvest runs, intensity was moderate 

(observed). a. NPP b. Carbon stocks: total (on & off site), live biomass, and off site. c. Stand density, overstory and 

understory. d. Stand LAI and crown area. e. Cumulative natural mortality. Carbon starvation mortality as a component of 

total natural mortality is displayed additionally. 
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The impacts of variable ‘d2ca’ parameter ranges after harvest disturbances were 

demonstrated in combination with control and moderate thinning treatments (Fig. 4).  At 40% 

density reduction, a ‘zero-range’ for ‘d2ca’ (representing persistent overstory gaps that were 

‘grown into’ over time) led to reduced carbon stocks and fluxes through 2050 relative to both 

control and the initial ‘d2ca’ range (i.e.  max d2ca ‘+50%’ greater than min d2ca).   The ‘zero-

range’ harvest simulation NPP was 16, 9, and 1% lower than the ‘+50%’ range harvest run in 

2020, 2035, and 2050 (Table 2, Fig. 4a). 2020 ‘Zero range’ run NPP reduction relative to 

control was - 41% compared to - 30% for ‘+50%” and “+100%” ‘d2ca’ harvest runs; this 

larger reduction was similar to the 45% observed NPP reductions in 2017-2019 field plots (J. 

E. Stenzel et al., 2021). As a result, ‘zero-range’ live biomass carbon stocks were 15, 13, and 

9% lower from 2020-2050, increasing stock deficits relative to the control stand (Fig. 4b). 

‘d2ca’ ranges greater than the initial ‘+50%’ value had negligible impacts on total stand 

carbon stocks and fluxes through 2050. Like the ‘+50%’ run, the +100%’ run quickly reached 

the 80% canopy closure threshold, causing canopy spread per leaf biomass and LAI to 

decrease to it’s minimum and full closure to only occur when tree density reached a necessary 

level at ~2045. Near 2050, canopy tree demotion and understory development was delayed 

relative to ‘d2ca’ ‘+50%” and “+100%” runs by ~5 years.  

Future control and harvest experiments simulated stands ‘planted’ ~50 years after 

historical stand plantations. Selective harvests occurred at the same stand age (i.e. 38 years, 

2066 vs 2017). Across carbon stock, flux, and stand structure metrics, historical and future 

plantations displayed similar early post-thinning responses (Table 3, Fig 5). Divergence 

occurred at ~2075 (future stand year 50), when both future control and harvest stand NPP, 

total and live carbon stocks, and LAI decreased relative to historical plantation simulations  
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Figure 5. Historical and future stand initiation experiments, stand dynamics, 1979-2050 & 2028-2099. For harvest runs, 

intensity was moderate (observed). a. NPP b. Carbon stocks: total (on & off site), live biomass, and off site. c. Stand density, 

overstory and understory. d. Stand LAI and crown area. e. Cumulative natural mortality. Carbon starvation mortality as a 

component of total natural mortality is displayed additionally. f. 1979 and 2028 control stand yearly-average β-transpiration 

by stand age.   
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Figure 6. Miroc5 RCP 8.5-based FATES climate inputs, 1979:2099. Points indicate yearly averages; lines indicate 10 year, 

2-sided rolling means. a. Mean annual precipitation b. Mean annual temperature. 
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(Fig 5 a,b,d). Divergence in carbon starvation mortality was minor (Fig 5e) and future stands 

demonstrated delayed understory development near year 70 (future stand ~2090-2099 ; Fig 

5c).  In the future harvest simulation, NPP and biomass recovery occurred, but were delayed 

compared to the historical stand harvest run. Future control plots, however, demonstrated 

declining NPP, LAI, and leaf biomass after peak values at ~50 years of age, with control and 

harvest NPP converging after 2090. In the absence of declining plant density, warming 

climate (increased temperature and VPD, Fig 6.) led to declining leaf biomass due increased 

understory mortality and decreased stand density.  

 The future harvested stand did not reach carbon parity with control. Live and total 

carbon stock deficits in 2099 were 13 and 29 Mg C ha-1. Due to late-period convergence of 

NPP, carbon stock deficits were lower in than historical-stands (20 and 42 Mg C ha-1 for live 

and total stocks). Compared to their historical stands, future plantation total carbon stocks wer 

25 and 20 Mg C  ha-1 lower  (10 and 10%) for control and treatment stands, though stocks 

continued to increase in all scenarios through the 72 year run length.  

Discussion: 

In all CLM-FATES experiments in a simulated UIEF Ponderosa pine plantation and 

across all time periods, selective harvest in the absence of subsequent stand-level disturbance 

caused carbon pool deficits (Mitchell et al., 2012), including total terrestrial (on + off site), 

live, and on-site dead. This finding is supported by observational studies of the carbon 

balance impacts of partial harvest (or restoration thinning) both within and beyond the 

western US (James et al., 2018a; Williams & Powers, 2019; Zhou, Zhao, Liu, & Oeding, 

2013). Total terrestrial carbon deficits for harvested historical stands relative to control 

scenarios ranged from 16-41 Mg C ha-1
 in 2020 and 10-62 Mg C ha-1

 in 2050, representing 
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comparative increases in atmospheric carbon. These results are also consistent with the 

modeled 2050 deficit of 27 Mg C ha-1
  in chapter 2 of this dissertation (Stenzel et al., 2021). 

 Near-maximum stand production (i.e. NPP) was simulated to continue through the late 

21st century in all scenarios, despite increased canopy stratification and resulting understory 

mortality in control and low harvest intensity runs. Field observations from the study 

plantation also display high growth and stand-age-relative tree biomass compared to some 

other ponderosa pine forests in the Western U.S. (e.g. Campbell, Alberti, Martin, & Law, 

2009; Law, Sun, Campbell, S, & Thornton, 2003), likely a result of  the relatively wet site 

location. In control stand simulations, slow-decaying pools resulting from the death and 

turnover from stems and coarse roots led to persistent and increased dead ecosystem carbon 

that exceeded off-site wood product mass predicted by LCA. This relative dynamic resulted 

from high initial losses of harvest biomass to decomposition (leaves, fine roots) and 

combustion (branches burned as slash and product waste) (Dymond, 2012; Skog, 2008; Smith 

et al., 2006). Further, transfers of slow-decaying coarse root biomass to dead pools occurred 

earlier in harvest scenarios and therefore contributed to more complete run-period decay than 

the later, more gradual inputs resulting from tree competition and understory mortality, which 

represent future emissions past simulation periods.  

 Parity of thinned-stand NPP with control stands was approximately reached by stand 

ages of 60-70 years, or 20-30 years after harvest. In contrast, recovery of pre-thinning NPP 

occurred within several years in the Daycent projections of chapter 2 (J. E. Stenzel et al., 

2021). This difference can be attributed to model structure. Daycent represents LAI that is not 

discretized by individual, cohort, or vertical leaf layers. Following disturbance that reduces 

biomass and LAI, LAI (and its direct scaling of NPP) can recover within several years if 
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woody biomass pools are large enough to support it based on an empirical equation (Parton et 

al., 1998). In effect, while Daycent simulates forest pools which have shrunken, it cannot 

represent horizontal gaps that would realistically result from a reduced density of the 

individuals that contribute to those pools. In contrast, FATES leaf area and spatial profile is 

restricted by the number and size of remaining trees, which determine allometric leaf biomass 

targets and maximum crown area (Fisher et al., 2015).  In this study, we did not focus on 

comparisons of experiment NEP or ecosystem respiration because simulation soil carbon 

pools were not spun-up (i.e. the plantation was initiated from a cold state). However, the 

differences in total ecosystem carbons stocks between control and thinned stands decreased 

over time (Table 3), indicating relatively rapid NEP recovery within the context of these 

simulations, which is consistent with observations following multiple disturbance types in the 

western US (Amiro et al., 2010; Dore et al., 2010; Goetz et al., 2012). As such, the primary 

cause of carbon deficits legacies from harvest disturbances was the initial pulse of killed and 

then emitted ecosystem carbon.  

 In agreement with observational studies (Williams & Powers, 2019; Zhou et al., 

2013), ecosystem and total carbon stocks were negatively related to the fraction of live trees 

harvested, while average overstory tree size increased with intensity across run periods. Low 

and moderate harvest intensity NPP and crown area recovered by year 2050 in historical-stand 

experiments. In experiments with stands planted in 2028, however, both control and thinned 

stands displayed declines in NPP relative to 50-70 year old historical stands. Decreases in 

GPP and NPP were attributable to increased temperature and VPD causing decreases in 

stomatal conductance and photosynthesis, as yearly average plant soil moisture stress did not 

increase. Decreases in assimilation led to increased mortality of understory trees with 
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exhausted carbon stores, as shown with the mid-century peak and then decline in control stand 

LAI and density. While stand carbon stocks did not reach equilibrium in any 70 year 

experiment, stock trajectories suggested that forest carbon carrying capacities (Keith, Mackey, 

Berry, Lindenmayer, & Gibbons, 2010) would be reduced by 2100 as a consequence of 

decreased leaf area and production. 

 Sensitivity experiments in which crown-area plasticity within DBH classes was varied 

(via the ‘d2ca max’ parameter) demonstrated that this parameter affects the timing of thinned-

stand recovery, with decreased crown-area ranges increasing the carbon deficit between 

control and treatment areas.  Decreased maximum crown area per DBH class led to more 

persistent crown area gaps following harvest, as tree canopies did not rapidly spread into 

available space. Though NPP reductions with decreased maximum crown area were closer to 

field observations in the several years after the 2017 thinning operation, the long-term 

accuracy of reduced canopy form plasticity is uncertain, as context-dependent crown 

morphology and allocation is a well-established component of forest growth (Pretzsch, 2014). 

It is likely that the rapidity of crown expansion with non-zero plasticity (i.e. days to months) 

in the absence of supporting growth is not possible; however, that degree of canopy space 

expansion becomes feasible several years after treatment. Finally, rapid canopy expansion 

was found to cause unexpected demotion and mortality in early parameter evaluation 

experiments when: 1) mortality created bare patches, 2) site-level crown area decreased below 

closure-behavior thresholds, and, 3) intact-patch canopy spread was triggered despite locally 

closed canopies. In effect, intact tree patches expansion was triggered by low canopy 

competition in horizontally separate space that intact patch trees were not able to access. This 

issue did not occur in the reported selective thinning experiments in this Chapter’s results 
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because the model treatments were designed to transfer all thinned area to a new patch (e.g. 

harvest area = 100%, harvest fraction within area = intensity). In cases where patch number is 

allowed to increase, harvest or other mortality can trigger site-level canopy spread that leads 

to intact-forest canopy demotion and mortality. This behavior has not been previously 

reported, including with the FATES selective harvest module (Huang et al., 2020). This effect 

may have become apparent within this study’s simulated stand due to low site reproduction 

and opportunistic canopy promotion, which, if present, could have mitigated low site canopy 

area and increased spread tendency resulting from bare patch creation.  

 Most simulated experiment mortality resulted from understory carbon starvation 

(Sevanto, Mcdowell, Dickman, Pangle, & Pockman, 2014) under study target carbon storage 

and mortality fraction parameters. Whether low overstory mortality and relatively consistent 

levels of stand NPP will occur as the actual stand matures and climate warms remains a key 

uncertainty that could alter carbon stock differences between control and treatment stands. 

Simulations lacked stochastic disturbances (e.g. insects or pathogens) that may stress carbon 

reserves of large, overstory trees that might otherwise remain vigorous under climate change 

alone (Bennett, Mcdowell, Allen, & Anderson-Teixeira, 2015). Additionally, because FATES 

represents cohorts of identical “average” trees (Fisher et al., 2015), individual mortality 

stochasticity is implied by a carbon starvation mortality fraction parameter, buffering against 

stand or canopy class-wide mortality during single extreme years that could shape real stand 

trajectories. Throughout most study experiments, control NPP did not significantly decline as 

stands matured, with only mild declines in carbon use efficiency (NPP / GPP; DeLucia, 

Drake, Thomas, & Gonzalez-Meler, 2007). In FATES, size-related (and therefore age-related) 

declines in NPP can occur gradually with increasing tissue respiration. Modeled stand NEP 
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and biomass can reach equilibriums due to first-order relationships between biomass stocks 

and turnover that balance saturated production. However, actual tree or stand GPP, NPP, and 

NEP may also decline in response to hydraulic limitations associated with size or changes to 

allocation and turnover (Bennett et al., 2015; Körner, 2003; Körner et al., 2005; McDowell et 

al., 2008; Pangle, Kavanagh, & Duursma, 2015; Ryan, Phillips, & Bond, 2006). Because 

these processes are not represented in FATES, NPP, the amount carbon available to be 

allocated to storage, and the storage pool buffer against starvation mortality could be 

overestimated as stands develop. Finally, FATES tree canopy layer demotion is based off of 

surface area filling given minimum crown area per DBH relationships; when canopy area is 

filled, a fraction of trees is demoted based in part on height. Therefore, there is a strong, 

immediate resolution of competitive differences and distinction between the light available to 

overstory trees versus recently demoted understory trees of the same size class. For this 

reason, photosynthesis limitations and their impact on carbon starvation mortality are exerted 

less heavily at a stand-wide scale during the stem exclusion phase of stand development 

(Waring & Running, 2010) than may be realistically expected with years of fractional changes 

to competitive characteristics.   

CLM-FATES does not yet simulate mechanistic hydraulic failure and its existing, 

empirically based hydraulic failure mortality (from a soil water potential threshold and daily 

mortality fraction) did not contribute to mortality in this study’s projections. In study 

simulations, summer reductions in photosynthesis were not driven primarily by soil moisture 

stress (as indicated by the ‘beta-transpiration’ output variable; Fig. 5f), but instead by stomatal 

conductance reductions based on an empirical relationship with vapor pressure deficit. 

Depletion of soil moisture to a multi-month summer minimum did not occur as in field 
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observations, in turn failing to trigger stomatal closure based on low soil matric potential. 

Currently, this issue may be related to a model issue in which soil depth cannot be restricted 

by bedrock depth to represent shallow uplands sites or to a model-wide low-bias for 

transpiration (D. M. Lawrence et al., 2019).   

Conclusions: 

In this study, we found that simulated young ponderosa pine stands treated with 

selective harvest did not reach carbon parity with control stands within 70 years in any 

experiment. Treatment stand NPP recovered in all but high intensity experiments and 

recovery time was positively correlated with thinning intensity. Further, thinned stands 

displayed higher structural allocation and average per tree NPP while experiencing decreased 

understory density and mortality. However, late 21st century stand NPP declined in both 

control and treatment experiments due to increased VPD, which caused decreased production 

and increased understory mortality.   

Several observed model dynamics represent mechanistic improvements over the 

biogeochemical modeling reported in Chapter 2. Consistent with site observations, FATES 

simulated decreases in post-harvest NPP and recovery that exceeded multiple years due to 

generation of patches with decreased tree densities. Further, explicit space competition and 

carbon starvation mortality allowed for varied timing of canopy stratification and resulting 

understory stress between control and treatment stands. In contrast, dynamics that should be 

the focus of further improvement include a consistent sub-grid scale at which canopy 

competition and spread are implemented (i.e. site level crown filling vs patch level spread and 

demotion response) and more realistic soil moisture stress with increased summer moisture 

extraction. Finally, the target carbon storage parameter had a large impact on the timing and 
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canopy partitioning of carbon starvation mortality yet could not be validated directly with 

observations. Continued work will need to include sensitivity analyses that vary this and other 

important, parameter-associated hypotheses that may significantly determine the outcomes of 

treatments.  

 At a landscape scale, the carbon balance impacts of forest thinning are determined by 

treatment interactions with stochastic disturbances (including fire, insects, pathogens) and 

across environmental gradients (J. L. Campbell & Ager, 2013; J. L. Campbell, Harmon, & 

Mitchell, 2012). Stand scale results in this study demonstrate substantial, multi-decade carbon 

deficits in thinned stands in the absence of stand-level disturbance events. Anticipated future 

work with CLM-FATES includes introducing forest fire disturbance via the SPITFIRE 

module with region-scale model runs in which multiple new PFTs are parameterized. 

Previous work with CLM 4.5 has shown spatially variable forest carbon sequestration 

potential and vulnerability to drought and fire in the Northern Rocky Mountain ecoregion, 

indicating a range of preservation versus disturbance mitigation priorities (Buotte, Law, 

Ripple, & Berner, 2020; Buotte et al., 2019). Using CLM-FATES and SPITFIRE, more 

mechanistic representation of fire dynamics can be combined with dynamic vegetation to 

improve modeled representation of regional forest disturbances. As a result, management 

priorities – if, where, and when disturbance mitigation treatment should be applied for carbon 

storage and other benefits—can be better determined while considering regional complexity.  
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Supplemental Information: 

 

Figure S1. Example rapid canopy spread following threshold disturbance levels. Here, ‘d2ca_max’ is 200% of ‘d2ca_min’, 

with the same climate and initial density as the ‘control 1’ scenario (Table 2), but lower carbon storage targets/buffers, 

resulting in consistent overstory carbon starvation mortality. In a, sub-closure canopy area leads to rapid crown area 

expansion, resulting in rapid canopy closure, canopy tree demotion, and understory formation in b. 


