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Abstract 

In closed-canopy conifer forests, standing dead trees (known as snags) serve as keystone 

structures, supporting disproportionate amounts of biodiversity. Their reduced woody 

structure, as well as their decaying wood, make snags different enough from live trees to 

provide unique habitat features for wildlife. One such feature of snags in northwestern conifer 

forests is that they are the preferred sites for woodpeckers to excavate nest cavities, which are 

also considered keystone structures in this system. Woodpecker cavities are essential to 

multiple species of birds and mammals for nesting and roosting–and this habitat feature makes 

locating snags all the more valuable. Using remote sensing to map where snags occur across 

the landscape is of great benefit in multiple ecological contexts but is made difficult due the 

sparse, cryptic, and variable nature of standing deadwood throughout a forest. 

This dissertation tests novel methodologies to evaluate whether one type of remote sensing, 

light detection and ranging (known as lidar), applied at different spatial scales is sensitive 

enough to discern structural characteristics pertaining to: (1) tree cavity entrance dimensions; 

(2) snags versus live trees; and (3) variation among snags. I evaluated lidar at the individual 

tree scale for (1) to determine the accuracy of smartphone lidar in measuring cavity entrance 

dimensions under controlled conditions. I evaluated lidar at the landscape scale for (2) and (3) 

to explore the capabilities of airborne lidar for snag detection and characterization in conifer 

stands of the Idaho Panhandle National Forest.  

I found that smartphone lidar (1) was very accurate in measuring at least one dimension of 

cavity entrance size, enabling discernment among species of cavity excavators. I found 

airborne lidar to be (2) effective at distinguishing between snags and live trees at the individual 

tree level using the proportion of open space surrounding each, but (3) airborne lidar was not 

high enough resolution to reliably characterize multiple snag classes.  
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Chapter 1: Introduction 

Biodiversity indicators are ecosystem components that serve as useful proxies for 

monitoring a community across many taxonomic levels, and likely reduce the time or effort 

needed to evaluate the community. The ability to use biodiversity indicators that are 

measurable via remote sensing techniques can enable wildlife and biodiversity assessment 

across broad spatial scales (Michel and Winter, 2009; Paillet et al., 2017; Asbeck et al., 

2020). One type of remote sensing that is useful in assessing biodiversity indicators is light 

detection and ranging (known as lidar), as lidar has applications for wildlife modeling at 

multiple scales (Vierling et al., 2008; Martinuzzi et al., 2009; Vogeler et al., 2013; Casas et 

al., 2016; Vogeler and Cohen, 2016). This dissertation focuses on exploring new ways lidar 

data can be incorporated in assessing biodiversity indicators within forested systems. 

 One valuable indicator of biodiversity in forested systems is standing dead trees. 

When a tree dies in the forest, sometimes it falls right away and other times it will remain 

standing long after death. Standing dead trees are known as snags, and they are important 

structural elements in forest ecosystems (Thomas et al., 1979; Bull et al., 1997). Snags are 

keystone structures for wildlife, meaning they play a disproportionately large role in 

community composition and dynamics (Tews et al., 2004). Though they comprise a 

relatively small portion of the biomass, snags serve valuable and unique roles in closed-

canopy conifer forests of northwestern North America (Miller and Miller, 1980; Michel and 

Winter, 2009; Larrieu et al., 2018). One key feature of snags is that they are distinct from live 

trees in several ways: exposing open spaces, supporting unique functions and niches for 

wildlife that live trees cannot, and providing deadwood for decomposition and use by fungi 

and animals. In particular, this deadwood is used by woodpeckers to excavate cavities for 

nesting and roosting (Thomas et al., 1979; Davis, 1983; Martin and Eadie, 1999).  

The tree cavities created by woodpeckers serve outsized roles within closed-canopy 

conifer forest communities as keystone structures in their own right (Bull et al., 1997; Martin 

and Eadie, 1999; Blanc and Walters, 2008). Having access to a sizeable hole high above the 

ground which is relatively hard to reach is something desirable for many species of wildlife 

beyond woodpeckers. Cavities can be safer for nesting, protecting eggs and young from 
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predators and providing more stable microclimates, with the inside buffered from 

temperature swings (Wiebe, 2001; Vierling et al., 2018). Cavities can also provide shelter 

during rain or snowstorms (Wiebe, 2001; Vierling et al., 2018). Species that use cavities for 

nesting or roosting but cannot create them directly are known as secondary cavity users 

(Martin and Eadie, 1999; Martin et al., 2004). The number of cavities available for secondary 

cavity users is limited by cavity excavator densities and the number of trees available to 

excavate. 

Taken together, all of the snags available to excavate, all of the cavity excavators, and 

all of the secondary cavity users found within a closed-canopy conifer forest are linked 

through a diverse network of connections known as a cavity nest web (Martin and Eadie, 

1999). The cavity nest web can be viewed hierarchically, with three levels dependent on the 

ones below: secondary cavity users comprise the top level stacked upon cavity excavators 

which are stacked upon the snags that form the foundation of the cavity nest web. Each level 

of the nest web contains multiple species, and each species has different relationships and 

interaction strengths with the species in the other levels (Martin and Eadie, 1999; Martin et 

al., 2004; Aitken and Martin, 2007; Manley and Tarbill, 2012). 

Cavity nest webs can become complicated quickly, with increasing species diversity 

driving greater complexity and interactions at each level. Understanding these connections in 

cavity nest webs takes a great amount of effort and time in the field spent locating cavities 

and observing occupancy by woodpeckers and secondary cavity users across multiple years 

(Martin et al., 2004; Aitken and Martin, 2007; Manley and Tarbill, 2012). One way to tease 

apart these complex relationships among cavities and wildlife species is to look more closely 

at cavity entrance sizes.  

Cavity nest webs can be approached with a focus on the body size of each animal 

involved and its relationship with cavity entrance size. When a woodpecker excavates a 

cavity, it will only make it as big as needed, in terms of both cavity entrance dimensions and 

interior volume (Wiebe, 2001; Martin et al., 2004; Gentry and Vierling, 2008; Bunnell, 

2013). When secondary cavity users are looking for a suitable cavity, many may take the 

Goldilocks approach with regard to entrance size: too small and they cannot access the 
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cavity; too big and it may take excessive energy to stay warm inside (Pyle, 1918; Martin et 

al., 2004). Cavity entrance size also limits which predators can access a nest, so finding a fit 

closest to a cavity user’s body size is beneficial (Martin et al., 2004; Vierling et al., 2018).  

Multiple species of cavity excavators can coexist in the same space; within the 

closed-canopy conifer forests of northern Idaho four woodpecker species (all within order 

Piciformes) coexist on the landscape and excavate cavities in snags. The four differ in body 

size and thus excavate cavities of differing sizes. This diversity of cavity sizes increases 

accessibility for secondary cavity users with access determined by body size. Many 

secondary cavity users are obligate cavity nesters, meaning they need cavities to breed 

(Martin and Eadie, 1999). Should there not be any suitable cavities available in an area for a 

given species, that secondary cavity user may not be able to inhabit the space and thus will 

not be present on the landscape. 

Having a diversity of sizes in keystone structures is important for biodiversity and 

thus important to quantify. Being able to measure the cavity entrance size dimensions found 

in an area could tell about the presence or absence of woodpecker species on the landscape, 

as well as the potential habitat suitability for secondary cavity users, stratified by body size. 

However, remote measurement of tree cavities can be tricky, as direct measurement is 

frequently dangerous and difficult due to the location of cavities often high above the ground 

in snags. Snags are inherently unstable structures, which makes directly accessing cavities 

located more than few meters above the ground very challenging. Developing an approach to 

remotely measure cavity entrance dimensions would need to be safe, rapid, and accurate. 

While measuring tree cavities in the field is useful for mapping cavity nest webs, it is 

equally important to locate where the snags are that these cavities can be built in. Unlike 

cavities, snags have the potential to be detected remotely from far above. Knowing how 

snags are distributed across the landscape can inform where woodpeckers will occur and 

where cavities can be created, thus also informing where cavity-dependent species occur. 

Having reliable maps of snags across a landscape could lead to better spatial representations 

of the potential footprint for cavity nest webs in conifer forests of the northwest.  
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However, mapping snags within closed-canopy conifer forests via remote sensing is 

challenging, as snags are difficult to detect both spatially and temporally (Falkowski et al., 

2009; Wing et al., 2015). Therefore, the value of snags as biodiversity indicators cannot be 

fully realized until snags can be better characterized across broad spatial scales. Some 

challenges in characterizing snags remotely include their sparse and sporadic distributions 

across the landscape, their lack of data stemming from their lesser structure, and the highly 

variable set of shapes included within the “snag” category. 

This dissertation focuses on challenges in using lidar tools to better map keystone 

structures, specifically by paying attention to their diversity of sizes, spaces, and shapes. 

First, a diversity of cavity sizes supports greater biodiversity so I will look at ways to 

measure tree cavities from the ground using handheld lidar (Chapter 2). Next, I will look at 

how a diversity of spaces within the forest canopy benefits wildlife and can benefit snag 

mapping efforts via airborne lidar (Chapter 3). Then I will look at how a diversity of shapes 

among snags matters to wildlife and may hold untapped potential for modeling (Chapter 4). 

Finally, I will wrap things up by explaining how these novel approaches can be applied at 

broader scales for a variety of disciplines and suggest future applications (Chapter 5). 
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Abstract 

Remote sensing technologies are increasingly able to measure environmental characteristics 

important for wildlife, but remain limited in measuring small-scale structures like tree cavities. 

Tree cavities are essential structures in many systems, including use for breeding and roosting 

by multiple animal species that vary in size. However, obtaining cavity dimensions directly is 

often difficult, dangerous, or impossible. During September–October 2017 at the University of 

Idaho Experimental Nursery in Moscow (ID, USA), we tested a handheld Light Detection and 

Ranging (LIDAR) device that interfaces with smartphones and tablets called Spike® by 

IkeGPS (Wellington, New Zealand) to determine whether it could be used to remotely measure 

tree cavity entrance dimensions. The Spike laser range-finding device pairs with a mobile app 

to allow users to photograph a target (i.e., a tree cavity) on their phone or tablet and measure 

dimensions of that target onscreen. We designed an experiment to test the accuracy of Spike 

across 4 cavity entrance sizes ranging from 8.25 cm2 to 80.11 cm2, based on average cavity 

dimensions of Pacific Northwest woodpecker (Picidae) species. We varied height of target off 

the ground, obliqueness of the viewing angle (i.e., offset from target azimuth), and distance 

from target. Correlations between Spike measurements and cavity dimensions were high (r > 

0.91 across 3 dimensions; n = 294). Measurement error for both vertical and horizontal 

diameters of cavity entrances was < 1 cm on average. Accuracy was most influenced by taking 

photos from a large oblique viewing angle, high target height, and large distance from the 

target combined, based on results from generalized linear models. Spike proved to be a low-

cost, portable technology that can noninvasively measure structures that are small and difficult 

to access. Because of the ease with which it can be used, handheld LIDAR likely has potential 

future applications in wildlife research as well as citizen science education and outreach 

efforts.  
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Introduction 

Tree cavities are used for breeding and roosting by multiple animal species that vary 

in size from small bats to large raptors (Martin et al., 2004; Aitken and Martin, 2007; Blanc 

and Walters, 2008; Gentry and Vierling, 2008; Bunnell, 2013; see Table A1 in Appendix A). 

Quantifying cavity-entrance size dimensions has implications for the management of cavity-

using communities because cavity entrance size can limit accessibility by different cavity 

users, many of whom are sensitive species of management concern (Appendix A Table A1). 

Although it is recognized that cavity entrance dimensions might be important for multiple 

species and communities, measuring tree cavity characteristics can be challenging because 

woodpeckers (Picidae), especially in the Pacific Northwest of the United States, often 

excavate nests in standing dead trees (known as snags), and select sites located high above 

the ground (Bull and Jackson, 2011; Wiebe and Moore, 2017; Jackson and Ouellet, 2018; 

Jackson et al., 2018). Snags are inherently unstable structures, often dangerous or difficult to 

access, which makes many cavities unreachable when located more than a few meters above 

the ground. Those cavities that can be directly accessed require the use of ladders, poles, or 

other systems for reaching the cavity entrances (e.g., Martin et al., 2004; Jusino et al., 2014; 

Lorenz et al., 2015; Vierling et al., 2018). Although these techniques afford a much richer 

assortment of information (including degree of excavation, internal cavity dimensions, and 

the opportunity to collect samples, band individuals, and monitor occupancy), they further 

compound the costs of time, funds, and experience required to obtain data.  

Developing a safe, accurate, and rapid approach to remotely measure cavity entrance 

dimensions would benefit ecologists studying cavity-using communities. There have been no 

studies to our knowledge that explore tools that would allow for the measurement of such 

small features in inaccessible sites. Recent developments with laser-based approaches (i.e., 

Light Detection and Ranging [LIDAR]) have expanded our ability to characterize forest 

structures and processes in new ways (e.g., Eitel et al., 2016). Although multiple vegetation 

features can be detected with combinations of satellite imagery, airborne LIDAR, and 

terrestrial laser scanning (TLS), these tools are more appropriate at the plot, stand, or 

landscape scale (O’Neil et al., 2012). With technology rapidly advancing the capabilities of 

field tools and techniques, we have identified handheld LIDAR as a cost-effective tool that 
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may remotely determine cavity dimensions safely, quickly, and accurately. We believe that 

this approach may fill a gap in obtaining measurements for structures with small spatial 

extents (defined here as 1–100 cm), which are not detectable via satellite, airborne LIDAR, 

or TLS methods.  

Our study goal was to test whether a handheld LIDAR device (Spike®; IkeGPS 2018, 

Wellington, New Zealand) could be used to collect accurate data on cavity entrance 

dimensions across various conditions. Our specific objectives were to (1) determine the 

accuracy of the Spike device for measurement of cavity entrance dimensions as a function of 

size of the cavity entrance, distance from the tree, height of the cavity above the ground, and 

obliqueness of viewing angle (i.e., offset from cavity entrance azimuth); (2) model the factors 

that most influence measurement error; and (3) discuss the benefits and drawbacks associated 

with this tool.  

 

Methods and Materials 

Study area 

For cavity experiments, we collected all measurements on a wooden logger climbing 

pole (55 cm in diameter, 19.7 m tall) at the University of Idaho Experimental Nursery in 

Moscow, Idaho, USA. We took all measurements in September–October 2017.  

Manufacturer Specifications for the Spike Handheld LIDAR Device 

The Spike device is manufactured by IkeGPS (2018). It is a small Class 1 laser range-

finder unit that attaches to the back of a smartphone or tablet computer. The device pairs with 

the phone or tablet via Bluetooth (Bluetooth Special Interest Group International, Bellevue, 

WA, USA) and is controlled through a mobile app (“Spike” by IkeGPS, available for iOS 

and Android platforms) to access the smartphone or tablet’s camera, accelerometer, and 

Global Positioning System information. When a photo is taken of a target through the mobile 

app, it uses the laser-derived distance to the target to calculate lengths and areas within the 

photo, on a 2-dimensional plane (Appendix B Figure B1). It has an internal lithium-ion 

battery charged via micro–Universal Serial Bus, with an estimated battery life of 4 hours 
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with continuous use. The manufacturer specifies that the accuracy of the range finder for the 

device is 5 cm between 2 m and 200 m, and accuracy of the photo measurements is 1% of the 

object being measured. The minimum unit of measure for the Spike device is 1 cm. The 

Spike device was originally intended for architectural applications, measuring dimensions of 

large manmade structures such as industrial windows and building facades (IkeGPS, 2018). It 

is important to note that a clear line of sight to the target is required to get accurate distances 

and subsequent length and area measurements.  

Cavity characteristics 

To test how well the Spike device could discern among cavity sizes, we created 

dummy cavity entrances in the form of ovals cut out of black felt that represented the average 

cavity-entrance dimensions of 4 woodpecker species: downy woodpecker (Dryobates 

pubescens), hairy woodpecker (D. villosus), northern flicker (Colaptes auratus), and pileated 

woodpecker (Dryocopus pileatus; Figure 2.1). We selected the range of cavity sizes to test 

the limits of the Spike device to differentiate between cavity entrance dimensions of these 

coexisting woodpecker species, with small downy woodpecker cavities at one end of the 

continuum and large pileated woodpecker cavities at the other (Martin et al., 2004; Figure 

2.1). We used a logger climbing pole as a dummy snag to establish 3 replicate sets of dummy 

cavities (in the form of the 4 felt ovals representing the differently sized cavity entrances), 

affixed to the pole with duct tape at 3 heights above ground, all in the same orientation. We 

set up an experimental design to test multiple interacting conditions: size of the target (i.e., 

size of the felt ovals), distance from target (standing 10 m, 20m, and 30m away), height of 

target (1 m, 10 m, and 15 m above-ground); and oblique viewing angle (standing at 0º, 25º, 

and 45º offset from target azimuth; Figure 2.1). The vertical diameter of cavity entrances 

ranged from 3 cm to 12 cm, whereas the horizontal diameter of cavity entrances ranged from 

3.5 cm to 8.5 cm (Figure 2.1). For each combination of distance, height of target above-

ground, and viewing angle, we took 3 replicate Spike photos of the target cavity set and used 

the Spike mobile app to measure the vertical and horizontal diameters for each of the 4 

dummy-cavity entrance sizes.  
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Data analyses 

We used Program R (Version 3.4.1, www.R-project.org, accessed 9 May 2018) and R 

Studio (Version 1.0.143, www. rstudio.com, accessed 9 May 2018) to conduct all statistical 

analyses. For each of the cavity sizes, we measured the vertical diameter of cavity entrance 

and horizontal diameter of cavity entrance using the Spike device and mobile app. We then 

calculated cavity entrance area as (vertical diameter/2) × (horizontal diameter/2) × π (Figure 

2.1). We used these 3 cavity dimensions (vertical diameter, horizontal diameter, and entrance 

area) as response variables in 3 separate tests of analysis of variance (ANOVA) to determine 

whether Spike measurements of the 4 woodpecker cavity sizes were distinguishable from one 

another across all conditions.  

To determine how variable conditions affected the accuracy of Spike measurements, 

we calculated error rates for vertical diameter of cavity entrance, horizontal diameter of 

cavity entrance, and cavity entrance area (difference of the Spike measurement minus the 

reference). This value (error) was used as the response variable in subsequent univariate 

analyses, where predictor variables included cavity size, distance from target, height of target 

above ground, and viewing angle. We used ANOVA followed by Tukey honestly significant 

difference (HSD) tests on all pairwise comparisons and obtained correlation coefficients for 

paired samples.  

We used generalized linear models from the stats package in R to model the error 

rates for the vertical diameter of cavity entrance, horizontal diameter of cavity entrance, and 

cavity entrance area as a function of 3 continuous variables (distance from target, height of 

target above ground, viewing angle) to test the possible interactions driving error rates across 

our cavity measurements. We tested 9 models: a null model, models with a single variable 

(distance only, height of target above ground only, viewing angle only), models with 2-way 

interactions (distance × height of target above ground, distance × viewing angle, viewing 

angle × height of target above ground), an additive model that included all 3 variables with 

no interactions, and a global model with all 3 variables interacting. We ranked models by 

calculating the value of Akaike’s Information Criterion corrected for small sample sizes 

(AICc), and Akaike weight (wi) for each model (Anderson and Burnham, 2002). We included 

only models with ∆AIC < 2. We set  = 0.05 for all statistical tests.  
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Results 

Cavity measures across various conditions 

We measured 294 vertical diameters and horizontal diameters of cavity entrances 

across all combinations of distance, height, angle, and cavity size. For a small number of 

instances, repeated measures of combinations were limited because of discarded samples 

(inaccurate laser distances as a result of interference or missed targets at large distances). We 

found that the 4 individual cavity sizes were distinguishable from one another (p < 0.001 for 

all comparisons; Table 2.1), regardless of response variable used (vertical diameter, 

horizontal diameter, or area). Correlation coefficients between known cavity dimensions and 

Spike-derived vertical diameter, horizontal diameter, and area were 0.95, 0.91, and 0.95, 

respectively (p < 0.001 for each correlation). Error rates for Spike measurements differed 

across univariate ANOVAs, and the importance of each predictor variable varied by cavity 

dimension (Table 2.2; Figure 2.2). The average error for vertical diameter of cavity entrance 

was 0.7 ± 0.7 cm, with a significant increase in error positively correlated with height above 

ground. The average error for horizontal diameter of cavity entrance was 0.6 ± 0.5 cm, with a 

significant increase in error positively correlated with oblique viewing angle. The average 

error for cavity entrance area was 6.0 ± 6.2 cm2.  

Multiple models of the accuracy of Spike measurements showed that predictor 

variables influenced error rates differently by response variable (Table 2.3). For vertical 

diameter of cavity entrance, the best model characterizing error rates included height of the 

target above ground and distance from target as parameters, with an interaction between 

these 2 factors. Error rates were positively associated with height of cavity above ground and 

distance individually, but interactions were negatively associated (Table 2.4). For horizontal 

diameter of cavity entrance, the best model characterizing error rates was the global model, 

including all 3 variables as parameters, with all interactions between them. The obliqueness 

of the viewing angle appeared repeatedly as a significant variable across multiple 

interactions, suggesting error rates for horizontal diameter of cavity entrance were driven by 

oblique viewing angle (Table 2.4). For cavity entrance area, the best model characterizing 

error rates included only oblique viewing angle as a parameter, with error rates positively 

associated with greater angles (Table 2.4).  
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Discussion 

We found that handheld LIDAR can be used to accurately characterize tree-cavity-

entrance sizes. Under our experimental conditions, we found that the device could be used to 

discern among objects 3–12 cm in length from distances up to 30 m with errors of < 1 cm on 

average (0.6 cm). These lengths corresponded to the average cavity entrance diameter 

measures for 4 different cavity excavators in the Pacific Northwest. Although there can be 

overlap in entrance sizes between different woodpecker species in the field, we chose to use 

the average sizes for this experimental approach.  

Error rates for Spike photo measurements increased with the severity of conditions, or 

combinations thereof, and could predominantly be explained by 2 underlying drivers: 

extreme perspective (vertical or horizontal foreshortening, defined as the shortening of length 

in an image where a severe angle distorts the perception of depth) and camera resolution. 

Errors in vertical diameter of cavity entrance were driven by a negative interaction between 

distance and height, creating extreme perspective (vertical foreshortening)—standing a short 

distance away from a target located high above ground predictably leads to underestimation 

of a vertical length (Figure 2.2, top left plots). Errors in horizontal diameter of cavity 

entrance were driven by extreme perspective (horizontal foreshortening)—standing at an 

extreme oblique viewing angle from target azimuth predictably leads to underestimation of 

horizontal length (Figure 2.2, “45 deg” plots).  

Further, quality of a Spike photo is determined by the camera of the smartphone or 

tablet being used: pixel resolution, level of ambient or external light available, and visibility 

of all objects to be measured (e.g., visible edges of a cavity entrance) must be taken into 

account for successful subsequent measurements. Errors in both vertical and horizontal 

diameters of cavity entrance became more variable at larger distances due to resolution limits 

of the camera used; identifying cavity edges in a Spike photo taken from 30 m away became 

difficult because object boundaries blurred at such distances. Blurring mainly led to 

overestimation for both vertical and horizontal diameters of cavity entrance, though 

underestimation occurred as well (Figure 2.2, “30 m” plots). Errors in cavity entrance area 

were greater than the other dimensions, likely due to the compounding nature of 
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incorporating errors from both vertical diameter and horizontal diameter of cavity entrance 

into each area calculation.  

We support the use of the Spike device for cavity measurements in the field, 

assuming the baseline conditions of clear line of sight and visibility can be met. For 

measurements of tree cavity entrance sizes < 15 m in height, we suggest users stand within 

30 m and at < 25º oblique angle from the cavity entrance azimuth. We recommend avoiding 

instances where both types of extreme perspective biases occur (vertical and horizontal 

foreshortening), to enable the user to obtain an accurate metric for ≥ 1 of the 2 cavity 

dimensions. Although we used both vertical diameter and horizontal diameter of cavity 

entrance as dimensions, selecting only one to serve as an indicator of cavity size may be 

sufficient for field sites with dense vegetation or very high cavities.  

Multiple remotely sensed tools assist in the characterization of wildlife habitats, and 

their use depends largely on the spatial scale and vegetation characteristics of interest. 

Airborne LIDAR can be used to characterize landscape-scale patterns of structural 

information and coupled with satellite measurements to address a multitude of questions in 

wildlife studies (e.g., Vierling et al., 2008; Martinuzzi et al., 2009; Palminteri et al., 2012; 

Davies and Asner, 2014; Hill and Hinsley, 2015). At finer spatial extents, TLS can be used to 

calculate tree height, diameter at breast height (DBH), and forest biomass from below the 

canopy at a plot level (Pirotti et al., 2012; Kankare et al., 2013; Kato et al., 2014; Calders et 

al., 2015). These systems have also been used to characterize fine-scale understory structure 

and characteristics in novel ways (Eitel et al., 2013; Bright et al., 2016). Spike differs from 

both airborne and TLS systems in that it is not generating a collection of laser points (i.e., a 

point cloud), but 1 point/photo, and extrapolating the distance of that point onto a 2-

dimensional plane. We consider Spike to be a precision tool, better applied to focusing in on 

specific structures rather than characterizing large areas. In fact, use of Spike may dovetail 

nicely with TLS or other laser-based or drone-based surveys, with the user able to 

supplement a data set with Spike photos of cavity entrances or other inaccessible structures 

accurately and opportunistically.  
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The upfront requirements for implementation of the Spike device include purchasing 

the laser device, which costs < US$600, and downloading the mobile app, which is free. The 

Spike device is compact, lightweight, compatible with technology most people already have 

(smartphones and tablets), and has a long battery life, making it easy to employ in the field 

when needed. The Spike mobile app has a touchscreen interface, creates geo-referenced 

photo records for each sample (location accuracy 10 m, not rigorously tested here), and 

allows data uploads and storage in the cloud for easy online access (IkeGPS, 2018). Web 

access provides records viewed as a map; post hoc measurements can also be taken from 

each photo record and all data can be shared between multiple collaborators. Although 

smartphones and tablets without a Spike device can capture geo-referenced photos in the 

field, they cannot measure dimensions of structures within those photos without an external 

reference for scale. Thus, Spike serves as a novel tool for remote measurement that extends 

the capabilities of a typical smartphone for research.  

Handheld LIDAR may add the most value in terms of time savings, by providing 

users safe, accurate, and rapid remote access to cavity entrance dimensions—metrics that 

were previously inaccessible or labor- and time-intensive to gather directly. Plus, as a 

noninvasive method of sampling, Spike could be safe for wildlife and other uses beyond the 

characterization of tree cavity entrances. The accuracy at small spatial scales (3–12 cm in 

length) suggests that tools like Spike could be applied to larger structures and obtain accurate 

results, proving useful for vegetation assessments, including the monitoring and 

measurement of additional habitat features. For instance, we found Spike to be accurate 

enough for opportunistic measures of tree DBH at distances 10–50 m away for isolated trees 

ranging from 11 to 113 cm in diameter, as compared against standard DBH tape measures   

(J. Stitt, unpublished data; n = 103, r = 0.98). This tool might be of use in situations where a 

tree cannot be measured directly, such as those actively being used for nesting or those that 

are difficult to access, but which have a clear line of sight to their base. We would also 

encourage explorations into the utility of Spike to assist in noninvasive measurements of 

animal morphology where applicable and useful (e.g., body size of megafauna or specific 

bird morphometrics).  
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Finally, as a handheld, portable, user-friendly device, Spike can also be a powerful 

tool for educational endeavors and science outreach, engaging both adults and children in 

novel ways of observing and measuring their surroundings with visual and interactive 

techniques. With collaborative efforts and citizen science approaches developing into 

valuable tools for natural resources management and conservation (e.g., Dickinson et al., 

2012; Sullivan et al., 2014; Ellwood et al., 2017), the use of Spike and other handheld 

LIDAR devices as instruments of investigation has potential future use to augment surveys, 

provide additional metrics noninvasively, and improve approaches to habitat quantification. 

With the rate at which these technologies continue to advance, Spike and future handheld 

LIDAR devices may herald the advent of powerful and practical tools to remotely investigate 

our world from the palm of our hand.  
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Tables 

 
Table 2.1 Measurements of cavity entrance dimensions 

Means and standard errors (in cm) of Spike measurements of cavity entrance dimensions across all photos of 

dummy cavity entrances obtained during September–October 2017 at the University of Idaho Experimental 

Nursery in Moscow (ID, USA), based on 4 woodpecker species. 

 

Vertical diameter  Horizontal diameter  Cavity entrance area 

Speciesa 
 

SE  
 

SE  
 

SE 

 DOWO 3.27 0.07  3.79 0.04  9.95 0.28 

 HAWO 5.01 0.06  4.89 0.06  19.41 0.41 

 NOFL 7.50 0.05  6.85 0.07  40.49 0.51 

 PIWO 11.53 0.12  8.51 0.07  77.17 1.07 

a DOWO, downy woodpecker; HAWO, hairy woodpecker; NOFL, northern flicker; and PIWO, pileated woodpecker 
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Table 2.2 Measurement errors for each response variable 

Results of Tukey honestly significant difference tests for errors of Spike measurement (difference between 

Spike value and known value) of dummy cavity entrances, obtained during September–October 2017 at the 

University of Idaho Experimental Nursery in Moscow (ID, USA), across experimental conditions, based on 3 

response variables: (a) vertical diameter of cavity entrance, (b) horizontal diameter of cavity entrance, and (c) 

cavity entrance area. Please see Figure 2.1 for further clarification of experimental design.  

(a) Errors, vertical diameter (cm) 

 Estimate Lower CI Upper CI P a 

SIZEb 

 HAWO–DOWO 0.09 −0.21 0.39 0.87 

 NOFL–DOWO 0.14 −0.16 0.44 0.63 

 PIWO–DOWO 0.30 0.00 0.61 0.05 

 NOFL–HAWO 0.05 −0.25 0.35 0.97 

 PIWO–HAWO 0.21 −0.09 0.52 0.27 

 PIWO–NOFL 0.16 −0.14 0.46 0.51 

HEIGHTc 

 Mid–ground 0.15 −0.07 0.38 0.25 

 Canopy–ground 0.55 0.32 0.77 <0.001*** 

 Canopy–mid 0.39 0.16 0.63 <0.001*** 

DISTANCEd 

 20 m–10 m −0.13 −0.37 0.11 0.39 

 30 m–10 m −0.04 −0.27 0.20 0.93 

 30 m–20 m 0.10 −0.15 0.35 0.62 

ANGLEe 

 25 deg–0 deg 0.09 −0.16 0.34 0.70 

 45 deg–0 deg −0.03 −0.27 0.22 0.97 

 45 deg–25 deg −0.11 −0.34 0.12 0.49 

a Adjusted P-values: ‘*’ < 0.05, ‘**’ < 0.01, ‘***’ < 0.001. 

b SIZE refers to the dimensions of the dummy cavity entrance, ranked by size of woodpecker species: DOWO, 

downy woodpecker; HAWO, hairy woodpecker; NOFL, northern flicker; and PIWO, pileated woodpecker.  

c HEIGHT refers to height above ground at which we placed dummy cavity entrances on the pole: “Ground” (1 

m), “Mid” (10 m), and “Canopy” (15 m).  

d DISTANCE refers to how far from the pole photos were taken: standing 10 m, 20 m, and 30 m away.  

e ANGLE refers to the obliqueness (in degrees) of the photographic view angle relative to the cavity entrance: 

“0 deg” (standing directly in front of the cavity entrance), “25 deg” (standing at a 25° angle clockwise from 

azimuth), and “45 deg” (standing at a 45° angle clockwise from azimuth).  
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(b) Errors, horizontal diameter (cm) 
 

Estimate Lower CI Upper CI P a 

SIZEb 

 HAWO–DOWO −0.06 −0.28 0.17 0.92 

 NOFL–DOWO −0.09 −0.31 0.13 0.74 

 PIWO–DOWO 0.09 −0.13 0.32 0.71 

 NOFL–HAWO −0.03 −0.25 0.19 0.98 

 PIWO–HAWO 0.15 −0.07 0.37 0.31 

 PIWO–NOFL 0.18 −0.04 0.40 0.15 

HEIGHTc     

 Mid–ground −0.04 −0.22 0.13 0.84 

 Canopy–ground −0.05 −0.23 0.12 0.77 

 Canopy–mid −0.01 −0.19 0.17 0.99 

DISTANCEd 

 20 m–10 m −0.12 −0.29 0.05 0.23 

 30 m–10 m 0.07 −0.10 0.25 0.57 

 30 m–20 m 0.20 0.02 0.38 0.03* 

ANGLEe 

 25 deg–0 deg 0.17 0.00 0.35 0.05* 

 45 deg–0 deg 0.46 0.29 0.63 <0.001*** 

 45 deg–25 deg 0.29 0.13 0.45 <0.001*** 
a Adjusted P-values: ‘*’ < 0.05, ‘**’ < 0.01, ‘***’ < 0.001. 

b SIZE refers to the dimensions of the dummy cavity entrance, ranked by size of woodpecker species: DOWO, 

downy woodpecker; HAWO, hairy woodpecker; NOFL, northern flicker; and PIWO, pileated woodpecker.  

c HEIGHT refers to height above ground at which we placed dummy cavity entrances on the pole: “Ground” (1 

m), “Mid” (10 m), and “Canopy” (15 m).  

d DISTANCE refers to how far from the pole photos were taken: standing 10 m, 20 m, and 30 m away.  

e ANGLE refers to the obliqueness (in degrees) of the photographic view angle relative to the cavity entrance: 

“0 deg” (standing directly in front of the cavity entrance), “25 deg” (standing at a 25° angle clockwise from 

azimuth), and “45 deg” (standing at a 45° angle clockwise from azimuth).  
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(c) Errors, cavity entrance area (cm2) 

  Estimate Lower CI Upper CI P a 

SIZEb 

 HAWO–DOWO 1.08 −1.29 3.44 0.64 

 NOFL–DOWO 3.01 0.66 5.36 0.006** 

 PIWO–DOWO 7.52 5.16 9.87 <0.001*** 

 NOFL–HAWO 1.94 −0.42 4.29 0.15 

 PIWO–HAWO 6.44 4.09 8.79 <0.001*** 

 PIWO–NOFL 4.51 2.16 6.85 <0.001*** 

HEIGHTc 

 Mid–ground −0.02 −2.09 2.05 1.00 

 Canopy–ground 1.88 −0.17 3.92 0.08 

 Canopy–mid 1.90 −0.22 4.02 0.09 

DISTANCEd 

 20 m–10 m −1.69 −3.74 0.36 0.13 

 30 m–10 m 0.89 −1.15 2.93 0.56 

 30 m–20 m 2.58 0.46 4.70 0.01* 

ANGLEe 

 25 deg–0 deg 1.46 −0.68 3.60 0.24 

 45 deg–0 deg 2.67 0.53 4.80 0.01** 

 45 deg–25 deg 1.21 −0.77 3.18 0.32 
a Adjusted P-values: ‘*’ < 0.05, ‘**’ < 0.01, ‘***’ < 0.001. 

b SIZE refers to the dimensions of the dummy cavity entrance, ranked by size of woodpecker species: DOWO, 

downy woodpecker; HAWO, hairy woodpecker; NOFL, northern flicker; and PIWO, pileated woodpecker.  

c HEIGHT refers to height above ground at which we placed dummy cavity entrances on the pole: “Ground” (1 

m), “Mid” (10 m), and “Canopy” (15 m).  

d DISTANCE refers to how far from the pole photos were taken: standing 10 m, 20 m, and 30 m away.  

e ANGLE refers to the obliqueness (in degrees) of the photographic view angle relative to the cavity entrance: 

“0 deg” (standing directly in front of the cavity entrance), “25 deg” (standing at a 25° angle clockwise from 

azimuth), and “45 deg” (standing at a 45° angle clockwise from azimuth).  
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Table 2.3 Support for generalized linear model selection 

Support for generalized linear model selection based on Akaike’s Information Criterion corrected for small 

sample sizes (AICc), explaining drivers of error in Spike measurements of dummy cavity entrances across 3 

response variables: vertical diameter of cavity entrance, horizontal diameter of cavity entrance, and cavity 

entrance area. Measurements collected during September–October 2017 at the University of Idaho 

Experimental Nursery in Moscow, Idaho, USA. Please see Figure 2.1 for further clarification of experimental 

design.  

Modela K AICc ΔAICi wi 

Vertical diameter     

 Height × Distance 5 587.81 0.00 0.77 

Horizontal diameter     

 Global 9 417.97 0.00 0.69 

Cavity entrance area     

 Angle 3 1,903.86 0.00 0.35 

 Height + Distance + Angle 5 1,904.52 0.66 0.25 

 Height × Angle 5 1,905.09 1.23 0.19 
a “Height” refers to the height above ground at which we placed dummy cavity entrances on the pole; 

“Distance” refers to how far from the base of the pole photos were taken; “Angle” refers to the obliqueness (in 

degrees) of the photographic view angle, relative to the cavity entrance. Global models include all interactions 

across Height, Distance, and Angle.  
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Table 2.4 Parameter estimates and confidence intervals for drivers of error in each top-ranked model 

Parameter estimates and confidence intervals for drivers of error in each top-ranked model of Spike 

measurements, collected during September–October 2017 at the University of Idaho Experimental Nursery in 

Moscow (ID, USA), across 3 response variables: vertical diameter of cavity entrance, horizontal diameter of 

cavity entrance, and cavity entrance area. Please see Figure 2.1 for further clarification of experimental design.  

Modela Estimate Lower CI Upper CI 

Vertical diameter 
   

 (Intercept) −0.297 −0.636 0.043 

 Height 0.125b 0.092 0.157 

 Distance 0.037b 0.021 0.053 

 Height × Distance −0.004b −0.006 −0.003 

Horizontal diameter 
   

 (Intercept) −0.072 −0.480 0.336 

 Height 0.029 −0.011 0.069 

 Distance 0.021b 0.002 0.040 

 Angle 0.035b 0.021 0.048 

 Height × Distance −0.001 −0.003 0.001 

 Height × Angle −0.002b −0.003 −0.001 

 Distance × Angle −0.001b −0.002 −0.0001 

 Height × Distance × Angle <0.001b <0.001 <0.001 

Cavity entrance area 
   

 (Intercept) 4.526b 3.302 5.750 

 Angle 0.059b 0.020 0.099 

a “Height” refers to the height above ground at which we placed dummy cavity entrances on the pole; 

“Distance” refers to how far from the base of the pole photos were taken; “Angle” refers to the obliqueness (in 

degrees) of the photographic view angle, relative to the cavity entrance. 

b We considered estimates significant if 95% CIs did not include 0.  
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Figures 

 

 
 

Figure 2.1 Experimental setup for measuring cavity entrance dimensions 

Experimental setup for testing the Spike device to measure cavity entrance dimensions at the University of 

Idaho Experimental Nursery in Moscow (ID, USA) during September–October 2017. For the “Dummy cavity 

entrance sizes” inset: SPECIES CODE refers to the 4 woodpecker species: pileated woodpecker (PIWO), 

northern flicker (NOFL), hairy woodpecker (HAWO), and downy woodpecker (DOWO). Dummy cavity 

entrance sizes were created based on averages for 2 dimensions/species: vertical diameter and horizontal 

diameter of cavity entrance (cm). Three sets of dummy cavity entrances were taped to a logger climbing pole. 

For each set, “Height” was centered between the HAWO and NOFL cavities. “Distance” refers to how far from 

the base of the pole photos were taken: standing 10 m, 20 m, and 30 m away. “Angle” refers to the obliqueness 

(in degrees) of the photographic view angle relative to the cavity: 0º angle (standing directly in front of the 

cavity entrances), standing at a 25º angle clockwise from azimuth, and standing at a 45º angle clockwise from 

azimuth. Note: figure not to scale.  
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Figure 2.2 Drivers of error for measurements of cavity entrance dimension 

A series of scatterplots showing drivers of error for Spike measurements of horizontal diameter (x-axis) and 

vertical diameter (y-axis) of cavity entrances across experimental conditions at the University of Idaho 

Experimental Nursery in Moscow (ID, USA) during September–October 2017. Error refers to the difference, in 

centimeters, for the Spike value minus the known value of a given measurement. The black cross lines indicate 

an error of 0. These 27 scatterplots represent the full spectrum of combinations across experimental conditions: 

interactions between cavity height above ground (“Height”), distance from base (“Distance”), and obliqueness 

of viewing angle (“Angle”) as drivers of error in Spike photos across 4 woodpecker cavity sizes. Please see 

Figure 2.1 for full experimental design.  
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Abstract 

Airborne lidar is often used to calculate forest metrics about trees but it may also provide a 

wealth of information about the space between trees. Forest canopy gaps are defined by the 

absence of vegetative structure and serve important roles for wildlife, such as facilitating 

animal movement. Forest canopy gaps also occur around snags, keystone structures that 

provide important substrates to wildlife species for breeding, roosting, and foraging. We 

wanted to test a method for quantifying canopy gaps around individual snags and live trees, 

with the working hypothesis that snags would have more gaps surrounding them overall than 

live trees. We evaluated canopy gaps around individual snags (n = 270) and live trees (n = 

2186) and evaluated correlations between canopy structure and snag occurrence in dense 

conifer stands of the Idaho Panhandle National Forest, USA. We paired airborne lidar with 

ground reference data collected at fixed-radius plots (n = 53) to evaluate local gap structure. 

The R package ForestGapR was used to quantify canopy gaps throughout the canopy to 

determine where the differences were greatest. A canopy space profile was created for each 

tree by mapping gaps (a) vertically every 2 m in height (2–50 m above ground), and (b) 

horizontally across small (16 m2), medium (36 m2), and large (64 m2) footprint sizes. Our 

results suggest this method is robust for quantifying canopy gaps around individual trees. The 

canopy space profiles were distinctly different for snags and live trees, with more canopy gaps 

within the area surrounding snags relative to live trees. The greatest differences occurred at 

mid-canopy heights (~20 m above ground) and at the smallest footprint size (16 m2). These 

results show potential to improve understanding of gap dynamics in closed-canopy conifer 

forests, and we suggest snag modeling could be improved by incorporating lidar-derived 

canopy gap analyses alongside existing methodologies. 
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Introduction 

Standing dead trees (hereafter, snags) are keystone structures that play a 

disproportionately large role in wildlife community composition and dynamics across forest 

systems (Tews et al., 2004). Structurally, snags provide unique ecological substrates for 

wildlife in breeding, roosting and foraging (Bunnell et al., 1999; Cockle et al., 2011; Drever 

et al., 2008; Gentry & Vierling, 2008; Martin & Eadie, 1999; Mikusiński et al., 2001), with 

species reliant on the standing deadwood or microhabitats contained within (including nest 

cavities, bark fissures and other structures; Asbeck et al., 2020; Larrieu et al., 2018; Martin et 

al., 2004). Snags serve as useful indicators of biodiversity (Basile et al., 2020; Michel & 

Winter, 2009; Paillet et al., 2017), with snag densities and distributions supporting an array 

of species across many taxonomic groups, including birds, mammals, amphibians, reptiles 

(Bunnell et al., 1999; Drever et al., 2008; Drever & Martin, 2010; Martin et al., 2004; Titus, 

1983), invertebrates (Bunnell et al., 1999; Hanula et al., 2006; Janssen et al., 2011), and fungi 

(Bunnell et al., 1999; Jackson & Jackson, 2004). Additionally, snags differ from live trees in 

their roles regarding carbon storage and sequestration (Curtis, 2008; Powers et al., 2013; 

Russell et al., 2015), nutrient cycling (Lovett et al., 2010), wildfire fuel loading (Powers et 

al., 2013; Ritchie et al., 2013), and structural heterogeneity of forest stands (Hansen et al., 

1991; Martinuzzi et al., 2009). As snags harbor a wealth of information about forest function, 

accurately characterizing snag sizes and distributions across a landscape is therefore of high 

interest for studies and management activities that cross multiple disciplines.  

Lidar (light detection and ranging) has improved scientists’ ability to describe 3D 

forest characteristics remotely and may enhance the quantification of snag sizes and 

distributions for many applications. Airborne lidar (also airborne laser scanning or ALS) is a 

tool well suited for mapping forest structure, as it provides 3D scans of the canopy structure 

from above, which can be analyzed at varying resolutions—from the landscape scale (~102–

105 km2) to individual trees (e.g., Eitel et al., 2016; Falkowski et al., 2009; Goetz & 

Dubayah, 2011; Guo et al., 2017; Vierling et al., 2008). Most previous lidar work on remote 

detection of snags has been carried out at two levels: the survey plot level (~0.04–1 ha) and 

the individual tree level (~1–10 m2). At the plot level, progress has been made in predicting 

probable snag densities and distributions using airborne lidar structural metrics (Bater et al., 

2009; Martinuzzi et al., 2009) and intensity data (Wing et al., 2015). At the individual tree 
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level, a focus on segmentation of individual trees (isolating one crown from surrounding 

crowns) has provided great insights into volume and biomass calculations (Kankare et al., 

2013; Klockow et al., 2020; Krzystek et al., 2020; Popescu et al., 2003; Putman et al., 2018; 

Yao et al., 2012). Both scales of analysis have been applied to wildlife management in the 

form of habitat mapping for individual species (e.g., Casas et al., 2016; Vogeler and Cohen, 

2016).  

While focusing on individual tree crown-level metrics is powerful, forest canopy 

structure consists of not only crowns but also the space between crowns, often referred to as 

canopy gaps (Shugart, 1984; Urban et al., 1987). Canopy gap characteristics are important 

features of a forest environment, and recent methodologies have been developed to better 

quantify gap dynamics through space and time using lidar-based approaches (e.g., Silva et 

al., 2019). Structurally, snags have a three-dimensional shape that differs from live trees, 

lacking the green vegetation characteristic of crowns and retaining only the sparser yet 

coarser woody components of branches and trunks. Within a lidar point cloud, an absence of 

points need not equal an absence of information, and canopy gap analysis provides a 

promising avenue for further refinement of snag detection methods and subsequent wildlife 

habitat mapping based on information about the spaces between trees. For instance, birds fly 

through and therefore utilize the empty space between tree crowns, so it is more holistic and 

perhaps accurate to think of both the space occupied by tree crowns and the unoccupied 

space when characterizing suitable or preferred wildlife habitat.  

To evaluate whether airborne lidar data can capture differences in the proportion of 

empty gap space surrounding snags and live trees (known as gap fraction), we analyzed two 

features of the vertical and horizontal gap space around individual snags and live trees: 

height above-ground (representing a vertical perspective) and size of gap around a given tree 

(representing the horizontal space). Our main objective is to quantify how canopy gap 

profiles differ between snags and live trees, such that canopy gap profiles could potentially 

be used as an indicator of snag presence. We hypothesize that snags should have distinct 

canopy gap space profiles due to the loss of foliage and branches, and we would expect snags 

to have greater total gap area than live trees. We compare the vertical and horizontal gap 

characteristics around snags and live trees within closed-canopy conifer stands. From a 

vertical perspective, we would expect these characteristics to differ most in the mid-canopy; 
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in the lower canopy, we would anticipate fewer gaps due to forest structures such as saplings, 

shrubs and/or stumps. In the higher canopy, we would anticipate fewer gap differences 

between live trees and snags due to the conical shape of conifer tree crowns, as both decrease 

in woody and needle biomass approaching the top of the tree. From a horizontal perspective, 

we would expect that there is an optimal footprint size that captures the gaps that are 

associated with an individual tree. No other studies to our knowledge have used this 

approach at the individual-tree level or applied it to snags. Therefore, this method may hold 

promise for describing canopy gap structure that might correlate with snag presence. 

 

Methods and Materials 

Study area 

The study was conducted in closed canopy forest stands within the Idaho Panhandle 

National Forest (IPNF), Idaho, USA. The study area consisted of two sites within IPNF: one 

site in the Coeur d'Alene River Ranger District (herein CdA), and one site in the Saint Joe 

Ranger District (herein StJ; Figure 3.1). Both sites are composed of mature mixed-conifer 

forest stands managed for multiple uses, including timber production, recreation, and wildlife 

habitat (IDFG, 2016). At CdA, the most abundant live tree species were grand fir (Abies 

grandis), western hemlock (Tsuga heterophylla), and Douglas fir (Pseudotsuga menziesii). 

At StJ, the most abundant live species were grand fir, western red cedar (Thuja plicata), and 

western larch (Larix occidentalis). Across both sites, the most abundant species of snags 

found were grand fir and western larch, followed by Douglas fir at CdA and western redcedar 

at StJ.  

Field measurements 

 To map snags within closed-canopy forest, ground reference surveys were conducted 

within 25-m fixed-radius plots at each site. Survey plot locations were selected through a 

stratified random sampling design based on canopy cover and height metrics from lidar and 

constrained using criteria to enable subsequent point count surveys of forest birds, based on 

existing protocols (e.g., Dudley and Saab, 2003; Vogeler et al., 2013) including a 300-m 

minimum distance from other plot centers and a road buffer (minimum of 60 m and 

maximum of 250 m away from roads). Plot centers were recorded using a global navigation 

satellite system (GNSS) receiver (Trimble GeoXH; accuracy < 1 m) and differentially 
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corrected in post-processing. We surveyed each plot for snags within a 25-m radius (0.2 ha 

plots), recording only snags taller than 1.37 m (to measure diameter at breast height, DBH) 

and with a DBH > 15 cm, based on minimum diameter for nesting by regional woodpecker 

species (Schroeder, 1983). Information on snag condition was recorded including DBH, tree 

species (when possible), height, and spatial coordinates. Coordinates were determined using 

the same handheld Trimble GNSS receiver as used for plot centers, positioned on the north 

side of each bole. Coordinates for each snag were then centered by subtracting half the 

measured DBH from the northing value to correct for placement bias.  

Lidar data acquisition and pre-processing 

Discrete-return ALS data were acquired across both sites as part of an ongoing effort 

by the U.S. Forest Service Rocky Mountain Research Station (USFS RMRS) to develop 

advanced protocols for forest mapping and monitoring. Details on the lidar acquisition 

parameters can be found in Table 3.1. The georeferenced lidar data were processed at the plot 

level using the R environment (R Core Team, 2020, version 4.0.3). Point clouds were 

preprocessed using the lidR package (Roussel et al., 2020) at a 50-m radius around plot 

centers (0.8 ha plots) to generate buffered, height-normalized, filtered, and pit-free canopy 

height models (CHMs; following methods similar to Silva et al. [2016]) with 0.5-m spatial 

resolution, as depicted in Figure 3.2a. CHMs were then clipped to the 0.2-ha plot level for 

canopy gap analyses.  

Individual tree and forest canopy gap detection 

The 0.8-ha pit-free, filtered, height-normalized CHMs were also the basis for 

individual tree detection (ITD) methods used to generate a list of live tree locations to 

compare against ground reference snag locations per 0.2-ha plot, as live trees were not 

surveyed at the 0.2-ha scale. However, a subset of plots from each site was sampled by USFS 

RMRS in 2017 simultaneously, providing a count of live trees within 11.3-m fixed-radius 

subplots (0.04 ha; also centered on plot center). As GNSS coordinates were not collected for 

live trees, these counts of live trees per subplot were used to calibrate ITD methods to 

improve the accuracy at the 0.2-ha scale. To account for possible error originating from lidar 

unable to fully penetrate dense forest stands, the count data were filtered by height (or DBH 

where height was not recorded) to create three versions per subplot: all live trees, only live 

trees > 20 m tall or with DBH ≥ 20 cm and only live trees > 30 m tall or with DBH ≥ 20 cm. 
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Four iterations of ITD were run using the rLiDAR package (Silva et al., 2019), via 

segmentation based on local maxima within a fixed window size. The minimum height 

threshold was held constant (2 m), but fixed window size (surrounding pixel extent used to 

estimate local maxima) was altered by iteration: 3 × 3, 5 × 5, 7 × 7 and 9 × 9 pixels. ITD was 

performed across the full 0.8-ha CHM raster associated with survey plots and then clipped to 

the 0.04-ha subplot extent. Each iteration of ITD estimates was compared against the three 

versions of filtered counts, and the difference in live tree count per subplot (filtered – ITD) 

was used to evaluate the relative error of ITD estimations (Table 3.3A). Average error per 

subplot by site was used as the accuracy metric to determine the best configuration to expand 

to the 0.2-ha scale (Table 3.3B). Please see Figure 3.2b for an overview of the ITD process.  

To evaluate canopy space profiles around live trees and snags, the coordinates for the 

center of each ITD-generated tree and each reference snag were used in conjunction with the 

0.8-ha CHM rasters for each plot and analyzed with the ForestGapR package (Silva et al., 

2019). The size threshold for canopy gap detection was set to all gaps ≥1 m2 total area at the 

given canopy height, and three sizes of square clips were made from CHM rasters around 

each tree center: 4 m × 4 m (16 m2), 6 m × 6 m (36 m2) and 8 m × 8 m (64 m2; hereafter 

referred to as footprint sizes: small, medium, and large, respectively). Square clips were used 

(vs. circular clips) to preserve maximum data from the 0.5-m resolution raster, and the sizes 

were chosen to encompass the range of average crown diameters for these sites. Canopy gap 

area per square was calculated from the sum of all gaps for each footprint size. These 

repeated measures of canopy gap extent at different footprint sizes were used to study how 

canopy gap area changes across spatial scales.  

For each tree, canopy gap area was also calculated over multiple canopy heights, 

creating a stack of 2D square clips, with a minimum height of 2 m above-ground (to omit 

noise below breast height) and a maximum height of 50 m above-ground (determined from 

tallest trees in census), and measured every 2 m to ensure full coverage of the vertical canopy 

profile. This stacked approach was used to study how canopy gap area changes through 

vertical space. Pairing the three footprint sizes with the stacked heights enabled the 

investigation of both vertical and horizontal dimensions of canopy gaps around individual 

snags and live trees (Figure 3.3). This approach provided 75 gap area measurements around 
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each tree (across the small, medium, and large footprint sizes over 25 heights, from 2 to 50 m 

above-ground). Please see Figure 3.2c for an overview of canopy gap profile generation.  

Individual snag and canopy gap analysis 

For each 2D square, the canopy gap area was divided by footprint area to calculate 

canopy gap fraction to standardize values across footprint sizes. The response variable for 

statistical tests was canopy gap fraction per 2D square. Mean (± SE) gap fractions were 

calculated for live trees versus snags across three categorical predictor variables: site (CdA or 

StJ), footprint size (small, medium, large), and canopy height (2 m–50 m above-ground). 

Differences in mean gap fraction between tree types (snag – live) were also calculated across 

the same three predictor variables. Footprint size and height above-ground were treated as 

repeated measures, with unique trees as the unit of observation. Data did not meet 

assumptions of normality, so nonparametric tests were used to compare canopy gap fractions 

between groups. We used Mann–Whitney U tests to evaluate differences between group 

means by tree type across all combinations of predictor variables, at a significance level of 

5%. All statistical analyses were conducted using the R environment (R Core Team, 2020, 

version 4.0.3).  

 

Results 

At the 0.2-ha survey scale, there were 270 snags total across 53 ground reference 

plots, with an average density of five snags per plot (Table 3.2). A subset of 32 of the 53 

ground reference plots contained 0.04-ha subplots with census data, with a total of 538 live 

trees used to calibrate ITD methods (Table 3.3). Results of the ITD accuracy assessment 

found that the 7 × 7 fixed window size was the most accurate for both sites and performed 

best when used with census data filtered to only include trees >30 m tall, with a total average 

overestimation of 0.2 trees per plot (Table 3.3). The 7 × 7 fixed window size was applied to 

plots at both sites, and subsequent ITD estimation of live trees at the 0.2-ha survey scale 

generated a total of 2,186 live tree locations across 53 plots, with an average density of 41 

trees per plot (Table 3.2).  

A total of 184,200 square-shaped, vertically distributed slices of canopy were 

analyzed from 2,456 individual trees. Please see Figure 3.4 for a visualization of canopy gap 
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profiles around a live tree and snag. Snags were surrounded by a greater fraction of canopy 

gap than live trees (13% greater overall; p < 0.001). At the predictor variable level, live trees 

and snags differed in the canopy gap fractions surrounding them across heights, sites, and 

footprint sizes, with distinct patterns that differed (p < 0.0001) between snags and live trees 

for each variable (Figure 3.5).  

The fraction of gaps around both snags and live trees increased with height (Figure 

3.5). At 2-m above-ground, snags showed mean canopy gap fractions ranging from 0.05 to 

0.21, compared to live trees with mean canopy gap fractions ranging from 0 to 0.03. Mean 

canopy gap fraction approached 1 (≥ 0.98) at 40 m above-ground for all groups. The shape of 

the line for mean canopy gap fractions across heights (i.e., slope) was similar across tree 

types. Both snags and live trees followed a sigmoidal curve in gap fraction as height 

increased (i.e., slope started steep lower in the canopy, flattened in the mid-canopy, then rose 

steeply again higher in the canopy), though this curve was more pronounced for live trees 

relative to snags at both sites. 

Mean canopy gap fractions showed distinct trends by site as well, with higher canopy 

gap fractions at the CdA site relative to StJ for both snags (13% higher at CdA) and live trees 

(2% higher at CdA; Figure 3.5). Mean canopy gap fractions differed by footprint size for live 

trees, increasing as footprint size increased (5% increase from small to medium, 4% increase 

from medium to large; Figure 3.5). However, this pattern was not seen with snags; mean 

canopy gap fractions around snags remained consistent across all three footprint sizes (0.1% 

increase from small to medium, 0.04% decrease from medium to large footprint size).  

By focusing on mean differences in canopy gap fractions between snags and live trees 

at each height (mean snag – mean live tree, from 2 m to 50 m above-ground), further 

distinctions within the canopy space can be discerned (Figure 3.6). The greatest differences 

in canopy gap fraction occurred at heights 10 m–30 m above-ground, whereby snags had 

~22% more gap area compared to live trees (Figure 3.6). Differences between snags and live 

trees were significant (p < 0.001) for small and medium footprint sizes at all heights below 

28 m (Figure 3.6).  
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Discussion 

Exploring how empty space is structured around individual trees opens additional 

avenues of study when collecting lidar-based forest metrics. Our primary objective was to 

explore whether gap characteristics around individual trees could be quantified and compared 

between snags and live trees. We hypothesized that the greatest differences in gap 

characteristics would occur within the mid-canopy strata, and that there would be an optimal 

footprint size differentiating snags from live trees. Within our study sites, our hypotheses 

were supported and we found distinct canopy space profiles between snags and live trees, 

with the largest distinctions found at heights 10 m–30 m above-ground level, greatest for the 

smallest footprint size (16 m2).  

The largest unexpected result found in this study occurred among snags between 

sites; snags at StJ had consistently lower gap fractions than snags at CdA. Many factors may 

account for this difference. For instance, differences in gaps around snags across the two sites 

could simply reflect an effect of tree density, as StJ had greater average stem density in plots 

than CdA (Table 3.2) leading to less open area. Stand-level differences in gaps could also be 

driven by broader sitewide factors such as disturbance history, causes of tree mortality, 

successional stage and stand age, and/or tree species composition (Lefsky et al., 1999). How 

these stand-level characteristics affect gaps at the individual tree level requires expanded 

analyses beyond the scope of this study, however.  

This study establishes the importance, feasibility, and utility of investigating 

associations between canopy gap structure, live trees, and snags at the individual tree level 

using airborne lidar. The results of this study contribute to the strong foundation of canopy 

gap research that integrates remote sensing with studies of forest structure and successional 

processes (e.g., Lefsky et al., 1999). Assessment of the ecological value of canopy gaps has 

been well studied (Canham, 1988; Spies et al., 1990; Whitmore, 1989), and more recent 

investigations apply remote sensing tools to monitor biodiversity linked to canopy gaps 

(Bagaram et al., 2018), study the gap sizes and distribution related to forest stand 

characteristics and processes (e.g. Asner et al., 2013), and identify and quantify gaps using 

remote sensing (e.g. Bagaram et al., 2018; Bonnet et al., 2015; Silva et al., 2019; White et al., 

2018). 
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Focusing on canopy gaps around individual trees may not be feasible when dealing 

with dense forests in an applied context, so the next step will be to evaluate the relationship 

between canopy gaps and snags at the plot level. This brings in the added challenge of 

distinguishing gaps around snags from ‘true’ canopy gaps, where there are no standing trees 

or snags. We suggest that this can be achieved by focusing on one or two heights above-

ground that strongly differentiate snags from live trees and constraining canopy gap area (as 

true gaps may have larger total areas): for example, evaluating gaps at heights 10 m and 20 m 

above-ground, constrained to 25%–75% gap fraction of the small footprint size (equal to a 

gap area of 4 m2–12 m2 only). We note that this suggestion is based on one forest type, 

though this methodology could provide additional benefit from comparisons of canopy gap 

profiles across multiple forest types. Furthermore, the ForestGapR package (Silva et al., 

2019) contains additional functions not applied here, including a function for change 

detection that could provide greater information and distinction between snags and true gaps 

by evaluating change in gap extent across selected heights or height percentiles within the 

canopy. Future studies could employ a standardized method to evaluate gap fractions across 

multiple forest types: calculating gap fraction at 10 m height in the canopy on a gridded map 

(2 m × 2 m pixels), then flagging pixels with higher-than-average gap fraction for the given 

forest type. If the gap of a given pixel does not extend fully to the ground (a gap fraction of 

1.0 at < 2 m above-ground, indicating a true gap), it may suggest snag presence.  

Fusing previous lidar-based snag modelling approaches with canopy gap analyses 

such as the ones we have described might provide a promising next step in advancing our 

understanding of snag distributions in forested landscapes. Prior methods have modelled 

snags using stand-level lidar-derived metrics focused on structure-based values, via ordinal 

regression (Bater et al., 2009) or Random Forest classification (Martinuzzi et al., 2009), and 

intensity-based values via neighborhood attribute filtering (Wing et al., 2015). Another 

approach may be to first identify gaps and use them to filter lidar point clouds before 

beginning more targeted snag modelling, implementing any of the prior methods discussed 

above. This would serve to pare down the overall file size needed for further processing, 

improve the speed and/or expand the spatial extent of analyses to potentially improve overall 

accuracy of snag mapping. Distinctions in canopy space profiles between live trees and snags 
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were robust enough at the single tree level that we suggest incorporating canopy gap 

evaluation into snag modelling methods in some form.  

These methods and the information they provide about the space around trees can 

help better characterize canopy gaps in dense forests where tree segmentation methods may 

be less robust due to fewer returns penetrating closed canopy. One of the problems 

previously reported in mapping snags using airborne lidar was the limited number of returns 

(e.g., Martinuzzi et al., 2009), likely due to the reduced physical structure of a snag relative 

to a live tree canopy. Our study found snags to have overall point densities around 25% 

lower than live trees (Table 3.4), and several snags had fewer than 100 returns in total. 

Reframing the problem of fewer returns in the context of canopy gap analysis may help tease 

apart true gaps from gaps containing snags.  

 

Conclusions 

Canopy gaps and snags are both important elements of forest structure and canopy 

architecture, and both have ties to successional and disturbance regimes. Use of airborne 

lidar data can provide a more nuanced understanding of their inter-relatedness and patterns of 

co-occurrence, which will be of added value to researchers and managers across a range of 

disciplines. The power of canopy gap analyses coupled with snag detection will only 

continue to increase as higher resolution airborne lidar surveys are integrated with mobile, 

terrestrial, and UAV-based lidar data collections, and as point cloud analyses become more 

robust. We urge the consideration of both the presence and absence of data found within lidar 

point clouds to gain greater insight into spatial and temporal patterns found throughout forest 

canopies worldwide.  
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Tables 

 
Table 3.1 Airborne lidar acquisition parameters 

The discrete-return airborne lidar (also airborne laser scanning, ALS) data from the two study sites for this 

paper (based on two IPNF Ranger Districts: Coeur d’Alene River, CdA; Saint Joe, StJ) were part of a larger 

acquisition carried out by USFS RMRS in 2016 (see Fekety et al., 2018 for more details). The lidar extent of 

CdA spanned 78,706 ha to the east of Coeur d'Alene, ID, USA (centered at 47°44'40.0"N, 116°36'38.8"W). The 

lidar extent of StJ spanned 7,598 ha to the east of Avery, ID, USA (centered at 47°08'28.5"N, 116°05'38.9"W). 

Parameter Specification 

Date collected 12 October 2016 

Vendor Atlantic Group, LLC 

Sensor Leica ALS70-HP 

Flight altitude 1965 m above ground level 

Flight speed 110 kts 

Pulse frequency 278 kHz 

Scan frequency 41 Hz 

Scan angle ± 30º 

Swath width 1098 m 

Swath overlap 50% 

Laser wavelength 1064 nm 

Laser beam divergence 0.22 mrad 

Vertical accuracy 5.9 cm 

Footprint diameter 43 cm 

Nominal pulse density 4.2 pulses/m2 
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Table 3.2 Summary statistics for all plots and trees in the study 

All reference snags and ITD-generated live trees included in analyses were within 0.2-ha survey plots, located 

at one of two sites within the Idaho Panhandle National Forests: Coeur d’Alene River (CdA) or Saint Joe (StJ) 

Ranger Districts. Averages are shown with standard error in parentheses. 

Attribute  CdA StJ 

Plots, total 32 21 

  Elevation (m) 675 – 1545 1041 – 1668 

Snags, total 180 90 

  Average snags / plot 6 (± 1) 4 (± 1) 

  Range of snags / plot 0 – 23 0 – 12 

Live trees, total 1187 999 

  Average live trees / plot 37 (± 2) 48 (± 4) 

  Range of live trees / plot 12 – 66 22 – 85 
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Table 3.3 Accuracy of live tree estimation across multiple configurations of tree census data and ITD 

parameters 

To calibrate the individual tree detection (ITD) methods used for this study, we compared individual tree counts 

from field-derived census data and lidar-derived ITD data across the same spatial extents. Field-derived census 

data consisted of ground survey counts of all live trees within fixed-radius circular subplots (0.04 ha) across 

both study sites, but did not include GNSS-based coordinates of each tree. Lidar-derived ITD data were used to 

estimate live tree central coordinates within subplots, based on canopy height models (CHM; 0.5 m grid cell) 

built from airborne lidar data as the basis for ITD-generated estimates of tree locations within each subplot (via 

segmentation using local maxima within fixed window sizes). Aggregated by study site, Table 3.3A shows (a) 

the summary statistics for the field-derived census counts (mean number of trees per subplot ± SE) across three 

variations used to filter tree counts based on height threshold; and (b) the summary statistics for the lidar-

derived ITD counts (mean number of trees per subplot ± SE) repeated across four different fixed window sizes 

(in pixels) for each subplot. Table 3.3B shows the error rates in live tree estimation (mean error per subplot ± 

SE) calculated as the differences between field-derived census counts and lidar-derived ITD counts across three 

height filters and four fixed window sizes (ITD count – census count). Negative numbers represent an 

underestimation, and positive numbers represent an overestimation of trees per subplot. The configuration with 

the smallest difference in tree count was used for further analyses; for both sites, this configuration was the 

same: a 7 × 7 (pixel) fixed window size for ITD paired with census data filtered to include only trees >30 m tall 

(bolded in table). 

3.3A (a) Census count, by height filter  (b) ITD count, by fixed window size 

Study site  

(# of subplots) 

All live 

trees 

Trees 

>20m tall 

Trees 

>30m tall 

 
3x3 5x5 7x7 9x9 

CdA (23) 16 ± 1.6 9 ± 1.2 7 ± 1.1  18 ± 0.9 10 ± 0.7 8 ± 0.6 6 ± 0.5 

StJ (9) 20 ± 2.4 12 ± 2.4 9 ± 2.2  14 ± 1.0 11 ± 0.9 9 ± 0.9 7 ± 1.0 

 

3.3B 

Fixed window size 

Error in live tree estimation (ITD – census count) 

Study site All live trees Trees >20m tall Trees >30m tall 

CdA 

3x3 1.8 ± 1.4 8.3 ± 1.2 10.3 ± 1.1 

5x5 -5.6 ± 1.2 0.9 ± 0.9 2.9 ± 0.7 

7x7 -8.0 ± 1.2 -1.5 ± 0.9 0.5 ± 0.7 

9x9 -9.4 ± 1.1 -3.0 ± 0.8 -1.0 ± 0.7 

StJ 

3x3 -5.3 ± 1.8 2.4 ± 1.7 4.9 ± 1.7 

5x5 -8.4 ± 1.8 -0.7 ± 1.7 1.8 ± 1.6 

7x7 -10.7 ± 1.7 -2.9 ± 1.5 -0.4 ± 1.4 

9x9 -12.2 ± 1.6 -4.4 ± 1.4 -2.0 ± 1.3 
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Table 3.4 Average lidar point densities around individual trees across three footprint sizes 

After ITD methods were calibrated at the 0.04 ha subplot level, probable live tree locations were generated for 

each 0.2 ha survey plot, and the central coordinates of those ITD-generated trees were used as the basis for 

clipping the lidar point clouds around live trees for each footprint size. Field-derived reference snag central 

coordinates were used as the basis for clipping the lidar point clouds around snags for each footprint size. The 

number of total returns for each individual tree clip was calculated and divided by the footprint size, for a 

measure of point density per square meter (mean number of returns ± SE). Overall, live trees had higher point 

densities than snags across all footprint sizes for both sites. Among study sites, point densities were lower 

around snags at CdA than at StJ. 

Study site Footprint size (m2) Live tree point density/m2 Snag point density/m2 

CdA 

16 18.5 ± 0.3 10.9 ± 0.5 

36 17.5 ± 0.2 11.1 ± 0.5 

64 16.4 ± 0.2 11.2 ± 0.5 

StJ 

16 17.1 ± 0.3 14.3 ± 0.7 

36 15.9 ± 0.2 13.9 ± 0.5 

64 14.8 ± 0.2 13.6 ± 0.4 
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Figures 

 

 

  

Figure 3.1 Map of the study sites 

(a) Study area within Idaho Panhandle National Forests (IPNF) in northern Idaho, United States. There were 

two lidar acquisitions in the IPNF where all ground reference survey data were collected: within the (b) Coeur 

d’Alene River (CdA) and (c) Saint Joe (StJ) Ranger Districts. Please note the different scales for each site. 

Across the two sites there were a total of 53 25-m radius ground reference plots with snag surveys (0.2 ha; 

black circles), and 32 of those contained 11.3-m radius subplots (0.04 ha; pink dots) with live tree counts. 
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Figure 3.2 Workflow of the airborne lidar data processing for canopy gap profile generation using the 

ForestGapR package 

Overview of the inputs, processes, and outputs to go from the point cloud to the canopy gap profile around 

individual trees. (a) Sitewide lidar data were pared down to the ground reference plot level and processed to 

generate a canopy height model (CHM) for each plot. (b) Live trees sampled within a subset of plots were used 

to calibrate individual tree detection (ITD) algorithms used to generate a list of live tree locations for each plot 

to compare against a list of reference snag locations obtained from field surveys. FWS stands for fixed window 

size, which was the focus of the ITD calibration. (c) Forest canopy gap detection was carried out around 

individual trees using ForestGapR, and canopy gap profile statistics were generated and summarized across all 

snags and all live trees to determine whether profiles differed significantly between the two groups. 
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Figure 3.3 Canopy gap profiles 

Illustration of the vertical and horizontal dimensions of forest canopy gap detection for (a) live trees and (b) 

snags. The vertical dimension encompasses gap analyses run every 2 m above-ground from 2 m to 50 m into 

the forest canopy. The horizontal dimension incorporates three footprint sizes centered on each tree, including a 

small size (4 m × 4 m), medium size (6 m × 6 m), and large size (8 m × 8 m). Compiling canopy gap fractions 

across 25 heights over three footprint sizes (75 data points per tree) created a canopy gap profile for each tree 

that was used to analyze differences in gap dynamics between snags and live trees. 
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Figure 3.4 Visualization of individual tree-level forest canopy gap detection 

Seen from above, (a) airborne lidar-derived canopy height models (CHM; 0.5-m grid cell) were generated at a 

50-m radius level and clipped around each individual tree within 25-m radius ground reference plots, based on 

ITD-generated live tree (white diamond) and reference snag (orange circle) locations. (b) Representative CHMs 

for a live tree (left) and snag (right) clipped around tree center (white dot) at three sizes (white squares): small.  

(4 m × 4 m), medium (6 m × 6 m), and large (8 m × 8 m). (c) Forest canopy gaps (gray with red outline) were 

detected at 25 heights in the forest canopy; here we show four heights: 2 m, 10 m, 20 m, and 30 m above-ground 

for a live tree (left column) and snag (right column). (d) An image taken from a representative ground reference 

plot, depicting both live trees and snags. 
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Figure 3.5 Canopy gap fraction around trees by tree type across all forest canopy heights 

Mean and standard error are shown for snags (orange) and live trees (green) at each forest canopy height and 

footprint size, with plots separated by study site: (a) Coeur d’Alene River (CdA) and (b) Saint Joe (StJ) Ranger 

Districts. 
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Figure 3.6 Difference in average gap fraction (snag – live) across all forest canopy heights, by site and footprint 

size 

For each height from 2 m to 50 m, the average live tree gap fraction was subtracted from the average snag gap 

fraction across each footprint size (small [red], medium [green], and large [blue]) at each study site: (a) Coeur 

d’Alene River (CdA) and (b) Saint Joe (StJ) Ranger Districts. Differences between tree types that were 

significant (p < 0.001) are marked with color-coded asterisks at each height by footprint size, shown on the right 

of each graph. 
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Chapter 4: Evaluating the use of lidar to discern snag characteristics 

important for wildlife 

Stitt, J.M., Hudak, A.T., Silva, C.A., Vierling, L.A., & Vierling, K.T. (2022) Evaluating the 

use of lidar to discern snag characteristics important for wildlife. Remote Sensing, 14(3), 720. 

https://doi.org/10.3390/rs14030720 

 

Abstract 

Standing dead trees (known as snags) are historically difficult to map and model using airborne 

laser scanning (ALS), or lidar. Specific snag characteristics are important for wildlife; for 

instance, a larger snag with a broken top can serve as a nesting platform for raptors. The 

objective of this study was to evaluate whether characteristics such as top intactness could be 

inferred from discrete-return ALS data. We collected structural information for 198 snags in 

closed-canopy conifer forest plots in Idaho. We selected 13 lidar metrics within 5-m diameter 

point clouds to serve as predictor variables in random forest (RF) models to classify snags into 

four groups by size (small [<40 cm diameter] or large [≥40 cm diameter]) and intactness (intact 

or broken top) across multiple iterations. We conducted these models first with all snags 

combined, and then ran the same models with only small or large snags. Overall accuracies 

were highest in RF models with large snags only (77%), but kappa statistics for all models 

were low (0.29–0.49). ALS data alone were not sufficient to identify top intactness for large 

snags; future studies combining ALS data with other remotely sensed data to improve 

classification of snag characteristics important for wildlife is encouraged. 

 

Introduction 

As keystone structures (Tews et al., 2004), standing dead trees (hereafter, snags) 

serve essential roles for wildlife species, due in part to how structurally distinct snags are 

compared to live trees. Snag and live tree characteristics differ across multiple dimensions, 

including the degree of open space occupied, the unique physical structures provided, and the 

composition and decay status of wood. These combined characteristics contribute to a wide 

range of forest microhabitats relevant to wildlife, with many microhabitats associated 

primarily with snags (Michel and Winter, 2009; Larrieu et al., 2018).  
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In terms of open space, snag presence and breakdown can be central to the generation 

of gaps within the canopy used by volant organisms as travel corridors (Jung et al., 2012; 

Davies et al., 2014). Stitt et al. (2021) evaluated forest canopy gaps around individual trees to 

establish that snags were associated with significantly larger gap fractions in the immediate 

vicinity than live conifer trees, especially at midcanopy heights (5 to 20 m above ground). 

Snags also had higher variability in gap distributions across all canopy heights (Stitt et al., 

2021). This greater variability in openness around snags contributes to greater forest 

structural complexity and may be correlated with greater foliar height diversity and species 

richness (MacArthur and MacArthur, 1961).  

In terms of physical structures, snags add unique microhabitat characteristics to 

forested landscapes that are not common in live trees. Snags may retain exposed branches on 

which to perch, which is important for aerial avian flycatchers and birds of prey (Miller and 

Miller, 1980; Sadoti et al., 2014; Fielder and Starkey, 1986; North et al., 1999). Snags may 

have a broken top that can serve as a nesting platform for management-sensitive species such 

as northern goshawks (Accipiter gentilis; Squires and Reynolds, 1997) and great gray owls 

(Strix nebulosa; Wu et al., 2015). Snag diameter at breast height (DBH) has been found to be 

a strong predictor of use by wildlife species (Michel and Winter, 2009; Martinuzzi et al., 

2009a; Basile et al., 2020). Branches on snags can be colonized by moss and lichens, creating 

further subsystems within the canopy (Staniaszek-Kik et al., 2019; Asbeck et al., 2020). This 

greater variability in structural elements associated with snags likely also contributes to 

greater forest structural complexity in the forms of increased microhabitat diversity and niche 

availability, leading to greater species richness (MacArthur and MacArthur, 1961). 

In terms of wood composition, dead wood is more suitable than live wood for cavity 

excavation and nesting opportunities for many species, due to greater decay (resulting from 

the cessation of tree defenses; Rayner and Boddy, 1988). Decaying wood is utilized by 

insects for foraging and laying eggs, and the insects in turn are foraged by woodpeckers 

(among other insectivores). As wood decays, it softens, enabling woodpeckers to excavate 

cavities (Rayner and Boddy, 1988: Lorenz et al., 2015; Jusino et al., 2015), and as tree limbs 

decay, they fall, which may also create sites for natural cavity formation (Miller and Miller, 

1980; Rayner and Boddy, 1988; Conner et al., 1976). Tree microhabitats derived from dead 
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wood, along with other microhabitats created as a tree breaks down (e.g., bark pockets and 

fissures; Michel and Winter, 2009; Asbeck et al., 2020), provide important wildlife habitat 

that make snags a valuable feature for species mapping and management efforts (Michel and 

Winter, 2009; Martinuzzi et al., 2009a; Martinuzzi et al., 2009b).  

Remote detection of snags is difficult because there is often less information to work 

with relative to live trees, and because the snag decay process is highly variable. Previous 

attempts using airborne laser scanning (ALS), or lidar, to identify snags focused on tree 

crowns as the basis for individual tree segmentation (Reitberger et al., 2008; Yao et al., 2012; 

Vauhkonen et al., 2011), intensity metrics (Kim et al., 2009; Bright et al., 2013; Wing et al., 

2015; Casas et al., 2016), and topographic features (Zellweger et al., 2013). However, 

approaches focused upon tree crowns can be challenging with snags because dead trees lack 

the foliar surface area of live tree canopies, and therefore reflect far fewer laser pulses to 

evaluate and locate snags (Wing et al., 2015). Focusing on the absence of lidar data (in the 

form of a canopy gap fraction) can provide additional valuable information for characterizing 

snags from ALS data (Stitt et al., 2021). Determining what further information can be 

gleaned from the sparse lidar data associated with snags is an area worth investigating.  

Few ALS-based studies have focused solely on snags or attempted to differentiate 

among them, with previous works having focused on snag DBH and volume estimates (Casas 

et al., 2016; Stitt et al., 2019; Pesonen et al., 2008). Some studies have explored spectral 

signatures in the form of return intensity metrics (Wing et al., 2015; Casas et al., 2016; 

Krzystek et al., 2020), but comparisons across sites can be problematic unless the 

uncalibrated intensity values are normalized. To our knowledge, no other studies have 

attempted to determine whether ALS data can provide enough information to discern among 

specific snag characteristics important for wildlife, such as broken versus intact tops.  

The focus of this study was to determine whether structural characteristics of snags 

can be differentiated using ALS data. If differences in structural signatures can be detected 

via remote sensing, they could be applied to improve mapping efforts and suitability 

assessments for many wildlife species that depend upon microhabitats related to standing 

dead trees. In combining field plot survey data with airborne lidar scans, the current study 
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aimed to determine whether the microhabitats of top intactness (intact vs. broken top) and 

snag size (small: less than 40 cm in diameter vs. large: greater than or equal to 40 cm in 

diameter) can be described using ALS data. We compared these field-derived structural 

characteristics against a suite of airborne-lidar-derived metrics.  

Our primary hypothesis was that snags of different structural classes (based on 

diameter and intactness) would produce significantly different airborne lidar structural 

metrics. We hypothesized that intact snags may have stronger positive correlations with 

variables such as point density, percent of first returns, and evenness metrics; intact snags 

have often experienced more recent mortality, and thus are associated with greater residual 

branching and crown structures that could present more surface area off which to reflect. We 

also hypothesized that broken top snags may have stronger positive correlations with 

variables such as percent of third returns, gap fraction, and roughness metrics; broken top 

snags are associated with less recent mortality events, and thus with more decay and 

breakdown of structural features that could more resemble open space. We hypothesized that 

our ability to detect distinct signatures among snag intactness would be influenced by snag 

diameter and predicted that snags with larger diameters would have stronger correlations 

with metrics overall, due to a larger surface area and a lesser proportion of surrounding 

“noise” within the set footprint (2.5 m radius circle around snag center), relative to smaller 

snags.  

 

Methods and Materials 

Study area 

The study was conducted in closed-canopy forest stands within the Idaho Panhandle 

National Forest (IPNF), Idaho, USA. The study area consisted of two sites within IPNF: one 

site in the Coeur d'Alene River Ranger District (herein CdA), and one site in the Saint Joe 

Ranger District (herein StJ; Figure 4.1). Both sites were composed of mature mixed-conifer 

forest stands managed for multiple uses, including timber production, recreation, and wildlife 

habitat (Bater et al., 2009). Across both sites, the most abundant species of snags found were 
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grand fir (Abies grandis) and western larch (Larix occidentalis), followed by Douglas fir 

(Pseudotsuga menziesii) at CdA and western redcedar (Thuja plicata) at StJ. 

Field data collection 

 All snags evaluated for this study were located within 25-m fixed-radius survey plots. 

Survey plot locations were selected through a stratified random sampling design based on 

canopy cover and height metrics from lidar (IDFG, 2021) and constrained using criteria to 

enable subsequent point count surveys of forest birds, based on existing protocols (e.g., 

Fekety et al., 2018; Dudley and Saab, 2003) including a 300-m minimum distance from other 

plot centers and a road buffer (minimum of 60 m and maximum of 250 m away from roads). 

Plot centers were recorded using a global navigation satellite system (GNSS) receiver 

(Trimble GeoXH; Sunnyvale, CA, USA) and differentially corrected in postprocessing 

(Fekety et al., 2018).  

Snags identified within a 25-m radius survey plot were measured, provided they 

satisfied the criteria, including: (1) a minimum height equal to breast height (used to measure 

diameter at breast height, DBH; 1.37m above ground), (2) a minimum DBH of 0.15 m, (3) 

less than a 45◦ lean in any direction, and (4) possessed no visible live parts of the tree 

(primarily the presence of green needles; red/brown needles were accepted and noted). The 

minimum DBH was selected based on criteria for woodpecker use (see Martinuzzi et al., 

2009a). Snag locations were recorded using the same GNSS receiver as used for plot center, 

which was positioned on the north side of the bole.  

Airborne lidar data acquisition and processing 

Discrete-return ALS data were acquired across both sites as part of an ongoing effort 

by the U.S. Forest Service Rocky Mountain Research Station (USFS RMRS; Moscow, ID, 

USA) to develop advanced protocols for forest mapping and monitoring. The lidar extent of 

CdA spanned 78,706 ha to the east of Coeur d’Alene, ID, USA (centered at 47◦44′40.0′′N, 

116◦36′38.8′′W). The lidar extent of StJ spanned 7598 ha to the east of Avery, ID, USA 

(centered at 47◦08′28.5′′N, 116◦05′38.9′′W). Details on the lidar acquisition parameters can 

be found in Table 4.1. The georeferenced lidar data were processed at the plot level using the 

R environment (R Core Team 2020, version 4.0.3). Point clouds were preprocessed using the 
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lidR package (Roussel et al., 2020) at a 50-m radius around plot centers (0.8 ha plots) to 

generate buffered, height-normalized point clouds. All ground, near-ground, and understory 

returns below 1.37 m were excluded to retain only canopy returns. Outliers below 50 m 

height above ground were not removed, as they may represent snag hits.  

Snag center coordinates were calculated by subtracting half the measured DBH from 

the northing value collected in the field, to correct for the GNSS receiver being positioned on 

the north side of the bole. Snag center coordinates were used as locations to clip the height-

normalized ALS point clouds from within each survey plot. Individual snag point clouds 

were clipped to a 2.5-m circular radius buffer around each snag center, in order to encompass 

the full tree footprint, offset any error in GPS location, and preserve enough returns to 

compute all metrics.  

Predictor variable selection 

Lidar-derived metrics were calculated for each 2.5-m radius snag point cloud, with a 

minimum height set to 1.37 m above ground. A subset of the full suite of standard height and 

return-based metrics (as provided in the lidR package; see Roussel et al., 2020) was chosen 

alongside additional structural and topographic metrics for this study, in order to best 

evaluate differences among the four classes of snag structural characteristics. We focused on 

lidar metrics previously shown to be effective indicators of forest biomass across different 

forest types (e.g., Vogeler et al., 2013; Bouvier et al., 2015) and those which would have 

specific utility for individual snags, as compared to individual live tree or plot-level analyses 

(Table 4.2). 

Random Forest model development 

 To analyze whether airborne lidar metrics could be used to discriminate between snag 

classes, we conducted random forest (RF) classification using the R environment and with 

the packages randomForest (Liaw and Wiener, 2002) and caret (Kuhn et al., 2021). For our 

response variables, we focused on two aspects from field inventory data for each snag: 

diameter and intactness. We divided the candidate snags into two categories for each of these 

variables, in order to have distinct groups to compare lidar metrics against. Snag diameter 

was divided into small (DBH less than 40 cm) and large (DBH greater than or equal to 40 

cm) groups, based on literature suggesting these are ecologically relevant distinctions (Davis, 
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1983), as well as important for ALS detectability (Martinuzzi et al., 2009a). Snag intactness 

was divided into intact (where the snag bole still had a visible top) and broken (where at least 

part of the bole had broken off) groups. We therefore had four snag classes for our response 

variable (Figure 4.2): “small intact” (SI), “small broken” (SB), “large intact” (LI), and “large 

broken” (LB). In total, there were 198 snags evaluated across all snag classes (Table 4.3). 

The thirteen lidar-derived metrics (Table 4.2) were used as predictor variables for 

classification into one of the four snag classes (SI, SB, LI, or LB). The number of RF trees to 

grow was set to 1000, and the number of predictor variables performing data partitioning at 

each node (mtry) was set to 13. Pearson’s correlation (r) was used to determine whether any 

predictor variables were highly correlated (r > 0.9; see Appendix A Table A2 Pearson’s 

correlations among predictor variables). As there was a high correlation found between percent 

of first returns (P1stRN) and percent of second returns (P2ndRN; r = 0.97), a 

multicollinearity test was performed, and no predictors were found to be collinear. As this 

study was conducted to investigate how return number metrics interact with snags, we kept 

both P1stRn and P2ndRN as predictor variables in our RF models. We would recommend 

that analysis using multivariate models other than RF (e.g., regression) should exclude 

P1stRN as a variable, as such models may be less resistant to multicollinearity.  

For validation purposes, RF models were run within a bootstrap with 20 iterations. 

For each iteration, we drew 60% of the snags (ntrain = 118) from the total available snag 

population (ntotal = 198) to train the RF model. The remaining snags not drawn per iteration 

(ntest = 80) were used for independent validation of the RF model. For each bootstrap 

iteration, confusion matrices of observed versus predicted classifications were used to 

calculate overall accuracy and the kappa statistic (a coefficient ranging from 0 to 1, where 0 

is equated with random chance and 1 is perfect concordance; Cohen, 1960), as well as 

producer’s accuracy (inverse of omission error) and user’s accuracy (inverse of commission 

error) for each class.  

In addition to the confusion matrix, an evaluation of predictor variable importance 

was reported for the top RF model (RFALL) in terms of mean decrease in the Gini Index (a 

measure of the decrease in node impurity; Liaw and Wiener, 2002; Breiman, 2001). To 
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evaluate the importance of each predictor relative to one another among the four snag classes 

(and across models), the class- specific variable importance scores were standardized using 

the Model Improvement Ration (MIR; Evans and Cushman, 2009), whereby all raw variable 

importance scores were divided by the maximum.  

Modeling subset by diameter 

We conducted additional RF modeling on subsets of the snags by diameter, modeling 

only small snags (ntotal = 82) and only large snags (ntotal = 116) against the same suite of 

predictor variables and using the same RF parameters and validation methods. The only 

change was that classification was reduced from the four snag classes to only two based on 

snag intactness (intact versus broken top) for each model. The confusion matrix and predictor 

variable importance tables for the top RF models (small snags = RFSM; large snags = RFLG) 

let us further evaluate which of the 13 variables were most important for each size class. 

 

Results 

Model performance across all four snag classes 

 Across the 20 iterations of RF models classifying all snags into four classes by 

diameter and intactness, the top model (RFALL) had an overall accuracy of 50%, with a kappa 

statistic of 0.29 (Table 4.4a). Performance accuracies were highly variable by snag class, 

with large broken top snags having the highest producer’s accuracy, small intact snags 

having the highest user’s accuracy, and large intact snags having the lowest accuracy for both 

(Table 4.4a). The most important overall predictor variables for RFALL (based on mean 

decrease in Gini) were percent of third returns (P3rdRN), coefficient of variation in Leaf 

Area Density (LADcv), elevation (ELEV), and Vegetation Area Index (VAI; Table 4.5a). 

Three of these top variables were the most important predictors for the individual snag 

classes (Table 4.5a). The most important variable for both small intact and small broken 

snags was ELEV; for large intact snags it was VAI, and for large broken snags it was 

P3rdRN. LADcv was distinct from the other top variables in not being the most important for 

any given snag class (Table 4.5a).  
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Model performance subset by diameter 

 When snags were subset by diameter, RF model performance improved for each 

subset as compared to the top model for all snags (Table 4.4). For small snags only, across 

the 20 iterations of RF models classifying snags into two groups by intactness, the overall 

accuracy of the top model (RFSM) increased by 26% over RFALL. The confusion matrix for 

RFSM (Table 4.4b) showed much higher performance accuracies across both classes. Out of 

the top three overall predictor variables from RFALL, only LADcv remained in the top three 

overall for RFSM (Table 4.5b).  

For large snags only, across the 20 iterations of RF models classifying snags into two 

groups by intactness, the overall accuracy of the top model (RFLG) increased by 27% over 

RFALL. The confusion matrix for RFLG showed improved performance accuracies across each 

class except for (large) broken snags; producer’s accuracy had the lowest value of the snag 

subsets (50% for broken tops), but also the highest value (93% for intact tops; Table 4.4c). 

Out of the top three overall predictor variables from RFALL, once again LADcv remained in 

the top three overall for RFLG, as well as P3rdRN (Table 4.5c).  

 

Discussion 

Advancing our understanding of where broken-top snags occur within a closed-

canopy forest has the potential to benefit habitat management for multiple wildlife species. 

Our goal was to explore whether ALS data could be used to differentiate tree top intactness 

of snags with known structural characteristics of value to wildlife. To our knowledge, this 

was the first study to use ALS data to focus on structural differences among snags, 

particularly in closed-canopy conifer forests.  

The accuracy of our overall RF model for classifying snags by diameter and 

intactness was relatively low, suggesting there may not have been clear enough distinctions 

among the four snag classes to accurately distinguish all of them at the individual tree level 

with airborne lidar alone. Inclusion of additional information provided by other sensors, such 

as very-high-resolution satellite or airborne (including unmanned aircraft systems or UAS) 

imagery, could improve discrimination capability. Adjusting the modeling strategy also has 
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potential for improvement. When our models were subset by diameter to examine intactness 

among only small snags and only large snags separately, the overall model accuracies and 

kappa statistics both improved to above 75% and 0.45, respectively. These findings 

suggested there is potential for improved applications given further refinement, especially 

when focused more narrowly on one or two snag classes.  

One factor that is important to consider with ALS applications relative to snag 

detection and characterization of snag characteristics is the ALS point density. Higher point 

densities are generally associated with high levels of accuracy. For instance, Krzystek et al. 

(2020) were able to characterize snags via lidar metrics and 3D shape from an ALS dataset 

with excellent accuracy (> 90%), but with a much greater point density (55 points/m2) than 

available for our study. The snags studied were primarily pest-infected, and thus had 

accumulated in larger groups (Krzystek et al., 2020), which represented a much different 

context than our study of using ALS to classify individual snags across a closed-canopy 

forest. Other studies also had relatively high accuracies associated with ALS applications of 

snags with relatively high point densities (Yao et al., 2012; Vauhkonen et al., 2011; Kim et 

al., 2009; Bright et al., 2013; Wing et al., 2015; Casas et al., 2016).  

In order to place our point densities within a broader standardized framework, we 

used the Topographic Data Quality Levels (QLs) as defined by the United States Geological 

Survey (USGS) 3D Elevation Program (USGS, 2021) to evaluate the quality of our ALS 

datasets. We focused on three QLs (based on points per meter squared): QL1 (≥8), QL2 (2–

7.9), and QL3 (0.5–1.9). The overall point density across both sitewide lidar acquisitions in 

our study was 4.2 points/m2 (placing it within the QL2 category), but point densities of 

individual snags varied a great deal, and spanned all three QLs. Even within the same survey 

plot, point densities could be highly variable. For example, one plot with 12 snags had point 

densities that ranged from 1.7 to 20.4 points/m2, spanning all three QLs (Figure 4.3). We 

found the lower limit of point densities required to properly calculate the lidar metrics of 

interest around individual snags was 1 point/m2.  

There were no strong drivers affecting point densities universally, though elevation 

did show weak negative associations (higher elevations had lower point densities across 
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sites). Two additional factors that likely contributed to variable QLs around individual snags 

were scan angle and surrounding live crown proximity. Scan angle showed no strong 

relationship with point density but may still have played important albeit disparate roles in 

reflecting snag returns: returns close to nadir may have better reflected the tops of snags 

surrounded by dense taller canopies and differentiated them from a true gap, while shallower 

view pulse angles were more likely to reflect a greater number of returns from snag boles, 

especially at the edge of gaps. Surrounding live crown proximity likely affected QLs as well; 

live tree canopy returns within the 5-m diameter point cloud around a given snag would be 

counted toward snag point density, falsely raising QL. This is an expected challenge when 

looking for lone snags in a dense closed-canopy forest; many of the snags we surveyed were 

found at the edge of a gap, with some partially or almost completely underneath surrounding 

live canopy, especially broken-top snags. All of these factors combined suggested that the 

relatively low point densities in our ALS data likely contributed to a limited ability to 

classify tree intactness when small snags were included in the data sets.  

Our finding that larger DBH snags were identified with higher classification 

accuracies was consistent with previous snag-detection work. Prior work in mapping snag 

presence or absence has shown DBH to be a strong predictor of snag-detection probability 

(Martinuzzi et al., 2009a; Wing et al., 2015), where the likelihood of detecting snags 

increased with diameter. Our results were consistent with these findings, even though we 

were investigating the ability of ALS to classify snag characteristics, as opposed to detecting 

snags.  

It is important to note that the ecological context of remote-sensing studies focused 

on snag detection can vary widely. Much of the previous work in mapping snags has been 

carried out where one type of massive tree die-off event has occurred, such as a wildfire or 

beetle kill/outbreak (Yao et al., 2012; Kim et al., 2009; Bright et al., 2013; Casas et al., 2016; 

Krzystek et al., 2020). While such results certainly provide opportunities to evaluate the 

power of remote sensing to address snag-related questions of distribution and biomass, the 

structural characteristics of the snags themselves have not typically been the focus of 

wildlife-related investigations, although the role of these snags for wildlife use has been well 

documented (Vogeler et al., 2014; Saab et al., 2009).  
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Of particular interest to us, though, are individual snags that are embedded within 

dense live conifer forests that provide a valuable resource for many wildlife species. Our 

focus on the structural characteristics of broken versus intact tops of snags has important 

relevance for many wildlife species of management interest. For instance, the federally listed 

northern spotted owl (Strix occidentalis caurina; USFWS, 2021) uses snags as platforms for 

nesting, as do multiple other species of management interest, such as the Northern goshawk 

and great gray owl (Squires and Reynolds, 1997; Wu et al., 2015; IDFG, 2021; Bull et al., 

1997). These species also require forests with high canopy closure for foraging and 

protection from predators (North et al., 1999; Squires and Reynolds, 1997; Wu et al., 2015; 

USFWS, 2021). Further, the importance of broken tops for wildlife is not limited to direct 

nesting or roosting use; broken tops also serve as an indicator of additional use by wildlife, 

particularly in the form of woodpecker cavity excavation (McClelland and McClelland, 

1999). Nests excavated by woodpeckers (primarily in snags) can support entire networks of 

cavity-reliant bird and mammal species within conifer-dominated forests (Martin et al., 2004; 

Aitken and Martin, 2007; Blanc and Walters, 2008), lending added importance to the value 

of identifying broken-top snags amongst closed-canopy forests for wildlife management 

efforts.  

This individual tree approach was meant as a case study to better inform workflows at 

broader extents. We sought to improve parameterization for individual structural elements, in 

order to improve upon search patterns applied across entire landscapes. Viewing these results 

as one step within a broader stepwise approach for forest characterization via ALS-derived 

lidar metrics lends greater weight to our findings. A prerequisite first step could be to refine 

RF modeling at the plot or stand level to differentiate live trees from snags (e.g., Casas et al., 

2016) prior to RF modeling at the individual tree level, to evaluate within-group differences 

among live tree and snag characteristics separately. While our study was novel in attempting 

to differentiate structural differences among snags, there is a great deal of value in looking at 

how this methodology compares to and can be combined with pre-existing methods in snag 

modeling (e.g., via intensity and height-based metrics: Martinuzzi et al., 2009a; Kim et al., 

2009; Wing et al., 2015; Casas et al., 2016; Krzystek et al. 2020).  
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Going forward, we would suggest that those wishing to apply some aspect of these 

methods do the following to yield better results: focus on metrics for one class at a time (e.g., 

large broken-top snags only), and raise the height cutoff to 5 or 10 m above ground. 

Additionally, if calibrated ALS intensity data (or very-high-resolution imagery) are available, 

it would certainly be worth incorporating, either into RF models or for other methods of snag 

characterization. Further, higher-density point clouds (QL1) would undoubtedly improve 

model performance, and likely better distinguish among groups. Thankfully, the structural 

features of snags on which we focused (based on benefit to wildlife) were positively 

correlated with characterization via ALS, which suggested there is value in focusing more 

closely on just those snag classes that hold the greatest benefits for wildlife: larger-diameter 

snags, as well as broken-top snags (Michel and Winter, 2009; Basile et al., 2020; Bull et al., 

1997). By limiting the focus of snag detection or modeling efforts to the binary of 

presence/absence for large broken snags only, the focus can shift to lidar (or spectral) metrics 

most strongly correlated with this class (e.g., LADcv, ENTmid, and P3rdRN).  

 

Conclusions 

While we used ALS alone in this study, the next step would be to focus on 

multisensor or data-fusion approaches (such as incorporating multi- or hyperspectral lidar 

data, satellite imagery, and/or photogrammetry), which could lead to far more robust 

predictions resulting from a greater diversity of spatial, spectral, and temporal resolutions 

that add complementary dimensions of information (Wing et al., 2015; Casas et al., 2016; 

Boucher et al., 2020). Employing modeling methods other than RF (such as imputation 

[Hudak et al., 2008], gradient boosting [Zhang et al., 2019], or artificial neural networks 

[Neuville et al., 2021]) may also lead to improved results and uncover useful predictors of 

forest structures not previously applied. As open-access data sets continue to be more widely 

accessible, the concepts discussed become more readily applicable; applying novel methods 

to broader swaths of data becomes more feasible, incorporating multiple sources of data 

becomes easier, and comparisons of competing methodologies can be tested more rigorously. 

We encourage continued investigation of ways in which new and upcoming tools can be used 
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to better characterize forest structures remotely, across a variety of landscapes, especially 

with respect to snags and other wildlife habitat features.  
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Tables 

 
Table 4.1 Lidar acquisition parameters.  

The discrete-return airborne lidar (also airborne laser scanning, ALS) data from the two study sites (based on 

IPNF Ranger Districts: Coeur d’Alene River, CdA; Saint Joe, StJ) were part of a larger acquisition carried out 

by USFS RMRS in 2016 (see Fekety et al. [2018] for more details). 

Parameter Specification 

Date collected 12 October 2016 

Vendor Atlantic Group, LLC 

Sensor Leica ALS70-HP 

Flight altitude 1965 m above ground level 

Flight speed 110 kts 

Pulse frequency 278 kHz 

Scan frequency 41 Hz 

Scan angle ± 30º 

Swath width 1098 m 

Swath overlap 50% 

Laser wavelength 1064 nm 

Laser beam divergence 0.22 mrad 

Vertical accuracy 5.9 cm 

Footprint diameter 43 cm 

Nominal pulse density 4.2 pulses/m2 
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Table 4.2 Airborne lidar-derived metrics used as predictor variables  

Airborne lidar-derived metrics used as predictor variables in RF models to classify snag characteristics of snags 

measured in Idaho coniferous forests. For additional information on equations and ecological significance of 

each predictor variable, please see Appendix A Table A3 Airborne-lidar-derived metrics used as predictor 

variables in random forest (RF) models.. 

Variable Description 

PTDEN Point density; number of total returns per meter 

P1stRN Percent of first returns (out of total returns) 

P2ndRN Percent of second returns (out of total returns) 

P3rdRN Percent of third returns (out of total returns) 

GFPmid Gap Fraction Profile (GFP), calculated only for midcanopy heights (every 1 m between 5 m and 

20 m above ground) 

LADcv Leaf Area Density (LAD) coefficient of variance; derived from measures every 2 m across all 

canopy heights 

RUMPLE Rumple index; roughness of a surface based on ratio between surface area and projected area on 

the ground 

ENTmid Entropy, calculated only for midcanopy heights (between 5 m and 20 m above ground); 

normalized Shannon diversity and evenness index 

VAI Vegetation Area Index (VAI); sum of LAD values, derived from measures every 2 m across all 

canopy heights 

VCI Vertical Complexity Index (VCI); fixed normalization of entropy across heights, derived from 

measures every 2 m across all canopy heights 

ELEV Elevation (in meters), averaged across the 25-m radius reference plot 

SLOPE Slope (in degrees), averaged across the 25-m radius reference plot 

TRASP Transformed aspect (in degrees), averaged across the 25-m radius reference plot 
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Table 4.3 Summary statistics by snag class  

Summary statistics by snag class across all snags (n = 198) measured in conifer forests in Idaho, USA. A 

breakdown of airborne lidar point density (total returns/area) per snag point cloud is included, with mean (µ) 

and standard deviation (sd) for each snag class. Snags split by study site are not shown, but overall there were 

more snags at CdA (n = 141) than StJ (n = 63), driven primarily by a greater number of broken top snags in 

both size classes. 

Diameter Intactness Number of Snags Point Density (µ ± sd) 

Small (< 40 cm) 
Intact 35 13.2  ± 7 

Broken 48 11.2  ± 5 

Large (≥ 40 cm) 
Intact 44 12.4  ± 5 

Broken 77 12.4  ± 7 
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Table 4.4 Confusion matrices from top random forest models 

Confusion matrices from the top random forest models for classifying snags within conifer forests in Idaho, 

USA. RF classification used ALS lidar metrics to split snags into groups across known characteristics. There 

were three RF models used across the full dataset: (a) all snags (split into four classes: “small intact” (SI), 

“small broken” (SB), “large intact” (LI), and “large broken” (LB); ntrain = 118, ntest = 80); (b) small-diameter 

snags only (using intactness as a binary class; ntrain = 49, ntest = 33); and (c) large-diameter snags only (using 

intactness as a binary class; ntrain = 69, ntest = 47). In each table, the matrix on the left shows the number of 

correct and incorrect classifications per snag class; correct classifications are those where the predicted matched 

the observed snag class, highlighted in grey on the diagonal. On the right, the accuracy metrics per class are 

shown in grey: producer’s accuracy (correct / observed sum) and user’s accuracy (correct / predicted sum). 

Overall accuracy and the kappa statistic are listed in the bottom-left corner of each table; on the bottom-right are 

the top three predictor variables for the model (ranked by mean decrease in Gini). 

(a) All snags     

 Observed    

 Class SI SB LI LB Sum Producer's accuracy (%) User's accuracy (%) 

Predicted 

SI 6 1 1 0 8 35.3 75.0 

SB 7 8 3 2 20 50.0 40.0 

LI 1 1 3 5 10 17.7 30.0 

LB 3 6 10 23 42 76.7 54.8 

 Sum 17 16 17 30 80   

Overall accuracy = 50%; kappa = 0.29 Top predictors: P3rdRN, LADcv, ELEV 

 

  

(c) Large snags only     

 Observed    

 Class Intact Broken Sum Producer's accuracy (%) User's accuracy (%) 

Predicted 
Intact 27 9 36 93.1 75.0 

Broken 2 9 11 50.0 81.8 

 Sum 29 18 47   

Overall accuracy = 77%; kappa = 0.47 Top predictors: LADcv, ENTmid, P3rdRN 

(b) Small snags only     

 Observed    

 Class Intact Broken Sum Producer's accuracy (%) User's accuracy (%) 

Predicted 
Intact 17 3 20 77.3 85.0 

Broken 5 8 13 72.7 61.5 

 Sum 22 11 33   

Overall accuracy = 76%; kappa = 0.49 Top predictors: LADcv, PTDEN, ENTmid 
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Table 4.5 Predictor variable importance from top random forest models 

Predictor variable importance from the top random forest models for classifying snags within conifer forests in 

Idaho, USA. There were three RF models used across the full dataset: (a) all snags (with four classes: “small 

intact” (SI), “small broken” (SB), “large intact” (LI), and “large broken” (LB)); (b) small-diameter snags only 

(using intactness as a binary class); and (c) large-diameter snags only (using intactness as a binary class). For 

the class-specific columns, all scores for each class were adjusted via MIR, where each value was divided by 

the largest absolute value as a means of standardization across models (Evans and Cushman, 2009). The mean 

decrease in Gini (MDGini) refers to the total decrease in node impurities from splitting on that variable 

averaged over all RF trees (Liaw and Wiener, 2002). All rows are sorted by MDGini (indicated by the small 

down arrow), as this was used to rank predictor variables in terms of overall variable importance. 

a) All snags 

Variable SI SB LI LB MDGini ↓ 

P3rdRN −0.53 0.25 −0.13 1.00 9.513 

LADcv 0.06 −0.41 −0.21 0.36 8.105 

ELEV 0.46 0.43 0.07 −0.11 7.636 

VAI 0.01 −0.21 0.51 −0.07 7.445 

VCI −0.25 −0.04 −0.08 0.47 7.365 

ENTmid −0.24 −0.34 0.18 0.14 7.113 

RUMPLE 0.00 0.07 0.01 −0.27 6.804 

GFPmid 0.03 −0.24 −0.09 −0.10 6.022 

SLOPE 0.28 0.30 0.00 0.09 5.964 

PTDEN −0.44 −0.35 −0.26 0.10 5.827 

P1stRN −0.28 −0.10 0.05 0.17 4.900 

P2ndRN −0.17 −0.26 −0.24 0.35 4.536 

TRASP −0.22 −0.42 0.17 −0.06 4.028 

 
(b) Small snags only 

Variable Intact Broken MDGini ↓ 

LADcv 0.94 0.39 3.60 

PTDEN 0.98 0.64 3.12 

ENTmid −0.99 −0.34 2.41 

GFPmid −0.52 −1.00 2.29 

ELEV 0.72 −0.11 1.90 

SLOPE −0.14 −0.51 1.81 

P1stRN 0.04 −0.15 1.78 

P3rdRN −0.42 −0.04 1.57 

VAI 0.37 −0.38 1.56 

TRASP −0.51 −0.06 1.19 

VCI −0.57 −0.47 1.04 

RUMPLE −0.97 −0.44 0.94 

P2ndRN −0.93 −0.47 0.82 
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(c) Large snags only 

Variable Intact Broken MDGini ↓ 

LADcv −0.61 0.02 5.34 

ENTmid −0.31 0.01 3.43 

P3rdRN −0.64 0.27 2.90 

PTDEN −0.45 −0.01 2.37 

ELEV −0.32 −0.23 2.25 

RUMPLE −0.47 0.22 2.19 

VCI −0.69 −0.10 2.15 

GFPmid −1.00 −0.48 2.15 

VAI −0.72 −0.38 2.01 

TRASP −0.35 −0.15 1.97 

SLOPE −0.27 0.37 1.89 

P2ndRN −0.55 0.18 1.47 

P1stRN −0.66 0.29 1.16 

 

 

  



78 

 

Figures 

 

 
Figure 4.1 Map of the study area 

(a) Study area within Idaho Panhandle National Forests (IPNF) in northern Idaho, United States of America. 

There were two lidar acquisitions in the IPNF where all ground reference survey data were collected: within the 

(b) Coeur d’Alene River (CdA) and (c) Saint Joe (StJ) Ranger Districts. Please note the different scales for each 

site. Across the two sites there were a total of 53 25-m radius ground reference plots (0.2 ha; black circles) 

where the 198 snags included in this study were surveyed. This figure has been adapted from Stitt et al. (2021). 
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Figure 4.2 Sample lidar point clouds by snag class 

Representative ALS point clouds for each snag class are viewed from ground level as 2.5 m-radius circular clips 

around snag center coordinates (marked by white triangles). Lidar returns are colored by height above ground. 

The dashed horizontal line represents the height at which snag diameter was measured (1.37 m above ground). 

The four snag classes shown illustrate the differences across diameter (small [<40 cm DBH] vs. large [≥40 cm 

DBH]) and intactness (intact vs. broken top): (a) a representative “small intact” (SI) snag; (b) a representative 

“small broken” (SB) snag; (c) a representative “large intact” (LI) snag; (d) a representative “large broken” (LB) 

snag. 

  



80 

 

 
Figure 4.3 Example of a 50-m diameter IPNF survey plot illustrating variability in point densities 

Snags and live trees are overlaid on the ALS point cloud of a representative survey plot (with points below 1.37 

m omitted), where orange circles with black lines represent snag locations and heights, and white circles with 

white lines represent live tree locations and heights. Multiple views of the same point cloud are shown to 

illustrate different aspects of interest: (a) plot viewed from an angle to best show stand structure and individual 

tree canopies and spacing; (b) plot viewed from directly above (at nadir) to best show parallel scan angles, 

variations in point density, snag and gap distributions, and the absence of returns around multiple snags;         

(c–e) plot viewed from ground level to best show tree heights and ALS returns across three versions, where    

(c) includes all returns (colored by height) to highlight a relatively uniform point distribution across vertical 

heights, as well as show that nearly all live trees were in the upper strata of heights relative to snags;                  

(d) includes first returns only to highlight the notably greater first return densities in the upper canopy; and       

(e) includes third returns only to highlight that the majority of third returns fell within the midcanopy range, 

below live tree crowns. 
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Chapter 5: Conclusion 

This dissertation focused on exploring new ways lidar data can be incorporated to 

measure biodiversity indicators via assessing two keystone structures found in closed-canopy 

conifer forest: snags and cavities. Chapter 1 provided an overview of the concepts, and 

Chapters 2–4 delved into specific methodologies. While the methodology chapters of this 

dissertation centered analysis on the individual tree-level, each served as a proof of concept 

for implementation in broader scale applications.  

Chapter 2 evaluated the accuracy of smartphone lidar to measure tree cavity 

dimensions from afar to differentiate among woodpecker species. Even in the time since 

publication of the chapter, advances in handheld lidar technology have improved greatly, 

making this approach even more feasible and widely accessible. While this method requires 

time-intensive field surveys and manual inspection of snags, it may enable more robust 

mapping for wildlife than currently exists, especially for cavity nest web species. While most 

cavities found will not be from the current year, being able to assess the number and 

distributions of cavity entrance sizes present on a landscape will allow for rough mapping of 

both woodpecker species occurrence (and co-occurrence) and obligate secondary cavity user 

species occurrence based on body size. 

Chapters 3 and 4 investigated whether airborne lidar could be used to improve snag 

characterization. Both were valuable in confirming the baseline assumptions needed for 

further efforts: Chapter 3 confirmed that snags do in fact have greater gap fractions 

surrounding them than live trees do and that fraction is more variable across heights; Chapter 

4 confirmed that individual snag features can be distinguished via ALS. How these 

differences in individual tree-scale analysis translate to landscape-scale analysis is yet 

unknown. The next step I propose is to establish a stepwise snag mapping workflow, based 

on processing airborne lidar datasets at the landscape scale, to generate topographic, 

structural, height, and possibly intensity metrics for use in predicting probable locations and 

characteristics of snags across a forested system (for a conceptual diagram, please see 

Appendix B Figure B2).  
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The aim of this theoretical snag mapping workflow is for it to be carried out with just 

an airborne lidar dataset, accompanied by lidar validation via ground reference surveys for 

calibrating the data and training snag models. I intend to build this workflow fully within the 

R environment, as R is open-source and widely accessible, and there already exist many 

robust and well-documented lidar processing packages, such as lidR and rLiDAR.  

With the assumption that I am beginning with an unprocessed airborne lidar (also 

airborne laser scanning or ALS) dataset, the first step would be to pre-process the point cloud 

with snag mapping in mind. This would mean that noise filtration should be done carefully 

and conservatively so as not to remove snag returns alongside other sources of noise. For 

example, intact western white pines (Pinus monticola) were emergent in some plots, standing 

10 m taller than the live tree crowns; however, these boles may register as only a handful of 

scattered ALS returns, likely above maximum canopy height (J. Stitt, personal observation), 

and thus these snags may be omitted during routine noise filtering processes. 

Once I have a conservatively-filtered point cloud, the next steps would be to generate 

multiple products to accomplish separate tasks: 1) a digital elevation model based on the 

ground returns for use in calculating topographic metrics of interest, such as slope, aspect, 

and elevation; 2) a height-normalized canopy height model (CHM) for use in mapping both 

probable live tree crowns (via Individual Tree Detection or ITD methods) and canopy gaps; 

3) the height-normalized point cloud itself for use in calculating “grid” metrics, which are 

lidar-derived metrics calculated a given grid scale (e.g., 5 m × 5 m squares) across an entire 

area, including structural, height, and intensity (if calibrated) metrics relevant to snag 

characterization. 

With the data processed and metrics derived across the landscape scale, I believe the 

key component for snag mapping will be to evaluate both the spaces where trees are present 

and where they are absent. For the purpose of this methodology, there are three forest canopy 

categories that a given space (e.g., a square in a 5 m × 5 m grid) can be characterized as: live 

tree crown, snag, or true gap (defined here as canopy gaps that extend all the way to the 

ground level, or 2 m). Disentangling snags from live tree crowns is a distinct task from 

disentangling snags from true gaps. 
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For differentiating snags and live trees, my method leans into the challenges of 

mapping snags via ITD, namely that snags often are not detected as individual trees through 

traditional methods. I will add the caveat that there are myriad ITD methods currently 

available, including some that use the ALS point cloud directly versus others using the 

derived CHM; further delving into altering the parameters of any given ITD method to best 

include or exclude snags is certainly an undertaking worthy of further evaluation, but each 

instance will be highly sensitive to forest composition and ALS quality. One possible 

extension of the use of ITD is to then omit spaces characterized as live tree crown from 

further analysis; this would serve to greatly reduce the overall amount of data to be processed 

and theoretically leave only snag and true gaps spaces left to differentiate.  

Fully differentiating snags from true gaps is challenging since one useful element of 

mapping snags via ALS can be a lack of returns, which can be conflated with true gaps. In 

this dissertation, Chapter 3 discussed the use of ALS to characterize canopy gaps around 

snags relative to live trees. There were significantly more canopy gaps around snags relative 

to live trees, especially at midcanopy heights (~20 m above-ground). This information would 

prove useful in the snag mapping workflow to assess snag presence or absence across a forest 

stand. Incorporating canopy gap analysis to detect snags may be of added benefit when 

airborne lidar datasets are of lower density; attempting to discern between true gaps and 

snags may be a pathway of less resistance than attempting to discern between snags and live 

trees, though likely incorporating both pathways may improve accuracy most.  

In scaling up from the individual-tree scale to the landscape scale of my snag 

mapping workflow, identifying canopy gap size and shape may help focus efforts to identify 

probable snag locations. For example, determining whether snag locations are strongly 

correlated with canopy gap size may be of interest, and delving further into spatial analysis to 

evaluate snag location relative to canopy gap edge versus interior would also shed light on 

both snag and gap dynamics. Another direction to go in teasing apart live tree canopy, snag, 

and true gap spaces would be to employ random forest modeling. This first will require that I 

determine the best predictor variables from the lidar (training and testing models using data 

on known snag, gap and live tree locations), but bringing together ITD and canopy gap 

mapping with additional ALS-derived metrics may also prove powerful in mapping snags. 
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Attempting snag classification after identifying probable snag locations in my 

stepwise snag mapping workflow may help highlight snags with more abundant microhabitat 

features valuable to wildlife. Chapter 4 explored whether ALS could discern differences in 

structural characteristics among snags that are important for wildlife. Random forest 

techniques were only marginally successful in this, but this effort represents a first step (and 

only known attempt to date) to delineate among snag types. Working with higher density 

lidar data or including an even larger sample size of snag point clouds will no doubt improve 

model outcomes, as would focusing on just one snag type (e.g., large diameter broken top 

snags).  

The conclusions of Chapter 3 and 4 both suggest that airborne lidar data should not be 

used in isolation, but rather implemented alongside other remote sensing datasets. 

Incorporating data from additional sensors such as satellite imagery, photogrammetry, and 

hyperspectral lidar would strengthen analyses by picking up on different components of the 

forest canopy to further refine snag mapping efforts. Moving beyond ALS in my snag 

mapping workflow will be beneficial for both snag location and classification. Pulling in 

spectral data to evaluate probable snag locations will help strengthen random forest modeling 

efforts. Bringing in temporal components such as repeated satellite imagery to see when and 

where snag occurrence changes over time is also becoming more attainable as imagery 

resolution improves. The scale of the grid applied is also fluid, and multiple scales can be 

applied at different steps in the process. For example, to incorporate spaceborne lidar data in 

modeling efforts (i.e., NASA GEDI waveform lidar) it may be useful to evaluate ALS 

metrics at a comparable scale, such as using a 30 m × 30 m grid instead of 5 m × 5 m grid. 

Should this theoretical workflow be accurate enough to predict snag, gap, and live 

tree canopy with high probabilities across a landscape, such a map would be greatly 

beneficial for wildlife modeling efforts, including occupancy modeling and habitat mapping 

for single species or at the community level. If focusing on just cavity nest web wildlife 

(which includes woodpeckers that excavate cavities in snags, plus the birds and mammals 

that further depend on those cavities for nesting and roosting), being able to evaluate spatial 

patterns in tree crown, snag, and gap locations could expose maps of connectivity and 

pathways previously obscured. Having a gap map can highlight where travel corridors for 
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birds and bats may exist within the canopy. Knowing probable snag densities and 

distributions would not only provide a foundation for where cavity nest webs can occur 

across the landscape, it may also help delineate territories of given species and highlight 

where greater numbers of microhabitats can be found to support additional species.  

While a fully remote methodology is enticing, it can only go so far. Having ground 

survey data for any given site is always important and can provide additional information not 

attainable from the sky. Thankfully, finer-scale remote sensing technologies are also 

continuing to advance, with UAV, terrestrial, and handheld lidar tools available and being 

tested for wildlife implications as well. Building a greater database of ground-derived 

characteristics of a forest adds additional avenues to refine wildlife monitoring and 

management efforts, in particular to help in identifying useful indicator variables. 

My hope in explaining these methods and their possible implementations is to bring 

increased awareness to novel uses of existing datasets, enabling users to glean additional 

information and apply that knowledge to improve our understanding of forested systems and 

processes. The importance of biodiversity and ecosystem functioning are continuing to be 

realized in a growing number of fields, and I hope that my contributions outlined in this 

dissertation will aid others in better evaluating indicators of biodiversity, in order to best 

serve wildlife modeling, monitoring, and management efforts.
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Appendix A - Supplemental Tables 

 

Table A1 Minimum cavity entrance size requirements for both cavity excavators and secondary cavity nesters 

that may coexist in western North America 

Minimum cavity entrance size requirements for both cavity excavators and secondary cavity nesters that may 

coexist in western North America, based on the smallest entrance area observed being used by each cavity 

nesting species (data from Dudley and Saab, 2003; Martin et al., 2004). Included in this appendix are references 

for species of conservation concern, which correspond with the footnotes. 

Cavity nesting species Scientific name 
Minimum cavity entrance 

area used (cm2) 

Cavity excavators   

   Downy woodpecker Dryobates pubescens 6.5 

   Black-backed woodpeckerc,d,e Picoides arcticus 15.2 

   Hairy woodpecker Dryobates villosus 17.0 

   White-headed woodpeckera,b,d,e Picoides albolarvatus 18.8 

   Northern flicker Colaptes auratus 26.2 

   Lewis’ woodpeckera,b,c,d,e Melanerpes lewis 28.3 

   Pileated woodpeckerc,d,e Dryocopus pileatus 69.1 

Secondary cavity nesters   

   Northern flying squirrel Glaucomys sabrinus 0.0 

   Red squirrel Tamiasciurus hudsonicus 4.9 

   Mountain chickadee Poecile gambeli 5.6 

   Bushy-tailed woodrat Neotoma cinerea 6.2 

   Tree swallow Tachycineta bicolor 8.2 

   Mountain bluebird Sialia currucoides 14.8 

   Flammulated owla,c,d,e Psiloscops flammeolus 16.9 

   European starling Sturnus vulgaris 20.2 

   American kestrel Falco sparverius 20.6 

   Northern saw-whet owla Aegolius acadicus 25.0 

   Bufflehead Bucephala albeola 26.0 

   Deer mouse Peromyscus maniculatus 29.2 

   Barrow's goldeneyea Bucephala islandica 33.0 

   Chipmunk Tamias spp. 41.1 

a Species at Risk, British Columbia; COSEWIC 2017 
b Species of Greatest Conservation Need, Idaho; IDFG 2016 
c Species of Concern, Montana; MFWP 2017 
d Species of Greatest Conservation Need, Oregon; ODFW 2016 
e Species of Concern, Washington; WDFW 2013 
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a. Committee on the Status of Endangered Wildlife in Canada (COSEWIC). (2017). 

COSEWIC, Ottawa, Canada. https://www.canada.ca/en/environment-climate-

change/services/committee-status-endangered-wildlife.html 

b. Idaho Department of Fish and Game (IDFG). (2016). Idaho species of greatest 

conservation need. Idaho Department of Fish and Game, Boise, Idaho. 

https://idfg.idaho.gov/species/taxa/list/sgcn 

c. Montana Fish, Wildlife, and Parks (MFWP). (2017). Montana’s species of concern. 

Montana Fish, Wildlife, and Parks, Helena, MT. 

http://fwp.mt.gov/fishAndWildlife/species/speciesOfConcern 

d. Oregon Department of Fish and Wildlife (ODFW). (2016). Oregon Conservation Strategy. 

Oregon Department of Fish and Wildlife, Salem, Oregon. 

http://www.oregonconservationstrategy.org 

e. Washington Department of Fish and Wildlife (WDFW). (2013). Threatened and 

endangered wildlife in Washington: 2012 Annual Report. Listing and recovery 

section, wildlife program. Washington Department of Fish and Wildlife, Olympia, 

Washington. 
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Table A2 Pearson’s correlations among predictor variables 

A correlation table showing all pairwise Pearson’s (r) correlation scores across the 13 predictor variables used 

for modeling snag classifications. A list of the predictor variable descriptions can be found in Table 4.2. Scores 

with an absolute value of r ≥ 0.9 were considered “strongly correlated” and are highlighted in grey. Positive 

scores suggest a relationship where a pair changes value in the same direction, while negative scores indicate a 

relationship where a pair changes value in opposite directions. 
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PTDEN  -0.34 0.34 0.24 -0.14 0.04 -0.01 0.25 0.40 0.45 -0.33 0.02 -0.03 

P1stRN -0.34  -0.97 -0.83 0.02 -0.16 -0.10 -0.45 -0.30 -0.66 0.13 0.17 0.07 

P2ndRN 0.34 -0.97  0.68 -0.05 0.15 0.11 0.39 0.32 0.62 -0.21 -0.13 -0.09 

P3rdRN 0.24 -0.83 0.68  0.05 0.15 0.05 0.48 0.17 0.56 0.07 -0.22 0.02 

GFPmid -0.14 0.02 -0.05 0.05  -0.32 0.33 0.35 -0.47 -0.01 0.11 -0.12 -0.02 

LADcv 0.04 -0.16 0.15 0.15 -0.32  -0.42 0.07 0.20 0.21 0.07 0.00 0.06 

RUMPLE -0.01 -0.10 0.11 0.05 0.33 -0.42  0.15 -0.30 0.28 -0.03 -0.05 -0.04 

ENTmid 0.25 -0.45 0.39 0.48 0.35 0.07 0.15  -0.02 0.54 0.04 -0.26 0.00 

VAI 0.40 -0.30 0.32 0.17 -0.47 0.20 -0.30 -0.02  0.30 -0.12 0.04 -0.14 

VCI 0.45 -0.66 0.62 0.56 -0.01 0.21 0.28 0.54 0.30  -0.13 -0.18 -0.07 

ELEV -0.33 0.13 -0.21 0.07 0.11 0.07 -0.03 0.04 -0.12 -0.13  -0.13 0.18 

TRASP 0.02 0.17 -0.13 -0.22 -0.12 0.00 -0.05 -0.26 0.04 -0.18 -0.13  -0.44 

SLOPE -0.03 0.07 -0.09 0.02 -0.02 0.06 -0.04 0.00 -0.14 -0.07 0.18 -0.44  
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Table A3 Airborne-lidar-derived metrics used as predictor variables in random forest (RF) models. 

Explanations of each of the lidar-derived predictor variables selected for analysis within the RF models are 

provided. All of these predictors were included in model selection to predict one of four snag classes, modeled 

across two field-derived characteristics: diameter (small [<40 cm DBH] vs. large [≥40 cm DBH]) and intactness 

of the bole (intact vs. broken). Airborne lidar metrics were derived from point clouds of 2.5 m circular radius 

(~20 m2) clipped around known snag locations determined from the field. Each variable is listed with its 

abbreviation, description of the calculation, and the ecological significance for this model. 

Variable Equation Ecological significance 

PTDEN 
All returns (> 1.37 m)] /  

total area (19.63 m2) 

Relative number of all returns (greater than 1.37 m above 

ground level, a.g.l.) can reflect the total amount of surface 

area present to interact with in the canopy, in the form of 

the snag bole and branches 

P1stRN (First returns / all returns) * 100 

Higher percentages of first returns (returns that reflect 

directly back to sensor) suggest a greater proportion of 

“external” hits, where lidar has not penetrated the canopy; 

this may indicate more intact crown features remain 

P2ndRN (Second returns / all returns) * 100 

Higher percentages of second returns (returns that bounce 

once before returning to sensor) suggests a more “porous” 

snag crown that allows for more pulses to penetrate the 

canopy 

P3rdRN (Third returns / all returns) * 100 

Higher percentages of third returns (returns that bounce 

twice before returning to sensor) suggests a greater amount 

of openness mixed with structures within the canopy that 

allows for pulses to bounce more than once within and still 

return to the sensor; indicates greater physical complexity 

GFPmid 

Gap Fraction (GF) =  

Nz / (Ntotal – Nz + dz); 

N = number of returns,  

total = across all heights (z),  

dz = height bin width (1 m);  

Gap Fraction Profile (GFP) =  

mean GF across heights;  

mid = only 5m – 20m a.g.l. 

Gap fraction is calculated as a ratio of the number of points 
within a given layer versus those that passed through the 

layer; the relative proportion of canopy gaps within the 

midcanopy (5–20 m a.g.l.) helps to quantify the total 

amount of open space present in the lidar footprint at 

heights where snag crowns will vary, while reducing input 

from the “gaps” above treetops (Bouvier et al., 2015) 

LADcv 

Leaf Area Density (LAD) =  

-ln(GF) / (k * dz); 

k = extinction coefficient (0.5),  

dz = height bin width (2 m); 

LADcv = LADµ / LADsd 

This serves as an indicator of vertical stratification and 

subdominant structure presence by measuring the 

homogeneity of vertical strata across all height bins; lower 

values indicate a more even distribution of vegetation 

across strata (Bouvier et al., 2015) 

RUMPLE 

Surface area of returns  

(as a convex hull) /  

projected area of returns on ground 

Higher scores on this index indicate a rougher canopy 

surface (in terms of heights varying more from one pixel to 

the next), suggesting greater structural complexity 

(Bouvier et al., 2015) 
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ENTmid 

Shannon entropy index (H’) = 

−∑pz * log(pz);  

pz = proportion of heights (z),  

mid = only 5m – 20m a.g.l. 

The evenness of midcanopy heights (5–20 m a.g.l.) may 

indicate how closed the canopy is; more evenness may 

suggest an intact dominant canopy, while less evenness 

may suggest disturbances, such as gaps, subdominant 

structures such as snags or saplings, or other deviations 

(Pretzsch, 2009) 

VAI 
Vegetation Area Index (VAI) =  

∑LAD 

By summing LAD values, this index reports total 

vegetation coverage in the vertical column; since footprint 

area is held constant here, this index can be used as a 

relative measure, where higher scores suggest more 

canopy, possibly in the form of snag branches and dead 

needles, or else as encroaching live vegetation 

(surrounding mature tree crown or sapling;  

LaRue et al., 2020) 

VCI 

Vertical Complexity Index (VCI) =  

(-∑(pz * ln(pz))) / ln(HB); 

pz = proportion of heights (z), 

HB = total number of height bins (dz = 1) 

Similar to ENTmid (but including all heights), this index 

measures evenness in terms of proportion of returns by 

height in the canopy and allows a set maximum height, 

which can standardize variable snag tops; high scores 

suggest more even distributions of returns and a higher 

maximum canopy height, which may mean an intact top 

(van Ewijk et al., 2011) 

ELEV – 

Relative elevation will play a role in forest species 

composition; as our site was in the Northern Rockies, this 

can affect tree growth and/or decomposition patterns, as 

well as affect exposure to higher or lower temperature 

extremes 

SLOPE – 

Relative flatness or steepness under a snag may subject it 

to different disturbance risk levels and types (e.g., steeper 

slope may have higher winds, leading to more bole break 

potential) 

TRASP – 

Relative sun angle interacting with a snag may subject it to 

different temperature and moisture levels at a microhabitat 

scale, leading to differing rates of decomposition 
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Appendix B - Supplemental Figures 

 

 
Figure B1 Visualizations of handheld photo measurements 

Screenshots (from the smartphone app) of photo measurements taken with the Spike handheld LIDAR device in 

the field to measure tree diameter and cavity dimensions, as detailed in Chapter 2. 
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Figure B2 Conceptual workflow diagram for stepwise snag mapping method 

An overview of the proposed datasets and analysis methods to include for a stepwise method of mapping snags 

in closed-canopy conifer forests using Random Forest, as proposed in Chapter 5. A more detailed explanation of 

the “Airborne lidar approaches” can be found in the diagrams below. 

 

 

Figure B2 (continued) Venn diagram for the “Airborne lidar approaches” to snag mapping 

A Venn diagram showing how three separate ALS-based methods for quantifying forest elements can be 

combined to improve snag mapping. This figure is color-coded based on the above workflow diagram. 

Explanations for each of the three methods are described in greater detail in the diagram below, based on the 

proposal in Chapter 5. For each step, a gridded approach to lidar processing has been taken to calculate relevant 

predictor variables for Random Forest models, shown below for the same 30 m x 30 m grid cell.  
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Figure B2 (continued) Detailed explanations of the three airborne lidar approaches to snag mapping 
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