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Abstract 

The purpose of this study was to investigate the utility of exploratory analytical techniques 

using publically available data in informing interventions in case of outbreaks infectious 

diseases. More exactly, spatiotemporal and multivariate methods were used to characterize the 

dynamics of the Ebola Virus Disease (EVD) epidemic in West Africa, and propose plausible 

relationships with demographic/social risk factors. The analysis showed that there was 

significant spatial, temporal, and spatiotemporal dependence in the evolution of the disease. 

For the first part of the epidemic, the cases were highly clustered in a few administrative 

units, in the proximity of the point of origin of the outbreak, possibly offering the opportunity 

to stop the spread of the disease. Later in the epidemic, high clusters were observed, but only 

in Liberia and Sierra Leone. The spatial-temporal models suggested that Montserrado area 

was a source of new cases for the neighboring areas, while NW Sierra Leone region was a 

sink for new cases from the neighboring areas. Also, there were region-specific population 

responses to the outbreak. Social attributes effects were significant - although small – pointing 

towards the importance of hypothesized social attributes of the population in the outbreak 

dynamics. Overall, the analysis suggests that infrastructure, access to and use of health 

services, and connectivity possibly accelerated and magnified the spread of EVD. The spatial, 

temporal, and spatiotemporal patterns of epidemic can be clearly shown – with evident 

application in the early stages of management of epidemics. Moreover, spatial-temporal 

models with fairly high predictive power could have been proposed even during the peak of 

the EVD epidemic – given that the data were available. But these efforts were not possible 

due to limited access or absence of quality data. While many of these deficiencies might have 

been unavoidable due to the severity of the epidemic and the limited resources of both 

affected countries and intervening agencies, open access to quality data, integration of local 

knowledge and customs, and continuous monitoring at the lowest spatiotemporal resolution 

possible during outbreaks might be useful, save time, resources, and allow for more effective 

decision support tools to be created in real time in the future. There are six supplemental 

information (SI) files: SI 1 covers the methodology for the case counts calculations. SI 2-4 

covers the local spatial autocorrelation analysis for the three distance matrices considered. SI 

5 presents the prospective spatiotemporal clustering analysis, and SI6 presents the complete 

spatiotemporal modeling results. 
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CHAPTER 1 

AN EXPLORATION OF THE SPATIOTEMPORAL PATTERNS OF EBOLA VIRUS 

DISEASE EPIDEMIC IN WEST AFRICA 

1.1. Introduction 

The West African Ebola epidemic of 2014 - the largest in history - arose in a much 

different cultural setting than previous outbreaks. Previous outbreaks had occurred in isolated 

villages, whose people had experience with Ebola and were unlikely to travel great distances 

to seek medical care. In contrast, continuous movement of people from their villages (even 

while very sick), across borders from Guinea to either Sierra Leone or Liberia, and into urban 

centers, drove the rapid spread of Ebola to neighboring West African countries, into cities, in 

a matter of days (WHO, 2016a). Over three years, 28,616 confirmed, probable, and suspected 

cases have been reported in West Africa, resulting in 11,310 deaths (WHO, 2016a). The 

magnitude of this epidemic and the difficulty containing it suggests the need for better 

understanding of dynamics of the Ebola Virus Disease (EVD). 

While it is well recognized that interventions such as isolation of patients and safe and 

sanitary funerals and burials played a vital role in controlling the epidemic, as did the people’s 

own adaptation (Chowell and Nishiura, 2014; Richards, 2015; Rivers et al., 2014), the 

purpose of this study was to investigate if exploratory analytical techniques using publically 

available data can provide insights into epidemic dynamics. The analysis of spatiotemporal-

distributed disease data can be used to identify the presence or absence of areas with 

significant differences in risk (Sherman et al., 2014), identify possible periodical patterns in 

the behavior of the disease (Marek et al., 2015), and propose effective responses to outbreaks 

(Martins-Melo et al., 2012). Thus, spatial, temporal, and spatiotemporal analysis were used to 

assess the patterns of the EVD epidemic, identify the areas and time intervals of high risk, and 

identify the associated risk factors which can influence the risk of infection.  

The paper is structured as follows: Section 1.2 describes the data processing and the 

statistical methodology. Section 1.3 presents the results of my analysis. Section 1.4 discuss 

the results, while section 1.5 contains the recommendations and conclusions.  
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1.2. Methods 

1.2.1. Data processing and description 

To calculate the daily and weekly number of cases in each administrative district, a 

dataset provided by OCHA ROWCA on the Humanitarian Data Exchange (HDX, 2015), that 

compiled the number of cases released by various sources including the WHO, national health 

ministries, and other sources was used. The dataset recorded daily cumulative total, 

confirmed, probable and suspected cases, as well as new cases and the number of deaths from 

March 24, 2014, up to March 28, 2015. The records cover six countries in West Africa: 

Guinea, Liberia, Mali, Nigeria, Senegal, and Sierra Leone, at various administrative units’ 

levels.  

For the study, the most severely affected countries by the EVD epidemic were 

selected: Guinea, Liberia, and Sierra Leone, with a total of 63 administrative units. Additional 

data was collected from published reports (Fink and Sheri, 2014; HumanitarianResponse, 

2016; WHO, 2016b). As a result, the coverage of the case counts was extended, and some of 

the missing entries (June 2014 -August 2014), and errors (end of 2014 – beginning of 2015) 

were corrected. Figure 1.1 shows the weekly case counts based on the original and appended 

datasets. Supplementary material file S1 describes briefly the method used in calculating the 

case counts. The final datasets had daily and weekly Ebola virus counts and rates for the three 

  

Figure 1.1: Weekly case counts calculated from the original dataset (left), and calculated 

from the appended dataset (right). 

 



3 
 

West African countries (aggregated over 63 administrative units) from December 06, 2013 to 

March 28, 2015. 

1.2.2. Spatial analysis 

Spatial analysis methods were used to evaluate the geographical distribution of the 

weekly Ebola infection rates. The administrative units from which the case counts were 

recorded were considered the units for the analysis.  

The presence of spatial dependence was assessed using Global and Local Moran’s I 

indexes for each of the 70 weeks of the epidemic considered in our dataset. The rates of 

infection were used instead of case counts since, generally, the number of cases is correlated 

to the underlying population size, and sometimes spatial autocorrelation may be detected only 

as an artifact of the spatial distribution of the population (Bivand et al., 2008). For the local 

Moran’s I analysis, Holm p-value adjustments were used to assess the significance of each 

test (Brunsdon and Comber, 2015). 

In the analysis, three distance measures were considered: first two are commonly used 

in spatial analysis: a contiguity based neighbors matrix, and a centroid based distance matrix 

(Bivand et al., 2008). Since it was suggested that the dispersal of Ebola virus is supported by 

the proximity of infected people to main roads (Hui-Jun et al., 2015), a population-weighted 

road distance matrix (Mitze, 2012) was also considered as the third distance matrix. To 

calculate the population-weighted road distance matrix, a list of major cities with their 

complementary population sizes for the three states considered was compiled from various 

internet sources (Brinkhoff, 2015; Wikipedia, 2015), but not limited to them. The web-based 

information available for these countries is scarce, inconsistent, and the town names were 

often different from source to source. In the end, a list of 83 cities from across all 

administrative units was compiled. The road-based distances (in km) between all them was 

calculated using the ggmap function in R (Kahle and Wickham, 2013) and Google Maps for 

the city pairs unrecognized by the R package. The population-weighted distances between 

administrative units were calculated as described by Mitze (Mitze, 2012). 

The contiguity based weight matrix was row-standardized, and inverse-distance 

weight matrices were generated for the centroid and road distances. The analysis was 
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conducted in R-language (R Core Team, 2016), using the R packages PBS mapping, 

spdep, and ape (Bivand and Piras, 2015; Paradis et al., 2004; Schnute et al., 2015). 

1.2.3. Temporal analysis 

To test for temporal dependence, a multivariate ARMAX model was considered 

(Shumway and Stoffer, 2011). The multivariate ARMAX model expressed the counts of new 

Ebola cases, in a given administrative unit, as a linear combination of the trend and past 

counts of Ebola cases in all the other administrative units. 

The case counts at time 𝑡 were expressed as: 

 𝑦𝑡,𝑖 =∝𝑖+ 𝛽𝑖𝑡 + ∑ (𝜙𝑖,𝑖𝑦𝑡−𝑘,𝑖 + ∑ 𝜙𝑖,𝑗𝑦𝑡−𝑘,𝑗
𝑁
𝑗=1 ) + 𝑤𝑡,𝑖

𝐾
𝑘=1  (1) 

for each of the 𝑖 = 1, 2, … , 𝑁 administrative units.  

Where: 𝑘 = 1,2, … , 𝐾 is the k-order time lag. 𝑗 = 1,2, … , 𝑁 indicates the administrative units 

𝑗 ≠ 𝑖. 𝑦𝑡,𝑖 represents the case counts at time t and location i. 𝑦𝑡−𝑘,𝑖 and 𝑦𝑡−𝑘,𝑗 are the case 

counts at time t-k and locations i and j, respectively. And 𝑤𝑡,𝑖 term represents correlations 

between the residuals over the locations i. Residual are assumed to be independent over time.  

The analysis was conducted in R-language (R Core Team, 2016), using the R package 

vars (Pfaff, 2008a, b). Model residuals were checked to see if they fit the model 

assumptions: tests for the absence of serial correlation (Portmanteau test), heteroscedasticity 

(multivariate ARCH test), and normality (Jarque-Bera test). Non-normality and conditional 

heteroscedasticity are not often a concern for the validity of the models, especially in this case 

where the model was not considered final, but may help better the model deficiencies and the 

underlying properties of the data (Luetkepohl, 2011).  

1.2.4. Spatial-temporal analysis 

A third exploratory analytical approach looks at the retrospective spatiotemporal 

cluster analysis for the high and low incidence of the weekly Poisson-distributed count cases 

at each location. An analysis was conducted using the SaTScan software for the spatial and 

space-time scan statistics (Kulldorff, 2009).  
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For each location and time step, the scan analysis expects, under the null hypothesis, 

that the number of cases is proportional to the administrative unit population size. The 

alternate hypothesis is that there is an elevated risk within the scanning window as compared 

to outside (Kulldorff, 1997, 2009; Kulldorff et al., 1998). A maximum likelihood ratio test 

statistic and a p-value are calculated using Monte Carlo integration (for this study set at 

9999). Identified clusters are ordered based on their likelihood ratio test values (Kulldorff, 

1997, 2009). The program scans for clusters of geographical size between zero and some 

user-defined upper limit, called population at risk. The authors recommend to use values of 

50% for the upper limit of the population at risk especially when in doubt. It should be noted 

that population at risk is not referring to susceptible as defined in SIR models, but rather as a 

geographical susceptibility. In the current research, several upper limits of the percent of 

population at risk (10 to 50%) were tested, and the results were compared.   

Further, the usefulness of the spatial-temporal analysis for real-time prioritization of 

interventions was evaluated. To do so, prospective spatial-temporal analyses were conducted 

at monthly intervals, starting with week six of the epidemic. The prospective analysis 

identifies spatial-temporal clusters that are current, i.e. 

existent (or “live”) at the end date of the dataset 

analyzed.  

1.3. Results 

1.3.1 Spatial analysis 

Global Moran’s I: Figure 1.2 presents a summary of 

the global Moran’s I values over the 70 week period. 

Each pair of plots for the three weight matrices 

indicate the changes in the global Moran’s I values, the 

p-value and the 0.05 level of significance line over 

time. For all distance matrices considered, we observe 

a pattern of alternating significant positive 

autocorrelation with non-significant autocorrelation.  

Moran’s I values tend to increase over time, indicating 

an increase in the spatial autocorrelation as the disease 

 

Figure 1.2: Global Moran’s I values 

(top) and p-values (bottom) for 

contiguity (black), centroid (dark 

grey) and road (light grey) distance 

matrices. 
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evolved, and intervention measures take place. Moran’s I values ranged from -0.03 to about 

0.2 for the centroid and road distance matrices, and from -0.04 to 0.63 for the contiguity 

weight matrix. Week 30 in the epidemic period seem to be the first week with significant 

positive autocorrelation for all weight matrices.  

Local Moran’s I: The complete local Moran’s I analysis can be found in Supplementary 

material files S2 to S4.  Due to the low number of administrative units with non-zero cases, 

 

Figure 1.3: Local Moran’s I values for the contiguity, centroid and road distances (left to 

right columns), for weeks 27, 43, and 66 (top to bottom rows). Yellow circles indicate 

districts with Local Moran’s I p-values (Holm’s method) <0.05. 
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until week 27 there were only a few time periods when local Moran’s I values could be 

calculated.  Overall, the results for all weight matrices were similar, but the clusters for the 

population-weighted road distance were less significant. Figure 1.3 shows the local Moran’s I 

plots (p values are not shown) for three representative time periods. Initially, there is a cluster 

of the disease around three administrative units, Gueckedou and Macenta (Guinea), then in 

Lofa (Liberia). From week 27 to week 32-33 a hot spot of the epidemic can be identified at 

the border area of the three countries Kailahun (Sierra Leone), Lofa (Liberia) and Gueckedou 

(Guinea). The disease seems still localized in that area (surrounding counties have very 

dissimilar values). Up to week 40, the epidemic continues to be mainly clustered in the tri-

state area, but significant values can be observed in Liberia, in the Montserrado area which 

becomes the center of a cluster of the Liberia outbreak, on and off until week 63. From week 

51 until the end of the covered epidemic period, another cluster of significant autocorrelation 

can be observed in the NW region of Sierra Leone (Port Loko, Bombali, and Kambia).  

Overall, the local spatial analysis highlights the initial cluster of the Ebola epidemic in 

the tri-state area, followed by a second cluster in Liberia, and a third in the NW Guinea. The 

results indicate that for several weeks, the outbreak was fairly localized, but later as it spread 

in West Africa, affected more heavily the highly populated areas, and their neighbors. A 

cluster of similar low values can be seen in the NE of Guinea almost for the entire duration of 

the epidemic. 

1.3.2 Temporal analysis 

The analysis was conducted for the daily cases data with maximum time lag of five 

days. Bigger time lags could not be tested due to overfitting. The analysis for weekly cases 

data could not be fit due to overfitting, while the model for the weekly infection rates leads to 

computational errors. 

Most models for the daily cases data with time lags of five days had multiple R-

squared values above 85%, and only one administrative unit showed nonsignificant temporal 

dependence (Dinguiraye). The models with higher time lags performed better than the ones 

with lower lags. The complete temporal analysis is available by request. The hypothesis of no 

serial correlation was rejected, suggesting that the model does not fully capture the temporal 
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dependence component. Also, the hypothesis of normality was rejected, while the 

heteroscedasticity test could not be performed due to overfitting.  

1.3.3. Spatiotemporal analysis 

The results of the 20% and 50% 

population at risk spatiotemporal clustering 

analysis are shown in Figure 1.4 and for 10% 

to 50% population at risk in Table 1.1. The 

choice of different percentages of the 

population at risk yielded a wide range of 

number of clusters, from eleven to one 

cluster(s) for 10% and 50% population at risk, 

respectively. However, regardless of the values 

considered, we see clusters of significantly 

higher than expected case counts centered on 

Liberia and Sierra Leone from week 35 to 64, 

and clusters of significantly lower than 

expected case counts in the first 35 weeks 

centered in Guinea, and along the border of the 

affected area. The same pattern was observed 

in the local spatial analysis, with the outbreak 

moving from the point of origin (in the tri-state 

area) directionally towards parts of Liberia and 

Sierra Leone. Looking at the results of the 20% 

population at risk clustering analysis, two 

stages of the epidemic can be distinguished: 

First, two clusters of significantly lower case 

counts for weeks one to 36 (clusters 3 and 4), followed by two high case counts clusters in 

Liberia for weeks 36 to 53 (clusters 2 and 5), and by one high case counts cluster in Sierra 

Leone for weeks 43 to 65 (cluster 1). The same pattern was observed during the spatial 

analysis, with an initial period when the outbreak was highly localized, followed by an 

  

Figure 1.4: Retrospective space-time 

clusters for 20% (top) and – 50% (bottom) 

population at risk. 
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explosion of cases in Liberia, and then in Sierra Leone. If we examine the 50% population at Table 1.1: Spatiotemporal clusters 

Cluster Administrative units Weeks Observed 

/expected 

cases ratio 

Log 

Likelihood 

ratio 

p-value 

10% population at risk 

1. Montserrado, Bomi, Margibi 39 to 53 14.01 9688.80 <0.001 

2. Western Rural, Western Urban, Port Loko 41 to 68 8.83 8750.47 <0.001 

3. Tonkolili, Bombali, Bo,  Moyamba 43 to 56 5.71 2016.15 <0.001 

4. Dalaba, Pita, Labe, Mamou, Lelouma, Tougue, Koubia, 

Kindia 

1 to 35 0 1210.20 <0.001 

5. Lofa, Macenta 36 to 51 6.71 1187.39 <0.001 

6. Kankan, Kerouane, Mandiana, Kouroussa, Kissidougou, 

Beyla 

1 to 35 0.0059 1182.84 <0.001 

7. Nimba, Yamou, Bong, Grand Gedeh, River Cess, 

Nzerekore, Grand Bassa 

1 to 34 0.0073 1066.95 <0.001 

8. Boke, Boffa, Fria, Telimele, Gaoual, Dubreka 1 to 35 0.041 828.11 <0.001 

9. Conakry 1 to 35 0.059 824.36 <0.001 

10. Kono, Gueckedou, Kailahun, Kenema 30 to 64 2.21 533.95 <0.001 

11. Forecariah, Kambia, Coyah 1 to 35 0.0020 488.15 <0.001 

20% population at risk 

1. Port Loko, Kambia, Western Rural, Western Urban, 

Moyamba, Forecariah, Bombali, Tonkolili 

43 to 65 6.78 9921.75 <0.001 

2. Montserrado, Bomi, Margibi 39 to 53 14.01 9688.80 <0.001 

3. Siguiri, Dinguiraye, Mandiana, Kouroussa, Kankan, 

Dabola, Tougue, Faranah, Koubia, Kerouane, 

Kissidougou, Mamou, Mali 

1 to 35 0.0042 2426.32 <0.001 

4. Boffa, Fria, Dubreka, Boke, Telimele, Conakry, Coyah, 

Kindia 

2 to 36 0.045 2027.60 <0.001 

5. Macenta, Lofa 36 to 51 6.71 1187.39 <0.001 

30% population at risk 

1. Pujehun, Grand Cape Mount, Bonthe, Bo, Kenema, Bomi, 

Moyamba, Kailahun, Montserrado, Gbarpolu, Tonkolili, 

Margibi, Kono, Western Rural,  Port Loko, Lofa 

35 to 64 4.93 14407.70 <0.001 

2. Dinguiraye, Tougue, Dabola, Koubia, Kouroussa, Siguiri, 

Mali, Mamou, Dalaba, Labe, Faranah, Lelouma, Pita, 

Kankan, Mandiana, Koinadugu, Kissidougou, Kindia, 

Koundara, Gaoual 

1 to 35 0.0029 3647.86 <0.001 

40% population at risk 

1. Pujehun, Grand Cape Mount, Bonthe, Bo, Kenema, Bomi, 

Moyamba, Kailahun, Montserrado, Gbarpolu, Tonkolili, 

Margibi, Kono, Western Rural, Port Loko, Lofa, 

Gueckedou, Bong, Western Urban, Grand Bassa, Bombali 

35 to 64 4.78 21808.09 <0.001 

50% population at risk 

1. Kenema, Bo, Kailahun, Pujehun, Kono, Grand Cape 

Mount, Tonkolili, Gbarpolu, Bonthe, Gueckedou, 

Moyamba, Bomi, Lofa, Koinadugu, Montserrado, 

Bombali, Margibi, Port Loko, Kissidougou, Bong, 

Western Rural, Macenta, Kambia, Western Urban 

37 to 64 4.72 22969.37 <0.001 
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risk results, we see one high case counts cluster over the Liberia and Sierra Leone.  

The prospective clustering analysis at various time periods during the epidemic is presented in 

Supplementary material file S5. Table 1.2 summarizes the counties in high clusters in the 

prospective spatial-temporal analysis. Five of the six initial counties in high clusters are still 

present in high clusters at the end of the study period. Also, at least 50% of counties in a 

“live” high cluster at the end of the month are still in a high cluster a month later.   

 

 

Table 1.2: Counties in high observed/expected clusters (black) at the end of the time 

period 

County/week 14 18 22 26 30 34 38 42 46 50 54 58 62 

Beyla 
  

v v 
   

v 
     

BoCounty 
    

v v v v v v v v v 

Boffa 
    

v v 
       

Bombali 
        

v v v v v 

Bomi 
     

v v v v v v v v 

Bong 
      

v v 
 

v v v v 

Bonthe 
      

v 
      

Conakry 
  

v v v 
 

v 
      

Coyah 
        

v 
 

v 
  

Dubreka 
    

v v 
       

Fria 
    

v v 
       

Gbarpolu 
 

v 
  

v v v v v v 
   

Grand_Bassa 
      

v 
 

v v v v 
 

GrandCape 
       

v 
   

v v 

GrandGedeh 
         

v v v 
 

Gueckedou v v v v v v v 
 

v v v v 
 

Kailahun 
    

v v v v v v v v 
 

Kambia 
        

v 
    

Kankan 
             

Kenema 
    

v v v v v v v v 
 

Kerouane v 
            

Koinadugu 
           

v 
 

Kono 
      

v 
   

v v v 

Lofa v v v v v v v v v v v v v 

Lola 
  

v v 
   

v 
     

Macenta v v v v v v 
 

v v v v v v 

Margibi 
      

v v v v v v v 

Montserrado 
     

v v 
 

v v v v v 

Moyamba 
      

v v 
 

v v v v 

Nimba 
      

v 
  

v v v v 

Nzerekore v 
 

v v 
   

v 
 

v v v 
 

Port_Loko 
      

v v v v v v v 

RiverCess 
         

v v v 
 

Telimele 
    

v v 
       

Tonkolili 
        

v v v v v 

Western_area_rural 
      

v v 
 

v v v v 

Western_area_urban 
       

v 
 

v v v v 

Yomou v 
 

v v 
  

v v 
 

v v v v 

Percent* 0.50 0.75 1 0.5 0.92 0.61 0.63 0.5 0.87 0.96 0.96 0.68 0.82 

*Percent of counties that remains in a high cluster at the end of the next prospective analysis 

Black indicates that the county is in a high observed/expected cluster at the end of the time period 
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1.4. Discussion 

1.4.1 Spatial analysis 

Global Moran’s I: The selection of the “best” weight matrix was data-driven (Dray et al., 

2006). The contiguity matrix lead to the best model performance or best Moran’s I (Getis and 

Aldstadt, 2004). The contiguity matrix also satisfied other proposed recommendations, such 

as: (1) under-specified matrices (fewer neighbors) should be preferred instead of over-

specified weight matrices (extra neighbors), and (2) variables showing a good deal of local 

spatial heterogeneity should probably be modeled by fewer links in weight matrix (Getis and 

Aldstadt, 2004). The selection of the contiguity matrix as the “best” should be interpreted 

with caution, since Moran’s I test can incorrectly suggest the presence of spatial 

autocorrelation in the presence of other effects (Bivand et al., 2008; Viton, 2010)(Viton, 

2010).  

Assuming that the contiguity matrix is capturing the spatial autocorrelation most 

accurately, the global Moran’s I analysis indicates high spatial heterogeneity (since each 

county is more alike its neighbors – with little influence from more distant districts). This may 

be an indicator of movement primarily occurring within neighboring counties, which lead to a 

spatial aggregation of cases. The pattern of alternating significant positive autocorrelation, 

where there was an EVD emergence shortly followed by a EVD diffusion (non-significant 

autocorrelation), may suggest several things: (1) people were leaving the high-risk areas, as 

soon as the disease re-emerged, (2) localized medical response targeted preferentially, and 

effectively, the re-emergence areas or (3) it is an artifact due to timing of case reporting. In 

time, there is an overall positive trend in the global Moran’s I values. This suggests that, as 

efforts were increasingly directed towards the treatment and prevention of the disease, the 

new outbreaks became more localized – a possible indicator that the intervention efforts were 

effective.  

Since it was suggested that the dispersal of Ebola virus was supported by the 

proximity of infected people to main roads (Hui-Jun et al., 2015), the population-weighted 

road distance weight matrix was expected to yield the highest Moran’s I values (i.e. had the 

best explanatory power). Instead, the contiguity matrix lead to higher Moran’s I values. The 

global spatial analysis did not support or negate this hypothesis, but it suggested that it is 
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more plausible that there were other risk factors than main road proximity facilitating the 

spread of the EVD. For example, patterns of marriages and family ties may not adhere to the 

infrastructure in the region, and hence the transmission patterns in rural areas could have 

followed these family connections through rough and sometime treacherous routes (Richards, 

2015). 

Local Moran’s I: Overall, the results for all weight matrices were similar. But the clusters for 

the population-weighted road distance were less significant. It suggests the for this particular 

weight matrix, the underlying process was more stable (homogeneous) within the data, and 

the local values had about the same contribution to the global statistic. This suggests that the 

proximity to main roads probably was a factor of risk, but, as suggested by the global spatial 

analysis, was not the only factor (i.e., population size played also a role, as expected).  

The local spatial analysis highlights the initial cluster of the Ebola epidemic in the tri-

state area, followed by a second cluster in Liberia, and a third in the NW Guinea. The results 

indicate that for several weeks, the outbreak was fairly localized, but later as it spread in West 

Africa, affected more heavily the highly populated areas, and their neighbors. A cluster of 

similar low values can be seen in the NE of Guinea almost for the entire duration of the 

epidemic. 

A significant result proposed by the local spatial analysis was that for several weeks 

the disease was fairly localized in the tri-state area. This can be interpreted in two ways: (1) it 

is possible that there was an opportunity to contain the outbreak for a fairly large period of 

time, or (2) despite the sustained efforts to contain the initial outbreak, the EVD broke and 

spread in all West Africa. Regardless of the interpretation, the results reiterate the need for 

strong, sustained containment efforts right from the beginning of any outbreak. Epidemic 

models usually propose exponential growth in the number of cases. And this was true, at least 

in Liberia and Sierra Leone. Before that exponential growth, however, an initial built-up 

period of several months (resembling an Allee-like effect) seemed to have been present in the 

EVD population.  
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1.4.2. Temporal analysis 

The important results of the time series analysis were: (1) there was a strong temporal 

dependence in the changes in Ebola cases, and (2) the time series were not fully capturing the 

dynamics of the disease. A limitation of the method used consists in the ARMA assumption 

that the error term is white noise, approximately normally distributed with mean zero. But, by 

using count data, we violate this assumption since negative observations cannot occur. 

Moreover, the ARMA model approach ignores the fact that the data is discrete instead of 

continuous. Another limitation of the approach is that the administrative units with zero 

counts were eliminated from the analysis, and the missing counts had to be converted to zeros 

– which might alter the temporal dynamics of the epidemic. Therefore, in this context, the 

method can be used solely as a relative evaluation of the temporal dependence. 

Overall the results discussed so far suggests that in the case of EVD epidemic there 

was both strong spatial and temporal dependence. Thus, it illustrates the need for 

spatiotemporal analysis. 

1.4.3. Spatiotemporal analysis 

The spatiotemporal clustering analysis indicated there was significant clustering of 

cases in time and space. There were significantly higher than expected case counts centered 

on Liberia and Sierra Leone from week 35 to 64.There were clusters of significantly lower 

than expected case counts in the first 35 weeks centered in Guinea and along the border of the 

affected area. The same pattern was observed during the spatial analysis, with an initial period 

when the outbreak was highly localized – followed by an explosion of cases in Liberia, and 

then in Sierra Leone. If we examine the 50% population at risk results, we see one high case 

counts cluster over the Liberia and Sierra Leone from week 37 to 64.  A cluster of large size is 

indicative of areas of exceptionally low rates outside of the circle (Kulldorff, 2009). This 

confirms again the directionality of the spread of the Ebola virus disease: although it started in 

Guinea, it spread towards Liberia and Sierra Leone, with less than expected case counts in 

Guinea. While this result is hardly surprising in the context of the previous discussion, it still 

highlights the fact that Guinea had less than expected case counts for the entire epidemic.  
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The choice of percent population at risk value had a significant effect on the results. In 

this type of analysis, population at risk is not equivalent to the percent of population 

susceptible to the disease as defined in SIR models, but rather it refers to the spatial 

population at risk. Since the transmission chain was spatially limited (Ajelli et al., 2015; Faye 

et al., 2015; Lau et al., 2017), it is plausible that the results using smaller population at risk 

values are more reliable. 

An important result came from the prospective spatial-temporal analysis 

(Supplementary file S5 and Table 1.2). The analysis was intended to assess the potential of 

the method to identify “live” spatial-temporal clusters of the EVD and their evolution 

throughout the extent of the epidemic. Five out of six counties present in the early high 

clusters were still present at the end of the study period. An important question was: can the 

current “live” high clusters be used to predict the “live” clusters a month from now? The 

proportion of counties present in “live” clusters for two consecutive months ranged from 50 to 

100%. Therefore, it is a strong possibility that concentration of resources in a current “live” 

cluster may be the necessary strategy to reduce the severity of an epidemic, but by no means 

should it be expected to be the sufficient strategy. The method was already used in identifying 

outbreaks of shigellosis in Chicago (Jones et al., 2006), and is currently used in the daily 

automated spatiotemporal analysis in New York for early outbreak detection of 35 reportable 

diseases (Greene et al., 2016). The current research indicated the tool can potentially be useful 

in effective early response to other diseases, such as Ebola, as long as the data can be 

collected, recorded, geocoded and analyzed in real-time. 

1.4.4. Methodology limitations 

There are a few limitations inherent to the methods themselves. For example, the 

spatial autocorrelation analysis is sensitive to spatial scale effects, the different polygons’ 

shapes and sizes, and border effects. Further, the spatial autocorrelation test can incorrectly 

suggest the presence of spatial autocorrelation in the presence of other effects, the temporal 

analysis is clearly suggesting other effects beside the autoregressive terms, and the correlation 

analysis may be spurious. Even under the assumption that the previously mentioned 

limitations are not an issue in this case, the range of conclusions based on this analysis is 

rather limited. Spatial, temporal, and spatiotemporal patterns can be shown - with clear 
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application in the management of the epidemic – but the drivers of the epidemics and the 

effects of interventions cannot be accounted for with the data we used. Finally, our dataset did 

not contain data on individual cases, and is based on aggregate data at the county level. 

Therefore, we recognize that some associations we are observing could suffer from ecological 

fallacy.  

1.4.5. Data sources limitations 

It is well-recognized that reliable and accurate information is essential to evaluate and 

improve the delivery of health services. In the case of epidemics of emerging infectious 

diseases and crises, data collection is often difficult if not impossible. Therefore, considerable 

efforts were placed to collect standardized, high quality data in West Africa prior and during 

the EVD disease. Still, it is still possible that the quality of the dataset may raise questions 

about the reliability of the analytic results: 

First, the original dataset of case counts had gaps, incorrect counts, and unexplained 

drops in the cumulative case counts in several administrative units. Second, the early 

symptoms of Ebola are, for the most part, indistinguishable from malaria, and posed a major 

challenge when identifying probable cases. While measures were taken to amend these 

problems, there is a certain degree of uncertainty about the calculated daily/weekly new cases. 

Third, it has been documented that there was under-reporting of the number of Ebola cases 

(Westcott, 2014; Zavis and Healy, 2016).  

1.5. Recommendations 

 This research investigated if exploratory analytical techniques using publically 

available data can inform interventions in case of infectious diseases outbreaks. More 

specifically, the methods were used to evaluate the dynamics and causes of the EVD epidemic 

in West Africa. The results showed that there was significant spatial, temporal, and 

spatiotemporal dependence in the evolution of the disease. For the first part of the epidemic, 

the cases were highly clustered in a few administrative units, in the proximity of the point of 

origin of the epidemic, offering the opportunity to stop the spread of the disease, pending a 

robust, directional intervention. Later in the epidemic, high clusters were observed only in 
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Liberia and Sierra Leone. The spatial-temporal analytic tool SaTScan may be used 

effectively during the evolution of an epidemic.  

Based on these results, we believe that these exploratory techniques can be useful for 

monitoring purposes, as tools for early detection of potential outbreaks. Early in an outbreak, 

data is usually sparse, the potential risk factors are largely unknown, and resources are 

limited. The presented methods have the advantage of being fairly straight forward, require 

rather low resources, while the results are quite reliable. The presented analysis can indicate if 

and where disease clusters are. Later in the epidemic, as interventions and behavioral changes 

are shaping the dynamics of the outbreak, they have to be taken in consideration in the 

analytic efforts. This requires more sophisticated modeling approaches (which has been 

extensively addressed in the literature), better data, integration of local knowledge and 

customs, and substantially higher resources.  
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CHAPTER 2 

SPATIOTEMPORAL MODELING OF EBOLA VIRUS DISEASE EPIDEMIC IN WEST 

AFRICA USING OPEN ACCESS DATA SOURCES 

 

2.1. Introduction 

Over the past several years, scientific models have been developed to better 

understand the drivers of the spread and eventual containment the 2014-2016 West African 

Ebola Virus Disease (EVD) epidemic. The heavily affected countries were poor, recently war-

torn states with highly mobile populations that had no previous experience with Ebola. 

Transmission rates varied widely between regions. Thus, it was difficult to predict where 

resources are going to be needed as the epidemic slows, as it was to predict when the 

epidemic began. While in many places most transmission events occurred in the community 

and between family members (Ajelli et al., 2015; Faye et al., 2015), the continuous movement 

of people from their villages and crossing borders from Guinea to either Sierra Leone or 

Liberia was the driver behind the rapid spread of Ebola to neighboring countries (WHO, 

2015). The isolation of patients and safe and sanitary funerals and burials played a vital role in 

controlling the epidemic (Chowell and Nishiura, 2014; Rivers et al., 2014).  

Models of the EVD epidemic have taken many different forms. Table 2.1 summarizes 

some of these results. First, models confirmed that initially there was little control of the EVD 

outbreak, and that additional resources were needed in order to contain the spread of the 

disease. Later, models showed that were differences in the EVD outbreak dynamics between 

and within the affected West African countries. Interventions and behavior changes were 

found responsible for significant reductions in transmission pathways. EVD dispersed mostly 

between geographically closed regions, but the dispersion was seemingly directional, with 

some West African regions significantly more affected then others. 

To explain the observed differences in the EVD outbreak dynamics, a wide variety of 

variables were considered in the models. From those, population size, time to travel to large 

population centers, proximity to roads and hospitals, precipitation, and temperature 

seasonality were found to have a significant effect on the case counts. In the current research, 
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we tested if behavioral and cultural attributes of West African population could improve the 

model of EVD outbreak, and, thus, better explain the observed differences in the disease 

dynamics.  The work presented here evaluated the methodologies by which these population 

characteristics can be incorporated, and measured if their inclusion improves the model fit of 

the Ebola epidemic. We compiled a comprehensive dataset of Ebola cases and demographic 

Table 2.1 

Model Conclusions Suggestions Reference 
SEIR  The number of secondary infections 

dropped by May – July 2014 in 

Guinea and Sierra Leone, but not in 

Liberia 

Increased intervention efforts 

in Liberia are needed.   

Althaus 

(2014) 

 

SEIR Resources needed in Montserrado to 

control the EVD outbreak, by 

November 2014, exceeded those 

committed by aid groups. 

Increased intervention efforts 

are needed. 

Lewnard et al. 

(2014) 

Incidence decay 

with exponential 

adjustment 

(IDEA)  

There was weak evidence for the 

occurrence of epidemic control in 

West Africa as a whole, and 

essentially no evidence for control in 

Liberia by August 2014 

Improved control measures are 

needed, especially in Liberia, 

if catastrophe is to be averted 

Fisman et al. 

(2014) 

Math models of 

the effective 

reproduction 

number 

Effective control of the epidemic 

can be achieved if the number of 

secondary transmissions per infected 

individual is cut in half. 

Increased intervention efforts 

are needed, as well as 

prevention of cross-border 

transmission. 

Nishiura and 

Chowell 

(2014) 

spatial agent-

based models 

Up to August 2014, most infections 

were acquired in hospitals and in 

households: interventions 

significantly reduced these 

transmission pathways. 

 Merler et al. 

(2015) 

Exponential and 

polynomial 

models 

There were significant differences in 

the growth patterns of EVD cases at 

different spatial scales in West 

Africa. 

Behavior changes, differences 

in intervention control, or 

disease-specific features might 

be responsible for the observed 

dynamics. 

Chowell et al. 

(2015) 

survival, hazard,  

Poisson and 

chain-binomial 

transmission 

models 

Case isolation and safe burials 

significantly reduced the 

transmissibility at chiefdom level in 

Sierra Leone.  

Population density, proximity 

to Ebola treatment centers, 

cropland coverage & 

temperature were associated 

with EVD transmission. 

Fang et al. 

(2016) 

Spatiotemporal 

growth model & 

SEIR  

There were significant differences in 

the evolution of the outbreak in the 

different regions in West Africa 

For effective interventions, 

continuous monitoring at the 

district level is needed. 

Santermans et 

al. (2016) 

Phylogenetic and 

Bayesian 

generalized 

linear models 

EVD tended to disperse mostly 

between geographically closer 

regions. The spread was more 

prevalent within country borders. 

Economic output, population 

density, traveling times to 

large settlements & climatic 

factors were not associated 

with the EVD dispersal. 

Dudas et al. 

(2017) 
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characteristics to map and analyze the spatiotemporal transmission patterns at the 

administrative unit level in Guinea, Liberia and Sierra Leone. 

The rest of the paper is structured as follow: Section 2.2 examines the data processing 

and description. Section 2.3 presents the modeling methodologies considered. Sections 2.4 

and 2.5 present the results and discussion of the models considered, and details several “best” 

models. Section 2.6 compares our results with other EVD modeling papers and concludes the 

paper. 

2.2. Data processing and description 

To calculate the daily and the weekly number of cases, we used a dataset provided by 

OCHA ROWCA on the Humanitarian Data Exchange (HDX, 2015), that compiled the 

number of cases released by various sources from March 24, 2014, up to March 28, 2015. For 

this study, I selected only the three countries most severely affected by the Ebola outbreak: 

Guinea, Liberia and Sierra Leone, with a total of 63 administrative units. Additional data was 

collected from published reports (Fink and Sheri, 2014; HumanitarianResponse, 2016; WHO, 

2016b). As a result, I extended the coverage of the case counts, I imputed missing data and 

corrected some errors (Suchar et al., 2018). The final datasets had daily and weekly EVD 

outbreak counts and rates for three countries: Guinea, Liberia and Sierra Leone (63 

administrative units) from December 06, 2013 to March 28, 2015. Details on the methodology 

can be found in the Supplemental Information (SI) file.  

For demographic and health information about West Africa, datasets provided by 

USAID on the Demographic and Health Surveys (DHS) Program website (USAID, 2016) 

were used.  DHS collects, analyzes, and disseminates population, health, HIV, and nutrition 

data in over 90 countries. More details about the data collected in West Africa can be found in 

the DHS reports specific to each country  (INS, 2013; LISGIS, 2014; SSL, 2014).  For this 

research, the focus was on surrogate variables for factors hypothesized to be possible risk 

factors in the transmission of diseases: percent having access to bicycles, motorcycles or cars, 

percent of women that had a hospital delivery, had a doctor or medical professional present at 

delivery, education level, literacy, and percent reading newspapers, listening to radio or 

watching TV, percent of the population sharing a toilet with other households, number of 

children living at home, and the mean number of STD and sexual partners. These factors 
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represent access to information, transportation, healthcare, and behavior that might modify the 

risk of exposure. The data were aggregated to the administrative unit. 

To account for the spatial autocorrelation, three distance measures were considered:  a 

contiguity based neighbors matrix, a centroid based distance matrix (Bivand et al., 2008), and 

a population-weighted road distance (Mitze, 2012). Details on the methodology used to 

calculate the population-weighted road distance can be found in Mitze (2012) and Suchar et 

al. (2017).  

 

2.3. Modeling approach 

To evaluate the EVD outbreak in West Africa, we used a negative binomial (NB) 

spatial-temporal mixed effects model with fixed social explanatory variables, and 

autoregressive temporal and spatial-temporal random effects. To fit the model, an endemic-

epidemic multivariate time-series method was used, with the fixed social explanatory 

variables accommodated by the endemic component, and the spatial-temporal interactions 

accommodated by the epidemic component (Hohle et al., 2016; Meyer et al., 2016; Paul and 

Held, 2011). The endemic-epidemic multivariate time-series model for the spread of 

infectious diseases used and its applications were described in detail in a series of papers and 

its R package surveillance vignette (Hohle et al., 2016; Meyer et al., 2016; Paul and 

Held, 2011). The response variable is case counts 𝑌𝑖𝑗 from county i and time step j with 𝑖 =

1,2, … 𝐼 and 𝑗 = 1,2, … 𝐽. In the endemic-epidemic formulation, the response variable has a 

negative binomial (NB) distribution conditional on the past observations: 

 
𝑌𝑖𝑗~𝑁𝐵(𝜇𝑖𝑗 , 𝜓𝑖)

𝜇𝑖𝑗 = 𝑒𝑖𝑗𝜈𝑖𝑗 + 𝜆𝑖𝑗𝑌𝑖𝑗−1 + 𝜙𝑖𝑗 ∑ 𝑤𝑘𝑗−1𝑌𝑘𝑗−1𝑘≠𝑖

 (1) 

Where 𝜇𝑖𝑗 is the mean of the NB distribution, and 𝜓
𝑖
 is the overdispersion parameter (𝜓

𝑖
= 0 

corresponds to Poisson (POI) distribution). The mean is decomposed in endemic and 

epidemic components. The endemic (end) component 𝑒𝑖𝑗𝜈𝑖𝑗 explains a baseline rate of 

infection in the population. The epidemic component has an autoregressive (AR) effect 

𝜆𝑖𝑗𝑌𝑖𝑗−1 accounting for the spread of the disease within county i, and a neighborhood (NE) 
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effect 𝜙𝑖𝑗
∑ 𝑤𝑘𝑗−1𝑌𝑘𝑗−1𝑘≠𝑖  accounting for effects of other counties to county i. 𝑤𝑘𝑗 are spatial 

weights, while 𝑒𝑖𝑗 correspond to the population size offset for county i. 

 Both fixed and random effects can be used in the model. In the case of fixed effects, 

standard likelihood inference is performed, while, in the case of random effects (Gaussian 

independent (NI), correlated (NC), or conditionally autoregressive (CAR)), the inference is 

based on penalized quasi-likelihood method (Hohle et al., 2016; Meyer et al., 2016; Paul and 

Held, 2011).  

In the case of EVD there is no endemic component (baseline rate of infection in the 

population) as proposed by the authors of the endemic-epidemic model. Instead, we used the 

endemic component to accommodate the social covariates considered. Since the model could 

not accommodate a very large number of covariates, two strategies were considered: (1) 

principal components (PC) analysis was used to reduce the dimensionality of the social 

variables, and the first four PCs were used as covariates in the models; (2) of the 24 factors 

considered to represent access to information, transportation, healthcare, and behavior that 

might modify risk of exposure, five were included in the final model based on the exploratory 

data analysis: ethnic homogeneity,  % reading newspapers, % hospital delivery of the last 

child, % health professional present at the birth of last child, and mean children at home.  

For each weight matrix, four models were fit using this modeling approach: MODEL 

1: fixed AR and NE effects without population offset for the social fixed effects; MODEL 2: 

fixed AR and NE effects with population offset for the social fixed effects; MODEL 3: 

random AR and NE effects without population offset for the social fixed effects; and MODEL 

4: random AR and NE effects with population offset for the social fixed effects. 

To compare the goodness-of-fit of these models we used square error score (ses), 

logarithmic score (logs), ranked probability score (rps), and Dawid–Sebastiani score (dss). 

The dss has been argued to be more appropriate for model performance assessment than the 

traditional statistics, since they may account for the uncertainty associated to point predictions 

(Czado et al., 2009; Paul and Held, 2011). These scores are readily available in the 

surveillance package (Hohle et al., 2016). Since these methods are not widely used and 

in order to provide a familiar baseline to our readers, the root mean squared error (rmse) was 
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also calculated for the models. The model performance measures logs, rps, and dss are strictly 

proper scoring rules, meaning that they are unique, minimized penalties based on the 

predictive distribution proposed by the model and the observed quantities (Czado et al., 2009; 

Paul and Held, 2011). They take in account the uncertainty associated with the predictions, 

which is not the case for the root mean squared error (rmse) which accounts only for the 

differences between the observed and predicted values. Square error score (ses) depends on 

the mean of the predictive distribution, while Dawid–Sebastiani score (dss) accounts for both 

the mean and the variance of the predictive distribution.  

A probability integral transform (PIT) histogram for count data was used to 

qualitatively check the predictive distributions. PIT histograms verifiy if the observed values 

have the predicted distribution. If so, the PIT histogram for a well calibrated model should be 

uniform. Biases cause skewness, while under- and over-dispersion causes U-shape and 

inverse U-shape PIT histograms (Czado et al., 2009; Hohle et al., 2016).  

Finally, for validation purposes, one-week-ahead model predictions were compared 

with the observed case counts.  

 2.4. Results 

 The complete goodness-of-fit scores for the models considered are presented 

Supplementary material file S6: Tables S1 and S2. A subset of these results is presented in 

Table 2.2. 

The goodness-of-fit measures indicated that: 

1. In general, model performance measures agreed that equivalent models using social PC as 

covariates are better than models using the selected social variables as covariates.  

2. Random effects models have higher rmse than the fixed effects models.  

3. Model performance measures did not agree which model is the best. Bold values in 

Supplementary material file S6: Tables S1 and S2 indicate the best models relative to each 

goodness of fit metric.  

4. All PIT histograms (Supplementary material file S6: Figures S1 and S2) exhibit a decay on 

the right side – indicative of biases over predictions.  
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Regarding the EVD outbreak 

dynamics: 

1. All models agree that there 

were high autoregressive (AR) 

in areas near the origin of the 

EVD outbreak (Lofa, Macenta, 

Kailahun and Kenema), in NW 

Sierra Leone (e.g., Port Loko 

and Western Urban), and very 

strong AR contribution in 

Montserrado and surrounding 

area (Liberia). (Supplementary 

material file S6: Figures S3-

S10). 

2. Models disagree about the 

neighbor effect (NE) contributions to the case counts. In general, high NE contributions were 

observed for counties neighboring Montserrado. In Sierra Leone, counties with high AR 

contributions had also high NE values. In the case of the fixed effects models, this was 

observed for the contiguity distance matrix only. For the random effects models, the distance 

matrices had an influence on the amplitude of the NE effect. 

3. For the covariates contributions, only Gueckedou region had values higher than the other 

districts, and in only few of the fixed effects models.  

4. There are substantial differences between districts in the relative AR and NE contributions 

to the case counts. The estimated random intercept for the AR and NE components of the 

random effects models (Supplementary material file S6: Figures S11 and S12) showed large 

differences in the AR coefficients between Montserrado and Lofa, and the most of the 

remaining counties. In contrast, NW and SE Sierra Leone had relatively low AR intercepts. 

For the NE effect, we see almost the opposite: high heterogeneity across the three countries, 

highest intercept values for the NW and SE Sierra Leone, and average values for 

Montserrado.  The AR component was significant for all models except for the fixed effects 

Table 2.2: Dawid–Sebastiani score (dss) and root mean squared 

error (rmse) for the Negative Binomial (NB) models using as 

covariates: (1) ethnic homogeneity, read newspaper, hospital 

delivery, health professional present at delivery, and mean number of 

children at home and (2) social principal components 1-4. Note: 

overdispersion parameter was significantly greater than 0 for all 

models.  

   Selected 

covariates 

PC 

covariates 

Weights Pop. 

offset 

ar+ne dss rmse dss rmse 

Contiguity No Fixed  6.6 11.4 8.9 9.3 

No Random  5.8 14.0 10.7 12.8 

Yes Fixed  6.0 10.6 5.4 8.7 

Yes Random  6.6 13.3 8.9 11.8 

Centroid 

distance 

No Fixed  5.2 4.2 4.8 3.8 

No Random  12.7 10.1 1.1 8.7 

Yes Fixed  5.1 4.1 4.3 2.2 

Yes Random  5.2 10.0 4.8 8.8 

Population-

weighted 

road 

distance 

No Fixed  5.5 4.7 5.0 4.3 

No Random  10.8 9.2 1.1 7.9 

Yes Fixed  5.3 4.6 4.3 2.3 

Yes Random  5.5 9.2 5.0 8.0 
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for centroid, and road distances.  For the random effects models, the district level AR random 

coefficients were not significant.  

5. The covariate effects were significant, although their contribution to the total case counts 

was small. Principal component 1 (PC1) was significant in models 1, 3, and 4, PC2 in models 

1 and 3, while PC 3 and 4 were significant in all models. The direction of the relationship was 

positive for all principal components, except PC2.  

Model selection: The model performance measures did not agree on which model fit the data 

the best. This can be explained by the properties of the statistics considered. The logarithmic 

score (logs) is sensitive to extreme case counts, while the probability score (rps) score is less 

sensitive to outliers. Also, probability score (rps) and squared error score (ses) are highly 

dependent on the size of the counts, which makes high counts dominant of the mean score 

(Czado et al., 2009). Dawid–Sebastiani score (dss) accounts for both the mean and the 

variance of the predictive distribution and less influenced by the size of the counts. The root 

mean squared error (rmse) is also sensitive to extreme counts, and weight more the larger 

errors than the smaller ones.  

Taking into consideration all these, the model with no population offset, principal 

components as covariates, population-weighted road distances weights and random AR and 

NE components might be the best. It has the smallest dss, rps, and logs scores, and mid-values 

for ses and rmse.  For comparison purposes, the model with population offset, principal 

components as covariates, centroid distance weights and fixed AR and NE components was 

included in the following discussion. It had the lowest rmse, comparable logs, rps, and ses 

values, but a much higher dss score than the “best” model. The following discussion refers to 

the two selected models, which will be referred as Model A (no population offset, principal 

components as covariates, population-weighted road distances weights and random AR and 

NE components) and Model B (population offset, principal components as covariates, 

centroid distance weights and fixed AR and NE components). 
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2.4.1. Models A and B detailed results 

The PIT histograms for the selected models exhibited skewness and similar decay in 

the right side, suggesting a central tendency bias, and predisposition towards over-prediction. 

This might be related to the high number of counties with extreme counts (many with zero 

counts, and some with extremely high counts). When the relative contributions of the 

components are examined (Figure 2.1), both models agreed on the very high AR contributions 

in Montserrado, and moderate AR contributions near the point of origin on the EVD outbreak. 

Model A indicated moderate AR contributions in NW Sierra Leone, while Model B proposed 

fairly high AR contributions for the area. The big differences between models were in the NE 

component: Model A suggested high NE contributions in Kailahun and Kenema (SE Sierra 

Leone), and moderate NE contributions in Margibi (Liberia) and NW Sierra Leone, while 

Model B suggested no/low NE contributions to the case counts. Both models agree that the 

Figure 2.1: Model A (top) and Model B (bottom) relative contributions of the AR, NE, and covariates 

components (from left to right). The color indicates the relative contribution of the model component to the 

case counts in each district (e.g., pale yellow – low contribution, red – very high contribution).   
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covariates had similar and low relative contributions to the total case counts, as indicated by 

the uniform low heat color in Figure 2.1, right column.  

The random intercepts values for the Model A (Figure 2.2) indicated higher values for 

the Lofa - Montserrado corridor for the AR components and relatively high values for the NE 

component in Sierra Leone. Most of the administrative units in Guinea had small values for 

both the AR and NE components, with the exception of Coyah and Kindia (higher AR 

values), and Conacry and Telimele (higher NE values). Looking at the EVD fitted 

components in each administrative units and at the two selected models predictions (Figure 

2.3, Supplementary material file S6: Figure S13), we can see that Model B was consistently 

over-predicting the NE components in districts with low case counts. The AR components 

were comparable in both models. In most cases, the total predictions were similar for both 

models considered, especially for high counts districts. Model A had a tendency to be less 

 

Figure 2.2: Model A estimated random intercepts for AR (left) and NE (right). The colors indicate the 

random coefficients estimates for each district from low (green) to high (violet) values. 
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precise for the medium case counts districts (Figure 2.3, Supplementary material file S6: 

Figure S13).  

 

 

Figure 2.3: Fitted components and model predictions for selected counties (Model A –left, Model B – middle, 

observed vs. predicted - Right). In the left and middle plots, yellow, blue, and gray areas indicate the NE 

contribution, AR, and covariates contribution, respectively, to the total case counts, while the dots indicate the 

actual observed values. In the right plots, black lines indicates the observed values, while the red and green lines 

indicate the MODELS A and B fitted values. 
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Overall, as the model selection scores indicated, Model A (no population offset, 

principal components as covariates, population-weighted road distances weights and random 

AR and NE components) seem to have captured fairly well the dynamics of EVD outbreak in 

West Africa. 

When it comes to the models’ predictive power, Model B over-predicted the case 

counts in administrative units with low values, while Model A over-predicted cases in regions 

with medium values. Both models predictive power was fairly similar in administrative units 

with high case counts (Figure 2.4, Supplementary material file S6: Figure S14). 

 

2.5. Discussion 

Local conditions might have favored the persistence of the EVD in the Gueckedou and 

surrounding areas in the beginning of the outbreak. In general, the covariates contribution to 

the case counts was low, except for Gueckedou in some of the fixed effects models. But the 

models suggested larger AR contributions around the point of origin of the disease (Figure 

2.1). The local spatial analysis (Suchar et al., 2017) showed that for several weeks the disease 

was fairly localized in the tri-state area, and an initial built-up period of several months might 

have been present in the EVD population. The spatial analysis also suggested that tri-state 

area as a place where the disease stayed localized for quite some time before it exploded in 

the rest of the West Africa. In combination with the current result, it seems that some specific 

Figure 2.4: Observed vs. one-week-ahead predicted case counts. Black lines indicates the observed values, 

while the red and green lines indicate the MODELS A and B predicted values. 
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conditions may have facilitated the longevity of the transmission chain in this region, beyond 

what the demographic and economic can capture. 

Montserrado area was a source of new cases for the neighboring areas, while NW Sierra 

Leone region was a sink for new cases from the neighboring areas.  The relative contributions 

of autoregressive and neighboring effects were highly variable – suggesting differences in the 

processes driving the outbreak in different regions in West Africa. The estimated random 

intercept for the AR and NE components of random effects models (Supplementary material 

file S6: Figures S11 and S12) showed large differences in the AR coefficients between 

Montserrado and Lofa, and the most of the remaining counties. In contrast, NW and SE Sierra 

Leone had relatively low AR intercepts. For the NE effect, we saw almost the opposite: high 

heterogeneity across the three countries, highest intercept values for the NW and SE Sierra 

Leone, and average values for Montserrado.  The spatial analysis of the data has also 

indicated that there are cycles altering significant positive clustering with non-significant 

autocorrelation, probably diffusion of the disease, as well as local clustering around the 

Montserrado and Lofa and NW Sierra Leone, respectively.  The current results complement 

the spatial analysis, and suggests that the outbreak (at least) in the areas in vicinity of 

Montserrado was sustained by infected people living the city, while in NW Sierra Leone, the 

outbreak was sustained by people coming from other parts of the country.  

There were region-specific population responses to the outbreak. The self-sustained AR 

infection rates were fairly similar in all districts, while the NE effect was more variable 

(Figure 2.1 and Supplementary material file S6: Summary S1 and S2). Higher NE 

contributions were especially observed in Sierra Leone relative to that in the other two 

countries. This suggested that the within-district evolution of the disease was generally similar 

regardless of the location, but there was some heterogeneity associated with behavior and 

mobility.  

Social attributes may have influenced the outbreak dynamics. The covariate effects were 

significant - although small – pointing towards the importance of hypothesized social 

attributes of the population in the outbreak dynamics. Increases in percent reading newspapers 

were associated to lower case counts. Higher literacy and access to information are potential 

indicators of higher economic status that may decrease the vulnerability to infectious diseases 
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of different groups, but also may point towards the role of information in the decision-making 

process.  

Increases in percent of health professional present at birth resulted in increases in case 

counts, while percent of births at a hospital decreased the case counts. These results are 

seemingly contradictory, but it may just reflect the ambivalent role the health system played 

in transmission facilitation (as proposed to be the case earlier during the outbreak), and 

epidemic control (later).  

Higher number of children at home and higher ethnic homogeneity were associated 

with decreases in case counts. These were more specific to rural Guinea – less affected by the 

EVD outbreak. Thus, they should not be interpreted ad litteram, but rather in the context of 

the community location, social structure and behavior.  

As discussed in Suchar et al. (2017), Principal component 1 (PC1) was significant in 

models 1, 3, and 4, PC2 in models 1 and 3, while PC 3 and 4 were significant in all models. 

The direction of the relationship were, positive for all principal components, except PC2. The 

interpretation of the relationship between the PC and the case counts is less evident. PC1 was 

highlighting the differences between urban centers and suburban areas, especially in 

education and literacy rates, PC2 seemed to capture the sources of variation in socioeconomic 

status, PC3 weighted access to transportation methods heavily, while PC4 had positive 

loadings on hospital delivery and doctors present at birth, and negative weights on prevalence 

of STDs and number of sex partners. The results were less intuitive, since factors that we 

usually associated with diminished exposure and infection risk (such as higher education, 

literacy, and access to healthcare), seemed in this analysis to have been associated with both 

high and low case counts. It is possible that the results are reflecting the differences between 

countries in social interactions, cultural believes and behavior, differences that were not 

captured by our model.  

Circulation corridors and population size facilitated the spread of EVD. The distance 

matrices that led to the “best” models were population-weighted and centroid matrices. This 

confirms that the continuous movement of people from their villages and crossing borders 

from Guinea to either Sierra Leone or Liberia was the driver behind the rapid spread of Ebola 

to neighboring countries (WHO, 2015). Population size was accounted for in both the best 
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models: in Model A within the population-weighted road distance, while in model B in the 

population offset.  

The models captured the outbreak dynamics fairly accurately. Looking at the EVD fitted 

components in each administrative units and at the two selected models predictions (Figure 

2.3, Supplementary material file S6: Figure S13), we can see that Model B was consistently 

over-predicting the NE components in districts with low case counts, while Model A had a 

tendency to be less precise for the medium case counts. In the case of Model B, this is 

probably a result of using a fixed effects (one coefficient-fits-all) for the NE component. 

Although Model B systematically over-predicted the lower case counts, the loss in 

predictability of Model A for medium case counts was weighted more in the rmse calculations 

– which probably this explains the higher rmse score for Model A. Regardless the level of 

over-prediction is fairly low relative to the heterogeneity in the data. 

Models can potentially be useful in effective response to other diseases. Both models 

predicted fairly well the case counts one-week-ahead in the regions most affected by the 

outbreak. While their performance diminished in the regions with low and medium case 

counts, the overall predicted case counts were fairly close to the actual values, as opposed to 

some earlier models that predicted outlandishly high case counts. Our model predictions went 

only one week ahead, but the uncertainty associated with more distant predictions would have 

made them entirely useless. The overall results confirm that the modeling approach can 

potentially be useful in effective responses to diseases. Still, both models over-predicted the 

case counts to some degree, but we consider this to be less of an issue than under-prediction, 

as a decision support tool during active interventions.   

 

2.6. EVD models comparison and concluding remarks 

This models are similar in form to those of  Dudas et al. (2017); Fang et al. (2016); 

Santermans et al. (2016): it used a Negative-Binomial function for the within-location case 

counts for all three countries - as Dudas et al. (2017) and Santermans et al. (2016), has spatial 

and temporal components – as Fang et al. (2016) and Santermans et al. (2016), and some 

covariates – as Fang et al. (2016) and Dudas et al. (2017). 
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Not surprisingly, our results had a lot in common with their conclusions, for example: 

(1) there was a strong heterogeneity of the spatial and temporal dynamics of the epidemic; (2) 

access to transportation corridors increased the risk of EVD spread in Sierra Leone. Also, it 

showed that infection risk was positively associated with proximity to health care workers on 

the entire West Africa, confirming the results proposed for Sierra Leone (Fang et al., 2016). 

Our hypothesized region-specific drivers and social responses to the outbreak are in 

agreement with Dudas et al. (2017) results, that the EVD epidemic in West Africa can be 

better categorized as an assembly of sub-epidemics, with different transmission characteristics 

and spatial connectivity, than a single epidemic. There were also differences in the relative 

magnitude of neighboring effects, but that might be a result of the different spatial scale 

(districts in our analysis vs. chiefdoms in  (Fang et al., 2016)). 

The choice of covariates used in the EVD models was wider. For example, Dudas et 

al. (2017) found that most geographic, administrative, cultural, and climatic variables were 

not significantly associated with the virus dispersal, except for the population size, and 

distance from the nearest settlement with more than 50,000 inhabitants, while Fang et al. 

(2016) found that transmission risk was associated with high population density, proximity to 

Ebola treatment centers (ETC), and high coverage of cropland. In our models, all covariates 

used were significant (ethnic homogeneity,  % reading newspapers, % hospital delivery of the 

last child and % health professional present at the birth of last child, and mean children at 

home), but their contribution to the case counts was fairly low. The models using principal 

components evaluated over the 24 socio-demographic variables considered fared better, but 

this was expected since they lump together the effects of all the covariates considered, rather 

than of selected few. But they still have rather low explanatory power, relative to the 

autoregressive and neighboring effects. It is not that they were not influential, but they are 

static – i.e. they are not capturing the behavioral changes during the outbreak, and the effect 

of interventions. Which stresses out the need to characterize the population behavior during 

epidemics, in order to correctly inform the health decision-making process. This is not a new 

result, but just reinforces the conclusions reached earlier during the outbreak, such as Chowell 

and Nishiura (2015) and Santermans et al. (2016). 
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This research has shown that models with fairly high predictive power could have 

been proposed even during the peak of the EVD epidemic. But these efforts were not possible 

due to limited access or absence of quality data. While many of these deficiencies were 

unavoidable due to the severity of the epidemic and the limited resources of both affected 

countries and intervening agencies, we believe that real-time, open access to the quality data, 

and continuous monitoring at the lowest spatiotemporal resolution possible during outbreaks 

might be useful, save time, resources, and allow for more effective decision support tools to 

be created in real time in the future. 
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