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Abstract

Embedded devices are omnipresent in modern networks, including those facilitating mission-critical

applications. However, due to their constrained nature, novel mechanisms are required to provide ex-

ternal, and non-intrusive defenses. Among such approaches, one that has gained traction is based on

analyzing the emanated electromagnetic (EM) signals. Unfortunately, one of the most neglected chal-

lenges of this approach is the manual gathering and fingerprinting of the corresponding EM signals.

Indeed, even simple programs are comprised of numerous branches, making the fingerprinting stage

extremely time-consuming, and requiring the manual labor of an expert. To address this issue, we

first considered manually synthesizing EM directly from machine code. However, such an approach

requires an exhaustive capturing process not for entire execution paths but rather the “building blocks”

of those. In this context, “building blocks” can be defined as instruction sequences. For this reason,

we propose proposed an automated, data-driven approach for generating EM signals from machine code

using Generative Adversarial Networks (GANs). In comparison to the previous approach, synthetically

generating EM signals also removes the need for an elaborate and error-prone fingerprinting stage while

requiring a fraction of captured signals. Preliminary, small-scale experimental evaluations indicate that

our GANs-based approach provides near to perfect detection accuracy against code injection attacks

when considering the full signal.

Keywords: Side-Channel Analysis; Anomaly Detection; Electromagnetic Signals; Synthetic Signals;

Generated Signals; Generative Adversarial Networks
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Chapter 1

Introduction

Nowadays, a large portion of corporate, government, military networks, and critical infrastructures con-

sists of embedded devices. Typically, these mission-critical assets are severely constrained in terms of

processing, memory, and energy resources. Since standard cryptographic algorithms were designed

according to the hardware specification of high-end systems, traditional crypto libraries, and the corre-

sponding protection tools are not applicable to such environments (at least not without modifications).

At the same time, in many cases, embedded devices are directly exposed to the Internet and its cyber

threats. Therefore, there is a dire need for the development of novel security mechanisms specifically

designed to respect the limitations and peculiarities of such critical systems.

As a potential solution to this problem, researchers have relied on the analysis of patterns of analog

signals emitted by the CPU of embedded devices. In this context, such signals are considered a side-

channel because they get emitted involuntarily by devices during their regular operation. Even though

these analog signals are often treated as noise in most applications, they may bear valuable information. In

principle, certain characteristics of the emitted analog signals have a strong correlation to the instructions

being executed by the CPU. Thus, numerous side-channel-based anomaly detection approaches have

been proposed particularly to provide external protection for embedded devices [7], [8], [9], [10], [11].

Today, the dominant methods of side-channel-based anomaly detection rely on the analysis of power-

consumption patterns [8], [11]. This is primarily due to the ease of data collection and the robustness of

this modality against environmental noise. Nevertheless, when compared to power-based approaches,

electromagnetic (EM) based methods are theoretically more advantageous because the EM spectrum

offers higher bandwidth, and the EM signals can be sampled at higher rates [9], [12]. Moreover,

depending on the type of antenna, the approach can be less invasive as the monitoring can be performed

from a distance in real time. In fact, EM-based anomaly detection tools have proven to be successful for

the detection of extensive [13], [14], or even minimal modifications, say, down to the injection of a few

instructions (at the assembly level) [15], [16].
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1.1 Problem Statement

Nevertheless, the development of EM-based defenses and the deployment of corresponding real-life

solutions remain stagnant due to the limitations of traditional workflows. More specifically, a well-

known challenge of these approaches revolves around the requirement for exhaustive fingerprinting of

all normal execution states of the targeted program. This issue is severely neglected by the research

community even though it may be one of the most important practical roadblocks that prevent the

deployment of corresponding tools in real-life environments.

1.2 Proposed Solution

To address this issue, an obvious solution is synthetically reconstructing EM signals. As such, a

novel framework for generating synthetic EM signals directly from machine code is presented. Most

importantly, the generated synthetic signals can be used instead of real ones for anomaly detection

purposes as part of the model training/fingerprinting stages. In further detail, our approach relies

upon first constructing a library of the EM signatures of minimum execution units (i.e., in this case,

assembly instructions) that can be used to synthesize the EM footprint of longer sequences of code.

The advantage of the proposed approach is that it completely removes the need for an elaborate and

error-prone fingerprinting stage. The EM signals used for training do not need to be captured, but rather

they are inferred directly from a model that accepts ASM code as input in an offline step. This fact alone

makes the entire process more scalable.

However, to a large degree, certain operations of this process are not fully automated and require

manual labor. The proposed approach for manually synthesizing EM signals has two major flaws,

namely having to create an exhaustive library and requiring to capture of a large number of observations

corresponding to the same instruction. As such, we question if we can achieve similar accuracy while

utilizing a smaller library that doesn’t contain all possible execution paths. From our experience, some

sequences of execution occur more often than others. Additionally, some sequences of executions don’t

make sense to process, e.g., 𝑗𝑚𝑝 instruction followed by another 𝑗𝑚𝑝. Therefore, we experimentally

prove that only a fraction of the possible executions is necessary to cover the majority of programs.
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Furthermore, we propose the adoption of a generative model for code-to-EM signal translation instead

of manually synthesizing EMs. Generative models are data-driven approaches that can synthesize a near-

infinite number of samples close to the normal distribution of real observations for both seen and unseen

inputs. Thus, in theory, a generative model can produce realistic EMs from binary code using only

the common sequences during training. Reducing the necessary library size to a fraction and further

improving the scalablility of the approach. As such, the prior framework is modified to use a generative

model to automatically synthesize the EMs rather than manually reconstructing them. Specifically,

Generative Adversarial Networks (GANs) were chosen due to their success in text-to-speech translation,

a task that bears significant similarity to code-to-EM signal synthesis as both convert textual input into

a signal waveform.

1.3 Contributions

In summary, the main contributions of this work are (a) the identification of the requirements and

structure of a database of signal blocks that can be used for the generation of EM sequences, as well

as (b) a methodology for properly synthesizing such sequences of instructions corresponding to entire

execution paths/code-sequences, also a (c) framework for GANs models to perform code-to-EM signal

generation, furthermore (d) the creation of a fingerprinting process that is more scalable than traditional

methods, and thus can be applied to various device types and other side-channel classes, and finally (e)

an anomaly detection method that capitalizes on synthetic signals to distinguish between normal and

anomalous program executions.
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Chapter 2

Technical Background & Definitions

2.1 Morphology of EM Signals

During a CPU’s normal operation, EM signals are produced regularly due to the EM field produced

when the magnetic and electrical fields interact. This interaction is caused by the change in the flow of

electrical current inside the device’s circuitry when executing instructions. Consequently, components

of the printed circuit board act as antennas. Thus, unintentionally transmitting EM signals that are highly

correlated to the instructions executed by the CPU.

Typically, the corresponding EM signals have (for the most part) static frequencies i.e., the clock of

the CPU. Interestingly, different instructions executed by the CPU modulate the amplitude of the EM

signal along with a carrier signal that has a base frequency modulated to that of the clock of the monitored

CPU [17]. This is due to the clock of the CPU determining the execution time of each instruction. We

have hypothesized that different signal amplitude levels correspond to different instructions. However,

the amplitudes are not static in nature and have slight variations between each run, even when comparing

the EMs produced even when executing the same binary code. Figure 2.1, illustrates this by comparing

five EMs from the same program at the exact same execution point. Notice that the amplitude peak

varies by roughly 0.03.

In more detail, by placing a near-field probe near the source (CPU) of the EM signal, one can

capture the morphology of the signal accurately. As shown in Figure 2.2, EM signals of a CPU during

the execution of a program follow a sinusoidal pattern. More specifically, approximately two complete

waves starting from a high peak correspond to one execution cycle as illustrated in Figure 2.2. In

actuality, one execution cycle starts at the top to the second bottom peak, however for simplicity, we

state and show that it is from a high peak to the second next high. For certain CPU architectures, it is

common for each instruction when executed to span one to three cycles. The amount of execution cycle

given a specific instruction is determined by the device and can be obtained via manuals such as the
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Figure 2.1: Zoomed in comparison between the amplitude peaks from five
observations of the same program at the same execution point.

Figure 2.2: Sample of EM signals morphology. Color variation indicates individual
instructions.

AVR Instruction Set Manual [18]. While it is true that the current instruction contributes the most to the

amplitude, from empirical observations and experimentation, prior executions may also affect the EM

signal.

2.1.1 Prior Instruction Influence

The morphological characteristics of the EM signal are mainly determined by the currently executed

instruction. However, some residual influence remains from the prior instructions in the execution

sequence, slightly affecting the EM signal in terms of amplitude. Moreover, instructions possibly get

influenced by other random events that occur at the hardware level or due to parallel processes that are
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executed at the same time (software), as well as environmental noise. The first two factors have been

studied in prior works [15], [16] but they remain open issues and such will be the main topic for future

research. However, regarding the impact of previous instructions on subsequent ones, we have made the

following observations:

• Although the same instructions may have roughly the same amplitude and general phenotype

when observed within the same sequence, they may appear different when preceded by different

previous instructions or tracked within a totally different sequence of instructions.

• The directly previous instruction 𝐼𝑖−1 impacts the examined instruction 𝐼𝑖 significantly but in some

cases even previous instructions . . . , 𝐼 𝑖−2 may impact 𝐼𝑖 to a lesser extent.

• Certain instructions impact subsequent instructions less than others.

• Instructions that perform similar operations (e.g., mathematical operations 𝑎𝑛𝑑, 𝑥𝑜𝑟 , etc.) may

similarly impact subsequent instructions.

To showcase what was previously discussed we shall provide two concrete examples.

Example 1: The sequence . . . , 𝑠𝑒𝑠, 𝑐𝑙𝑠, 𝑠𝑒𝑟, 𝑐𝑙𝑣, . . . is observed in two different programs. How-

ever, for the former, 𝑠𝑒𝑠 is preceded by the 𝑙𝑠𝑟 instruction as . . . , lsr, 𝑠𝑒𝑠, 𝑐𝑙𝑠, 𝑠𝑒𝑟, 𝑐𝑙𝑣, . . . while

for the latter the 𝑠𝑒𝑠 instruction is preceded by the 𝑠𝑢𝑏 instruction as in the following sequence

. . . , sub, 𝑠𝑒𝑠, 𝑐𝑙𝑠, 𝑠𝑒𝑟, 𝑐𝑙𝑣, . . .. Nevertheless, both the 𝑙𝑠𝑟 and 𝑠𝑢𝑏 instructions perform similar

(i.e., mathematical) operations. The former performs division and then shift, while the latter performs

subtraction. Therefore, the amplitude of the first instruction in that sequence, (i.e., the 𝑠𝑒𝑠 instruction)

is only marginally impacted.

Example 2: The sequence . . . , 𝑟 𝑗𝑚𝑝, 𝑠𝑏𝑖, . . . is observed in two different programs. In this case, for

Program A the 𝑟 𝑗𝑚𝑝 is preceded by the 𝑐𝑙𝑣 instruction, while in Program B the same instruction is

preceded by the 𝑐𝑙𝑟 instruction. The former instruction simply clears the value of a flag while the latter

resets the values of all registers. The reader can understand that the two instructions perform drastically

different operations thus, it does not come as a surprise that the amplitude of the signal that corresponds

to the 𝑟 𝑗𝑚𝑝 instruction looks significantly different in the two programs. A comparison between the

signals corresponding to the two programs at the sections of interest is given in Figure 2.3.
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Figure 2.3: Comparison of the amplitude between the corresponding EM output of two
different programs. Example 1 is provided in the top figure and example 2 in the

bottom.
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2.2 Modern Generative Models

In the past decades, many generative models have been developed and applied in different domains such

as audio [19], [20], and images [2], [21] generation. Modern generative models that are gaining traction

are Transformers, Diffusion, and Generative Adversarial Networks.

2.2.1 Transformers

A Transformer [1] network is a type of sequence-to-sequence NN that is based on attention mechanisms

forcing the model to heed specific portions of the data. Structurally, Transformers contain an encoder

and a decoder built by stacks of attention blocks containing two subnetworks: a multi-headed attention

layer and a feed-forward network.

Attention is a mapping function that correlates a query 𝑄 and a set of key 𝐾 value 𝑉 pairs to

output, all of which are vectors. The output is estimated as the weighted sum of the values, where each

value is assigned a weight that is calculated by a compatible function of the query with respect to the

corresponding key.

Transformers make use of multi-headed attention layers. Multi-headed attention jointly attends to

information from different subspaces at different positions. This is done by projecting the query 𝑄, keys

𝐾 , and values 𝑉 a number of ℎ times with different learned linear projections to the dimensions of 𝑑𝑘 ,

𝑑𝑘 , and 𝑑𝑣 respectively. An attention function is performed in parallel on each projected version of 𝑄,

𝐾 , and 𝑉 , providing 𝑑𝑣 dimensional output values. The 𝑑𝑣 dimensional output values are concatenated

and projected again to obtain the output. Mathematically, multi-headed attention can be defined as:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄, 𝐾,𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊𝑂

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 , 𝑉𝑊
𝑉
𝑖 )

(2.1)

Originally, the Transformer model was structurally comprised of three attention blocks. The encoder

has one that takes the input embedding added with its positional encoding. Positional encoding is required

as no recurrence or convolutions are used. The decoder contains two attention blocks. One takes the

embedding of the output shifted right and adds it to its positional encoding. The output is passed to

a final attention block with the output from the encoder. An abstract architecture of a transformer is
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Figure 2.4: Architecture of Transformer models from the original paper [1].

illustrated in Figure 2.4.

The limitation of Transformer models is that it requires a fixed length of the input. This is due to

having to split the input into a number of segments to feed into the attention layer. Additionally, each

query needs access to every key-value pair, which can result in a high memory requirement.

2.2.2 Denoise Diffusion

Denoise Diffusion, or simply Diffusion, is a model that takes steps to convert noise into a clear repre-

sentation of a sample. In the original paper [2], Diffusion’s training process consists of a forward and

reverse process. The forward process takes training samples (𝑥) and goes through a forward process of

applying small increments of Gaussian noise in steps 𝑠 till 𝑛 number. In the reverse process, a mean

function approximator is trained to predict one step lower (𝑠𝑖 − 1) by the current step (𝑠𝑖). This process

continues till step 𝑠1. The authors of the original paper state that it is possible to train till 𝑠0, but the

variations become more minute from the training set. The process of learning in smaller steps allows for

the model to focus on slight alterations within a standard Gaussian distribution. Consequently, the final
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Figure 2.5: Sample of the diffusion process. The left images are high step count
samples with high noise values. Lower to no noise steps are to the right. Image is

taken from the original paper [2].

results are similar but not exact to the training samples. Sample of the diffusion model process in Figure

2.5.

The main challenge of Diffusion models revolves around their requirements in computational re-

sources. Diffusion requires many steps to generate better data. Each of the steps applies another round

of Gaussian noise during the forward process and then performs an additional round of training for the

new step. For this reason, a larger amount of time and memory are required in comparison to other

generative models.

2.2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [22] is a type of neural network (NN) model that is widely

used for synthetically generating new data. GANs has had a variety of uses including text-to-image [4],

[5], image-to-image [23], [24], and text-to-speech [25], [26] translation. Furthermore, GANs has been

used to generate data to train other NN models.

Structurally, GANs contains two models, the generator (𝐺) and discriminator (𝐷) that compete

against each other. 𝐷 tries to identify the real from the fake data, while 𝐺 works to generate fake data

that fools 𝐷 into labeling it as real. Specifically, 𝐷 tries to maximize and 𝐺 attempts to minimize the

following equation:

𝐿𝑜𝑠𝑠 = min
𝐺

max
𝐷

𝐸𝑥 [log𝐷 (𝑥)] + 𝐸𝑧 [log 1 − 𝐷 (𝐺 (𝑧))] (2.2)

where𝐷 (𝑥) is the discriminator’s estimate of the probability that real data x is real,𝐺 (𝑧) is the generator’s

output when given noise 𝑧, 𝐷 (𝐺 (𝑧)) is the discriminator’s estimate of the probability that fake instance
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is real, and 𝐸𝑥 and 𝐸𝑧 is the expected value over all real instances and overall fake instances respectively.

The min-max game continues till the generative model is able to consistently produce realistic fake data

or in other words when the Loss is at its lowest.

The main problems with GANs are that the model can suffer from vanishing gradients, model

collapse, and failure to converge [27], [28]. Some approaches have been proposed to address GANs

main issues such as Wassterstein GANs and Gradient Penalty [29].

Some GANs models of note are provided in the following sections.

2.2.3.1 Wasserstein GANs

Wasserstein GANs utilizes the Wasserstein distance function to change the discriminator to a critic, giving

a value to each instance rather than classifying between real and fake. Therefore, 𝐷 (𝑠, 𝑡) → {0,∞}where

the higher the value, the more likely the instance is real. This allows the generator and discriminator

to compete in a min-max situation more effectively as the loss provides more feedback when training.

Overall, the minmax loss is reworked to the following equation:

𝑊 𝐿𝑜𝑠𝑠 = min
𝐺

max
𝐷
E
𝑥∼P𝑟
[𝐷 (𝑥)] − E

𝐺 (𝑧)∼P𝑔
[𝐷 (𝐺 (𝑧))] (2.3)

Where P𝑟 is the data distribution of real data, P𝑔 is the model distribution defined by 𝐺 (𝑧), 𝐷 (𝑥)

is the discriminator’s output for a real instance, 𝐺 (𝑧) is the generator’s output when given noise 𝑧 and

𝐷 (𝐺 (𝑧)) is the discriminator’s output for a fake instance. The discriminator attempts to maximize the

𝑊 𝐿𝑜𝑠𝑠 by increasing the difference between the output of the real and the fake instances. Consequently,

the generator can only influence the right side of the algorithm, 𝐷 (𝐺 (𝑧)), and tries to maximize this

output to minimize the𝑊 𝐿𝑜𝑠𝑠.

2.2.4 ConditionalGANs

ConditionalGANs [30] extends traditional GANs into a conditional based model. This is done by passing

extra information 𝑦 to the generator and discriminator. 𝑦 can be any auxiliary information, e.g., class

labels or data from other modalities.

In ConditionalGANs, conditioning is performed by feeding 𝑦 to both the discriminator and generator
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as an additional input layer. In the generator’s case, prior input noise 𝑧 and 𝑦 are combined in joint

hidden representation. It should be noted that the adversarial training framework allows for considerable

flexibility on how the hidden representation is composed, however, the organization must remain the

same throughout, e.g., 𝑦 always be appended to 𝑧 at the end. In the discriminator’s case, 𝑥 and 𝑦 are

combined and presented as inputs to the discriminative function.

Given the extra information of 𝑦, the loss function of the traditional GANs model is updated to:

𝐿𝑜𝑠𝑠 = min
𝐺

max
𝐷

𝐸𝑥 [log𝐷 (𝑥∥𝑦)] + 𝐸𝑧 [log 1 − 𝐷 (𝐺 (𝑧∥𝑦))] (2.4)

2.2.4.1 CycleGANs

CycleGANs is known to be useful for unpaired translation. Furthermore, with CycleGANs two generators

are created, each converting one to another datatype (e.g., one generator for code-to-EM and one for

EM-to-Code). This is of particular interest as having an EM-to-Code in addition to a Code-to-EM

translator could benefit the EM-based side-channel analysis community.

CycleGANs attempts to learn how to generate synthetic data by performing two transformations.

These two transformations convert one instance into another and then back (e.g., code-to-signal and back

signal-to-code). Consequently, CycleGANs have two generators and two discriminators. Additionally, an

additional loss value is given for how well the cycle is able to reproduce the original input. Furthermore,

during training, the model also attempts to learn via the opposite direction (i.e., signal to code and back

to signal).

Structurally, CycleGANs contain two generator mapping functions 𝐺 : 𝑋 → 𝑌 and 𝐹 : 𝑌 → 𝑋 ,

and two associated adversarial discriminators 𝐷𝑦 and 𝐷𝑥 . 𝐷𝑦 encourages 𝐺 to translate 𝑋 into outputs

indistinguishable from domain Y, and vice versa for 𝐷𝑥 and 𝐹. Furthermore, an additional metric

namely, cycle consistency loss is calculated for both the forward and backward processes. Forward Cycle

consistency loss regularizes the mappings by capturing the intuition that 𝑥 → 𝐺 (𝑥) → 𝐹 (𝐺 (𝑥)) ≈

𝑥. Backward Cycle consistency loss is similar except in the opposite direction (e.g., 𝑦 → 𝐹 (𝑦) →

𝐺 (𝐹 (𝑦)) ≈ 𝑦). Structure of CycleGANs is illustrated in Figure 2.6.
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Figure 2.6: Basic structure of CycleGANs.
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Chapter 3

Problem Statement

Typically, software supporting embedded devices designed to control critical processes is considered

of low complexity when compared to the analogous software running on servers and desktop systems.

Indeed, corresponding workflows involve cycles of sensing, processing, and then actuation, all executed

in a loop fashion. However, realistically, even the simplest examples of this family of software may be

comprised of hundreds if not thousands of execution paths spawned by conditional branching instructions.

When the objective is to model the characteristics of normalcy then all of these execution paths must be

observed, analyzed and fingerprinted. Particularly, EM-based fingerprinting is mainly a human-expert-

centric process revolving around tasks such as the correct positioning of probes, deciding the optimal

recording parameters like the sampling rate, and synchronizing EM signals, among others. This, in turn,

renders EM fingerprinting an extremely time-consuming, error-prone, and costly process.

This challenge is further amplified by two real-life restrictions. Firstly, execution branches may exist

in a program that are meant to be rarely followed. Even techniques such as the forceful execution [31]

of specified branches might not be an option as such paths may be associated with critical failures (e.g.,

shutting down of critical systems as part of the emergency sequence). For this reason, these branches

are likely to be left out of the fingerprinting phase. In this case, the resulting models will yield wrong

predictions for these normal-yet-rare-situations.

Secondly, embedded devices occasionally receive firmware/software updates. These modifications

in the executable generate the requirement for fingerprinting the behavior of the device from scratch.

These challenges are illustrated in Figure 3.1.

For this reason, it is important to minimize any manual processes involved in the fingerprinting of EM

signals. Towards this end, the chapters below will present a comprehensive framework for synthetically

generating EM signals directly from ASM code. While this undertaking has certain challenges, it can

significantly reduce the cost and manual labor involved.
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Figure 3.1: Scenarios where fingerprinting which is based on synthetic data could be
valuable. Rare execution paths of programs are depicted in red and orange (left). New

states/commands introduced after software updates are depicted in red (right).
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Chapter 4

A Framework for Synthesizing EM
Signals: An Expert-guided Approach

This Chapter provides a detailed description of a novel approach and evaluation for manually generating

EM signals for anomaly detection purposes. More specifically, a framework [32] for conducting the

fingerprinting stage completely offline through the use of synthetically generated EM signals is proposed.

The effectiveness of the proposed approach is evaluated for the detection of code injection attacks against

the software of embedded devices, accounting for multiple programs or execution paths. Later on,

elements of this methodology are extended to create a totally automated data-driven approach.

4.1 Proposed Framework

The purpose of the proposed framework is to conduct anomaly detection with high accuracy using

synthetically generated versions of the EM signals that correspond to the normal execution branches

only. A high-level overview of the proposed framework is given in Figure 4.1. In summary, the main

steps involved in the process are as follows. During an offline step, a database of instructions-to-signal

pairs is created (this is denoted as step 1 in Figure 4.1). Next, synthetic signals are created using the

database of EM signals and the target binary (step 2 in Figure 4.1). Then, these sequences are used to

train the baseline during the fingerprinting phase (step 3 ). After this phase, the target device is expected

to be deployed on the field. At this point, the anomaly detection phase takes place (step 4 ). Afterward,

real EM signals emanated by the device are captured once again, this time to be evaluated for anomalies.

This process also capitalizes on the baseline that was already created during the previous step. Under

the hood, the process involves the execution of machine learning algorithms that judge whether the new

signal bears significant morphological similarities with the synthetic ones that were used to construct

the baseline. Hereunder, we shall analyze the basic steps of the process in further detail.

This framework assumes that a reliable mechanism for capturing EM signals from the elements of
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Figure 4.1: Workflow of the proposed framework.

devices (e.g., CPU) is available. Today, this can be achieved by solely relying on COTS components.

Such an assembly of components typically consists of (a) a near-field antenna for gathering the raw

signals, (b) an amplifier for increasing the strength of the captured signal, (c) an oscilloscope for

digitizing the collected analog signals, and finally (d) hard disks for storing the captured signals in

their discrete form. In this framework, the process of capturing signals is performed in two separate

stages i.e., during the construction of the library of basic building blocks (step 1 ), a process that is

completed offline, and during run-time for actively monitoring the health status of a target device (step

4 ). Typically, the signals are collected by placing the antenna in close proximity to the CPU. However,

in more advanced settings signals can be collected from multiple onboard components (e.g., the network

module), and create more sophisticated correlations regarding the behavior of the device. Particularly

for the latter case, an extra step of pre-processing that may involve noise elimination procedures may

be included as part of steps 3 and/or 4 In this work, we have omitted such processes for purposes of

simplicity.

4.1.1 Building a Library of Signal Blocks

A library of basic building blocks of signals is assumed to have been created a priori in an offline

step. This library should be available during the fingerprinting of any program, or more accurately
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any subsequence of any execution path inside a program. Theoretically, the term basic building block

corresponds to the EM signature of patterns frequently observed among multiple different signals. While

there are many possibilities, in our case, we relied on assembly-level instructions, e.g., and, nop, etc.

which also constitutes the minimum building block of all programs.

Experimentally, we have identified that the main challenge with this approach is that one instruction

in a sequence influences the shape and amplitude characteristics of the EM wave and the subsequent

instructions. Typically, the direct next instruction is influenced only. However, depending on the type of

instruction (e.g., instructions involved in I/O operations) multiple subsequent instructions may also be

affected but to a lesser extent. In this work, we have assumed that only one instruction gets affected for

reasons of simplicity, but further investigation is required. Therefore, the structure of the database can

be defined as:

M =



(𝐼0 | 𝐼1) 𝑆
(𝐼0 |𝐼1 )
1

(𝐼1 | 𝐼2) 𝑆
(𝐼1 |𝐼2 )
2

. . . . . .

(𝐼𝑛−1 | 𝐼𝑛) 𝑆
(𝐼𝑛−1 |𝐼𝑛 )
𝑛


(4.1)

where the (𝐼𝑛−1 | 𝐼𝑛) operation indicates that instruction 𝐼𝑛 has been observed after 𝐼𝑛−1. The reader

should notice that an entry 𝑆 (𝐼𝑛−1 |𝐼𝑛 ) is comprised of the same number of samples as 𝑆𝐼𝑛 would.

Let us examine the requirements for the construction of such a database through a simple example.

The x86 architecture supports 981 [33] unique instructions while a simpler CPU architecture like AVR

supports unique 123 instructions [18]. Let us focus on the AVR architecture since it is widely deployed

in embedded systems. Let us assume that 1000 examples of each instruction are captured then the

original size of the database is estimated to have 1000 ∗ 123 = 123𝐾 entries. In the lieu of the described

restriction, the database needs to have a total of 1, 000 ∗ 1232 ≈ 15𝑀 entries which is approximately

two orders of magnitude larger than the original estimation. It is obvious, that the process of creating

a database of all possible instructions is time-consuming. Regardless, this needs to be conducted only

once. One can argue that once constructed, a database for a specific architecture can be open-sourced

and made publicly available. Moreover, in practice, certain instructions are never observed together,



19

while there are certain combinations of instructions that are frequently executed together. Thus, the

requirements of constructing such a database are not prohibitive.

4.1.2 Manually Generating Synthetic EM Signals

The process of manually generating synthetic signals for anomaly detection is comprised of the following

distinct steps:

• based on the sequence of instructions included in the binary, identify the next instruction that will

be executed

• fetch a random EM sample that is associated with this instruction from the library

• append the EM at the end of a collective synthetic signal

The above steps are repeated until no more instructions are contained in the target sequence.

Algorithm 1 Fingerprinting Phase
1: function calc strangeness:(benign dataset 𝑋 , set of query signals 𝑄, number of neighbors ^):
2: 𝑆𝑡𝑟𝑎𝑛𝑔𝑒𝑛𝑒𝑠𝑠 𝑆𝑐𝑜𝑟𝑒𝑠 = []
3: for ∀𝑞 ∈ 𝑄 do
4: 𝐷 = []
5: for ∀𝑥 ∈ 𝑋 do
6: 𝐷 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑞)
7: end for
8: 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 𝑔𝑒𝑡 𝑚𝑖𝑛(𝐷, ^)
9: 𝑆𝑡𝑟𝑎𝑛𝑔𝑒𝑛𝑒𝑠𝑠 𝑆𝑐𝑜𝑟𝑒𝑠← 𝑆𝑢𝑚(𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

10: end for
return 𝑆𝑡𝑟𝑎𝑛𝑔𝑒𝑛𝑒𝑠𝑠 𝑆𝑐𝑜𝑟𝑒𝑠

11: end function
12: function Fingerprint:(benign dataset 𝑋𝑠 , number of neighbors ^, number of benign execution paths 𝑠):
13: 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠 = []
14: for ∀𝑋 ∈ 𝑋𝑠 do
15: 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠← 𝑐𝑎𝑙𝑐 𝑠𝑡𝑟𝑎𝑛𝑔𝑒𝑛𝑒𝑠𝑠(𝑋, 𝑋, ^)
16: end for

return 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠
17: end function

4.1.3 Fingerprinting Phase

In this work, the discovery of malicious EM signals was approached as a semi-supervised anomaly

detection problem as opposed to a supervised classification one. The reason for this decision is that

nearly infinite alterations to a benign program can be performed by an attacker. This makes collecting
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instances of all possible known and unknown malicious versions of a program unrealistic. However,

since the normal modes of operation of a device are finite, it is valid to assume that the corresponding

EM signals can be collected, or in the context of this work, be synthetically generated. Therefore, we

relied on and extended an existing semi-supervised anomaly detection method [34]. This method is

based on the principles of transduction and hypothesis testing. Transduction is a technique of placing an

example in a set of known normal observations and understanding whether that sample is a good fit in

the set. From the perspective of our experiment, the terms example and observations refer to EM signals

that correspond to a repetitive operation e.g., a loop.

The method calculates a distribution of normalcy, namely, a baseline, between all the known benign

cases corresponding to the same operational mode (i.e., an entire or parts of the same execution path).

Realistically, a program can have several execution paths, with each execution path corresponding to a

different aspect of normal operation. This, in turn, creates a unique EM signal.

In further detail, during this phase, a set of benign signals, 𝑋 , is provided for each execution path.

𝑋 must contain a significantly large number of EM signals because as explained in previous sections,

observations of the same path can deviate due to random phenomena occurring during the capture. In

order to calculate the distribution, the strangeness (similarity) score of each sample point 𝑥 with the

rest in 𝑋 must be calculated. Any algorithm that calculates the similarity (e.g., euclidean distance)

can be used to estimate the strangeness. These include rudimentary approaches such as the mean of

distances, or more sophisticated metrics like the Local Outlier Factor [35] (which internally relies on

Euclidean distance). The processes involved in the fingerprinting phase are given in Algorithm 1. We

relied on the sum of the ^-nearest (most similar) neighbors (signals) and the Euclidean distance metric.

The outcome of this process is one (or multiple) lists that contain the similarity scores, referred to as

𝑆𝑡𝑟𝑎𝑛𝑔𝑒𝑛𝑒𝑠𝑠 𝑆𝑐𝑜𝑟𝑒𝑠, (lines 5-9) in the algorithm. The 𝑆𝑡𝑟𝑎𝑛𝑔𝑒𝑛𝑒𝑠𝑠 𝑆𝑐𝑜𝑟𝑒𝑠 reflect the distribution of

normalcy or simply put a baseline, (lines 13-16). This process is repeated for all possible execution

paths.
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Algorithm 2 Anomaly detection Phase
1: function Detect:(sets of benign signals 𝑋𝑠, strangeness baselines 𝐵𝑠, signal for evaluation 𝑞, number

of neighbors ^, threshold 𝜏, number of benign execution paths 𝑠 ):
2: 𝑉𝑜𝑡𝑒𝑠 = []
3: for ∀𝑋 ∈ 𝑋𝑠 do
4: 𝑠𝑖𝑧𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵𝑖)
5: 𝑠𝑐𝑜𝑟𝑒𝑞 = 𝑐𝑎𝑙𝑐 𝑠𝑡𝑟𝑎𝑛𝑔𝑒𝑛𝑒𝑠𝑠(𝑋, 𝑞, ^)
6: 𝑆𝑜𝑟𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 = 𝑠𝑜𝑟𝑡 (𝐵𝑖 , 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔)
7: 𝑖𝑛𝑑𝑒𝑥 = 0
8: for ∀𝑠𝑐𝑜𝑟𝑒𝑥 ∈ 𝑆𝑜𝑟𝑡𝑒𝑑 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 do
9: if 𝑠𝑐𝑜𝑟𝑒𝑞 < 𝑠𝑐𝑜𝑟𝑒𝑥 then

10: 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + 1
11: end if
12: end for
13: 𝑉𝑜𝑡𝑒 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠

14: 𝑝 𝑣𝑎𝑙𝑢𝑒 ← 1+𝑠𝑖𝑧𝑒−𝑖𝑛𝑑𝑒𝑥
1+𝑠𝑖𝑧𝑒

15: if 𝑝 𝑣𝑎𝑙𝑢𝑒 > 𝜏 then
16: 𝑉𝑜𝑡𝑒 = 𝑛𝑜𝑟𝑚𝑎𝑙

17: end if
18: 𝑉𝑜𝑡𝑒𝑠← 𝑉𝑜𝑡𝑒

19: end for
20: 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠

21: for ∀𝑣𝑜𝑡𝑒 ∈ 𝑉𝑜𝑡𝑒𝑠𝑞 do
22: if 𝑣𝑜𝑡𝑒 = 𝑛𝑜𝑟𝑚𝑎𝑙 then
23: 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑛𝑜𝑟𝑚𝑎𝑙

24: end if
25: end for

return 𝑠𝑡𝑎𝑡𝑢𝑠
26: end function
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4.1.4 Anomaly Detection Phase

The deployment phase assumes that the baselines, 𝐵𝑠, have already been produced successfully during

the fingerprinting phase. Furthermore, the original sets of benign signals used to create the baselines,

𝑋𝑠, and the number of benign execution paths, 𝑠, are provided. Additionally, a signal for evaluation,

𝑞, is available. Finally, user-provided parameters that correspond to the number of neighbors (^) and

the threshold used to separate the normal from abnormal (𝜏) signals are given. The overall process is

provided in Algorithm 2.

During this process, a benign set of each execution path, 𝑋 , is obtained from 𝑋𝑠. Then the strangeness

of the new observation, 𝑠𝑐𝑜𝑟𝑒𝑞, is evaluated by comparing 𝑞 to 𝑋 using the same algorithm implemented

in the fingerprinting phase, (line 5). Afterward, 𝑠𝑐𝑜𝑟𝑒𝑞 is compared against the respective baseline,

𝐵𝑖 , that was created from 𝑋 in the fingerprinting phase. The comparison process is executed using

transduction, creating a 𝑝 𝑣𝑎𝑙𝑢𝑒 for 𝑞, (lines 8-13). If the 𝑝 𝑣𝑎𝑙𝑢𝑒 is above the threshold 𝜏, then 𝑞 is

considered within the norm of the execution path, and a 𝑣𝑜𝑡𝑒 is saved as normal. Otherwise, the 𝑣𝑜𝑡𝑒

is saved as abnormal, (lines 14-19). This process is repeated for all execution paths in 𝑋𝑠 to check if

𝑞 falls within the norm of any of the benign execution paths. Under normal conditions, benign signals

are expected to be considered normal for one execution path. As such, only one 𝑣𝑜𝑡𝑒 for the unknown

signal 𝑞 being normal is required to flag it as benign. If no 𝑣𝑜𝑡𝑒 is given as normal, then 𝑞 is flagged as

anomalous, (lines 21-26).

The voting mechanism was an extension to the original algorithm implemented to account for the

certainty of a program being comprised of numerous paths. A comprehensive fingerprinting of a target

program must consider, as normal, all possible paths inside that program.
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Chapter 5

Manual Synthesis Experimental Setup &
Data Gathering

To evaluate the proposed framework, we have created an experimental setup consisting exclusively of

low-cost, off-the-shelve components. A simple control process emulating a tank filling system is used as

the software to be protected against malicious modifications. Two alternative versions of that software

are compiled, each one corresponding to the version of the control logic after the malicious injection of

a single instruction. During the fingerprinting stage, EM signals are obtained from the benign version

of the software. These signals are used to create the baseline and train the detection engine. At the

deployment stage, we collected signals while the device was operating under normal as well as anomalous

states (i.e., after the injection). The predictive accuracy of our system is evaluated. Details regarding

the process described above are given in this section.

5.1 Experimental Setup

An illustration of our setup, along with the relevant placement of the mentioned components, is given

in Figure 5.1. For all considered experiments, the subject device was the Arduino Mega 1 . While the

framework assumes any type of near-field antenna placed at a distance of a few cm away from the device,

in our experiments, we used a near-field probe placed directly on top of the CPU; namely, an EMRSS

RF Explorer H-Loop 2 . This was done to obtain EM readings that are virtually noise-free.

Since such signals are emitted involuntarily using no dedicated antennas they are typical of extremely

low amplitude. Therefore, each signal captured 3 was first amplified using a Beehive 150A EMC probe

amplifier 5 . The captured signals were saved in a digital format with the use of a PicoScope 3403D

oscilloscope 6 connected to a laptop 7 . For all experiments, the sampling rate was set to 250MS/sec,

i.e., a sampling interval of 4ns.

Notice that this sampling rate is almost 15 times more than the CPU clock of the chosen platform.
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Using an external signal from a specific I/O pin ( 4 in Figure 5.1), we were able to identify the beginning

and end of the program’s execution loop by toggling between high/low values on the I/O pin. This was

done to maintain a strong synchronization among all the signals.

Figure 5.1: The proposed framework along with the major components used in our
experimental setup.

5.2 Dataset

For evaluating purposes, we considered the following scenario: a benign program with just one execution

path is already installed in the target platform. The original software is comprised of just 17 instructions

being executed inside a loop. At some point, there was a need to modify the original program. In

the update several instructions were substituted, a new one was added and one was removed from the

original sequence. The task is to synthetically generate EM signals of the modified version of the

program directly from the assembly (ASM) code so that we do not have to engage in the data gathering

process from scratch. The original (Program A) and the updated version of the program (Program B)

are given in Listings 5.1 and 5.2.
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� �
1 setup:

2 sbi ddrb, 6 ; set pb6 as output (our sync artifact)

3 loop:

4 sbi pinb, 6

5 ; simulates a decision

6 clr r20

7 ldi r20, 1

8 ; Will go to the first_label

9 ldi r22, 1

10 cp r20, r22

11 breq first_label

12 rjmp loop

13
14 first_label:

15 clr r2

16 ldi r23, 1

17 mov r1, r23

18 cp r1, r2

19 lsl r1 ; multiply r1 by 2 with logical shift left

20 lsr r2 ; divide r2 by 2 with logical shift right

21 ses ; Set signed flag

22 cls ; Clear signed flag

23 sev ; Set Overflow Flag

24 clv ; Clear Overflow Flag

25
26 rjmp loop� �

Listing 5.1: Assembly code of Program A.

Next, we assumed that a malicious entity performs a modification (i.e., code injection) to our

program. To illustrate the occurrence of such an attack, we developed two contaminated versions of the

updated program (Program B), each with differing amounts of injected code. The first contaminated

version assumes that four malicious instructions were injected, while in the second case we have the

injection of only two instructions. Consequently, the second version will be harder to detect due to the

shorter length of the foreign code. The point of injection for both contaminated versions is in the middle

of the sequence of the ASM instructions. The two malicious programs (easy and hard) are given in

Listings 5.3 and 5.4.



26

� �
1 setup:

2 sbi ddrb, 6 ; set pb6 as output (our sync artifact)

3 loop:

4 sbi pinb, 6

5 ; simulates a decision

6 clr r20

7 ldi r20, 1

8 ; Will go to the first_label

9 ldi r22, 1

10 cp r20, r22

11 breq first_label

12 rjmp loop

13
14 first_label:

15 ldi r23, 0

16 and r2, r3 ; Bitwise AND (result in stored r2)

17 add r1, r2 ; Add r2 to r1 (r1=r1+r2)

18 eor r2, r3 ; Bitwise exclusive or between r2 and r3

19 sub r1, r2 ; Subtract r2 from r1

20 ses ; Set signed flag

21 cls ; Clear signed flag

22 sev ; Set Overflow Flag

23 clv ; Clear Overflow Flag

24 clr r1

25
26 rjmp loop� �

Listing 5.2: Assembly code of Program B. Different instructions from Program A are
highlighted in red.

� �
1 ...

2 ; up to here, same as "Program B"

3
4 add r1, r2 ; Add r2 to r1 (r1=

r1+r2)

5 ;====== 4 injected instructions

========

6 asr r3 ; r3=r3/2

7 com r3 ; Take one's complement
of r3

8 adc r3, r2

9 sbc r3, r2

10 ;==============

11 eor r2, r3 ; Bitwise exclusive

or between r2 and r3

12
13 ; the rest are same as "Program B

"

14 ...� �
Listing 5.3: Assembly code of

Malicious B Easy.

� �
1 ...

2 ; up to here, same as "Program B"

3
4 add r1, r2 ; Add r2 to r1 (r1=

r1+r2)

5 ;====== 2 injected instructions

========

6 asr r3 ; r3=r3/2

7 com r3 ; Take one's complement
of r3

8 ;

9 ;

10 ;==============

11 eor r2, r3 ; Bitwise exclusive

or between r2 and r3

12
13 ; the rest are same as "Program B

"

14 ...� �
Listing 5.4: Assembly code of

Malicious B Hard.



27

Chapter 6

Evaluation of Proposed Framework

In this chapter we shall describe a series of experiments performed towards evaluating the efficiency of

the proposed method.

As a first experiment, we relied upon real observations of signals only. More specifically, the real

signals that correspond to the normal programs (before and after the update) were used to train the

baseline. Thus, at this phase, no malicious observations were used. During the testing phase, examples

of both normal and malicious cases were utilized. In fact, we performed two rounds of evaluation, for

the first round the examples of malicious signals were drawn from the pool of signals that correspond to

an easier-to-distinguish malicious case. For the second round, the malicious signals were chosen from

the pool of harder-to-detect anomalies. The goal of this experiment was to estimate the accuracy of the

anomaly detection method in the ideal situation where real signals are available. The results will be used

as a baseline.

A second experiment was performed in a similar fashion, except real examples for the original

program and synthetic data for the modified version were used to train the baseline. Obviously, synthetic

EM signals are not expected to be identical to real ones. However, for the proposed task the goal is

to approximate the predictive performance achieved when utilizing the real signals. Therefore, this

experiment aims to quantify the expected penalty in terms of predictive accuracy due to reliance on

synthetic data.

The two experiments were evaluated using the 10-fold cross-validation method. For experiment one,

for each fold, the training set was comprised of 450 examples of Program A, and 450 of Program B.

Furthermore, to evaluate with a balanced testing set, the testing dataset considered for each fold only 50

observations of each benign (original and modified) case along with 100 anomalous examples. For the

second round, the number of signals of each different type of program used for the training/testing set

was the same except that the training set contained synthetic EMs for Program B.

Preprocessing: Before the training and testing phases, feature engineering was performed. First, every
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signal was reduced to the size of the benign execution paths. The reader should keep in mind that the

size of the benign sequence is known in advance. As such, we assume that every signal that is being

evaluated should only be the size of the benign case if it is truly benign. The reader should recall that each

instruction is amplitude modulated. Therefore, the main indicator for identifying various instructions is

the difference in the amplitude of the signal at certain time frames (i.e., cycles). In fact, one challenge

that we observed in raw signals is that occasionally there are minor clock drifts. By maintaining only

the peaks, we effectively deal with this issue without the need for relying on computationally heavy

techniques such as dynamic time warping (DTW).

Considered Parameters: After performing a grid search we identified the optimal nearest neighbors

parameter to be 10. Moreover, the anomaly detection process made use of thresholds 𝜏 ranging from

zero to one, with a step of 0.001.

Evaluation Metrics: Given the confusion matrix results, we obtained the area under the curve (AUC)

of the receiver operating characteristic (ROC), and among the thresholds tested the one that gives the

best accuracy (ACC) and F1 score for each fold was considered. ROC is a common metric used for

evaluating the efficiency of anomaly detection systems. It graphs the true-positive rate (TPR) vs. the

false-positive rate (FPR) under various thresholds. The formulas for calculating the TPR and the FPR

respectively are:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (6.1)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝐹𝑁 (6.2)

Where 𝑇𝑃 is the number of true positives, 𝐹𝑃 is the number of false positives, and 𝐹𝑁 is the number

of false negatives. The resulting graph usually creates a curve, and the AUC is a common metric for

comparing ROCs. The ACC and the F1 scores are is computed as follows:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (6.3)

where 𝑇𝑁 is the number of true negatives.
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Figure 6.1: ROC graphs for the anomaly detection experiment. In the upper row, the
results were obtained when using the synthetic signals for training. In the lower row,

the results obtained when using only real signals for training (ideal case). The drop in
the AUC score observed is only 1.3% for the injection of 4 instructions (an easy case)

and 4.2% for the injection of 2 instructions (a hard case).

𝐹1 = 2 ∗ 𝑃𝑃𝑉 ∗ 𝑇𝑃𝑅
𝑃𝑃𝑉 + 𝑇𝑃𝑅 (6.4)

where in turn the precision (PPV) is defined as:

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁 (6.5)

The final reported metrics are average among all folds. The max, minimum, and average ROC curves

observed across all folds are given in Figure 6.1.

Results: The results achieved for each of the experiments can be seen in Table 6.1. Using synthetic data

gives above 90% AUC score for all considered metrics. More specifically, the AUC score achieved when

using the easy malicious case is 98%, and 95.1% when using the hard version. The AUC score achieved
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for the same tests when real signals were used is 99.3% for both the easy and hard cases. In other words,

the use of synthetic signals had a negative impact on the predictive AUC but it was relatively low i.e.,

1.3% and 4.2% respectively. The reader should recall that despite the malicious programs being labeled

easy and hard both cases correspond to exceptionally minimal injections and in reality, the attacker

probably would try to inject much larger lengths of instructions.

In terms of ACC and F1 score, the use of synthetic signals achieved 90.1% and 90.6% respectively

when using the hard malicious case. Furthermore, these metrics reach 95.4% for the ACC and 95.5%

for the F1 score when evaluating against the easy version. When the same tests are performed using the

real signals, the ACC and F1 is near perfect, that is 99.9% and 99.5% for the hard case and 99.9% and

99.8% for the easy version. Overall the difference in the use of synthetic signals was 4.5% to 9.8% for

the ACC and 4.3% to 8.9% for the F1.

Table 6.1: Anomaly detection results using Synthetic EMs.

Training Test-Normal Test-Anomaly Scores (Avg.)
AUC ACC F1

Real (Program A)
and Synthetic (Synthetic B)

Real
(Program A and Program B)

Malicious B (Easy) 0.980 0.954 0.955
Malicious B (Hard) 0.951 0.901 0.906

Only Real
(Program A and Program B)

Real
(Program A and Program B)

Malicious B (Easy) 0.993 0.999 0.998
Malicious B (Hard) 0.993 0.999 0.995

Conclusion: While using real captured EM samples may provide near-perfect detection of even minimal

code injections, synthetic fingerprinting can still effectively train models to distinguish between benign

and anomalous cases with high accuracy. For example, the penalty in terms of AUC score is -1.3% for

the detection of only four malicious instructions.
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Chapter 7

Transitioning to a Data-Driven Approach
for EM Signal Synthesis

There are two main challenges regarding the process of manually synthesizing EMs for anomaly detection.

Firstly, the number of instructions contained in the library’s database must be exhaustive. Essentially,

requiring 𝐼𝑅 number of instructions to be captured, where 𝐼 is the number of executable instructions

for a target device and 𝑅 is the number of prior instructions to account for. Secondly, a large number

of signals corresponding to the same instruction 𝐼𝑖 must be captured because the phenotype of signals

corresponding to the same sequence of instructions is not static. This is further discussed in Section 2.1.

7.1 Considerations Regarding the Library of Reusable Basic Program

Blocks

Let us suppose that the previous observations regarding the influence of prior instructions (Section 2.1)

are not true. Then, it would be possible to construct a set of programs 𝑃 comprised of the instruction to

be fingerprinted 𝐼𝑖 surrounded by sequences of 𝑛𝑜𝑝 instructions as:

𝑃𝑖 = {. . . , 𝑛𝑜𝑝𝑛−2, 𝑛𝑜𝑝𝑛−1, 𝑛𝑜𝑝𝑛, 𝐼𝑖 , 𝑛𝑜𝑝𝑛+1, 𝑛𝑜𝑝𝑛+2, . . .} (7.1)

Notice 𝑛𝑜𝑝 instructions are considered neutral as they do not perform any function but simply

consume a cycle thus, they are an ideal choice for this fingerprinting task. For the considered CPU

architecture this would amount to creating 123 unique programs i.e., the same as the number of unique

instructions. At a subsequent step, the instruction 𝐼𝑖 would be stripped from surrounding the 𝑛𝑜𝑝 and

entered in a database. In the future, for any given sequence of instructions, it would be possible to consult

this database and retrieve the corresponding EM sequences. In this scenario, the entire workflow
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is deemed trivial, and the task of EM synthesis is reduced merely to a simple mapping of signal-to-

instruction.

However, as explained in Section 2.1, in reality, the task is not trivial because each instruction 𝐼𝑖 in a

sequence is influenced by the previous instruction 𝐼𝑖−1. Thus, the database of reusable components must

be constructed by considering at least two instructions. The situation becomes more challenging because

in turn instruction 𝐼𝑖−1 is expected to have been altered by 𝐼𝑖−2. Thus, when creating the database the

previously examined instruction must be considered and explicitly specified.

To put things into perspective, for our considered CPU architecture the number of possible instruction

combinations is 123x123 which is more than two orders of magnitude larger than the naı̈ve case.

Alternative CPU architectures may support a significantly higher number of instructions. It is obvious

that this approach does not scale. Additionally, if we want to account for more prior instructions, this

becomes even more daunting. For example, if we consider 𝑃 prior instructions and have N number of

executable instructions on the target device, then the total possible execution sequences to account for

can be calculated as:

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑁𝑃 (7.2)

Paired with the fact that multiple examples of each sequence’s EM signal are necessary and that trained

professionals must collect the samples, this task becomes very costly.

7.2 Reasoning Behind a Data-Driven Approach

Fortunately, it may not be necessary to capture all possible sequences. From our observations, some

sequences are seen more frequently than others. At the same time, some sequences cannot exist because

their corresponding operations do not make sense. Furthermore, it may be possible for deep learning

models to learn how to predict the EM signal of a sequence, even though it was not specifically trained on

it. As such, an evaluation is performed to determine how many instruction sequences must be provided

to train a model so that it can achieve a level of coverage for an arbitrary number of alternative target

programs.
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7.2.1 Coverage of Programs using the Most Common Sequences

To validate that only a fraction of the total possible sequences is necessary, a study was performed to find

how much the most common sequences would cover on the majority of programs. To conduct this study,

the Arduino Mega 2560 platform was considered. The ASM code of the most popular Arduino Mega

2560 projects was retrieved from GitHub. Next, various amounts of the most common sequences of

instructions from the manufacturer’s example programs for Arduino Mega 2560 was obtained. Finally,

the coverage (or percentage of program that contains the most common sequences) is calculated in for

the popular programs. The overall process was done when considering sequences of two, three, and four

instructions for comparison.

7.2.2 Results of the Study

Amount Test Set Covered
100 60.30%
200 75.30%
300 82.77%
400 87.05%
500 90.48%
600 92.71%
700 94.09%
800 94.89%
900 95.88%
1000 96.61%

(a) Two Instructions

Amount Test Set Covered
500 51.44%
1000 63.24%
1500 70.29%
2000 74.70%
2500 78.41%
3000 81.01%
3500 83.58%
4000 85.23%
4500 86.79%
5000 87.83%

(b) Three Instruction

Amount Test Set Covered
1000 40.68%
2000 50.58%
3000 56.52%
4000 60.48%
5000 63.61%
6000 65.90%
7000 67.71%
8000 69.31%
9000 70.65%

10000 71.76%

(c) Four Instructions

Table 7.1: Estimated coverage for any program given amount of most common
sequences. Results provided when considering two, three, and four instruction

sequences.

The results of the test are provided in Table 7.1. The results show that when accounting for two

instruction sequences, the average percent covered in different programs is slightly above 90% when

utilizing only the top 500 sequences seen in the training set. The average converted percent decreased

to 82.77%, 75.30%, and 60.30% when utilizing the top 300, 200, and 100 two instruction sequences

respectively. When evaluating using three instruction sequences, the amount of the top number of
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sequences necessary to achieve minimal coverage drastically increases. To achieve above 80% coverage

of any program, roughly 3000 of the most frequently seen three instruction sequences are necessary.

The use of fewer most frequently seen sequences decreases the coverage even further, with 2000,

1500, and 1000 sequences providing an average coverage of 74.70%, 70.29%, and 63.24% respectively.

Results using four instruction sequences requires an even greater number of frequently seen sequences.

Achieving minimal coverage of 70.65%, 65.90%, and 60.48% when using 9000, 6000, and 4000 of the

most frequently seen sequences respectively. It should be noted that even with four instruction sequences,

the necessary amount to obtain around 70% coverage (9000 sequences) is significantly lower than all

possible using an Arduino Mega 2560 CPU (1254 sequences).

Hence, the question becomes, can a deep learning model that is trained on just the most common

samples generate EMs similar to the real captured observations?

7.3 GANs model for generating EM signals

Out of multiple possible data-driven generative translation models, GANs stood out as a possible solution

for code-to-EM signal translation while training on the only most common samples. This is due to the

success that GANs models have in text-to-speech translation [19], [36], [25].

The task of text-to-speech synthesis bears significant similarities to code-to-EM signal translation

in that raw text-based input is passed through a generator to create signal data. The main differences

lie primarily in the morphology of the input and output. More specifically, the input for text-to-speech

and code-to-EM signal translation can be of any length of words in a given language. Similarly, in this

context code can be any one of the supported instructions for the target CPU.

Another reason for GANs is their ability to generate data that it is not specifically trained on. In fact,

this ability has been used to train other models and algorithms [37], [38], [39]. The ability to generate

new, accurate data to train other models is of particular interest as our main motivation is the development

of a scalable EM-based anomaly detection model for the detection of malicious code alterations.
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7.4 Addressing Challenges of Using GANs for Code-to-EM Signal Trans-

lation

Three major challenges may negatively impact the efficiency of GANs models to generate accurate

EM signals. First, the morphology (mainly the amplitude) of EM signals that correspond to a specific

instruction are influenced by prior instructions as previously indicated in Section 2.1.1. Second, GAN

models are known to have convergence problems, such as vanishing gradients, mode collapse, and failure

to improve [27], [28]. Third, GANs output must be in a specific shape and size. Unfortunately, the

time index of an instructions EM signal can vary slightly. Furthermore, if a process of combining EM

signals of instructions is done to create a full EM without a common point of intersection, the resulting

synthetic EM sample may contain amplitude discrepancies. Below we will describe specific actions

taken to resolve these issues.

7.4.1 Prior Execution Influence

To account for the issue of prior instruction influence, the generator, and discriminator are additionally

fed a token for the prior instruction. Input to the generator and discriminator maintains the order of

execution (i.e., prior then current instruction). While the direct prior instruction inflicts the majority of

the distortion, instructions that are located further back may also play a role. Therefore, we hypothesize

that including more tokens of prior instructions might further increase the fidelity of the resulting

signal. However, providing long sequences of instructions as inputs may be challenging in practice.

The reader should keep in mind that constructing a database of pairs of instruction archetypes has a

significantly larger size. For example, the Atmel Atmega328P CPU architecture supports 123 unique

ASM instructions which are relatively easy to fingerprint. However, fingerprinting all possible pairs

of these instructions is significantly more challenging as the total number of unique pairs is 15,129.

Furthermore, increasing the knowledge of past instructions has diminishing returns as an instruction’s

residual influence decreases over time.
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7.4.2 Convergence

The problem of convergence was addressed using the method of Wasserstein GANs with Gradient

Penalty (WGANs-GP) [29].

Wasserstein GANs implements Wasserstein loss and converts the discriminator into a critic, changing

the traditional GANs loss function into:

𝑊𝐿𝑜𝑠𝑠 = min
𝐺

max
𝐷
E
𝑥∼P𝑟
[𝐷 (𝑥)] − E

𝐺 (𝑧)∼P𝑔
[𝐷 (𝐺 (𝑧))] (7.3)

Wasserstein GANs is further explained in Section 2.2.3.1.

Additionally, a gradient penalty is implemented to constrain the gradient norm of the discriminator

output with respect to its input, preventing vanishing gradients. As such the𝑊 𝐿𝑜𝑠𝑠 is further improved

to:

min
𝐺

max
𝐷

E
𝐺 (𝑧)∼P𝑔

[𝐷 (𝐺 (𝑧))] − E
𝑥∼P𝑟
[𝐷 (𝑥)]︸                                     ︷︷                                     ︸

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑊 𝐿𝑜𝑠𝑠

+_ E
�̂�∼P�̂�
[(∇�̂�𝐷 (𝑥)2 − 1)2]︸                         ︷︷                         ︸

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑃𝑒𝑛𝑎𝑙𝑡 𝑦

(7.4)

Where _ is the penalty coefficient and P�̂� is the distribution sampling uniformly along straight lines

between pairs of points sampled from P𝑟 and P𝑔.

The reader should note that the use of WGANs-GP only helps to prevent but not fix the issues of

convergence. Methods to permanently fix such problems in GANs models are a topic of ongoing debate.

7.4.3 Length of Input and Output

Deep learning models must have a fixed size of data that is provided as input and output. Unfortunately,

various EM signals of a given instruction can vary by several time indexes as shown in Figure 7.1.

To account for this, additional time indexes were taken for both the training samples and the

generated single EM instruction. This amount of extra information is to the last bottom peak of the

previous instruction. Furthermore, time indexes are equally cut from the beginning and end of the

resulting signal to the minimum size to fulfill this requirement. For example, if the EM signals of all

instructions with the additional information range from 76 to 80, all signals will be cut to 76.
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Figure 7.1: Two EM signals of the same instruction given by color variation. Note that
the time length of the orange signal is less than the blue.

Figure 7.2: EM signal for an instruction stored in the library. Red lines indicate the
removed extra information. Green indicates the actual information of the instruction.

To reiterate, the EM instructions are captured with a set index time 𝑢, which is the index between

the bottom peak of the previous instruction to the second high peak. Then all EM signals are cut to the

minimum possible time index 𝑢𝑚𝑖𝑛, removing from the start and end of the signal equally. This process

is given in the following formula.

𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑆𝑖𝑔𝑛𝑎𝑙 [0 + (𝑢 − 𝑢𝑚𝑖𝑛
2

) : 𝑢 − (𝑢 − 𝑢𝑚𝑖𝑛
2

)] (7.5)

Figure 7.2 illustrates the process outlined above.
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Chapter 8

A GAN Framework for Code-to-EM
Signal Translation

To address the challenges identified in the prior chapter, specifically having to create an exhaustive

library and requiring a large number of observations corresponding to the same instruction, we evaluate

using a data-driven generative model. Generative Adversarial Networks for Code to Electromagnetic

Signal translation (GANs-COD2EM) is a framework involving GAN models that aims in converting a

program given as a series of assembly (ASM) instructions into the corresponding electromagnetic (EM)

signal. The resulting signal aims to be a realistic representation of the corresponding EM that would

be produced by the CPU of a given device as a side-channel during the execution of that program in

a real-life environment. The synthetic signals can later be used for various side-channel analysis tasks

including anomaly detection.

GANs-COD2EM builds upon basic GAN architectures and draws inspiration from the work presented

in [4], which introduces a framework for generating images from textual input. Similarly, GANs-

COD2EM alters text into a structured and numerical format. Among the notable adjustments made is

that internally, GANs-COD2EM makes use of a tokenizer, rather than text embeddings, to create tokens

or unique number representations for each executable ASM instruction. This token is appended to the

end of random noise and fed to the generator. The GANs-COD2EM generator learns which EM signal to

generate based on the corresponding token. This process resembles the operation of Conditional GANs,

(the reader should refer to Section 2.2.4). The generated and real EM signals are then paired with the

corresponding token of the executed instruction to later be discerned by the discriminator. Iteratively,

through this process, the entire model is trained. A high-level overview of the proposed framework is

presented in Figure 8.1.
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Figure 8.1: Workflow of the proposed framework.

8.1 Network Architecture

The network architecture is described using the following notations. The generator network is denoted

as 𝐺 : R𝑍+𝑇 → R𝑆 , and the discriminator as 𝐷 : R𝑆+𝑇 → {0, 1}, where 𝑇 is the dimension of the token,

𝑆 is the dimension of the signals, and 𝑍 is the dimension of the noise input given to 𝐺.

During a preprocessing step, a tokenizer dictionary for ASM instructions is set up. In this context,

tokenization is a process that vectorizes programs by turning ASM instructions into a sequence of

integers. Each of the resulting integers corresponds to an index of a token in the tokenizer dictionary.

To achieve a complete tokenizer dictionary, all possible ASM instructions are fed to the tokenizer.

Afterward, the tokenizer will output the unique corresponding index when given an instruction.

The generator first samples from the noise 𝑧 ∈ R𝑧 ∼ 𝑁 (0, 1) and the token for the instruction 𝑖 is

obtained using the tokenizer 𝜑. The resulting token 𝑡 is concatenated to the end of the noise vector 𝑧 and

feed-forward through the generator 𝐺. As such, a generated signal 𝑠 is produced via 𝐺 (𝑧, 𝑡) → 𝑠. This

process is illustrated in Figure 8.2.

The discriminator 𝐷 acts similarly to a conditional GAN, labeling pairs of {signal, instruction} as

real or fake. The model takes a signal as a one-dimensional numerical sequence of values 𝑠, which is

associated with the token 𝑡. The latter indicates the instruction that matches the corresponding signal.

The discriminator determines the likelihood that the signal for the instruction is real via 𝐷 (𝑠, 𝑡) → {0, 1}.
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Figure 8.2: Process of generating signal.

8.1.1 Training

Algorithm 3 illustrates the training procedure. After obtaining the token for the instruction, a sample of

random noise is taken and used with the token to generate the fake signal 𝑠 (lines 3-5). Next, the scores

for the real and fake signals paired with the token are calculated (lines 6-7). Lines 8 and 10 evaluate

the loss and then updates the gradients, with 𝐿𝐷 and 𝐿𝐺 indicating the loss for the discriminator and

generator respectively and 𝛼 being the step size to update the weights. Lines 11 and 13 indicate the

gradient step to update network parameters.

Algorithm 3 𝐺𝐴𝑁 𝐶𝑇𝐸𝑀 training algorithm:
with step size 𝛼

1: function train:(minibatch signals 𝑠, matching instruction 𝑖, number of training batch steps 𝑆):
2: for c = 1 to S do
3: 𝑡 ← 𝜑(𝑖) comment: Retrieve token for matching instruction
4: 𝑧 ∼ 𝑁 (0, 1)𝑍 comment: Draw sample of random noise
5: 𝑠← 𝐺 (𝑧, 𝑡) comment: Forward through generator
6: 𝑠𝑟 ← 𝐷 (𝑠, 𝑡) comment: Discriminate real signal
7: 𝑠 𝑓 ← 𝐷 (𝑠, 𝑡) comment: Discriminate fake signal
8: 𝐿𝐷 ← 𝑙𝑜𝑔(𝑠𝑟 ) + (𝑙𝑜𝑔(1 − 𝑠 𝑓 )) comment: Discriminator loss
9: 𝐷 ← 𝐷 − 𝛼𝜕𝐿𝐷/𝜕𝐷 comment: Update discriminator

10: 𝐿𝐺 ← 𝑙𝑜𝑔(𝑠 𝑓 ) comment: Generator loss
11: 𝐺 ← 𝐺 − 𝛼𝜕𝐿𝐺/𝜕𝐺 comment: Update generator
12: end for
13: end function
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Figure 8.3: Example of generating a full EM using GAN-COD2EM.

8.2 Generating Full Program EMs

GAN-COD2EM can further be used to synthetically generate the EM signal of any program through a

process of appending. In the order of the program’s code, each instruction’s EM is generated. However,

the reader should recall that each instruction contains additional time indexes portrayed in Section 7.4.3.

As such, the extra indexes are cut and removed from the sample. Afterward, the sample is appended

to the end of a collected EM signal. This process is repeated till all ASM instructions seen in a given

program are processed. The process of generating a full EM given 𝑥 instructions is illustrated in Figure

8.3.
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8.3 Updated Training Algorithm

The training algorithm from Algorithm 3 is in a naive form and cannot address the challenges presented

in Chapter 7. As such, the training algorithm is altered to account for these issues and is given in

Algorithm 4. As a first step, the tokens for the previous and matching instructions are retrieved in Line

5. Next, in Lines (6-7) random noise is taken with the tokens and forwarded through the generator to

obtain fake signal 𝑠. In lines 8-9, the discriminator evaluates the real and fake with the corresponding

tokens. Next, lines 10-13 estimate the loss and updates the weights for the discriminator by applying the

gradient penalty to the 𝑊𝐿𝑜𝑠𝑠. Finally, the loss is calculated and weights are updated for the generator

in lines 14 and 15.

Algorithm 4 𝐺𝐴𝑁 𝐶𝑇𝐸𝑀 training algorithm:
with step size 𝛼
1: function gradient penalty:(initial discriminator parameters w, Discriminator output given fake data 𝑥)

return (∇�̂�𝐷𝑤 (𝑥)2 − 1)2
2: end function
3: function train:(minibatch signals s, matching code instructions i, index of matching instruction n, the previous number

of training batch steps S, gradient penalty coefficient _):
4: for c = 1 to S do
5: 𝑡 ← 𝜑( [𝑖𝑛−1, 𝑖𝑛]) comment: Retrieve token for prior and matching instruction
6: 𝑧 ∼ 𝑁 (0, 1)𝑍 comment: Draw sample of random noise
7: 𝑠← 𝐺 (𝑧, 𝑡) comment: Forward through generator
8: 𝑠𝑟 ← 𝐷 (𝑠, 𝑡) comment: Discriminate real signals
9: 𝑠 𝑓 ← 𝐷 (𝑠, 𝑡) comment: Discriminate fake signals

10: 𝑊𝐿𝑜𝑠𝑠 ← −𝑚𝑒𝑎𝑛(𝑠 𝑓 ) + 𝑚𝑒𝑎𝑛(𝑠𝑟 )
11: 𝑔𝑝 ← 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 (𝑤𝑛, 𝑥)
12: 𝐿𝐷 ← 𝑊 𝐿𝑜𝑠𝑠 + _ ∗ 𝑔𝑝 comment: Discriminator loss
13: 𝐷 ← 𝐷 − 𝛼𝜕𝐿𝐷/𝜕𝐷 comment: Update discriminator
14: 𝐿𝐺 ← −𝑚𝑒𝑎𝑛(𝑠 𝑓 ) comment: Generator loss
15: 𝐺 ← 𝐺 − 𝛼𝜕𝐿𝐺/𝜕𝐺 comment: Update generator
16: end for
17: end function
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Chapter 9

GANs Experimental Setup & Data
Gathering

To evaluate the proposed EM-based anomaly detection using GANs, we utilized the experimental setup

defined in Section 5.1. Furthermore, we create a new program we call Alpha that is a shorter version

of Program B in the prior experiments. Additionally, we utilize the framework from Chapter 6, with

the exception of altering step 2 in Figure 4.1 to utalize a GANs model to generate the EM signals.

These generated EM signals are used during the fingerprinting stage to create the baseline and train

the detection engine. Similar to before, we create malicious cases of the benign program by injecting

four and two instructions to Alpha. At the deployment stage, we collected signals while the device was

operating under normal as well as anomalous states (i.e., after the injection). The predictive accuracy

of our new system using GANs is evaluated. Details regarding the process described above are given in

this section.

9.1 Dataset

To evaluate our approach, we defined a base program to generate call Alpha. Program Alpha is the same

as the updated program in the prior experiment in Chapter 4, except, only ten instructions are being

synthetically generated from the original EM signal, in an attempt to emulate a software update scenario.

The ASM code is provided in Listing 9.1.

Furthermore, malicious cases were also created that injected code into the middle of Alpha. This

included a program called Malicious Easy that injected four instructions and is easier to detect out of the

two cases. The other injected only two instructions and is harder to detect and as such is called Malicious

Hard. Samples of the code for the two malicious cases are provided in Listings 9.2 and 9.3.
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� �
1 setup:

2 sbi ddrb, 6 ; set pb6 as output (our sync artifact)

3 loop:

4 sbi pinb, 6

5 ; simulates a decision

6 clr r20

7 ldi r20, 1

8 ; Will go to the first_label

9 ldi r22, 1

10 cp r20, r22

11 breq first_label

12 rjmp loop

13
14 first_label:

15 ldi r23, 0; start of ten instructions

16 and r2, r3 ; Bitwise AND (result in stored r2)

17 add r1, r2 ; Add r2 to r1 (r1=r1+r2)

18 eor r2, r3 ; Bitwise exclusive or between r2 and r3

19 sub r1, r2 ; Subtract r2 from r1

20 ses ; Set signed flag

21 cls ; Clear signed flag

22 sev ; Set Overflow Flag

23 clv ; Clear Overflow Flag

24 clr r1 ; end of ten instructions

25
26 rjmp loop� �

Listing 9.1: Assembly code of program Alpha. Highlighted instructions are the ones
being captured and generated.

� �
1 ...

2 ; up to here, same as "Alpha"

3
4 add r1, r2 ; Add r2 to r1 (r1=

r1+r2)

5 ;====== 4 injected instructions

========

6 asr r3 ; r3=r3/2

7 com r3 ; Take one's complement
of r3

8 adc r3, r2

9 sbc r3, r2

10 ;==============

11 eor r2, r3 ; Bitwise exclusive

or between r2 and r3

12
13 ; the rest are the same as "Alpha"

14 ...� �
Listing 9.2: Assembly code of

Malicious Easy.

� �
1 ...

2 ; up to here, same as "Alpha"

3
4 add r1, r2 ; Add r2 to r1 (r1=

r1+r2)

5 ;====== 2 injected instructions

========

6 asr r3 ; r3=r3/2

7 com r3 ; Take one's complement
of r3

8 ;

9 ;

10 ;==============

11 eor r2, r3 ; Bitwise exclusive

or between r2 and r3

12
13 ; the rest are the same as "Alpha"

14 ...� �
Listing 9.3: Assembly code of

Malicious Hard.
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To train the model, samples of the ten instructions were taken from the built library from the prior

experiment in Chapter 4. The samples contained in the library are from different programs and contain

1000 samples of each instruction. Only the samples for the instructions seen in Alpha were used. In

total, the training dataset contained ten instructions with 1000 samples each.

9.2 Comparing the Similarity between EM Signals

The following defines a method to evaluate the similarity of EM signals. For two sets of EM signals,

a comparison process is first performed for each signal in the first set to every signal in the second set.

Then an averaging process of the k-nearest neighbors or lowest distance results is done. This process is

performed for all signals in the first set. Essentially, creating a range of values that indicated the range

of similarity between two sets of EM signals that identify different programs.

For example, consider a case where there are 1000 signals in each set and we want to evaluate given

25 nearest neighbors. Then the process performed yields 1000 similarity scores for the first signal of set

one. The scores of the 25 nearest neighbors are then averaged. The process is repeated for each signal

in the first set, obtaining 1000 averaged scores for the given example.

The distance used to compare the two signals can use any distance measurement. The one used for

evaluating GANs-COD2EM was Euclidean distance (ED), which is calculated as:

𝑑 (𝐴, 𝐵) =

√√
𝑛∑︁
𝑖=1
(𝐴𝑖 − 𝐵𝑖)2 (9.1)

where 𝐴 and 𝐵 are two EM signals. 𝑛 is the number of time indices in the signals. 𝐴𝑖 , 𝐵𝑖 is the time

index of the two signals at point i.

9.3 GANs models for Synthetic EM Generation

The following section describes several GANs models that were altered to utilize the framework of

GAN-COD2EM, as portrayed in Section 8. These models are later used to validate the use of GANs for

code-to-EM signal generation.
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Figure 9.1: Basic structure of ResGANs-COD2EM Generator.

9.3.1 ResGANs-COD2EM:

ResGANs-COD2EM is a modified version of ResGANs [40] but adopts the framework of GANs-

COD2EM. As with ResGANs, the generative model now utilizes ResNet [41], a commonly used Artificial

Neural Network (ANN) model originally designed for image recognition.

Originally, ResGANs were used for image restoration tasks given coarse image features and attribute

labels. ResGANs were able to achieve higher accuracy than traditional GANs through the use of ResNet

inside the generator model. With ResNet, the input data is directly transferred to the outputs, providing

residual learning and helping with vanishing gradients as data information is reapplied that is usually

lost in traditional GANs. In terms of EM signal generation, the process can be denoted as:

𝑋𝑔 = 𝑓 (𝑔(𝑋𝑟 ) + 𝑋𝑟 ) (9.2)

where 𝑋𝑟 is the input data including the random Gaussian noise and tokens, 𝑋𝑔 denotes the output signal,

and 𝑔(𝑋𝑟 ) is the residual signal to be learned by the generator.

The main challenge with code-to-EM translation is that the input is one-dimensional time series with

tokens and not a three-dimensional image for which ResNet was originally designed. Fortunately, since

the original paper, ResNet has been adapted with 1-d Convolution NN models for use with time-series

data [42]. In order for ResNet to process a 1-d array, the input must be reshaped to include a third axis

and proceeded through a 1-d convolution layer to create a 3-d input with the repeating 1-d time-series

values along the third axis. After ResNet, the output can be processed through fully connected NN layers

to further improve results. This process and use of ResNet are only used for the generator model. The

discriminator does not make use of ResNet and only needs to contain fully connected NN layers. The

basic structure of the generator with ResNet is shown in Figure 9.1.
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Figure 9.2: Structure of CycleGANs-COD2EM.

9.3.2 CycleGANs-COD2EM:

CycleGANs-COD2EM applies the GANs-COD2EM framework to the CycleGANs model, outlined in

Section 2.2.4.1. Keeping with the same terms used in GANs-COD2EM, 𝑡 is the instructions as indicated

with tokens and 𝑠 is an EM signal. For our purposes, the two forms being translated using CycleGANs,

𝑥 and 𝑦 in the CycleGANs structure given in Figure 2.6, will be 𝑡 and 𝑠. Additionally, noise 𝑛 will

be passed to generator 𝐺 as multiple EM signals 𝑠 could exist for the pair 𝑡, 𝑠. The structure of

CycleGANs-COD2EM is presented in Figure 9.2.

9.3.3 TransGANs-COD2EM:

TransGANs implement the attention techniques of transformer models as seen in Section 2.2.1, to

the generator and discriminator of basic GANs. Attention-based methods improve GANs generation

capabilities as it applies full knowledge of the entire sequence and forces the model to learn specifies of the

training data, helping prevent failure to converge. In further detail, the general shape and prior instruction

influence could be better modeled by implementing transformer-based techniques. Today, transformers

have been found to outperform other techniques including various state-of-the-art NN architectures for

sequence data such as analog/discrete signals. Moreover, compared to other NN approaches, they are

found to require fewer data for model training.
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Figure 9.3: Architecture of TransGANs-COD2EM with one transformer block.

The original paper of TransGANs [26], makes use of the concept of attention for generative purposes.

In specifics, the input for the model was random Gaussian noise converted into an 8x8xC image, where C

is the dimensional embedding, using a multiple-layer perception. Then the image when through several

layers of grid transformer blocks. Each grid transformer block performed grid-self attention on sections

of an image to generate an upscaled or descaled version of the image section by section, thus requiring

less memory.

TransGANs-COD2EM takes the concept of using attention techniques from the original TransGANs.

However, the transformer block only performs standard multi-headed self-attention rather than grid-

attention. Additionally, the transformer block was altered as the feed-forward process is done with

one-dimensional convolution layers to account for one-dimensional time-series data. Furthermore, no

upscale or downscale was performed. The basic structure of the TransGANs-COD2EM is illustrated in

Figure 9.3. The reader should note that several transformer blocks could be added one after another.

TransGANs-COD2EM used for experiments contains one transformer block. This is due to resource

requirements and higher amounts of transformer blocks that take more time to train. Additionally, more

blocks showed minimal improvements in the initial experiments.
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Figure 9.4: Process of DiffGANs for image generation from the original paper [3].

9.3.4 DiffGANs-COD2EM:

Denoise Diffusion GANs [3] or DiffGANs for short, was first introduced as a model to fix the issues with

three generative models, namely GANs, denoising diffusion, and variational autoencoders (VAE). Each

of these models has issues that the other does not. Denoise Diffusion suffered from being able to do fast

sampling, GANs have model convergence and diversity issues, and AVE suffers when generating high-

quality samples. To develop a model that could solve these issues, the structures of Denoise Diffusion

and GANs were combined.

Denoise Diffusion, Section 2.2.2, slowly generates less noisy samples in subsequent steps. This

concept is implemented in DiffGANs but used the GANs model to generate samples, rather than a

mean function approximator. DiffGANs [3] go through a forward diffusion process of generating noised

samples by applying Gaussian noise in steps. Then, in a process similar to Conditional GANs, Section

2.2.4, these steps are pasted into the generator with an additional conditioning identifier for which the

diffusion step is being past in. The generated images with the conditional identifier are passed to the

discriminator. The discriminator receives pairs of real and fake samples for each diffusion step and

determines the viability of each. The goal of the generator is to fool the discriminator into thinking the

fake samples produced are real for all diffusion steps. This process is illustrated in Figure 9.4.

DiffGANs-COD2EM implements the sampling process as DiffGANs. A slight adjustment of adding

sequence tokens was applied to be able to generate EM signals of various instructions. Overall, the

process of DiffGANs-COD2EM generator is 𝐺 (𝑛, 𝑡, 𝑑) → 𝑠 with 𝑑 being the diffusion step identifier,

and 𝐷 (𝑠, 𝑡, 𝑑) → {0,∞} for the discriminator.
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DiffGANs-COD2EM used for experiments accounted for four diffusion steps. The noise per step

was given using a signal sample with Signal-to-Noise Ratio of ten and increasing by ten for the following

steps, with the final step being the pure captured signal for the instruction.
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Chapter 10

Evaluation of Generating EMs through
GANs

The following chapter contains a detailed description of the experiments for evaluating the proposed

GANs framework for generating EM signals. Evaluations target primarily the accuracy of the anomaly

detection task.

10.1 Experiment One: Generating Full EM Signals

As an initial test, validation of the use of GANs for synthetic EM generation was performed in generating

the EM signal of the program Alpha given in Section 9.1. However, under real scenarios, capturing the

EM signals for every sequence pair of instructions is nearly impossible. As such, we considered five

cases in which the model has been trained with 100%, 90%, 80%, 70%, and 60% of the instructions that

comprise the Alpha. These tests were done in an effort to simulate the case where we aim to generate

signals of a program whose instruction sequences are partially unmodeled. Furthermore, each test was

evaluated using ResGANs-COD2EM, CycleGANs-COD2EM, TransGANs-COD2EM, and DiffGANs-

COD2EM as described in Chapter 8 to identify which model performs the best.

In order to generate the full EM signals, a process of generating each instruction, cutting excess

information, and appending is performed as defined in Section 8.2. The evaluation was performed

by estimating the similarity between the generated and the real captured signals of Alpha using the

method defined in Section 9.2 and averaging the result. The evaluation method will provide a general

similarity between the 500 generated signals and the 500 real signals. Note that as the model can generate

potentially infinite samples, sometimes the results could be lower or higher. However, the results will

remain generally in the same area (± 0.005).



52

Figure 10.1: Average Euclidean distance between various GANs-CTEM models
generating the full EM signal when training on 100%, 90%, 80%, 70%, and 60% of

seen instructions of the program Alpha.

10.1.1 Results

The results of generating the full EM signal are provided in Figure 10.1. Furthermore, samples of the

real and generated signals are provided in Figure 10.2.

The similarity metric employed is Euclidean distance, therefore, the lower the average, the closer to

the real EMs. The reader should notice that all models performed well when trained on 100% of the

seen instructions, with ResGANs-COD2EM achieving the best result at 0.0992 average distance. In fact,

ResGANs-COD2EM provides the poorest accuracy in the majority of tests, achieving 0.0967, 0.1010, and

0.1198 when training on 90%, 80%, and 70% respectively. This provides evidence that the ResGANs-

COD2EM is the best overall model for code-to-EM signal translation. However, with 60% training

on seen instructions of Alpha, ResGANs-COD2EM achieved a distance of 0.2236. In comparison,

TransGANs-COD2EM recorded an average distance of 0.1376 at 60%. Indicating that TransGANs-

COD2EM can help maintain higher similarity when training on fewer instructions. DiffGANs-COD2EM

did not perform well when training on less than 100% of seen instructions in program Alpha, obtaining

high average distances in the order of 0.5155 or above. This indicates that the particular model cannot

accurately and consistently generate signals of instructions it has not been specifically trained on.
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10.2 Experiment Two: Generating EM Peaks

A second experiment was performed in a similar fashion, with the exception that the models are configured

to generate only the peaks of the signals per cycle. This was done to improve the results of the initial

experiment.

The EM peaks are the main indication of the general operation being performed at a given time

frame. As such, many techniques, such as anomaly detection, can perform by only utilizing the EM

peaks. Furthermore, having the model generated two samples for the high peaks rather than the full EM

signal for an instruction focus the model to accurately account for these values. Thus, improving results

for the peak values and the detection capabilities.

The dataset used for evaluation was the peaks of the real signals of Alpha. Generating a full EM

of peaks was done similarly to the method used in the previous experiment, excluding the need to

remove additional information as only the peaks are generated. The evaluation was done using the same

calculation of similarity defined previously.

10.2.1 Results

Results of generating the EM peaks are provided in Figure 10.3. Additionally, samples of the generated

peaks are given in Figure 10.4.

All results for every model, the use of the peaks features instead of the entire raw signal, drastically

improved the fidelity of the generated signal. Furthermore, the influence of training on fewer instructions

for the generated signal is easier to see. ResGANs-COD2EM obtains the lowest average distance results

across all models. Specifically, ResGANs-COD2EM achieved 0.0591, 0.0650, 0.0681, 0.0865, and

0.1016 when training on 100%, 90%, 80%, 70%, and 60% of instructions seen in Alpha. For the

majority of the experiment, TransGANs-COD2EM performs the second best achieving scores of 0.0822

to 0.1538. DiffGANs-COD2EM still provides the highest results when training on less than 100 percent

of seen instructions in Alpha.
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Figure 10.3: Average Euclidean distance between various GANs-CTEM models
generating EM peaks when training on 100%, 90%, 80%, 70%, and 60% of seen

instructions of program Alpha.
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10.3 Experiment Three: Training Time

The focus lies in the time required to train the models on 1000 samples for ten instructions per epoch.

This serves as a general indication of the resource requirements between each model.

Results were obtained when running models on an NVidia RTX 3080. Models used are the versions

indicated in Section 9. Each model generally takes 30 to 50 epochs on average to train the model to

generate accurate signals. As such, the amount of time per epoch serves as an indication between the

models as to which is more efficient given available resources.

Model Time Per Epoch
ResGANs-COD2EM 620s

TransGANs-COD2EM 1800s
DiffGANs-COD2EM 830s

(a) Training Time To Generate Full Signals

Model Time Per Epoch
ResGANs-COD2EM 420s

TransGANs-COD2EM 1120s
DiffGANs-COD2EM 640s

(b) Training Time To Generate Peaks

Table 10.1: Average time in seconds to train for one epoch across different models.
Times are provided when training to generate the full EM signal (left) and only the

peaks (right).

10.3.1 Results

The time per epoch for each model is provided in Table 7.1. As expected, the time to train on peaks

takes less time than training on full EM signals of instructions. Additionally, ResGANs-COD2EM takes

the least amount of time to train, taking approximately 620 seconds and 420 seconds per epoch to train

when utilizing full signals and only the peaks respectively. TransGANs-COD2EM unsurprisingly takes

the most amount of time. On average, TransGANs-COD2EM takes 1800 seconds per epoch to train on

full EM signals. This time is reduced to 1120 seconds when training on peaks. DiffGANs-COD2EM is

also slower than ResGANs-COD2EM requiring 830 and 640 seconds when training on full signal and

only peaks respectively.

TransGANs-COD2EM requires more time because it needs to obtain the key, and value dictionaries

and pass them to each query. Each query is determined utilizing a potentially large dictionary. As such,

when using Transformer blocks with one GPU, this can be very slow. Note, however, that with multiple
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GPUs, one can speed up the process by assigning each to estimate the different queries in parallel.

For this reason, we can claim that this approach is much more scalable than other models with similar

amounts of GPUs. Additionally, more transformer blocks could be added to improve the accuracy of

generated samples; however, this then becomes a balancing act between performance time and accuracy.

It should be noted that DiffGANs-COD2EM is also expected to be slower than ResGANs-COD2EM.

This is because, despite not having a resource-heavy Resnet layer, the model essentially contains addi-

tional values to train and account for. With the given input of the number diffusion step 𝑠, the amount of

training is increased to 𝑡 x 𝑠, where 𝑡 is the number of training samples. The use of four training steps

increases the time to train beyond ResGANs-COD2EM. The use of only two training steps would be

faster, and would probably sacrifice the accuracy of generating samples.

10.4 Experiment Four: Acceptable Range of Distribution

To identify if the synthetic signals are valuable for the task of anomaly detection, an additional experiment

was performed to identify the range of acceptable similarity. Obviously, the generated signals are

expected to be less similar to real captured signals. Nevertheless, it is expected that the generated

signals should still be more similar to the real EMs of the program than other programs or (malicious)

modifications of these programs.

To calculate the similarity, the same method used in the previous two experiments was used. To

obtain a baseline, 500 samples of Alpha were compared against 500 other samples of Alpha. Additionally,

Alpha was compared against two malicious programs that inject two different amounts of instructions.

Those are the malicious programs in Section 9.1. Note that in order to achieve good anomaly detection,

the similarity score of the generated signals must clearly be separated and below the similarity for the

malicious examples.

10.4.1 Results

The similarity results are provided in Figure 10.5. As shown, there is a clear separation between the

comparison to other samples of Alpha and the two malicious versions. The range of the similarity

distances of Alpha to other signals of the same program is roughly 0.015 to 0.035. For the malicious
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Figure 10.5: Similarity between the real EM signals of Alpha compared to itself,
program with four injections (Malicious Easy), and a program with two injections

(Malicious Hard)

cases, similarity distances are around 0.125 to 0.155 and 0.110 to 0.140 when compared to Malicious

Easy and Malicious Hard respectively. As such, generative models that obtained a result of averaged

similarity below 0.100, should obtain high accuracy when used for detecting programs outside the normal

distribution of Alpha.

10.5 Experiment Five: Anomaly Detection Results

To further evaluate the proposed framework for generating EM signals. We performed anomaly detection

using the best model when under perfect training conditions. In further detail, we used ResGANs-

COD2EM, which trained on 100% of the instructions seen in Alpha, to generate signals of Alpha for

training an Anomaly Detection method.

The dataset used for this experiment is the same as in the previous one, utilizing samples of Alpha,

Malicious Easy, and Malicious Hard. Furthermore, we used the same anomaly detection method outlined

in Chapter 4. To be more detailed, the training dataset contains 500 samples of the generated signals,

the testing set contains 50 samples of real captured Alpha, and 50 samples of the malicious case. Results

were analyzed using 10-fold cross-validation evaluating with a threshold of 0 to 1 skipping by 0.001.
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Evaluation was done on the same metrics as in Chapter 6, those being the average AUC, accuracy, and

F1 scores among the folds and the ROC graphs.

Table 10.2: Anomaly detection results.

Data Training Test-Normal Test-Anomaly Scores (Avg.)
AUC ACC F1

Full
Signal

Synthetic Alpha
ResGANs-COD2EM Real Alpha Signals Malicious (Easy) 0.993 0.986 0.986

Malicious (Hard) 0.981 0.945 0.946
Peaks
Only

Synthetic Alpha
ResGANs-COD2EM Real Alpha Signals Malicious (Easy) 1.000 1.000 1.000

Malicious (Hard) 1.000 1.000 1.000

10.5.1 Results

Results of the experiment are provided in Table 10.2 and the ROC graphs in Figure 10.6. The results of

the experiment overall achieved near-perfect accuracy, with the best threshold found on average is 0.75

for when using full signals and 0.8 when using peaks. The best threshold can vary slightly from folds due

to samples used for creating the baseline. The use of fully generated signals using ResGANs-COD2EM

achieved an AUC of 0.993 and 0.981 when testing against samples of Malicious Easy and Malicious

Hard respectively. The ACC and F1 scores, were 0.986 and 0.986 respectively when testing against

Malicious Easy, and 0.945 and 0.946 respectively when testing against Malicious Hard. These results

improved 100% when generating, comparing, and testing using only the peaks.
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Figure 10.6: ROC graphs for the anomaly detection experiment. In the upper row, are
the results obtained when generating the full EM signals for training. In the lower row,

the results obtained when generation only the peak values for training.
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Chapter 11

Discussion

Given the results from the prior chapter, there are GANs models that can generate accurate EM signals that

can be used for anomaly detection purposes. Furthermore, the defined framework of GANs-COD2EM

works well for binary code-to-EM signal translation.

11.1 Issues with CycleGANs

The reader probably noticed that CycleGANs was not included in the experiments in the prior chapter.

This was due to CycleGAN’s inability to accurately determine the binary code given the EM signal.

EM signals can provide general knowledge of the performed operation at any given point, however,

the executed instruction cannot be derived given the signal. This is because of various factors, including

the influence of prior instructions and small fluctuation in the amplitude, Section 2.1. Most importantly,

from empirical observations, some of the EMs of certain instructions appear to be very similar. As

such, the second generator and discriminator in the CycleGANs that was tasked to convert EM signals

to binary code, could not decipher which instruction is taking place given similar EMs. Consequently,

CycleGANs could not generate EM signals given code due to requiring accurate feedback from both

generators and both discriminators.

11.2 Comparison Among the GAN Models

We provide the experimental results with three GANs-COD2EM models in Chapter 10. Out of the three

models, ResGANs-COD2EM outperformed the other two models. When generating only the peaks and

full EM signals, ResGANs-COD2EM provided the closest similarity to the real captured EM signals of

program Alpha. This is probably due to the nature of Resnet, reapplying features, and helping the GANs

model avoid convergence issues as indicated in Chapter 9. Additionally, perfect results were obtained

when accounting for and generating only the peaks of the EM signal. Furthermore, ResGANs-COD2EM
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took the least amount of time to train, indicating that it requires less computational power. TransGANs

performed well when comparing the similarity between the real and generated EMs, in some cases only

slightly worse than ResGANs-COD2EM. However, TransGANs took the longest to train. DiffGANs-

COD2EM can achieve good results when trained on all sequences that it is trying to generate. However,

generating the EMs for unseen instruction sequences results in low accuracy around the corresponding

locations in the generated EM signal.
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Chapter 12

Related Work

12.1 Side-Channel Analysis

Side-channel analysis refers to the process of examining and extracting information from data that

get involuntarily emitted from devices. Some examples include analyzing the audio signals, thermal

transmission, or power consumption produced from a device during normal operation. Such analysis

can be used to identify internal processes and executions. Once obtained, the information can be used

for offensive or defensive purposes.

Offensive: Research works on side-channel analysis for offensive purposes include the use of power

consumption [43] to obtain secret keys used from devices, identifying the keystrokes based on sound

[44], or using the thermal information from a 3D printer to indirectly reconstructing the 3D objects being

printed. For more information, [45] provides an overview of various side-channel analysis attacks. It

should be noted that attacks using side-channel analysis are outside the main scope and focus of this

paper. Instead, this paper focuses on the defensive uses of side-channel analysis, specifically used for

anomaly detection.

Defensive: A family of novel defense systems is based upon the analysis of side-channels that get

emitted constantly and involuntarily by various components [46], [47] of devices. Compared to the

traditional network intrusion detection systems (N-IDS), such approaches may detect compromises and

the execution of malicious code, even if the malware never produces any network footprint or if it remains

in an installed-but-dormant state.

In the past, alternative types of side channels have been considered for defensive purposes, including

the thermal emission profiles [48] or acoustic signals [7] of devices during their usual operational cycles.

However, the current dominant methods of side-channel-based anomaly detection rely on the analysis

of power-consumption patterns [8], [11]. This is primarily due to the ease of data collection and the

robustness of this modality against environmental noise. Nevertheless, electromagnetic (EM) based
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approaches offer a comparative advantage since the signals themselves can be captured and analyzed in

a completely non-intrusive fashion, i.e., no installation of software in the monitored device is assumed.

Additionally, in contrast to power consumption signals, the EM spectrum offers high bandwidth and can

be sampled at higher rates [9], [12].

12.2 EM Side-Channel Analysis

EM side-Channel analysis evaluates the electromagnetic emissions from a given device. These EM

emissions can be generated from various components, such as the network controller chips, video

displays, sensors, and actuators [49]. Out of all the components that could be analyzed, arguably the one

that can convey the most valuable information is the processor. Consequently, major information on the

general process being performed on a CPU can be derived given the EM signals. For more information

on the morphology of the EM signals from the CPU, please refer to Section 2.1.

Similar to other forms of side-channel analysis, EM signals can be used to retrieve private informa-

tion. In fact, EM signals can be used to also retrieve secret keys from a device [50], [51]. Additionally,

Sayakkara et al. [49] provide a method to use EM side-channel analysis to identify cryptographic algo-

rithms running on high-end IoT devices. Furthermore, authors of [52] state that EM emissions can be

used to break cryptographic implementations while bypassing countermeasures against other types of

side-channel attacks. However, more important to this research is EM side-channel analysis which may

be conducted with the aim to detect attacks and/or malware infections.

In most cases, EM side-channel analysis used for defensive purposes utilizes anomaly detection

techniques. Works that relate to EM-based anomaly detection include [17], which tests the limits of

EM-based approaches by demonstrating the ability to identify the control flow of a given program, and

showcase how it can be used to identify anomalous behaviors. Another example is given in [12], which

presents a methodology for contactless security monitoring for programmable logic controllers (PLC), to

ensure control flow integrity. The researchers behind the IDEA EM-based IDS [53] conducted their EM-

based anomaly detection analysis fully in the time domain. The EM emanations from an uncompromised

device are used to create a baseline dictionary. During the monitoring stage, the EM signal is split into

windows that are then matched against words in that dictionary. The signal is then reconstructed using
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the matched words, and it is compared with the monitoring signal. Furthermore, EM-based anomaly

detection has been able to identify anomalies, even in small portions of the program. In fact, EM-based

anomaly detection tools have proven to be successful for the detection of extensive [13], [14], or even

minimal modifications, say, down to the injection of a few instructions (at the assembly level) [15], [16].

Unfortunately, EM-based anomaly detection methods face challenges of feasibility in real settings.

12.2.1 Challenges of EM-based Anomaly Detection

EM-based anomaly detection methods have not been widely used in real settings due to three main

challenges. First, many prior works required the use of expensive equipment to obtain clear EM signals.

Second, not many works address the issue of environmental noise. An issue that is ever present in all real

settings such as industrial environments. Finally, and perhaps the most restricting, is that the traditional

methods assume high-fidelity signal capturing that can only be achieved by a human expert. This process

is known to be time-consuming, error-prone, and requires a trained professional.

Less Expensive Equipment: One challenge that has been addressed in other works is the need

to use less expensive equipment. Boggs et al. [46] demonstrate the efficiency of EM-based anomaly

detection systems using commercial off-the-shelf (COTS) hardware. Furthermore, they showcase the

feasibility of such approaches being applied to a wide range of critical infrastructure devices. We further

provided evidence of this by using inexpensive equipment for our experiments.

Environmental Noise: Environmental noise is a major factor. For example, many IoT devices

produce EM emissions. This causes unwanted noise in real practice, such as in industrial settings, which

decreases the signal-to-noise ratio, resulting in unclear signals. As such, methods to denoise these signals

are required. Some prior works that address this issue are [15] and Miller’s et all [16], which provides a

novel for removing environmental noise based on SVD. However, while the use of SVD performs well,

methods such as Denoise Diffusion may provide better results and is a focus for future works.

Large Amount of Manual Capturing: The methods proposed in all the prior works in this section

are based on a traditional framework that performs fingerprinting of benign cases by manually capturing

EM signals. This method requires a trained professional to capture the benign cases every time an

update is applied to the base program. Furthermore, fingerprinting of every possible execution path is

necessary. This tactic is known to be error-prone, time-consuming, and cost expensive. This major issue
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is the main challenge towards providing scalable EM-based anomaly detection and is the main reasoning

behind the need for the work in Chapters 4 and 8.

12.3 Generative Processing

Generative processing is the operation of generating new data that is close to the real samples. This is

usually done by converting random noise into data close to a training samples distribution. Some of

the most popular generative models include Continuous Normalizing Flows (CNFs) [54], Variational

Autoencoders (AVEs) [55], Transformers [1], Denoise Diffusion [2], and Generative Adversarial Net-

works (GANs) [22]. A subcategory of generative processors of particular note to this work is generative

translators.

12.3.1 Generative Translators

Generative translators are models and methods to convert from one data type, class, or object to another.

Furthermore, Generative translation has been gaining popularity in the past decade and is a main topic for

deep learning models. While there are many others, some of the most popular categories of generative

translators are text-to-speech, text-to-image, and image-to-image translation, all of which can be done

using a GANs model.

Text-to-Speech: Text-to-speech is the process of transforming the written text of a given language

into audio waves that represent human speech. Some uses of such a model include teaching new readers,

helping people who have trouble speaking, and communicating with people in another language.

There are many works in the area of text-to-speech translation. Early works include WaveNet [56],

a neural network model that estimates the joint probability of a waveform as a product of conditional

probabilities through the use of dilated causal convolutional layers. Another text-to-speech translator is

Tacotron2 [57], which is composed of a recurrent sequence-to-sequence feature prediction network and a

modified WaveNet model acting as a vocoder to synthesize time-domain waveforms from spectrograms.

More recently, [20], Li et al. introduce a transformer-based text-to-speech model that outperforms many

prior methods, including Wavenet and Tacotron2. Further details into transformer models are provided

in Chapter 2.
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GANs models have further improved text-to-speech translation accuracy. Some GANs models for

text-to-speech include TransGANs [26] (a GAN that incorporates multi-headed attention from transformer

models), and DiffGANs [25] (a GAN applying the concept of diffusion step denoising from diffusion

networks). Both TransGANs and DiffGANs models are detailed in Section 9.3.

It should be noted that text-to-speech is similar to the goal of code-to-EM signal translation as they

both convert text to signal.

Text-to-Image: Text-to-image translation is the operation of generating images from descriptive

sentences or text. The generated images are usually in a three-dimensional format with each axis

corresponding to the red, blue, and green color values for each pixel or square box area in an image.

One of the first works in text-to-image translation is AlignDraw [58], which extended the DRAW

model to condition image captions. The AlignDraw model uses recurrent neural networks to apply

attention at several steps, with each step generating an image by accounting for a noised version of a

training image and the textual input. Another popular model for text-to-image translation is presented

by Ramesh et al. [59], which autoregressively models text and image tokens as a single stream of data.

Ramesh’s proposed model generates images from the text by first compressing the training sample image

using a discrete variational autoencoder. Second, the text and image tokens are retrieved and used to

train an autoregressive transformer to model the joint distribution over the tokens.

GANs have also had success in text-to-image translation. Reed et al. [4] utilize a text-conditional

convolutional GANs architecture given in Figure 12.1. This architecture takes random noise samples

appended with a sentence that has gone through a text encoder as input for each pixel. The input

passes through the generator that contains convolutional layers, up-sampling into desired resolution. The

discriminator down-samples and determines if real or fake based on the value of the pixel and the encoded

text. This model was further improved in AttnGANs [5], by incorporating a deep attentional multimodel

similarity model (DAMSM), which applies attention layers from transformers and discriminators at

several resolution steps. The architecture of AttnGANs is given in Figure 12.2. More descriptively, each

attention model automatically retrieves the conditions, or most relevant word vectors, for the generating

different sub-regions of the images, the DAMSM provides the fine-grained image-text matching loss for

the generative network.

Image-to-Image: Image-to-image converts one image into another that is close, but uniquely
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Figure 12.1: Text-conditional convolutional GAN architecture. Text encoding 𝜑(𝑡) is
used by both generator and discriminator. Image from the original work in [4].

Figure 12.2: The AttnGANs architecture. Image from the original work in [5].
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different. Such uses of this process include changing the style of an image (such as realism to Van

Gogh), characteristics (person’s hair, eye color, or facial shape), or creating realistic images based on

sketches.

Some generative models used for image-to-image are variational autoencoders and transformers.

TransGaGa [60] utilizes both models to apply the geometry and appearance of the image to one another.

This is done by first creating two autoencoders, one used to obtain the geometry of the image and

another to transform the geometry back to the base image. Next, two transformers are created, one that

transforms one part of the geometry of one style of image to the other, and one transformer to convert

the appearance (or the encoded output when converting from the geometry to image) to the other style.

Using the information from the transformers combined with those from the autoencoders, the model is

able to generate images translated in another style. Another model that can be used for image-to-image

translation is denoised diffusion [61], which trains to apply noise to input images and then denoise using

a trained diffusion model that was trained on denoising images in the targeted style.

GANs are one of the most dominant generative process models for image-to-image translations.

Isola et al. PatchGANs [23] introduces one of the first GANs models for image-to-image translation.

PatchGANs utilizes a U-Net architecture [62] and incorporates skip connections, which concatenates the

same level channels when down sampling to those when up sampling, with a discriminator architecture

that penalizes the structure at the scale of patches. Another GANs model for image-to-image translation

is from the first paper on CycleGANs [63]. CycleGANs was introduced as a method to perform unpaired

(no direct one-to-one reference in the training set) image-to-image translation. CycleGANs are further

explained in Section 2.2.4.1. Another GANs model of note is Karras et al. StyleGANs [6]. The main

difference between StyleGANs and other GANs networks is the architecture of the generator as illustrated

in Figure 12.3. StyleGANs incorporate a mapping network to apply individual styles at separate individual

sections by controlling the generator through adaptive instance normalization at each convolutional layer.

The concept of applying styles incrementally is of particular interest for future works as this could be

used to implement slight adjustments to generated EM signals to account for probe position and different

devices.
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Figure 12.3: Comparison between the generator architecture of traditional GANs (left)
and StyleGANs (right). Image from the original work in [6].

12.4 EM Simulators

Few works exist in the field of generating EM signals (EM simulators). Furthermore, to the best of our

knowledge, no EM simulator exists that is optimized for the purpose of EM-based anomaly detection.

However, three works exist in the area of EM simulation. Two works attempt to generate EM signals

based on creating an algorithm comprised of information from the entire physical makeup of the CPU,

and one work just considers the bit-flips performed during run-time.

12.4.1 ConvEM:

Kumar et al. [50] presents a computational platform for EM side-channel attack analysis using com-

mercial electronic design automation tools to extract current waveforms and a custom EM simulator

(ConvEM) to emit them. The authors’ main focus is to identify the vulnerabilities of integrated circuits

(ICs) to EM side channel attacks aimed to decipher AES encryption keys.

The authors rely on an expensive computational algorithm to simulate EMs at a given point by

understanding the physical makeup of the device. The method of ConvEM is based on observations

of the EM signal given different interactions on the wires of the chip. Some parameters to estimate

the EM signals is the probe positions near the surface of a chip, the density of points on the surface



72

of the interconnect network (wire density), and the direction of the signal from the source port to the

observer point. The authors note that, while their algorithms work for their small-scale experiment, a

more powerful algorithm needs to be adopted for EM simulations.

Issues with using ConvEM for anomaly detection: ConvEM is based on simulating the EM signal

through knowledge of all physical components of the circuit board, which is difficult and time-consuming

in practice to gather given an entire program. Furthermore, in order to utilize such a model for anomaly

detection purposes would require a reevaluation of information for every execution branch and update,

making the use of this method infeasible for fingerprinting purposes.

12.4.2 EMSim2023

Ma et al. [64] introduce another EM simulator (EMSim2023) developed for the purpose of analyzing

possible EM leakage during the early design phase of ICs. The process of generating EM signals is done

using an expanded algorithm from ConvEM, taking into account sub-regions of wires rather than the

whole makeup of the ICs at once.

According to the authors, the logic cell and parasitic network characterize the digital complementary

metal oxide-semiconductor-based ICs. The logic cell network is devised of transistors on the silicon

substrate providing combinatorial and sequential logic functionality. The logic cell’s pins include

input/output pins and power-supply pins that transfer the logical signals in and out of the logic cells

through interconnected wires. The power-supply pins provide the positive and negative supply voltage

for logic cells along with the VDD and GND power grids. The power grid forms a parasitic network

when combined with the interconnect wires. The metal wires carrying time-varying current emits the

EM signals. Thus, the parasitic network excited by the logic cell network is responsible for the circuit’s

EMs.

Using this information, the authors generate the EM emanations based on the sub-regions of wires.

Information required for the EMSim2023 model includes the amount, the length and width, the distance

from the center to the measured point, and the current density in the wire at a given time for all

sub-regions.

Issues with using EMSim2023 for anomaly detection: While EMSim2023 may be acceptable for

the purposes of identifying EM leakage early in the design phase of an integrated circuit, this method
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requires many parameters of the device’s circuitry and distances. Furthermore, the work is focused on

the amount and effects an ICs design has on EM signals rather than what can be derived and used for

fingerprinting purposes.

12.4.3 EMSim2020

One mechanism for EM simulation is presented in [65] called EMSim2020. In the paper, Sehatbakhs

et al. propose a cycle-by-cycle method to synthetically generate EM signals for embedded devices by

analyzing the CPU architecture. The cycle-by-cycle was chosen to address pipeline effects, such as

micro-architectural events namely stalls, mispredictions, and cache misses. To account for the pipeline

effects, the authors choose to analyze and generate signals based on their bit-flips rather than individual

instructions.

The authors note that EM side-channel signals are created due to bit-flips at the transistor level. As

such, all transistors and metal layer components contribute to the EM signal, but modeling all transistors

and on-chip wires are practically infeasible. Instead, the approach focuses on individual instructions and

operations to attribute the average behavior of the EM emission, the authors modeled the cycle-by-cycle

effect on the processor’s hardware. To be more specific, they modeled micro-architectural components as

independent sources of the EM emissions and grouped these units in each pipeline stage as an individual

sources. This was done mainly because of their findings that each instruction has a different footprint in

each cycle and the side-channel generated at each cycle is a combination of these activities in all stages.

The authors’ overall process is done by determining the effects of what they call the instruction-

dependent actives (caused by activities of micro-architectural units such as the register files) and data-

dependent activities (created from bit-flips on the data bus, address-bus, and any other registers). This

was done by removing all other sources and analyzing the signal amplitude for individual sources one-

by-one. The authors go on to use the identified signals generated by the individual sources and combine

them using linear regression to create a simulated EM signal.
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Issues with using EMSim2020 for anomaly detection: The overall purpose of EMSim2020 was

to develop an EM simulator to identify possible emission leakage, rather than anomaly detection which

is our goal. Furthermore, this process requires significant manual labor as they must observe, analyze,

and model the peculiarities of certain CPU architectures. Additionally, EMSim2020 is not transferable

to other CPU architectures, and as such the method must be redone for every device.
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Chapter 13

Conclusion

In conclusion, generating EM signals given the ASM code can significantly reduce reliance on a human

expert for capturing signals. As such, the major problem that traditional EM-based anomaly detection

methods have with respect to their scalability, can be solved using generative models. In this work,

we defined and evaluated a novel framework for scalable anomaly detection. This framework includes

a technique for gathering samples from a library of instruction sequence building blocks, a GANs

architecture for code-to-EM signal translation, and an anomaly detection method that accounts for

multiple baselines. From our experiments, we evaluate several GANs models. The best model found

(ResGANs-COD2EM) shows that it can be used for generating EM signals for anomaly detection with

near-to-perfect results when generating both the full and peak values. Additionally, we indicated that

ResGANs-COD2EM requires minimal processing power, being trained using one GPU while generating

high similarity EMs to real captured EM observations of the same binary code.

13.1 Future Work

While we have successfully identified a possible solution to the problem of scalability for traditional EM-

based anomaly detection, there are still several challenges to address before a fully EM-based anomaly

detection method can be feasibly used in realistic scenarios. Currently, we have several planned works

towards this goal.

Large Scale Experimentation: Larger-scale experimentation is planned and the results will be

provided in a future research paper. This larger-scale experimentation will be performed on a program

that is at least ten times that of Alpha, the program we used in our small-scale experiment. Additionally,

the generative model will be trained on a library containing a reasonable amount of building blocks

corresponding to the common sequences to generate the EM of any program in a targeted device.

Library of the Most Common Sequences: We plan to release the library containing the EM
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signals of common sequences that we will use in the large-scale experiments to the public. As such,

we encourage others in the field to adjust and make their own models in an effort to further advance the

feasibility of EM-based anomaly detection.

Denoising Captured EM Signals: Currently, limited work has been provided for denoising EM

signals. My Initial effort is presented in [15], which illustrates the use of SVD for denoising EM

signals. This method was further improved in [16], where a formula is provided to calculate the optimal

parameters for SVD given a signal’s signal-to-noise ratio. To further remove the environmental noise, I

plan to evaluate the use of NN models such as Denoise Diffussion [2] or variational autoencoders [55]

for removing noise on captured EM signals.

Transferability: Transferability is a main subject that hasn’t been addressed much in EM-based

anomaly detection. Traditional methods do not allow for this and require recapturing based on the probe

position, device, and binary code. A method we are looking into that will allow higher transferability of

EM-based anomaly detection is the inclusion of further translating the EM signals. In further detail, we

plan to readjust or alter the generated or existing EM signals based on the EM-probe location and the

device model. If a generative model can account for these factors, then a single model and library can

be provided for numerous devices and equipment. This removes the need to train a generative model

for each probe position and embedded device. We plan on achieving this by utilizing a similar model to

StyleGANs [6], or by including another model after generating the EM signals.

Advanced CPU Events: A subject that we have not addressed, due to the rarity in basic single

process embedded devices, is the micro-architectural events. These events include pipeline stall, cache

miss, and prediction that can cause a slight skew in the EM signal. However, such events are not abnormal

nor malicious. As one of the last planned works, we plan to account for such events that can randomly

take place by the CPU.
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