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Abstract

Zoonotic spillover is an ever-growing threat to human health, emphasizing the need

for effective virus control measures within wildlife reservoirs. This dissertation explores

the possibility for novel virus control measures and develops an open source Lassa virus

database. In the first Chapter, we develop a mathematical model to evaluate the effective-

ness of a transmissible vaccine within a heterogeneous wildlife population. Generally, we

find that transmissible vaccines do not benefit from heterogeneity in vaccine transmission.

Next, we model the spread of a transmissible vaccine constructed from a betaherpesvirus

vector, a leading vector candidate for vaccine development. We find that a transmissi-

ble vaccine constructed from such a vector can reduce certain zoonotic pathogens within

a year of vaccine introduction. Finally, we construct a database characterizing Lassa

virus infection and sequence data as well as interactive tools for data visualization and

management to facilitate research on Lassa virus in West Africa.
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Chapter 1: Transmissible vaccines in heterogeneous

populations: Implications for vaccine design

1.1 Abstract

Transmissible vaccines may provide a promising solution for improving the control of

infectious disease, particularly zoonotic pathogens with wildlife reservoirs. Although it

is well known that heterogeneity in pathogen transmission impacts the spread of infec-

tious disease, the effects of heterogeneity on vaccine transmission are largely unknown.

Here we develop and analyze a mathematical model that quantifies the potential benefits

of a transmissible vaccine in a population where transmission is heterogeneous between

two subgroups. Our results demonstrate that the effect of heterogeneity on the benefit

of vaccine transmission largely depends on the vaccine design and the pattern of vac-

cine administration across subgroups. Specifically, our results show that in most cases

a transmissible vaccine designed to mirror the transmission of the pathogen is optimal.

If the vaccination effort can be preferentially biased towards a given subgroup, a vaccine

with a pattern of transmission opposite to that of the pathogen can become optimal in

some cases. To better understand the consequences of heterogeneity on the effectiveness

of a transmissible vaccine in the real world, we parameterized our model using data from

Sin Nombre virus in deer mice (Peromyscus maniculatus). The results of this analysis

reveal that when a vaccination campaign is limited in vaccine availability, a traditional

vaccine must be administered primarily to males for the spread of Sin Nombre virus to

be prevented. In contrast, a transmissible vaccine remains effective even when it cannot

be preferentially administered to males.

1.2 Introduction

Zoonoses, particularly those circulating in wildlife populations, are a primary source

of pathogens that infect humans [1]. The burden of such pathogens on human populations
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can be profound, as demonstrated in the 2014-2015 West African Ebola virus epidemic.

The virus was transmitted from wild animal populations such as fruit bats and apes [2],

and resulted in over 11,000 human deaths and cost over 3.6 billion dollars [3]. Such

outbreaks highlight the need to develop cost-effective strategies that mitigate zoonotic

spillover into human populations. One strategy for reducing the spillover potential of

zoonoses is to decrease the prevalence of infectious disease within wildlife reservoir popu-

lations. Both culling [4] and mass vaccination [4, 5] have been used to control pathogens

in wildlife reservoir populations. Though both strategies have been successful in some

cases [4], the costs of implementation and the difficulties of delivering vaccine to wild

animals limit their scope of applicability [6]. Transmissible vaccines are a novel tool that

might overcome some of these challenges, allowing for pathogen reduction or even the

prevention of pathogen spread in wildlife reservoirs.

Transmissible vaccines, also known as self-disseminating vaccines, are live viral vac-

cines with the ability to transmit between hosts [7]. Mathematical models demonstrate

that vaccine transmission reduces the vaccination effort required to protect a popula-

tion [8], can reduce a pathogen’s prevalence in a population, or facilitate pathogen eradi-

cation altogether [8–10]. Though insightful, these models simplify host biology by assum-

ing that all hosts are identical in their capacity to transmit the vaccine and pathogen. In

reality, of course, individual hosts differ in their transmission due to factors such as sex

and age [11], and this heterogeneity in host populations has been shown to influence the

outcome of vaccination campaigns as well as the optimal vaccination strategy [12]. For

instance, if vaccine is delivered to a heterogeneous host population at random, pathogen

control requires a greater rate of vaccination than in a uniform host population [12].

In contrast, if it is possible to deliver vaccine selectively or optimally, the vaccination

rate required for pathogen control can actually be less in a heterogeneous host popula-

tion than a homogeneous host population [12]. Preferentially distributing a vaccine to

a super-spreading class increases the overall effectiveness of a vaccination campaign [11].
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Unfortunately, effectively identifying super-spreaders and selectively delivering vaccine to

them is a formidable and unresolved public health challenge in many systems [13].

Mathematical models of another transmissible therapy, therapeutic interfering par-

ticles (TIPs), have demonstrated that heterogeneity in host transmission increases the

effectiveness of TIPs by autonomously targeting super-spreaders [13]. TIPs replicate only

in the presence of the pathogen, and naturally follow the same transmission pathways [13].

In a similar fashion, transmissible vaccines may benefit from following the same trans-

mission pathways as the pathogen, thus increasing their effectiveness in heterogeneous

populations. Although intuitively appealing, it is unknown whether the benefits demon-

strated for TIPs in heterogeneous host populations also occur for transmissible vaccines.

Here we explore the effects of vaccine transmission in a host population with heterogeneity

in vaccine and pathogen transmission (i.e., some individuals spread the infectious agent to

a higher degree than others). To this end, we develop mathematical models to quantify the

effectiveness of a transmissible vaccine in a host population composed of subgroups that

transmit a vaccine and pathogen at different rates. Our analyses address three specific

questions: 1.) How sensitive are the benefits of vaccine transmission to population-level

heterogeneity? 2.) Do certain patterns of heterogeneity favor the use of a vaccine that

mimics the biased spread of a pathogen? 3) Do levels of heterogeneity observed in a natu-

ral reservoir population (Sin Nombre virus (SNV) in deer mice (Peromyscus maniculatus))

significantly influence the effectiveness of a transmissible vaccine?

1.3 Methods

We developed a model describing the spread of a pathogen and transmissible vaccine in

a heterogeneous animal population. Hosts in the population fall into one of two subgroups.

Each subgroup is defined by a unique set of parameters that reflect differences in the hosts’

ability to transmit a pathogen and a transmissible vaccine. We assume that subgroup

identity is a result of fixed differences in host biology (e.g., behavior, sex, genome), and
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as a consequence, hosts remain in the subgroup into which they were born. Based on

the classic Susceptible-Infected-Recovered (SIR) model of disease spread [14], individuals

in each subgroup i are further partitioned into classes that reflect their immunological

status to a transmissible vaccine and pathogen: susceptible to both pathogen and vaccine

(Si), pathogen-infected (Wi), vaccine-infected (Vi), and recovered (R). New susceptible

individuals are introduced into subgroup i at a constant rate bi and all individuals die

at rate d. Although we refer to bi as birth for simplicity, it more accurately describes

the rate at which new susceptible individuals are added to the population through any

mechanism. Susceptible individuals can be directly vaccinated as they are introduced into

the susceptible class, or indirectly though infection with the vaccine. Although challenging

in wildlife populations, direct vaccination of susceptible individuals may be possible in

a number of ways. For instance, a captive colony could be used as a source of directly

vaccinated juveniles, vaccine baits could be designed in a way that favors consumption by

juvenile individuals more likely to be susceptible, or pregnant females could be targeted

with vaccines capable of vertical transmission. In the model, a fraction σi of births into

subgroup i are directly vaccinated and immediately enter the vaccine-infected class Vi.

The rate at which the vaccine and pathogen spread between susceptible and infected

hosts depends on the subgroup identities of the hosts involved. The parameters βv,i,j and

βw,i,j describe the rates of transmission from subgroup j to subgroup i for a transmissible

vaccine and pathogen, respectively (Figure 1.1). For example, pathogen-infected indi-

viduals within subgroup j transmit the infection to susceptible individuals in subgroup

i according to the mass-action rate βw,i,jSiWj. Because susceptible individuals of sub-

group i can become pathogen-infected by members of either subgroup, the total rate of

pathogen infection in subgroup i is
∑2

j=1 βw,i,jSiWj. Upon pathogen infection, a suscep-

tible in class Si transitions to the pathogen-infected class Wi. Likewise, susceptible hosts

in subgroup i become infected with the vaccine at rate
∑2

j=1 βv,i,jSiVj, and transition

into class Vi. Because of the assumed immunological cross-reactivity between the vaccine
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and the pathogen, individuals who experience infection from one agent are immune to

future infections from either agent. Individuals who are infected with either the vaccine

or pathogen recover at rate γ. Because recovered hosts no longer contribute to the infec-

tion process, we combine the subgroups into a common R class. A list of model variables

and parameters can be found in Table 1.1. The resulting system of ordinary differential

equations is:

dSi
dt

= bi(1− σi)− dSi −
2∑
j=1

(
βv,i,jSiVj + βw,i,jSiWj

)
dVi
dt

= biσi − (γ + d)Vi +
2∑
j=1

βv,i,jSiVj

dWi

dt
= −(γ + d)Wi +

2∑
j=1

βw,i,jSiWj

dR

dt
= −dR +

2∑
j=1

(
γVj + γWj

)
.

(1.1)
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S1 + V1

High Pathogen Transmission

V1

βv,1,1S1V1

S1 + V2 V1

βv,1,2S1V2

S1 + W1 W1

βw,1,1S1W1

S1 + W2 W1

βw,1,2S1W2

S2 + V1

Low Pathogen Transmission
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βv,2,1S2V1

S2 + V2 V2

βv,2,2S2V2

S2 + W1 W2

βw,2,1S2W1

S2 + W2 W2

βw,2,2S2W2

Figure 1.1: Transmission events in the mathematical model. Subgroup one is assumed to main-
tain high within subgroup pathogen transmission (left), and subgroup two is assumed to maintain
a low level of within subgroup pathogen transmission (right). High and low vaccine transmis-
sion is determined by the assumed vaccine design. Vaccine and pathogen-infected individuals
can infect susceptible individuals within their subgroup (βv,1,1, βv,2,2, βw,1,1, βw,2,2), as well as
susceptible individuals in the other subgroup, at a reduced rate (βv,1,2, βv,2,1, βw,1,2, βw,2,1).
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Name Description Units

Si Susceptible class individuals

Vi Vaccine-infected class individuals

Wi Disease infected individuals individuals

R Recovered individuals individuals

βv,i,j Vaccine transmission rate from sub-

group j to i

individual−1 day−1

βw,i,j Disease transmission rate from sub-

group j to i

individual−1 day−1

γ Recovery rate day−1

bi Birth rates day−1

d Death rate day−1

R0,w Disease reproductive number nondimensional

R0,v Transmissible-vaccine reproductive

number

nondimensional

σi Proportion of newborns vaccinated di-

rectly

nondimensional

σ̄ Average proportion of newborns that

are directly vaccinated across groups

nondimensional

δσ Difference in the proportion of directly

vaccinated newborns across groups

nondimensional

Table 1.1: Model state variables and parameters. Subscript i specifies the subgroup of the
population.

To simplify our model, we make several assumptions regarding the transmission coef-

ficients, βw,i,j and βv,i,j. First, we assume that for both infectious agents, within-group

infectious contacts occur more frequently than between-group contacts. This assumption,
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known as assortative mixing [15], can be expressed mathematically for the pathogen as

βw,i,i > βw,i,j for i 6= j, and similarly for the vaccine. Without loss of generality, we assume

subgroup 1 of the population spreads the pathogen to a greater extent than subgroup 2,

so that βw,1,1 > βw,2,2. In addition, we assume equal cross transmission between groups:

βv,1,2 = βv,2,1 and βw,1,2 = βw,2,1.

We focus on two possibilities of how the transmission rates of the vaccine relate to

pathogen transmission between subgroups. In the first scenario, which we term posi-

tive correlation, the ordering of the vaccine transmission coefficients follows that of the

pathogen, so that vaccine transmission is greatest in subgroup 1 (βv,1,1 > βv,2,2). Because

the heterogeneity in vaccine transmission mimics that of the pathogen, this scenario is

likely relevant for transmissible vaccines produced through pathogen attenuation. Al-

though unintentional, the best example of an attenuated transmissible vaccine is the Oral

Polio Vaccine (OPV), which quite likely follows the transmission pathways of wild type

Polio [16]. The second scenario, which we term negative correlation, describes a transmis-

sible vaccine that spreads better in the subgroup with low pathogen transmission, so that

βv,1,1 < βv,2,2. Although unlikely for an attenuated vaccine, this scenario is in principle

possible for recombinant vector vaccines whose transmission is determined by a vector

that is unrelated to the pathogen. Recombinant vector transmissible vaccines targeting

Lassa fever in Mastomys natalensis and Ebola virus in primates are currently being de-

veloped using a Cytomegalovirus vector, and are likely to fall in this category [7, 17].

Focusing on these two potential vaccine characteristics, we evaluate the effectiveness of a

transmissible vaccine in preventing pathogen invasion and in reducing pathogen incidence

when vaccination prophylaxis cannot be achieved. We then parameterize our model using

data from Sin Nombre virus to quantify the impact of vaccine transmission in a system

that displays heterogeneity in pathogen transmission.
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1.4 Results

Pathogen prophylaxis

A common goal of vaccination campaigns is to prevent a zoonotic pathogen from

spreading to new populations that have not yet experienced infection. This is becoming

particularly true for high impact zoonotic pathogens such as Ebola in great apes, rabies

in a variety of reservoir species, and Lassa fever in rodent populations [7]. This goal is

achieved by vaccinating the population to an extent that halts the spread of the targeted

pathogen. In our model of a vaccination campaign, σ1 and σ2 denote the proportion of

newborn individuals that are directly vaccinated in subgroups 1 and 2 respectively. We

identify the threshold combinations of vaccination effort (σ1, σ2) that protect the entire

population from pathogen invasion (Figure 1.2, Appendix: Pathogen Prophylaxis). Each

panel of Figure 1.2 depicts the limiting combinations of direct vaccination that result in

prophylaxis when a non-transmissible (orange curve) or transmissible vaccine (blue curve)

is used. Along each threshold curve, we characterize two vaccination strategies: random

and optimal. The random strategy applies to many real-world vaccination campaigns

that, due to limited host access, cannot preferentially target one subgroup over another.

Instead, the total vaccination effort (σ1+σ2) is distributed equally between the subgroups

so that σ1 = σ2. In contrast, the optimal vaccination strategy is the combination (σ1, σ2)

that prevents pathogen invasion with the minimal amount of total vaccination effort.

Our results indicate that, across different levels of heterogeneity in transmission be-

tween the subgroups, and for both positively and negatively correlated vaccine designs,

the use of a transmissible vaccine reduces the minimal vaccination effort needed to prevent

pathogen invasion. This can be seen in Figure 1.2 by noting that the transmissible vac-

cination threshold (blue curve) is closer to the origin (σ1 = σ2 = 0) than the traditional

vaccination threshold (orange curve). Consequently, the total amount of vaccination re-

quired to reach the prophylaxis threshold is smaller when a transmissible vaccine is used.
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Comparing the optimal and random vaccination strategies along the prophylaxis threshold

curves shows that for a population with high heterogeneity between subgroups, the opti-

mal vaccination strategy biases vaccine distribution to the subgroup in which pathogen

transmission is greatest. This bias in the optimal strategy is present regardless of whether

the vaccine and pathogen transmission coefficients are positively correlated between the

subgroups or negatively correlated between subgroups.
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Figure 1.2: Vaccination threshold required to prevent pathogen invasion when using a trans-
missible vaccine (shown by the blue line), and traditional vaccine (shown by the orange line).
Each panel depicts the vaccination threshold, for low and high heterogeneity in transmission,
and correlation in transmission. Within subgroup R0 values of the vaccine and pathogen are
depicted in the inset bar plot. Top panels: Global R0,w = 3.697, global R0,v = 0.880. Bottom
panels: Global R0,w = 4.193, global R0,v = 0.998. Fractional reduction in vaccination effort
afforded by a transmissible vaccine (clockwise, starting in the top left panel): a.) Optimal strat-
egy=0.24, Random strategy=0.24, b.) Optimal strategy=0.25, Random strategy=0.22, c.) Opti-
mal strategy=0.31, Random strategy=0.15, d.) Optimal strategy=0.25, Random strategy=0.25.
Parameters varied across panels: a.) R0,v,1,1=0.7, R0,v,2,2=0.5, R0,w,1,1=2.94, R0,w,2,2=2.1,
b.) R0,v,1,1=0.5, R0,v,2,2= 0.7, R0,w,1,1=2.94, R0,w,2,2=2.1, c.) R0,v,1,1=0.3, R0,v,2,2=0.9,
R0,w,1,1=3.78, R0,w,2,2=1.26, d.) R0,v,1,1=0.9, R0,v,2,2=0.3, R0,w,1,1=3.78, R0,w,2,2=1.26. Pa-
rameters conserved across panels: γ=0.02, d=0.01, b1=10, b2=10, R0,v,1,2=0.26, R0,v,2,1=0.26,
R0,w,1,2=1.1, R0,w,2,1=1.1.
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Additionally, we evaluate which vaccine design is most beneficial when compared to a

traditional vaccine, under both vaccination strategies (random and optimal) and across

low and high levels of heterogeneity in transmission. To do so, we find the fractional

reduction in the total vaccination relative a non-transmissible vaccine that is required to

meet the prophylaxis threshold. Figure 1.3 shows the fractional reductions for both vac-

cination strategies and designs, across low and high levels of heterogeneity, when facing a

range of global pathogen R0 values. Our results demonstrate that if a random vaccination

strategy is applied, a positively correlated vaccine results in the greatest reduction in vac-

cination effort, relative to that of a non-transmissible vaccine (left column, Figure 1.3).

Furthermore, for a fixed, average pathogen R0, the fractional reduction from a positively

correlated vaccine design remains relatively constant when heterogeneity is increased from

low to high. In contrast, the benefit of a negatively correlated vaccine decreases as het-

erogeneity increases (Figure 1.3). Generally, these results suggest that when a random

vaccination strategy is implemented, the benefit of a positively correlated vaccine design

is robust under different levels of population heterogeneity. Negatively correlated designs,

in contrast, work best when population heterogeneity is small or absent.
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Figure 1.3: The fractional reduction in prophylaxis vaccination effort for both vac-
cine designs and strategies. We hold the vaccine R0 constant, and proportion-
ally increase the pathogen transmission parameters, allowing us to look at a range
of global R0,w values. Parameter values are as followed: (Top panels) Vaccine
transmission positive correlation: R0,v,1,1=0.45, R0,v,2,2=0.27, R0,v,1,2=0.18, R0,v,2,1=0.18,
Vaccine transmission negative correlation: R0,v,1,1=0.27, R0,v,2,2=0.45, R0,v,1,2=0.18,
R0,v,2,1=0.18, Pathogen transmission: R0,w,1,1=range(0.91-3.63), R0,w,2,2=range(0.54-2.17),
R0,w,1,2=range(0.36-1.44), R0,w,2,1=range(0.36-1.44). (Bottom panels) Vaccine transmission
positive correlation: R0,v,1,1=0.54, R0,v,2,2=0.18, R0,v,1,2=0.18, R0,v,2,1=0.18, Vaccine transmis-
sion negative correlation: R0,v,1,1=0.18, R0,v,2,2=0.54, R0,v,1,2=0.18, R0,v,2,1=0.18, Pathogen
transmission: R0,w,1,1=range(1.09-4.35), R0,w,2,2=range(0.36-1.45), R0,w,1,2=range(0.36-1.44),
R0,w,2,1=range(0.36-1.44). Parameters conserved across panels: γ=0.02, d=0.01, b1=10, b2=10.

In cases where it is feasible to deliver vaccines to subgroups optimally, vaccines that

mimic the pathogen’s patterns of transmission (positively correlated) are no longer guar-

anteed to be the best option. Specifically, if the local pathogen R0 is greater than unity
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in only one subgroup, a positively correlated vaccine continues to be the best option. If,

on the other hand, the local pathogen R0 is greater than unity in both populations, a

negatively correlated vaccine can become the most beneficial vaccine design (a specific

example being Figure 1.2). This reversal occurs because vaccination targets the subgroup

of the population with highest pathogen transmission, reducing the susceptible population

in that subgroup and effectively limiting the potential for vaccine transmission. Conse-

quently, a vaccine with patterns of transmission negatively correlated with those of the

pathogen spreads to a greater extent in the non-targeted subgroup, which in this case

is the subgroup of the population that transmits the pathogen to a lesser degree. As a

consequence, when both subgroups have local pathogen R0 values greater than unity, a

negatively correlated vaccine benefits an optimal vaccination strategy by spreading well

in the subgroup that is less targeted by direct vaccination.

1.4.1 Endemic pathogen reduction

If the pathogen is already endemic in a wildlife population and eradication is impos-

sible, a transmissible vaccine may still be an effective tool for reducing pathogen inci-

dence [8]. In this context, we use the proportional reduction in pathogen incidence rel-

ative to a non-transmissible vaccine to gauge the effectiveness of a transmissible vaccine

(Appendix: Endemic pathogen reduction). Figure 1.4 shows the reduction in pathogen

incidence across different levels of bias in vaccine distribution, defined as δσ = σ1 − σ2.

Our results show that a positively correlated vaccine generally outperforms a negatively

correlated vaccine. Once more, when vaccination is random (δσ = 0), the benefit of a

positive vaccine design remains relatively constant as population heterogeneity increases.

In contrast, the effectiveness of the negatively correlated vaccine decreases with increasing

heterogeneity (Figure 1.4).
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Figure 1.4: The proportional reduction in pathogen incidence attributed to vaccine transmis-
sion for a vaccine experiencing negative and positive correlation with respect to heterogeneity
in pathogen transmission. Top panel: Global R0,w = 3.70, global R0,v = .88. Bottom panel:
Global R0,w = 4.19, global R0,v = 1.00. Note that although the average within subgroup trans-
mission remains constant, increasing heterogeneity increases the R0 of the infectious agents.
Parameter values used in the figure: (Top panel) Vaccine transmission w/ positive correlation:
R0,v,1,1=0.7, R0,v,2,2=0.5, Vaccine transmission w/ negative correlation: R0,v,1,1=0.5, R0,v,2,2=
0.7, Pathogen transmission: R0,w,1,1=2.94, R0,w,2,2=2.1. (Bottom Panel) Vaccine transmission
w/ positive correlation: R0,v,1,1=0.9, R0,v,2,2=0.3, Vaccine transmission w/ negative correla-
tion: R0,v,1,1=0.3, R0,v,2,2=0.9, Pathogen transmission: R0,w,1,1=3.78, R0,w,2,2=1.26. Parame-
ters conserved across panels: σ̄=0.4, γ=0.02, d=0.01, b1=10, b2=10, R0,v,1,2=0.26, R0,v,2,1=0.26,
R0,w,1,2=1.1, R0,w,2,1=1.1.
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If the subgroup of the population that transmits the pathogen to a greater degree is

preferentially targeted, the benefit of a transmissible vaccine increases with population

heterogeneity, and the optimal vaccination strategy becomes more biased towards the

subgroup that transmits the pathogen to a high degree (right side of Figure 1.4). Similar

to the prophylaxis result, if the optimal vaccination strategy can be achieved and both

population subgroups maintain an R0 greater than one, a negatively correlated transmis-

sible vaccine is the most beneficial vaccine design. This result can be seen in Figure 1.4

where the two vaccine designs switch in order of benefit. However, if the subgroup of the

population that weakly transmits the pathogen is preferentially targeted, the benefit of

a transmissible vaccine is greatly diminished across a wide range of heterogeneity in host

transmission (Figure 1.4). This occurs because when the pathogen is endemic, a high

proportion of the high transmission subgroup is already infected with the pathogen, thus

reducing vaccine transmission.

1.4.2 SNV Invasion in Deer Mice

Many viruses in wildlife populations, including Sin Nombre virus (SNV) in deer mice,

maintain relatively low population level R0 values, typically estimated to be between one

and two [18]. Even though these low R0 values suggest that disease control should be pos-

sible with relatively low vaccine coverage, the challenges of delivering a traditional vaccine

to wildlife populations make meeting even these low thresholds a formidable challenge.

To evaluate how a transmissible vaccine would perform in a situation where host access is

limited, we consider SNV in deer mice, a virus in which transmission is mostly facilitated

by males [19, 20].

When parameterized with data on SNV in deer mice, our model indicates that if

a non-transmissible vaccine is used, a strongly biased vaccination strategy may be re-

quired to prevent pathogen invasion in a population of deer mice when vaccination effort

is constrained (Appendix: SNV Invasion in Deer Mice, Figure 1.5)). However, biasing
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vaccination effort towards male deer mice may be nearly impossible. In contrast, a trans-

missible vaccine can achieve prophylaxis over a much broader range of direct vaccination

strategies (blue curves in Figure 1.5). In particular, a transmissible vaccine can prevent

pathogen invasion, even when applied randomly to males and females, a much more real-

istic goal. We constrain the vaccination effort in this example to account for the inability

to vaccinate most wildlife populations to a high degree. Although vaccination campaigns

significantly differ based on the biological system of interest, we include reference to a ra-

bies vaccination campaign to simply highlight the fact that a SNV vaccination campaign

would be limited in some sense. Still, our results suggest a transmissible vaccination

program (positive or negative correlation) could achieve population protection using a

substantially reduced level of direct vaccination when compared to a traditional vaccine

(Figure 1.5). Our analyses demonstrate that a transmissible vaccine could facilitate con-

trol of SNV for scenarios where vaccine and pathogen transmission correlate positively

or negatively; however, the benefits of vaccine transmission are maximized when the cor-

relation is positive. This occurs because SNV experiences a low population level R0,w,

where the pathogen only circulates well in one of the population subgroups (here defined

as males).
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Figure 1.5: Proportion of male/female deer mice that must be vaccinated for prophylaxis
against Sin Nombre Virus. The pathogen maintains a global R0,w = 1.21, and two pos-
sible vaccine designs maintaining a global R0,v = 0.61. The gray region provides a refer-
ence for typical values of the proportion of individuals successfully vaccinated in a wildlife
vaccination campaign (see Appendix: SNV Invasion in Deer Mice). Fractional reduction
in vaccination effort provided by a transmissible vaccine (left to right): a.) Optimal strat-
egy=0.47, Random strategy=0.52, b.) Optimal strategy=0.24, Random strategy=0.38. Param-
eters: a.) R0,v,1,1=0.53, R0,v,2,2=0.18, R0,v,1,2=0.18, R0,v,2,1=0.18, R0,w,1,1=1.06, R0,w,2,2=0.36,
R0,w,1,2=0.36, R0,w,2,1=0.36, b.) R0,v,1,1=0.18, R0,v,2,2=0.53, R0,v,1,2=0.18, R0,v,2,1=0.18,
R0,w,1,1=1.06, R0,w,2,2=0.36, R0,w,1,2=0.36, R0,w,2,1=0.36.

1.5 Discussion

Our study demonstrates that transmissible vaccines may provide a useful tool for

controlling zoonoses in heterogeneous wildlife populations. However, maximizing the po-

tential benefit of a transmissible vaccine requires careful consideration of the structure

of the target population, the transmission characteristics of the pathogen and vaccine,
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and the extent to which the vaccine can be preferentially administered to subgroups. For

instance, if the target pathogen is characterized by self-sustained spread in only one sub-

group of the population, a transmissible vaccine with transmission coefficients positively

correlated with those of the pathogen is the best option. We have shown this to be the

case for a population of deer mice, where the pathogen maintains an R0 greater than one

in only the males (see Appendix: SNV Invasion in Deer Mice). Since many pathogens

in wildlife populations have relatively low R0 values [18], this suggests that the optimal

transmissible vaccine will generally be one designed to mirror the transmission patterns

of the target pathogen. If, however, the subgroups of the target population maintain

local R0 values greater than one, there are scenarios where it would be best to design a

transmissible vaccine with patterns of transmission opposite to those of the pathogen.

Including heterogeneity in host transmission in epidemiological models generally in-

flates the global R0 of an infectious agent [15]. Therefore, intuition suggests that a

transmissible vaccine would benefit from heterogeneity in host transmission because the

vaccine would spread through high transmission pathways in the population, effectively

vaccinating more susceptible individuals than in a population with homogeneous trans-

mission. Indeed, this intuition holds for another transmissible therapy known as TIPs,

where high transmission individuals are autonomously targeted in the population [13].

However, we have demonstrated that this result does not hold for a weakly transmissible

vaccine targeting pathogens that are already present in the population. The reason for this

stems from differences in the biology of the transmissible therapies. TIPs maintain the

ability to autonomously target high transmission individuals because TIP transmission is

facilitated by co-infection with the targeted pathogen. Conversely, a transmissible vaccine

competes with the wild-type pathogen for susceptible hosts. Therefore, the realized boost

in R0 that a transmissible vaccine experiences from host heterogeneity is neutralized by

a proportional boost in the pathogen R0.

Although our model yields insights into the performance of transmissible vaccines in
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heterogeneous populations, it could be extended in numerous ways. For instance, our

model assumes that vaccination can target only susceptible individuals, whereas wildlife

vaccination programs often rely on distributing vaccine laced baits that target only those

individuals who actively forage. Additionally, our model assumes that recovery rates from

vaccine and pathogen infection are equal. This may be a reasonable assumption for an

attenuated transmissible vaccine, but may not hold for an engineered recombinant vector

vaccine [17]. Generalizing our model to these alternative scenarios is an important focus

for future work, particularly as parameter estimates become available for transmissible

vaccines now under development [7, 21].

Upon further development of transmissible vaccines, we will gain better insight into the

manufacturing process, and the cost to produce such vaccines. If transmissible vaccines

can be produced at a comparable cost to traditional vaccines, however, they will greatly

reduce the cost of a wildlife vaccination campaigns. Our model analyses demonstrate

this point by showing how vaccine transmission between individuals can greatly reduce

the threshold vaccination rate required for prophylaxis or a desired level of pathogen re-

duction. Even if transmissible vaccines cost more than traditional vaccines, our models

suggest they may still be more cost effective, although this will depend largely on the epi-

demiological details of the target pathogen and the transmission rate of the transmissible

vaccine.

1.6 Conclusion

Although a transmissible vaccine does not receive a significant boost in performance

due to host heterogeneity, our analyses indicate that they can still be an effective tool for

reducing pathogen prevalence and preventing pathogen invasion in wildlife populations.

Our models indicate that vaccine transmission significantly reduces the threshold of vac-

cination effort required to prevent pathogen spread in heterogeneous wildlife populations.

When these thresholds cannot be met, vaccine transmission greatly reduces pathogen
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prevalence in a heterogeneous population. Together, our analyses provide support for the

continued development of transmissible vaccines to control zoonoses in wildlife reservoirs.

1.7 Appendix

This section elaborates on the methods used to evaluate the benefit of a transmissible

vaccine in a population with heterogeneity in transmission. First, we find the level of

direct vaccination required to prevent pathogen invasion, and use the resulting expression

to define a benefit of vaccine transmission. Next, we analyze the case where pathogen

invasion cannot be prevented, and instead evaluate a transmissible vaccine’s ability to

reduce a pathogen’s prevalence in the host population. Finally, we parameterize our

model to Sin Nombre virus in Deer mice, a wildlife system that has been documented

to experience heterogeneity in transmission, to assess the effectiveness of a transmissible

vaccine in a real-world scenario. As described by section 1.3 in the main text, we developed

a system of differential equations to describe the population dynamics of a transmissible

vaccine in a heterogeneous population:

dSi
dt

= bi(1− σi)− dSi −
2∑
j=1

(
βv,i,jSiVj + βw,i,jSiWj

)
dVi
dt

= biσi − (γ + d)Vi +
2∑
j=1

βv,i,jSiVj

dWi

dt
= −(γ + d)Wi +

2∑
j=1

βw,i,jSiWj

dR

dt
= −dR +

2∑
j=1

(
γVj + γWj

)
(1.1)

We first non-dimensionalize equations (1.1) to reduce the number of parameters. We

scale each state variable by the steady state carrying capacity of the corresponding sub-

group, bi
d

, so that si = Si/(
bi
d

), vi = Vi/(
bi
d

), and wi = Wi/(
bi
d

). We introduce non-

dimensional basic reproduction numbers that describe the spread of the pathogen and
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vaccine between each pair of population subgroups; R0,w,i,j =
βw,i,jbj
d(d+γ)

describes the average

number of secondary infections in subgroup i caused by an infected individual dropped

into subgroup j. We also define a new non-dimensional parameter d̂ = d
d+γ

that gives

the probability of death before recovery of an infected individual. Substituting these new

parameters and state variables into equations (1.1) yields the non-dimensionalized system:

dsi
dt

= d̂(1− si − σi)−
2∑
j=1

R0,w,i,jsiwj −
2∑
j=1

R0,v,i,jsivj

dwi
dt

= −wi +
2∑
j=1

R0,w,i,jsiwj

dvi
dt

= −vi + d̂σi +
2∑
j=1

R0,v,i,jsivj

(1.2)

1.7.1 Pathogen Prophylaxis

Preemptively vaccinating wildlife populations prior to the introduction of a pathogen

threat can prevent the pathogen’s invasion into the population and therefore reduce the

chance of spillover into human populations [7]. To assess the utility of a transmissible

vaccine in preventing pathogen invasion into a wildlife population, we first identify the

vaccination thresholds required to prevent pathogen invasion for both a traditional and

transmissible vaccine. We identify two relevant vaccination strategies, and then mea-

sure the benefit provided by vaccine transmission under each strategy. The first strategy,

random vaccination, describes a scenario where vaccines are distributed evenly between

subgroups so that σ1 = σ2 = σ. The second vaccine distribution strategy, optimal vacci-

nation, describes a scenario where the vaccine can be preferentially disseminated to the

subgroups in a way that minimizes the total vaccine distribution rate d̂(σ1 + σ2) across

all possible vaccination strategies along the prophylaxis threshold. For both vaccination

strategies and for each parameter set, we define the benefit of vaccine transmission (B),

as the proportional reduction in the total vaccine distribution rate that results from a
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transmissible vaccine:

B =

(
1− σTV

σNTV

)
(1.3)

Here, σTV is the prophylaxis vaccination effort when using a transmissible vaccine, and

σNTV is the prophylaxis vaccination effort when using a non-transmissible vaccine.

To derive vaccination thresholds that prevent pathogen invasion, we calculate the

pathogen’s global basic reproductive number R0,w using the Next Generation Matrix

(NGM) method [22]. Briefly, the NGM is a matrix whose elements describe the number

of new infections of each type that are produced by each type of infected individual. The

R0,w is calculated as the spectral radius of the NGM. In equations (1.2), the infectious

subsystem is
dw1

dt
= −w1 +R0,w,1,1s1w1 +R0,w,1,2s1w2

dw2

dt
= −w2 +R0,w,2,1s2w1 +R0,w,2,2s2w2.

(1.4)

We linearize around the steady-state that describes the vaccinated host population in the

absence of the pathogen. Defining the perturbation from steady state as w̃ = (w̃1, w̃2),

the linearized subsystem can be written in matrix form,

˙̃w = Jw̃ (1.5)

where, J is the 2× 2 Jacobian of the infectious subsystem (1.4) evaluated at the relevant

pathogen-free equilibrium:

J =

R0,w,1,1s
∗
1 − 1 R0,w,1,2s

∗
1

R0,w,2,1s
∗
2 R0,w,2,2s

∗
2 − 1

 . (1.6)

Next, we decompose the matrix components of J as the sum of two matrices, J =

Tw + Σw. Here Tw contains terms from J that describe the production of new infected
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individuals within each subgroup:

Tw =

s∗1R0,w,1,1 s∗1R0,w,1,2

s∗2R0,w,2,1 s∗2R0,w,2,2

 . (1.7)

Specifically, element (i, j) of Tw describes the rate at which new infected hosts in subgroup

i arise due to pathogen-infected individuals in subgroup j. The matrix Σw describes the

rates at which hosts leave each infectious state, due to either death or recovery:

Σw =

−1 0

0 −1

 . (1.8)

From Tw and Σw, the NGM with large domain is calculated as

KL = −Σ−1
w · Tw

=

s∗1R0,w,1,1 s∗2R0,w,2,1

s∗1R0,w,1,2 s∗2R0,w,2,2

 (1.9)

Element (i, j) of KL gives the number of secondary infections of type i that are produced

by an individual of infectious type j, throughout the course of infection. The pathogen

R0 is defined as the spectral radius of the NGM KL:

R0,w =
1

2

(
Tr(KL) +

√
Tr(KL)2 − 4Det(KL)

)
, (1.10)

where Tr and Det denote the trace and determinant, respectively. Equation (1.10) gives

the relationship between the number of susceptible individuals in each subgroup at the

pathogen-free steady-state and the pathogen’s ability to invade the population.

Prophylactic vaccination serves to reduce the steady state number of susceptible indi-

viduals s∗1 and s∗2, and, if successful, reduces the pathogen’s realized R0,w to a value less

than one. To evaluate the pathogen’s R0 that results from a given direct vaccination effort,
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we numerically solve for the steady states of equations (1.2) with the pathogen absent (i.e.

w1 = 0, w2 = 0). Specifically, we numerically integrate system (1.1) forward in time until

the maximum magnitude of the differentials is less than 10−4. Numerical solutions were

found using the ParametricNDSolve and WhenEvent functions in Mathematica version

10.4.1.0, and the Mathematica code is available as a supplementary file.

With this method, we determine the minimal amount of direct vaccination effort, given

by σ1 + σ2, that reduces the pathogen’s R0,w to one for a non-transmissible vaccine. The

benefit of vaccine transmission is measured as the fractional reduction in the amount of

vaccination effort that is necessary to maintain the pathogen R0,w at one (Equation (1.3)).

1.7.2 Endemic pathogen reduction

If it is impossible to vaccinate the population to an extent that precludes pathogen

invasion, the pathogen will invade and persist in the population. In this case, the bene-

fit of vaccine transmission can be assessed by the reduction in the pathogen’s incidence

that can be attributed to vaccine transmission. Naturally, the reduction due to vac-

cine transmission will depend on how the vaccine is distributed to the subgroups of the

population. To clarify the effect of biasing direct vaccination effort between the two

subgroups, we reparameterized the model in terms of the average fraction of newborns

vaccinated, σ̄ = 1
2
(σ1 + σ2), for the two subgroups of the population. Additionally, we

define δσ = σ1 − σ2, as the bias toward subgroup 1 of the vaccination strategy. For a

fixed average vaccination level, we vary δσ to study how differentially targeting subgroups

impacts the proportional reduction in pathogen incidence.

To calculate the reduction in pathogen incidence as a result of vaccine transmission,

we numerically solve the system of differential equations (1.2) forward in time until steady

state is reached, across a range of parameters that allow for pathogen persistence. We

determine that the system has reached steady state once the maximum magnitude of

the differentials is less than 10−4. Next, we calculate the total number of pathogen-
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infected individuals in the aggregate population at steady-state that result when a non-

transmissible vaccine is used, denoted w0. We then calculate the incidence that results

when a transmissible vaccine is used, termed wtv. From these quantities, we calculate the

proportional reduction P in pathogen incidence, as a result of vaccine transmission:

P =

(
1− wtv

w0

)
. (1.11)

1.7.3 SNV Invasion in Deer Mice

In this section, we parameterize our model to Sin Nombre virus (SNV), a type of

Hantavirus that circulates in deer mice (Peromyscus maniculatus). When transmitted

to human populations, SNV causes Hantavirus Pulmonary Syndrome (HPS), a deadly

disease with a case fatality rate of about 40% [23, 24]. Studies on SNV prevalence in

deer mice show that the pathogen spreads between males and females at different rates,

resulting in a higher prevalence among males than females [20]. It is hypothesized that

this heterogeneity in prevalence is maintained by aggressive interactions between males

that, in turn, facilitate pathogen transmission [19].

Due to the high mortality rate caused by SNV in human populations [24], non-

transmissible vaccines that target SNV in deer mice have been developed and tested

[25, 26]; however, a widespread vaccination campaign has not yet been implemented.

Here, we parameterize equations (1.2) to describe SNV transmission in an uninfected

deer mouse population, and as before, quantify the benefit of using a transmissible vac-

cine to prevent the invasion of SNV. Here, the subgroups of our model allow us to track

SNV infection among male (subgroup 1) and female (subgroup 2) deer mice. We use data

on SNV prevalence in male and female deer mice, as reported in Adler, Clay, & Lehmer

(2008), to parameterize a version of equations (1.2) that is specific to SNV when the

vaccine is absent in the population. Because SNV infection is known to persist for the

lifespan of deer mice [27], we set the recovery rate γ = 0, which, in the non-dimensional
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model is equivalent to setting d̂ = 1. The resulting equations describing the susceptible

and infectious classes for each subgroup, si and wi are:

ds1
dt

= 1− s1 − (R0,w,1,1w1 +R0,w,1,2w2) s1

ds2
dt

= 1− s2 − (R0,w,2,1w1 +R0,w,2,2w2) s2

dw1

dt
= (R0,w,1,1s1)w1 + (R0,w,1,2 s1)w2 − w1

dw2

dt
= (R0,w,2,1s2)w1 + (R0,w,2,2s2)w2 − w2

(1.12)

When simulated to steady state, equations (1.12) predict the equilibrium prevalence of

SNV in male and female deer mice as a function of the four non-dimensional parameters

R0,w,i,j. We use this relationship to find values of R0,w,i,j that produce similar prevalences

of SNV in males and females reported in Adler, Clay, & Lehmer (2008). To further

constrain the allowed values R0,w,i,j, we assume that male-male interactions (interactions

between hosts of subgroup 1) are responsible for most of the SNV transmission in the

population. As a consequence, R0,w,1,1 is larger than R0,w,1,2, R0,w,2,1, and R0,w,2,2. In

addition, we assume that the rate of male-to-female, female-to-male, and female-to-female

interactions are the same so that R0,w,1,2 = R0,w,2,1 = R0,w,2,2. With these assumptions, we

adjust the remaining two free parameters to match prevalence reported in Adler, Clay, &

Lehmer (2008) yielding R0,w,1,1 = 1.06 and R0,w,1,2 = R0,w,2,1 = R0,w,2,2 = 0.36, resulting

in predicted SNV prevalences of 0.19 (empirical: 0.19) in males, and 0.09 (empirical:

0.09) in females. To simplify the presentation of the terms R0,w,i,j, we combine them into

a matrix, R0,w, defined as

R0,w =

1.06 0.36

0.36 0.36

 (1.13)

where entry (i, j) gives R0,w,i,j.

The benefit of using a transmissible vaccine will clearly depend on the terms R0,v,i,j.

Because empirical research into transmissible vaccine designs is still in its infancy, it is



28

not possible to use empirical data to parameterize the spread of the vaccine in the model.

Instead, we assume that the average number of secondary infections per vaccine-infected

host is half the average number of secondary infections per pathogen-infected host. In the

supplementary Mathematica file, we show that this condition also implies that the global

R0 of the vaccine is half of the global R0 of the pathogen. In addition to constraining the

average amount of vaccine transmission in the population, we must also describe how the

vaccine transmits between the various subgroups. We investigate two plausible vaccine

behaviors, termed positive and negative correlation, that describe how the vaccine spreads

relative to the biased spread of the pathogen. Values of the vaccine transmission matrix

were selected to represent the most extreme scenarios of positive and negative correlation

with the pathogen transmission matrix. The vaccine with positive correlation transmits

the most within the subgroup that also spreads the pathogen best, so that

R0,v+ =

0.53 0.18

0.18 0.18

 . (1.14)

Alternatively, the vaccine might be negatively correlated so that the pathogen spreads

best in the subgroup with the least amount of within-group pathogen transmission, so

that

R0,v− =

0.18 0.18

0.18 0.53

 . (1.15)

In our invasion analysis of SNV in a deer mouse population, we include a reference

vaccination threshold of (σ1 + σ2) = .317, which is the median proportion of vaccinated

individuals for rabies vaccination programs led by the USDA across multiple states, animal

species, and years [28–32]. In addition to the median threshold, we include a shaded region

that includes the 25th and 75th percentile of the vaccination data. We emphasize that,

although vaccines targeting SNV in deer mice have been developed [26], a wide spread

vaccination campaign has not been implemented. We understand that this data may not
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relate to vaccinating deer mice, and simply include this measure to show that wildlife

vaccination campaigns are inherently limited in the fraction of individuals that can be

vaccinated.
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Chapter 2: The zoonoses end game: Quantifying the

effectiveness of betaherpesvirus-vectored transmissible

vaccines

2.1 Abstract

Transmissible vaccines have the potential to revolutionize how zoonotic pathogens are

controlled within wildlife reservoirs. A key challenge that must be overcome is identifying

viral vectors that can rapidly spread immunity through a reservoir population. Because

they are broadly distributed taxonomically, species specific, and stable to genetic manip-

ulation, betaherpesviruses are leading candidates for use as transmissible vaccine vectors.

Here we evaluate the likely effectiveness of betaherpesvirus vectored transmissible vac-

cines by developing and parameterizing a mathematical model using data from captive

and free-living mouse populations infected with murine cytomegalovirus (MCMV). For-

ward simulations of our parameterized model demonstrate rapid and effective control for

a range of pathogens, with pathogen elimination frequently occurring within a year of

vaccine introduction. Our results also suggest, however, that the effectiveness of trans-

missible vaccines may vary across reservoir populations and with respect to the specific

vector strain used to construct the vaccine.

2.2 Introduction

Pathogen transmission at the human-wildlife interface is a fundamental threat to hu-

man health. Examples of the detrimental effects that zoonotic spillover has on humans

include the coronavirus (SARS-CoV-2) pandemic [33], the 2014-2015 Ebola virus epi-

demic [3], and the persistent threat of Lassa virus in West Africa [34,35]. These spillover

events illustrate the significant burden that zoonotic pathogens can impose on human pop-

ulations and emphasize the importance of controlling zoonotic pathogens before spillover

occurs.
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Historically, mass vaccination and culling have been the two most prominent methods

for controlling zoonotic pathogens within wildlife reservoirs. However, the success of these

traditional control measures relies on the ability to vaccinate or remove a high proportion

of the target animal population, a requirement that may often be infeasible [4, 36]. As

a consequence, wildlife vaccination has generally proven successful at limiting spillover

only in special cases where mass-distribution of vaccine-laced baits can be regularly ac-

complished (e.g., rabies carried by raccoons and foxes in North America and Europe,

respectively) [37]. A novel approach that could overcome the challenges faced by tra-

ditional wildlife vaccination programs is to use recombinant vector vaccines capable of

self-dissemination [7, 38]. Transmissible recombinant vector vaccines are constructed by

engineering a benign vector virus to carry and express an immunogenic transgene from a

specific target pathogen [17]. In theory, the resulting vaccine takes on the transmission

characteristics of the vector virus, while triggering an immune response specific to the

target pathogen. Leading candidates to serve as vectors for transmissible vaccines are the

betaherpesviruses (e.g., murine cytomegalovirus (MCMV)) due to their broad taxonomic

distribution, high species specificity, and mild or undetectable virulence in most natural

reservoirs [39,40].

Although previous modeling efforts have demonstrated the potential benefits of vaccine

transmission [8,41–45], these models have been general and not parameterized for specific

candidate vaccine vectors or zoonotic pathogens. Further, existing models have focused

almost exclusively on steady-state solutions and have not addressed the timescale over

which zoonotic pathogens can be eliminated. Consequently, we do not yet know how well

transmissible vaccines developed using betaherpesvirus vectors (such as MCMV) are likely

to work in practice. To address this gap, we develop a mathematical model describing

the spread of an MCMV-vectored transmissible vaccine through a reservoir population

and parameterize it using data from captive and free-living mouse populations. We use

this parameterized model to predict how rapidly MCMV-vectored transmissible vaccines
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can eliminate pathogens with different properties and to quantify the scope for variable

outcomes across reservoir populations and across vaccines developed from different vector

strains.

2.3 Results

2.3.1 Pathogens that generate acute viral infections are

vulnerable to transmissible vaccines

We used Approximate Bayesian Computation (ABC) to parameterize an epidemio-

logical model tuned to the biology of betaherpesviruses such as MCMV. Our approach

capitalized on a unique data set that tracked the spread of MCMV through naive mouse

populations inhabiting semi-natural enclosures [46]. Applying our ABC algorithm to these

time-series data allowed us to estimate the transmission rate of MCMV (βv) and the rate

at which exposed individuals become infectious (α1) as the mode of the bivariate posterior

distribution (Figure 2.1). Next, we used these parameter estimates to predict how rapidly

an MCMV-vectored transmissible vaccine could reduce pathogen prevalence. Specifically,

simulating the interaction between transmissible vaccine and pathogen revealed that the

time required to reduce pathogen prevalence by ninety-five percent varies widely across

pathogens and depends on pathogen R0 and the pathogen’s infectious period. For exam-

ple, our model predicts an MCMV-vectored transmissible vaccine will reduce pathogen

prevalence by 95% in 156 days if the pathogen has an R0 of 1.5 and infectious period of

10 days, but will require 1028 days to accomplish an identical reduction for a pathogen

with an R0 of 2.5 and infectious period of 365 days (Figure 2.2).
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Figure 2.1: Bivariate posterior distribution of the transmission rate (βv) and the rate at which
individuals exposed to the virus transition into the infectious class (α1). The marginal distri-
bution of the transmission rate and rate of becoming infectious are displayed on the top and
right of the density plot, respectively. The modal values of the distribution are as followed:
βv = 0.033 individual−1 day−1, α1 = 0.099 day−1.
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Figure 2.2: Time to ninety-five percent pathogen reduction as a function of pathogen R0 and
the infectious period (1/γ). Simulations start at the steady state quantities for susceptible
and pathogen infected individuals, and 10% of the susceptible population is exposed to the
transmissible vaccine. The pathogens highlighted in this figure include Lassa virus (LASV) and
Lymphocytic Choriomeningitis virus (LCMV).

To better ground our predictions in the biology of specific pathogens, we used our

model to predict the impact of an MCMV-vectored transmissible vaccine on Lassa virus

(LASV) and lymphocytic choriomeningitis (LCMV). Both pathogens regularly spillover

into the human population from rodent reservoirs and cause significant morbidity [47,48].

Although the primary reservoir of LASV, the multimammate rat Mastomys natalensis, is

only distantly related to the domestic mouse, both LASV and LCMV do infect species

within the genus Mus [49]. Using published estimates for seroprevalence and infectious

period for these pathogens [50, 51] we developed models describing their response to an
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MCMV-vectored transmissible vaccine. Numerical analyses of these models suggest that

LASV is very susceptible to control with an MCMV-vectored transmissible vaccine, with

95% reduction achieved in only 212 days. In contrast, our model predicts that LCMV is

more recalcitrant and requires 716 days for 95% reduction to be achieved (Figure 2.2).

The greater resistance to the vaccine exhibited by LCMV is largely explained by its

increased infectious period which we have assumed is, on average, lifelong. In contrast,

the infectious period for LASV has been estimated to be 22 days, on average [50, 51].

These results highlight that pathogens that generate acute, short-term infections and

have relatively low R0 are most readily controlled using MCMV-vectored transmissible

vaccines.

We further explored the uncertainty in our predictions for the impact of an MCMV-

vectored transmissible vaccine by conducting simulated vaccination campaigns where the

vaccine parameters were drawn at random from the bivariate posterior distribution (i.e.,

Figure 1). Performing 100 simulated vaccine releases for LASV and for LCMV revealed

considerable uncertainty in the timescale over which each pathogen can be locally elim-

inated. Specifically, our results show that the time required for LASV to be reduced by

95% ranges from 121-371 days post-vaccine introduction, whereas the time required for

LCMV to be reduced by 95% ranges from 609-940 days post-vaccine introduction (Figure

2.3).
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Figure 2.3: Temporal dynamics of (a) Lassa virus (LASV) and (b) Lymphocytic Choriomenin-
gitis virus (LCMV) reduction as a result of using a MCMV-vectored transmissible vaccine.
Simulations are initialized at the steady state quantities for susceptible and pathogen infected
individuals, with 10% of the susceptible population removed and exposed to the transmissible
vaccine. For each pathogen example we randomly sampled βv and α1 from the posterior dis-
tribution 100 times, and simulated our model forward in time for each set of parameters. The
grey region represents the 100 simulations, where the orange dashed line is the mean. The grey
vertical lines indicate the minimum, mean, and maximum time to 95% pathogen reduction ((a)
min=121 days, mean=371 days, max=194 days (b) min=609 days, mean=701 days, max=940
days).

2.3.2 Transmissible vaccines are robust to variation in

efficacy

The preceding results are predicated on the development of an MCMV-vectored trans-

missible vaccine that blocks 100% of pathogen transmission. In reality, however, vaccine

efficacy often varies in wild animal populations, as demonstrated by vaccination cam-

paigns using oral rabies vaccine (SAG2) [52]. To account for imperfect vaccine efficacy,

we extended our basic model to allow partial blocking of pathogen transmission (see

Supplemental Information). With the extended model we explored how vaccine efficacy,

quantified as the reduction in pathogen transmission rate in vaccinated animals (ρ), im-
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pacts a transmissible vaccine’s ability to protect a reservoir population from pathogen

invasion, and also how it impacts the timing required to effectively eliminate an endemic

pathogen.

We began our analysis by deriving the critical vaccine efficacy that must be achieved

for a transmissible vaccine to protect a reservoir population from pathogen invasion.

Specifically, results derived in the Supplementary Information show that the efficacy of

an MCMV-vectored transmissible vaccine must exceed the critical value:

ρcrit =
R0,v

R0,w

(
1−R0,w

1−R0,v

)
. (2.1)

to prevent the spread of a pathogen. Numerical analyses suggest this critical value also

represents the vaccine efficacy required for a transmissible vaccine to eliminate an en-

demic pathogen. Without reintroduction of the vaccine, this result demonstrates that

pathogen elimination requires that vaccine R0 exceed pathogen R0 by an amount that is

inversely proportional to vaccine efficacy. Simply put, the lower vaccine efficacy, the more

transmissible it must be to control a pathogen.

Although vaccine efficacy plays an important role in determining the success or failure

of pathogen control, it has only a modest influence on the timescale over which pathogen

control occurs. Specifically, numerical simulations of MCMV-vectored transmissible vac-

cines show that if vaccine efficacy exceeds the critical value for eliminating LASV and

LCMV, the timescale over which pathogen elimination occurs is relatively insensitive to

vaccine efficacy (Figure 2.4).
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Figure 2.4: Temporal dynamics of (a) Lassa virus (LASV) and (b) Lymphocytic Choriomenin-
gitis virus (LCMV) reduction as a result of using an MCMV-vectored transmissible vaccine with
varying levels of efficacy. Simulations are initialized at the steady state quantities for suscepti-
ble and pathogen infected individuals, where 10% of the susceptible population is removed and
exposed to the transmissible vaccine.

2.3.3 Reservoir population and vector strain matter

An additional source of uncertainty in our predictions arises from our reliance on data

from MCMV introductions into naive, captive mouse populations using a single genetic

variant of MCMV. Although the time-series data from these experimental introductions

is invaluable for the opportunities it provides for robust parameter estimation, these

parameters may vary across wild mouse populations and MCMV strains used as vaccine

vectors. We explored the possible magnitude of this variation by analyzing published

data describing the prevalence of two MCMV strains, as defined by the genotype of ie1,

a major immunodominant T cell epitope [53, 54], within four populations of free-living

wild mice [55]. Assuming the prevalence of these MCMV sequences represents their strain

and population specific equilibrium, we can use classical epidemiological theory to predict

the maximum R0 of a pathogen that could be eliminated by a transmissible vaccine
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constructed from each MCMV strain within each reservoir population [56]. Specifically,

we know that the fraction of a population that must be vaccinated to protect against a

pathogen with R0 is equal to

p = 1− 1

R0

. (2.2)

Rearranging equation (2.2) and substituting in the strain and location specific values

of MCMV prevalence for p allows us to calculate the range of pathogen R0’s that an

MCMV-vectored transmissible vaccine with perfect efficacy could protect against (Table

2.1). The results of this simple analysis reveal considerable variation in the protective

ability of transmissible vaccines constructed from different MCMV strains and used in

different reservoir populations, with the range of pathogen R0 that can be suppressed

ranging from 1.17 to 11.72. We extended this simple equilibrium analysis to the timescale

of pathogen elimination by combining our ABC estimate for α1 (section 2.5.2) with the

prevalence of the MCMV variants within each of the four free-living mouse populations

to yield estimates for the transmission rate of each MCMV strain within each reservoir

population (Table 2.1).



40

Location Strain Pathogen

Protection

(R0)

βv Estimate Method Data

Source

Outdoor

Enclosure

N1 11.72 0.033 ABC [46]

Boullanger

Island

G4 1.29 0.0036 Steady

State

[55]

Macquarie

Island

G4 11.35 0.032 Steady

State

[55]

Canberra G4 1.75 0.0049 Steady

State

[55]

Walpeup G4 1.69 0.0048 Steady

State

[55]

Boullanger

Island

K181 7.83 0.022 Steady

State

[55]

Macquarie

Island

K181 1.17 0.0033 Steady

State

[55]

Canberra K181 2.60 0.0073 Steady

State

[55]

Walpeup K181 1.62 0.0046 Steady

State

[55]

Table 2.1: MCMV parameter estimates found using a combination of Approximate Bayesian
Computation and steady-state methods. It is important to note that the N1 strain was not
found in any of the natural populations that were sampled across Australia, therefore our only
N1 sample comes from the enclosure study. Further, to account for possible sampling error
during the capture of rodents, we calculated the Clopper–Pearson 95% confidence interval on
the MCMV sampling data, and then calculated the βv estimate. To be conservative in our
parameter estimate, we used the minimum value from the confidence interval.
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Our results reveal potentially important spatial variation in the time required for a

transmissible vaccine to reduce pathogen prevalence by ninety-five percent. For example,

the prevalence of a pathogen with an R0 = 2 is reduced by ninety-five percent in only

three of the four locations (Figure 2.5, right panel). Even in the three locations where a

ninety-five percent reduction is achieved, the time it takes to reach this objective differs

by thousands of days between the three locations and the two MCMV strains defined by

their ie1 genotype.
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Figure 2.5: (a) Time to ninety-five percent pathogen reduction across four geographic locations.
Simulations start at the steady state quantities for susceptible and pathogen infected individu-
als (see Supplementary Information), where 10% of the susceptible population is removed and
exposed to the transmissible vaccine. R0,w > R0,v represents the scenario when the vaccine fails
to reduce the pathogen. (b) Geographic locations represented in the data.

2.4 Discussion

We have developed the first parameterized model predicting how much, and how

rapidly, a betaherpesvirus-vectored transmissible vaccine can be expected to reduce the

prevalence of a target pathogen. Our results demonstrate that the most vulnerable

pathogens are those with relatively short infectious periods and a modest R0. Pathogens

that maintain a greater R0, or that generate long-term chronic infections take longer

to eliminate or, in some extreme cases, may be impervious to betaherpesvirus-vectored
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transmissible vaccines altogether. Further, our results demonstrate that MCMV-vectored

transmissible vaccines remain effective against a broad range of pathogens even when

they provide less than perfect blocking of pathogen transmission. Perhaps most impor-

tantly, however, our results suggest that the effectiveness of MCMV-vectored transmissible

vaccines may depend on the virus strain used to construct the vaccine and the target pop-

ulation into which the vaccine is ultimately deployed. If this prediction is borne out, it

complicates the design of transmissible vaccines, and suggests it may be difficult to de-

velop “universal” transmissible vaccines that transmit well across geographically distinct

reservoir populations.

Although our results support betaherpesvirus-vectored transmissible vaccines as ef-

fective tools, these results are tempered by several important assumptions. First, and

of critical importance, is our assumption that MCMV is capable of superinfection. This

assumption is supported by studies showing that betaherpesviruses like MCMV can su-

perinfect animals already infected with MCMV [55, 57]. At the same time, however,

other studies have suggested superinfection is much more challenging [58–60] and may be

achievable only by genetically differentiated MCMV strains. If superinfection requires ge-

netic divergence, transmissible vaccines constructed from locally common betaherpesvirus

strains or constructed in a way that results in the rapid loss of their immunogenic cargo,

are unlikely to succeed [9, 42, 44]. Second, our inferences drawn from wild populations

assume the geographic distribution of MCMV prevalence was at steady state and that

differences in equilibrium prevalence reflect location specific transmission rates. There are,

of course, many reasons this may not be true, including the possibility that geographic

variation in MCMV prevalence is shaped by seasonal fluctuations in the population size of

the target reservoir [61]. Third, we have assumed betaherpesvirus-vectored transmissible

vaccines will transmit to the same degree as the wild-type virus vector. This may not be

the case, as genetically engineering the vector virus to carry an immunogenic transgene

may in fact alter the transmissibility of the self-disseminating vaccine [62].
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A clear but unavoidable limitation of our work is our reliance on data from Aus-

tralian populations of Mus musculus [46,55]. We focused on these populations due to the

availability of unique experimental and field data sets that do not yet exist for other beta-

herpesviruses and reservoir populations. The limitation, of course, is that our results may

not generalize well to other geographic regions or rodent reservoir populations of greater

concern for viral spillover. In addition, we have defined a strain based on a 126 base

pair sequence of the ie1 gene [55]. And whilst this is a dominant T cell epitope, there are

other genes within MCMV that could be expected to modulate geographical penetrations.

Unfortunately, data on the prevalence of betaherpesviruses within natural populations of

important reservoir species is extremely scarce [57] and experiments tracking the spread

of betaherpesviruses through important reservoir populations absent all together. Until

these data become available, our results represent the most robust possible assessment of

the future utility of betaherpesviruses for transmissible vaccine design.

Recombinant vector transmissible vaccines show promise for revolutionizing how we

mitigate the risk of zoonotic disease. Our results support the pursuit of betaherpesviruses,

such as MCMV, as vaccine vectors but also highlight critical assumptions about the

dynamics of reinfection on which this optimistic outlook rests. Conclusive judgement on

the utility of betaherpesviruses as transmissible vaccine vectors will require more extensive

study of the interactions between vector strain diversity and superinfection in the wild.

Combining this information with the predictive framework developed here will help ensure

that the first recombinant vector transmissible vaccines realize their promise.

2.5 Methods

2.5.1 Epidemiological model for MCMV

To evaluate the effectiveness of a MCMV-vectored transmissible vaccine, we rely on a

susceptible-exposed-infectious model, similar to the one previously described by Arthur et

al. (2009). In the model, individuals can belong to one of three classes: susceptible to the
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vaccine (S), exposed to the MCMV-vectored transmissible vaccine via rodent transmission

(E1), and actively infectious with the MCMV-vectored transmissible vaccine (V ). We do

not model a recovered or immune class because infection with MCMV is thought to be

lifelong [39, 63]. Throughout, we assume that the total population size, denoted N , is

constant. Individuals are introduced into the susceptible class through a constant birth

rate denoted b and die at rate d. Further, individuals transition from the susceptible class

to the vaccine exposed class based on frequency dependent transmission with transmission

coefficient βv, and transition from being exposed to being actively infectious at rate α1.

The deterministic model is as follows:

dS

dt
= b− βvSV

N
− dS (2.3)

dE1

dt
=
βvSV

N
− α1E1 − dE1 (2.4)

dV

dt
= α1E1 − dV. (2.5)

2.5.2 MCMV model parameterization using time-series data

To parameterize the model of MCMV spread, we rely on a detailed time course study

conducted by Farroway et al. (2002) that was later presented in Arthur et al. (2009) [46,64].

Together, these studies detail the time course and spread of MCMV in semi-natural

enclosures of naive house mice (Mus musculus). The studies detail the transmission of

Murine cytomegalovirus within six outdoor enclosures at six time points (day 35, day

49, day 63, and day 84). Each enclosure consisted of twenty two individuals, where six

individuals were initially inoculated with MCMV via IP injection, and sixteen individuals

remained initially susceptible.

We used Approximate Bayesian Computation (ABC) to parameterize a stochastic ver-

sion our epidemiological model (Supplementary Information) with the time-series data.
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Mechanistically, ABC estimates a posterior distribution for model parameters by 1.) draw-

ing parameters at random from prior distributions informed by previous studies; 2.) using

the sampled parameters to simulate the model forward in time; and 3.) including the sam-

pled parameters in the posterior distribution if the simulated data are sufficiently close to

the real data [65,66]. Repeating steps 1-3 a sufficient number of times and for an appro-

priate acceptance threshold results in a posterior probability distribution for the model’s

parameters. To determine whether a simulation was sufficiently close to the real data, we

calculated the total sum of squares (TSS) for the predicted prevalence of MCMV for a

given time point across all enclosures. We then averaged the TSS across all time points,

and compared this value to our critical threshold. For this study, we settled on a critical

threshold of 0.10, as this is when we began to see diminishing returns with respect to the

model fit and the time to produce the model fit. We repeated steps 1-3 until the posterior

distribution contained 25,000 parameter sets defining a multivariate probability distribu-

tion for the transmission rate (βv) and the rate of becoming infectious with MCMV (α1).

We used the mode of the multivariate distribution as the estimate for these parameters

(βv = 0.033 individual−1 day−1, α1 = 0.099 day−1).

2.5.3 Model parameterization using MCMV prevalence and

steady state assumptions

Although the time-series data set described in section 2.5.2 is ideal for developing

parameter estimates, its generality may be limited by focusing on only a single geographic

location and strain of MCMV. To generalize our parameter estimates to other locations,

we used published estimates of MCMV prevalence from four Australian locations and two

MCMV strains defined by their ie1 genotype [55]. A total of 117 Mus musculus were live

trapped and qPCR was utilized to identify the presence of the two MCMV strains. For

our modeling purposes, we assume that all individuals positively identified by qPCR are

in the infectious or exposed classes (V , E1) and that only qPCR negative individuals are
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in the susceptible class (S). Further, we refer to the fraction of individuals that tested

positive for a particular MCMV strain as pi, where i is the genotype of ie1 (i.e., K181,

G4). To account for possible sampling error when testing Mus musculus, we calculate

the Clopper–Pearson 95% confidence interval [67] for the prevalence of MCMV at each

geographic location.

We use the prevalence data from Gorman et al. (2006) to estimate a transmission rate

for each geographic location and MCMV strain. We start by solving for the steady state

solution of equations (2.3-2.5) when MCMV is endemic. We then re-write the susceptible

steady state expression in terms of the fraction of susceptible individuals, and solve the

resulting expression for the transmission rate, βv. The result is as follows:

βv =
d(d+ α1)

(1− pi)α1

. (2.6)

Obtaining a numerical value for βv requires knowledge of α1 and d. We use the α1 value

derived in the ABC fitting process, and we choose d = 0.0027 day−1 to describe an average

lifespan of 365 days, typical of free-living Mus musculus [68].

2.5.4 Predicting time to ninety-five percent pathogen

reduction

To explore a transmissible vaccine’s ability to reduce a pathogen, we extend the model

of MCMV spread described in section 2.5.1 to include a target pathogen. In the extended

model, W is a state variable that describes the number of hosts that are infected with the

pathogen. Individuals that have been infected by the pathogen transmit at a frequency

dependent rate βw. Further, individuals recover from the pathogen at rate γ, and remain
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in the recovered class (R) for the remainder of their lives. The full model is as follows,

dS

dt
= b− βvSV

N
− βwSW

N
− dS (2.7)

dE1

dt
=
βvSV

N
− α1E1 − dE1 (2.8)

dV

dt
= α1E1 − dV (2.9)

dW

dt
=
βwSW

N
− γW − dW (2.10)

dR

dt
= γW − dR. (2.11)

To calculate the time to ninety-five percent pathogen reduction, we simulate the model

forward in time deterministically, starting at the pathogen endemic steady state (see

Supplementary Information) with the following parameter values: d = 0.00274 day−1,

b = 1.37 day−1. We chose the value of d to reflect the typical lifespan of individuals in the

Mus genus [68] and chose b to reflect a constant population size of 500 individuals. Each

simulation was initialized with a number of exposed individuals equal to ten percent of the

susceptible population. Model simulations are carried out until the number of pathogen

infected individuals is equal to five percent of the original starting value.

2.5.5 Estimating epidemiological parameters for LASV and

LCMV

We estimated epidemiological parameters for Lassa virus and Lymphocytic Chori-

omeningitis virus using published serological data and duration of infection estimates

from previous studies [50, 51]. Similar to section 2.5.3, we find the the steady state so-

lutions to our general pathogen model, and identify the solution where the pathogen is

endemic. We then solve this quantity for the fraction of individuals that are susceptible,

and input our LASV and LCMV seroprevalence data to get estimates for the transmission
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rate of each. The solution is

βw =
(d+ γ)

(1− p)
, (2.12)

where p is the seroprevalence for the given pathogen, d = 0.00274 day−1, and γ is drawn

from LASV and LCMV literature (LASV: 1/γ=22 days [50], LCMV: 1/γ=365 days [51]).

2.6 Supplemental Information

This section provides further details on the methods used to evaluate the effectiveness

of an MCMV-vectored transmissible vaccine. To this end, we detail model modifications

that were used for the ABC process, we provide further details regarding the ABC algo-

rithm itself, and we detail the steady state solutions to our model that give rise to the

vaccine and pathogen basic reproductive numbers.

2.6.1 Partial Vaccine Efficacy

To account for partial vaccine efficacy, we develop an extended model that allows for

co-infection between the transmissible vaccine and the pathogen, where the vaccine has

the capacity to only partially block pathogen transmission. In this model, individuals

that have been exposed (E), as well as those that are actively infectious with the vaccine

(V ), can be infected by the target pathogen. In these cases, individuals transition into

the vaccine-exposed pathogen-infected class (Ew), and the vaccine-infectious pathogen-

infected class (Vw). From these co-infected classes, pathogen transmission is reduced by

a factor of (1− ρ). When ρ = 1, the vaccine perfectly blocks pathogen transmission and

the co-infection model reduces to the original pathogen and vaccine model described in

the main text. Further, individuals in the Ew and Vw classes can recover from pathogen

infection and transition into the Er and Vr classes, respectively. Moreover, all individuals

that have been exposed to the vaccine (E, Ew, and Er), transition into their corresponding

vaccine infectious class at rate α1. All model parameters are described in the main text
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(i.e., βv, α1, βw, γ, b, d). These assumptions lead to the following extended model of

co-infection:

dS

dt
= b− βwSW

N
− (1− ρ)βwSEw

N
− βvSVw

N
− (1− ρ)βwSVw

N
− βvSVr

N
− βvSV

N
− dS

(2.13)

dE

dt
=
βvSV

N
+
βvSVw
N

+
βvSVr
N

− βwEW

N
− (1− ρ)βwEVw

N
− (1− ρ)βwEEw

N
− α1E − dE

(2.14)

dEw
dt

=
βwEW

N
+

(1− ρ)βwEVw
N

+
(1− ρ)βwEEw

N
− α1Ew − γEw − dEw (2.15)

dEr
dt

= γEw − α1Er − dEr (2.16)

dV

dt
= α1E −

βwVW

N
− (1− ρ)βwV Vw

N
− (1− ρ)βwV Ew

N
− dV (2.17)

dVw
dt

=
βwVW

N
+

(1− ρ)βwV Vw
N

+
(1− ρ)βwV Ew

N
+ α1Ew − γVw − dVw (2.18)

dVr
dt

= γVw + α1Er − dVr (2.19)

dW

dt
=
βwSW

N
+

(1− ρ)βwSEw
N

+
(1− ρ)βwSVw

N
− γW − dW (2.20)

dR

dt
= γW − dR. (2.21)

To solve for the critical vaccine efficacy that must be achieved for a transmissible vac-

cine to protect a reservoir population from pathogen invasion, we linearized the pathogen-

infected subsystem (Ew, Vw, W ) about the pathogen-free steady state. We then solved

for the vaccine efficacy (ρ) that leads to a positive eigenvalue of the Jacobian matrix of

this linearized subsystem.

2.6.2 Model modifications for ABC

To estimate the epidemiological parameters of MCMV from the time series data set,

we implement a continuous time Markov chain (CTMC) version of the model described

in the main text, with some small modifications to the base model. Briefly, the CTMC
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version of our model is a stochastic process where the state variables are discrete random

variables and the time scale is continuous [69]. We simulate the model using the Gillespie

algorithm, where time increases incrementally by some small random value ∆t. At each

time interval there is a probability of transitioning from any given state, dependent on

the various parameters found in the model (Table 2.2). For this implementation of the

model, we remove the birth and death rates due to the relatively constant population

size of the founder population observed by Farroway et al. (2002). Further, we include

an additional exposed class (E2) to account for the initial fraction of the population that

was exposed to MCMV via IP injection. We include the additional exposed class because

exposure via transmission and IP injection are biologically different. With the addition

of the IP injected class (E2), we introduce another parameter, α2, which defines that rate

at which IP injected individuals become infectious.

Event Transition Transition Rate

Susceptible infected with

MCMV

S → S − 1, E1 → E1 + 1 βvV
N

Exposed via transmission

becomes infectious

E1 → E1 − 1, V → V + 1 α1

Exposed via IP injection be-

comes infectious

E2 → E2 − 1, V → V + 1 α2

Table 2.2: The possible events, transitions, and transition rates found in the CTMC model.

2.6.3 Approximate Bayesian Computation

As stated in the main text, we use Approximate Bayesian Computation in combination

with the time series data set described by Farroway et al. (2002) to produce baseline

parameter estimates for MCMV. We begin the ABC process by taking a random sample

of the parameter values found in the prior distributions (described in Table 2.3). These
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priors were determined based on plausible values found in MCMV literature. These

parameter samples are then fed into the CTMC model, and the model is simulated forward

in time. Model simulations were initiated according to the initial conditions described in

Farroway et al. (2002) (S = 16, E1 = 0, E2 = 6, V = 0). We stop the simulations

once the time in the model has reached 84 days (the last time step described in Farroway

et al. (2002)), and we take a binomial sample of the number of infectious individuals

at each time point detailed in the data set, according to the sampling effort for a given

rodent enclosure. We take a binomial sample at each time point in an attempt to recreate

the possibility for sampling error in the MCMV transmission experiments. The binomial

distribution is chosen for our sampling, as an individual is either MCMV positive (1) or

negative (0) at each time point. We then calculate the total sum of squares (TSS) for

our simulated sample across all enclosures at a given time point, and then averaged the

TSS across all time points. The resulting quantity is a measure of how well the parameter

samples and simulated model perform against the actual transmission experiments. If

this value was less than or equal to our acceptance criteria (0.1), then the parameters

for that simulated run were added to the multivariate posterior distribution. The ABC

process was carried out until the multivariate posterior distribution accumulated twenty

five thousand samples.



52

Parameter Prior Justification

βv Uniform on [0.0005, 0.009] The range was determined based

on values that could plausibly lead

to the observed seroprevalence.

α1 Gamma with mean 0.099 and

shape 3

The mode was selected based on

known MCMV seroconversion [70].

α2 Gamma with mean .099 and shape

parameter 100

The mode was selected based on

the seroconversion of MCMV in-

jected via IP injection [70].

Table 2.3: Prior distributions for each parameter in the MCMV model.

2.6.4 Steady state model solutions

Many of the results in this manuscript are reliant on the steady state solutions to our

model of MCMV and pathogen spread. Steady state solutions, also known as equilibria,

are solutions of the differential equations that are constant with respect to time. To find

these steady states, we set the left hand side of the equations in the main text to zero, and

solved the resulting algebraic equations for each of the state variables. These analyses

identify three steady state solutions. The first,

S =
b(d+ α1)

α1βv
(2.22)

E =
−bd2 − bdα1 + bα1βv

α1(d+ α1)βv
(2.23)

V =
−bd2 − bdα1 + bα1βv

d(d+ α1)βv
(2.24)

W = 0 (2.25)

R = 0, (2.26)
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the second,

S =
b(d+ γ)

dβw
(2.27)

E = 0 (2.28)

V = 0 (2.29)

W =
−bd− bγ + bβw

(d+ γ)βw
(2.30)

R = −bγ (d+ γ − βw)

d(d+ γ)βw
, (2.31)

and the third,

S =
b

d
(2.32)

E = 0 (2.33)

V = 0 (2.34)

W = 0 (2.35)

R = 0. (2.36)

From these solutions, we see that there are three possible scenarios, 1.) the vaccine is

endemic and the pathogen is absent, 2.) the pathogen is present and the vaccine is absent,

and 3.) both the pathogen and vaccine are absent from the population.

2.6.5 Calculating basic reproductive numbers

The basic reproductive number for a transmissible agent, also known as R0, is clas-

sically defined as the number of secondary infections produced by a single infectious

individual in a completely susceptible population [71]. This quantity is important, as it

provides insight into whether or not a transmission capable virus will successfully spread

in a population. For example, we know that when R0 > 1, a virus has the ability to
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successfully invade a population, and when R0 < 1 a virus will fail to undergo sustained

transmission in the population.

To find the analytical solution for the basic reproductive number of MCMV and the

pathogen, we performed a standard stability analysis on the infection free steady state. To

perform this analysis, we linearized the system of differential equations found in the main

text, and evaluated the resulting Jacobian matrix at the equilibrium solution (equations

(2.32-2.36)). We then found the set of eigenvalues for the resulting matrix, and determined

the leading eigenvalue from the set. From this quantity, we were able to find the threshold

transmission conditions that lead to the instability of the infection free steady state:

βvα1

d(d+ α1)
> 1, (2.37)

or

βw
d+ γ

> 1. (2.38)

According to the classic definition of R0, the quantity defined by equation (2.37) is

MCMV’s reproductive number (R0,v). Similarly, equation (2.38) represents the repro-

ductive number of the pathogen (R0,w).

For completeness, we performed a stability analysis on the MCMV endemic steady

state (equations (2.22-2.26)) and the pathogen endemic steady state (equations (2.27-

2.31)). We found that the vaccine endemic steady state is stable if

R0,v > 1, (2.39)

and

R0,v > R0,w. (2.40)
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Further, we find that the pathogen endemic steady state is stable if

R0,w > 1, (2.41)

and

R0,w > R0,v. (2.42)
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Chapter 3: Facilitating open science in Lassa virus research

3.1 Abstract

Lassa virus spillover into human populations is a significant burden on human health

across West Africa, with thousands of deaths occurring each year. Implementing effective

virus control measures relies on comprehensive data sets that detail viral sampling across

space and time, something that is currently lacking in Lassa virus research. To address

the gap in open-source Lassa data sets, we have compiled publicly available data on the

distribution of Lassa virus across West Africa. We integrate these data into a database

with an accompanying dashboard that facilitates interactive data visualizations, and con-

tains tools that allow for easy data management (i.e, download and upload). Along with

promoting scientific collaboration within Lassa virus research, our database and data

visualizations identify key gaps in the sampling effort of Lassa virus across space and

time.

3.2 Introduction

Lassa virus is a zoonotic pathogen that infects hundreds of thousands of humans across

West Africa each year resulting in thousands of deaths [35,72]. The virus is maintained by

the reservoir species Mastomys natalensis, where transmission to humans is facilitated by

exposure to rodent feces and urine, often occurring in human habitation [47,73]. Although

Mastomys natalensis are the primary reservoir for Lassa virus, the pathogen has been

shown to persist in other rodent species as well [74, 75]. Given the widespread impact

that Lassa virus has on West Africa, it is critical that forecasting tools are developed to

help evaluate the risk of the virus across space and time, as well as to help guide the

implementation of virus control measures [76,77].

The development of spatio-temporal forecasting tools are reliant on detailed data sets

that describe viral sampling at both a temporal and geographic scale. To date, the number
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of high resolution Lassa virus data sets is limited [76, 78]. Although these studies are of

considerable importance, they exist in a static form such that once published, they are no

longer updated and are not easily accessed by the community of Lassa researchers. This is

problematic, as Lassa virus infection in both humans and rodents continues to vary across

space and time [79], meaning that Lassa data collections need to be updated regularly.

Further, given the significant role that dynamic data sets play in the modeling of infectious

disease, it is important that such data sets can be accessed by a community of researchers.

Developing tools that facilitate easy data access promotes scientific collaboration, and

rapidly advances contributions to public health [80].

To address the lack of regularly updated, open-source Lassa data sets, we have com-

piled publicly available data on the distribution of Lassa virus across West Africa. Our

data set includes viral prevalence data compiled from peer-reviewed publications, and

viral sequence data retrieved from GenBank. These data have been collected and curated

with modeling in mind, resulting in a highly processed, high quality data product. To

promote the use of our data set, we have developed software that allows the Lassa virus

database to be easily updated, and a web interface that provides tools to visualize and

download the entirety of the database. In this study, we will highlight the data collection

and storage processes, provide metrics on the spatial and temporal distribution of our data

set, and further highlight the tools that we have developed to promote user interaction

with the Lassa virus database.

3.3 Methods

3.3.1 Lassa virus data collection and storage

Described in a recent article [77], our data set is comprised of Lassa virus prevalence

data found in peer-reviewed publications and sequence data described in GenBank [81].

Throughout this study, we refer to the Lassa virus prevalence data as “viral infection

data”. We describe viral infection data as Lassa virus prevalence that was determined
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via serology (previous infection according to arenavirus antibodies) and/or PCR (current

infection with Lassa virus). Further, we refer to the distinct subset of GenBank Lassa

virus sequence data as “viral sequence data”.

To draw viral infection data from literature and viral sequence data from GenBank, we

developed Excel templates that describe the key data fields that are to be extracted from

each data source. Some of the important fields that were incorporated into the viral infec-

tion template include the latitude and longitude of the sample, the year, month, and day

that the sample was taken, the antibody target, the diagnostic method that was utilized

(i.e., ELISA, IFA, PCR), the prevalence of Lassa virus, a citation to the source study,

and the host species that was sampled. Similarly, important information in the Lassa

sequence template includes the sequence itself, the latitude and longitude of where the

virus came from, the country where the sequence was taken, information about the Gen-

Bank identification, the host species that the virus was extracted from, and the year that

the sequence was collected. The full extent of the data templates can be found at https:

//github.com/tvarrelman/LassaMapping/tree/master/LassaMappingApp/static.

Next, to compile our data templates into a single source location, we developed a

pipeline to feed the Lassa virus data into a MySQL database [82]. Within the database,

we chose to adopt a relational data model, which allows static fields such as country

names and references to exist in their own table with a unique id that ties values to the

Lassa infection and sequence tables (Figure 3.1). This process reduces the possibility of

including inaccuracies in key data fields. Further, we have developed a straightforward

user interface that allows Lassa data to be uploaded into the database using CSV files

that follow the same structure as the data templates described above. However, if the

data fields in the CSV file do not match those described in our templates, the file will

not be uploaded to the database. As a final quality check we require that each data field

in the prospective template be of a specific data type, otherwise the data upload will be

rejected.
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Figure 3.1: Structure of the Lassa data in the MySQL database. We create separate tables
for the country names, the reference studies, the sequence data, and the infection data. Within
the sequence and infection tables, there is a country id and reference id that point to the values
found in the country and reference tables, respectively. Note, data fields within the sequence
and infection table are omitted from this visualization.

3.3.2 Lassa virus interactive dashboard

To develop the web-interface that is paired with the Lassa virus database, we relied

on several programming languages and web development tools. Specifically, we utilized

the Flask web framework to develop the application itself [83, 84], and leveraged HTML

markup language for designing the layout of our web-page. We harnessed the power of the

JavaScript programming language to develop the dynamic features on our dashboard [85,

86]. Data visualizations include interactive Leaflet maps and summary statistics displayed

in Plotly charts [87, 88]. Source code for the project can be found at https://github.

com/tvarrelman/LassaMapping.
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3.4 Results

3.4.1 Spatial and temporal distribution of Lassa virus

Currently, publicly available viral infection data spans eight countries across West

Africa, with sample years ranging from 1970-2016. These countries include Benin, Côte

d’Ivoire, Ghana, Guinea, Liberia, Mali, Nigeria, and Sierra Leone. The viral infection data

consists of serosurveys from 94 human sampled locations and features serology and Lassa

virus detection from 80 rodent sampled locations (Figure 3.2). We chose to limit the viral

infection data in humans to only include data points that were studied in serosurveys, as

they provide the optimal type of data that can be integrated into mechanistic models.

For example, the human serosurveys that we include detail locations where humans were

randomly sampled for arenavirus antibodies. This data therefore accounts for potential

sampling biases, includes a latitude and longitude of the sampling location, and includes

accurate sampling dates. In the data collection process, we ensured that the viral infection

data from rodents is of similar quality to the human data. In total, our data set consists

of Lassa virus prevalence data from 12,711 humans and 4,546 rodents, stemming from 7

human studies [47, 89–94], and 11 rodent studies [47,75,95–103].



61

Country # Rodent Sample Locations # Human Sample Locations

Benin 2 0

Côte d’Ivoire 7 0

Ghana 9 10

Guinea 20 58

Liberia 0 7

Mali 17 3

Nigeria 9 0

Sierra Leone 16 16

Table 3.1: Sample locations of Lassa virus prevalence data. Currently, the viral infection data
set consists of human serosurveys from 94 locations, and rodent serology and virus extraction
from 80 locations.
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Figure 3.2: a.) 94 sample locations from seven human serosurveys. b.) 80 sample locations for
rodent serology and virus detection. Note that overlapping sample locations results in a darker
band around the red data points.

Similar to the viral infection subset of our data, the viral sequence data also spans

eight countries across West Africa. These eight countries include Benin, Ghana, Guinea,

Liberia, Mali, Nigeria, Sierra Leone, and Togo. Sequences available in GenBank were

sampled over a span of 44 years (1975-2019), and include 85 Lassa sequences taken from

human hosts and 494 sequences from rodent hosts (Figure 3.3). We include an additional

956 sequences in the database that do not have an associated latitude and longitude.

These sequences are still included, as they have an associated country name and may

be useful for modeling sequence diversity across broad spatial units. Although not all
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GenBank entries come from published studies, our data set includes information from 17

publications [74,98,100,101,104–116].

Country # Sequences From Humans # Sequences From Rodents

Benin 18 6

Ghana 0 4

Guinea 12 250

Liberia 81 0

Mali 3 22

Nigeria 872 85

Sierra Leone 38 138

Togo 6 0

Table 3.2: Number of Lassa virus sequences sampled from each of the eight countries represented
in the data set. Not all samples represented in this table are present in our mapping, as a large
majority of sequences lack an associated latitude and longitude.
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Figure 3.3: Sample locations of viral sequences across West Africa. Our data set currently
consists of 579 Lassa sequences that have spatially explicit meta data (85 from human hosts and
494 from rodent hosts). Note that overlapping sample locations results in a darker band around
the orange data points.

3.4.2 Interactive Lassa virus dashboard

To visualize our dynamic Lassa data set, we provide interactive maps that allow users

to select data points and view the associated meta data. Such meta data varies according

to the type of data (viral infection vs. viral sequence), and includes information regarding

the source of the data point, and either the prevalence of Lassa virus or the GenBank

information required to look up the sequence. Further, our interactive maps can be

filtered by the collection year, allowing users to understand the temporal distribution of
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the data. Accompanying the interactive maps, we provide time-series plots that describe

the prevalence of Lassa virus and the diagnostic methods that were used to determine that

prevalence. We also provide time-series plots describing the number of Lassa sequences

that exist in our database. Figure 3.4 depicts data visualizations that can be found on

the Lassa virus dashboard (https://lassa.nkn.uidaho.edu).

Figure 3.4: Visualization of the Lassa virus dashboard.

In addition to data visualization, our dashboard provides an intuitive user interface

for filtered data download. Filter options include the type of data (viral infection vs.

viral sequence), the countries that should be included in the download, and also a range

of collection years. Selecting all filter options will download the entirety of the database.

3.5 Discussion

We have developed an extensive Lassa virus database that describes the distribution

of Lassa virus across space and time. Our product includes a web-interface that allows

users to visualize the extent of the data, and we provide tools that allow for easy data

management (i.e. download and upload). While developing these tools, we included the
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necessary checks to ensure that only quality data can be loaded into the Lassa database.

Users can request to upload their own Lassa virus data set by sending an email to the

Nuismer lab with an attached CVS template. The requested upload must meet our

template format and pass a screening by one of the product administrators. Database

maintenance will be performed by the Nuismer lab at the University of Idaho with the

support of the Northwest Knowledge Network.

Although our database represents the first open source Lassa virus data product of

its kind, there are still critical gaps in the spatial extent of our data collection. For

example, it is well known that Nigeria is a country that is heavily impacted by Lassa

virus each year [35,117]; however it is a region that is largely underrepresented in our viral

infection data set. The lack of representation stems from the complete absence of high

quality human serosurveys from Nigerian communities. Gaps in the spatial extent of our

database are further highlighted by the distribution of Lassa virus sequences. Specifically,

sequences are primarily found in three countries (Sierra Leone, Guinea, and Nigeria). It

is unclear if this spatial bias results from the true distribution of Lassa virus across West

Africa or from sampling bias. Further, we find that the number of sequences sampled

across difference countries varies wildly between human and rodent hosts. For example,

the majority of rodent sequences stem from Guinea, whereas most sequences extracted

from humans come from Nigeria. This is problematic, as modeling something such as viral

spillover will likely require a large number of Lassa sequences from rodents and humans

in the same locations.

While our database does contain data points that detail the prevalence of specifically

Lassa virus, our product also contains a large number of data points that were derived

using serology. Serology is a process where a serum sample is tested for antibodies to

particular family of viruses. In our case, these data points were tested for general are-

navirus infection, and not specifically Lassa virus. Therefore, there is ambiguity in the

true identity of the infection that led to these data points. However, given the context of
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the source studies, we believe that Lassa infection was likely.

Open source disease data sets and visualization are crucial for driving the advancement

of disease modeling and public health decision making. Constructing comprehensive data

sets requires researchers to painstakingly comb through literature and curate common

data files, a process that can take hundreds of hours. Saving researchers this time, allows

the focus to be on developing novel tools for forecasting and data analysis.
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Modiyinji, Cyprien Kengne-Nde, Serge Alain Sadeuh-Mba, and Richard Njouom.

Systematic review and meta-analysis of the epidemiology of Lassa virus in humans,

rodents and other mammals in sub-Saharan Africa. PLOS Neglected Tropical Dis-

eases, 14(8):1–29, 08 2020.

[79] Donald S. Grant, Humarr Khan, John Schieffelin, and Daniel G. Bausch. Chapter 4
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