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Abstract 

 
Snow, in both its quantity and its dynamics, is a key driver of many geophysical and 

ecological processes and is well understood from a purely hydrologic perspective. However, 

snow as it affects wildlife habitat and survival is only understood very broadly despite its 

potential effects on thermoregulation, movement, foraging, and escape from predation over 

winter. This knowledge gap can largely be attributed to the lack of snow data at temporal and 

spatial scales meaningful to wildlife. Remote cameras are already widely used in wildlife 

research and potentially are a low-cost, low-maintenance option for collecting snow data at 

high spatial and temporal resolutions in complex forested terrain. My thesis explores how 

remote cameras can be used to collect snow and weather data and then applies these data to 

two wildlife habitat questions.  

I begin by asking what hydrometeorological data can be derived from remote camera 

images. Chapter 1A focuses on snow depth and a package I built in program R to measure 

snow depth without the use of permanent snow stakes deployed in the camera viewshed. The 

potential use of this code in distance sampling with remote cameras is heavily emphasized 

because it may be of interest to other users of the package. However, for this thesis, no 

distance sampling was performed; the code was only implemented in creating virtual snow 

stakes which could be used to measure snow depth in the camera images for Chapters 2 and 

3. This R package provides a means for other camera studies to collect fine-scale snow depth 

data without potentially impacting wildlife behavior. Chapter 1B focuses on correcting air 

temperature measurements made by cameras and deriving precipitation phase from combined 

image data and temperature data. The temperature correction model gives researchers more 

confidence in the temperature measurements collected by their cameras. However, 

precipitation phase is complicated to discern because of the relatively low resolution of 

images and the effects of wind and canopy interception.  

My other two chapters use these methods and models to address two wildlife habitat 

questions. One, what biophysical conditions promote retention of snow in complex forested 

terrain? Using snow and temperature data derived from the remote cameras and biophysical 

data collected at the camera sites, I built a model predicting locations of snow refugia in 

complex forested terrains. Knowledge about late-season snow cover provides insight into 
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how forests can be managed to promote snow retention and thus promote habitat for snow-

dependent wildlife species. Two, how do snow characteristics and winter severity affect the 

movement and distribution of ungulates over winter? I built a model relating deer and elk 

detections at my cameras to snow depth and temperature from cameras and snow density and 

hardness from on-site measurements. Snow density and hardness are expected to change 

drastically to the possible detriment of ungulates, but these properties are not included in 

current winter severity indices; My model is the first attempt at including these snow 

properties to better define winter severity for ungulates in a changing climate. 
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Chapter 1A: Deriving Snow Depth Data from Camera Images 

 

Abstract 

Remote cameras are used to study demographics, ecological processes, and behavior 

of wildlife populations. Additionally, cameras have successfully been used to measure snow 

depth with physical snow stakes. Cameras can provide fine-scale snow data as well as data 

for wildlife abundance estimation simultaneously within the same image. Current snow data 

sources are often broad scale either spatially or temporally, making the fine-scale snow data 

collected by cameras valuable. Recently developed models that adapt distance sampling 

techniques to cameras can provide accurate population density estimates if encounter rates 

are unbiased. However, logistical constraints, namely concerns that physical instruments at 

camera sites may influence animal behavior, discourage installation of instruments to 

facilitate collecting these data. Given that environmental and distance data are inherently 

contained within images, potential inferences that could be made using these data are lost. To 

address this, we developed an R package called edger to superimpose “virtual” objects onto 

images. The edger package uses a simple, fast, and effective edge detection algorithm to 

identify pixels belonging to the edges of an object in one image that can then be recolored in 

subsequent images, eliminating the need for objects to be left at camera sites throughout their 

deployment. The virtual objects can then be used to manually take measurements. Functions 

in the edger package are highly customizable to account for a variety of deployment 

conditions. We validated the method for snow depth estimation using camera data from 

Latah County, Idaho, USA. We found that snow depth estimates from a virtual object 

superimposed using functions in the edger package were within 5 cm of true snow depth 

from a physical snow stake in 88% of observations. edger can provide researchers with a 

means to take critical measurements for ecological studies without the use of physical objects 

which may alter animal behavior.  

 

Introduction 

Hundreds of thousands of remote cameras are deployed worldwide to collect data on 

wildlife population dynamics, ecology, and behavior (Burton et al. 2015, Steenweg 2017). 

However, environmental “bycatch” data (Hofmeester et al. 2020) contained in these images 
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are rarely used. Given the millions of images collected in camera studies every year, this is 

an immense source of unused but potentially valuable data. For instance, Sun et al. (2021) 

used cameras to collect data about vegetation characteristics to make inferences about habitat 

use of sandhill cranes (Grus canadensis), woodland caribou (Rangifer tarandus), and white-

tailed deer (Odocoileus virginianus) that could not be found using satellite data. 

Boelman et al. (2019) noted the need for fine-scale snow data across broad regions 

for use in wildlife studies. Remotely sensed, satellite-based, and modelled snow data 

products are relatively coarse-scale (typically hundreds of meters to several kilometers) and 

may be prone to error in complex terrain (Sirén et al. 2018), while finer-scale in situ 

measurements from weather stations, terrestrial or airborne LiDAR, structure-from-motion, 

and human observers can be costly, labor-intensive, and limited in spatial or temporal 

distribution (Kinar and Pomeroy 2015, Fernandes et al. 2018). Conversely, remote cameras 

are fine-scale in both time and space (e.g., detections at < daily intervals in < 100 m 

viewsheds), collect data remotely with minimal maintenance, can be deployed almost 

anywhere, and are relatively inexpensive to purchase and operate relative to common 

hydrometeorological equipment such as ultrasonic depth sensors (Steenweg et al. 2017). 

Cameras with physical snow stakes installed in the camera viewshed have been successfully 

used to collect snow depth data in several hydrologic studies (Dickerson-Lange et al. 2017, 

Sirén et al. 2018, Bongio et al. 2019). If the hundreds of thousands of cameras being used 

annually for wildlife studies could simultaneously collect snow data, this would provide a 

valuable data source spanning diverse and complex terrain. These data can be used directly in 

wildlife and hydrological studies, or they can be used to validate and improve existing snow 

models and data products which are known to be less certain under forest canopies and in 

heterogenous terrain (Pimentel et al. 2017, Sirén et al 2018, Thackeray et al. 2018, 

Kostadinov et al. 2019). 

Additionally, distance sampling methods have been adapted for camera studies 

(Howe et al. 2017). Traditional distance sampling uses the number of animals detected from 

a point or transect to generate a density estimate, assuming detection rates of animals 

decrease as distance from the observer increases (Bessone et al. 2020). Camera distance 

sampling exchanges the human observer for a camera and adjusts detection rates dependent 

on the morphological and movement characteristics of the focal species and the viewshed 
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area (Howe et al. 2017). As with traditional distance sampling, camera distance sampling 

relies on accurately estimating distances to detected animals. Palencia et al. (2021) used 

rocks and other natural objects placed in the camera viewshed at 5-m intervals to assess 

distances, while Corlatti et al. (2020) used wooden stakes. Camera distance sampling can 

generate reasonable density estimates if assumptions can be properly met (Corlatti et al. 

2020, Harris et al. 2020, Palencia et al. 2021, Henrich et al. 2022). These assumptions 

include random distribution of cameras, availability of animals for detection in the camera 

viewshed (e.g., animals are not underground), and unbiased encounter rates (i.e., animals are 

not either attracted to or deterred from entering the camera viewshed; Corlatti et al. 2020, 

Henrich et al. 2022).  

However, several factors must be considered when permanent objects are installed at 

camera sites to collect snow depth or distance data. Equipment must be purchased and then 

moved to and deployed at each camera site, which can be very expensive and labor-intensive 

depending on the number of camera sites; the cost, size, and weight of the equipment; and the 

remoteness of the study site. Objects may also draw further attention from human 

recreationists, making camera sites more subject to tampering and theft (Meek et al. 2019).  

A primary concern is that objects installed at camera sites can further alter animal 

movement patterns or behavior beyond the disturbance already caused by the cameras 

themselves (Rowcliffe et al. 2008, Henrich et al. 2022; Meek et al. 2014). Many researchers 

have speculated about the influences of cameras and other objects on animal movement and 

behavior in studies using cameras (Séquin et al. 2003, Meek et al. 2014, Hofmeester et al. 

2017, Bessone et al. 2020, Corlatti et al. 2020). For example, experimental data collected 

concurrently with the present study recorded several dozen unique instances of animals 

ranging in size from snowshoe hare (Lepus americanus) to moose (Alces alces) interacting 

with 1.5-m snow stakes (Strickfaden, unpubl. data). Documented interactions included 

looking at the snow stakes and subsequently changing their movement paths, stopping to 

smell them, or rubbing on them (Fig. 1). Hofmeester et al. (2017) noted carnivores and 

ungulates most often interacted with markers left in camera viewsheds in their study, which 

we also found to be the case. While interacting with objects, animals may move, topple, or 

destroy them, making them useless or less accurate for data collection. The objects, by acting 

as a lure, may cause animals to be detected when they otherwise would not have been, which 



4 
 

may increase encounter rates. Conversely, an unknown number of animals may avoid 

cameras because of objects left in viewsheds, which might be particularly problematic for 

studies of low-density or elusive animals for which every detection is crucial (Bessone et al. 

2020). Bias in encounter rates of animals, either due to animals spending more time in 

camera viewsheds interacting with objects or avoiding them altogether, can subsequently bias 

density estimates from distance sampling (Corlatti et al. 2020, Palencia et al. 2021, Henrich 

et al. 2022).  

The use of “reference images” combined with image processing techniques provides 

means by which distance and depth measurements can be remotely acquired, precluding 

issues with animal responses to objects left in the camera viewshed. While we have not found 

any studies using reference images to measure snow depth, they have been used in camera 

distance sampling studies. Rowcliffe et al. (2011), Harris et al. (2020), and Howe et al. 

(2017) took still images or videos of researchers standing in the camera viewshed at known 

distances during deployment or retrieval and compared these images to the positions of 

detected animals to gauge distances. Henrich et al. (2022) placed transparent images 

containing distance markers on top of images containing animals to assess distance. 

Caravaggi et al. (2016) took this one step further by superimposing gridlines onto images, 

thereby eliminating the need to reference other images to measure distances in one image. 

Hofmeester et al. (2017) also suggested that markers in an image taken during deployment 

could be superimposed onto other images to measure distances. 

The general objective of this research is to extend the utility of automated camera 

data by developing a method to measure lengths and heights or gauge distances in images 

without leaving objects in the camera viewshed. To accomplish this, we developed a package 

in the R programming language (R Core Team 2020) named edger 

(https://github.com/kaitlynstrickfaden/edger) which superimposes a “virtual” object onto 

images based on that object’s position in a reference image. The virtual object can then be 

used to manually measure depths or heights or to gauge distances in images. edger is written 

in the R programming language (R Core Team, 2022), which is free, open-source, and 

frequently used in natural resources applications, making it accessible to natural resource 

practitioners. We describe the methodology behind edger, outline the main package 
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functions, present a validation of the method for snow depth estimation using remote camera 

data, and provide some considerations for obtaining the best results using the package. 

 

Methods 

Edger Package Overview 

The basis of the edger package is Canny edge detection (Canny 1986). Canny edge 

detection is robust but mathematically very simple, allowing it to be implemented very 

quickly even on high-resolution images. Pixels in an image are converted to grayscale and 

then assigned an x gradient and y gradient value. For a particular pixel, the x gradient is a 

numerical value indicating the difference in luminance (brightness) of that pixel versus the 

pixels immediately to the left and right, and the y gradient is the same for the pixels 

immediately above and below. From the x and y gradients, a gradient magnitude is computed 

using ඥ𝑥ଶ + 𝑦ଶ , where x is the x gradient value and y is the y gradient value for each pixel. 

A larger gradient magnitude indicates a more defined edge. The imager package in R 

(Barthelme 2021) contains functions that perform these computations. For more details about 

the edge detection algorithm, refer to the “edger_methodology” vignette on the GitHub page 

for the package. 

The edger package makes use of functions in the imager package to identify and 

change the color value of edge pixels in a particular region of the image. Pixels falling within 

a region of interest (ROI) with a gradient magnitude greater than a user-defined threshold are 

identified and assigned a new color value. By defining the ROI as the regions of a reference 

image taken during a camera’s deployment which contain objects of interest, edger can 

extract the outlines and gradations of those objects and superimpose them onto the remaining 

images from the camera to create virtual objects. Options to shift and rotate the recolored 

pixels allow the user to account for changes in the camera viewshed during deployment (e.g., 

when a human or animal bumps the camera or the camera mount slips). The user can 

manually take measurements using the virtual objects (Fig. 2). On the x plane, these 

measurements may include animal body length or width of an ephemeral stream; in the y 

plane, they may include snow depth, animal body height, or height of growing vegetation; 

and in the z plane, they may include animal distance or visibility distance through fog or 

turbid water. 
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Three main edger functions of interest are edger_single, edger_multi, and edger_testr 

(Table 1). Other functions listed in Table 1 are helper functions used by these three main 

functions. The edger_testr function provides an interface for the user to define the ROI in an 

image and interactively choose appropriate threshold, shift, and rotation values for that 

image. The edger_single function finds and displays edges in a single image, while the 

edger_multi function finds edges in one or several reference images and superimposes those 

edges onto other images. These functions do not overwrite the original image but instead 

create a new recolored copy of the image with “_edger” appended to the file name so the 

original image can be retained. The edger_meta function which is built into the edger_single 

and edger_multi functions attributes metadata such as date, time, temperature, and trigger 

mode from the original image to the recolored image. Both edger_single and edger_multi can 

take ROI coordinates and values output by the edger_testr function as inputs. Further details 

about the use of these three functions are available in the “edger_use” vignette. 

The inputs of the three main functions are very similar. Images are input as file paths 

to the images on the computer or hard drive. If ROI coordinates are not input into calls to the 

edger_single and edger_multi functions, then the functions open a window which prompts 

the user to draw the ROI on the reference image. Threshold gradient magnitude values can 

range from 1-100, with lower values extracting both weak and strong edges and higher 

values extracting only strong edges. Other arguments included in all functions are the number 

of ROIs to define in each reference image and the color to assign to the virtual object.  

The edger_multi function includes additional function arguments to facilitate 

processing image sets. The user can provide the number of reference images to use if 

reference objects appear in multiple images. The first n images in the vector of file paths are 

the reference images, and the rest of the images in the vector are recolored using edges found 

in the n reference images. The user can specify whether to display images as they are being 

processed so they can be checked for quality, though this slows the processing speed. Finally, 

the user can choose sequential or parallel processing and how many computer cores to use if 

running in parallel. Of these, the only required inputs are the image file paths, the ROI 

coordinates (which the function will prompt the user to draw on if not given as a function 

argument), and an appropriate threshold value. The other inputs provide additional efficiency 
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and flexibility to image processing. Once all inputs are set as desired, the edger_multi 

function can process thousands of images with no user intervention.  

Method Validation 

We used images from 21 Reconyx® Hyperfire I cameras which were deployed on 

Moscow Mountain (approximately 46.8°N, 116.9°W) in Latah County, Idaho, USA to 

capture a variety of snow conditions. Twelve of these were deployed from January – May 

2020, while 9 were deployed from March-May 2020. Cameras were deployed at least 1.5 m 

from the ground to prevent them from being buried in snow. Cameras were programmed to 

record 2.9 megapixel timelapse images every hour, including night hours. A physical snow 

stake was deployed in the viewshed of each camera for measuring snow depth. Each snow 

stake was a 150 cm section of 3.8 cm-diameter white PVC pipe that was marked with 2-cm 

gradations in black permanent marker and 10-cm gradations in brightly colored electrical 

tape. The pipe was fastened to a 180 cm U-post with cable ties and deployed 4–15 meters 

from the camera. The location of the physical snow stake in the viewshed was dependent on 

the terrain and the presence of objects that might block the view of the snow stake. The 

distance from the snow stake to the camera was recorded on deployment. Snow depth was 

measured by one observer using the physical snow stake in all images after cameras were 

retrieved. We expect minimal uncertainty in measurements with the physical snow stake, 

therefore the snow depth measurements made using the physical snow stake were considered 

truth for the purpose of the validation. 

To compare snow depth measurements made with a virtual object to those made with 

a physical snow stake, we superimposed a “virtual snow stake” (VSS) onto images using 

functions in the edger package. The recolored pixels were shifted to the left or right by 100–

200 pixels (~0.5 m) so that the VSS would not be superimposed on top of the physical snow 

stake or natural objects. However, the VSS had to be relatively close to the physical snow 

stake so that in situ variation in snow depth would not confound the accuracy assessment. 

Three observers (none of whom were the observer who measured snow depth with the 

physical snow stake) measured snow depth in the images using the VSS. Observers were 

instructed not to refer to the physical snow stake when making measurements with the VSS. 

This allowed us to directly compare the snow depth measurements made with a verified 

method (the physical snow stake) to snow depth measurements made in the same images 
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using the novel method (the VSS).  To evaluate the accuracy of the VSS method, we assessed 

the mean bias error (the directional difference between the two daily averages) and the mean 

absolute error (the magnitude of difference between the two daily averages) in VSS 

measurements versus physical snow stake measurements. We also calculated the Nash-

Sutcliffe Efficiency (NSE) for each observer’s VSS measurements for each camera. While 

NSE is commonly used to assess the fit of hydrologic models with observed data, we used it 

to determine how closely an observer’s VSS measurements (the “model”) compared to the 

measurements made with the physical snow stake (the “observations”) at a particular camera 

site. We performed analyses in the R programming language (R Core Team 2022). 

 

Results 

We used 30,700 of the 49,000 timelapse images collected to assess the accuracy of 

the VSS compared to a physical snow stake. We removed images from analysis which did 

not contain snow (37% of images) or did not have a full view of the physical snow stake or 

VSS due to changes in the camera viewshed during deployment caused by the weight of 

snow on cameras (2% of images). The mean snow depth recorded in images using the 

physical snow stake was 55 cm, and the maximum snow depth recorded in any image was 

140 cm. Observers recorded 81,960 hourly snow depth estimates, accounting for repeat 

observations by multiple observers (5 cameras were not scored by every observer). Images 

were recorded over 1,325 camera days. Observers on average were able to process 

approximately 1,100 images per hour. 

The mean bias error was approximately -0.5 cm, indicating a slight tendency for 

observers to underestimate snow depths with the VSS. Mean bias error was -0.47 cm in 

daytime images and -0.59 cm in night images. Mean bias error per observer was -1.39, 0.78, 

and -0.99 cm. The mean absolute bias error was 2.55 cm in daytime images and 2.59 cm in 

night images. Mean absolute bias error per observer was 3.27, 1.82, and 2.58 cm. Overall, 

88% of snow depth estimates were within 5 cm of true snow depth, and less than 1% of snow 

depth estimates differed more than 10 cm from the true snow depth. Hourly bias error ranged 

from -26 cm to 14 cm, and daily bias error ranged from -14 cm to 12 cm. The narrower range 

in the daily bias error values indicates that large errors in individual images were mitigated 

when snow depth estimates were averaged over the day.  
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The NSE values for each camera per observer ranged from -0.02 to 0.998 (Table S1). 

However, the majority (77%) of the camera/observer combinations had an NSE value greater 

than 0.90, indicating high agreement between the physical snow stake and VSS estimates. 

Those combinations with lower NSE values were typically cameras that were deployed for a 

shorter duration.  

Based on visual assessment of time series plots (Fig. 3), more absolute error tended to 

occur at deeper snow depths. Error in snow depth estimates at particular cameras was also 

variable among observers (Fig. 4). Some cameras had approximately equal error in terms of 

direction, magnitude, and range among the three observers (e.g., Camera 04), while other 

cameras had very different patterns in errors among observers (e.g., Camera 08). Factors 

such as distance to the snow stake and camera height do not appear to have caused a 

noticeable difference in error. 

 

Discussion and Conclusions 

We created a software package that can be used to manually estimate snow depths 

and distances at remote camera stations without the need to leave equipment at the camera 

site. While other algorithms and packages are available which can automatically measure 

snow depth in images containing a physical snow stake (e.g., Bongio et al. 2019), edger fills 

a different need by allowing for simultaneous collection of data on wildlife and snow 

conditions without any concerns of altering movement or behavior via the presence of a 

physical snow stake. In addition to avoiding potential issues with animal behavior, this 

method also greatly reduces field cost and effort for studies, because each field team only 

needs one snow stake or one set of distance markers to deploy all cameras. 

Despite its potentially strong influence on animal population demography, many 

studies do not collect fine-scale snow depth measurements. Instead, they use snow presence 

or general depth categories (Curtis et al. 2014, Gilbert et al. 2017), or they use data from 

satellites at relatively coarse-scales and less reliable under forest canopies (Horne et al. 

2019). The edger package we developed will allow more studies using cameras to measure 

snow depth. Snow can be measured at one or multiple points in an image depending on the 

scale of data needed for a particular research question. These fine-scale data are useful for 
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multiple natural resources disciplines and potentially allow for new inferences into wildlife 

population parameters and forest-snow interactions (Olson et al. 2021). 

Sirén et al. (2018) found snow depth estimates from Snow Data Assimilation Systems 

(SNODAS) data in complex forested terrain comparable to our study area were frequently 

biased by >10 cm on average when compared to measurements taken with a camera and a 

physical snow stake or to direct measurements made in the field. Conversely, our evaluation 

found that <1% of snow depth estimates using the VSS were biased by >10 cm, and 88% of 

hourly snow depth estimates using the VSS were within 5 cm of physical snow stake 

measurements, indicating a high degree of accuracy compared to another common snow 

depth data source.  

There was often variability in snow depth measurements made by different observers 

(Fig. 4), likely due to differences in spatial reasoning skills. Observer training and careful 

placement of the physical object in the reference image, as discussed later, may both improve 

the accuracy of snow depth measurements and reduce interobserver variability. The ability 

for observers to accurately measure snow depth may be further modified by the distance to 

the snow stake, which could lead to lower precision in snow depth estimates; camera height, 

which could affect the observer’s perception of the top of the snowpack; and whether a 

particular image was taken during the day or at night, though we did not find strong evidence 

any of these factors affected snow depth measurements in our dataset. The effect each of 

these factors have on the potential for bias warrant further evaluation beyond what is possible 

with this small pool of data relative to the number of contributing factors. 

Observers were explicitly instructed to ignore the physical snow stake while 

measuring snow depth with the VSS. We have three lines of evidence this instruction was 

followed. First, there were no numbers written on the physical snow stake, thus deriving 

quantitative measurements from the physical snow stake was difficult. Second, the 

magnitude and direction of errors individual observers reported was variable both within a 

camera and among all cameras they analyzed. We might expect more systematic errors (i.e., 

snow depth was always the same, always underestimated, or always overestimated) if 

observers were basing their VSS estimates off the physical snow stake. Third, the observers 

were incentivized based on the length of time worked and not by the accuracy of their snow 

depth estimates. 
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Qualitatively, camera height did not appear to affect bias error or absolute bias error, 

but it is an important consideration when deploying cameras to collect both wildlife and 

snow data. Cameras placed too high may fail to detect target wildlife, limiting possible 

inferences (Meek et al. 2016). Conversely, cameras placed too low are at risk of being buried 

in snow, making the data collected useless until the snow melts or is cleared away. Adjusting 

camera heights throughout the study period is only an option in study areas with winter 

access. It would also require the user to retake reference images for each camera height. The 

optimal camera height for a study will depend on the study species, the expected snow depths 

in the study area, and the cost of missing detections. 

Though distance sampling methods specifically for camera studies have only been 

recently developed (Howe et al. 2017), they have been found to be accurate when 

assumptions about the availability and movement of animals can be met (Corlatti et al. 2020, 

Harris et al. 2020). Density estimates from camera distance sampling are sensitive to biases 

in encounter rates (Howe et al. 2017). Virtual distance markers may make these methods 

more robust and defensible to researchers interested in using this method. Though an 

application to distance sampling was not included in this study, the methods would be similar 

to those performed by Caravaggi et al. (2018). A reference image would need to be taken 

containing objects placed at regular distance intervals in the camera viewshed. These objects 

would then be superimposed onto images and used to gauge the distance of the animal from 

the camera when it was detected. 

Perhaps the most important step in using the edger package is collecting suitable 

reference images containing the object of interest. There must be strong contrast between the 

object and any gradations on it, in the case of snow depth measurement, and strong contrast 

between the object and its background to obtain the best results. If the gradations on the 

object are weak, or if the background contains litter, shrubs, or other substrate that creates 

strong edges, the virtual object may be indistinct. A white object with black gradations drawn 

on it, or vice versa, provides the strongest contrast. A tarp or sheet could be held behind the 

object, or an individual could stand behind it to create a more homogenous background if a 

randomly selected camera site provides poor conditions for locating the edges of the object. 

However, this method may not be suitable if the entire camera viewshed is filled with brush 

blocking the camera from having a clear view of the snow stake or distance markers. 
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The amount of processing time needed to superimpose a virtual object onto images 

depends on the image resolution and number of pixels which are recolored. Reconyx® 

Hyperfire cameras take 2.9-megapixel images; edger was able to process approximately 

1,200 Reconyx images per hour using one 1.6 GHz processor of a Lenovo Thinkpad® 

computer during testing of the package. Parallel processing across five computer processors 

doubled to tripled the number of images processed per hour. Many game camera brands can 

record images >2.9 megapixels. However, the higher image resolution of many remote 

camera brands can be the result of pixel interpolation, where the values of pixels captured by 

the image sensor are used to fill in the values of new pixels to make the image larger (Rovero 

and Zimmermann 2016). Though edger works on images of any size, the greater total 

number of pixels in higher-resolution images increases the processing time per image. We 

also speculate the interpolation weakens edges between pixels, which are the basis of edger’s 

function. We suggest against using the maximum resolution capable by the camera and 

instead suggest using the image resolution which matches the image sensor. This does not 

cause any noticeable detraction in image quality and allows a camera to operate for a longer 

time on a single memory card. 

The threshold value should be set to minimize the number of extraneous pixels 

recolored while maximizing the utility of the virtual object. While a small number of 

extraneous pixels makes little difference in the processing time of a single image, the extra 

processing time may compound when applied over hundreds or thousands of images. 

Processing time can also be reduced by only recoloring a subset of all images being collected 

(i.e., only superimposing a virtual snow stake onto a timelapse image at a certain time of day, 

or only superimposing virtual distance markers onto images containing animals). 

Additional time must be spent determining the correct input values before processing. 

If the camera viewshed does not change throughout its deployment, this simply requires 

finding the proper threshold value. However, if the viewshed changes, the shift and rotation 

values needed to superimpose the virtual object onto the correct position must also be found. 

This further requires splitting the image set into two sets, one before and one after the 

viewshed change, and processing them separately. Camera jitter, or rapid and unpredictable 

movement of the camera caused by instability of the camera on its mount or by wind, is the 

most difficult viewshed change to resolve because the camera viewshed is changing 
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randomly across many images. If jitter is severe, then accurate measurements may not be 

possible. Care should be taken when deploying cameras to ensure they are fastened tightly 

and when maintaining cameras to keep the viewsheds constant. When possible, cameras 

should be deployed on large-diameter or sub-dominant trees to minimize jitter caused by 

wind. 

Hofmeester et al. (2017) speculated superimposing markers onto images could avoid 

potential effects of markers on animal behavior but might come at the cost of some precision 

with measurements. We found this to be the case during the method validation. Discerning 

the top of the snowpack to measure snow depth could be very difficult at some camera sites, 

particularly at more open sites. This can be ameliorated by placing the reference object at the 

same distance from the camera as some natural object such as a tree or rock so the natural 

object can be used to provide some spatial context. However, in the case of snow depth 

measurements, the reference snow stake should not be placed immediately next to the natural 

object because of the potential for the natural object to alter snow accumulation and melt 

processes. 

Important areas for future work include evaluating sources of error in a VSS relative 

to physical snow stakes (i.e., distance to the snow stake, daytime versus nighttime images, 

etc.) and using the VSS to better characterize snow depth heterogeneity below the forest 

canopy. Our R package can also be used to evaluate snow depth or distance measurements in 

existing historical camera datasets for which these measurements are desirable, provided the 

camera viewshed can be replicated so reference images can be recorded. Altogether, the 

edger package allows for extraction of additional data from massive existing datasets, 

providing opportunities for new scientific inquiry and understanding across multiple fields 

including wildlife ecology, hydrology, snow science, and forest ecology.   



14 
 

References 

Barthelme, S. 2021. imager: image processing library based on 'CImg'. R package version 

0.42.10. https://CRAN.R-project.org/package=imager. 

Bessone, M., Kühl, H.S., Hohmann, G., Herbinger, I., N'Goran, K.P., Asanzi, P., Da Costa, 

P.B., Dérozier, V., Fotsing, E.D.B., Beka, B.I., Iyomi, M.D., Iyatshi, I.B., Kafando, 

P., Kambere, M.A., Moundzoho, D.B., Wanzalire, M.L.K., and Fruth, B. 2020. 

Drawn out of the shadows: Surveying secretive forest species with camera trap 

distance sampling. Journal of Applied Ecology 57:963–974. 

Boelman, N.T., Liston, G.E., Gurarie, E., Meddens, A.J.H., Mahoney, P.J., Kirchner, P.B., 

Bohrer, G., Brinkman, T.J., Cosgrove, C.L., Eitel, J.U.H., Hebblewhite, M., Kimball, 

J.S., LaPoint, S., Nolin, A.W., Pedersen, S.H., Prugh, L.R., Reinking, A.K., and 

Vierling, L.A. 2019. Integrating snow science and wildlife ecology in Arctic-boreal 

North America. Environmental Research Letters 14:010401. 

Bongio, M., Arslan, A.N., Tanis, C.M., and De Michele, C. 2019. Snow depth estimation by 

time-lapse photography: Finnish and Italian case studies. The Cryosphere. Preprint. 

https://doi.org/10.5194/tc-2019-193. 

Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E., and 

Boutin, S. 2015. Wildlife camera trapping: A review and recommendations for 

linking surveys to ecological processes. Journal of Applied Ecology 52:675–685. 

Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern 

Analysis and Machine Intelligence 6:679–698.  

Caravaggi, A., Zaccaroni, M., Riga, F., Schai-Braun, S.C., Dick, J.T.A., Montgomery, W.I., 

and Reid, N. 2016. An invasive-native mammalian species replacement process 

captured by camera trap survey random encounter models. Remote Sensing in 

Ecology and Conservation 2(1):45–58. 

Corlatti, L., Sivieri, S., Sudolska, B., Giacomelli, S., and Pedrotti, L. 2020. A field test of 

unconventional camera trap distance sampling to estimate abundance of marmot 

populations. Wildlife Biology 2020(4):1–11. https://doi.org/10.2981/wlb.00652. 

Curtis, J.A., Flint, L.E., Flint, A.L., Lundquist, J.D., Hudgens, B., Boydston, E.E., and 

Young, J.K. 2014. Incorporating cold-air pooling into downscaled climate models 

increases potential refugia for snow-dependent species within the Sierra Nevada 



15 
 

ecoregion, CA. PLoS ONE 9(9):e106984. 

https://doi.org/10.1371/journal.pone.0106984. 

Dickerson-Lange, S.E., Gersonde, R.F., Hubbart, J.A., Link, T.E., Nolin, A.W., Perry, G.H., 

Roth, T.R., Wayand, N.E., and Lundquist, J.D. 2017. Snow disappearance timing is 

dominated by forest effects on snow accumulation in warm winter climates of the 

Pacific Northwest, United States. Hydrological Processes 31:1846–1862. 

Fernandes, R., Prevost, C., Canisius, F., Leblanc, S. G., Maloley, M., Oakes, S., Holman, K., 

and Knudby, A. 2018. Monitoring snow depth change across a range of landscapes 

with ephemeral snowpacks using structure from motion applied to lightweight 

unmanned aerial vehicle videos. The Cryosphere 12:3535-3550. 

Gilbert, S.L., Hundertmark, K.J., Person, D.K., Lindberg, M.S., and Boyce, M.S. 2017. 

Behavioral plasticity in a variable environment: snow depth and habitat interactions 

drive deer movement in winter. Journal of Mammalogy 98(1):246–259. 

Harris, G.M., Butler, M.J., Stewart, D.R., Rominger, E.M., and Ruhl, C.Q. 2020. Accurate 

population estimation of Caprinae using camera traps and distance sampling. 

Scientific Reports 10:17729. doi: 10.1038/s41598-020-73893-5. 

Henrich, M., Hartig, F., Dormann, C.F., Kühl, H.S., Peters, W., Franke, F., Peterka, T., Šustr, 

P., and Heurich, M. 2022. Deer behavior affects density estimates with camera traps, 

but is outweighed by spatial variability. Frontiers in Ecology and Evolution 

10:881502. doi: 10.3389/fevo.2022.881502. 

Hofmeester, T.R., Rowcliffe, J.M., and Jansen, P.A. 2017. A simple method for estimating 

the effective detection distance of camera traps. Remote Sensing in Ecology and 

Conservation 3(2):81–89. 

Hofmeester, T.R., Young, S., Juthberg, S., Singh, N.J., Widemo, F., Andrén, H., Linnell, 

J.D.C., and Cromsig, J.P.G.M. 2020. Using by-catch data from wildlife surveys to 

quantify climatic parameters and timing of phenology for plants and animals using 

camera traps. Remote Sensing in Ecology and Conservation 6(2):129–140.  

Horne, J.S., Hurley, M.A., White, C.G., and Rachael, J. 2019. Effects of wolf pack size and 

winter conditions on elk mortality. Journal of Wildlife Management 83(5):1103–

1116.  



16 
 

Howe, E.J., Buckland, S.T., Després-Einspenner, M., and Kühl, H.S. 2017. Distance 

sampling with camera traps. Methods in Ecology and Evolution 8:1558–1565. 

Kinar, N.J., and Pomeroy, J.W. 2015. Measurement of the physical properties of the 

snowpack. Reviews of Geophysics 53:481–544. 

Kostadinov, T.S., Schumer, R., Hausner, M., Bormann, K.J., Gaffney, R., McGwire, K., 

Painter, T.H., Tyler, S., and Harpold, A.A. 2019. Watershed-scale mapping of 

fractional snow cover under conifer forest canopy using lidar. Remote Sensing of 

Environment 222:34–49. 

Meek, P.D., Ballard, G.A, Claridge, A., Kays, R., Moseby, K., O’Brien, T., O’Connell, A., 

Sanderson, J., Swann, D.E., Tobler, M., and Townsend, S. 2014. Recommended 

guiding principles for reporting on camera trapping research. Biodiversity 

Conservation 23:2321–2343. 

Meek, P.D., Ballard, G.A, and Falzon, G. 2016. The higher you go the less you will know: 

Placing camera traps high to avoid theft will affect detection. Remote Sensing in 

Ecology and Conservation 2(4):204–211. 

Meek, P.D., Ballard, G.A., Sparkes, J., Robinson, M., Nesbitt. B., and Fleming, P.J.S. 2019. 

Camera trap theft and vandalism: Occurrence, cost, prevention and implications for 

wildlife research and management. Remote Sensing in Ecology and Conservation 

5(2):160–168. 

Olson, L.O., Van Deelen, T.R., Storm, D.J., and Crimmins, S.M. 2021. Understanding 

environmental patterns of canid predation on white-tailed deer (Odocoileus 

virginianus). Canadian Journal of Zoology 99:912–920. 

Palencia, P., Rowcliffe, J.M., Vicente, J., and Acevedo, P. 2021. Assessing the camera trap 

methodologies used to estimate density of unmarked populations. Journal of Applied 

Ecology 58:1583–1592. 

Pimentel, R., Herrero, J., and Polo, M.J. 2017. Quantifying snow cover distribution in 

semiarid regions combining satellite and terrestrial imagery. Remote Sensing 9:995. 

R Core Team. 2022. R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. <https://www.R-project.org/> 



17 
 

Rowcliffe, J.M., Field, J., Turvey, S.T., and Carbone, C. 2008. Estimating animal density 

using camera traps without the need for individual recognition. Journal of Applied 

Ecology 45: 1228–1236.  

Rowcliffe, J.M., Carbone, C., Jansen, P.A., Kays, R., and Kranstauber, B. 2011. Quantifying 

the sensitivity of camera traps: An adapted distance sampling approach. Methods in 

Ecology and Evolution 2:464–476. 

Séquin, E.S., Jaeger, M.M., Brussard, P.F., and Barrett, R.H. 2003. Wariness of coyotes to 

camera traps relative to social status and territory boundaries. Canadian Journal of 

Zoology 81(12):2015–2025. 

Sirén, A.P.K., Somos-Valenzuela, M., Callahan, C., Kilborn, J.R., Duclos, T., Trager, C., and 

Morelli, T.L. 2018. Looking beyond wildlife: Using remote cameras to evaluate 

accuracy of gridded snow data. Remote Sensing in Ecology and Conservation 

4(4):375–386. 

Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J.T., Burton, C., Townsend, 

S.E., Carbone, C., Rowcliffe, J.M., Whittington, J., Brodie, J., Royle, J.A., Switalski, 

A., Clevenger, A.P., Heim, N., and Rich, L.N. 2017. Scaling-up camera traps: 

monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in 

Ecology and Evolution 15(1):26–34. 

Sun, C., Beirne, C., Burgar, J.M., Howey, T., Fisher, J.T., and Burton, C., 2021. 

Simultaneous monitoring of vegetation dynamics and wildlife activity with camera 

traps to assess habitat change. Remote Sensing in Ecology and Conservation 

7(4):666-684.  

Thackeray, C.W., Fletcher, C.G., and Derksen, C. 2018. Quantifying the skill of CMIP5 

models in simulating seasonal albedo and snow cover evolution. Journal of 

Geophysical Research: Atmospheres 120:5831–5849.  



18 
 

Figures and Tables 

Table 1. Functions in the edger package. Bolded function names are main package functions. 

Name Description 

edger_df_to_im_bw Converts a data frame to a black and white image. 
edger_df_to_im_color Converts a data frame to a color image. 

edger_display Shows an image. 

edger_extract Extracts the coordinates and unique pixel identifiers of edge pixels. 

edger_identify Identifies edge pixels in the region of interest (ROI). The ROI is 
either drawn on by the user or the coordinates are taken in as a 
function argument.  

edger_im_to_df Converts an image to a data frame and assigns unique pixel 
identifiers. 

edger_im_to_grad Calculates gradient magnitude values for each pixel in an image. 
edger_match Finds edge pixels in an image and performs any shifts and 

rotations. 
edger_meta Attributes metadata from original image to recolored image.  

edger_multi Finds edge pixels in the first image(s) and recolors those edge 
pixels in other input images. 

edger name Find name of new recolored image. 

edger_overlay Recolors edge pixels in an image and saves the image. 

edger_recolor Assigns new color value to edge pixels. 

edger_save Saves an image. 

edger_single Finds edge pixels in an input image. 
edger_testr Launches a user interface for drawing a region of interest and 

selecting threshold, shift, and rotation values for input images. 
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Fig. 1. Images from remote cameras deployed in Idaho, USA showing wildlife interacting 
with snow stakes. Top left is white-tailed deer (Odocoileus virginianus), top right is moose 
(Alces alces), bottom left is wild turkey (Meleagris gallopavo), and bottom right is snowshoe 
hare (Lepus americanus). 
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Fig. 2. Workflow of edger package from camera deployment to data extraction. 
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Fig. 3. Time series plots of snow depth measurements with a virtual snow stake (VSS) for 
each observer (colored lines) versus measurements with a physical snow stake (shaded area) 
for a subset of cameras. The colors of the Nash-Sutcliffe Efficiency (NSE) values in the 
upper righthand corner of each plot correspond with the line color for each observer. 
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Fig. 4. Mean (points) and range (whiskers) of A) daily averaged bias error and B) daily 
averaged absolute bias error in snow depth measurements made with a virtual snow stake 
(VSS) compared to a physical snow stake by observer and camera. Line colors correspond to 
the color of the camera ID number below. 
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Chapter 1B: Deriving Weather Data from Camera Images 

 

Abstract 

Remote cameras provide important insight into wildlife demography, ecological 

processes, and behavior. Hydrometeorological information at fine scales is very valuable, and 

cameras may also be able to provide these data if their reliability can be verified and/or if 

methods can be developed to derive such data from remote cameras. Cameras often have 

built-in temperature sensors that output a temperature reading with every image. Images can 

also be used to identify local precipitation events. The objective of this chapter was to 1) 

assess the accuracy of temperature readings made by Reconyx® cameras, 2) build a model to 

correct biased temperature readings made by cameras, and 3) determine whether precipitation 

events and precipitation phase can be reliably determined from images alone. An energy 

balance model was developed and tested using data from two cameras paired with weather 

stations which collected corrected air temperature measurements and other environmental 

data. Mean bias error of uncorrected temperatures was -0.41°C, so cameras tended to 

underestimate temperatures, but the maximum daily temperature could be overestimated by 

as much as 20°C by cameras. In general, camera temperatures agreed well with temperatures 

from the weather station, with the correlations being 0.72 for uncorrected temperatures and 

0.88 for corrected temperatures. Precipitation events and phase could not be reliably 

determined using still images. Given the widespread use of cameras for natural resources 

applications and particularly for wildlife studies, this corrective temperature model improves 

the accuracy and reliability of temperature data from cameras and is useful for multiple 

natural resource disciplines. 

 

Introduction 

Remote cameras are an increasingly common data collection tools in natural 

resources (Steenweg et al. 2017). Many remote cameras record temperature measurements 

along with each image. When paired with the images, these temperature measurements can 

be used to investigate the timing of phenologically important events such as snowmelt and 

leaf emergence (Hofmeester et al. 2020) and to detect patterns in activity levels of wildlife 

species (Hofmann et al. 2016). Despite this, temperature measurements by cameras are rarely 
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used in ecological studies, and instead studies often use temperature data from other sources 

such as iButtons® (Maxim Integrated Products) or nearby weather stations (e.g., Buchholz et 

al. 2021) to assess these relationships.  

No major camera manufacturer lists accuracy information about temperature readings 

from its cameras, which may be a reason for their minimal use (Buchholz et al. 2021). 

Previous research found temperature measurements made by Moultrie® and Bushnell® 

cameras have little correlation (R2 < 0.05) with true air temperature (Sirén et al. 2018; A. 

Sirén, pers. comm.). We know of only two peer-reviewed studies which examine temperature 

measurements by cameras. Hofmann et al. (2016) deployed air temperature loggers with their 

Reconyx® RapidFire™ Professional (PC90) cameras, but they only reported on correlation 

between the air temperature measurements and not any measure of bias. Hofmeester et al. 

(2020) compared temperature measurements from Reconyx Hyperfire™ (HC500) cameras to 

those from a single weather station in their 200 km2 study area and reported a mean 

temperature bias of +1.9°C. Using a single weather station for comparison may not have 

captured fine-scale variations in air temperature across their study area, and they did not 

assess bias as a function of any site covariates except for distance to coast. Given the 

widespread use of cameras both for research and recreational purposes, the lack of 

temperature accuracy information for the most popular camera models is a knowledge gap 

needing to be addressed. If temperature measurements from cameras are biased, then camera 

users would benefit from having a means to correct the temperature measurements to 

maximize the utility of their cameras. 

Images also contain visual information about precipitation events. Cameras have been 

used in studies to determine the occurrence of precipitation events. Liu et al. (2015) used a 

broad-scale camera deployed to capture images of an entire hillslope to determine the 

elevation of the rain-snow transition. Floyd and Weiler (2008) used cameras and climate 

stations to examine the interactions of canopy cover, snow accumulation and melt, and 

precipitation phase locally. Droghini and Boutin (2018) found that wolves (Canis lupus) 

reduce their activity levels and movement speeds after local snow events >5 cm depth. Rain-

on-snow events are often the focus of these studies because these events cause earlier and 

large amounts of run-off, making them of interest hydrologically (Floyd and Weiler 2008). 

Rain-on-snow events can reduce survival of elk (Cervus canadensis) due to ice layers 



 
25 

 
blocking forage access (Mech et al. 2001). However, if precipitation data are needed for a 

study, cameras are often paired with another instrument to determine precipitation phase. It 

would be advantageous if cameras could be used alone to determine precipitation phase 

because it would reduce instrumentation needs for camera studies. Knowledge about local 

weather would be beneficial as it would take full advantage of a huge dataset of local and 

spatially extensive information from cameras. 

The general scientific objective of this study was to expand the utility of remote 

cameras for collecting accurate fine-scale hydrometeorological data. Our first specific 

objective was to determine the accuracy of temperature measurements made by Reconyx 

Hyperfire II Professional Series (hereafter “HP2X”) cameras. We developed an energy 

balance model for the HP2X cameras using data collected from the cameras themselves and 

temperature, wind speed, and radiation data collected by two meteorological stations. Our 

second objective was to investigate if cameras could be used to identify precipitation events 

with the aim of pairing precipitation event with concurrent temperature measurements to 

determine the phase of the precipitation event (i.e., rain or snow). 

 

Methods 

The study area for this experiment was a south-facing edge of a small clearing in 

Latah County, ID at an elevation of 1070 m above sea level. The ground cover is a mix of 

exposed soil, shortgrass, and litter. Two HP2X cameras (hereafter temperature cameras) with 

the dark green case color were deployed facing south at a height of 1.25 m. Both cameras had 

similar understory cover and were under similar canopy cover (~ 20%). The temperature 

cameras were programmed to take a timelapse photo every 15 minutes throughout their 

deployment. Temperature cameras were deployed on 20 March 2021, checked once for 

proper function on 3 April 2021, and retrieved on 17 April 2021. This timing coincides with 

a period of moderate shortwave radiation loading in the northern hemisphere. 

To model air temperature from camera temperature, we used the following equation: 

 

𝑇௔ =  𝑇௖௔௠ − 
𝛼௦[𝐹௔𝑆௕ௗ + 𝐹௦(𝑆௕ௗ𝜌௦)] + 𝛼௅(𝐹௔𝐿௔ + 𝐹௦𝐿௦)  −  𝛼௅𝜎(𝑇௖௔௠ + 273.15)ସ 

𝑐௣ ቈቆ1.4 ∗ 0.135ට
𝑢
𝑑

 ቇ + 
4𝛼௅𝜎(𝑇௖௔௠ + 273.15)ଷ

𝑐௣
቉

 
Eq. 1 
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This equation is a modification of the equation in Campbell and Norman (1998) for the 

energy balance of a leaf from which the terms for evapotranspiration have been removed. 

This model describes the camera’s temperature measurement as a result of 1) heat added by 

shortwave and longwave radiation from the sun and surrounding objects, 2) heat lost through 

longwave radiation emitted by the camera itself, and 3) equilibration of the camera with true 

air temperature controlled by the wind speed and physical properties of the camera (Table 2). 

By accounting for these different sources of heat gain and loss, the actual air temperature can 

be calculated from the camera temperature.  

We deployed an ATMOS 41 weather station (METER Group, Inc., Pullman, WA; 

hereafter “ATMOS”) within 20 m of both cameras in an area with sparse canopy cover. The 

ATMOS collected air temperature, wind speed, and shortwave radiation data every 15 

minutes throughout its deployment. The ATMOS uses the wind speed and radiation data it 

collects to automatically correct its air temperature measurements with <0.5°C accuracy 

(Meter Environment 2021). Thus, temperature measurements made by the ATMOS were 

considered truth for our purposes. A separate meteorological station at the site recorded 

longwave radiation data every 30 minutes throughout the experiment using a Kipp and Zonen 

CG-1 pyrgeometer. We took hemispherical photographs at each camera location to calculate 

incoming shortwave radiation and approximate the proportion of the camera’s surroundings 

composed of sky and surrounding objects (i.e., the view factors of sky and surroundings). 

Shortwave radiation estimates from the hemispherical photographs were calculated using 

Hemisfer software (Thimonier et al. 2010). 

Some variables needed for this model, the shortwave and longwave absorptivity of 

the camera and the reflectivity of the ground, were unknown. To approximate these values, 

we used the Solver functionality (Fylstra et al. 1998) in Microsoft Excel (2016). After 

inputting the environmental variables into the energy balance equation, we used Solver to 

iteratively solve for the absorptivity and reflectivity values minimizing the sum of squared 

differences between the true and modelled air temperatures. There was a snow event on 21 

March which left snow on the ground until approximately 25 March. We calculated a snow-

covered ground reflectivity for those days and a bare ground reflectivity for all other days. 

We assessed differences between true air temperature from the ATMOS, uncorrected 

camera temperature, and corrected camera temperature using several metrics both throughout 
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the entire study period and on an hourly basis. We calculated R2 values to determine the 

goodness of fit between the true air temperature and the camera temperatures. We also 

calculated the mean bias error (the directional difference between the true air temperature 

and the camera temperature), mean absolute bias error (the magnitude of difference between 

the true air temperature and the camera temperature), and root mean squared deviation 

(RMSD) of uncorrected and corrected camera temperatures. Additionally, we determined the 

percent of camera observations falling within 2°C and 1°C of the true air temperature. We 

analyzed the data in the R programming language (R Core Team 2022). 

Precipitation events were recorded in images from 138 Reconyx Hyperfire I and 

Hyperfire II cameras deployed from October 2021 – May 2022 (hereafter precipitation 

cameras; Chapters 2 & 3). Images were taken hourly or via motion-trigger. A precipitation 

event was recorded if snow was seen to accumulate or if visual markers, such as streaks or 

opacities, could be seen in the image which might be indicative of precipitation. 

 

Results 

The temperature cameras collected 5,390 observations. The values for shortwave 

absorptivity, longwave absorptivity, bare ground reflectivity, and snow-covered ground 

reflectivity which minimized the sum of squared differences were 1.00, 0.87, 0.230, and 

0.412, respectively. The average air temperature recorded by the ATMOS was 5.0°C, while 

the average temperature recorded by the cameras was 4.6°C, suggesting a slight tendency for 

cameras to underestimate temperatures on average. However, more than 75% of daily 

maximum temperatures were overestimated by cameras by at least 5°C, and one day’s 

maximum temperature was overestimated by 20°C, so high temperatures can be dramatically 

overestimated by the cameras. Minimum temperatures were less error-prone, with the daily 

minimum temperature never being underestimated by cameras by >4°C (Fig. 5).  

The model was able to improve temperature estimates of cameras based on all 

metrics. The R2 value comparing the goodness of fit of the uncorrected camera temperatures 

to the true air temperatures was 0.73, and the R2 value for the corrected temperatures was 

0.88. The mean bias error of the uncorrected camera temperatures was -0.41°C, while the 

mean bias error of the corrected camera temperatures was -0.13°C. The mean absolute bias 

error of the uncorrected camera temperatures was 1.92°C, while the mean absolute bias error 
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of the corrected camera temperatures was 1.28°C. Mean bias error and mean absolute bias 

error varied throughout the course of the day. Error tended to increase as the amount of 

shortwave radiation increased (Fig. 6). The root mean squared deviation (RMSD) of 

uncorrected temperature observations was 7.32, while the RMSD of corrected temperature 

observations was 3.28. Hourly RMSDs were lowest in the night to early morning hours 

(6PM-7AM) and highest in the midday hours (11AM-4PM; Fig. 7). RMSD was greater for 

the corrected temperatures than for the uncorrected temperatures between 8-10AM and again 

from 4-5PM, indicating the model was overcorrecting temperatures at these times (i.e., the 

uncorrected camera temperature was closer to true air temperature than the corrected 

temperature).  

For most observations (55.7%), both the uncorrected and corrected camera 

temperatures were within 2°C of truth. Uncorrected temperatures recorded by the 

temperature cameras were within 2°C of true air temperature for 66% of observations and 

within 1°C for 32% of observations. The model-corrected camera temperatures were within 

2°C of true air temperature for 81% of observations and within 1°C of true air temperature 

for 54% of observations. These are improvements in the percent of observations falling 

within these thresholds of 23% and 69%, respectively. The improvement in temperature 

accuracy varied across days (Fig. 8). 

Precipitation events were recorded in 74,500 of the 867,000 images collected by the 

precipitation cameras. However, the resolution of images made it challenging to determine 

the occurrence of precipitation events during the day unless snow accumulated during the 

event. Even if visual markers indicative of precipitation were observed in images, it was 

often not clear if these visual markers were the result of falling precipitation, fog, snow 

displaced from the canopy, or snow blown by the wind. Thus, further exploration of 

precipitation events and phase was abandoned. 

 

Discussion 

The energy balance equation improved the accuracy of temperature measurements 

from HP2X cameras. We decreased bias error, nearly halved the RMSD, and improved the 

goodness of fit of the HP2X camera temperatures with the true air temperatures using the 

energy balance equation. The corrected temperature measurements had a mean bias error and 
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mean absolute bias error of -0.13°C and 1.28°C, respectively, while uncorrected temperature 

measurements had a mean bias error and mean absolute bias error of -0.41°C and 1.92°C, 

respectively. The cameras were deployed on the south-facing sides of trees to maximize 

potential bias, meaning that cameras deployed on more shaded sides of trees would likely 

record even more accurate temperature measurements than the cameras in our study. 

However, Hofmeester et al. (2020) found their cameras overestimated temperatures by 1.9°C 

on average, even though their cameras were deployed on the north-facing sides of trees. Air 

temperature can vary considerably in space, particularly in complex terrain (Holden et al. 

2011). It is possible their cameras were experiencing different true air temperatures than were 

being recorded at the weather station used for comparison. Our use of a weather station in 

proximity to the cameras allowed us to have high confidence in the comparisons of true air 

temperature and the temperatures recorded by the cameras.  

If direct measurements of other variables cannot be collected, some values could be 

estimated from available data sources (Table 2). For example, Flerchinger et al. (2009) 

summarized and compared several different algorithms for estimating longwave radiation, 

and Chen et al. (2021) summarized and compared different models of wind speed. Our study 

was performed with HP2X cameras in the dark green case color, but Reconyx also 

manufactures cameras with other case colors. Shortwave and longwave albedos of cameras 

with other case colors warrant further research. 

The variable estimates generated by Solver may require further research to estimate 

more accurately. The value for shortwave absorptivity suggests the cameras are blackbodies, 

which is highly unlikely. The value for longwave absorptivity (0.87) is also lower than 

expected of a normal terrestrial object (~ 0.97), though this may be explained by the glass on 

the face of the camera. The meteorological station collecting longwave radiation data was 

placed about 30 m from the cameras and with less surrounding vegetation, so it may have 

experienced lower incoming longwave radiation than was experienced by the cameras. This 

could have forced Solver to bias the shortwave absorptivity value high and the longwave 

absorptivity value low to compensate for the additional longwave radiation coming from the 

surrounding vegetation.  

The bare ground reflectivity value is a reasonable value for a mixture of exposed soil 

and vegetation (Campbell and Norman 1998). Bare ground reflectivity is dependent on the 
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proportions of ground cover composed of exposed soil versus vegetation at a particular 

camera site, therefore bare ground reflectivity needs to be estimated for each camera site. The 

snow-covered ground reflectivity is a reasonable average, but this value likely decreased 

throughout the snow-covered days as the snow aged, leading to lower snow reflectivity, and 

as snow melted, leading to more exposed bare ground. Better model performance during 

snow-covered conditions may require an additional view factor for snow.  

A potential source of error in our corrected temperature measurements was the 

longwave emittance values from the surrounding trees and ground. Tree and ground 

temperature measurements were not taken during the experiment, so we assumed the trees 

and ground were at the same temperature as the camera. However, the trees and ground, 

having a larger thermal mass than the cameras, would equilibrate with true air temperature 

more slowly than the cameras; this would cause the trees and ground to retain more heat and 

thus emit more longwave radiation than was estimated. Properly accounting for the longwave 

emittance of the trees and ground would likely reduce overestimations at times of high 

shortwave radiation. 

Though precipitation events and phase were of interest, these had to be abandoned. 

The main interest in exploring precipitation events with cameras was to determine the 

occurrence of rain-on-snow events, but rain events were rarely detected even in night images. 

However, we speculate precipitation events may be more easily determined using videos 

instead of still images. This idea warrants further exploration. 

 

Conclusions 

This is the first formal assessment of the accuracy and error of temperature 

measurements made by a camera model popular with researchers. We found the HP2X 

cameras in our study had a mean bias error of -0.41°C and a mean absolute bias error of 

1.92°C. We also found 66% and 32% of temperature observations from HP2X cameras were 

within 2°C and 1°C of true air temperature, respectively. The energy balance model used 

improved the number of temperature observations within 2°C of true air temperature by 23% 

and within 1°C of true air temperature by 69%. 

While we could not assess the feasibility of collecting precipitation event and phase 

data with still images, this does not mean cameras cannot collect information about 
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precipitation. Rather, video may be necessary to confidently determine when precipitation 

events are truly happening instead of other processes such as canopy unloading or wind 

redistribution of snow. 
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Figures and Tables 

Table 2. Model covariates for biophysical model to correct Reconyx Hyperfire II camera 
temperature measurements. 

Variable Description Value 
Ta Air temperature (°C) To be calculated 
Tcam Camera temperature (°C) Extracted from images 
αs  ** Shortwave absorptivity of 

the camera (unitless) 
1.00 

αL  ** Longwave absorptivity of 
the camera (unitless) 

0.868 

Sbd Incoming shortwave 
radiation (W/m2) 

Measured using a pyranometer, calculated using 
hemispherical photography, or modeled in 
Geographic Information Systems (Hofierka and 
Suri 2002) 

La Incoming longwave 
radiation from the sky 
(W/m2) 

Measured using a pyrgeometer or calculated using 
algorithms (Flerchinger et al. 2009) 

Ls Incoming longwave 
radiation from 
surrounding objects 
(W/m2) 

Measured using a pyrgeometer or calculated using 
εLσTcam

4 , assuming that surrounding objects are at 
the same temperature as the camera 

σ Stefan-Boltzmann 
constant (W/m2/K4) 

5.67 * 10-8 

cp Molar specific heat of air 
(J/mol/°C) 

29.3  

u Wind speed (m/s) Measured using an anemometer, collected from 
weather data, or modelled (ex. De Rooy and Kok 
2004) 

Fa View factor of the sky 
(unitless) 

Calculated using hemispherical photography or 
approximated using percent canopy cover and  
(1 – CC) / 2, assuming that the lower hemisphere of 
the view factor is entirely made up of ground and 
vegetation 

Fs View factor of 
surroundings (unitless) 

calculated using hemispherical photography or 
approximated using 1- Fa  

ρs  ** Reflectivity of the 
surroundings (unitless) 

0.230 (bare ground) 
0.411 (snow-covered ground) 

d Characteristic dimension 
of the camera (m) 

0.095 (the average of the width and depth of a 
camera body) 

** αs, αL, and ρs were solved for using Microsoft Excel’s Solver functionality. Since the true camera 

temperature was already known, Solver was used to solve for the values of αs, αL, and ρs which minimized the 

sum of squared differences between the actual and predicted camera temperatures.   
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Fig. 5. Ensemble mean temperatures on an hourly basis recorded by Reconyx Hyperfire II 
cameras and a weather station (ATMOS 41). Shaded areas are the range of temperatures 
recorded at that hour. 
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Fig. 6. Bias error of temperature measurements from Reconyx® Hyperfire™ II cameras 
compared to temperature measurements from an ATMOS 41 weather station (Meter 
Environment®. Panels are A) bias error versus hour of the day, B) absolute bias error versus 
hour of the day, C) bias error shortwave radiation, and D) absolute bias error versus 
shortwave radiation. 
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Fig. 7. Root mean squared deviation (RMSD) of temperature measurements from Reconyx® 
Hyperfire™ II cameras compared to temperature measurements from an ATMOS 41 weather 
station (Meter Environment®) on an hourly basis. 
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Fig. 8. Error in A) uncorrected and B) corrected temperature measurements made by 
Reconyx® Hyperfire™ II cameras from March-April 2021. The interval contained in the 
dashed lines is the snow-covered period, while the intervals outside the dashed lines are bare 
ground periods. The shaded area indicates temperatures within 2°C. 
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Chapter 2: Identifying Snow Refugia in Complex Forested 

Terrain Using Camera Data 

 

Abstract 

Knowledge of snow cover properties on fine scales is imperative for modeling of 

hydrologic processes and for habitat management of wildlife species that rely on snow cover. 

Identification of snow refugia, or places with relatively late snow disappearance dates 

compared to surrounding areas, are especially important as climate change continues to alter 

snow cover timing and duration. However, many snow data products are either too coarse 

scale to capture variations in snow cover, too expensive, or too logistically challenging to 

collect over broad spatial extents. The purpose of this study was to use remote cameras to 

collect snow data at fine spatial and temporal scales in a complex forested terrain for the 

identification of snow refugia. We built generalized linear models to relate the snow 

disappearance dates (SDDs) at the camera sites to their topographic and vegetation 

characteristics. We built a model to describe SDDs of camera sites which contained 

elevation, aspect, and an interaction between canopy cover and cold-air pooling potential. 

This model could predict SDDs to within 2 weeks and to within 1 week of true SDD for 93% 

and 71% of the camera sites, respectively. This model used only data which are readily 

available as spatially distributed datasets, which allowed for mapping of SDDs across the 

entire study site. This model and map can be used to guide forest management for the 

retention of snow, increase the accuracy of hydrologic models, and inform habitat 

management for snow-dependent wildlife species. 

 

Introduction 

Snow conditions can vary widely even at fine spatial scales. These fine-scale 

variations in snow conditions can cause differences in local hydrology, which has cascading 

effects on vegetation and wildlife. Jost et al. (2007) determined their snow-water equivalent 

(SWE) measurements, a measure of the amount of liquid water present in a snowpack if it 

was melted, were no longer spatially dependent on each other at distances even less than 10 

or 20 m. Heterogeneity in snow conditions is caused by differences in rates of accumulation, 

melt, and sublimation (direct phase change from ice to water vapor). Factors affecting these 
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rates include precipitation, temperature, canopy interception, radiation loading, and wind 

redistribution (Luce et al. 1998, Dickerson-Lange et al. 2017).  

Terrain attributes can enhance or diminish the importance of each of these factors in 

determining local snow conditions. Elevation and rain shadows play a role in precipitation 

variations in complex terrain (Leung et al. 2003). It has been well established that increasing 

elevation decreases air temperature, though the exact amount of increase varies by latitude, 

pressure, and season (Stone and Carlson 1979). Cold-air pooling, the process by which 

dense, cold air settles into low-lying areas, can cause low-elevation areas and topographic 

concavities to regularly experience localized temperature inversions (Lundquist et al. 2008, 

Daly et al. 2010, Curtis et al. 2014). Additionally, the density of canopy cover and the air 

temperature affect the efficiency of canopy interception (Roth and Nolin 2019) and turbulent 

transport (Strasser et al. 2008) of snow. While snow may unload from the canopy, some of it 

sublimates directly from the canopy, causing forests to have lower snow depths than nearby 

unforested areas (Dickerson-Lange et al. 2017, Jeníček et al 2020). Tree canopies shade 

direct shortwave radiation (0.28 – 3.5 μm) from reaching the snow surface while 

simultaneously emitting longwave radiation (3.5 – 100 μm) causing snow immediately 

around trees to melt more quickly (Dickerson-Lange et al. 2017). Needles, bark, and other 

debris on the snow surface lower the albedo of the snow (the ability for the snow to reflect 

incoming radiation) and increase the amount of radiation absorbed by the snow (Hardy et al. 

2000, Dickerson-Lange et al. 2017). Slopes and concavities prevent direct shortwave 

radiation from reaching the snow surface at certain times of the day due to self- and/or 

adjacent terrain shading (Curtis et al. 2014). Finally, snow redistribution by wind and gravity 

changes the spatial distribution and depth of snow (Bernhardt et al. 2008, Marshall et al. 

2019). These processes can combine synergistically or antagonistically to produce snow 

conditions that are highly complex even at very fine scales. 

Knowledge of the biophysical factors affecting variability in snow cover on fine 

scales can improve monitoring and modeling of water resources. Because considerable 

amounts of water are stored as snow in snow-dominated systems, the timing, duration, and 

magnitude of snowmelt controls spring streamflow dynamics, groundwater recharge, and soil 

moisture in these watersheds (Jost et al. 2007). Thus, reliable estimation and modeling of the 

amount of area as well as specific locations covered in snow are crucial for accurate 
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modeling of water resources in these systems. However, using relatively coarse-scale 

topography, canopy cover, and solar radiation data to drive these models may cause 

snowmelt dynamics to be improperly modeled. Additionally, remnant patches of snow may 

be misclassified as snow-free or newly emerging patches of bare ground may be 

misclassified as snow-covered if they occur at spatial scales smaller than those captured by 

gridded snow cover data products (Molotch and Margulis 2008). Both issues lead to 

uncertainty in snow-water equivalent (SWE) estimates derived from hydrologic models. For 

instance, Molotch and Margulis (2008) found peak SWE estimates from their physically 

based snow model could be 44-68% lower when the snow-covered area was modeled at 1-

km2 resolution instead of 30-m2 resolution. Such differences in SWE estimates can radically 

change estimates of other hydrologic variables such as soil moisture and runoff during the 

modeling process, which confounds inference and hampers effective decision-making 

regarding the use of available water resources. 

When topographic, vegetation, and hydrometeorological factors at a site create 

optimal conditions for the retention of snow, this area can be thought of as a “snow 

refugium.” The concept of climate refugia is a relatively new concept in ecology (Klein et al. 

2009). McLaughlin et al. (2017) defined “hydrologic refugia” as areas relatively shielded 

from high evapotranspiration rates, which allows them to provide soil moisture to local 

vegetation later in the year. Snowmelt and snow cover were discussed as factors contributing 

to hydrologic refugia (McLaughlin et al. 2017). Curtis et al. (2014) noted that incorporating 

cold-air pooling into their projections of April 1st SWE suggested the presence of “climate 

refugia” for snow-dependent species such as wolverine (Gulo gulo). Building on this idea, 

we define “snow refugia” as areas with later snow cover relative to surrounding areas due to 

mechanisms including radiation shading, cold air retention, lack of canopy snow interception, 

and wind redistribution of snow. 

Snow refugia will provide critically important habitat for snow-dependent wildlife 

species as climate change continues to alter snow regimes. Species can be dependent on 

snow for a variety of reasons including thermal cover, competitive advantage over less snow-

adapted species, camouflage, emergence timing, and flowering timing (Steen et al. 1992, 

Inman et al. 2012, Kudo and Ida 2013, Pozzanghera et al. 2016, Penczykowski et al. 2017, 

Mills et al. 2018, Goldberg et al. 2020). Many of these species are of conservation concern 
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because climate change is reducing the snow cover and depth they need for reproduction and 

survival (Kudo and Ito 2013, Curtis et al. 2014). Identification of snow refugia and the 

landscape characteristics producing snow refugia are thus of utmost importance for 

conservation of snow-dependent wildlife species in a changing climate. 

Current snow data products are limited by their spatial or temporal resolution, cost, 

and effort, making them insufficient for characterizing snow cover at fine scales and 

identifying snow refugia. Manual field observations such as snow courses are limited by 

resource availability and safe accessibility. Snow Telemetry (SNOTEL) stations are often 

only placed in small canopy gaps and are relatively expensive to establish, limiting their 

usefulness for monitoring of snow cover variations in areas with heterogenous snow 

conditions such as in complex forested terrain (but see Molotch and Bales 2006). Satellite- 

and model-derived snow data products such as Moderate Resolution Imaging 

Spectroradiometer (MODIS; Hall et al. 2006), Snow Data Assimilation Systems (SNODAS; 

NSIDC 2004), Advanced Very High Resolution Radiometer (AVHRR; Vermote 2019), and 

Landsat Enhanced Thematic Mapper Plus (ETM+; USGS EROS Center 2018) can provide 

snow cover data, but selecting a satellite snow data source is often a tradeoff between spatial 

and temporal resolution. Spatial resolutions of these data sources range from 30 m2 for ETM+ 

to 1 km2 for SNODAS, while temporal resolutions range from daily for AVHRR and 

SNODAS to every 16 days for ETM+. Cloud and canopy cover add additional uncertainty to 

the frequency, spatial extent, and quality of satellite data (Hall and Riggs 2007). SNODAS, 

being a physically based modeled data product, is also subject to considerable modeling error 

(Clow et al. 2012, Meromy et al. 2012, Sirén et al 2018). Light Detection and Ranging 

(LiDAR), structure-from-motion, and other physically based models such as SnowModel 

(Liston and Elder 2006) can provide incredibly fine-scale information, but the amount of 

field or computational effort, time, and expertise necessary to derive these data make them 

less practical for many applications (Deems et al. 2013, Fernandes et al. 2018, Mahoney et al. 

2018). Resource managers would therefore benefit from a cost-effective, reliable tool for 

estimating snow conditions and identifying snow refugia for species of conservation concern, 

particularly in complex forested terrain undergoing a transition from snow- to rain-dominated 

precipitation. 
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Remote cameras are a widely used tool in various natural resources applications. 

Remote cameras are one of the fastest-growing data collection tools in wildlife science and 

can be used for numerous applications (Steenweg et al. 2017). Though they have been used 

less frequently in hydrologic studies, remote cameras have been successfully used to assess 

bias in SNODAS snow depth estimates (Sirén et al. 2018), measure snow-covered area and 

snow depth, (Hedrick and Marshall 2014, Giuliani et al. 2016, Pimentel et al. 2015), estimate 

canopy interception (Garvelmann et al. 2013), validate models of snow albedo (Melloh et al. 

2002), and capture rain-on-snow events (Floyd and Weiler 2008).  

Remote cameras are a useful and powerful option for monitoring snow cover in 

complex terrain. Cameras remotely collect data at a much finer spatial resolution (i.e., the 

viewshed of the camera) than is captured by many other remote data collection methods. 

Cameras can be programmed to take timelapse images at intervals ranging from days to 

seconds, allowing for regular monitoring of snow within the camera viewshed. Cameras can 

be placed anywhere there is a vertical surface to which a camera can be attached. A 

temperature measurement is also recorded with each image, which is useful for the 

identification of local freeze-thaw cycles and cold-air pools. Because of their low power 

requirements, cameras require very little maintenance, and they can be reused for several 

years of data collection. Cameras can also be programmed to take both motion-triggered and 

timelapse images, so the capture of images of snow does not interfere with concurrent 

wildlife data collection. This allows wildlife researchers to co-locate wildlife detections and 

snow conditions at a site. 

The general objective of this research was to improve our understanding of how 

biophysical conditions contribute to formation of snow refugia at fine scales (~ 30 m2) in 

complex forested terrain. We hypothesized a combination of topography, cold-air pooling, 

vegetation, and hydrometeorological conditions would best explain SDDs and locations on 

the landscape serving as snow refugia. Our secondary objective was to use only data from 

cameras, other field data, and readily available elevation and canopy cover datasets to 

determine these patterns in snow retention. While biophysical models exist which can 

estimate distributed snow data (Liston and Elder 2006), we sought to determine if data 

derived from simpler methods would be sufficient to identify snow refugia. To accomplish 

these objectives, we deployed a stratified network of remote cameras in a complex forested 
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terrain to monitor snow conditions at fine scales and performed regression analysis to 

determine which site covariates best explained the snow disappearance date (SDDs; the final 

day with snow cover) at each site. Those areas with the latest SDDs would be considered 

snow refugia. Identifying the factors facilitating snow retention will inform how forests 

might be managed to improve availability of late-season snow cover. The resultant model can 

also be used to map potential locations of snow refugia and pinpoint priority areas of 

conservation for snow-dependent wildlife species. 

 

Methods 

 

Study Area 

The study area for this project is the Palouse Range (hereafter Moscow Mountain) in 

Latah County, ID (Fig. 9). This field site was chosen because it has a wide variety of both 

topography and canopy cover in which to sample snow conditions and has a network of 61 

trails covering 106 km with reasonable access during the winter months. 

Moscow Mountain spans approximately 800 to 1500 m above sea level and is in the 

rain-snow transition zone of the Northwest United States. The forest cover is comprised of 

ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) forests at low 

elevations and western red cedar (Thuja plicata) and fir (Abies sp.) forests at high elevations. 

The climate is characterized as continental-maritime comprised of generally Mediterranean 

conditions, with hot, dry summers and mild winters punctuated by periodic intrusions of cold 

air masses (Hubbart et al. 2007). Moscow Mountain receives an average of approximately 

1060 mm of precipitation annually. The mean peak snow-water equivalent (SWE) for 

Moscow Mountain from water years 2001 – 2021 was 529 mm. In the winter 2020 – 2021 

field season, the peak SWE was 594 mm, indicating the field season occurred in a snow year 

slightly above average. The peak SWE during the pilot field season in winter 2019-2020 was 

518 mm, which is an average snow year for Moscow Mountain (USDA 2022).  

 

Camera Data Collection 

We deployed 138 camera stations from October 2020 – May 2021. We used Reconyx 

® Hyperfire I and Hyperfire II cameras. We programmed the cameras to take one image each 
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hour of the day, including nighttime hours, so each camera recorded at least 24 images every 

day throughout its deployment. Cameras were retrieved from April – May 2021. Cameras 

were retrieved when there was no snow in the immediate viewshed of the camera (up to 15 m 

away depending on the distribution of understory vegetation).  

We stratified camera sites by elevation, aspect, and canopy cover. Elevation was 

classified from <925 m, 925-1,050 m, 1,050-1,175 m, 1,175-1,300 m, and >1,300 m; aspect 

was classified as N, S, E, or W; and canopy cover was classified as “sparse” for canopy 

covers <35%, “moderate” for canopy covers between 35-75%, and “dense” for canopy 

covers >75%. We took canopy cover measurements using a densiometer. We quasi-randomly 

selected sites within each strata to permit reasonable access via existing trail and forest road 

networks. However, trails themselves were not sampled because foot and vehicle traffic 

changes the depth and properties of the snow, so snow retention may be different on roads 

than it is in adjacent forest. After all strata were sampled, we placed additional cameras in 

landscape concavities and canopy gaps which are expected to retain snow later in the year 

(Lawler and Link 2011, Curtis et al. 2014). We also placed cameras at least 20 m away from 

other cameras given that snow conditions in complex terrains are often not correlated beyond 

this distance (Jost et al. 2007). 

On the deployment date, we recorded the height and direction of the camera and the 

latitude, longitude, and elevation. We mounted and locked cameras onto trees at a height of 

2–3 m to prevent snow from blocking the cameras. During camera deployment, we took 

reference images for superimposing a “virtual” snow stake (VSS) onto images to measure 

snow depth (Strickfaden et al., in review). We placed a reference snow stake with 2- and 10-

cm gradations at 5, 10, and 15 m within the viewshed of the camera, and we allowed the 

camera to take motion-triggered images. We took an additional set of reference images on 

camera retrieval to account for potential changes in the camera’s viewshed during its 

deployment. VSSs were then superimposed onto images using functions in the edger package 

(Strickfaden et al., in review). At a subset of cameras, we also installed a physical snow stake 

5-15 m from the camera which was composed of a 183 cm U-post driven into the ground and 

a 152cm section of PVC pipe. These were used to verify measurements taken with the VSSs. 

We marked the white PVC pipe every 2 cm with black permanent marker and every 10 cm 

with brightly colored electrical tape. We then fixed a pipe to a U-post with cable ties. We 
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maintained cameras throughout the season, coincident with snow density and hardness 

measurements, to change batteries, ensure proper function, and remove obstructing 

vegetation.  

We placed an external LogTag ® TRIX 8 temperature recorder (hereafter ‘LogTag’) 

at each camera station. We programmed the LogTags to record temperatures at 45-minute 

intervals. The LogTags were housed inside of plastic protective coverings and radiation 

shields. Each radiation shield was comprised of 15 cm of PVC pipe covered in aluminum foil 

tape to reflect shortwave radiation and reduce longwave radiation loading. We drilled holes 

into the radiation shields to allow for increased air flow (Terando et al. 2017). We hung the 

LogTag in its housing at the same height as the camera on the north side of trees or under 

canopy cover to minimize the potential impacts of direct shortwave radiation. If no branches 

meeting these criteria were available on the camera tree, we hung it on a nearby tree. 

 

Hemispherical Photography 

To quantify vegetation cover and estimate incoming shortwave radiation, we took 

hemispherical photographs at each camera site. We used a Canon™ EOS 70D SLR camera 

with a Sigma 8mm circular fisheye lens. We took hemispherical photographs on days with 

little to no wind or precipitation and early in the morning (5AM – 7AM), late in the evening 

(7PM – 9PM), or on overcast days to maximize the contrast between sky and vegetation. We 

took photographs in June - July 2021, but nine camera sites were re-photographed in October 

2021 due to poor quality of initial photographs. Overstory deciduous vegetation is rare at my 

study site, so summer changes in canopy cover are negligible. 

At each camera site, we placed the DSLR camera with attached lens on a tripod 5 m 

into the camera viewshed and levelled it to point directly up into the canopy. We took 

photographs at a variety of exposures and manually selected the photograph with the best 

exposure for each camera site. We analyzed the best image from each location using 

Hemisfer software (Thimonier et al. 2010). We manually selected threshold values for 

distinguishing sky pixels from vegetation pixels for each image. Hemisfer then classifies sky 

and vegetation pixels in the photograph using this threshold, overlays a solar path onto 

photographs based on input georeferencing information and photograph orientation, and 

calculates hourly direct and diffuse shortwave radiation throughout time assuming 50% cloud 
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cover. Hemisfer also outputs a count of sky and vegetation pixels in the image which we 

used to calculate the percent vegetation cover. Because the 180° image captures some 

understory vegetation in addition to the overstory vegetation, this value is different from the 

percent canopy cover value obtained using the densiometer. 

 

Cold-air Pooling Model 

To identify potential cold-air pools (CAPs), we developed a novel procedure which 

we adapted from methods used by Ashcroft and Gollan (2012). LiDAR flights were 

conducted on Moscow Mountain in 2009 from which a 1-m resolution DEM was created 

(Bright et al. 2019). This raster product was used to calculate log flow accumulation and 

relative elevation of each pixel. Ashcroft and Gollan (2012) also assessed distance to water, 

but few major water features are located on Moscow Mountain, and the few existing ones are 

captured well using the described procedure, so this was not included as a separate covariate. 

First, we calculated flow accumulation using the Hydrology tools in ArcGIS (ESRI). Though 

these tools are intended for water flow calculations, air, which is also a fluid, flows similarly 

to water. We took the natural log of the flow accumulation plus 1 because some pixels have a 

flow accumulation of 0. Second, we calculated relative elevation by determining the 

elevation of the lowest-elevation pixel within a 25, 50, and 100 m radius from each pixel. We 

subtracted the elevation of a particular pixel from the elevation of the lowest pixel in the 

focal radius to determine that pixel’s relative elevation. We rescaled both the log flow 

accumulation and relative elevation rasters from 0-1.  

Finally, we subtracted the log flow accumulation raster from the relative elevation 

rasters calculated at different focal radii. Negative differences indicate pixels had both high 

log flow accumulation and low relative elevation in that neighborhood, which together 

contribute to potential accumulation of cold air. Therefore, if the difference between the two 

values was negative, we assigned the pixel a value of 1 (CAP pixel), and if it was positive, 

we assigned it a value of 0 (non-CAP pixel). The 25-m, 50-m, and 100-m layers were finally 

merged into a single layer to indicate if a pixel was identified as a potential CAP in any of 

the three neighborhoods.  

We assessed the accuracy of this layer by analyzing monthly minimum and maximum 

temperatures at air temperature monitoring stations (Maxim Integrated iButtons in radiation 
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shields) distributed across Moscow Mountain from 2009-2011 (J. Abatzoglou, unpubl. data). 

After accounting for elevation, aspect, and canopy cover, iButtons in CAP pixels had lower 

minimum temperatures by 1°C and lower maximum temperatures by 3.5°C on average than 

iButtons not in CAP pixels, which suggests this layer adequately identified CAP pixels. 

Thus, this layer was used to classify whether a camera site was in a CAP.  

 

Camera Data Processing 

We manually recorded snow presence and snow depth in each image. We measured 

snow depth using any VSSs and physical snow stakes present in images. Snow depths 

sometimes exceeded 150 cm, which was the height of the snow stakes; if snow depth 

exceeded 150 cm, snow depth was recorded as “150+” until snow depth could be measured 

again. The SDD for a camera was defined as the first day on which there was no snow cover 

in the immediate viewshed of the camera. The SDD determined from the images was 

considered the true SDD for the site. Though some cameras had larger viewsheds than 15 m, 

the elevation and canopy cover further into the viewshed may have been substantially 

different than the elevation and canopy cover at the camera site; to limit bias, we only 

assessed snow presence within the distance of the furthest VSS, which could be up to 15 m 

into the camera viewshed. For those cameras which still had small amounts of snow at 

retrieval, SDD was defined as the day of camera retrieval. Snow events after the persistent 

snow cover at the camera site disappeared were not counted towards the SDD. We processed 

images using Timelapse2 software (Greenberg 2020).  

Data Analysis 

                                                  We built a suite of generalized linear models (GLMs) to predict the SDD in Julian 

days. Model predictors included elevation (classification or value in meters); slope (degrees); 

aspect (cardinal direction or degree); canopy or vegetation cover (classification or percent); 

CAP potential (indicator); mean daytime shortwave radiation (Watts/m2); mean temperature 

in December, January, and February (mean DJF temperature) from the LogTag (°C); and 

mean snow depth (value in cm). Maximum snow depth was not included because snow depth 

could not be measured at depths >150 cm with the snow stakes used. Snow-water equivalent 

(SWE) would also be a useful metric to test, but this would require modeling of SWE which 

is beyond the scope of this research. 
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We recognized some variables might make the resultant model less accessible to most 

researchers. Fine-scale temperature and snow depth data are rarely available for determining 

mean DJF temperature and mean snow depth, and the percent vegetation cover covariate 

must be collected using hemispherical photography. Thus, we decided to run an additional 

suite of models excluding mean DJF temperature, mean snow depth, and vegetation cover as 

potential covariates to determine if a comparable model could be built using only data which 

are more readily available or easy to derive. Models containing the limited pool of variables 

will be referred to as “data-constrained,” while the other models will be referred to as “data-

rich.” 

Combinations of the predictors and interactions between them were tested, and the 

best-fit model for each data pool was selected using Akaike’s Information Criterion for small 

sample sizes (AICc; Hurvich and Tsai 1989) and the MuMIn package (Barton 2022) in 

program R (R Core Team 2021). Models were additionally tested on data from a pilot season 

conducted during winter 2020 at the same study site. We deployed 17 cameras in January 

2020 using the same deployment protocol as in the 2020-2021 field season, and the SDD was 

determined for each camera.  

 

Results 

Data from 134 of the 138 cameras deployed in 2020-2021 were used. One camera 

was stolen, and two cameras malfunctioned so images were not captured on or near their 

SDDs. A fourth camera did not have a functioning LogTag accompanying it, so it was also 

excluded. A total of 562,000 timelapse images were captured by the remaining 134 cameras. 

Though snow depth could only be measured up to 150 cm from images, snow depths of up to 

203 cm were recorded during concurrent snow density and hardness sampling (Chapter 3). 

SDDs in 2021 ranged from 18 March – 26 May and in the 2020 pilot season ranged from 11 

March – 25 May.  

                                                   The data-rich GLM to predict SDD with the most support included cardinal aspect 

(i.e., N, E, S, or W), percent vegetation cover, and an interaction between mean DJF 

temperature and mean snow depth (Table 3, Fig. 10). The best-fit model could predict 2021 

SDDs to within 2 weeks and to within 1 week of the true SDD for 98% and 74% of the 

camera sites, respectively (Fig. 11). For each 0.09°C decrease in mean DJF temperature 



50 
 

(95% CI: [0.07, 0.13]), SDD was predicted to increase by 1 day. For each 3 cm increase in 

mean snow depth (95% CI: [2.1, 4.6]), SDD was predicted to increase by 1 day. Increasing 

DJF temperatures had a much greater effect on SDDs in areas with shallow snowpack than in 

areas with deeper snowpack (see Fig. 10A). Sites on west-facing aspects had the earliest 

SDDs, with south-facing aspects 1.4 days later (95% CI: [-1.8, 4.5]), east-facing aspects 3.6 

days later (95% CI: [0.4, 6.8]), and north-facing aspects 6.1 days later (95% CI: [2.8, 9.4]) 

than west-facing aspects. Finally, for each 8% increase in vegetation cover (95% CI: [5.5, 

15.6]), SDD was predicted to increase by 1 day (Table 4). Modeled SDDs in 2020 were 

within 2 weeks and within 1 week of true SDD for 88% and 59% of cameras, respectively. 

The data-constrained GLM with the most support contained elevation, cardinal 

aspect, and an interaction between percent canopy cover and CAP potential (Fig. 12, Table 

5). This model could predict 2021 SDDs to within 2 weeks and to within 1 week of the true 

SDD for 93% and 71% of the camera sites, respectively (Fig. 13). For each 20 m increase in 

elevation (95% CI: [17.1, 22.6]), SDD was predicted to increase by 1 day. Sites on west-

facing aspects had the earliest SDDs, with south-facing aspects 2.5 days later (95% CI: [-1.3, 

6.3]), east-facing aspects 6.9 days later (95% CI: [3.0, 10.9]), and north-facing aspects 11.4 

days later (95% CI: [7.5, 15.3]) than west-facing aspects. For sites not in CAP pixels, each 

10% increase in canopy cover (95% CI: [6.6, 18.8]) was predicted to increase SDD by 1 day, 

while for sites in CAP pixels, it was a 4% increase (95% CI: [4.0, 72.9]; Table 6). Modeled 

SDDs in the 2020 data were within 2 weeks and within 1 week of true SDD for 71% and 

41% of cameras, respectively. A considerable advantage of the constrained model is the data 

required by this model are readily available as spatially distributed datasets, which allows for 

the extension of this model beyond the camera sites to map SDDs across the entirety of our 

study area (Fig. 14). Mapping of SDDs identified isolated areas with later SDDs than their 

surroundings. 

 

Discussion 

We built a model using elevation, aspect, canopy cover, and CAP potential to predict 

the locations of snow refugia at small spatial extents (~ 30 m2) with very little loss in 

performance compared to a more complex and data-intensive model. In fact, both models 

tended to underestimate the SDDs of the camera sites with the latest actual SDDs, meaning 
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these sites are serving as even later-season snow refugia than are being predicted by the 

models. Thus, these are conservative estimates of snow refugia  in our study area. The 

predictive accuracy of the best-fit data-constrained model for the pilot season data was lower 

than the best-fit data-rich model, likely because it did not account for the higher temperatures 

and lower snowfalls in winter 2019-2020. Scaling the predictions from 0-1 (i.e., interpreting 

the predictions as relative earliest to latest SDDs) may make the predictions more robust to 

annual temperature and precipitation differences. This is reasonable because the biophysical 

processes underlying differences in SDD with elevation, aspect, and cold-air pooling are 

unlikely to change due to climate change (i.e., high elevations, north aspects, and CAPs are 

still expected to have the latest SDDs regardless of climate change).  

However, associations between canopy cover and SDD may change if certain 

temperature thresholds are exceeded because of climate change. Lundquist et al. (2013) 

found locations with mean DJF temperatures <-6°C would have later SDDs under canopies 

than in the open, while climates with mean DJF temperatures >-1°C would have earlier 

SDDs under canopies. In cold climates, shortwave radiation is the dominant cause of 

midwinter melt events, while in warm climates, longwave radiation emission by vegetation is 

the dominant cause of midwinter melt events (Lundquist et al. 2013). Additionally, warmer 

air temperatures can cause snow to adhere to the forest canopy more efficiently. Assuming it 

is not warm enough for snow to immediately unload from the canopy, this reduces 

accumulation under the canopy and allows for more sublimation from the canopy (Lundquist 

et al. 2013, Roth and Nolin 2019). This suggests that as mean temperatures increase, denser 

forest cover will be detrimental to snow retention. Both best-fit models predicted denser 

vegetation cover promoted snow retention in our study site. However, the mean DJF 

temperatures at the Moscow Mountain SNOTEL station were -1.3°C in 2019-2020 and -

2.0°C in 2020-2021, which are approaching the threshold for midwinter melt events on 

Moscow Mountain to become longwave radiation-dominated. As climate change continues to 

increase mean temperatures on Moscow Mountain, SDDs may need to be reevaluated to 

determine if patterns of SDD with canopy cover have shifted. 

Climate change is also increasing forest disturbance due to fire and insect outbreaks. 

Disturbances can reduce canopy cover and canopy density, which would affect canopy 

interception rates (Teich et al. 2019), shortwave and longwave radiation loading (Schwartz et 
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al. 2021), and surface albedo (Zhang and Liang 2014). Teich et al. (2019) found little 

difference in variability in snow stratigraphy for intact forest versus forest recently disturbed 

by insects and attributed this to the continued presence of small twigs in the disturbed stand. 

Salvage-logged forests, conversely, had much more homogenous snow stratigraphy. This 

suggests larger disturbances have a greater effect on snow conditions. Canopy cover layers 

used to run our model for a particular study area should be current to ensure the model 

accurately reflects canopy conditions. 

Additionally, increased mean temperatures and lower snowfall may increase snow 

ephemerality. Ephemeral snow cover is snow cover persisting for <60 consecutive days, 

though areas with ephemeral snow cover may still experience several snow-covered periods 

throughout the winter (Petersky et al. 2019). Sites with ephemeral snow cover have very 

similar SDDs (Dickerson-Lange et al. 2015). Four low-elevation cameras had SDDs which 

were considerably earlier than either model predicted and were very similar to each other 

(see Figs. 11 and 13). At many times, these cameras had very little snow cover, but because 

of how SDD was defined in this study (all snow had to be melted within the first 15 m of the 

camera viewshed), these four cameras were classified as having snow present for >60 

consecutive days. However, these characteristics indicated these sites had snow cover that 

was more ephemeral. This likely caused the poor prediction of SDDs at these sites. While 

ephemeral snow cover was not the focus of this study or the resulting models, remote 

cameras are a promising tool for capturing the spatial and temporal complexity of ephemeral 

snow covers. Further, methods exist to extract snow-covered area data from images (Giuliani 

et al. 2016, Pimentel et al. 2015), meaning snow cover can be quantified at even finer scales 

than used in this study. 

The data-rich model could provide spatially distributed estimates of SDD if mean 

DJF temperatures and snow depths can be estimated across the area of interest. This may not 

require biophysical modeling of temperature and snow depth; rather, these values can be 

forecast on a broad scale from historical data and available satellite- and model-based data 

products for the year of interest. The actual SDDs predicted may be more informative for 

management than the relative SDDs used when predicting with the data-constrained model, 

provided the forecasted mean DJF temperatures and snow depths are reasonably accurate. 
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Importantly, we did not quantify the effects of small canopy gaps (1-3 tree heights in 

diameter) on snow retention. Small canopy gaps have a unique canopy structure that creates a 

distinct radiative environment compared to open or contiguous forest (Lawler and Link 

2011). South sides of small canopy gaps block direct shortwave radiation without providing 

the enhanced longwave radiation emission common in closed canopies, allowing south sides 

of canopy gaps to be local all-wave radiation minima. Conversely, north sides of canopy gaps 

are all-wave radiation maxima for the opposite reasons, as they often receive a large amount 

of direct shortwave radiation plus enhanced longwave radiation from the sunlit trees (Lawler 

and Link 2011, Seyednasrollah and Kumar 2014, Sun et al. 2018). Bradshaw and Spies 

(1992) used 2-D wavelet analysis to identify gaps in the canopy structure, while Falkowski et 

al. (2014) used 2-D wavelet analysis to determine both the height and diameter of tree 

crowns. The effect canopy gaps have on snow is the result of the width of the gap in relation 

to the height of the trees on the edges of the gap; combining their two methods (i.e., using a 

Mexican hat wavelet to determine the height and diameter of canopy gaps) may provide a 

means by which canopy gaps important to snow retention can be identified. 

Wind redistribution of snow was also not explicitly quantified in this study. 

Estimation of wind redistribution of snow requires complex biophysical modeling (e.g., Mott 

and Lehning 2010). The goal of this study was to determine and predict SDDs across my 

study area using only camera data along with readily available terrain data, and wind 

modeling falls outside of this goal. However, the effect of wind redistribution is indirectly 

accounted for in the best-fit data-rich model through mean snow depth, as areas affected by 

wind redistribution would have shallower or deeper snowpacks dependent on if snow is 

moved to or away from those areas. 

While we examined outliers to search for potential causes of modeling errors, we 

found no obvious explanations. Snow ephemerality, canopy gaps, snow drifting by wind, or  

combinations of processes, as have already been discussed, may have played roles in the 

discrepancies. Edge habitats, much like canopy gaps, have unique snow processes and 

dynamics (Webb et al. 2020). Though we attempted to not place cameras in obvious edge 

habitats, the effects of edges can extend up to 44 m into the forest (Webb et al. 2020). We did 

not explicitly account for edge effects, but they may have introduced some error in model 

predictions. 
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Conclusions 

Snow data are often only available at relatively broad spatial resolutions (e.g., >500 

m2), leading to spurious estimates of snow cover in complex forested terrain and a poor 

understanding of the availability of snow refugia for snow-dependent wildlife. For example, 

in our study area, a group of cameras contained within a 500 m2 grid cell could have SDDs 

>1 month apart. This immense complexity is difficult to capture because satellites can 

misclassify snow under canopy cover while other methods are expensive and logistically 

challenging. Therefore, key processes dictating snow retention in complex terrain are lost. 

Conversely, by using remote cameras, we quantified SDDs at fine spatial and temporal scales 

with certainty because we have a literal snapshot of snow conditions in a complex terrain. 

We built a relatively simple model which predicted those SDDs to within 2 weeks of truth in 

93% of camera sites and to within 1 week of truth in 71% of camera sites.  

This model can be used to estimate the area and extent of snow cover available 

throughout the winter, which is useful for management of both water resources and wildlife. 

For water resources management, finer-scale knowledge of snow cover can improve model 

estimates of SWE, leading to better estimates of water availability for several hydrologic 

processes including soil moisture and runoff (Molotch and Margulis 2008). For wildlife 

management, identifying the locations of snow refugia can provide insight into the amount of 

available late-season habitat for snow-dependent species, which will become increasingly 

important as these species’ ranges continue to contract due to climate change (Curtis et al. 

2014). Further, forest management practices can be guided towards retaining snow in light of 

this research. For example, high elevation, north-facing slopes experiencing cold-air pooling 

can be managed for the optimal amount of forest cover dependent on the dominant radiative 

processes (i.e., denser cover in colder environments and sparser cover in warmer 

environments). 

 Remote cameras are already widely used in the natural resources field. Determining 

the SDD of a camera is simple, as it only requires noting the date on which all snow at a 

camera site melted out. This date, along with site data which are commonly recorded during 

camera deployment no matter the study objectives, allows for mapping of SDDs across an 

entire study with little additional field effort. This is particularly beneficial in areas where 
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snow data are rarely or never measured. The presented models are most appropriate for 

complex forested terrain, particularly in the rain-snow transition zone of the Pacific 

Northwest. SDDs in areas with very simple terrain, considerable wind redistribution of snow, 

or ephemeral snow cover may not be adequately predicted. 
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Figures and Tables 

Table 3. Model selection table for data-rich generalized linear models. Variables are mean December-February air temperature 
(MeanDJFTemp), mean snow depth (MeanSD), aspect, vegetation cover percent from hemispherical photographs (VegCover), and 
cold-air pooling potential (CAP). Only shown are models with wi >= 0.01. 

 
Intercept df Log Likelihood AICc ΔAICc wi 

MeanDJFTemp * MeanSD +Aspect + VegCover 73.61 9 -430.64 880.74 0.00 0.54 

MeanDJFTemp * MeanSD + VegCover + Aspect + CAP 73.61 10 -430.64 883.08 2.34 0.17 

VegCover * CAP + MeanDJFTemp + Aspect + MeanSD 80.60 10 -430.96 883.72 2.98 0.12 

MeanDJFTemp + Aspect + VegCover + MeanSD 79.31 8 -434.14 885.44 4.70 0.05 

MeanDJFTemp * VegCover + Aspect + MeanSD 81.67 9 -433.89 887.25 6.50 0.02 

MeanDJFTemp + Aspect * VegCover + MeanSD 73.94 11 -431.59 887.37 6.63 0.02 

MeanDJFTemp + Aspect + VegCover * MeanSD 77.52 9 -433.98 887.42 6.68 0.02 

MeanDJFTemp + Aspect + VegCover + CAP + MeanSD 79.32 9 -434.14 887.74 7.00 0.02 
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Table 4. Covariates in best-fit data-rich model. Variables are mean December-February air temperature (MeanDJFTemp; continuous), 
mean snow depth (MeanSD; continuous), aspect (categorical, reference is West), and vegetation cover percent from hemispherical 
photographs (VegCover; continuous). 

Coefficient Beta Std. Error Low 95% CI High 95% CI p-value 

Intercept 73.605 3.187 67.358 79.852 <0.001 

MeanDJFTemp -11.344 1.848 0.350 6.853 <0.001 

MeanSD 0.344 0.066 2.760 9.449 <0.001 

AspectEast 3.602 1.659 -1.751 4.505 0.032 

AspectNorth 6.105 1.706 0.064 0.181 <0.001 

AspectSouth 1.377 1.596 -14.965 -7.722 0.390 

VegCover 0.123 0.030 0.216 0.473 <0.001 

MeanDJFTemp * MeanSD 0.073 0.028 0.018 0.128 0.010 
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Table 5. Model selection table for data-constrained generalized linear models. Variables are elevation (Elev), aspect, canopy cover 
percent from a densiometer (CanCover), and cold-air pooling potential (CAP). Only shown are models with wi >= 0.01. 

  
Model Intercept df Log Likelihood AICc ΔAICc wi 

Elev + Aspect + CanCover * CAP 45.6 9 -455.6 930.65 0 0.60 

Elev + Aspect * CanCover + CAP 39.03 11 -454.75 933.69 3.03 0.13 

Elev + Aspect + CanCover + CAP 46.08 8 -458.28 933.72 3.07 0.13 

Elev * CanCover + Aspect + CAP 39.42 9 -457.84 935.15 4.5 0.06 

Aspect + CanCover + Elev * CAP 45.39 9 -458.22 935.9 5.25 0.04 

Elev + CanCover + Aspect * CAP 47.13 11 -457.06 938.3 7.64 0.01 
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Table 6. Covariates in best-fit data-constrained model. Variables are elevation (Elev; continuous), aspect (categorical, reference is 
West), canopy cover percent from a densiometer (CanCover; continuous), and cold-air pooling potential (CAP; indicator). 

Coefficient Beta Std. Error Low 95% CI High 95% CI p-value 

Intercept 45.600 4.434 36.910 54.291 <0.001 

Elev 0.051 0.004 0.044 0.059 <0.001 

AspectEast 6.944 2.011 3.004 10.885 <0.001 

AspectNorth 11.374 2.002 7.451 15.298 <0.001 

AspectSouth 2.513 1.935 -1.280 6.305 0.197 

CanCover 0.103 0.025 0.053 0.152 <0.001 

CAP -2.051 3.776 -9.452 5.349 0.588 

CanCover * CAP 0.135 0.060 0.018 0.252 0.025 
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Fig. 9. Camera locations on Moscow Mountain in Latah County, ID in winter 2020-2021. 
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Fig. 10. Model predictions of snow disappearance date as a function of A) mean December-
February (DJF) temperature and mean snow depth and B) aspect and vegetation cover 
percent. 

 

 

 
Fig. 11. Model predictions of the best-fit data-rich model compared to true snow 
disappearance dates (SDDs) of remote camera sites on Moscow Mountain in Latah County, 
ID. 
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Fig. 12. Model predictions of snow disappearance date as a function of A) canopy cover 
percent and cold-air pooling (CAP) potential and B) elevation and aspect. 

 

 

 
Fig. 13. Model predictions of the best-fit constrained model compared to true snow 
disappearance dates (SDDs) of remote camera sites on Moscow Mountain in Latah County, 
ID. 



 
 

Figure 14. Maps of A) canopy cover, B) aspect, C) cold-air pooling potential, and D) relative snow disappearance date (SDD) 
predicted with the constrained model across Moscow Mountain in Latah County, ID. Pixels are 30 m2 resolution except for Panel C in 
which pixels are 1 m2 resolution. 
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Chapter 3: Effects of Snow Conditions on 

Ungulate Presence at Camera Sites 

 

Abstract 

In the rain-snow transition zone of the Pacific Northwest, climate change is expected 

to increase the incidence of rain-on-snow and freeze-thaw events, which will change snow 

density and hardness dynamics. Wildlife species such as deer (Odocoileus spp.) and elk 

(Cervus canadensis) are affected by snow density and hardness through changes in their 

energy expenditure during movement and loss of access to forage. However, little is known 

about if and how ungulates select habitats based on snow density and hardness. We deployed 

a stratified network of remote cameras in a complex forested terrain to measure snow depth 

and detect deer and elk and collected snow density and hardness measurements throughout 

the winter to determine if the probability of ungulate presence at cameras was explained by 

snow conditions and air temperature at the sites. We found that snow depth and density had 

negative relationships with the probability of ungulate presence, while ram resistance (a 

proxy for snow hardness) had a marginal positive effect. We were able to estimate snow 

conditions at the camera sites using only camera data, which presents the opportunity for 

these methods to be used by managers who are interested in determining how ungulates are 

affected by snow depth, density, and hardness collectively. This knowledge can be used to 

inform ungulate management in a changing climate. 

 

Introduction 

Winter is a challenging period for wildlife communities. Species not using avoidance 

strategies such as migration or torpor must cope with snow, cold temperatures, and resource 

scarcity. Winter restructures foraging dynamics and predator-prey relationships between 

plants, herbivores, and carnivores and places greater energetic demands on all species 

(Penczykowski et al. 2017). Only limited quantities of low-quality forage are available to 

herbivorous species over winter because deciduous vegetation does not retain leaves 

throughout the winter and grasses and forbs are frequently covered by layers of snow and ice 

(Skogland 1978, Christianson and Creel 2007, Gilbert et al. 2017). Lower prey availability, 

either because prey animals have migrated or entered torpor or because remaining animals 
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often hide in the subnivium of the snow, forces predators to use new hunting strategies to 

find food (Husseman et al. 2003). Even in mild winters, animals may be in a constant energy 

deficit (Parker et al. 1999). Low body mass or body fat condition during the winter increases 

the risk of death by predation or exposure (Mech et al. 2001), and low body condition 

continuing into the spring can affect an animal’s ability to care for or even bear offspring 

(Horne et al. 2019). 

Animals expend much more energy moving through snow than over bare ground 

(Parker et al. 1984, Bunnell et al. 1990). However, not all snow affects movement in the 

same way. The snowpack depth, density (the amount of water in a snowpack relative to its 

total depth), and hardness (mechanical strength) collectively determine how much difficulty 

wildlife have moving through snow (Bunnell et al. 1990) and subsequently if and how 

wildlife use specific habitats (Penczykowski et al. 2017). An animal’s movement efficiency 

through snow is further dictated by its foot loading (the weight exerted over the surface area 

of its limbs) and chest height (Telfer and Kelsall 1984). Deeper and denser snow creates 

substantial drag on the legs of an animal as it wades through snow, forcing it to lift its legs 

higher to avoid having to wade through unfavorable snow (Parker et al. 1984). If the snow is 

dense or hard enough and the animal’s foot loading is low enough, it may be able to walk on 

top of the snowpack rather than sink into it, allowing the animal to move effectively even 

where snow is deep (Parker et al. 1984). Furthermore, very dense and hard snow is also 

difficult for animals to dig through to find buried food resources (Skogland et al. 1978). 

Animals may use habitats with different snow conditions for different purposes. For instance, 

Pacific martens (Martes caurina) use areas with dense and hard snow for movement and 

hunting and use areas with deep and soft snow as thermal cover and visual cover from 

predators (Martin et al. 2020). Thus, a thorough understanding of wildlife habitat use in 

winter requires knowing not only the snow’s depth but also its density and hardness. 

Three species of management interest in the Northwestern United States are white-

tailed deer (Odocoileus virginianus), mule deer (O. hemionus), and Rocky Mountain elk 

(Cervus canadensis). White-tailed and mule deer (collectively deer) and elk may conduct 

short migrations to find favorable winter range but often still occupy areas with snow cover 

in winter (Nicholson et al. 1997, Sabine et al. 2002, Rickbeil et al. 2019). Deer select areas 

with <38 cm of snow (DelGiudice et al. 2002) while elk select areas with <46 cm of snow 
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(Parker et al. 1984), though thresholds of selection often vary by study (see Table 1 in 

Ungulate Winter Range Technical Advisory Team 2005). Adult survival rates are lowest in 

the winter as they face higher risk of starvation and predation (Kautz et al. 2019). Ungulates, 

particularly juveniles, need access to high-quality summer and fall forage to build up 

necessary fat reserves for the winter (Hurley et al. 2014). Adult deer are at the highest risk of 

dying of malnutrition in severe winters when limited access to forage depletes their fat stores 

before the onset of snowmelt (Parker et al. 1999, Kautz et al. 2019).  

Deer and elk sink deeper into snow than wolves (Canis lupus) and coyotes (Canis 

latrans) and thus have a more difficult time moving through the same snow while being 

pursued, which increases their risk of predation (Telfer and Kelsall 1984, Nelson and Mech 

1986, Horne et al. 2019). Depleted fat reserves and poor snow conditions in late winter can 

exacerbate difficulties with escaping predation (Mech et al. 2001, DelGiudice et al. 2002, 

Kautz et al. 2019), particularly because intermediate snow densities provide the greatest 

movement advantage to predators over deer (Telfer and Kelsall 1984). Mech et al. (2001) 

reported a wolf pack had a high hunting success rate in a severe winter with an early rain-on-

snow event that blocked forage access for the local elk herd. The milder winter the following 

year led to a decrease in the number of predation events, but it also led to a significant 

increase in predation on elk calves (Mech et al. 2001). Furthermore, females in poor body 

condition after a harsh winter may give birth to smaller fawns or calves, breed and give birth 

later in the year, or not breed at all (Horne et al. 2019). Juvenile ungulates, particularly 

smaller and younger individuals, have the highest winter mortality rate of any age class; at 

the same time, juvenile recruitment strongly influences population dynamics (Lukacs et al. 

2018, Horne et al. 2019). Thus, the effects of a harsh winter on a population may not become 

apparent until years later when reproductive or recruitment rates are low (Horne et al. 2019). 

Deer and elk are often managed post-winter using winter severity indices (WSIs), 

which quantify the difficulty of a winter in a particular study area using various 

hydrometeorological variables. The most common type of index such as the one by 

DelGiudice et al. (2002) scores each day based on if the snow depth exceeded a certain 

threshold and if its temperatures were lower than -17.7°C (0°F). The WSI is the sum of each 

day’s score (DelGiudice et al. 2002). Other WSIs may include additional parameters such as 

a snowfall parameter (Boustead et al. 2005) or air chill and snow compaction parameters 
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(Verme 1968), or they may use snow-water equivalent instead of snow depth (Dawe and 

Boutin 2012). These WSIs can be used to predict the health of herds in the spring and 

subsequently inform management actions such as the number of tags to allocate to hunters 

(Dawe and Boutin 2012). Climate change is expected to generally decrease snow depths and 

increase temperatures overwinter, which, according to existing WSIs, will suggest that 

winters are becoming more favorable for ungulates. However, increased incidence of rain-

on-snow (Knowles et al. 2006, Musselman et al. 2018) and freeze-thaw events (Masoero et 

al. 2020) and increased snowfall intensity (O’Gorman 2014) will alter snow density and 

hardness patterns, which may present new survival challenges to ungulates through increased 

energy expenditure during movement and decreased access to forage. Much attention has 

been paid to how deer and elk select habitats based on snow depth, but considerably less has 

been paid to how they select habitats based on snow density and hardness. Determining if 

and how ungulates select habitats based on the snow density and hardness will be crucial for 

effectively managing ungulates in a changing climate. 

The general scientific objective of this study is to determine relationships between 

managed wildlife species and environmental variables which are expected to vary in a 

changing climate. We deployed a stratified network of remote cameras in complex forested 

terrain to measure snow depth and detect ungulates and paired these observations with snow 

density and hardness measurements at the sites to determine if the probability of ungulate 

presence was affected by snow and temperature conditions. We hypothesized there would be 

a combination of snow property and temperature predictors to best explain the probability of 

deer and elk presence at the camera sites. We predicted snow depth and snow density would 

be negatively related to detection probability, while snow hardness and air temperature 

would be positively related. Our secondary objective was to determine if we could use only 

data from cameras and data that could be reasonably collected in the field to detect these 

patterns of habitat use. While biophysical models exist which can estimate distributed snow 

data (Liston and Elder 2006), we sought to determine if snow properties derived from more 

empirical methods would be sufficient to detect patterns in ungulate use. This research will 

provide insight into how climate changes and variability are expected to affect ungulates in 

regions undergoing a transition from snow- to rain-dominated precipitation regimes. 
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Study Area 

The study area for this project is the Palouse Range (hereafter Moscow Mountain) in 

Latah County, ID (Fig. 9). This field site was chosen because it has a wide variety of both 

topography and canopy cover in which to sample snow conditions and is conveniently 

located near the University of Idaho. Moscow Mountain has a network of 61 trails covering 

106 km (66 miles) with reasonable access over winter. 

Moscow Mountain spans approximately 800 to 1500 m above sea level. The forest 

cover is comprised of ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga 

menziesii) forests at low elevations and western red cedar (Thuja plicata) and fir (Abies sp.) 

forests at high elevations. The climate is characterized as continental-maritime comprised of 

generally Mediterranean conditions, with hot, dry summers and mild winters punctuated by 

periodic intrusions of cold air masses (Hubbart et al. 2007). Moscow Mountain receives an 

average of approximately 1060 mm of precipitation annually. The mean peak snow-water 

equivalent (SWE) for Moscow Mountain from water years 2001 – 2021 was 529 mm. In the 

winter 2020 – 2021 field season, the peak SWE was 594 mm, indicating the field season 

occurred in a snow year slightly above average. The peak SWE during the pilot field season 

in winter 2019-2020 was 518 mm, which is an average snow year for Moscow Mountain 

(USDA 2022). Moscow Mountain is also situated in the rain-snow transition zone of the 

Pacific Northwest, which is expected to undergo dramatic alterations to snow regimes in a 

changing climate (Klos et al. 2014, Marshall et al. 2019). 

 

Methods 

 

Snow Depth and Ungulate Detections from Cameras 

We deployed 138 camera stations from October 2020 – May 2021. We used 

Reconyx® Hyperfire™ I and II cameras. We programmed cameras to record one image each 

hour of the day, including night hours, so each camera recorded at least 24 images every day 

throughout its deployment. We also programmed the cameras to take motion-triggered 

images to capture wildlife detections. We set cameras to the highest sensitivity with 3 images 

taken per trigger and a 1-second delay between images. We retrieved cameras after all snow 

cover had melted at the camera site (April – May 2021).  
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We stratified camera sites by elevation, aspect, and canopy cover. Elevation was 

classified from <925 m, 925-1,050 m, 1,050-1,175 m, 1,175-1,300 m, and >1,300 m; aspect 

was classified as N, S, E, or W; and canopy cover was classified as “sparse” for canopy 

covers <35%, “moderate” for canopy covers between 35-75%, and “dense” for canopy 

covers >75%. We took canopy cover measurements using a densiometer. We quasi-randomly 

selected sites within each strata to permit reasonable access via existing trail and forest road 

networks. After all strata were sampled, we placed additional cameras in landscape 

concavities and canopy gaps which are expected to retain snow later in the year (Curtis et al. 

2014, Lawler and Link 2011). We also placed cameras at least 20 m away from other 

cameras given that snow conditions in complex terrains are often not correlated beyond this 

distance (Jost et al. 2007). 

On the deployment date, we recorded the height and direction of the camera and the 

latitude, longitude, and elevation. We mounted and locked cameras onto trees at a height of 

2–3 m to prevent snow from blocking the cameras. During camera deployment, we took 

reference images for superimposing a “virtual” snow stake (VSS) onto images to measure 

snow depth (Strickfaden et al., in review). We placed a reference snow stake with 2- and 10-

cm gradations at 5, 10, and 15 m within the viewshed of the camera, and we allowed the 

camera to take motion-triggered images. We took an additional set of reference images on 

camera retrieval to account for potential changes in the camera’s viewshed during its 

deployment. VSSs were then superimposed onto images using functions in the edger package 

(Strickfaden et al., in review). At a subset of cameras, we also installed a physical snow stake 

5-15 m from the camera which was composed of a 183 cm U-post driven into the ground and 

a 152cm section of PVC pipe. These were used to verify measurements taken with the VSSs. 

We marked white PVC every 2 cm with black permanent marker and every 10 cm with 

brightly colored electrical tape. We then fixed a pipe to a U-post with cable ties. When a 

physical snow stake was installed at the camera site, we recorded the camera’s horizontal 

distance to the physical snow stake. We maintained cameras throughout the season, 

coincident with snow density and hardness measurements, to change batteries, ensure proper 

function, and remove obstructing vegetation.  

We placed an external LogTag ® TRIX 8 temperature recorder (hereafter ‘LogTag’) 

at each camera station. We programmed the LogTags to record temperatures at 45-minute 
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intervals. The LogTags were housed inside of plastic protective coverings and radiation 

shields. Each radiation shield was comprised of 15 cm of PVC pipe covered in aluminum foil 

tape to reflect shortwave radiation and reduce longwave radiation loading. We drilled holes 

into the radiation shields to allow for increased air flow (Terando et al. 2017). We hung the 

LogTag in its housing at the same height as the camera on the north side of the tree or under 

canopy cover to minimize the potential impacts of direct shortwave radiation. If no branches 

meeting these criteria were available on the camera tree, we hung it on a nearby tree. 

We recorded snow presence, snow depth, and detections of wildlife in each image. 

We measured snow depth using any VSSs and physical snow stakes present in images. Snow 

depths sometimes exceeded 150 cm, which was the height of the snow stakes; if snow depth 

exceeded 150 cm, snow depth was recorded as “150+” until snow could be accurately 

measured again. We identified wildlife to species or genus or marked them as “unknown” if 

they could not be confidently identified. We processed images using Timelapse2 software 

(Greenberg 2020). 

 

Snow Density and Hardness Sampling 

We took snow density and hardness measurements at camera sites during the winter 

beginning in December 2020. We took measurements every few weeks as logistics allowed. 

We took density and hardness samples near the camera site in snow visually similar to the 

snow in the camera viewshed to prevent snow conditions from being disturbed beyond 

normal camera deployment.  

Snow density. We measured snow density with different samplers depending on snow depth. 

For snow depths <100 cm, we measured snow density using homemade samplers made of 3-

inch diameter PVC pipe (Hanson 2015). For snow depths >100 cm, we measured snow 

density using a federal snow sampler. The sampler was inserted into the snow to remove a 

snow core. We retained the core if the depth of snow in the sampler was at least 90% of the 

actual snow depth and the base of the snowpack had been reached as evidenced by litter or a 

soil plug at the base of the core. After we removed the soil plug, we weighed the core to 

determine its snow-water equivalent (SWE). We converted the SWE measured with the 

samplers into a density measurement by dividing the SWE by the snow depth. If a snow core 
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of adequate quality could not be obtained after several minutes of effort, we did not measure 

snow density on that sampling occasion.  

We interpolated snow density values measured in the field to estimate snow density 

in the days between measurements. On the first day of snowfall, or on the day of camera 

deployment if the camera was deployed while snow was already present, we set the snow 

density to 80 kg/m3 because this was the lowest snow density value recorded in field 

measurements. On the last day with snow cover, we set the snow density to 600 kg/m3. We 

then linearly interpolated these values and the snow density values measured in the field to 

estimate the snow density on all camera deployment days. Though we recognize linear 

interpolation may miss out on some of the complexities of changes in snow density, more 

nuanced estimation of snow density would require modeling which does not align with the 

goals of this study. 

Snow hardness. We measured snow hardness using a ram penetrometer or “ramsonde” 

(Snowmetrics; Fort Collins, CO). A ramsonde allows for an approximation of the amount of 

force needed to penetrate through layers of snow. A ramsonde is composed of a hammer, 

anvil, and tube. The hammer is dropped onto the anvil from a known height, and the depth to 

which the ramsonde penetrates the snow is recorded using gradations on the tube. Drops are 

performed until the ramsonde reaches the ground. Though the exact data recording process is 

subjective, data are typically recorded so the stratigraphy (layering) of the snowpack is 

captured. Ram resistance can be calculated for each snow layer using the equation 𝑅𝑅 =

10 ∗ (𝑇 + 𝐻 +  𝑛𝑓𝐻 𝑝⁄ ), where T is the weight of the tube, H is the weight of the hammer, n 

is the number of drops, f is the height of the drops, and p is the penetration increment 

(American Avalanche Association 2016). The resultant ram resistance serves as a proxy for 

snow hardness (true hardness of snow cannot be measured with a ramsonde because of its 

physical properties; K. Elder, pers. comm.). We followed this procedure to collect snow 

hardness samples on 596 sampling occasions. We calculated ram resistance for the individual 

snow layers in the three hardness samples collected on each sampling occasion.  

Takeuchi et al. (2007) derived an equation relating the hardness of snow to the 

snow’s percent water content (WC) and density. WC is the percent of the snow’s total water 

volume made up of liquid water, while density measures both liquid and frozen water. WC is 

related to snow hardness because liquid water breaks down the bonds between frozen water 
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particles. The following is the equation from Takeuchi et al. (2007; hereafter the Takeuchi 

equation), as translated by Ito et al. (2012): 

 𝐻 = 1.31 ∗  10ି଼ ∗  𝜌ସ ∗  𝑒ି଴.ଵ଼∗ௐ஼ Eqn. 1 

where H is the snow hardness (in kPa), ρ is the snow density (in kg/m3), and WC is the 

percent water content. This equation can then be rearranged to solve for WC. 

 
𝑊𝐶 =  

𝑙𝑛 ቀ𝐻
1.31 ∗  10ି଼ ∗  𝜌ସൗ ቁ

−0.18
 Eqn. 2 

Given a density sample and hardness profile for a camera site, this allows for the estimation 

of WC during each snow property sampling occasion. 

Because the Takeuchi equation estimates snow hardness in kPa, we converted the ram 

resistance of each snow layer into an approximation in kPa by dividing the ram resistance by 

1000 and then dividing again by the surface area of the conical head of the ramsonde, which 

is approximately 2.81 * 10-3 m2. Both Takeuchi et al. (2007) and Ito et al. (2012) used a 

push-pull gauge to measure snow hardness, which measures the maximum hardness needed 

to break through the snow. Therefore, we used the mean of the maximum ram resistance 

values recorded in the three snow hardness samples as the maximum ram resistance value for 

that sampling occasion. We used the maximum ram resistance and the bulk snow density 

value to solve for WC using the rearranged Takeuchi equation. It should be noted Ito et al. 

(2012) measured density and hardness along fixed depth intervals into a snowpack. However, 

because we measured bulk density and did not take ram resistance measurements at fixed 

depth intervals, we had to approximate WC for the entire snowpack. Ram resistance could be 

biased low if the final drop of the ramsonde hammer caused the ramsonde to break through a 

very hard ice layer to penetrate a deep soft layer below. This is not something for which we 

could reasonably account. 

This equation returned WC values <0 in 43% of observations, which is physically 

impossible. Ito et al. (2012) built their snow hardness equation using data collected in a 

highly controlled lab experiment over the course of only 2 days. The snowpack in our study 

experienced complex combinations of processes that would not be present in a short lab 

experiment, including both dry and wet snow metamorphism, compaction, canopy unloading, 

and wind scouring over a long period of time. These processes contributed to higher ram 
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resistance values than would be expected at a given snow density, which caused the 

rearranged Takeuchi equation to output negative WC values. It follows that the observations 

with negative WC values are those for which the effects of these other snow cohesion 

processes have overcome the effects of snow density and WC on snow hardness as described 

by Ito et al. (2012). Therefore, we will instead refer to WC as a “snow metamorphism index” 

(SMI), where a negative SMI indicates snowpacks in which bonds have formed between 

snow granules because of these metamorphic processes, while a positive SMI indicates 

snowpacks in which bonds between snow granules are actively weakening due to wet snow 

metamorphism. 

With these estimated SMI values on each sampling occasion, we built a suite of 

generalized linear models to predict SMI values from data collected at the camera sites. 

Variables included were the interpolated snow density; the air temperature at the time of the 

sample; a 12-, 24-, 48-, or 72-hour mean temperature before the sampling occasion; the 

number of freeze-thaw cycles that occurred in the 12, 24, 48, or 72 hours before the sampling 

occasion; the total number of freeze-thaw cycles that occurred before the sampling occasion; 

and whether it was precipitating during a sampling occasion. We defined a freeze-thaw cycle 

as a time interval in which both above-freezing and below-freezing temperatures were 

recorded. All temperature values used were those recorded by the LogTag rather than by the 

camera. We tested combinations of these variables and their interactions, and we selected the 

top model based on both its R2 value and its score using Akaike’s Information Criterion 

(AIC; Akaike 1973). Given the highly complex nature of snow hardness, we used many 

interactions in our models (Table S1). 

The GLM with the highest R2 value (R2 = 0.63) contained interactions between snow 

depth, snow density, air temperature at the time of the sample, the 48-hour mean temperature, 

total freeze-thaw cycles, and the precipitation indicator. However, the model with the second 

highest R2 value (R2 = 0.60) had the lowest AIC score of all tested models and had a 

considerably lower AIC score than the first model (ΔAIC = 38.77). Therefore, we decided 

this model had the most support and had an adequate fit. This model contained interactions 

between snow depth, snow density, air temperature at the time of the sample, the 48-hour 

mean air temperature, and total freeze-thaw cycles. Though the highly complex interactions 

make it difficult to determine the relative influence of each of these variables on predicted 
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maximum ram resistance, this is acceptable because these variables, except for snow density, 

may not be indicative of snow hardness out of the context of the other variables.  

The maximum ram resistance calculated with the predicted SMI values matched 

reasonably well with the measured maximum ram resistance at lower maximum ram 

resistance values but matched more poorly at higher maximum ram resistance values. When 

the true measured value was >100 kPa (n = 197), 52% of predicted values were less than half 

of their true measured values (Fig. 15). Conversely, when the true measured value was <100 

kPa (n = 337), only 9.8% of predicted values were less than half of their true measured value. 

Predictions were more than double their true measured value in 9.9% of observations, and 

predictions were only doubled at true measured values <100 kPa. Altogether, these results 

indicate this model of WC has a greater tendency to underestimate ram resistance. 

The GLM for SMI was applied to the camera data and used to predict ram resistance 

values. Some predicted ram resistance values exceeded a reasonable upper limit of 3,000 kPa 

for snow hardness (Höller and Fromm 2010). Predicted ram resistance values exceeding this 

upper limit were set to 3,000 kPa. Despite errors in the predictions at higher ram resistance 

values (>100 kPa), only 25% of all predicted ram resistance values were >100 kPa. These 

modeled ram resistance values are sufficient to begin to determine patterns between snow 

hardness and ungulate detection. 

 

Data Analysis 

We used logistic regression analysis to examine associations between snow and 

temperature conditions and ungulate presence at cameras. We grouped data by camera day. 

Snow depth, snow density, ram resistance, and air temperature from the LogTag were 

recorded as means for each data. We scaled predictors without centering before model fitting 

to make the estimates more comparable. We recorded ungulate presence as a 1 if a deer or 

elk was detected at any time on a day and as a 0 if no deer or elk were detected. Every model 

also included a random effect for camera site. We tested combinations of these predictors and 

interactions between them using the lme4 package (Bates et al. 2015) in the R programming 

language (R Core Team 2022), and we selected the best-fit model using AIC scores (Akaike 

1973). We also assessed the classification accuracy of the models using Area Under Curve 

(AUC; Hosmer and Lemeshow 2000) analysis with the pROC package (Robin et al. 2011). 
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We used DeLong’s test for ROC curves to determine significant differences between AUC 

scores (DeLong et al. 1988). Finally, we used analysis of variance (ANOVA) to assess the 

significance of the random effect. 

 

Results 

We used data from 134 of the 138 cameras deployed in 2020-2021. One camera was 

stolen, and two cameras malfunctioned. A fourth camera did not have a functioning LogTag 

accompanying it, so it was also excluded. We captured approximately 852,000 images with 

the remaining 134 cameras across 23,111 camera days. About 551,600 of these images were 

timelapse images, while 300,200 were motion-triggered images. We detected wildlife in 

33,158 images (Table S2). We detected 1,930 deer in 16,377 images distributed across 917 

camera days. We included 24 images of 6 individuals known to be in the Odocoileus genus 

but could not be identified to the species level. We only detected elk in 27 images with no 

snow. Thus, we excluded elk from our analysis and instead focused our analysis on deer 

presence at camera sites. The mean snow depth, snow density, and maximum ram resistance 

were 49.9 cm (SD = 44.7), 247.9 kg/m3 (SD = 130.3), and 68.1 kPa (SD = 87.9), respectively 

(Fig. S1). Though snow depth could only be measured to 150 cm from images, snow depths 

of up to 203 cm were recorded during snow density and hardness sampling.  

                                                       There were 3 competing logistic regressions describing daily probability of deer 

presence at cameras (Table 7). All three competing models contained snow depth, snow 

density, and an interaction between depth and density. Two of the top models also contained 

ram resistance, and one contained air temperature, though temperature was not a significant 

parameter in this model (p = 0.894). The model with the lowest AIC score contained snow 

depth, snow density, an interaction between depth and density, and ram resistance (Table 8). 

In this model, snow density and the interaction term were highly significant (p < 0.001 for 

both), snow depth was significant (p = 0.052), and ram resistance was marginally significant 

(p = 0.097; Fig. 16). The mean daily probability of deer presence when there was no snow 

was 0.16. For each 10 cm increase in snow depth, the probability of detecting a deer 

decreased by 12%. For each 50 kg/m3 increase in snow density, the probability of detecting a 

deer decreased by 9%. The rate of decrease in detection probability is greater at high values 

of depth or density than at low values as density or depth increase (Fig. 17). Finally, for each 
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50 kPa increase in ram resistance, the probability of detecting a deer increased by 3%. The 

ANOVA test on the top model with and without the random effect found the random effect 

for camera was significant (p < 0.001), and adding the random effect reduced the AIC score 

by 275 points. 

The single-variable model with the highest AUC score was the snow depth model, 

followed by snow density, ram resistance, and finally mean temperature. The AUCs of the 

three competing models were all around 0.885, indicating very high predictive power (Fig. 

18). These models all had significantly different AUC scores (p < 0.001) than a “status quo” 

model containing only snow depth and mean temperature (AUC = 0.873). This suggests the 

top models all were significantly better at predicting whether a deer was detected on a 

particular day than the status quo model.  

 

Discussion 

We found snow depth and density had strong negative effects on the probability of 

deer presence at camera sites, while maximum ram resistance (the proxy for snow hardness) 

had a slight positive effect on probability of deer presence. These findings suggest deer select 

for habitats to minimize their energy expenditure during movement. This is consistent with 

Parker et al. (1999), who found movement through snow and burial of forage by snow 

contributed 4.7 times more on average to energy expenditure in black-tailed deer (O. 

hemionus sitkensis) than cold temperatures. There was also considerable variability in 

probability of deer presence between camera sites which was captured by the random effect 

for camera in the models. This random effect could have been capturing factors such as home 

ranges of individual deer or deer groups on Moscow Mountain, the distribution of forage 

resources, and risk of predation for which we did not explicitly account. Despite the highly 

influential random effect, the three snow property parameters still had significant or 

marginally significant effects on probability of deer presence.  

Snow depths of 38 cm are often thought to represent an upper limit of snow depth 

beyond which deer will no longer select habitats. However, we detected 129 individual deer 

across 52 camera days in snow depths >38 cm, and we even detected 9 deer at snow depths 

>100 cm. When deer detections occurred at deeper snow depths, they occurred in one of 

three sets of conditions: 1) in early winter when the body condition of deer was at its highest 
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and they had sufficient energy to wade through deep snow, 2) on dense and hard snow in 

which sinking depths would be low, or 3) when deer could follow existing tracks which were 

functionally localized areas of hard-packed snow in otherwise softer snow. These 

observations highlight that snow depth alone is not always sufficient for determining deer 

habitat selection in the winter. 

We originally set out to examine the effects of snow conditions on both deer and elk. 

However, elk were rarely detected by our cameras and could not be included in our analysis. 

Elk in the study area likely move to lower-elevation agricultural fields with low snow depths 

and easier access to graze over winter (T. Link, pers. comm.). Associations of elk with snow 

density and hardness warrant further research in known elk winter range. We expect such 

research would discover a quadratic relationship between elk detection probability and snow 

density and hardness. Low values of density and hardness might be indicative of areas with 

greater foraging opportunity for grazers such as elk (Fortin et al. 2005), while high values of 

density and hardness would indicate areas of more efficient movement as was likely the case 

with deer. Mid-range values of density and hardness would provide poor conditions for either 

behavior because denser and harder snow is more difficult to move aside to access forage and 

also increases energy expenditure during movement. 

Deer may more easily be able to cope with changes in snow properties than elk. Deer 

and elk have similar indices of movement efficiency in snow according to Telfer and Kelsall 

(1984), but deer have a lower chest height and lower foot loading, while elk have a greater 

chest height and greater foot loading. Additionally, deer can splay their hooves to further 

reduce their foot loading whereas elk cannot (Parker et al. 1984). When snow is soft and 

powdery, elk have an easier time moving through the snow than deer because of their 

proportionally longer legs. However, when snow is dense and hard, deer have the advantage 

because their lower foot loading reduces their sinking depths (Parker et al. 1984). Elk prefer 

to graze (Christianson and Creel 2007), which forces them to dig through the snow (crater) to 

expose forage. When snow is very dense and hard, cratering may not be possible or worth the 

energetic cost (Skogland 1978). For that reason, rain-on-snow events are particularly 

problematic for elk, as they create hard frozen layers elk have difficulty cratering (Mech et 

al. 2001). Conversely, shrubs, tree limbs, lichens, and even some invasive plant species such 

as spotted knapweed (Centaurea stoebe) are often available above snow cover as forage for 
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browsers without much effort (Wright and Kelsey 1997, Christenson et al. 2014). White-

tailed deer have also been known to take advantage of hard and compacted snow to reach 

arboreal forage (Massé and Côté 2012). We did not find any documented accounts of elk 

using this foraging strategy. Altogether, these factors might suggest deer exhibit more plastic 

movement and foraging behaviors that give them an advantage in poor snow conditions over 

elk (Telfer and Kelsall 1984).  

All the variables used in the final model of probability of deer presence are variables 

which can be estimated or derived from camera data. We derived snow depth from hourly 

images taken by the cameras. Air temperature measurements of cameras which are not in 

direct sunlight are accurate to within 2°C of true air temperature about 66% of the time 

(Chapter 1B). Models exist which allow for the estimation of snow density based on day of 

year (Pistocchi 2016) or meteorological data (Meløysund et al. 2007). The most difficult 

parameter to estimate is ram resistance. Snow hardness is highly complex and can change 

drastically over the course of a day dependent on meteorological conditions. We were able to 

estimate maximum ram resistance for the purpose of this study using an empirical model, 

particularly when maximum ram resistance was <100 kPa. However, a single estimate of 

maximum ram resistance may not paint a complete picture of deer habitat use over winter. 

Deer may respond differently to hard crusts at the surface, middle, or bottom of a snowpack 

(Bunnell et al. 1990). Snow hardness may be a snow property which should be estimated 

using complex biophysical models, because these biophysical models would capture more of 

the snow’s stratigraphy and more accurately categorize very hard snowpacks. 

 

Conclusions 

Deer are an economically and ecologically important species in the Pacific Northwest 

that are often managed post-winter using winter severity indices including only snow depth 

and temperature. However, we found evidence deer also select habitats based on snow 

density and hardness. Habitat selection decisions by deer have important implications for 

their energy expenditure and forage intake over winter, which have cascading effects on their 

survival and reproduction. We were able to measure or estimate snow properties using 

remote cameras, which are a cost-effective tool already widely used for wildlife research. 

This presents the opportunity to estimate these crucial snow parameters on fine scales so that 
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they can be used to inform ungulate management in the changing climate of the rain-snow 

transition zone of the Pacific Northwest.  
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Figures and Tables 

Table 7. Top models for probability of deer presence on Moscow Mountain in Latah County, 
ID in winter 2020-2021. Only shown are models with wi > 0.01. 

Model Intercept df 

Log 

Likelihood AIC ΔAIC wi 

Depth * Density + Resistance -1.94 6 -2958.66 5929.33 0 0.41 

Depth * Density -1.93 5 -2959.90 5929.81 0.48 0.32 

Depth * Density + Resistance + 

AirTemp 

-1.94 7 -2958.66 5931.32 1.98 0.15 

Depth * Density + AirTemp -1.92 6 -2959.87 5931.74 2.41 0.12 

 
 
Table 8. Model coefficients and 95% confidence intervals (CI) for top logistic regression 
model of probability of deer presence on Moscow Mountain in Latah County, ID in winter 
2020-2021. Estimates and CIs are presented as odds ratios. 

Coefficient Estimate Low 95% CI High 95% CI P-Value 

Intercept 0.144 0.118 0.174 <0.001 

Depth 0.564 0.314 1.013 0.052 

Density 0.782 0.732 0.834 <0.001 

Resistance 1.058 0.985 1.128 0.097 

Depth:Density 0.355 0.251 0.496 <0.001 
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Fig. 9. Camera locations on Moscow Mountain in Latah County, ID in winter 2020-2021. 
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Fig. 15. A) Estimated snow metamorphism index (SMI) versus predicted SMI from a 
generalized linear model and B) actual ram resistance from field measurements versus 
predicted maximum ram resistance using the predicted SMI values. The black line is a 1:1 
line indicating perfect prediction, while the red line is the best-fit line. 
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Fig. 16. Mean estimates and 95% confidence intervals for odds ratios of scaled variables in 
top model of probability of deer presence on Moscow Mountain in Latah County, ID in 
winter 2020-2021. When variables are scaled, the scalar is provided in the text box above 
each error bar along with the mean estimate. The dashed line shows where no change in odds 
occurs. 
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Fig. 17. Predicted probabilities of deer presence on Moscow Mountain in Latah County, ID 
in winter 2020-2021. Sub-plots are different levels of maximum ram resistance (in 
kilopascals). 
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Fig. 18. P-values of differences between AUC scores of two models according to DeLong’s 
test for Receiver Operating Characteristic (ROC) curves for models of probability of deer 
presence on Moscow Mountain in Latah County, ID in 2020-2021. Zeroes indicate p-values 
< 0.001. 

 



 
 

Appendix A: Supplemental Information for Chapter 3 

 

Table S1. Models of snow metamorphism index (SMI) used for approximating ram resistance from remote camera data. 

Model Intercept df 

Log 

Likelihood AIC ΔAIC wi R2 

AirTemp * Depth * Density * MeanTemp48 * TotalFT -20.77 33 -1504.21 3078.92 0.00 1.00 0.61 

AirTemp * Depth + Density * MeanTemp48 * TotalFT * Precip -13.10 20 -1524.74 3091.11 12.19 0.00 0.58 

AirTemp * Depth + Density * MeanTemp48 * TotalFT -14.62 12 -1534.33 3093.26 14.35 0.00 0.56 

AirTemp * Depth * Density * MeanTemp48 + TotalFT * Precip -13.79 20 -1525.94 3093.51 14.59 0.00 0.58 

AirTemp * Depth * Density * MeanTemp48 + TotalFT -15.24 18 -1529.73 3096.78 17.87 0.00 0.57 

AirTemp * Depth * Density + MeanTemp48 + TotalFT * Precip -17.43 13 -1540.35 3107.40 28.49 0.00 0.55 

AirTemp * Depth * Density + MeanTemp48 * TotalFT * Precip -17.19 16 -1537.73 3108.51 29.59 0.00 0.56 

AirTemp * Depth * Density + MeanTemp48 * TotalFT -19.15 12 -1542.53 3109.65 30.74 0.00 0.55 

AirTemp * Depth + Density * MeanTemp48 + TotalFT * Precip -10.50 11 -1544.55 3111.60 32.68 0.00 0.55 

AirTemp * Density * MeanTemp48 * TotalFT -13.19 17 -1538.32 3111.82 32.91 0.00 0.56 

AirTemp * Depth * Density + MeanTemp48 + TotalFT -19.50 11 -1545.48 3113.47 34.55 0.00 0.54 

AirTemp * Depth * Density * MeanTemp48 * TotalFT * Precip -15.63 65 -1484.64 3117.62 38.70 0.00 0.64 

AirTemp * Density * MeanTemp48 * TotalFT * Precip -10.83 33 -1523.92 3118.34 39.42 0.00 0.58 

AirTemp * Depth + Density * MeanTemp48 + TotalFT -11.50 9 -1551.29 3120.92 42.01 0.00 0.53 

AirTemp * Density * MeanTemp48 + TotalFT * Precip -11.06 12 -1552.44 3129.48 50.56 0.00 0.53 

AirTemp * Density * MeanTemp48 + TotalFT -11.89 10 -1557.41 3135.25 56.33 0.00 0.52 

98 



 
 

AirTemp * Density + MeanTemp48 + TotalFT * Precip -12.54 9 -1563.38 3145.11 66.19 0.00 0.51 

AirTemp * Density + MeanTemp48 * TotalFT * Precip -12.47 12 -1561.89 3148.38 69.46 0.00 0.52 

AirTemp * Depth + Density + MeanTemp48 * TotalFT * Precip -10.97 13 -1560.90 3148.50 69.58 0.00 0.52 

AirTemp * Density + MeanTemp48 * TotalFT -13.81 8 -1568.76 3153.79 74.87 0.00 0.50 

AirTemp * Density + MeanTemp48 + TotalFT -13.91 7 -1570.30 3154.81 75.89 0.00 0.50 

AirTemp * Depth + Density + MeanTemp48 + TotalFT * Precip -10.73 10 -1569.40 3159.21 80.29 0.00 0.50 

AirTemp * Depth + Density + MeanTemp48 * TotalFT -12.43 9 -1571.93 3162.20 83.28 0.00 0.50 

AirTemp * Depth + Density + MeanTemp48 + TotalFT -12.36 8 -1583.52 3183.32 104.41 0.00 0.48 

99 
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Table S2. Summary of wildlife detections on Moscow Mountain in Latah County, ID in 
winter 2020-2021. 
 

 

Species Individuals Images 

White-tailed Deer (Odocoileus virginianus) 1,788 15,331 

Mule Deer (Odocoileus hemionus) 136 1,022 

Odocoileus spp. 6 24 

Rocky Mountain Elk (Cervus canadensis nelsoni) 2 18 

Moose (Alces alces) 523 11,902 

Cougar (Puma concolor) 2 8 

Coyote (Canis latrans) 226 930 

Bobcat (Lynx rufus) 30 142 

Snowshoe Hare (Lepus americanus) 705 2,330 

American Red Squirrel (Tamiasciurus hudsonicus) 100 290 

North American Porcupine (Erethizon dorsatum) 8 42 

Raccoon (Procyon lotor) 3 11 

River otter (Lontra canadensis) 1 2 

Mouse/vole spp. 1 1 

Wild Turkey (Meleagris galloparvo) 172 873 

Grouse (Phaseanidae spp.) 3 6 

Other bird spp. 17 50 

Unknown 16 176 

TOTAL 3,739 33,158 
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Fig. S1. Density plots of A) snow depth, B) snow density, C) max ram resistance, and D) 

mean temperature on all days (black lines) and on days with deer detections (orange lines). 

 

  


