
 
 
 
 
 
 
 
 
 
 

Shortcomings of Teaching Chemical Group Theory with a Limited Use of Linear Algebra 
 
 
 

A Thesis 
Presented in Partial Fulfillment of the Requirements for the  

Degree of Master of Science  
with a  

Major in Chemistry 
in the  

College of Graduate Studies 
University of Idaho 

by 
Nichole R. Valdez 

 
 
 

Major Professor: Thomas E. Bitterwolf, Ph.D. 
Committee Members: Mickey E. Gunter, Ph.D.; Ray von Wandruszka, Ph.D. 

Department Administrator: Ray von Wandruszka, Ph.D. 
 
 
 

August 2017 
 
 
 
 
 
 
 
 
 
 
 
  



 ii 

AUTHORIZATION TO SUBMIT THESIS 
 
This thesis of Nichole R. Valdez, submitted for the degree of Master of Science with a Major 
in Chemistry and titled “Shortcomings of Teaching Chemical Group Theory with a Limited 
Use of Linear Algebra,” has been reviewed in final form. Permission, as indicated by the 
signatures and dates below, is now granted to submit final copies to the College of Graduate 
Studies for approval.  
 
 
 
Major Professor: _________________________________ Date:   _____________ 
   Thomas E Bitterwolf, Ph.D. 
 
 
 
Committee Members: _________________________________ Date:   _____________ 

Mickey E. Gunter, Ph.D. 
 
 
 

 _________________________________ Date:   _____________ 
Ray von Wandruszka, Ph.D. 

 
 
 
Department  _________________________________ Date:   _____________ 
Administrator:  Ray von Wandruszka, Ph.D. 
 
 
 
  



 iii 

ABSTRACT 
 
 
Several textbooks on chemical group theory were examined and showed a wide range of 

inconsistencies in content. Many authors attempt to make their texts student-friendly by 

stripping out linear algebra concepts and focusing instead on visualizations of symmetry 

operations. This inevitably leads to an incomplete understanding of how to apply group theory 

to chemistry, and the lack of a standard across texts can lead a student who is using multiple 

sources to come to an incorrect conclusion. A guide was crafted to provide continuity across 

previously published group theory texts and to fill in the missing linear algebra concepts. It 

contains explanations of how to derive the rotation matrices for both clockwise and 

anticlockwise rotation, as well as reflection, inversion, and improper rotation. In addition, the 

guide shows how to derive a character table and includes the matrices for symmetry 

operations organized by principal rotation axis. 
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CHAPTER ONE: INTRODUCTION TO TEACHING GROUP THEORY IN CHEMISTRY 
 
 
1.1 The history of group theory in chemistry 
 
Group theory is a branch of mathematics that is used to study systems where symmetry is 

present (Weisstein, 2017a). These systems can be abstract, or group theory can be applied to 

physical systems. When group theory is applied to chemistry, a chemist can mathematically 

describe the symmetry of molecules, determine bonding orbitals, and calculate vibrational 

modes. The symmetry of a molecule is described by using a center of symmetry, which may 

be an atom, a bond, or a point in space. Because of this fixed point of symmetry, the 

mathematical groups that are used to describe molecules are called point groups. The 

properties of each point group can be summarized into a character table, and chemists use this 

character table to determine bonding. 

 

F. Albert Cotton (1990) provides a concise definition of a mathematical group where, “a 

group is a collection of elements that are interrelated according to certain rules.” Elements 

here does not mean chemical elements, but rather symmetry operations. A symmetry 

operation will leave a molecule indistinguishable (but not identical) upon completion. For 

example, an ammonia molecule will be indistinguishable before and after rotation of 120° or 

240° about an axis through the nitrogen atom. Other such symmetry operations include 

reflection across a mirror plane and inversion through the center of symmetry.  

 

Group Theory was developed throughout the early 19th century by a number of prominent 

mathematicians, and was not brought into the field of chemistry until the turn of the century 

(Bishop, 1973). Group theory was given its name by Évariste Galois [1811-32], who is 

generally considered to be the first to develop the theory, even though Carl Friedrich Gauss 

[1777-1855] worked on the concepts earlier without publishing the results (Weisstein, 2017). 

Augustin Louis Cauchy [1787-1857] expanded on Galois’ groups and developed the theory of 

permutation groups (Bishop, 1973). A permutation group is different than an abstract (Galois) 

group in that Cauchy applied group theory (as Galois and contemporaries knew it) to 

positions, such as points in a Cartesian system. Arthur Cayley [1821-95] then unified the 

work on groups by Galois, Cauchy, and others in his 1854 paper, On the theory of groups, as 



 2 

depending on the symbolic equation θ n =1. This paper gives a definition for the abstract 

(finite) group, which is still used in modern times, as, “a set of symbols, all of them different, 

and such that the product of any two of them (no matter in what order), or the product of any 

one of them into itself belongs to the set, is said to be a group” (Cauchy, 1854). In point group 

symmetry, this can be visualized as combining two quarter rotations to get one half rotation. 

Both the quarter rotation and the half rotation must be in the same group.  

 

Group theory was brought into chemistry by the advent of character tables, which allowed all 

of the symmetry elements to be combined and simplified into a more usable tool. This was 

enabled by two fundamental developments by Ferdinand Georg Frobenius [1849-1917]. 

Frobenius first applied abstract group theory to vector spaces, which allowed the members of 

a group to be written as linear transformations using matrices in what is known as group 

representation (see Rowland, 2017). The symmetry operations, in matrix form, could then be 

grouped together as classes by using the trace of each matrix. Symmetry elements that are in 

the same class of the same group will have the same trace, or group character (Weisstein, 

2017b). A direct example of using vector spaces to develop a character table for a chemical 

compound is given in Chapter III. 

 

Group theory was almost immediately applied to the newly emerging field of quantum 

mechanics in the mid 1920s. Werner Heisenberg [1901-1976] and others introduced matrices 

with infinite rows and columns to model position and momentum coordinates for a given 

particle (Wigner, 1959). Hermann Weyl [1885-1955] had been working with infinite groups 

of this type, called continuous groups, and their new use in quantum mechanics led him to 

write a book in 1928 that put group theory “in a form suitable to the requirements of quantum 

physics” (Weyl, 1950). Eugene Wigner [1902-1995] further developed quantum mechanics 

concepts and received half of the 1963 Nobel Prize in physics “for his contributions to the 

theory of the atomic nucleus and the elementary particles, particularly through the discovery 

and application of fundamental symmetry principles” (Nobel Media, 2014a).  

 

It was also of interest during this time to use symmetry to characterize bonding, and through 

this interest molecular orbital theory and crystal field theory were developed. Molecular 



 3 

orbital theory was developed by Robert S. Mulliken [1896-1986] and Friedrich Hund [1896-

1997], and assigns electrons to overlapping orbitals in a molecule (as opposed to specific 

bonds) in the same way that electrons are assigned to atomic orbitals in a free atom. The 

notation seen in point group tables alongside each irreducible representation is known as 

Mulliken notation (Mulliken, 1933). Mulliken went on to win the 1966 Nobel Prize in 

Chemistry “for his fundamental work concerning chemical bonds and the electronic structure 

of molecules by the molecular orbital method” (Nobel Media, 2014b). However, it was Hund 

who used quantum mechanics to compare the spectra of atoms and diatomic molecules to 

provide much of this insight, and Mulliken himself referred to molecular orbital theory as 

Hund-Mulliken theory (Mulliken, 1966). 

 

Crystal field theory was developed when Hans Albrecht Bethe [1906-2005] used group theory 

to show how electronic configurations that are equivalent (degenerate) in a free atom change 

when constrained by symmetry in a lattice (Bethe, 1929). Bethe’s paper was particularly 

exciting to John Hasbrouck Van Vleck [1899-1980] and his students (Anderson, 1987), who 

then worked with a similar method (Van Vleck, 1932). Bethe’s crystal field theory was 

limited by treating the interaction between metal ions and ligands as purely electrostatic until 

Van Vleck showed that the method would still work for compounds with semi-covalent 

bonding (Van Vleck, 1935; Cotton, 1990). Van Vleck did this in a magnetism paper by 

investigating iron cyanide complexes, which have uncharacteristically low susceptibility due 

to large interatomic forces. These interatomic forces could be accounted for with both crystal 

field theory and molecular orbital theory. The combination of elements from both techniques 

became known as ligand-field theory, which is still used today by chemists who employ group 

theory.  

 
 
1.2 Teaching group theory to chemistry students 
 
Group theory has a rich developmental history in mathematics, and elements of group 

properties are taught in both introductory and advanced abstract algebra courses to students 

with a strong mathematical background. There is, however, no singular way to teach applied 

group theory, and chemistry instructors are faced with the difficult task of teaching to students 
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of a mixed mathematical background. Furthermore, some instructors do not have a strong 

linear algebra or abstract algebra background themselves. Because of this, authors of 

chemistry textbooks often attempt to present group theory with as little math as possible. The 

visual component of symmetry elements and operations is crucial for understanding 

symmetry, but often it is presented alone. When an explanation of linear algebra is stripped 

away, students are left to rely on using character tables that they never fully understand. In 

most cases, a student can get as far as they need to go for a segment of an inorganic chemistry 

course without understanding these principles, but they are unlikely to return to group theory 

later in their undergraduate or graduate studies when a better understanding would be most 

helpful. 

 

The lack of a standard for teaching group theory to chemists results not only in 

inconsistencies between the level of mathematical devotion, but also in the content itself. The 

three most notable differences were 1) the specified direction of rotation about a symmetry 

axis, 2) whether the derivation of a character table was explained, and 3) whether d-orbital 

bonding was discussed. 

 
 
1.3 Inconsistencies between group theory texts 
 
1.3.1 Rotation about a symmetry axis 
 
A molecule with a symmetry rotation axis will be symmetrical whether it is rotated clockwise 

or anticlockwise. The decision of which to use is arbitrary, but must be consistent. In cases 

where mathematics is left out, the reasons why are invisible. However, if the general rotation 

matrices for clockwise and anticlockwise rotation are derived, one can see that they are 

different. Because of this, a rotation matrix for a specific n-fold rotation presented in one 

textbook may be different than that that found in a different textbook, which makes it difficult 

for a student to compare two sources. Furthermore, the way in which the rotation matrix is 

applied (horizontal or vertical) has consequences in linear algebra that can leave two 

clockwise rotation sources incomparable. This is discussed in great detail in Chapter Two 

where a guide to the matrices used in chemical group theory is presented. A darker 

consequence of the inconsistent principal rotation direction, and of avoiding mathematics in 
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general, can be seen in some published textbooks, where the rotation matrix that is presented 

is incorrect. The guide will prepare the student to identify these inaccuracies. An example of 

one such inaccuracy is presented to the reader of this thesis in Chapter Four.  

 

Table 1.3.1 shows the variation in choice of matrices across all textbooks examined. The 

ISBN column indicates The International Serial Book Number or the Library of Congress 

Catalog Card Number (LCCN) of each source. These are included in the reference list at the 

end of the chapter. The Written Direction column indicates what the author stated was the 

principal rotation direction. The Diagram Direction indicates which direction the arrows were 

drawn on rotation diagrams in each book. The Rotation Matrix column indicates which 

direction the rotation matrix will rotate the original vectors. The matrix orientation column 

indicates whether the rotation matrix is formatted to be horizontal (row matrix) X Y Z  or 

vertical (column matrix) 
X
Y
Z

. 

 
Table 1.3.1 Principal Rotation Axis and Given Matrices 

ISBN 
Principal Rotation Axis 

Axis Written 
Direction 

Diagram 
Direction 

Rotation 
Matrix 

Matrix 
Orientation 

019855866X N/A Both Both N/A N/A 
199541423 Z Both Anticlockwise Anticlockwise Horizontal 

0486673553 Z Clockwise Clockwise Both Vertical 
9812530974 Z Both Anticlockwise Clockwise* Vertical 
0121729508 Z Clockwise N/A Clockwise Vertical 

6311428 Z N/A Anticlockwise Clockwise Vertical 
0471510949 Z N/A Anticlockwise Both* Vertical 
0444201149 Z Clockwise Clockwise Clockwise Vertical 
0333492986 Z Clockwise Clockwise Clockwise Both 
0486783146 Z Both N/A Clockwise Vertical 

6828096 Z Both Both N/A N/A 
3540541268 Z N/A N/A NA NA 

6913607 Z N/A Anticlockwise Anticlockwise Vertical 
0486661814 Z N/A N/A Clockwise Vertical 
805337911 Z N/A N/A Clockwise Vertical 
41209570X Z Clockwise Clockwise Clockwise Horizontal 
521642507 Z Anticlockwise Anticlockwise Clockwise* Vertical 

6425890 Z Clockwise Anticlockwise Both Vertical 
0470060407 Z Both Both Anticlockwise Horizontal 
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0935702997 Z N/A Anticlockwise Clockwise* Vertical 
0486421827 Z Anticlockwise Anticlockwise Anticlockwise Horizontal 
0857092403 Z N/A Both Clockwise Vertical 
125083475 Z N/A N/A Clockwise Vertical 
136153836 Z Anticlockwise Anticlockwise Clockwise* Vertical 

0486681947 N/A N/A N/A N/A N/A 
6520161 Z Unclear Anticlockwise Clockwise Horizontal 

716736241 Z N/A Clockwise N/A N/A 
048645035X Z N/A Anticlockwise Both* Vertical 
0471489399 Z N/A Clockwise Both Vertical 
019855964X Z Clockwise Clockwise Clockwise Clockwise 
0486602691 N/A N/A N/A N/A N/A 

5910741 N/A N/A N/A N/A N/A 
                                                                                              * Seemingly unintentional  
 
The number of textbooks that define the principal rotation direction as clockwise is almost 

equal to the number of textbooks that define it as anticlockwise. In most cases, this stated 

direction lines up with what the rotation matrix provides. In the cases where it does not, there 

seems to be either a typographical error or an incorrect matrix that propagates through the 

chapter. The majority of authors prefer the rotation matrix to be set up for a transformation on 

a column matrix. There is sometimes an inconsistency between what the author states is the 

principal rotation direction and which way the arrows are drawn in rotation diagrams, but this 

is a relatively minor inconvenience in comparison.  

 
 
1.3.2 Derivation of character tables 
 
Of the textbooks examined, about half dedicated a section to discussing how a character table 

is derived. Without an explanation of this type, a student will not fully understand the 

characters they are using when simplifying reducible representations. The character table for 

the C3v point group is derived for the student in Chapter Four. 

 

Table 1.3.2 shows the textbooks that were examined and whether the derivation of character 

tables was included. 
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Table 1.3.2 Character Tables and d-orbital Bonding 

ISBN Deriv. Char. 
Tables 

d-orbital 
reducibles 

019855866X No No 
199541423 No No 

0486673553 Yes Yes 
9812530974 Yes Yes 
0121729508 No No 

6311428 Yes Yes 
0471510949 Yes Yes 
0444201149 Yes Yes 
0333492986 Yes Yes 
0486783146 Yes No 

6828096 No Yes 
3540541268 No No 

6913607 No Yes 
0486661814 No No 
805337911 No Yes 
41209570X No No 
521642507 No No 

6425890 Yes Yes 
0470060407 No Yes 
0935702997 No No 
0486421827 Yes No 
0857092403 Yes Yes 
125083475 Yes No 
136153836 Yes hybrid only 

0486681947 No No 
6520161 No Yes 

716736241 No No 
048645035X Yes Yes 
0471489399 No No 
019855964X Yes No 
0486602691 No No 

5910741 No No 
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1.3.3 Discussion of d-orbital bonding 
 
Another subject that is not often included is bonding with d-orbitals. As group theory is 

usually taught in inorganic chemistry courses, the exclusion of more complex reducible 

representations limits the student to only simple bonding calculations with s and p orbitals. 

The number of books that include a discussion of d-orbital bonding is about equal to the 

number of books that do not include d-orbital bonding. The presence or absence of a d-orbital 

bonding section in all sources is indicated in Table 1.3.2. 
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CHAPTER TWO: A GUIDE TO MATRICES USED IN CHEMICAL GROUP THEORY 
 
 
2.1 Derivation of the anticlockwise rotation matrix 
 
In the case of anticlockwise rotation, the black arrows are rotated left to the position of the 

blue arrows by an angle θ. The new position of X, X’, and the new position of Y, Y’, can be 

defined as the hypotenuse, H, of a right isosceles triangle with angle θ. X’ can be expressed as 

the sum of two vectors (see Figure 2.1.1): the adjacent length, A, and the opposite length, O, 

which are some fraction of the length of X and Y, respectively*: 
    

X! = A+ O  

where  A = !
!
H  and  O = !

!
H 

so  X′ = !
!
H+  !

!
H  

!
!

 is the same as the cosine of θ and !
!

 is the same as the sine of θ so:  

X’ can be written as: X! = cos θ ∙ X+  sin θ ∙ Y 

 

 
Figure 2.1.1 Anticlockwise Rotation Matrix for X’ 
 
*Vector notation arrows removed for ease of reading  
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Y’ can be expressed as the sum of two vectors (see Figure 2.1.2): the opposite length, O, and 

the adjacent length, A, which are some fraction of the length of -X and Y, respectively: 
    

Y! = O+ A  

where O = !
!
H  and  A = !

!
H 

so Y! = !
!
H+  !

!
H 

!
!

 is the same as the sine of θ and !
!

 is the same as the cosine of θ so: 

Y’ can be written as: Y! = −sin θ ∙ X+  cos θ ∙ Y 

 

 
Figure 2.1.2 Anticlockwise Rotation Matrix for Y’ 
 

The vectors derived above are: 

X! = cos θX+ sin θY 

Y′ = − sin θX+ cos θY 

 

Put into matrix form: 

X′
Y′

= cos θ sin θ
−sin θ cos θ

X
Y   

From this we get the anticlockwise (ACW) rotation matrix, R: 
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R!"# = cos θ sin θ
−sin θ cos θ  

 

An alternate form of the anticlockwise rotation matrix is as follows: 

X!Y′ = X Y cos θ − sin θ
sin θ cos θ   

R!"# = cos θ −sin θ
sin θ cos θ   

 

The matrices can be expanded to three dimensions with Z as the rotation axis with the 

following equations: 

X! = cos θX+ sin θY 

Y′ = − sin θX+ cos θY 

Z! = Z  

 

X′
Y′

= cos θ sin θ
−sin θ cos θ

X
Y  

R!"# = cos θ sin θ
−sin θ cos θ  

X′
Y′
Z′

=
cos θ sin θ 0
−sin θ cos θ 0
0 0 1

X
Y
Z

 

R!"# =
cos θ sin θ 0
−sin θ cos θ 0
0 0 1

  

 

Or 

 

X!Y′ = X Y cos θ − sin θ
sin θ cos θ  

R!"# = cos θ − sin θ
sin θ cos θ  

X′Y′Z′ = X Y Z
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

R!"# =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1
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Note the column rotation matrix and the row rotation matrix are inverses of each other.  

 

X′
Y′
Z′

=
cos θ sin θ 0
−sin θ cos θ 0
0 0 1

X
Y
Z

 

R!"# =
cos θ sin θ 0
−sin θ cos θ 0
0 0 1

  

 

 

X′Y′Z′ = X Y Z
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

R!"# =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1
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2.2 Derivation of the clockwise rotation matrix 
 
In the case of clockwise rotation, the black arrows are rotated right to the position of the blue 

arrows by an angle θ. The new position of X, X’, and the new position of Y, Y’, can be 

defined as the hypotenuse, H, of a right triangle with angle θ. X’ can be expressed as the sum 

of two vectors (see Figure 2.2.1): the adjacent length, A, and the opposite length, O, which 

are some fraction of the length of X and -Y, respectively: 
    

X! = A+ O  

where  A = !
!
H  and  O = !

!
H 

so  X! = !
!
H−  !

!
H  

!
!

 is the same as the cosine of θ and !
!

 is the same as the sine of θ so: 

X’ can be written as: X! = cos θ ∙ X−  sin θ ∙ Y 

 

 
Figure 2.2.1 Clockwise Rotation Matrix for X’ 
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Y’ can be expressed as the sum of two vectors (see Figure 2.2.2): the opposite length, O, and 

the adjacent length, A, which are some fraction of the length of X and Y, respectively: 
    

Y! = O+ A  

where O = !
!
H  and  A = !

!
H 

so Y! = !
!
H+  !

!
H 

!
!

 is the same as the sine of θ and !
!

 is the same as the cosine of θ so: 

Y’ can be written as: Y! = sin θ ∙ X+  cos θ ∙ Y 

 

 
Figure 2.2.2 Clockwise Rotation Matrix for Y’ 
 

The vectors derived above are: 

X! = cos θX− sin θY 

Y′ = sin θX+ cos θY 
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Put into matrix form: 

X′
Y′

= cos θ −sin θ
sin θ cos θ

X
Y   

From this we get the clockwise (CW) rotation matrix, R: 

R!" = cos θ −sin θ
sin θ cos θ  

 

An alternate form of the clockwise rotation matrix is as follows: 

X!Y′ = X Y cos θ sin θ
−sin θ cos θ   

R!" = cos θ sin θ
−sin θ cos θ   

 

The matrices can be expanded to three dimensions with Z as the rotation axis with the 

following equations: 

X! = cos θX− sin θY 

Y′ = sin θX+ cos θY  

Z! = Z  

 

X′
Y′

= cos θ −sin θ
sin θ cos θ

X
Y  

R!" = cos θ −sin θ
sin θ cos θ  

X′
Y′
Z′

=
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

X
Y
Z

 

R!" =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

 
Or 
 
X! Y′ = X Y cos θ sin θ

−sin θ cos θ  

R!" = cos θ sin θ
−sin θ cos θ  
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X!Y!Z′ = X Y Z
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 

R!" =
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 

 
 
Again note the column rotation matrix and the row rotation matrix are inverses of each other.  

 
X′
Y′
Z′

=
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

X
Y
Z

 

R!" =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

 
 

X!Y!Z′ = X Y Z
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 

R!" =
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 

 
 
2.3 The four possible rotation matrices 
 
The relationship between a rotation matrix and its inverse poses an additional problem that 

can lead to confusion. The anticlockwise column rotation matrix is the same as the clockwise 

row rotation matrix. Likewise, the clockwise column rotation matrix is the same as the 

anticlockwise row rotation matrix.  

 

Anticlockwise                                                     Clockwise 

 

X′
Y′
Z′

=
cos θ sin θ 0
−sin θ cos θ 0
0 0 1

X
Y
Z

                          
X′
Y′
Z′

=
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

X
Y
Z

 

X′Y′Z′ = X Y Z
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

             X!Y!Z′ = X Y Z
cos θ sin θ 0
− sin θ cos θ 0
0 0 1
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Anticlockwise 
X
Y
Z

 

X! = cos θX+ sin θX 

Y′ = − sin θY+ cos θY 

X′
Y′

= cos θ sin θ
−sin θ cos θ

X
Y  

R!"# = cos θ sin θ
−sin θ cos θ  

X′
Y′
Z′

=
cos θ sin θ 0
−sin θ cos θ 0
0 0 1

X
Y
Z

 

R!"# =
cos θ sin θ 0
−sin θ cos θ 0
0 0 1

 

 
 
 
 
 

Clockwise 
X
Y
Z

 

X! = cos θX− sin θY 

Y′ = sin θX+ cos θY 

X′
Y′

= cos θ −sin θ
sin θ cos θ

X
Y  

R!" = cos θ −sin θ
sin θ cos θ  

X′
Y′
Z′

=
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

X
Y
Z

 

R!" =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

 
 
 
 

   
Anticlockwise X Y Z  
 
X! = cos θX+ sin θY 

Y′ = −sin θX+ cos θY 

X!Y′ = X Y cos θ −sin θ
sin θ cos θ  

R!"# = cos θ − sin θ
sin θ cos θ  

X′Y′ = X Y Z
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

R!"# =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

 
 
 
 
 
 
Clockwise X Y Z  
 
X! = cos θX− sin θY 

Y′ = sin θX+ cos θY 

X!Y′ = X Y cos θ sin θ
−sin θ cos θ  

R!" = cos θ sin θ
−sin θ cos θ  

X′Y′ = X Y
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 

R!" =
cos θ sin θ 0
− sin θ cos θ 0
0 0 1
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Note that the clockwise matrix can be used for an anticlockwise rotation, and vise versa, if the 

angle is defined as negative. For example, an anticlockwise rotation of 60° corresponds to a 

clockwise rotation of 300°. 

 

Anticlockwise 60° using an anticlockwise matrix: 

X′
Y′
Z′

=
cos 60 sin 60 0
−sin 60 cos 60 0

0 0 1

X
Y
Z
=

!
!

!
! 0

! !
!

!
! 0

0 0 1

X
Y
Z

  

 

Clockwise 300° using an anticlockwise matrix: 

X′
Y′
Z′

=
cos−300 sin−300 0
−sin−300 cos−300 0

0 0 1

X
Y
Z
=

!
!

!
! 0

! !
!

!
! 0

0 0 1

X
Y
Z
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2.4 Other generalized matrix operations 
 
Reflections 

σ!(!") =
1 0 0
0 −1 0
0 0 1

  

σ!(!") =
−1 0 0
0 1 0
0 0 1

  

σ!(!") =
1 0 0
0 1 0
0 0 −1

  

 

σ! =
0 1 0
1 0 0
0 0 1

   σ! =
0 −1 0
−1 0 0
0 0 1

 

 

σ! =
1 0 0
0 1 0
0 0 −1

  

 

Inversion 

𝑖 =
−1 0 0
0 −1 0
0 0 −1

  

 
 
The orientation of the matrix does not matter for rotation and inversion. The matrices 

provided above can transform a row matrix, X Y Z , or column matrix, 
X
Y
Z

. 

 
 
Improper rotations are found by multiplying the rotation matrix by the horizontal mirror 

plane. The order of multiplication does not matter for the Sn operation. 
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Improper Rotations 
 

Anticlockwise X Y Z  

 

S!(!"#) =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

1 0 0
0 1 0
0 0 −1

  

 =
cos θ −sin θ 0
sin θ cos θ 0
0 0 −1

  

 

 

Clockwise X Y Z  

 

S!(!") =
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

1 0 0
0 1 0
0 0 −1

  

 =
cos θ sin θ 0
−sin θ cos θ 0
0 0 −1

  

 

 

Anticlockwise 
X
Y
Z

 

 

S!(!"#) =
cos θ sin θ 0
−sin θ cos θ 0
0 0 1

1 0 0
0 1 0
0 0 −1

  

 =
cos θ sin θ 0
−sin θ cos θ 0
0 0 −1

  

 

 

Clockwise 
X
Y
Z

 

 

S!(!") =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

1 0 0
0 1 0
0 0 −1

  

 =
cos θ −sin θ 0
sin θ cos θ 0
0 0 −1

  

Some texts may use an inversion matrix instead: 

 

Anticlockwise X Y Z  
S!(!"#) =

cos(θ + 𝜋) − sin(θ + π) 0
sin(θ + π) cos(θ + π) 0

0 0 1

−1 0 0
0 −1 0
0 0 −1

  

 =
cos θ −sin θ 0
sin θ cos θ 0
0 0 −1

  

 

 

Clockwise X Y Z  
S!(!") =

cos(θ + π) sin(θ + π) 0
− sin(θ + π) cos(θ + π) 0

0 0 1

−1 0 0
0 −1 0
0 0 −1

  

 =
cos θ sin θ 0
−sin θ cos θ 0
0 0 −1

  

 

 

Anticlockwise 
X
Y
Z

 

S!(!"#) =

cos(θ + π) sin(θ + π) 0
−sin(θ + π) cos(θ + π) 0

0 0 1

−1 0 0
0 −1 0
0 0 −1

  

 =
cos θ sin θ 0
−sin θ cos θ 0
0 0 −1

  

 

 

Clockwise 
X
Y
Z

 

S!(!") =

cos(θ + π) − sin(θ + π) 0
sin(θ + π) cos(θ + π) 0

0 0 1

−1 0 0
0 −1 0
0 0 −1

  

 =
cos θ −sin θ 0
sin θ cos θ 0
0 0 −1
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CHAPTER THREE: AN INDEX OF MATRICES ORDERED BY 
PRINCIPAL ROTATION AXIS 

 
 
3.1 Low symmetry groups 
 
 
C1 

E =
1 0 0
0 1 0
0 0 1

  

 

 

 

Cs 

E and one mirror plane only 

 

 

 

Ci 

E and inversion only  

𝑖 =
−1 0 0
0 −1 0
0 0 −1
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3.2 C2 
 
C2 
θ sinθ cosθ 

0 0 1 

180 0 -1 

360 0 1 

 
 
Rotations 

Anticlockwise XYZ  

C!! =
−1 0
0 −1    C!! =

−1 0 0
0 −1 0
0 0 1

 

 X! = cos 180° X + sin 180° Y 

 X! = −1X + 0Y 

 Y! = −sin 180° X + cos 180° Y 

 Y! = 0X − 1Y 
    

C!! = E = 1 0
0 1    C!! = E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X + sin 0° Y 

 X! = 1X + 0Y 

 Y! = −sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 
    

Clockwise XYZ  

C!! =
−1 0
0 −1    𝐶!! =

−1 0 0
0 −1 0
0 0 1

 

 X! = cos 180° X − sin 180° Y 

 X! = −1X − 0Y 

 Y! = sin 180° X + cos 180° Y 

 Y! = 0X − 1Y 
    

C!! = E = 1 0
0 1    C!! = E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X − sin 0° Y 
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 X! = 1X − 0Y 

 Y! = sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 

 
 
Reflections 

σ!(!") =
1 0 0
0 −1 0
0 0 1

 

 

σ!(!") =
−1 0 0
0 1 0
0 0 1
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3.3 C3 
 
C3 
θ sinθ cosθ 

120 3
2 − 1 2 

240 − 3
2 − 1 2 

 
 
Rotations 

Anticlockwise XYZ  

C!! =
− !
!

− !
!

!
!

− !
!

   C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

 

 X! = cos 120° X + sin 120° Y 

 X! = − !
!
X + !

!
Y 

 Y! = −sin 120° X + cos 120° Y 

 Y! = − !
!
X − !

!
Y 

 

C!! =
− !
!

!
!

− !
!

− !
!

   C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

 

 X! = cos 240° X + sin 240° Y 

 X! = − !
!
X − !

!
Y 

 Y! = −sin 240° X + cos 240° Y 

 Y! = !
!
X − !

!
Y 

 

C!! = E = 1 0
0 1    C!! = E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X + sin 0° Y 

 X! = 1X + 0Y 

 Y! = −sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 
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Clockwise XYZ  

C!! =
− !
!

!
!

− !
!

− !
!

   C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

 

 X! = cos 120° X − sin 120° Y 

 X! = − !
!
X − !

!
Y 

 Y! = sin 120° X + cos 120° Y 

 Y! = !
!
X − !

!
Y 

 

C!! =
− !
!

− !
!

!
!

− !
!

   C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

 

 X! = cos 240° X − sin 240° Y 

 X! = − !
!
X + !

!
Y 

 Y! = sin 240° X + cos 240° Y 

 Y! = − !
!
X − !

!
Y 

 

C!! = E = 1 0
0 1    C!! = E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X − sin 0° Y 

 X! = 1X − 0Y 

 Y! = sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 

 
 
Reflections 

Anticlockwise XYZ  

σ!!
1 0
0 −1    σ! =

1 0 0
0 −1 0
0 0 1

 

X rotates 0°, Y rotates 180° 

 X! = cos 0° X + sin 0° Y 

 X! = 1X + 0Y 

 Y! = −sin 180° X + cos 180° Y 

 Y! = 0X − 1Y 
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σ! =
− !
!

!
!

!
!

!
!

   σ! =
− !
!

!
!

0
!
!

!
!

0
0 0 1

 

X rotates 120° ACW (240° CW), Y rotates 300° ACW (60° CW) 

 X! = cos 120° X + sin 120° Y 

 X! = − !
!
X + !

!
Y 

 Y! = − sin 300° X + cos 300° Y 

 Y! = !
!
X + !

!
Y 

 

σ! =
− !
!

− !
!

− !
!

!
!

   σ! =
− !
!

− !
!

0

− !
!

!
!

0
0 0 1

 

X rotates 240° ACW (or 120° CW), Y rotates 60° ACW (or 300° CW) 

 X! = cos 240° X + sin 240° Y 

 X! = − !
!
X − !

!
Y 

 Y! = −sin 60° X + cos 60° Y 

 Y! = − !
!
X + !

!
Y 

 
 
Clockwise XYZ  

σ!!
1 0
0 −1    σ! =

1 0 0
0 −1 0
0 0 1

 

X rotates 0°, Y rotates 180° 

 X! = cos 0° X − sin 0° Y 

 X! = 1X − 0Y 

 Y! = sin 180° X + cos 180° Y 

 Y! = 0X − 1Y 

 

σ! =
− !
!

− !
!

− !
!

!
!

   σ! =
− !
!

− !
!

0

− !
!

!
!

0
0 0 1

 

X rotates 120° CW (or 240° CW), Y rotates 300° CW (or 60° ACW) 

 X! = cos 120° X − sin 120° Y 

 X! = − !
!
X − !

!
Y 
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 Y! = sin 300° X + cos 300° Y 

 Y! = − !
!
X + !

!
Y 

 

σ! =
− !
!

!
!

!
!

!
!

   σ! =
− !
!

!
!

0
!
!

!
!

0
0 0 1

 

X rotates 240° CW (120° ACW), Y rotates 60° CW (300° ACW) 

 X! = cos 240° X − sin 240° Y 

 X! = − !
!
X + !

!
Y 

 Y! = sin 60° X + cos 60° Y 

 Y! = !
!
X + !

!
Y  
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3.4 C4 
 
C4 
θ sinθ cosθ 

90 1 0 

180 0 -1 

270 -1 0 

 
 
Rotations 
Anticlockwise XYZ  

C!! =
0 −1
1 0    C!! =

0 −1 0
1 0 0
0 0 1

 

 X! = cos 90° X + sin 90° Y 

 X! = 0X + 1Y 

 Y! = −sin 90° X + cos 90° Y 

 Y! − 1X − 0Y 

 

C!! = C! =
−1 0
0 −1    C!! = C! =

−1 0 0
0 −1 0
0 0 1

 

 X! = cos 180° X + sin 180° Y 

 X! = −1X + 0Y 

 Y! = −sin 180° X + cos 180° Y 

 Y! = 0X − 1Y 

 

C!! =
0 1
−1 0    C!! =

0 1 0
−1 0 0
0 0 1

 

 X! = cos 270° X + sin 270° Y 

 X! = 0X − 1Y 

 Y! = −sin 270° X + cos 270° Y 

 Y! = 1X + 0Y 

 

C!! = E = 1 0
0 1    C!! = E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X + sin 0° Y 

 X! = 1X + 0Y 
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 Y! = −sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 

 

Clockwise XYZ  

C!! =
0 −1
1 0    C!! =

0 −1 0
1 0 0
0 0 1

 

 X! = cos 90° X − sin 90° Y 

 X! = 0X − 1Y 

 Y! = sin 90° X + cos 90° Y 

 Y! − 1X − 0Y 

 

C!! = C! =
−1 0
0 −1    C!! = C! =

−1 0 0
0 −1 0
0 0 1

 

 X! = cos 180° X − sin 180° Y 

 X! = −1X + 0Y 

 Y! = sin 180° X + cos 180° Y 

 Y! = 0X − 1Y 

 

C!! =
0 1
−1 0    C!! =

0 1 0
−1 0 0
0 0 1

 

 X! = cos 270° X − sin 270° Y 

 X! = 0X + 1Y 

 Y! = sin 270° X + cos 270° Y 

 Y! = −1X + 0Y 

 

C!! = E = 1 0
0 1    C!! = E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X − sin 0° Y 

 X! = 1X + 0Y 

 Y! = sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 

 
 
Reflections 

σ! =
1 0 0
0 −1 0
0 0 1

   σ! =
−1 0 0
0 1 0
0 0 1
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σ! =
0 1 0
1 0 0
0 0 1

   σ! =
0 −1 0
−1 0 0
0 0 1
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3.5 C5 
 
C5 
θ sinθ cosθ 

36 !
!
− !

!
  

≈ 0.588 

!
!
1 + 5  or 
≈ 0.809 

72 !
!
+ !

!
  

≈ 0.951 

!
!

5 − 1  or 
≈ 0.309 

108 !
!
+ !

!
  

≈ 0.951 

!
!
1 − 5  or 
≈ −0.309 

144 !
!
− !

!
   

≈ 0.588 

!
!
−1 − 5  or 
≈ −0.809 

216 − !
!
− !

!
  

≈ −0.588 

!
!
−1 − 5  or 
≈ −0.809 

252 − !
!
+ !

!
  

≈ −0.951 

!
!
1 − 5  or 
≈ −0.309 

288 − !
!
+ !

!
  

≈ −0.951 

!
!

5 − 1  or 
≈ 0.309 

324 − !
!
− !

!
  

≈ −0.588 

!
!
1 + 5  or 
≈ 0.809 

 
 
Rotations 

Anticlockwise XYZ  

C!! =
cos 72 − sin 72
sin 72 cos 72    C!! =

cos 72 − sin 72 0
sin 72 cos 72 0
0 0 1

 

 X! = cos 72° X + sin 72° Y 

 X! = !
!

5 − 1 X + 5

8
+

5

8
Y 

 X! ≈ 0.309 X + 0.951 Y 

 Y! = −sin 72° X + cos 72° Y 

 Y! = − 5

8
+

5

8
X + !

!
5 − 1 Y 

 Y! ≈ − 0.951 X + 0.309 Y 

 

C!! =
cos 144 − sin 144
sin 144 cos 144    C!! =

cos 144 − sin 144 0
sin 144 cos 144 0
0 0 1
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 X! = cos 144° X + sin 144° Y 

 X! = !
!
−1 − 5 X + 5

8
−

5

8
Y 

 X! ≈ −0.809 X + 0.588 Y 

 Y! = −sin 144° X + cos 144° Y 

 Y! = − 5

8
−

5

8
X + !

!
−1 − 5 Y 

 Y! ≈ − 0.588 X − 0.809 Y 

 

C!! =
cos 216 − sin 216
sin 216 cos 216    C!! =

cos 216 − sin 216 0
sin 216 cos 216 0
0 0 1

 

 X! = cos 216° X + sin 216° Y 

 X! = !
!
−1 − 5 X − 5

8
−

5

8
Y 

 X! ≈ −0.809 X − 0.588 Y 

 Y! = −sin 216° X + cos 216° Y 

 Y! = 5

8
−

5

8
X + !

!
−1 − 5 Y 

 Y! ≈ 0.588 X − 0.809 Y 

 

C!! =
cos 288 − sin 288
sin 288 cos 288    C!! =

cos 288 − sin 288 0
sin 288 cos 288 0
0 0 1

 

 X! = cos 288° X + sin 288° Y 

 X! = !
!

5 − 1 X − 5

8
−

5

8
Y 

 X! ≈ 0.309 X − 0.951 Y 

 Y! = −sin 288° X + cos 288° Y 

 Y! = 5

8
−

5

8
X + !

!
5 − 1 Y 

 Y! ≈ 0.951 X + 0.309 Y 

 

C!! = E = 1 0
0 1    C!! = E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X + sin 0° Y 

 X! = 1X + 0Y 

 Y! = −sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 
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Clockwise XYZ  

C!! =
cos 72 sin 72
−sin 72 cos 72    C!! =

cos 72 sin 72 0
−sin 72 cos 72 0

0 0 1
 

 X! = cos 72° X − sin 72° Y 

 X! = !
!

5 − 1 X − 5

8
+

5

8
Y 

 X! ≈ 0.309 X − 0.951 Y 

 Y! = sin 72° X + cos 72° Y 

 Y! = 5

8
+

5

8
X + !

!
5 − 1 Y 

 Y! ≈ 0.951 X = + 0.309 Y 

 

C!! =
cos 144 sin 144
− sin 144 cos 144    C!! =

cos 144 sin 144 0
− sin 144 cos 144 0

0 0 1
 

 X! = cos 144° X − sin 144° Y 

 X! = !
!
−1 − 5 X − 5

8
−

5

8
Y 

 X! ≈ −0.809 X − 0.588 Y 

 Y! = sin 144° X + cos 144° Y 

 Y! = 5

8
−

5

8
X + !

!
−1 − 5 Y 

 Y! ≈ 0.588 X− 0.809 Y 

 

C!! =
cos 216 sin 216
− sin 216 cos 216    C!! =

cos 216 sin 216 0
−sin 216 cos 216 0

0 0 1
 

 X! = cos 216° X − sin 216° Y 

 X! = !
!
−1 − 5 X + 5

8
−

5

8
Y 

 X! ≈ −0.809 X + 0.588 Y 

 Y! = sin 216° X + cos 216° Y 

 Y! = − 5

8
−

5

8
X + !

!
−1 − 5 Y 

 Y! ≈ −0.588 X − 0.809 Y 

 

C!! =
cos 288 sin 288
− sin 288 cos 288    C!! =

cos 288 sin 288 0
−sin 288 cos 288 0

0 0 1
 

 X! = cos 288° X − sin 288° Y 
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 X! = !
!

5 − 1 X + 5

8
−

5

8
Y 

 X! ≈ 0.309 X + 0.951 Y 

 Y! = sin 288° X + cos 288° Y 

 Y! = − 5

8
−

5

8
X + !

!
5 − 1 Y 

 Y! ≈ − 0.951 X + 0.309 Y 

 

C!! = E = 1 0
0 1    C!! = E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X − sin 0° Y 

 X! = 1X + 0Y 

 Y! = sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 

 

 

Reflections 

σ!(!") =
1 0 0
0 −1 0
0 0 1

 

 
 
  



 38 

3.6 C6 
 
C6 
θ sinθ cosθ 

60 3
2 1

2 

120 3
2 − 1 2 

180 0 -1 

240 − 3
2 − 1 2 

300 − 3
2 1

2 

 
 
Rotations 

Anticlockwise XYZ  

C!! =
cos θ − sin θ
sin θ cos θ  

C!! =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

X! = cos(60°) X + sin(60°)Y 

X! = !
!
X + !

!
Y 

Y′ = −sin(60°)X + cos(60°)Y 

Y′ = −√!
!
X + !

!
Y 

 

C!! = C!! =
− !
!

− !
!

!
!

− !
!

   C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

 

 X! = cos 120° X + sin 120° Y 

 X! = − !
!
X + !

!
Y 

 Y! = −sin 120° X + cos 120° Y 

 Y! = − !
!
X − !

!
Y 

 

C!! = C!! =
−1 0
0 −1    C!! =

−1 0 0
0 −1 0
0 0 1

 

 X! = cos 180° X + sin 180° Y 

 X! = −1X + 0Y 

 Y! = −sin 180° X + cos 180° Y 
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 Y! = 0X − 1Y 

 

C!! = C!! =
− !
!

!
!

− !
!

− !
!

   C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

 

 
X! = cos 240° X + sin 240° Y  

 X! = − !
!
X − !

!
Y 

 Y! = −sin 240° X + cos 240° Y 

 Y! = !
!
X − !

!
Y 

 

C!! =
!
!

!
!

− !
!

!
!

   C!! =

!
!

!
!

0

− !
!

!
!

0
0 0 1

 

 X! = cos 300° X + sin 300° Y 

 X! = !
!
X − !

!
Y 

 Y! = −sin 300° X + cos 300° Y 

 Y! = !
!
X + !

!
Y 

 

C!! = E = 1 0
0 1    E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X + sin 0° Y 

 X! = 1X + 0Y 

 Y! = −sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 

 

Clockwise XYZ  

C!! =
cos θ sin θ
−sin θ cos θ  

C!! =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

X! = cos(60°) X sin(60°)Y 

X! = !
!
X − !

!
Y 

Y′ = sin(60°)X + cos(60°)Y 
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Y′ = −√!
!
X + !

!
Y 

 

C!! = C!! =
− !
!

!
!

− !
!

− !
!

   C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

 

 X! = cos 120° X − sin 120° Y 

 X! = − !
!
X − !

!
Y 

 Y! = sin 120° X + cos 120° Y 

 Y! = !
!
X − !

!
Y 

 

C!! = C!! =
−1 0
0 −1    𝐶!! =

−1 0 0
0 −1 0
0 0 1

 

 X! = cos 180° X − sin 180° Y 

 X! = −1X − 0Y 

 Y! = sin 180° X + cos 180° Y 

 Y! = 0X − 1Y 

 

C!! = C!! =
− !
!

− !
!

!
!

− !
!

   C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

 

 X! = cos 240° X − sin 240° Y 

 X! = − !
!
X + !

!
Y 

 Y! = sin 240° X + cos 240° Y 

 Y! = − !
!
X − !

!
Y 

 

C!! =
!
!

!
!

!
!

!
!

   C!! =

!
!

!
!

0
!
!

!
!

0
0 0 1

 

 X! = cos 300° X − sin 300° Y 

 X! = !
!
X + !

!
Y 

 Y! = sin 300° X + cos 300° Y 

 Y! = !
!
X + !

!
Y 

 



 41 

C!! = E = 1 0
0 1    E =

1 0 0
0 1 0
0 0 1

 

 X! = cos 0° X + sin 0° Y 

 X! = 1X + 0Y 

 Y! = −sin 0° X + cos 0° Y 

 Y! = 0X + 1Y 

 

 

Reflections 

σ!(!") =
1 0 0
0 −1 0
0 0 1

 

Eg. Through two points and center 
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CHAPTER FOUR: OTHER COMMON CHEMICAL GROUP THEORY  
TEXTBOOK INCONSISTENCIES 

 
 
4.1 Deriving the C3v character table 
 
The inconsistency of rotation matrix choice can go unnoticed in chemical group theory 

because the operations are grouped into classes. Two symmetry elements, say A and B, are in 

the same class if there is an element X within the group where: X!!AX = B. The process of 

surrounding a symmetry element with another element and its inverse is called a similarity 

transform. The character table for C3v will be derived to show both where a character table 

comes from and why the choice of clockwise and anticlockwise rotation does not matter once 

a character table is being used. All four rotation matrices are shown to establish this point.  

 

First the inverse of each operation will be found to obtain X-1. 

 

Mirror planes are their own inverse:  

 

σ! =
1 0 0
0 −1 0
0 0 1

     σ!!! =
1 0 0
0 −1 0
0 0 1

 

 

σ! =
− !
!

!
!

0
!
!

!
!

0
0 0 1

     σ!!! =
− !
!

!
!

0
!
!

!
!

0
0 0 1

 

 

σ! =
− !
!

− !
!

0

− !
!

!
!

0
0 0 1

     σ!!! =
− !
!

− !
!

0

− !
!

!
!

0
0 0 1
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Anticlockwise X Y Z  

X!Y!Z′ = X Y Z
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

     C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

 

 

C!! and C!! are the inverses of each other:  

C!!
 !! =

− !
!

− !
!

0
!
!

− !
!

0
0 0 1

!!

=
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

     C!!
 !! =

− !
!

!
!

0

− !
!

− !
!

0
0 0 1

!!

=
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

 

 

This can also be shown by multiplying them: 

C!!C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

− !
!

!
!

0

− !
!

− !
!

0
0 0 1

=
1 0 0
0 1 0
0 0 1

     C!!C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

− !
!

− !
!

0
!
!

− !
!

0
0 0 1

=
1 0 0
0 1 0
0 0 1

 

Note the convention is for operations to be carried out from right to left, so C!!C!! means C!! first and then C!! 

second. 

 

 

Clockwise X Y Z  

X!Y!Z′ = X Y Z
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 

C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

     C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

  

 

C!! and C!! are the inverses of each other:  

C!!
 !! =

− !
!

!
!

0

− !
!

− !
!

0
0 0 1

!!

=
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

= C!!      C!!
 !! =

− !
!

− !
!

0
!
!

− !
!

0
0 0 1

!!

=
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

= C!!  

 

This can also be shown by multiplying them: 



 44 

C!!C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

− !
!

− !
!

0
!
!

− !
!

0
0 0 1

=
1 0 0
0 1 0
0 0 1

     C!!C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

− !
!

!
!

0

− !
!

− !
!

0
0 0 1

=
1 0 0
0 1 0
0 0 1

 

 

 

Anticlockwise 
X
Y
Z

 

cos θ sin θ 0
−sin θ cos θ 0
0 0 1

X
Y
Z
=

X′
Y′
Z′

 

C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

     C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

 

 

C!! and C!! are the inverses of each other:  

C!!
 !! =

− !
!

!
!

0

− !
!

− !
!

0
0 0 1

!!

=
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

= C!!      C!!
 !! =

− !
!

− !
!

0
!
!

− !
!

0
0 0 1

!!

=
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

= C!!  

 

This can also be shown by multiplying them: 

C!!C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

− !
!

− !
!

0
!
!

− !
!

0
0 0 1

=
1 0 0
0 1 0
0 0 1

     C!!C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

− !
!

!
!

0

− !
!

− !
!

0
0 0 1

=
1 0 0
0 1 0
0 0 1

  

 

 

Clockwise 
X
Y
Z

 

cos θ −sin θ 0
sin θ cos θ 0
0 0 1

X
Y
Z
=

X′
Y′
Z′

 

R!" =
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 

C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

     C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

 

C!! and C!! are the inverses of each other:  
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C!!
 !! =

− !
!

− !
!

0
!
!

− !
!

0
0 0 1

!!

=
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

     C!!
 !! =

− !
!

!
!

0

− !
!

− !
!

0
0 0 1

!!

=
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

 

This can also be shown by multiplying them: 

C!!C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

− !
!

!
!

0

− !
!

− !
!

0
0 0 1

=
1 0 0
0 1 0
0 0 1

     C!!C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

− !
!

− !
!

0
!
!

− !
!

0
0 0 1

=
1 0 0
0 1 0
0 0 1

 

 

 

The chart below can be used as AX. 
 

C3v multiplication table 

C3v E C3
1 C3

2 σv1 σv2 σv3 

E E C3
1 C3

2 σv1 σv2 σv3 

C3
1 C3

1 C3
2 E σv3 σv1 σv2 

C3
2 C3

2 E C3
1 σv2 σv3 σv1 

σv1 σv1 σv2 σv3 E C3
1 C3

2 

σv2 σv2 σv3 σv1 C3
2 E C3

1 

σv3 σv3 σv1 σv2 C3
1 C3

2 E 
Order is first the operation at the top of table then the operation on the side  

 

The product from the C3v multiplication table is then multiplied by the inverses calculated 

above. 

 

EC!!E = C!!  

C!!C!!C!! = C!!C!! = C!!  

C!!C!!C!! = C!!E = C!!  

σ!"C!!σ!" = σ!"σ!" = C!! 

σ!"C!!σ!" = σ!"σ!" = C!!  

σ!"C!!σ!" = σ!"σ!" = C!!  
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C!! and C!! are in a class together. This should be seen with the similarity transform of C!! as 

well:  

 

EC!!E = C!!  

C!!C!!C!! = C!!E = C!!  

C!!C!!C!! = C!!C!! = C!!  

σ!"C!!σ!" = σ!"σ!" = C!!  

σ!"C!!σ!" = σ!"σ!" = C!!  

σ!"C!!σ!" = σ!"σ!" = C!!  

 

All vertical mirror planes are also in a class together: 

Eσ!"E = σ!"  

C!!σ!"C!! = C!!σ!" = σ!"  

C!!σ!"C!! = C!!σ!" = σ!"  

σ!"σ!"σ!" = σ!"E = σ!"  

σ!"σ!"σ!" = σ!"C!! = σ!"  

σ!"σ!"σ!" = σ!"C!! = σ!"  

 

It is now known that C!!and C!! are in a class together and that σ!", σ!", and σ!" are in a class 

together. E is in a class of its own as well, as X!!EX = X!!X = E. The number of classes (3) 

will equal the number of irreducible representations, which are the rows of the character table. 

 

C3v E 2C3 3σv   

(1)      

(2)      

(3)      
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The irreducible representations are found from the transformation matrices. First the 

operations are lined up according to class. 
 

Anticlockwise X Y Z  

             C!! = E =
1 0 0
0 1 0
0 0 1

       C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

       σ! =
1 0 0
0 −1 0
0 0 1

 

                                                       C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

       σ! =
− !
!

!
!

0
!
!

!
!

0
0 0 1

 

                                                                                                 σ! =
− !
!

− !
!

0

− !
!

!
!

0
0 0 1

  

Clockwise 𝑋𝑌𝑍  

             C!! = E =
1 0 0
0 1 0
0 0 1

       C!! =
− !
!

!
!

0

− !
!

− !
!

0
0 0 1

        σ! =
1 0 0
0 −1 0
0 0 1

 

                                                       C!! =
− !
!

− !
!

0
!
!

− !
!

0
0 0 1

        σ! =
− !
!

− !
!

0

− !
!

!
!

0
0 0 1

 

                                                                                                   σ! =
− !
!

!
!

0
!
!

!
!

0
0 0 1

 

 

The matrices are then block diagonalized. In order to do this, all of the non-diagonal elements 

must be zeros. (The diagonal only includes top left to bottom right. The opposite diagonal is 

never used.) One then must draw a square matrix around the non-zero elements in a way that 

isolates them from the zeros. In the identity matrix, a square 1x1 matrix can be drawn around 

each of the values of 1. However in the C3 matrices, a 2x2 and a 1x1 matrix must be drawn, as 

three 1x1 matrices would not isolate all non-zero elements. 

C!! =
− !
!

− !
!

0

 !
!

− !
!
  0

0 0 1
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The diagonals are then added (if applicable), and that is the character for the given position 

(X, Y, or Z). All elements in a class will have the same block diagonal. In the case of C3, X 

and Y are block diagonalized together, so they must be treated together as one irreducible 

representation, (x,y).  

 

Block diagonalized: 

  E   2C3   3σv 

X,Y  2   -1   0  E 

Z  1   1   1  A1 
 
The irreducible representations are named using Mulliken notation. 
 
C3v E 2C3 3σv   

A1 1 1 1 s, z  

      

E 2 -1 0 (x,y)  

 
The other elements in a character table are found using advanced group theory rules and need 

not be derived by the student. These irreducible representations can correspond to a rotational 

mode (which is a different calculation process), or are listed in the character table to satisfy 

the rules of a group. This means some irreducible representations are mathematically part of 

the group, but may not have any application to chemical bonding.  
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4.2 The B3 representation 
 
A curious thing can be seen in some character tables, where there is a subscript of 3 (on B3) 

labeling some irreducible representations in the D2 and D2h point groups. The Mulliken 

notation does not define a subscript of 3. Furthermore, the Mulliken notation defines 1 and 2 

as absolutes, which leaves no room for a third option: 

• When there is a C2 axis perpendicular to the principal rotation axis: 

o 1 designates the irreducible representation is symmetric with respect to the ⊥C2 

axis 

o 2 designates the irreducible representation is asymmetric with respect to the 

⊥C2 axis 

• When there is not a ⊥C2 axis: 

o 1 designates the irreducible representation is symmetric with respect to a 

vertical mirror plane 

o 2 designates the irreducible representation is asymmetric with respect to a 

vertical mirror plane 

 
Inui et al. (1990) write that the Mulliken notation is abandoned in the case of D2 and D2h 

because the X,Y, and Z axes are equivalent, but do not provide historical context for why the 

irreducible representations are labeled B1 B2 and B3. No other sources were found that 

mention B3, nor the point groups it is found within. The character tables are derived below to 

try to answer this question. 

 
 
4.2.1 The D2 point group 
 
The D2 (e.g. twistane) point group table is made up of the following operations*: 
 

E =
1 0 0
0 1 0
0 0 1

   C! ! =
−1 0 0
0 −1 0
0 0 1

   C! ! =
−1 0 0
0 1 0
0 0 −1

   C!(!) =
1 0 0
0 −1 0
0 0 −1

  

    

*C2 is the special case where it does not matter anticlockwise or clockwise or X Y Z  or 
X
Y
Z

 matrix orientation. 
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Block diagonalized:  
    
D2 E C2(Z) C2(Y) C2(X) 
(s) 1  1  1  1 
Z 1  1 -1 -1 
Y 1 -1  1 -1 
X 1 -1 -1  1 
    
Note the point group table is for the center of symmetry. If this center is an atom, the X, Y, 

and Z axes can correspond to the px, py, and pz orbitals, which appear in the second column 

to the right in the character tables. In practice, the center of symmetry for D2 and D2h 

molecules does not usually lie on an atom, so these axes will remain labeled X, Y, and Z 

(after the Cartesian axes) for this treatment. 

 
According to the Mulliken Notation, each irreducible representation should be named with 

only an A or a B: 

• A indicates the operation is symmetric with respect to the principal rotation axis. 

• B indicates the operation is asymmetric with respect to the principal rotation axis. 

• There is not a ⊥C2 axis, nor is there a σv, so subscript 1 and 2 should not be included. 

• There is not an inversion center, so subscript g and u are not included.  

• There is no σh, so ’ and ” are not included. 

 
There are two possible ways to label X,Y, and Z. One, Z can be defined arbitrarily as the 

principal rotation axis even though in the special case of D2, it is no difference between it and 

the other two axes. Alternatively, X, Y, and Z can all be considered the principal rotation axis. 

 
 
If Z is the principal rotation axis: 
 
In the first case, C2(Z) is arbitrarily the principal rotation axis. Rotation about C2(z) is 

symmetric for Z, and asymmetric for X and Y. This gives Z an A representation while X and 

Y get the B representation. 
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D2 E C2(Z) C2(Y) C2(X)  
A 1  1  1  1 s 
A 1  1 -1 -1 z 
B 1 -1  1 -1 y 
B 1 -1 -1  1 x 
 
Note that while both symmetric with respect to C2(z), the s and pz orbitals are not the same 

kind of A representation, and while both asymmetric with respect to C2(z), the px and py 

orbitals are not the same kind of B representation. This is where the Muliken notation has 

limits within the D2 point group. A new type of subscript would be limited to simply giving 

the chemist a way to distinguish between the two types of A and two types of B 

representations, as there is no other symmetry element to use as a way to tell them apart; there 

are only C2 rotations. Nevertheless, an identifying subscript might be helpful when referring 

to a particular irreducible representation. 

 
D2 E C2(Z) C2(Y) C2(X)  
Aα 1  1  1  1 s 
Aβ 1  1 -1 -1 z 
Bα 1 -1  1 -1 y 
Bβ 1 -1 -1  1 x 
 
 
If X, Y, and Z are all the principal axis: 
 
In the second case, all C2 axes are the principal rotation axis at the same time, which leaves 

the question: does the symmetric or asymmetric representation take precedent? When looking 

at X as the principal rotation axis, C2(X) is symmetric upon rotation, but C2(Y) and C2(Z) are 

asymmetric upon rotation about X. A decision must be made between A and B. The 

representation can be A if C2(X) takes precedent, or B if C2(Y) and C2(Z) take precedent.  

 
If looking at each axis and its accompanying C2 rotation (Eg. Z and C2(Z)), one would assign 

the irreducible representation as A. C2(Z) is symmetric with respect to Z. Likewise, C2(Y) is 

symmetric with respect to Y and C2(X) is symmetric with respect to X. 
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D2 E C2(Z) C2(Y) C2(X)  
A 1  1  1  1 s 
A 1  1 -1 -1 z 
A 1 -1  1 -1 y 
A 1 -1 -1  1 x 
 
However, if each C2 axis is examined in terms of the other two C2 axes, the irreducible 

representations would be labeled B. For example, C2(Z) is asymmetric with respect to C2(Y) and 

C2(X). 

 
D2 E C2(Z) C2(Y) C2(X)  
A 1  1  1  1 s 
B 1  1 -1 -1 z 
B 1 -1  1 -1 y 
B 1 -1 -1  1 x 
 
With the Mulliken notation, it is not possible to distinguish between the three A (or B) 

irreducible representations, pz, py, and px. This likely led a past chemist to use a subscript 1, 

2, and 3. This is, however, not appropriate within Mulliken notation, as there is not a 

perpendicular C2 axis, nor is there a vertical mirror plane, and these are associated with the 

subscript 1 and 2 notation. Subscripts of α, β, and γ would be more appropriate in this case: 

 
D2 E C2(Z) C2(Y) C2(X)  
A 1  1  1  1 s 
Aα 1  1 -1 -1 z 
Aβ 1 -1  1 -1 y 
Aγ 1 -1 -1  1 x 
 
Or 
 
D2 E C2(Z) C2(Y) C2(X)  
A 1  1  1  1 s 
Bα 1  1 -1 -1 z 
Bβ 1 -1  1 -1 y 
Bγ 1 -1 -1  1 x 
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4.2.2 The D2h point group 
 
The D2h (e.g. 1,4-dibromobenzene) point group table is made up of the following operations: 
 

E =
1 0 0
0 1 0
0 0 1

    C! ! =
−1 0 0
0 −1 0
0 0 1

   C! ! =
−1 0 0
0 1 0
0 0 −1

   C!(!) =
1 0 0
0 −1 0
0 0 −1

  

 

𝑖 =
−1 0 0
0 −1 0
0 0 −1

    σ(!") =
1 0 0
0 1 0
0 0 −1

      σ(!") =
1 0 0
0 −1 0
0 0 1

      σ(!") =
−1 0 0
0 1 0
0 0 1

 

 
Block diagonalized: 
 
D2h E C2(Z) C2(Y) C2(X) i σ(XY) σ(XZ) σ(YZ) 
(s) 1  1  1  1  1  1  1  1 
Z 1  1 -1 -1 -1 -1  1  1 
Y 1 -1  1 -1 -1  1 -1  1 
X 1 -1 -1  1 -1  1  1 -1 
 
The problem of labeling X,Y, and Z arises again. Z can be defined as the principal rotation 

axis or X,Y, and Z can all be considered as the principal rotation axis at the same time.  

 
Naming with Mulliken Notation:  

• A indicates the operation is symmetric with respect to the principal rotation axis. 

• B indicates the operation is asymmetric with respect to the principal rotation axis. 

• 1 indicates the operation is symmetric with respect to the ⊥C2 axis 

• 2 indicates the operation is asymmetric with respect to the ⊥C2 axis 

• g (gerade) indicates the operation is symmetric with respect to the inversion center 

• u (ungerade) indicates the operation is asymmetric with respect to the inversion center 

• ’ indicates the operation is symmetric with respect to a horizontal symmetry plane, σh 

• ” indicates the operation is asymmetric with respect to a horizontal symmetry plane, 

σh 

 
 
If Z is the principal rotation axis: 
 
If Z is the principal C2 axis, the other two C2 axes are perpendicular to the principal axis. The 

1 and 2 subscript notation would therefore be used according to the perpendicular C2 axes, 

rather than the vertical mirror planes (σ(XY) is a horizontal mirror plane). Again, there is the 
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problem of precedent. The reducible can be symmetric or asymmetric with respect to the 

perpendicular C2 axis, however in the cases of the two B representations, there is one each of 

a symmetric and asymmetric C2 operation. A subscript of 1 or 2 cannot be assigned unless 

either symmetric (1) and one asymmetric (-1) is defined as more important. The vertical 

mirror planes also pose an additional problem of having conflicting answers to whether the 

representation is symmetric or asymmetric. Even if Z is the principal rotation axis, the vertical 

mirror planes that contain Z can have one symmetric and one asymmetric value for the px and 

py orbitals. The 1 and 2 subscripts could be left out entirely to combat this problem:  

 

D2h E C2(Z) C2(Y) C2(X) i σ(XY) σ(XZ) σ(YZ)  
A1g’ 1  1  1  1  1  1  1  1 s 
Au” 1  1 -1 -1 -1 -1  1  1 z 
Buα’ 1 -1  1 -1 -1  1 -1  1 y 
Buβ’ 1 -1 -1  1 -1  1  1 -1 x 
 
Only X and Y would need an additional subscript to distinguish them. 
 
 
If X, Y, and Z are all the principal axis: 
 
If all C2 axes are equal, they are all the principal rotation axis at the same time. Because of 

this, all mirror planes are vertical, σv, and none of the mirror planes can be the horizontal 

mirror plane, σh. This rules out all Mulliken notation with primes (’ and ”). The axes are then 

treated one at a time: When Z is the principal rotation axis, pz is symmetric to C2(Z), giving us 

an A representation. Likewise, when Y is the principal rotation axis, py is symmetric to C2(Y), 

and when X is the principal rotation axis, px is symmetric to C2(X).  

 
D2h E C2(Z) C2(Y) C2(X) i σ(XY) σ(XZ) σ(YZ)  
(s) 1  1  1  1  1  1  1  1 A 
Z 1  1 -1 -1 -1 -1  1  1 A 
Y 1 -1  1 -1 -1  1 -1  1 A 
X 1 -1 -1  1 -1  1  1 -1 A 
 
There is also the possibility of defining the px, py, and pz irreducible representations as B 

representations. To do this, the asymmetric operations must take president over the symmetric 

representation. So while C2(Z) is symmetric with respect to rotation about Z, C2(X) and C2(Y) are 

asymmetric. As X, Y, and Z are all the principal rotation axis, the irreducible representation 
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could be called asymmetric with respect to the principal rotation axis (that is, to two of the 

three principal rotation axes). 

 
D2h E C2(Z) C2(Y) C2(X) i σ(XY) σ(XZ) σ(YZ)  
(s) 1  1  1  1  1  1  1  1 A 
Z 1  1 -1 -1 -1 -1  1  1 B 
Y 1 -1  1 -1 -1  1 -1  1 B 
X 1 -1 -1  1 -1  1  1 -1 B 
 
If all axes are the principal axis, there isn’t a perpendicular C2 axis to use to define the 1 or 2 

subscript (the perpendicular C2 is a different principal rotation axis). At the same time that 

each axis is the principal rotation axis, it is symmetric with respect to a vertical plane of 

symmetry. That is, when we look at Z as the principal axis, the pz irreducible representation is 

symmetric with respect to the mirror planes that contain Z (σ(XZ) and σ(YZ)). This gives the pz, 

py, and px irreducible representations a subscript of 1.  

 
The last part of the notation is simpler. The pz, py, and px irreducible representations are 

asymmetric with respect to the inversion center, and get a subscript of u.  

 
D2h E C2(Z) C2(Y) C2(X) i σ(XY) σ(XZ) σ(YZ)  
s 1  1  1  1  1  1  1  1 A1g 
z 1  1 -1 -1 -1 -1  1  1 A1u 
y 1 -1  1 -1 -1  1 -1  1 A1u 
x 1 -1 -1  1 -1  1  1 -1 A1u 
 
The problem distinguishing between pz, py, and px arises again. The notation of α, β, and γ 

can be used again: 

 
D2h E C2(Z) C2(Y) C2(X) i σ(XY) σ(XZ) σ(YZ)  
A1g 1  1  1  1  1  1  1  1 s 
A1uα 1  1 -1 -1 -1 -1  1  1 z 
A1uβ 1 -1  1 -1 -1  1 -1  1 y 
A1uγ 1 -1 -1  1 -1  1  1 -1 x 
 
Note also that the perfectly symmetric representation, A1g, is not always shown with a 

subscript 1. It should be, however, as it is also symmetric to all vertical mirror planes.  
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4.2.3 Three B representations 
 
All character tables that were examined showed the irreducible representations that are 

associated with pz, py, and px labeled as B representations (B1, B2, B3, respectively). Defining 

Z as the principal rotation axis will get one A and two B irreducible representations. Defining 

X, Y, and Z equally as the principal rotation axis, will give three A irreducible representations 

or three B reducible representations.  

 
The only way to derive three B irreducible representations is to define X, Y, and Z each as the 

principal C2 rotation axis. If all axes are the principal rotation axis, the irreducible 

representations (that correspond to X, Y, and Z) will each have one C2 operation that is 

symmetric, and two that are asymmetric. For example, the Z axis irreducible representation 

will show that C2(Z) is symmetric and C2(X) and C2(Y) are asymmetric with respect to rotation 

about the Z axis. One then has to make the decision that asymmetric operations overrule 

symmetric operations to give B instead of A designations.  

 
D2 E C2(Z) C2(Y) C2(X)  
A 1  1  1  1 s 
Bα 1  1 -1 -1 z 
Bβ 1 -1  1 -1 y 
Bγ 1 -1 -1  1 x 
 
D2h E C2(Z) C2(Y) C2(X) i σ(XY) σ(XZ) σ(YZ)  
A1g 1  1  1  1  1  1  1  1 s 
B1uα 1  1 -1 -1 -1 -1  1  1 z 
B1uβ 1 -1  1 -1 -1  1 -1  1 y 
B1uγ 1 -1 -1  1 -1  1  1 -1 x 
 
Under these conditions, three B representations can be derived. There is, however, no reason 

to have a B3 representation. The three B representations can be distinguished with the use of 

an α, β, γ subscript system.  

 
 
4.2.4 Concluding remarks 
 
There is no precedent for defining the asymmetric representation as more important than the 

symmetric representation, or the opposite. It is the opinion of the author that the definition 

should take advantage of the single unique character in each representation. For the D2 and 
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D2h point groups (where X,Y, and Z are all defined as the principal rotation axis), this would 

be the following in bold: 

 
D2 E C2(Z) C2(Y) C2(X)  
A 1  1  1  1 s 
Aα 1  1 -1 -1 z 
Aβ 1 -1  1 -1 y 
Aγ 1 -1 -1  1 x 
 
D2h E C2(Z) C2(Y) C2(X) i σ(XY) σ(XZ) σ(YZ)  
A1g 1  1  1  1  1  1  1  1 s 
A1uα 1  1 -1 -1 -1 -1  1  1 z 
A1uβ 1 -1  1 -1 -1  1 -1  1 y 
A1uγ 1 -1 -1  1 -1  1  1 -1 x 
 
If this unique character forms the basis of the definition, an A designation is more appropriate. 

For example, when Z is the principal rotation axis, the C2(Z) rotation is symmetric (1), and 

C2(Y) and C2(X) are asymmetric (-1) with respect to the principal rotation axis. Likewise, when 

Y is the principal rotation axis, C2(Y) is symmetric, and when X is the principal rotation axis, 

C2(X) is symmetric. Choosing the single symmetric (1) character as more important than the 

two asymmetric (-1) characters leads to an A representation.  
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4.3 Propagation of error throughout sources 
 
This section contains an example of the inconsistencies described in Chapter One concerning 

an author’s choice of principal rotation direction and the direction of rotation depicted in the 

accompanying diagram. In the Principles section of his book, Chemical Applications of Group 

Theory, 3rd Ed., F. Albert Cotton (1990) derives the transformation matrix for a proper 

rotation. The Z axis is chosen as the principal rotation axis, but the direction of rotation is not 

defined. Instead, Cotton lists out the transformation matrices for both clockwise and 

anticlockwise rotation. The diagram shows an anticlockwise rotation, and Cotton claims to 

derive the anticlockwise rotation matrix first, however the clockwise rotation matrix is 

provided instead. From Cotton (1990): 

 
Suppose that we have a point in the xy plane with coordinates x1 and y1, as shown in the diagram. This 

point defines a vector, r1, between itself and the origin. Now suppose that this vector is rotated through 

an angle θ so that a new vector, r2, is produced with a terminus at the point x2 and y2. We now inquire 

about how the final coordinates, x2 and y2, are related to the original coordinates, x1 and y1, and the 

angle θ. The relationship is not difficult to work out. When the x component of r1, x1, is rotated by θ, it 

becomes a vector x’ which has an x component of x1 cos θ and a y component of x1 sin θ. Similarly, the 

y component of r1, y1, upon rotation by θ becomes a new vector y’, which has an x component of –y sin 

θ and a y component of y1 cos θ. Now, x2 and y2, the components of r2, must be equal to the sums of the 

x and y components of x’ and y’, so we write 

𝑥! = 𝑥! cos 𝜃 − 𝑦!  sin 𝜃 

𝑦! = 𝑥! sin 𝜃 + 𝑦! cos 𝜃 

The transformation expressed by 4.1-1 can be written in matrix notation in the following way: 

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

x!
y! =  

x!
y!  

This result is for a counterclockwise rotation. Because cos ϕ = cos(-ϕ) while sin ϕ = -sin(-ϕ), the matrix 

for a clockwise rotation through the angle ϕ must be 

cos𝜙 sin𝜙
−sin𝜙 cos𝜙  

Thus, finally, the total mtrix equation for a clockwise rotation through ϕ about the z axis is 

cos𝜙 sin𝜙 0
sin𝜙 cos𝜙 0
0 0 1

𝑥!
𝑦!
𝑧!

=
𝑥!
𝑦!
𝑧!

 

 
 
In his book, Cotton prefers the vertical transformation matrix. The correct transformation 

matrices for proper rotation were derived in Chapter Two of this thesis and are:  
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Anticlockwise      Clockwise 

X′
Y′
Z′

=
cos θ sin θ 0
−sin θ cos θ 0
0 0 1

X
Y
Z

    
X′
Y′
Z′

=
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

X
Y
Z

 

 

From the above excerpt from Cotton (1990): 

Cotton’s “Counterclockwise”    Cotton’s “Clockwise” 
𝑥!
𝑦!
𝑧!

=
cos𝜃 −sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

𝑥!
𝑦!
𝑧!

   
𝑥!
𝑦!
𝑧!

=
cos𝜙 sin𝜙 0
sin𝜙 cos𝜙 0
0 0 1

𝑥!
𝑦!
𝑧!

 

 
 
What Cotton lists as the anticlockwise rotation matrix is actually the clockwise rotation 

matrix. Likewise, what is called the clockwise rotation matrix is the clockwise rotation 

matrix. This error propagates into his next section on improper rotation where the following 

matrix is given as a clockwise improper rotation when it is an anticlockwise matrix: 
    

cos𝜙 sin𝜙 0
−sin𝜙 cos𝜙 0
0 0 −1

 

 
 
An error such as the one discussed above can create inconsistencies in other publications. This 

is seen in the Inorganic Chemistry, 4th Ed. textbook by Miessler and Tarr (2010). Miessler and 

Tarr define rotation as anticlockwise early in their molecular symmetry chapter, but later 

provide a vertical clockwise rotation matrix. An accompanying footnote in the section 

instructs the student to read more on the subject from Cotton (1990). It is likely that Miessler 

and Tarr were intending to reference the anticlockwise rotation matrix, but inadvertently used 

the clockwise matrix that Cotton erroneously labeled anticlockwise.  
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