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Abstract 

This dissertation examines the concepts and implementation of a network based 

autonomic cyber sensor framework. The research provides an answer to the need to 

protect Ethernet connected control systems, such as those found in critical infrastructures, 

from cyber assaults. A layered architecture, which utilizes computational intelligence 

techniques for learning and a multi-level communication scheme, is described. Genetic 

Algorithms, Neural Networks, Fuzzy logic, Clustering, passive network scanning and 

dynamic virtual honeypots are all integral methods of the presented work. The 

application of computational intelligence techniques provides heuristics for specific 

problems such as anomaly detection and rule creation. The framework integrates several 

of these techniques into a broader overall solution while shielding the complexity from 

the user. 

Contributions of this dissertation include introduction of a multi-level architecture 

with a two-layer information communication scheme. This scheme segregates 

modifications of components from changing standards and centralizes the complexity of 

external messaging to a single component reducing implementation costs and the security 

exposure of the sensor. A process of automatic creation and dynamic updates to emulated 

network hosts is described. This process provides an independent view of attached 

devices without interfering with an operational network. Additionally, a network anomaly 

recognition system based on data clustering and advanced fuzzy logic is presented. While 

traditional approaches improve false positives at the expense of false negatives, or vice 

versa, this approach enables improvement of both accuracy measurements 

simultaneously. 

Two related algorithms for communication of network state awareness are 

detailed. They bridge the semantic gap between identifying a binary anomaly value to 

communicating what it means to a human. The use of intrusion detection rules as a 

knowledge base for learning systems such as neural networks is introduced. This 

leverages the large set of existing knowledge represented by the static rules sets and 

makes the information available for anomaly behavior systems. Finally, the automatic 

creation of intrusion detection rules based upon network traffic identified by anomaly 

behavior systems is shown resulting in a reduction of human effort needed to create rules.  
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Chapter 1. Introduction 

The proliferation of digital devices in a networked industrial ecosystem, with an 

exponential growth in complexity and scope, has resulted in elevated security concerns 

and management complexity issues. The expanding reach and wide deployment of digital 

systems into societies fundamental physical infrastructures pose both a complexity and 

security concern (Gungor & Hancke, 2009), (Cheminod, Durante, & Valenzano, 2013). 

The complexity of modern industrial networks primarily stems from three areas: presence 

of heterogeneous hardware and software, dynamic network composition and usage 

patterns, and decentralization of control (Gungor, Lu, & Hancke, 2010). Dealing with 

these complexities requires a solution that is resilient, flexible and manageable. 

There is an increased awareness by the US Government and many other entities 

of the threat posed by cyber attacks (Shea, 2004). For instance, on February 28, 2013 the 

director of the FBI stated, “That network intrusions pose urgent threats to our national 

security and to our economy.” President Obama has stated that the, “cyber threat is one of 

the most serious economic and national security challenges we face as a nation” and that 

“America's economic prosperity in the 21st century will depend on cyber security.” 

Computer based systems, used within many critical infrastructures to monitor control 

systems, are increasingly being connected directly or indirectly to the Internet. 

Additionally, these control systems are composed of interconnected computational 

devices on local Ethernet networks. This elevates the threat status of these systems, as 

they can be even more vulnerable than traditional Information Technology (IT) systems 

(Duggan, Berg, Dillinger, & Stamp, 2005). Attacks against these systems can endanger 

public safety and lead to large expenditures of capital.  

In the particular case of smart grid networks a large-scale deployment of 46 

million devices has recently occurred (The Edison Foundation, 2013). These systems add 

Wireless Access Point (WAP) devices to existing utility networks. For instance, in a 

typical Advanced Metering Infrastructure (AMI) system 1,500 wireless sensors report to 

one or multiple WAP nodes (Iwao, et al., 2010). An example deployment is the Pacific 

Northwest Smart Grid Demonstration Project. As of August 2013, almost 69 million of 

these meters were planned for deployment in the United States (The Edison Foundation, 
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2013). Assuming a uniform deployment of sensors this calls for 46,000 WAP’s without 

any regard for redundancy. This large influx of devices, either wired or wireless, into a 

network vastly expands the potential network attack surface. 

Generally, critical control systems utilize large amounts of distributed data 

gathered from physical devices. Despite the large actual and planned deployment of 

wireless devices, a large core of wired connectivity is still prevalent. For reliability, 

security and financial reasons wireless networks eventually attach to a physical wired 

connection. The wired network connection points are a logical area of security concern 

that is addressed by this dissertation. Computational intelligence techniques and 

automatic control algorithms are key to the successful implementation of an Autonomic 

solution designed to help protect control system networks. 

Fundamentally Autonomic computing is a systemic view of computing, modeled 

after self-regulating biological systems. The goal of autonomic computing, introduced in 

2001, is to develop computational systems that are capable of self-management. The four 

foundational requirements of self-managed computerized systems are: self-configuration, 

self-protection, self-healing, and self-optimization (IBM, 2006).  

Autonomic computing research is a response to the realization that traditional 

software systems are facing a decreasing benefit from technological advances because the 

complexities of management and development are overwhelming. The concept of 

implementing technology designed specifically to continuously manage and optimize the 

functionality of other technologies is an extension of the notions present in control 

theory. Control theory provides descriptions of closed systems whose components and 

desired properties are well known and described by linear or nonlinear models. However, 

when the system is constantly changing and exhibits varying or uncertain information 

performance may be poor (Dobson, et al., 2006). Autonomic design enables adaptive and 

flexible functionality. The implementation of this design reacts to evolving states and 

proactively looks forward to future demands. 

1.1 Objective 

This dissertation answers the need to protect Ethernet connected control systems, 

such as those found in critical infrastructures, from cyber assaults. This work shows that: 

Control system network security systems can employ standardized communication 
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mechanisms and computational techniques in an autonomic computing structure to detect 

and mitigate operational disruption caused by malicious cyber assaults or other abnormal 

behaviors. Moreover, with the addition of computational intelligence algorithms, the 

resulting autonomic system simplifies human operator interaction with the cyber security 

mechanisms. This simplification stems from automatic configuration of honey pots, 

autonomous creation of detection rules and classification of anomalous network behavior 

into well-known categories. 

1.2 Dissertation Contributions and Organization 

The work presented in this dissertation examines the concepts and implementation 

of an autonomic cyber sensor framework and supporting algorithms. The goal of the 

sensor design is to provide state awareness to human operators and automated response 

systems utilizing integrated communications and computational intelligence techniques. 

The primary focus for validation is on a heterogeneous control system network but the 

presented concepts are flexible enough to be applied in other environments. The structure 

of this dissertation is as follows: 

 Chapter 2 presents a background and literature review. First, concepts of 

Autonomic computing are presented. Second, Service Oriented Architectures and 

both internal and external messaging are discussed. Third, anomaly detection, 

virtual hosts and network host monitoring methods are presented. Finally a 

literature review of related projects is given. 

 Chapter 3 describes a novel architecture utilizing concepts of Autonomic 

computing and a SOAP based IF-MAP external communication layer to create a 

network security sensor. Three complementary modules that utilize a standard 

internal data transport layer to dynamically reconfigure in response to a changing 

environment are presented. The Autonomic Intelligent Cyber Sensor (AICS) 

approach simplifies integration of legacy software and supports a secure, scalable, 

self-managed framework. The four primary contributions of this chapter are:  

1) A flexible two level communication layer based on Autonomic computing and 

Service Oriented Architecture is detailed. 

2) An Intelligent Anomaly Assessment (IAA) module that utilizes clustering and 

fuzzy logic to monitor traffic for abnormal behavior is introduced. 
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3) The Dynamic HoneyPot (DHP) section describes the collaborative use of 

dynamic virtual honeypots in a control system. 

4) The Network Entity Identification (NEI) module description identities aspects 

of effective tools for extracting network host characteristics. 

The presented AICS framework focuses on automatically managing the 

complexity of self-configurable dynamic virtual hosts by adapting to an 

operational network environment. A self-updating model, based on passive 

monitoring of the network devices, is created and maintained. This model is used 

to configure deceptive network entities designed to draw the focus of malicious 

intent. Finally, a test scenario is examined to show the communication and 

autonomic aspects of the system. 

Supporting Publications: 

T. Vollmer and M. Manic. “Autonomic intelligent cyber sensor to support control 

network situational awareness,” IEEE Transactions on Industrial Informatics), 26 

June 2013. 

 

T. Vollmer and M. Manic. “Cyber-Physical system security with deceptive virtual 

hosts for industrial control networks,” IEEE Transactions on Industrial 

Informatics, 27 February 2014. 

 

O. Linda, T. Vollmer, and M. Manic. “Improving cyber-security of smart grid 

systems via anomaly detection and linguistic domain knowledge,” Fifth 

International Symposium on Resilient Control Systems, August 2012, Salt Lake 

City, Utah, USA. 

 

O. Linda, T. Vollmer, J. Wright, and M. Manic. “Fuzzy logic-based anomaly 

detection for embedded network security cyber sensor,” IEEE 2011 Symposium 

on Computational Intelligence in Cyber Security (CICS 2011), 11–15 April, Paris, 

France. 

 

O. Linda, T. Vollmer and M. Manic. “Neural network based intrusion detection 

system for critical infrastructures,” IEEE 2009 International Joint Conference on 

Neural Networks, 14–19 June 2009, Atlanta, Georgia, USA. 

 

G. Rueff, B. Wheeler, T. Vollmer, T. McJunkin, R. Erbes. “INL Control System 

Situational Awareness Technology Annual Report 2012”, Idaho National 

Laboratory Technical Report, 01 October 2013. 

 

 Chapter 4 introduces two communication algorithms, HISA and CeNISA, for 

network security awareness. The algorithms in this chapter enhance the 
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communication of anomaly behavior detection systems such as the IAA 

component described in Chapter 3. The two contributions of this chapter are: 

1) First the Human Interface for Security Awareness (HISA) algorithm which 

interprets cyber incident information for human operators from anomaly based 

intrusion detections systems is presented. HISA utilizes a similarity algorithm 

mapping anomaly behavior results to signature based intrusion system rules. 

2) Next the Computationally Efficient Neural Network Intrusion Security 

Awareness (CeNISA) algorithm is discussed. This enhanced version of HISA 

improves upon the computational time required to produce answers. CeNISA 

leverages rule knowledge sets to produce classifications for anomaly based 

systems. A unique aspect is the training of an error back-propagation neural 

network with intrusion detection rule features to provide a recognition basis. 

Ethernet network packet details are subsequently provided to the trained 

network to produce a classification. 

Supporting Publications: 

T. Vollmer, and M. Manic. “Computationally efficient neural network intrusion 

security awareness,” Second International Symposium on Resilient Control 

Systems, 11–13 August 2009, Idaho Falls, Idaho, USA. 

 

T. Vollmer, and M. Manic. “Human interface for cyber security anomaly 

detection systems,” Second Conference on Human System Interactions, 21-23 

May 2009, Catania, Italy. 

 

 Chapter 5 explores a solution to autonomously create static IDS rule sets 

utilizing evolutionary computation techniques. This is accomplished by 

implementing a Genetic Algorithm (GA) to create static rule candidates from 

previously identified anomalous network packets. The contributions of this 

chapter are: 

1) Distance measures as a means of determining similarity or closeness are a 

common algorithmic feature for many GA implementations. Given the 

importance of similarity measures to the solution of multi-modal GA, a 

substantial part of this chapter is devoted to exploring Mahalanobis, Euclidean 

and Distance Metric Learning metrics. 
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2) Translating a newly discovered intrusion recognition criteria into a 

distributable rule can be a human intensive effort. In order to minimize this 

effort, part of this chapter explores a multi-modal genetic algorithm solution 

for autonomous rule creation. The algorithm focuses on the process of 

automatically creating rules once an intrusion has been identified. The system 

described could be considered as a one-way communication mechanism 

enabling rule based intrusion systems to benefit from information derived 

from behavior modeling. 

Supporting Publications: 

T. Vollmer, J. Alves-Foss, and M. Manic. “Autonomous rule creation for 

intrusion detection,” IEEE 2011 Symposium on Computational Intelligence in 

Cyber Security (CICS 2011), 11–15 April 2011, Paris, France. 

 

T. Vollmer, T. Soule, and M. Manic. “A distance measure comparison to improve 

crowding in multimodal problems,” Third International Symposium on Resilient 

Control Systems, 10–12 August 2010, Idaho Falls, Idaho, USA. 

 

 Chapter 6 Conclusion and Future Work 

  



7 

 

 

Chapter 2. Background and Literature Review 

This chapter provides background context and relevant past research efforts. The 

technologies described are: Autonomic Computing, Communication and Computational 

Intelligence. These technologies are the central approaches used in this dissertation. 

This section explains fundamental concepts for Autonomic research, Service 

Oriented Architecture, IF-MAP and D-Bus. In a large digital ecosystem, constituent 

members have to be able to continuously adapt to unforeseen circumstances and evolve 

in an autonomic way without human intervention. Devices are expected to cooperate to 

accomplish a mission. They become part of a larger, more complex infrastructure where 

complementary single elements are exploited to achieve an emergent complex behavior. 

2.1 Autonomic Research 

It is the Autonomous Nervous System (ANS), present in human anatomy, which 

serves as inspiration for computer based autonomic system architectures. The ANS is that 

portion of the nervous system concerned with regulation of activity of visceral functions 

generally not controlled by conscious thought. However some actions, such as breathing, 

work in tandem with active control. ANS is typically divided into sympathetic and 

parasympathetic divisions. These divisions function in opposition to each other in a 

complementary manner. The sympathetic division typically functions with actions 

requiring quick responses. The parasympathetic division functions with actions that do 

not require immediate reaction. Together the systems can work in concert to achieve 

homeostasis of the relevant activity (Brodal, 1998). 

Mimicking the ANS, digital autonomic system architectures consist of a dynamic 

collection of autonomic elements each performing a constrained function (IBM, 2006). 

This architecture is generally composed of an autonomic manager (AM) that controls one 

or more managed resource elements (RE). The resources themselves may be legacy 

components or exhibit autonomic features. 

A manageability interface composed of sensor and effector facilitates the 

communication between AM and RE and is implemented internally with D-Bus for this 

work. Sensors obtain data from the resources and effectors are used to perform operations 

on the resource. In addition, this sensor/effector layer is conceptually replicated to 
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provide access to outside entities (Cheng, Leon-Garcia, & Foster, 2008). IF-MAP, a 

standards based messaging system, is proposed here as a solution for external 

communication. Fig. 2-1 presents the described autonomic element architecture with the 

two interface layers labeled as inner interface and outer interface. These interface 

concepts are a critical concept expanded upon later in this dissertation. 

An Autonomic Digital Ecosystem (ADE) is a model for production systems that 

builds on the notion of autonomic self-management by embedding exploitable control 

features within modules (Ulieru & Grobbelaar, 2007). Cyber physical ecosystems (CPE) 

include interconnected subsystems that sense and act upon the physical world to form a 

complex system of systems. These CPE’s are a foundational layer of a wider more 

encompassing digital ecosystem. CPEs typically bridge the cyber world of computing and 

communications with the physical world by embedding wireless sensor nodes into the 

physical world (Yang, Xu, Li, & Chen, 2011). 

Finally, the description of an autonomic system is incomplete without mention of 

the self-* properties. A key feature of autonomic systems is the automated management 

of resources exhibiting self-configuration, self-optimization, self-healing and self-

protection characteristics (IBM, 2006). The focus of this dissertation is primarily on the 

self-configuration and self-protection features. In order to harness these properties into a 

cohesive whole, a control loop monitors, analyzes, plans and executes as appropriate. 

 

Autonomic Manager  

Sensor Effector 

Managed 

Resource  

Sensor Effector 

External 

Interface 

Internal 

Interface 

Figure 2-1.  Autonomic Element Architecture 
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2.2 System Messaging 

A central concept from the autonomic nervous system is a standard 

communication channel that can carry information to processing entities. One important 

property of biological communications is the capability to communicate a multitude of 

information to a dissimilar number of recipients. This is accomplished using standardized 

messaging pathways that externally appear to be the same but internally contain 

specialized content. For example, information can occur over a distributed network of 

nodes such as synapses.  A similar functionality can be found in electronic data networks. 

A flexible, dynamic description language is required to fulfill this function. It has been 

shown that XML is an appropriate choice of implementation (Shuaib, Anthony, & Pelc, 

2010). 

Application messaging in a distributed environment requires careful consideration 

for implementation. Messaging and component interaction can be handled by utilizing 

concepts from service-oriented computing (SOC). In SOC components are modeled as 

loosely coupled services that communicate using standard data formats and interfaces. A 

service-oriented architecture (SOA) can satisfy key elements of a SOC. Web services 

typically serve as a basis for a SOA. These services consist of a service provider, service 

consumers and a service registry. SOA is an enabling technology for development of 

large systems in industry. It is a flexible solution that can decrease deployment and 

maintenance costs. (Candido, Colombo, Barata, & Jammes, 2011). 

The Simple Object Access Protocol (SOAP) is typically used as a messaging 

framework layer of a web based SOA. Version 1.2 of SOAP is a specification utilizing 

XML for exchanging structured and typed information in a distributed environment. 

Typically Hypertext Transfer Protocol (HTTP) or SMTP is used for message handling. It 

provides an extensible framework for transferring application specific information 

without specifically detailing the semantics of the data carried. The framework provides 

required actions to perform on a SOAP message in order to send and receive it.  

One SOA based implementation messaging standard is the Interface to Metadata 

Access Points (IF-MAP) version 2.0. IF-MAP is an open protocol standard published by 

the Trusted Computing Group for delivering network related information in a portable 

and secure framework. It utilizes a publish, subscribe, search messaging paradigm 
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implemented with SOAP. Originally made available in April 2008, version 2.1 rev. 15 

was published May 7, 2012. The design goal of the IF-MAP working group was to enable 

the sharing of security centric data between network devices and systems (Trusted 

Network Computing Group, 2011).  

IF-MAP has multiple defined parts: a base protocol and metadata for a specific 

usage. Currently the only metadata defined is for network security (Trusted Network 

Computing Group, 2010). However, a draft version for Industrial Control systems has 

been released. One of the benefits provided by the released metadata definition is a 

common reference standard of network security data. In addition to the currently defined 

metadata, it is possible to enhance the metadata specification if the base protocol is 

followed. This provides flexibility to adapt to a given implementation. 

2.2.1 Base Protocol and Metadata 

The base protocol specifies actions for clients. IF-MAP clients have access to 

three actions for metadata: publish, search and subscribe. Clients store or publish 

metadata into a MAP (Metadata Access Point) for others to consume. A search allows 

clients to obtain published metadata from the MAP based on a flexible criterion. 

Subscribe requests asynchronous results from a predefined search whenever a client 

publishes new metadata. In this way clients can monitor for specific relevant events and 

be alerted when one occurs. All IF-MAP operations and data types are expressed utilizing 

XML. This helps ensure a consistent format of the data when it is exchanged between 

multiple diverse parties. 

The protocol also defines two species of data: metadata and identifiers. Metadata 

in this context is any shared data about network devices, policies, status, behavior or 

observed relationships. The five defined identifiers are identity, IP Address (v4 and v6), 

MAC address, Access Request and Device. Identifiers are used to refer to specific 

metadata items. The metadata of interest to this dissertation are as follows. 

ip-mac: A binding between an IP address and a mac address valid for a time 

frame. 

device-characteristic: An inherent characteristic of an entity such as its 

manufacturer or OS. 

device-ip: The IP address of an associated device. 
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discovered-by: A link identifying which sensor device has discovered a new IP or 

MAC address. 

event: Activity of interest on a network such as a virus attack or abnormal 

behavior. 

2.3 Host Messaging 

D-Bus is a system created for inter-process communication (IPC) primarily used 

in Linux desktop windowing systems such as KDE and GNOME. Additionally, it has 

been utilized in several other projects including reconfigurable mobile network devices 

(Merentitis, Patouni, Alonistioti, & Doubrava, 2008). It was designed to avoid round trips 

and allow for asynchronous operation. Conceptually it works in the context of messages, 

and handles many of the difficult IPC synchronization issues. Several high-level language 

bindings are available which provides a flexible implementation solution. The following 

describes the D-Bus system and the terminology commonly used with it. 

A bus is a virtual path that messages are passed over. Multiple instances of a bus 

may exist and are managed by a software daemon. Several Linux based operating 

systems offer two busses, system and session, for use without requiring user 

configuration. Fine-grained user access to buses and actions on the appropriate bus 

service is available via configuration files. Applications that utilize a bus take on the role 

of either a server or client. Server processes listen for incoming method requests from 

clients. 

A method is made available by publishing it on a message bus. Methods are 

remotely invoked operations of an object. As is found in object-oriented programming 

languages, objects contain methods. The input and output parameters need to be defined 

in advance of publication. A method is registered with the D-Bus daemon under an 

interface and available through an object path. Interfaces are a collective group of 

methods that help define the type of an object. 
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A service is a named collection of methods with an associated .service file. The 

service file defines an executable program to handle receipt of a message related to a 

given method. If the configured executable is not currently running the message is 

queued and the process is started. When the process is ready the queued message is 

delivered. Fig. 2-2 provides a representation of the D-Bus process given two applications 

talking on a single host. 

 

2.4 Machine Learning or Computational Intelligence 

There does not appear to be a fundamental difference in the definitions of 

Machine Learning and Computational Intelligence (CI). It may be that one defining 

difference is Machine Learning’s focus on large-scale data analysis (Barber, 2012). For 

the purposes of consistency in this dissertation, CI will be used with the understanding 

that an overlap in methodologies and approaches is present. Fundamentally, CI is 

concerned with adaptive mechanisms that enable intelligent behavior in complex 

Figure 2-2.  D-Bus Process 
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environments. Frequently algorithms in this domain are derived from biological or human 

inspired models. These algorithms provide automated methods to detect patterns in data. 

Furthermore, these patterns may be used to predict future data or perform other analytical 

tasks. These capabilities provide a logical basis for inclusion in an Autonomic 

framework. 

In general there are two types of learning in CI: supervised and unsupervised. In 

supervised learning both inputs and labeled outputs are provided. The goal is to derive a 

mapping from the inputs, otherwise known as features, to the correct output value. This is 

called pattern recognition when the output is categorical value. It is typically used to 

predict a probable future value based on previously unseen inputs. In unsupervised 

learning input features are presented but labeled outputs to gauge correctness are not. The 

aim is to derive a compact description of patterns found in the input.  There is a third type 

of learning consisting of aspects of the two called semi-supervised learning. 

CI techniques have been extensively applied to the problem of network intrusion 

detection (Sommer & Paxson, 2010). An additional beneficial feature of CI is the ability 

to learn from multi-dimensional, non-linear data (Witten & Frank, 2005)] Techniques 

such as artificial neural networks (Linda, Vollmer, & Manic, 2009), support vector 

machines (Hu, Liao, & Vemuri, 2003), genetic algorithms (Stein, Chen, Wu, & Hua, 

2005), fuzzy logic (Gomez, Dasgupta, Gomez, & Kaniganti, 2003) and unsupervised 

clustering (Zhong, Khoshgoftaar, & Seliya, 2007) are powerful learning tools for 

modeling the network behavior. 

2.4.1 Fuzzy Logic Systems 

Zadeh originally proposed Fuzzy Logic (FL) as a tool for dealing with linguistic 

uncertainty and vagueness often found in the imprecise meaning of words (Zadeh L. A., 

1965). Fuzzy Logic is based on the theory of fuzzy sets that utilizes a set membership 

function in the range of [0.0, 1.0]. A 0.0 indicates an element is not a member and 1.0 

strongly indicates the opposite. FL describes relative concepts and eliminates the use of 

crisp arbitrary thresholds for continuous variables. Rule based systems can take 

advantage of these fuzzy thresholds to deal with uncertainty or variability and possibly 

provide more accurate classifications.  
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A Fuzzy Logic System (FLS) is composed of four primary parts – input 

fuzzification, fuzzy inference engine, fuzzy rule base and output defuzzification, as 

depicted in Fig. 2-3. The Mamdani FLS implemented in this work maintains a fuzzy rule 

base populated with fuzzy linguistic rules in an implicative form (Klir & Yuan, 1995). 

Consider the rule Rk that is described as follows: 

 

 Rule Rk: IF x1 is kA1 AND … AND xn is k
nA  THEN yk is B

k
  ( 2-1 )  

 

Here, symbol 
k

iA and B
k
 denote the i

th
 input fuzzy set and the output fuzzy set of 

the k
th

 rule, respectively, n is the dimensionality of the input vector x


 and yk is the 

associated output variable. Each element of the input vector x


 is first fuzzified using the 

respective fuzzy membership function (e.g. Gaussian, triangular, trapezoidal, etc.). The 

fuzzification of input value xi into fuzzy set Ai yields a fuzzy membership grade )( iA
xk

i

 . 

Using the minimum t-norm the degree of firing of rule Rk can be calculated as: 

 

 nixx iAR k
ik

...1)},({min)(  


  ( 2-3 ) 

 

 

After applying the rule firing strength via the t-norm operator to each rule 

consequent, the output fuzzy sets are aggregated using the t-conorm operator (e.g. the 

maximum operator) resulting in an output fuzzy set B. For detailed description of the 

fuzzy inference process refer to (Mendel, 2001). 

In order to obtain the crisp output value, one of the available defuzzification 

techniques is applied. Upon discretizing the output domain into N samples, for example 

the centroid defuzzifier can be applied: 

 
Figure 2-3.  Fuzzy Logic System 
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2.4.2 Nearest Neighbor Clustering 

Grouping data into a set of categories based on properties of a common criterion 

is called clustering (Xu & Wunsch, Clustering, 2009). The Nearest Neighbor Clustering 

(NNC) algorithm is an unsupervised clustering technique (Witten & Frank, 2005). As 

opposed to other commonly used clustering algorithms (e.g. K-Means, Fuzzy C-Means, 

Self Organizing Maps, etc.), the NNC algorithm does not require specification of the 

expected number of clusters a priori. Instead, the clustering process is controlled by an 

established maximum cluster radius parameter. The smaller the radius the more cluster 

will be generated and vice versa. 

Assume an input dataset X composed of N input patterns denoted as: 

 

   n

iN xxxX 


,...,,1   ( 2-5 ) 

 

 

Here, n denotes the dimensionality of the input domain. Vector ix


 can be 

expressed as },...,{ 1 n

iii xxx 


. 

Each cluster constitutes a prototype of resembling instances, subject to a specific 

similarity measure. The Euclidean distance similarity measure is considered in this work. 

Each cluster Pi is described by its Center Of Gravity (COG) ic


 and its associated weight 

wi. The weight wi stores the number of patterns previously assigned to cluster Pi. 

Following this notation, cluster Pi can be expressed as: 

 

    i

n

iiii wcwcP ,,,


  ( 2-6 ) 

 

 

The learning process of the NNC algorithm begins by creating an initial cluster P1 

at the location of the first input pattern 1x


. Next, input patterns from dataset X are 

selected in a sequential manner. The nearest prototype from the set of available clusters is 
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determined for each instance. For an input pattern ix


, the nearest cluster Pa is determined 

using the Euclidean distance norm: 

 

       Cjxcxcxcdist n
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 ( 2-7 ) 

 

 

Here, C denotes the number of currently acquired clusters. Using the maximum 

cluster radius parameter - rad, the input pattern ix


 is assigned to cluster Pa if the 

following condition holds:   radxcdist ia 


, . In this case, the parameters of cluster Pa are 

updated as: 
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If   radxcdist ia 


, , a new cluster is created at the location of input pattern 
ix


, 

and its weight is set to 1. 

2.4.3 Error Back Propagation Neural Networks 

Error Back Propagation (EBP) networks are a well-researched supervised learning 

method introduced by Werbos in 1974. The power of a multilayer neural network lies in 

its ability to model multidimensional nonlinear problems. The learning vectors are 

presented as input and the calculations from each layer are fed forward to the next layer 

in the network. Results from the final layer are calculated and compared to the desired 

output producing an error measurement. This error information is propagated back from 

the output layer to the inner layers. 

The input vectors or features often need to be adjusted. Preprocessing of input 

data is one of the most important steps in development of a neural network solution 

(Bishop, 1995). The data set may be missing values or valuable information can be 

obscured by an excessive number of attributes. In addition, the numerical values of the 

data are normalized to help equate the strength of the variables. Nominal data, such as 

colors, can be mapped to numerical equivalents and normalized as well. The data points 

that most affect the solution are optimal candidates for inputs while others are discarded. 

If too much information is removed, the resulting prediction ability will be affected. 
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The middle layers of nodes are added with a non-linear activation function. An 

activation function determines the output of a given node. The sigmoid function is 

typically used in the form of a hyperbolic tangent. This function is differentiable which is 

required to calculate back propagation. 

The final layer’s output is compared to the desired and an error is calculated. The 

gradient of this error function with respect to the weights is used to adjust the weights 

applied to each input of a node. Starting with the layer closest to the output nodes and 

working backwards. This process is repeated until overall performance of the network 

satisfies some user-defined limit. 

 

The general process for creating an EBP network is described as follows: 

1. Define a feature vector, gather the training data and present it to the network as 

input. 

2. Determine the number of hidden and output layers. 

3. Using an input feature vector compare the network's output to the desired output. 

4. Calculate the error from each output node. 

5. Incrementally adjust the weights of each node using the error calculations as a 

basis of calculation.  

6. Using the error calculations for each node, feed the values back through the layers 

adjusting weights accordingly. 

Repeat steps 3 – 6 until some acceptable error level is reached. 

2.4.4 Genetic Algorithms 

A Genetic Algorithm (GA) is a search technique that incorporates ideas of natural 

evolution originally developed by John Holland in the 1970’s. In general, a GA needs a 

population representation of possible solutions, variation operators, selection, and 

replacement mechanisms. The actual details, such as population representation and 

distance measure, of a GA can vary greatly and represent one of the challenges of an 

implementation. 

In a GA an individual is a candidate solution out of a set of solutions called a 

population. This individual may be represented by a genotype where in turn each 

genotype maps to a phenotype (Eiben & Smith, 2003). For example, in a population of 
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integers an integer value of 10 (phenotype) could be represented by a binary code of 1010 

(genotype). Following this definition, it is critical to a robust solution that the genotype is 

capable of fully representing the optimal individual solution characteristics.  

An evaluation function is used to determine the ‘fitness’ of individuals in a 

population. This fitness is a measure indicating how well the individual is solving a given 

problem and used for decision making in the evolutionary process. Given a fitness 

evaluation applying genetic operators such as crossover and mutation creates new 

individuals called offspring. In crossover portions of the candidate parent individuals are 

swapped and combined to form new offspring. Optionally a mutation, or random 

alteration, of the new offspring can be applied. 

2.5 Anomaly Detection 

Network intrusion detection systems (NIDS) originated in 1980’s and in the 

seminal work of Denning, (1987). In general there are two types of NIDS; anomaly 

detection and signature based detection systems. Signature based detection systems 

attempt to match the observed behavior against a database of predefined signatures. In 

contrast, an anomaly based detection system seeks deviations from a learned model of 

normal behavior (Chandola, Banerjee, & Kumar, 2007). The system builds a 

representative normal behavior model based on observed data. It is then capable of 

detecting novel and dynamically changing intrusion instances, assuming that the 

instances differ from the model of normal behavior. 

Anomaly IDS systems learn a model of normal behavior (Gosh, Schwartzbard, & 

Schatz, 1999). Certain key features are derived from observed traffic and a representative 

model of current activity is maintained. Subsequent monitored features are then 

compared to the historical model. Deviations from the model are recognized and treated 

as suspicious activity. This type of system is capable of detecting novel attacks or other 

abnormal systemic behavior that might be missed by rule based systems. Unfortunately, 

these new behaviors may be acceptable and simply were not present during the initial 

learning phase. 

Rule based systems are analogous to virus protection software resident on 

personnel computers. Predefined rule sets capture characteristics of attack vectors. These 

sets perform well on known signatures but generally do not recognize novel attacks. In 
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addition, minor variations in the signature of a known attack may not be noticed by the 

system. However, rules are developed and distributed by an active community and widely 

distributed. It is even possible to convert rules between various formats (Eckmann, 2001). 

This provides a rich base of historical information, as is shown in chapter 4, which is 

readily exploitable for use in CI based training. 

2.6 Deceptive Virtual Hosts 

Network security monitoring systems, including NIDS, are a significant part of a 

solution to protecting control systems. In most contexts, they are rarely capable of 

providing perfect intrusion detection (Sommer & Paxson, 2010). To improve the cyber-

security of a network system several approaches can be applied. Deceptive systems, 

called honeypots, that emulate critical network entities have been deployed in tandem 

with monitoring solutions to improve detection accuracy and precision rates (Garcia-

Teodoro, Diaz-Verdejo, Macia-Fernandez, & Sanchez-Casad, 2007), (McQueen & 

Boyer, 2009).  

Lance Spitzner introduced the idea of a dynamic honeypot (DHP) in 2004. The 

concept is based on automatically configuring a honeypot by gathering information 

gleaned from network traffic. This type of system has the benefit of requiring little 

human input and can readily adapt to changes in network behavior. A DHP requires 

functionality in two key areas: 1. Network host information gathering, and 2. Generating 

honeypot host configurations for deployment.  

Implementations of honeypots fall into two categories: high or low interaction. 

Low interaction virtual honeypots are used to gather information. They are simpler to 

deploy, less likely to be compromised and can work collaboratively with other agents. 

Additionally, they might distract an attacker from hitting real systems and thereby waste 

an adversary’s valuable time and effort on a low value target. 

High interaction honeypot systems are typically hardware replicas of existing 

operational components that include the appropriate software. For purposes of this 

discussion, virtual machines are included in the high category. These systems do not 

mimic services but are deployed with working instances. This type of system provides a 

high fidelity solution that is less prone to discovery of its deceptive purpose by network 

intruders.  However, they are at a higher risk for compromise by an attacker and require a 
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more complicated deployment investment. Deploying a virtual machine is simpler than a 

hardware base system but still requires complex management scenarios for deploying a 

wide array of service software. This includes having copies of multiple OS distributions 

and server software. 

Honeyd, created by Niels Provos, is an open source project implemented as a 

small software daemon that creates virtual hosts on a network (Provos & Holz, 2007). It 

is a low interaction honeypot that emulates an OS network stack and minimally provides 

superficial service functionality. Because of this, an attacker is never able to gain access 

to the host by compromising a service but might quickly realize that something is amiss. 

The primary goal is not to entrap the attacker into spending all his effort on the deceptive 

system. It is to attract his attention, for at least a short time, and gather information that 

helps identify the attacker and a possibly compromised internal attack platform. Another 

Honeyd advantage is the ability to deploy thousands of virtual hosts on a single host 

thereby reducing hardware costs.  

Finally honeypots, high or low interaction, can only detect attacks directed at 

them. A competent attacker who discovers that a system is a honeypot will avoid any 

further contact with that system. The fidelity of the deception is in the presentation of the 

honeypot to the network. How the data is gathered to create this deception is important. 

2.7 Related Work 

The application of existing security tools to implement network protection within 

an autonomic concept has not been widely explored (Ruan, Lacoste, & Leneutre, 2010). 

However the following section describes three recent efforts closely related to the work 

presented in this dissertation. 

The work presented by Candido, Colombo, Barata and Jammes (2011) pursued a 

common architectural solution to support phases of a device lifecycle. It utilizes concepts 

of Evolvable Production Systems (EPS) and Service Oriented Architectures to implement 

a proof of concept in an industrial automation scenario. In contrast to the approach of 

using IF-MAP, a Devices Profile for Web Services (DPWS) standard is used to define 

devices. This work concentrated mainly on deployment of production devices with no 

mention made of security related equipment. 
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Kyusakov, Eliasson, Delsing Deventer and Gustafsson (2011) discuss the 

integration of SOAP based web service implementations in resource constrained wireless 

sensor nodes. They propose removing middleware and deploying the services directly on 

devices. This approach is shown to be feasible but limited by performance overhead of 

the communication scheme. A dedicated security device, as proposed in this dissertation, 

with multiple deployments might be more feasible by providing dedicated relatively 

powerful hardware. This assumes that addition of a new device is preferable to adding 

additional functionality to hardware constrained devices. 

A security related architecture implementing virus detection and removal services 

for digital ecosystems has been proposed. In (Agrawal, Grosky, & Fotouhi, 2009) the 

authors present a distributed approach with hosts working in tandem on a network. A 

service-oriented architecture was suggested as a communication framework. Any host 

entities finding virus information in the network would share this information with other 

hosts thus enabling further actions. This communication mechanism and functional area 

are relevant to this dissertation. However no empirical tests were executed to validate the 

approach.  
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Chapter 3. Autonomic Intelligent Cyber Sensor 

This chapter describes a novel implementation of the Autonomic Intelligent Cyber 

Sensor (AICS) architecture designed to provide cyber security and industrial network 

state awareness for Ethernet based control network implementations. The first 

contribution focus of this chapter is the concept of an integrated framework of 

communication fundamentals derived from Autonomic research and Service Oriented 

Architecture (SOA). The other three contributions of AICS utilize collaborative 

intelligent mechanisms to: 1) identify anomalous network traffic, 2) provide network 

entity information and, 3) deploy deceptive virtual hosts. Additionally, AICS 

dynamically reacts to the industrial human-digital ecosystem in which it resides through 

examination of network traffic and communication of data from external entities 

(Vollmer, Linda, & Manic, 2013). A proof of concept implementation is tested and 

results are presented. 

3.1 AICS Architecture 

This section describes the architecture of AICS. Reflecting some of the core 

attributes of autonomic computing, the design structure for this project is broken into 

functional areas as depicted in Fig. 3-1. The managed resources are Intelligent Anomaly 
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Figure 3-1.  AICS Architecture and Data Flow 
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Assessment (IAA), Network Entity Identification (NEI) and Dynamic Honey Pot (DHP). 

Because of the flexible internal communication implementation, these resources modules 

can be enhanced or replaced with other potential solutions with little effect on the sensor 

operation.  

The communications infrastructure provides a common interface for additional 

modules to be deployed on the sensor and is the autonomic manager. As can be seen in 

Fig. 3-1, the dotted lines represent messaging paths while the solid lines are direct 

network connections. Some modules are composed of legacy software that inherently did 

not communicate via D-Bus. For these components, software wrappers were required. 

Each individual component is explored in more detail in the following sections.  

3.1.1 Communication Infrastructure 

The communication component is responsible for the external and internal 

communication mechanism of the sensor. 

3.1.1.1 External Communication 

External communication is the transfer of information to network entities outside 

the confines of the sensor system. Examples of this communication include a list of IP 

addresses to monitor, information on network entities and alerts on abnormal network 

traffic. Internal communication includes the sharing of information between sensor 

components. An example includes the passing of passively discovered network entity 

information from NEI to DHP. All external communication is restricted to the IF-MAP 

based component with the exception of network packet monitoring and emulated 

honeypot hosts.  

External communications conform to the IF-MAP specification. The published 

Web Services Description Language (WSDL) document for IF-MAP describes the 

interfaces available for ad hoc requests to the service. WSDL is an XML-based language 

for describing Web services and how to access them. The interface is exposed on the 

network over the SSL secured HTTP protocol. The Intelligent Reaction on Network 

Events project produced an open source IF-MAP server called Irond (Trust@FHH, 

2012). This Java based program was used as the MAP communication server. The AICS 

message communication is solely with the MAP server. 



24 

 

 

Anomaly alerts and network entity metadata from the sensor system are pushed to 

the MAP server via an HTTPS based soap call. These asynchronous information pushes 

are executed upon the identification of behaviors in the network traffic or internal 

monitoring processes. External entities that have interest in this type of information need 

to register with the map server. Registered clients receive copies of the messages.  

In the IF-MAP definition, the metadata type may be either singleValue or 

multiValue. This is explicitly communicated by setting the ifmap-cardinality attribute in a 

message. The D-Bus to IF-MAP service for host publication, described later, sets this to 

singleValue. When a publish request is processed this attribute determines how the MAP 

server updates the records for a given identifier. Single replaces the information while 

multi adds to the existing record even if it contains duplicate data. Because singleValue 

was chosen, a republish of the entire record is necessary even if only one sub-item 

changes. This simplifies publishing of records at the expense of added communication 

overhead. 

All incoming messages are delivered from the MAP server. This includes 

configuration or capability querying. The sensor binds to an IF-MAP notify interface for 

updates and responds accordingly. Consequently asynchronous information is obtained 

through notify events. These events can be requested by interested outside parties as well. 

However they are ephemeral in that only subscribed clients will get the information if 

they attach prior to message publication. 

The IAA IP address monitoring list and DHP IP address emulation list are sent via 

messaging from an external authority. Internally these lists are stored as a configuration 

file in each component. The stored IP’s are then used to extract information from the 

internal messages created by NEI and used to configure the honeypot hosts. The IAA 

module tracks the monitor IP addresses for anomalies. The IAA, NEI and DHP modules 

are explained in more detail later in this section. 

The presented two-layer path of communication isolates the sensor from direct 

network contact with other entities. The externally visible attack surface is limited to one 

component instead of multiple components. A primary benefit is that any change in 

external protocols affects only one component. Additionally, it provides the capability to 

wrap the legacy communication of internal tools that may not be IF-MAP compliant 
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without having to modify the tools source. Finally, it provides a convenient debugging 

facility. 

3.1.1.2 Internal Communication 

There is no direct communication between the internal sensor components and the 

outside MAP server or between modules. All messages, regardless of internal or external 

destination, use the D-Bus IPC mechanism described in the background chapter. A D-Bus 

service for centralized processing of external messaging was created. Any module on the 

sensor host that wishes to send messages externally need only call the sendMessage 

method of the service. This provides flexibility and security with the additional expense 

of complexity from adding the D-Bus service. Only the message service needs be 

concerned with the communication particulars providing for a simplified configuration. 

A service file, called org.sa.MessageService.service, created in the 

/usr/share/dbus-1/services directory specifies what file to execute if the D-Bus service is 

not already running. This ensures that client messages will be delivered even if the 

receiving process is not running. Messages are queued up in the D-Bus system until the 

appropriate process is started and then delivery ensues. The service is started with the 

same user id as that which belongs to the caller. This means it is possible to have multiple 

instances running, one for each user id that makes a call. The configuration values enable 

a rich set of operations for limiting access to the appropriate resources. A simple example 

service file is shown next. 

By default system and session bus types are provided by the Linux D-Bus 

daemon. A new session bus instance is created for each user login session. This can result 

in multiple busses or none depending upon interactive user logins. In contrast to the 

session bus, a singleton system bus is instantiated upon host startup. 

[D-BUS Service] 

Name=org.sa.MessageService 

exec /opt/Sensor/MessageService/bin/msg_service.pl' 

User=sensor 

 Figure 3-2.  Example D-Bus Service 
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The communication service was attached to the system bus, as it should not be 

dependent upon an interactive login. The system bus has restrictions where access is 

explicitly prohibited. Configuration changes were required to allow access for the 

specific user id associated with the communication service. Additionally, fine grain 

access control lists are maintained for access to the services provided. This includes who 

can call the methods and who can retrieve information from the bus. 

The following sections of this chapter describe the managed resource components 

of the AICS. These components are all clients to the D-Bus internal message service just 

described. 

3.1.2 Intelligent Anomaly Assessment 

The Intelligent Anomaly Assessment (IAA) component reacts to information 

from external messaging and passive monitoring of network traffic. An internal bus 

delivers an externally originated message dictating, by IP address, which hosts are to be 

actively monitored. The IAA selectively monitors hosts for anomalous behavior while 

simultaneously utilizing global network trends to adjust its sensitivity. Any anomalous 

behavior triggers a message passed internally to the D-Bus service and ultimately 

provided to the external IF-MAP message service.  

To ensure the cyber-security of network system various approaches can be 

applied (Sommer & Paxson, 2010). One of the most common approaches is anomaly 
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detection. An anomaly detection system is trained on a set of normal network behavior. 

The extracted behavior model is then used to detect anomalous behavior in the newly 

observed testing data. 

Two difficulties that might occur with this approach are identified as follows. 

First, building a single comprehensive normal behavior model for a specific system might 

be difficult due to the complexity of the network and the presence of multiple diverse 

communication streams. Second, the performance of anomaly detection algorithms can 

be tuned by adjusting a sensitivity threshold. As is shown later, the selection of a specific 

threshold value inevitably results in a tradeoff between false negative and false positive 

rate. Thus implementing a suitable sensitivity threshold value is an important feature of 

IAA. 

The IAA component is an extension of a previously developed low-cost online 

rule extraction technique (Linda O. , Vollmer, Wright, & Manic, 2011). The model is 

composed of a set of fuzzy rules that are constructed based on a window-based feature 

vector using an online version of the adapted Nearest Neighbor Clustering (NNC) 

algorithm. The anomaly detection algorithm was specifically designed to allow for both 

fast learning and fast classification on the constrained computational resources of an 

embedded device. 

The overall architecture of the proposed anomaly detection system is depicted in 

Fig. 3-4. The network traffic features are processed by an Interval Type 2 Fuzzy Logic 

Figure 3-4.  IAA Fuzzy Design 
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System (IT2 FLS) that uses a fuzzy logic rule base with encoded linguistic domain 

knowledge to calculate the cyber-security context. This cyber-security context expresses 

the belief that an intruder is currently present in the system. 

Fuzzy logic provides a framework for system modeling in linguistic form capable 

of coping with imprecise and vague meanings of words. The Type-2 Fuzzy Logic System  

is an extension of the Type-1 Fuzzy Logic System (T1 FLS) that has been successful in 

modeling and minimizing the effects of various kinds of dynamic uncertainties. Here the 

Interval Type-2 Fuzzy Logic System (IT2 FLS), as a specific case of T1 FLS, is used to 

encode the linguistic domain knowledge about the specific network system and 

dynamically adjust the sensitivity of the anomaly detection algorithms.  

In the next stage, the network traffic is separated into individual communication 

streams. In the current implementation, a specific IP address is used to identify each 

communication stream. Other features, such as port numbers and protocol types could be 

used. Packets assigned to individual communication streams are then passed into 

dedicated anomaly detection algorithms. Each anomaly detection algorithm maintains its 

own buffer of incoming packets, which is used to extract the window-based features as 

described later in this section. The fuzzy logic based anomaly detection algorithm is used 

to assign a real value to each input vector, which expresses the belief that the current 

packet window contains intrusive packets. The closer this value is to 1 the more confident 

the algorithm is that an intrusion is present. 

The windowing technique extracts statistical features from a limited set of 

consecutive packets and maintains them in a vector. The window is shifted over the 

stream of incoming network packets. As the next arriving packet is inserted into the 

window, the last packet is removed from the end. The new feature vector is then 

computed from all of the packets currently present in the window.  

As described in (Linda, Vollmer, & Manic, 2012) the fuzzy logic based anomaly 

detection algorithm is used to assign a real value to each input vector. This value 

expresses the belief that the current packet window contains intrusive packets. The closer 

a value is to 1 the more confident the algorithm is that there is an intrusion present. 

The final classification is performed by comparing the real-valued output to the 

sensitivity threshold. When the real-valued output is above the sensitivity threshold, a 
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network anomaly is reported for the specific communication stream. When the output 

value is below the sensitivity threshold the network traffic is marked as normal. The 

actual value of the sensitivity threshold is dynamically computed based on the cyber-

security context computed by the IT2 FLS. Hence, the IT2 FLS encoding human domain 

knowledge is not used directly for detecting anomalies; instead it is used to only tune the 

performance of the anomaly detection algorithm via adjusting the sensitivity threshold. 

3.1.2.1 Window based Feature Extraction 

The anomaly detection algorithm is trained on a set of network traffic features 

extracted by a window-based technique. This technique is applied directly to the stream 

of packets.  Internal to IAA, a vector stores the statistical properties of the network traffic 

in the window. 

As is described in previous work, a window of specified length is shifted over the 

stream of network packets (Linda, Vollmer, & Manic, 2009). At each position of the 

window, a descriptive feature vector is computed. As the next arriving packet is pushed 

into the window, the last packet is removed from the end. Fig. 3-5 schematically depicts 

Figure 3-5.  Feature Vector Window 

 

Num. of IP addresses Num. of Flag Codes 

Min. Num. of Packets / IP Min. Num. of Packets / Flag Code 

Max. Num. of Packets / IP Max. Num. of Packets / Flag Code 

Avg. Time between Packets Num. of Packets with 0 Win. Size 

Time Length of the Window Num. of Packets with 0 Data Len. 

Data Speed Avg. Win. Size 

Num. of Protocols Avg. Data Length 

Min. Num. of Packets / Protocol Num. of Ports 

Max. Num. of Packets / Protocol  

 
 

Table 1.  Derived Window Features 
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this feature extraction process. Table 1 summarizes the list of extracted statistical features 

from the packet window. This set of features was empirically selected based on the 

motivation to capture the time series nature of the packet stream and provide for a wide 

range of behaviors. For further details and an evaluation of the feature extraction refer to 

(Linda O. , Vollmer, Wright, & Manic, 2011). 

Up to this point the two classes of feature information include: 1) statistics and 

information about packets that reside within a packet buffer, i.e., time differences, 

number of protocols seen, and 2) individual packet header information such as protocol 

type, payload size, etc. The information contained within the network packets is only 

partially exploited by use of these features. Additional features, derived from the packet 

payloads, can improve accuracy and precision (Sommer & Paxson, 2003). One source of 

packet payload information can be found in the SPADUC (SCADA Protocol Anomaly 

Detection Using Compression Techniques) project (Rueff, Roybal, & Vollmer, 2013). 

The purpose of the SPADUC project is to investigate whether a compression 

algorithm can be utilized to differentiate between proper control system traffic versus 

hostile network traffic. Supervisory Control and Data Acquisition (SCADA) systems 

operating over TCP/IP protocols in network hardware typically contain several static 

layers of headers. The ratio of header size to control or response data is often very high. 

Moreover, the types of headers are often limited because of the repetitive nature of 

SCADA networks. Control of hardware and status of systems and sensors often occur 

along regularly timed sequences. Therefore, network traffic on dedicated SCADA 

systems and at the boundaries of SCADA systems where data transfer takes place tend to 

be of a cyclic, predictive nature. Because a large portion of the TCP/IP message traffic is 

repetitive, the concept of using compression techniques to identify abnormal traffic is 

proposed as a way to identify and quarantine malicious traffic at the packet level on a 

SCADA network. 

Initially, to get a baseline for the use of compression in IAA, the commonly used 

Zlib compression library was used. The Zlib routines report enough information to 

determine the resulting byte size of a compressed data buffer. This value was added as 

the only feature instead of the existing 17 feature set. Two data compression candidates 

are individual network packet data portions and a buffer filled with all 20 network packet 
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data portions concatenated together. The AICS algorithm uses a sliding 20 packet buffer 

routine to calculate inter packet statistics. A test using both data candidates was 

performed on a single IP. The results of the two runs are shown in Table 2. With the 

exception of false negatives the buffer approach provided better results. This 

implementation was chosen for further exploration.  

Table 2.  Initial Compression Results 

Data Source Correct Incorrect False Negative False Positive 

Avg. Single Packet 78.49 21.51 45.3 14.6 

20 Packet Buffer 83.05 16.95 75.2 0.02 
  

Utilizing the compression library resulting from early SPADUC project results, an 

implementation using the 20 packet buffer was explored. The SPADUC library routines 

return the number of encodes performed on the data buffer. All of the standard ICS 

features were removed and only the SPADUC encode value was considered. The results 

of this testing on nine different IP network streams are shown in Table 3. A general trend 

observed is a high false positive rate and a low false negative rate. The variation in 

percentage values might be attributable to the heterogeneous nature of the devices tested. 

Table 3.  SPADUC Compression Feature Results 

IP Address Correct Incorrect False Positive False Negative 

*.99.5 91.68 8.3 0 53.71 

*.99.101 99.67 0.33 0 3.46 

*.99.107 95.32 4.68 0 26.91 

*.99.135 90.55 9.45 0 100 

*.99.140 96.98 3.02 0 62 

*.99.160 35.49 64.5 26.7 72 

*.99.170 68.99 31 0 99.9 

*.99.206 97.60 2.40 0 46.8 

*.99.220 21.05 78.95 0 94.49 

 

 The original feature vectors with the addition of the compression feature were 

tested using identical input and configuration. 

 

Table 4.  All Features including Compression 

IP Address Correct Incorrect False Positive False Negative 

*.99.5 99.29 0.71 3.17 0 

*.99.101 89.80 10.20 26.01 0 

*.99.107 99.33 0.67 2.64 0 

*.99.135 97.64 2.36 2.36 0 

*.99.140 93.81 6.19 6.19 0 

*.99.160 98.16 1.84 67.91 0 
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*.99.170 97.64 2.36 14.74 0 

*.99.206 80.94 19.06 28.11 0 

*.99.220 24.67 75.33 77.40 0 

 

 Finally the following table shows the results of running the system with the 

original 17 feature set. 

Table 5.  Original Features 

IP Address Correct Incorrect False Positive False Negative 

*.99.5 99.87 0.13 .58 0 

*.99.101 99.8 0.20 0.5 0 

*.99.107 99.8 0.20 0.78 0 

*.99.135 98.33 1.67 1.67 0 

*.99.140 99.51 0.49 0.49 0 

*.99.160 98.16 1.84 67.91 0 

*.99.170 99.18 0.82 5.16 0 

*.99.206 99.85 0.15 0.20 0.04 

*.99.220 24.67 75.33 77.40 0 

 

 A comparison of Table 4 with Table 5 shows that there was no improvement in 

any of the categories from addition of the packet payload compression information. The 

result of utilizing just the single compression feature indicates that there is some value in 

the compression information. However, it may be that the compression information is 

redundant. Additionally, given the relative large computational expense of the 

compression algorithm, the compression feature is not included in the rest of the IAA 

discussion.  

3.1.2.2 Fuzzy Logic Rule Extraction via Online Clustering 

A low-cost online rule extraction technique is utilized to model the network traffic 

(Linda, Vollmer, & Manic, 2012). The model is composed of a set of fuzzy rules that are 

constructed based on the window-based feature vectors using an online version of the 

adapted Nearest Neighbor Clustering (NNC) algorithm. The NNC is an unsupervised 

clustering technique. As opposed to other commonly used clustering algorithms such as 

K-Mean or Self Organizing Maps, the NNC algorithm does not require a priori 

specification of the expected number of clusters. Instead, the clustering process is 

controlled by an established maximum cluster radius parameter. The smaller the radius 

the more clusters will be generated and vice versa. This adapted algorithm maintains 

additional information about the spread of data points associated with each cluster 
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throughout the clustering process. Each cluster Pi of encountered normal network 

behavior is described by its center of gravity ic


, weight wi and a matrix of boundary 

parameters Mi. Hence: 
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Here, i is the index of the particular cluster, 
j

ic is the attribute value in the j
th

 

dimension, 
U

jic , and 
L

jic , are the upper and lower bounds of the encountered values of the 

j
th

 attribute for data points assigned to cluster Pi and n denotes the dimensionality of the 

input. The algorithm is initialized with a single cluster P1 positioned at the first supplied 

training input vector 1x


. This initial input vector is received once the shifting window is 

first filled with the incoming network packets. 

Upon acquiring a new data vector ix


 from the shifting window buffer, the set of 

clusters is updated according to the NNC algorithm. First, the Euclidean distance to all 

available clusters with respect to the new input feature vector ix


 is calculated. The nearest 

cluster Pa is identified. If the computed nearest distance is greater than the established 

maximum cluster radius parameter, a new cluster is created. Otherwise the nearest cluster 

Pa is updated according to: 
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The rule extraction phase of the learning process produces a set of clusters, which 

describe the normal network communication behavior. In the next stage, each cluster is 

 
Figure 3-6.  Non-symmetric input Gaussian fuzzy set A. 
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converted into a fuzzy logic rule. Each fuzzy rule describes the belonging of a particular 

sub-region of the multi-dimensional input space to the class of normal behavior. 

Each cluster is transformed into a fuzzy rule. Each fuzzy rule is composed of n 

antecedent fuzzy sets 
j

iA that are modeled using a non-symmetric Gaussian fuzzy 

membership function with distinct left and right standard deviations. There are three 

parameters of the membership function, the mean 
j

im  and the left and the right standard 

deviations
j

i , 
j

i , as shown in Fig. 3-6. The parameter values are extracted based on the 

computed cluster Pi in the following manner: 
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Here symbol   denotes the fuzziness parameter, which is used to adjust the 

spread of the membership functions. This set of fuzzy rules is then used to calculate a 

similarity score between the input vector and a stored model of normal behavior. 

 

NNC Algorithm Variations 

For an input pattern, the nearest cluster is determined using the Euclidean distance 

norm: 
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The Euclidean distance is a simple geometric distance based on the Pythagorean formula. 

This measure is computationally inexpensive and simple to code. However it does have 

two drawbacks. First, in the geometric problem domain, variables are typically measured 

utilizing the same units of length. Data values from real world problems may have 

different scales. For example a regression problem making use of class information such 

as age, test scores and time are all on a different scale and therefore not directly 

comparable. The Euclidean distance is sensitive to the scales of the variables involved 

and may not perform optimally. A standardized or weighted Euclidean distance that 
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incorporates variance but not covariance can overcome this problem. The Mahalanobis 

distance incorporates both variances and covariances. 

Second, the Euclidean distance does not compensate for correlated variables. 

Given a test data set containing multiple variables where one variable set is an exact 

duplicate of another set, these sets are highly correlated. The Euclidean distance 

calculation will weigh the duplicate variables more heavily than the others. It has no 

method of accounting for the fact that the duplicate provides no new information. 

P.C. Mahalanobis introduced the Mahalanobis distance in 1936. It is based on 

both the mean and variance of the variables in addition to the covariance matrix. The iso-

surface formed around the mean is an ellipse in two-dimensional space or an ellipsoid or 

hyper-ellipsoid when more variables are used. It is a multivariate quantitative method that 

can solve for multiple dimensions simultaneously. The covariance among the variables is 

taken into account when calculating the distance. Because of this, the problems of scale 

and correlation inherent in the Euclidean distance are not an issue. Given an individual as 

a vector )x,,(x n0 ix


 of floating point values x, a vector representing the mean of a 

data set ),...,( 0 n 


 and a covariance matrix C of size n x n representing the 

covariance values between all dimensions n, the Mahalanobis distance is calculated with 

the given formula: 

 T
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 ( 3-8 ) 

 

 

Formula 3-8 shows three variables that need definition. The first is a feature 

vector  ⃗  which is gleaned from the input network packets. The second is a sample mean 

 ⃗ . The original NNC code was changed to calculate and store the mean of the 17 

network features ( ⃗   found during the initial learning phase. The covariance matrix C
-1

 is 

a matrix of all the covariance’s between each feature vector. Given a data point and a 

sample mean the covariance can be calculated. In the case of AICS this produces a 17 by 

17 covariance matrix. Formula 3-8 specifies an inverted, or nonsingular, covariance 

matrix. Not all matrices are invertible. The Eigen decomposition of the sample 

covariance matrix gleaned from test data was computed. This produced Eigen values that 

were zero and thus indicating that the matrix was not invertible. This prohibited the use 

of Mahalanobis as a distance measure with the AICS features. 
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It has been noted that the use of a Euclidean distance measure on high 

dimensional data can be problematic (Xu & Wunsch, Clustering, 2009). When used as a 

nearest neighbor measure in high dimensions, data points that appear to be relatively 

close in low dimensions can be falsely determined in higher dimensions. One possible 

solution to this is to use a cosine similarity measure. This measure is the cosine of the 

angle between two vectors. Each data point is treated as a vector. The Euclidean dot 

product, or inner product, is calculated as in Eq. 3-9 and equates to the cosine of the 

angles between the vectors. The angle thus determines whether two vectors are pointing 

in roughly the same direction. 
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The unmodified NNC routine utilizes a 17 dimensional feature set. Each data 

point is normalized to a floating point value between 0.0 and 1. The NNC algorithm 

utilizes the distance measure as a key criterion for a binary decision of cluster 

membership. The first action is to determine if a candidate point falls within a predefined 

configurable distance to already defined clusters. If this occurs the point is added to the 

cluster with the minimum distance. If not then a new cluster is created and the candidate 

point is the exemplary member. For our normalized Euclidean distance, this value was 

0.25. 

The cosine similarity algorithm was applied to a test set of network data. The 

definition of a membership value for a cosine angle was explored. We were unable to 

find a single value, that when applied to all the data, could adequately separate the 

anomalies from normal vectors. There were individual cases of a define value correctly 

differentiating the input vectors. However, the overall accuracy never surpassed that of 

the original algorithm. It is surmised that the number of data points in the feature points 

made the differences in the angle too small to detect. This is partially supported by the 

effectiveness of the original Euclidean measure based system. In a test run, the cosine 

distance measures were captured, this resulted in 23,021,335 entries.  The run produced 

376,166 unique values with a minimum value of 0.587196 and a maximum of 1. The 

average of the values was 0.81099 with a standard deviation of 0.11011. 
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3.1.2.3 Representing Domain Knowledge Using Linguistic Fuzzy Rules 

This section provides a brief introduction to Interval Type-2 Fuzzy Logic and 

describes a methodology for representing cyber-security domain knowledge. 

 

Interval Type-2 Fuzzy Logic Systems 

Type-1 Fuzzy Sets (T1 FSs) and T1 Fuzzy Logic Systems (FLSs) have been 

successfully applied in many engineering areas (Valente de Oliveira & Pedrycz, 2007). 

However, when modeling linguistic terms, which can mean different things to different 

people, T1 FSs have been shown to provide only limited design capabilities (Mendel, 

Uncerain Rule-Based Fuzzy Logic Systems: Introduciton and New Directions, 2001). To 

address these issues, Type-2 (T2) FSs and T2 FLSs were originally proposed by Zadeh 

(1975). T2 FSs offer more modeling flexibility because they employ membership degrees 

that are themselves fuzzy sets (Beglarbegian, Melek, & Mendel, 2011). 

In this section, the Interval T2 (IT2) FSs are considered. IT2 FSs restrict all 

membership grades into intervals, which result in significant simplification of the 

computational complexity associated with computing with IT2 FSs. An IT2 FS A  can be 

described by its membership function ),(~ ux
A

 , where     and xJu  (Mendel, 

Uncerain Rule-Based Fuzzy Logic Systems: Introduciton and New Directions, 2001): 
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Here, x and u are the primary and the secondary variables and Jx denotes the 

interval support of the secondary membership function. The domain of the primary 

memberships Jx defines the Footprint-Of-Uncertainty (FOU) of FS A: 
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The FOU of an IT2 FS can be completely described by the upper and lower 

membership functions: 
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It is this FOU that allows for modeling of linguistic uncertainty. As an example 

depicted in Fig. 3-7, consider two possibilities for modeling an arbitrary linguistic 

concept using T1 FSs A1 and A2 (e.g. two experts designed two different membership 

functions for the same concept) and the possible model of this concepts using IT2 FSs A . 

It can be seen that the IT2 FS encapsulates the T1 FS models and it can model the 

linguistic uncertainty. This flexibility in modeling vague linguistic concepts was the 

reason for employing IT2 FSs and IT2 FLS for modeling the linguistic human cyber-

security domain knowledge in the proposed system. 

Linguistic knowledge can be formulated using implicative IT2 fuzzy rules as 

follow (Mendel, Uncerain Rule-Based Fuzzy Logic Systems: Introduciton and New 

Directions, 2001): 

 Rule Rk: IF x1 is A1
kAND … AND xn is An

k  THEN yk is Bk  ( 3-13 ) 

 

Here, symbols Ai
k and Bk denote the i

th
 input IT2 FS and the output IT2 FS of the 

k
th

 rule, respectively, where n is the dimensionality of the input vector x  and yk is the 

associated output variable.  

The set of linguistic rules together with the representation of the input and output 

IT2 FSs can be used to create an IT2 FLS. The specific technical details of fuzzy 

inference using IT2 FLSs have can be found in literature (Mendel, John, & Liu, 2006). 

  

 
Figure 3-7.  Interval type-2 fuzzy set A

~
. 
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Cyber-Security Domain Knowledge Modeling 

The IT2 fuzzy rules can be used to linguistically describe the relationship between 

various features of the network communication and the possibility of a cyber attack. The 

window-based feature extraction technique is used to describe the global features of the 

monitored network traffic.  

Each window-based feature is first normalized into a unit interval. There are 

different approaches to fuzzifying the input domain of each attribute. Because of its 

simplicity, the fuzzification scheme depicted in Fig. 3-8(a) was used in the presented 

work. Here, two trapezoidal and one triangular IT2 fuzzy sets were used to fuzzify each 

input domain into fuzzy sets “Low”, “Medium” and “High”.  

The output IT2 FSs express the likelihood of an intrusion in the system and can be 

used to adjust the sensitivity threshold of each anomaly detection algorithm. As was 

chosen for the input domain, the output domain is modeled using the three triangular IT2 

FSs: “Low”, “Medium” and “High”. These sets are depicted in Fig. 3-8(b). 

The provided set of linguistic fuzzy rules and the described input and output IT2 

FSs are used to implement an IT2 FLSs, which calculates the specific sensitivity 

threshold of the anomaly detection. For instance, the domain knowledge can be encoded 

using IT2 FL rules such as: “If number of protocols is high then sensitivity threshold is 

low”. 

 
(a) 

 
(b) 

Figure 3-8.  Input IT2 FSs (a) Output IT2 FSs(b) 
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The anomaly detection algorithm utilizes an assumption that a representative 

normal behavior training data set has been collected. If a representative training data set 

of normal behavior is not collected, all subsequent observed traffic is marked as 

anomalous if the system is in an observation state. This IAA behavior is a fundamental 

concept underlying the use of anomaly detection techniques and is utilized to monitor 

dynamic virtual honeypots as is described later in this chapter. 

3.1.3 Network Entity Identification 

The Network Entity Identification (NEI) process passively monitors network 

traffic from which it extracts the IP and MAC address, ports and probable OS 

identification of hosts. While the primary purpose of NEI is to support dynamic virtual 

host configuration, the host information is valuable in of itself. This network entity 

information is updated on a continuous basis and made available, as messages, to both 

internal sensor components and external communications. 

3.1.3.1 Passive vs. Active Scanning for DHP support 

The two primary means for gathering the necessary network host information to 

create a honeypot includes passive and active network scanning. Unfortunately, most 

research to this point provides minimal analysis on suitable tools for passive information 

gathering. This is a key enabling capability if the intent is to deceive an attacker into 

 

Ethernet Interfaces 

D-BUS Service- Internal 

NEI DHP IAA 

Sensor Host Device 

IF-MAP - External 

SOAP 

Figure 3-9.  NEI Component 
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believing an emulated system is real. This deficiency is corrected by examining 

characteristics of six existing tools and consequently recommending a tool, previously 

not used in this context, called Ettercap (2012). 

An evaluation was conducted on six passive network information gathering open 

source tools to determine their strengths and weaknesses relevant to support of automated 

configuration. The tools evaluated for providing network host identification are: p0f 

(2012), Tshark (2012), Ettercap, Snort (Sourcefire Inc., 2009), Tcpdump (2012) and Ntop 

(Deri, 2012). Of the six tools, Ettercap and Ntop provide well-formatted structured output 

as an option.  

Another tool, called SinFP (Auffret, 2010), was removed from consideration 

because it did not execute correctly on the test sensor system. SinFP is an operating 

system identification tool that incorporates both active and passive scanning. We were 

not able to get this tool to behave properly on our test system. It would execute and never 

return when running on stored network pcap files. Little time was spent trouble shooting 

the problem and it could be examined in future efforts. 

In most of the literature reviewed, passive scanning has been implemented with 

p0f and occasionally Snort (Hieb & Graham, 2004), (Hecker & Hay, 2010). P0f is a 

command line tool that utilizes an array of mechanisms to identify hosts in a network 

stream. It is a passive OS fingerprinting tool frequently cited in creation of dynamic 

virtual honeypots. P0f by default only inspects the specifics of a SYN packet found in the 

three way handshake of a TCP connection. Not all systems in a network make this type of 

connection, or the connection initiation may be outside the window of observation, and 

without them p0f will not be able to make an OS determination. This p0f feature means 

that any hosts not sending SYN packets will be ignored and therefore not tracked as an 

entity on the network. In addition, port activity is only provided as a port number for each 

individual packet as opposed to a succinct summary output record. Port usage provides 

important network behavior information as it leads to deriving a host’s service 

availability.  

Although inherently an intrusion detection system, Snort may be run in packet 

capture mode. This mode prints individual packet information to standard out and 

provides a protocol summary. It does not track network host connections and the free 
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form text output must be parsed for information. This output should not be confused with 

the intrusion alert outputs, which are more flexible in form and distribution capability. 

While individual packet information is potentially useful for gathering low-level details 

such as IP addresses and MACs, the output is not readily parsable for identifying network 

entities. For completeness, a commercial version of the Snort program that was not 

evaluated does provide a passive OS detection system. 

Tshark is a popular open source network protocol analyzer. It is a command line 

version of the Wireshark analyzer that is capable of capturing live network traffic or 

reading data from a capture file. In addition to printing individual packet information, 

statistical and summary information can be printed. However only the packet information 

is well formed. This makes programmatic processing of the information difficult. In 

addition to the data format, several repeated executions of the software with different 

command options are necessary to gather the requisite information to meet the 

requirements of this project. Finally, output for each command is unique and requires 

custom parsing. Despite Tshark’s output challenges the summary information it provides 

is extensive and useful for HoneyPot configurations. Sample output statistics include: 

Conversation tables for eight different types, Protocol statistics, IP hosts, and port values.  

Tcpdump is a command line network capture and display tool. Individual packet 

information in configurable levels of detail is written to standard out. Similar to Snort, the 

tool provides potentially useful information but it is at a finer granularity than is 

necessary and requires a custom parsing tool. In future development, this type of detail 

might prove relevant to creating a higher fidelity of service level emulation. 

Ntop, created by Luca Deri, is an actively maintained network usage reporting 

tool. Ntop utilizes the Ettercap database and mechanisms for OS discovery in addition to 

its own implementation of network host tracking. It has two mechanisms for delivery of 

information: web visualization and a formatted text stream. The text stream does not 

contain the same information as displayed via the http protocol. The OS identification 

string and host port specifics are not present. These missing pieces of information are 

important for configuring a dynamic honeypot. This deficiency provided one decision 

point used to drop Ntop in favor of Ettercap. 
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The amount of information that may be gleaned from passive scanning is a 

limited subset of possible information (Gagnon & Esfandiari, 2011). A passive scanning 

based tool is restricted to only gathering data that is offered in the captured stream. If a 

service on a host is available, but not utilized, this data point will be missed. Active 

scanning may prove more successful at extracting this type of information.  

Nmap is an active scanning tool that has proven useful for interrogating hosts on a 

network (2012). However, a downside to active scanning is the possible interruption of 

services on hosts. This problem is especially acute in control systems. For instance, ping 

sweeps on older systems have been known to disrupt normal operation and cause 

physical damage (Duggan, Berg, Dillinger, & Stamp, 2005). Active scanning also 

provides a beacon of network activity outside the norm and could be revealing for 

intruders listening in on the traffic. In either case of active or passive scanning, the 

resulting information may be used to configure a honeypot. 

In addition to identifying network entities, NEI needs to provide the information 

necessary to create a representative virtual network presence. The essential capabilities 

examined were operating system identification, port or service identification per host and 

the capture of MAC addresses with a resolution to the appropriate vendor (Hecker & 

Tool # OS ID # of Hosts # of MACs # of IPs 

ettercap 16 45 35 44 

ntop 0
a
 202 43 39

 

p0f 13 NA NA 10 

tshark NA NA
 

69 44 

tcpdump Not Tested    

snort Not Tested    
a
Ntop displays OS information only in the web output. 

 

Table 7.  Tool Performance Results 

 

Tool OS Identify Port identify MAC Vendor 

ettercap yes yes yes 

ntop yes yes yes
 

p0f yes no no 

snort no
 

yes no 

tcpdump no yes no 

tshark no yes yes 

 

Table 6.  Tool Capability Matrix 
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Hay, 2010). Considering the results in the critical capabilities matrix shown in Table 6, it 

is clear that Ntop and Ettercap fulfill all three criteria. Of the two candidates, Ettercap 

was chosen for its support of XML output, completeness of information provided from 

this output and available functionality for support of future work. 

Table 7 presents the results when running the tools against the test network 

described in the DHP section. The system, as configured during the test, had 46 physical 

connections to the network. The second column contains the number of operating 

systems identified by each tool. Ntop’s identification of 202 hosts in column 3 contains 

duplicate entries for entities that have both IPv4 and IPv6 addresses. Additionally, 

records created for broadcast addresses inflate the host number. Ettercap outperformed or 

equaled the other tools in three of the four categories. 

Ettercap is an extensible network manipulation and reconnaissance tool. It is an 

established and popular tool in the hacking community. However, this research is the first 

to establish its use as a source of information for dynamic honeypot creation. It was run 

as a daemon process with unified sniffing. In this mode it maintains internal network host 

records and updates them as new information is found. A binary log file is continuously 

updated as well. An Ettercap companion executable Etterlog is then run on the log file 

<host ip="192.168.99.220"> 

      <mac>00:12:3F:61:4A:69</mac> 

      <manuf></manuf> 

      <distance>1</distance> 

      <type>LAN host</type> 

      <fingerprint type="unknown"> 

 2000:05B4:80:08:1:1:1:0:S:34 

      </fingerprint> 

      <os type="nearest">D-Link DWL-900AP</os> 

      <port proto="udp" addr="137" service="netbios-ns"></port> 

      <port proto="udp" addr="138" service="netbios-dgm"></port> 

   </host> 

 
Figure 3-10.  Example Host Entry 
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with a -x option to produce an XML file. An example host record is found in Fig 3-10. 

This data file is the source for communication of the network entity information to the 

dynamic virtual host configuration process. 

3.1.3.2 Messaging 

Two implementations of an IF-MAP metadata host entity message structure were 

pursued for use in NEI. The first followed the predefined IF-MAP network security 

schema and the second utilized a custom addition to the schema. This modification is 

allowed in the specification. A third possibility, that was not pursed, is creating an 

entirely new predefined metadata with any necessary custom additions. 

The second implementation was necessary because two fields are not available in 

the predefined schema. These are transport protocol, i.e. UDP, TCP, etc. and the service 

name. The protocol information is important for the DHP component. As DHP is the 

primary internal consumer for this information, it was considered important to retain the 

second option.  

In conclusion of this section, the Ettercap tool was selected for identifying 

network entities. It provides information on host IP addresses, MAC values and port 

usage. When compared with the five tools listed in Table 6, it performed as well or better 

than all of them. An additional key driving capability is Ettercap’s formatted XML output 

that can easily be integrated into other systems. Communication within an automated 

system requires a defined consistent messaging system. Lastly, Ettercap is capable of 

performing more advanced operations that could be useful for future functional 

enhancements. 
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3.1.4 Dynamic Honeypot 

In this section an algorithm is proposed and demonstrated to automatically deploy 

deceptive virtual network entities, or Honeypots, in a control system network. The 

Dynamic HoneyPot (DHP) algorithm of AICS focuses on managing the complexity of 

self-configuration by adapting to a deployed network environment. A self-updating 

model of the network devices is created and maintained by passively monitoring traffic. 

This model is used to automatically configure deceptive virtual network entities, called 

honeypots, designed to draw the focus of malicious intent (Provos & Holz, 2007). Given 

that the NEI component is deployed on the sensor, it is a natural source for the host 

information required to instantiate a dynamic virtual honeypot. This information is 

available internally on the message bus and as an XML file. The DHP algorithm creates 

unique network stack signatures with information provided by the NEI component.  

The conceptual architecture for the DHP module is shown in Fig. 3-12. The two 

primary activities consist of monitoring for host changes and dynamic updating of the 

emulated hosts. Passively gathered host information is retrieved from the internal 

message bus. For each IP address found, a comparison is made to any existing host 

information. First an operating system is identified. This identification may include 

creating an OS signature based on statistics of existing systems on the network or random 

generation. Next a MAC address for the virtual host is created with a correct vendor 

 

Ethernet Interfaces 

D-BUS Service- Internal 

NEI DHP IAA 

Sensor Host Device 

IF-MAP - External 

SOAP 

Figure 3-11.  DHP Component 
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identification portion. Care is taken not to create duplicate MAC addresses. Device 

specific information files are then consulted for inclusion of typical services. Finally, the 

existing virtual host configurations are reviewed and updated as needed. 

As part of the monitor and update process, messages are delivered internally via 

D-Bus providing information on the simulated hosts. This information may then be 

leveraged by external components to differentiate virtual hosts from real systems on the 

network.  

3.1.4.1 DHP Background and Related Work 

For the AICS solution, Honeyd was evaluated and logic created to automatically 

configure it. The resulting configuration is designed to emulate, as close as possible, any 

user identified host on the network. This is in contrast to previous work that focused 

primarily on dynamically creating several honeypots, called a honeynet, that are 

statistically similar to a network of hosts (Hieb & Graham, 2004). 

Honeyd simulates the network stack and generally provides only superficial 

services.  Because of this, an attacker is never able to gain access to the host by 

compromising a service but would quickly realize that something is amiss. The primary 

goal is not to entrap the attacker into spending all his effort on the deceptive system. It is 

to attract his attention, for at least a short time, and gather information that helps identify 

the attacker and a possibly compromised internal attack platform. 

Honeypots have uses other than presenting an emulated host. For instance, 

gathering malware by presenting a vulnerable service, acting as a mail host to collect 
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SPAM email and acting as a ‘tarpit’ that consumes all attempts to break into a system. 

These uses are not explored in this research but are provided for completeness. 

Dynamic honeypot solutions that gather network information, process that 

information into a configuration and deploy appropriately have been created as in (Hieb 

& Graham, 2004), (Hecker & Hay, 2010), (Hecker, Nance, & Hay, 2006), (Jiang & Xu, 

2004). These papers propose monitoring methods that are active, passive, combined or 

are ambiguous. When passive monitoring is implemented, the chosen tool is typically P0f 

with no analysis of competing tools provided. Finally, the test implementations are all on 

non-control system networks. 

There are two notable projects related to control system honeypots. The SCADA 

Honeynet project by Matthew Franz and Venkat Pothamsetty (2012) of the Cisco Critical 

Infrastructure Assurance Group (CIAG) was initially released in March of 2004. The 

project is not actively maintained, with a last release date of July 15, 2005, however it is 

still available from Sourceforge. The design utilizes Honeyd for simulating a set of 

services for a PLC. The major contributions of this project are service scripts, which 

include functionality for FTP, MODBUS, Telnet and a web server. However, the 

SCADA Honeynet does not consider automatic provisioning of the virtual hosts and is a 

manually configured project.  

Digital Bond, Inc. is a control system security consulting and research group 

founded by Dale Peterson. Their SCADA Honeynet (2012) implementation is an 

evolution of the original project just described. It utilizes two virtual machines instead of 

Honeyd. One virtual machine includes network monitoring tools such as Snort with 

Digital Bond’s Quickdraw IDS signatures to detect activity. The other virtual machine 

simulates a PLC with several exposed services. There is no dynamic provisioning of 

hosts or services, although it is possible to replace the virtual machine PLC with an actual 

hardware component. This assures complete deception if the PLC is configured correctly 

with the added expense of an actual hardware device. 

3.1.4.2 DHP Solution Design 

This section describes the software tool evaluation and implementation logic of 

the DHP solution. Fig. 3-12 shows the relationship of three key functional areas: Network 
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Entity Identification  (NEI), Dynamic Virtual Host configuration (DVH) and Virtual Host 

Instantiation (VHI). These act in a continuous cycle of processing and updating 

information represented by the dotted line box.  

A pseudo code of the algorithm is shown in Fig. 3-13 with implementation details 

for procedures in italics found afterward in each section. The details of NEI are discussed 

in the section found prior to this one. 

Dynamic Virtual Hosts 

This section discusses the configuration creation of the Dynamic Virtual Hosts 

(DVH). These hosts emulate the network signature of actual systems on a physical 

network. Honeyd is a popular open source solution for virtual honeypots that provides a 

flexible and feature rich configuration capability. As autonomous configuration is a 

desired aspect for minimization of expensive manual configuration, Honeyd’s 

configuration flexibility is an advantage. The overall goal is the automatic configuration 

and dynamic update of a variable length list of virtual hosts based on information 

gathered from actual hosts using Ettercap. 

The following sections describe four functional areas in DVH: OS selection, OS 

name mapping, MAC creation and Service (port) emulation. 

 

Operating System Selection 

For any given host on a network, Ettercap may not be able to identify the 

operating system. If this occurs, for an emulation target, then an OS must be chosen. It is 

Create and update virtual hosts with following: 

Network Entity Identification. 

Write entities to XML.  

 

Read_data; from input files and Ettercap 

For each IP create a Dynamic Virtual Host 

Find_closest representative OS. 

Map_OS values to Honeyd names 

Create_MAC address for new hosts 

Create_Features for device specific behaviors 

Create_Config for virtual hosts 

End 

Figure 3-13.  DHP Pseudo Code 
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desirable to provide an exact match in network behavior. This does not necessarily 

require an exact match with the OS name in the database.  

Read_data consists of extracting n host records h from the Ettercap entries and 

forming a record set O such that O = {h1, h2,…, hn}. O then becomes a source of 

information for creation of virtual hosts. The intention is to examine these records for 

similarities to an IP address i provided in a list IL of j target IP addresses where IL = {i1, 

i2,…, ij}. An assumption is being made that the hosts h on the network have an OS similar 

to a candidate i even if an exact match is not found.  

Given that Ph is a set of port values for a host h and a network port set Si for target 

i, Find_closest examines the intersection of SiPh for all h in O. The integer count of 

matching ports is stored for each intersection. Additionally, the number of ports for the 

target is calculated. Given these values, a match percentage is calculated, e.g. two 

candidate ports and an intersection count of two constitute a 100% match. Candidates 

with a higher percentage were considered to be more similar. Some OS’s utilize ports 

specific to services offered by that OS and they could be used in identification (Gagnon 

& Esfandiari, 2011). Similarly several industrial control systems use specific ports not 

usually found in use by typical IT systems. Usage of these ports provides a clue towards 

the identification of the device and the possible OS. 

If a candidate OS is not identified by examining ports, then the MAC address is 

examined. Find_closest compares the vendor identification section of the candidate MAC 

address of i to the MAC addresses for each host h in O. If a match is found that has an 

identified operating system, this value is placed on a candidate list. After exhaustively 

examining O, the largest matching value, if one exists, from the candidate list is chosen 

as the OS. The assumption is that if hosts on the network have the same NIC vendor they 

may be performing similar functions and thereby have a similar operating system. As is 

described later, several control system vendors have an organizationally unique MAC 

identifier for their network devices. 

If no prior step has identified an OS, a random number r is generated in the range 

0 to N where N is the cardinality (O). If the host record hN OS field exists, this value is 

utilized. If not, a random value supported by Honeyd is chosen. In other words, a field is 

possibly selected for inclusion proportional to the relative frequency of its presence in O. 
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Given that not all host records contain an OS, and possibly none of them; the completely 

random OS value is required. 

Once an OS is identified by the selection algorithm or trivially identified by 

Ettercap further action, as described in the next section, is still required. 

Operating System Name Mapping 

 The Honeyd configuration value for an operating system makes use of the Nmap 

version 1 database defined named values. Similarly, Ettercap utilizes its own defined 

name values that do not directly match Nmap. To make a functional configuration, a 

simple algorithm implemented in Map_OS was developed to associate Ettercap names 

with Nmap names. The algorithm’s initial pass compares the word tokens of the OS 

names looking for case insensitive string matches. The number of word matches were 

summed and stored. After iterating through each possible OS combination, the one with 

the largest count total is presented as a candidate. Finally, each OS name combination is 

written to a file for reference during creation of the configuration. 

MAC Creation 

Honeyd provides two options for specifying the MAC address, either by vendor 

name or the six-octet string. Because Honeyd has hard coded vendor strings, the six-octet 

representation was chosen for use in the algorithm. Ettercap captures this MAC octet 

address for all hosts in O. The MAC protocol specifies that the first three octets are 

organizationally unique and should not overlap with any other vendor. Thus, in order to 

create a new MAC address that appears to come from a specific vendor, these first three 

octets were used. The vendor typically assigns the remaining three octets. In this 

algorithm these last three octets are created as described next.  

In the Create_MAC function, the last three octets are randomly generated and 

appended to the end of the captured candidate vendor portion. This new MAC is then 

compared with all other MAC’s noted in the Ettercap host list O. Any collision of 

addresses instigates a recreation of another random set of values. Given the 2
24

 possible 

values, the probability of a collision is low. Depending upon the security configuration of 

a deployed switch, these generated MAC values may require more refinement. For 

instance, if port security is enabled on the network switch the available MAC’s would 

have to be predefined. 
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Network Service Emulation 

The host entries in O contain network ports, previously defined as Ph, that were 

active during the capture session. Along with the port number, a port service name is 

available. This service name is a human readable text value that is defined in an Ettercap 

configuration file called etter.services. Utilizing the service names contained in this file, a 

new configuration file called serv.conf was created. This file maps the service name to a 

service emulation script path.  

The Device_Features function examines any service ports found in the Ettercap 

output and loads the serv.conf file. Any service name match to entries in the file results in 

the appropriate service script value placement in the Honeyd configuration. This enables 

the creation of service specific behaviors that furthers the goal of deception. Currently, 

the manual creation of scripts is necessary although some service scripts are already 

available from other projects.  

In addition to services found during passive scanning, a variable number of ports 

associated with the common services are randomly activated. A common service 

mapping file for control system devices is utilized by the Device_Features function. It 

consists of a hierarchical MAC mapping structure. Generally, in the case of a control 

system device, the vendor portion of the MAC is directly tied to the device manufacturer 

enabling usage of the mapping file (MF) to find relevant services. 

Constructed utilizing XML, the MF maps the vendor MAC to a list of common 

services that are possible to find activated on a device of this type. Each service in the file 

is described by the following attributes: port number, protocol, service description and 

action script. The action script specifies which script Honeyd should utilize, if any, when 

it sees traffic to this port. A value in this field will overwrite any previously defined 

default script found in serv.conf. This provides the capability to customize a response to 

this specific device type while still retaining generic service emulation functionality.  

Each service description has an 'include' value. This is a floating-point value 

between 0.0 and 1.0. This value is compared to a randomly generated value in the 

appropriate range. If the random value is less than the include value, the port is added to 

the honeypot configuration. The intention is to vary port inclusion to represent the 

variability in device configurations.  
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An analysis of available vendor product specifications was used to create this file. 

For example, the test system contains a Rockwell Micrologix 1100 Programmable Logic 

Controller (PLC) and the possible services listed for this consist of Ethernet/IP, web 

services, SMTP email (outbound) and SNMP (Rockwell Automation, 2005). 

Virtual Host Instantiation 

The candidate emulation hosts are provided at startup as a list of IP addresses. It is 

assumed that if a host in the list disappears from passive sensing or is not initially found 

in the traffic, the user still desires to have an emulated version of it. The overhead to 

maintain the missing hosts records is minimal. Of course, the actual system has to have 

appeared in the passive analysis during the monitoring period to create an initial virtual 

host configuration that is representative. Otherwise random values are chosen until 

further information is found.  

An initial configuration file is created by Create_Host_Conf. Changes to the 

configuration of the virtual hosts running under Honeyd are performed while the system 

is running. After a configurable time period, currently an arbitrarily chosen 60 seconds, 

etterlog is called on the ettercap daemon log file. The resulting XML output is saved and 

compared to an existing configuration file. Differences in network host information are 

noted and stored in a list for possible action. Actions include adding network services, 

updating OS configuration and changing MAC addresses. A companion Honeyd 

executable file, called Honeydctl, provides this functionality. 

A simple example Honeyd configuration file, created from the process just 

described, containing one virtual host configuration is shown in Fig. 3-14. 

create vh1 

set vh1 personality "Linux 2.4.xx" 

set vh1 default tcp action reset 

set vh1 default udp action reset 

set vh1 default icmp action reset 

add vh1 tcp port 23 "/script/router-telnet.pl" 

set vh1 ethernet “00:00:BC:A1:00:23” 

bind 192.168.1.125 vh1  

Figure 3-14.  Example Honeyd Configuration 
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3.2 Empirical Test 

This section describes an AICS test system, a test scenario and empirical results. 

First, the network layout and sensor hardware platform are shown. Second, a five-step 

testing scenario is presented. Third, each testing step and its execution is described in 

more detail. The description includes a performance evaluation of the relevant 

components and sampled IF-MAP messages. 

In the following test scenario, scans and probes are directed at all devices on the 

network representing the reconnaissance phase of an intrusion. This assumes the attacker 

does not have a network map and is interested in discovering what devices are present. 

The goal of the security system is to generate informational alerts about the anomalous 

behavior from this activity. A secondary goal is the diversion of attention and effort of 

the attacker to a virtual honeypot system. Keys for success include: a faithful imitation of 

real devices on the network, a mechanism for monitoring activity directed at the hosts, 

and appropriate communication of host information and alerts. 

The test deployment is an operational control system network with a 

heterogeneous mixture of devices. There are two possibilities for timing when the 

honeypots are instantiated to emulate a subset of the devices. The first approach, used in 

this test scenario, is to create the virtual hosts in advance of any anomalous occurrences. 

This would increase the probability of a network scan identifying the hosts. It removes 

the race condition between recognizing an anomaly and getting the hosts instantiated in 

time to be noticed. One weakness of this approach is the initial reduced fidelity of 

emulation by the virtual hosts. Unless the NEI component has been run in advance there 

will be little information about the actual hosts on the system. However as NEI gathers 

more complete information the virtual hosts are reconfigured to reflect the updated 

knowledge. 

The second approach, with the race condition, would be to instantiate the hosts 

after an indication of intrusion has occurred. This indicator could come from a traditional 

intrusion detection system or from the IAA component. Given the DHP use of virtual 

hosts with its reduced hardware requirements, a dedicated integrated host and low 

network impact; there is little benefit to delaying instantiation until after detection. 



55 

 

 

3.2.1 Test Network 

At the beginning of the scenario, all real devices are running and an AICS sensor 

host is connected to the control network as seen in Fig. 3-15. As the NEI component 

becomes aware of changes in the host characteristics, the honeypots are automatically 

reconfigured to include the new behavior. The emulated hosts become more authentic 

appearing, in the service ports offered, over time. As already mentioned, this early 

instantiation reduces the risk of a stealthy intruder bypassing the honeypots, as they will 

most likely be present prior to the malicious activity. 

A small campus grid (SCG) and sensor network that physically resides at the 

Center for Advance Energy Studies in Idaho Falls, Idaho was used as a test platform. The 

network consists of a heterogeneous mixture of 46 directly connected devices, including 

wireless sensors monitoring environmental conditions in the building. The SCG is 

connected to a small wind turbine, a solar power station, a wireless Advanced Metering 

Infrastructure (AMI) with two wireless access points (WAP) and a variety of control 

system devices. Twelve smart meters, which wirelessly connect to the WAP’s, are 

physically attached to test harnesses to generate a signal. The network has several 

Windows based computers, web camera’s, a Rockwell Automation Micrologix 1100 PLC 

and a National Instruments PLC. The Micrologix controls or monitors 6 lighted push 

buttons, 7 lights, 2 potentio-meters, 2 temperature sensors and a small electric fan which 

Wireless Sensor Networks 
Sensor 

Control Network 

Switch 

IF-MAP Server 

Management Network 

Control System Devices 

Figure 3-15.  Test Network Diagram 
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constitutes both digital and analog input/output points. All of the network hosts are part 

of a single network segment directly attached to a Cisco network switch with a SPAN 

port. The SPAN port receives a copy of all network traffic and is used for monitoring by 

AICS. This network segment is labeled in Fig. 3-15 as the Control Network. 

The SCG includes access to three wireless sensor networks from the following 

commercial vendors: Emerson, Honeywell and Arch Rock. Each one of these three 

systems connects to wireless environmental sensors through one or more wireless access 

points. As with the previously mentioned AMI deployment, the WAP gateways have both 

a wired network connection and a wireless interface to the remote sensors. The multitude 

of environmental sensors is not directly visible to the wired test network. However the 

wired side of the WAP communication is visible to the AICS device. Several data 

historian hosts attach to the WAP’s on the wired side and retrieve the environmental data 

using the appropriate protocol. Each vendor has a unique implementation of a wired 

network protocol built on top of Ethernet. 

The implemented AICS software was deployed on a test hardware platform. This 

platform runs a 32 bit Ubuntu 12.04 LTS OS on a recently released Via AMOS-5002 

fanless compact embedded system. It consists of a VIA dual core EdenX2 (U4200) CPU, 

4 GB’s of DDR3 1333MHz RAM, a 320GB SATA II hard drive and 3 Gb Ethernet ports. 

One of the Ethernet ports, indicated in Fig. 3-15 as an arrowless line between the sensor 

and control network, was assigned to the dynamic virtual honeypot for emulation of 

network hosts on the control network. A second interface was dedicated to passive 

monitoring on the switch SPAN port by the anomaly detection and entity identification 

modules. The third interface was utilized to provide external IF-MAP communications on 

the management network for the sensor. The management network is a separate network 

segment from the Control Network. Its use is to convey messages between the AICS 

device and other management components without interfering with the operational 

network. The AICS host hardware was chosen for its flexibility of deployment in 

industrial/commercial environments and a relatively strong computational capability. 
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3.2.2 Test Scenario 

The steps in Fig. 3-16 provide a scenario devised to test the communication and 

managed resource functionality of AICS when deployed on the SCG network. Each step 

provides a high level action followed by the primary functionality to be evaluated. In 

general, verification is accomplished by inspection of IF-MAP messages or local 

component data stores. The results of the verification and other related information is 

provided in the evaluation section following the test layout. 

A C++ and PERL implementation of the AICS framework was run on the test 

sensor platform attached to the operational test network. Additionally, two test tools were 

created to facilitate execution of the scenario. Tool one provides the input IP addresses to 

the MAP server for subsequent delivery to both the DHP and IAA. Tool two monitors the 

MAP server for published messages from the sensor. 

During execution of the scenario, traffic from the control network was captured 

on the switch’s SPAN port and preserved in a pcap formatted file. The captured data 

provides a consistent baseline for repeat system evaluation. In the presented scenario and 

results, the sensor was attached to the live system unless otherwise indicated. The 

preserved traffic was subsequently used to perform evaluations on the AICS sensor. The 

test results from the system, using this stored data, produced no discernable differences 

with those found in the live scenario. In other words, the results are repeatable and 

deterministic. 

Step 1: Attach sensor to SCG network and initiate system. 

- Evaluate NEI host identification model, dynamic updates and related IF-MAP 

messages. 

Step 2: Send IP lists to DHP Component 

- Test dynamic virtual host creation based on IP list and utilization of NEI host 

information from step 1. 

Step 3: Target Network probes at DHP hosts. 

- Verify emulated network presence of devices. 

Step 4: Send IP list to IAA anomaly behavior monitoring. 

- IAA initiates learning mode, creates normalization and clustering values for fuzzy 

rule creation. 

Step 5: Send monitor message to IAA and initiate network attacks. 

- IAA recognizes attacks and sends IF-MAP alerts. 

Figure 3-16.  AICS Test Scenario 
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3.2.3 Scenario Execution and Results 

STEP 1- Attach sensor to network and power on. 

As the sensor started to recognize hosts on the network the NEI component 

created its internal model and produced host messages. The internal host model is stored 

as an XML file and made available to the DHP component through messaging. Updated 

host messages are published to the MAP service every 60 minutes if a change occurs. 

During the complete test cycle, 45 of the 46 devices were identified by NEI. The single 

unidentified host used a custom protocol that does not utilize IP addresses and 

consequently was not recognized by NEI. This host is the Honeywell wireless access 

point. It communicates using raw Ethernet frames and is characteristic of a Honeywell 

proprietary protocol. Because it does not utilize an IP address for communication, 

Honeyd cannot emulate this device. 

A sample IF-MAP NEI host message captured during step 1, slightly modified for 

space, follows: 

STEP 2 – Send IP lists to DHP component. 

A PERL implementation of the DHP algorithm was run on the test sensor 

platform. Twelve heterogeneous systems, shown in the second column of Table 8, were 

<metadata> 

<meta:host ifmap-cardinality="multiValue" ifmap-publisher-id="test--137625522-1" 

ifmap-timestamp="2012-03-26T14:40:33-06:00"> 

<start-time>2012-03-26T14:40:00</start-time> 

<mac>00:12:3F:61:4A:69</mac> 

<ip>192.168.99.220</ip> 

<os>D-Link DWL-900AP</os> 

<port_list> 

<port proto="udp">137</port> 

<port proto="udp">138</port> 

</port_list> 

</meta:host> 

</metadata> 

Figure 3-17.  NEI IF-MAP host message 
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evaluated. The ID column is used as a reference identifier and corresponds to the last 

octet used in the emulated IP address. These hosts represent a variety of equipment found 

on the test network including network switches, PLC’s and WAP’s. Using tool one, an 

IF-MAP message containing the twelve host IP addresses was published to the IF-MAP 

server. AICS retrieved the list and delivered the information to DHP. An example 

message with three hosts is shown in Fig. 3-18. The format is a list of tuples with the R= 

line indicating the real host to emulate and the E= line designating the IP to use for the 

corresponding virtual host. The IP’s in the message are used as a key to lookup host 

information published from the NEI internal model.  

The DHP component, using the NEI information, was able to automatically create 

virtual hosts for all twelve of the network-attached devices. Each emulated host was 

assigned its own unique IP and MAC address and was instantiated on the test sensor 

hardware. Furthermore, as the NEI component became cognizant of more host details, 

each related virtual device managed by DHP was updated to reflect the new information. 

For example, when a host started communicating on a new port the virtual host was 

automatically reconfigured to emulate it. 

R = 192.168.1.1 192.168.1.3 192.168.1.10 

E = 10.10.10.1 10.10.10.3 10.10.10.10 

Figure 3-18.  Sample IP monitor list 
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Twelve systems shown in the first column of Table 8 were evaluated; six control 

devices and seven more typical information technology devices. The ID column is used 

as a reference identifier and corresponds to the last octet used in the emulated IP address. 

Of the twelve devices chosen for emulation, ten operating systems were configured 

autonomously and two were assigned as ‘random’. If NEI is not able to identify an OS, 

then DHP randomly choses a value from the list of identified OS’s in the host model file. 

The assumption is that devices on a network are likely to have OS’s similar to each other. 

Another option is to randomly pick one of the thousand OS’s defined in Honeyd. The 

third column in Table 8 shows the mapped OS names selected by the algorithm. Host IF-

MAP messages similar to those in Step 1, only with a different identifier to differentiate 

real from emulated hosts, were created and published to the MAP server for the twelve 

emulated hosts. 

 

STEP 3 – Target network probes at 12 DHP emulated hosts. 

 

ID Device Mapped OS 

1 Rockwell HMI MS Windows ME, 2000 Pro or Advanced 

Server or Windows XP 

2 Micrologix 1100 PLC Novell NetWare 3.12 - 5.00 

3 Arch Rock Server Random 

5 Honeywell HMI MS Windows ME, 2000 Pro or Advanced 

Server or Windows XP 

10 Arch Rock WAP Random 

25 D-Link WAP Apple Airport Extreme Base Station 

(WAP) 

99 D-Link Wireless camera Apple Airport Extreme Base Station 

(WAP) 

130 Arch Rock HMI MS Windows ME, 2000 Pro or Advanced 

Server or Windows XP 

150 Nat. Inst. PLC MS Windows ME, 2000 Pro or Advanced 

Server or Windows XP 

200 Emerson WiHart AP Linux 2.4.16 - 2.4.18 

215 HMI(Windows PC) Windows for Workgroups 3.11 / TCP/IP-

32 3.11b stack or Windows 98 

253 Moxa 505A Switch FreeBSD 4.4 for i386 (IA-32) 

 

Table 8.  Host Identification Results 
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This step verified, from a network perspective, that the emulated hosts exist and at 

a superficial level appear as separate, diverse devices. In addition to the OS emulation 

performance exercised in Step 2, seven network test probes with Nmap were completed. 

Nmap is a network scanning tool that is commonly used to find attached hosts, scan ports 

and identify operating systems (Lyon, 2008). The four probes included OS detection, IP 

protocol evaluation, ICMP echo ‘pings’ and UDP/TCP port scanning. Nmap version 5.21 

was chosen to test the network presence of the emulated devices. This version utilizes the 

second generation Nmap OS database that is actively maintained. It uses a more robust 

guessing implementation for uncertain signatures. Additional improvements include 

probe changes, recognition algorithms and performance. A laptop, with Nmap and ping 

installed, was assigned the IP address 192.168.1.15 and attached to the SCG network. 

The laptop filled the role of network intruder and was the source of the network probes. 

The seven tests are described in detail next. 

 

STEP 3 - Test 1:  nmap -n -sP 10.10.10.0/24 

This simple test performs a ‘ping sweep’ on all 256 addresses in the range that 

contains the 12 emulated devices. A combination of an ICMP echo request, TCP SYN to 

port 443, TCP ACK to port 80 and ICMP timestamp request are sent. Any system that 

responds to one of these requests is considered available on the network. All twelve of 

the emulated addresses were found in 2.2 seconds. 

 

STEP 3 - Test 2: nmap -n -v -A -T4 -iL nmap.testhosts 

This command line is the first example provided in the Nmap man page 

documentation. The –A option enables aggressive scan options including OS detection, 

version scanning, script scanning and traceroute. The –T4 option is a timing template that 

improves scan time on reasonably stable networks. Note, that by default, Nmap only 

scans 1000 of the most commonly used ports. It completed in 234 seconds. 

OS detection in Nmap is based on a database of signatures. Each fingerprint 

record in the database contains four fields: vendor, OS family, OS generation and device 

type.  Output from detection includes lists of possible operating systems and device 
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classes with an accuracy score. The score falls in a range of 0.0 to 1.0 with the later 

indicating a perfect match. 

 The OS detection produces large amounts information. For the 12 emulated 

devices, 223 device types and 40 OS matches were returned. In both cases, accuracy 

ranged from 85% to 97%. As there were multiple results for most of the emulated 

devices, any of the entries that matched either the original device or its mapped OS were 

considered a success. Of the ten non-random devices, Nmap correctly identified seven for 

a 70% success rate. Of the three that failed, no information was produced for device 2. 

Twenty-one incorrect entries were created for device 215. Device 5 was identified by one 

incorrect entry. 

 

STEP 3 - Test 3: nmap -sU -sS -O --osscan-guess -n -p1-65535 

The –sU option executes a UDP scan to each port specified. For some common 

ports a protocol specific payload is included but for most of them the packet is empty. 

The –sS option tells Nmap to send only a single SYN packet to each port. This is the 

initial packet sent in a TCP connect sequence. The –O option enables standard OS 

guessing while –osscan-guess makes Nmap guess more aggressively. Finally, the –p 

argument specifies to scan all possible ports instead of the default top 1000. The tool took 

258 seconds to complete the configured actions. 

The results from this Nmap execution were similar to those in Test 2 with some 

exceptions. First the correct OS guess for device 253 increased in accuracy by 2 points. 

Second device 215 was correctly identified with an accuracy score of .86 were previously 

it had failed. This increased the overall identification rate to 80%. It should be noted that, 

because of the broad port scan range, port 44818 for device 2 was found. This port was 

missed in Test 2. This is a common port used by the Rockwell Ethernet/IP protocol that is 

specific to that control system implementation. 

 

STEP 3 - Test 4: nmap –sO –n  

This scan sends IP packets and iterates through the eight-bit IP protocol field. The 

emulated hosts responded to only three of the 256 protocols: ICMP, TCP and UDP. 
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STEP 3 - Tests 5-7: ping -c2 –R, ping -c2 -T tsonly, ping -c2 -T tsandaddr 

Utilizing the ping command line tool, ICMP echo requests were sent to the 12 

emulated and 46 actual devices on the test network. ICMP packets are wrapped in an IP 

datagram and can contain IP option fields. Three rounds of requests were sent, one with 

the Record Route (-R) option, one with timestamp only (tsonly) and finally the option 

with both IP and timestamp (tsandaddr). All but one of the physical devices responded 

with varying levels of correctness to the pings. None of the 12 emulated devices 

responded correctly. The results for tests 4-7 are discussed more fully in the evaluation 

section. 

 

STEP 4 – Send IP List and monitoring request to IAA. 

Three IP addresses were selected for monitoring by a C++ implementation of the 

IAA component. A message containing the IP’s was sent to the MAP server with tool 

one. IAA retrieved this message and started passively monitoring for the appropriate 

network traffic. For evaluation purposes, the training mode was constrained to contain 

100,000 packets recorded during normal network usage. This training occurred prior to 

the network scans in step 3. An isolated network was maintained to ensure the normality 

of the recorded data. 

The configuration of the IAA fuzzy logic based anomaly detection routine is 

maintained in an XML file. This allows for exploring the effect of changing key 

parameters for clustering, fuzzy rules, network packet windows and more. Prior work 

exploring these variables can be found in (Linda O. , Vollmer, Wright, & Manic, 2011), 

(Linda, Vollmer, & Manic, 2012). The values used for the test scenario are provided in 

Table 9. Seventeen features were derived from a twenty packet network buffer. These 

Configuration Item Value 

Data Window Length 20 

Data Dimension Input 18 

Data Dimension Output 17 

Data Normalization Input Length 1000 

Normalize Data Yes 

Cluster Spread 2.0 

Cluster Blur 0.2 

Maximum Cluster Radius 0.25 

 

Table 9.  IAA Configuration Values 
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features were normalized and clustered using an online nearest neighbor algorithm with a 

radius of 0.2. The resulting clusters, for the three individual IP communication streams, 

were composed of 19, 57 and 2 cluster members. These cluster sizes reflect the 

heterogeneous network behaviors of the different devices. 

STEP 5 – Send monitor message and initiate network attacks. 

Following the collection of training information in the previous step, 200,000 

packets with abnormal behavior comingled with normal behavior were evaluated. This 

set of data included the Nmap tests that were run during the DHP testing in Step 3. 

The Nmap and Nessus software applications were used to generate anomalous 

network traffic behavior. Nessus provides auditing capabilities, system vulnerability 

assessments, and profiling information (Nessus webpage, 2012). The simulated intrusion 

attempts included but were not limited to: ARP pings, SYN stealth scans, port scanning 

and control system specific device probes. Cyber attacks ranged from long attacks 

composed of many packets to short attempts of single packets.  
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Table 10 depicts the results of the anomaly detection for five streams. The three 

rows labeled 0.3, 0.6 and 0.9 show the performance with a fixed sensitivity threshold 

value. The IT2 row provides the performance with domain knowledge encoded in the 

form of fuzzy rules performing dynamic adjustment of the sensitivity threshold. The 

correct classification, the false negative and the false positive rates were used as 

performance measures. The correct classification rate is the percentage of correctly 

categorized data packet instances. The false negative rate is the ratio of incorrectly 

labeled normal behavior inputs and the overall number of normal behavior instances. The 

false positive rate is the ratio of incorrectly labeled anomalous inputs and the overall 

number of anomalies.  

Threshold Correct Rate False Pos. False Neg. 

STREAM 1 

0.3 99.8539% 0.1461% 0.0000% 

0.6 99.8705% 0.1295% 0.0000% 

0.9 99.8788% 0.1212% 0.0000% 

IT2 FLS 99.8722% 0.1278% 0.0000% 

STREAM 2 

0.3 99.9037% 0.1217% 0.0275% 

0.6 99.5504% 0.1082% 1.3753% 

0.9 99.3799% 0.1082% 2.0079% 

IT2 FLS 99.9111% 0.1116% 0.0275% 

STREAM 3 

0.3 99.8643% 0.2953% 0.0000% 

0.6 99.8960% 0.2265% 0.0000% 

0.9 99.8960% 0.2265% 0.0000% 

IT2 FLS 99.8960% 0.2265% 0.0000% 

STREAM 4 

0.3 99.9025% 0.0975% 0.0019% 

0.6 99.8705% 0.0985% 0.3538% 

0.9 99.8788% 0.0712% 0.9091% 

IT2 FLS 99.8722% 0.1278% 0.0025% 

STREAM 5 

0.3 93.5655% 5.002% 6.7257% 

0.6 93.7096% 4.9295% 6.8538% 

0.9 93.7088% 4.9294% 6.9091% 

IT2 FLS 93.7092% 4.9295% 6.7330% 

 

Table 10.  Anomaly Performance 
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An example asynchronous IF-MAP message describing abnormal behavior is 

shown in Fig. 3-19. This message provides the device name of the sensor and describes 

an anomaly found between two IP addresses. The .220 address is one of the three being 

monitored and the .10 was the origination of the attacker. The proto_list shows that the 

20 packet window contained UDP and ICMP protocol packets. 

 

3.3 AICS Evaluation 

This section describes the performance of the AICS implementation. First it 

provides hardware and software performance numbers that were monitored during test 

<notify> 

<device><name>CS:ID1:002</name></device> 

<metadata> 

<event ifmap-cardinality="multiValue"> 

<disc-time>2012-03-26T14:50:00</disc-time> 

<confidence>1.0</confidence> 

<type>behavior</type> 

<window-size>20</window-size> 

<ip_list> 

<ip>192.168.99.220</ip> 

<ip>192.168.99.10</ip> 

</ip_list> 

<proto_list> 

<proto>1</proto> 

<proto>3</proto> 

</proto_list> 

</event> 

</metadata> 

</notify> 

Figure 3-19.  IAA IF-MAP Anomaly Message 
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execution. Second the hardware and system OS issues are discussed. Finally some 

limitations and issues with the software tools are explored. 

3.3.1 Hardware and Software Performance 

The CPU and RAM utilization was monitored during the test scenario. As the 

hardware platform is a fanless system, temperature data was recorded as well. The 

200,000 anomaly evaluation packets contained 19,627,063 bytes of payload information. 

Approximately 97 packets per second were processed at normal network transmission 

speed. It was observed that each anomaly alert sent from IAA on the IF-MAP mechanism 

incurred an overhead of .7ms of communication processing time.  

The CPU thermal sensors were polled every 5 seconds. Room temperature at the 

start of the test was 23C. Core 0 temperature after a 5-minute warm-up period was 44C. 

Values during the test ranged from 42C to 47C. Core 1 temperature during the warm-up 

period was 45C. The test values ranged from 43C to 48C. It is speculated that the 

difference in the range low value and the initial start might be due to variations in room 

temperature during the test. 

The at-rest CPU utilization, as measured by the Linux top command on one-

second intervals, was 1.1%. This was due mainly to the Xorg process providing HMI 

services. In a production release services of this type would be disabled. The utilization 

maximum during the test was 47.4% with an average of .65% and standard deviation of 

2.29%. The maximum occurred when the virtual honeypots were probed with Nmap. The 

Figure 3-20.  Test system CPU utilization 
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graph in Fig. 3-20 shows the sampled CPU utilization before and after the maximum that 

occurred between time index 100 and 181. Another key performance indicator for Linux 

machines is the amount of time the CPU has been waiting for I/O to complete. The 

maximum value was 10% with an average of 0.59% and standard deviation of 0.62%. In 

other words, the machine was not overwhelmed with the test data when running in real 

time. 

System memory on the sensor platform at the beginning of the test, prior to 

initiating network activity, was 801,516 kilobytes. Peak overall usage was 881,308 

kilobytes. DHP related processes consumed a steady 20 megabytes of information. 

Internal messaging averaged 4 megabytes. IAA related processes used 13 megabytes. 

Finally, the NEI components utilized a consistent 36 megabytes of memory. Overall 

continued growth of sensor memory usage was attributed to non-sensor related processes 

such as Xorg. Turning off unneeded services, such as graphic management, would reduce 

the memory footprint. 

3.3.2 Hardware and OS Evaluation 

Scalability of the AICS solution relies primarily on the capability of the hardware 

host. Honeyd is technically capable of emulation 65,535 hosts. Testing by the Honeyd 

authors shows that, on a modest system, thousands of different honeypots are possible 

(Provos & Holz, 2007). To validate this claim, a test with 986 unique virtual hosts was 

run on the test platform. The Honeyd OS signature database contains 986 entries.  

The Nmap command in Test 1 was executed targeting the 986 IP’s. The top 

command was run on a 1 second interval to capture CPU and memory usage of the 

Honeyd daemon. At rest, prior to the Nmap tests, 8,748 KB’s of memory was consumed. 

8,860 KB’s were used at the conclusion of the test. The average CPU utilization was 

0.3% with a standard deviation of 1.23% and a maximum of 14.9%. This testing is not 

comprehensive but does validate that, at a superficial level; a large number of virtual 

hosts can be created on the test hardware. Honeyd is single threaded and with more 

intensive probing it is possible to maximize utilization of a single CPU. The test system 

has two CPU’s and can continue to function even if this occurs.  

The sensor host device setup requires physically connecting the device to the 

networks. There are three physical copper network ports on the device. Eth0 was 
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connected to the network switch SPAN port in read only mode. The NEI and IAA 

components shared this monitoring port. Eth1 was connected to the management network 

for read and write. This port was utilized for IF-MAP communications. Eth2 was 

connected to the operation network and assigned for use by the virtual honeypots. The 

average poll cycle of the wireless monitoring systems occurred once every minute. 

Playback of captured test data at rates from 0.6 Mb/s to 20 Mb/s showed no discernable 

difference in the AICS average detection rate. The first observable accuracy issue occurs 

when the physical network port capacity is overrun.  

The Honeyd instance running on Eth2 is the primary network threat to the AICS 

host. This is a natural outcome as honeypots are designed to attract attention. This threat 

is partially mitigated by the design of Honeyd. The software runs as a restricted user and, 

by default, does not provide any real services to compromise. For instance, on a high-

interaction honeypot there are real shell services that might be compromised. Note that 

this does not rule out a denial of service or exploitation of a flaw found in Honeyd itself. 

In addition to the Honeyd features, a host monitoring system such as OSSEC (Hay, CId, 

& Bray, 2008) can be utilized to provide self-monitoring.  

AICS was developed as a deployable modular framework on a commonly 

available hardware platform with components that provide network host information, 

identify anomalous network traffic behaviors and deploy dynamic virtual honeypots. In 

the test scenario, the sensor was deployed on a self-contained hardware platform. This 

effectively hides the communication between components from other network entities, 

thereby adding another layer of defense. When considering the addition of information 

from external hosts on the IF-MAP interface, a balance between security and information 

access would need to be evaluated.  

The test hardware host uses a Long Term Support (LTS) version of Ubuntu 12.04. 

This OS has a five-year support cycle that includes security upgrades. As part of the 

hardware design, three physical Ethernet ports were specified. The ports are all assigned 

to a specific communication task to avoid a complete denial of network service on the 

sensor. For instance, if a large number of honeypots are active and consuming the entire 

bandwidth of a single port the system can still communicate on another port assigned to 

the management network. 
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Finally, it is not required that Honeyd and the anomaly behavior routines reside 

on the same machine. However, by condensing the software installs to one platform, it 

simplifies configuration. It creates a more secure mechanism for passing messages, as the 

information never leaves the machine. This also provides an opportunity to explore the 

recently expanding computational capabilities of low power multi-CPU devices.  

3.3.3 Tool Limitations Evaluation 

This section describes issues found with the tools used to implement the 

automatic configuration algorithm primarily Honeyd. They are provided as findings 

relevant to the specific tools and are not detractors directly related to performance of the 

AICS algorithm. The deficiencies found are special cases of characteristics that are not 

commonly examined. A review of literature has found similar types of weaknesses in 

other honeypot implementations so this is not necessarily unique to Honeyd (Mukkamal, 

Yendrapalli, Basnet, Shankarapani, & Sung, 2007).  

Examination of the emulated test systems, using the Nmap protocol scan, revealed 

a Honeyd limitation. As was noted in Test 4, the emulated hosts only responded to three 

protocols. When run against real devices in the test network, a variety of responses are 

noted. This includes a varying number of protocols acknowledged. A review of the 

Honeyd source code reveals that basic support for other protocols could be added. 

An issue with the handling of the IP options field was discovered with Honeyd in 

tests 5-7. The IP datagram format consists of a header, option and data sections (Internet 

Protocol, 1981). The option section is a variable length list of options, up to 40 bytes, that 

is not typically used. Of the five currently defined options, two are relevant to this 

project: Record Route and Timestamp.  Record Route requests that the target, and each 

hop on the path to it, add their IP to a list in the option field. Timestamp has three request 

variations: timestamp only, timestamp with IP and a preloaded IP list. Honeyd does not 

support any of the options. 

As this field in the IP header is optional, support by vendors vary from none to 

dropping packets that contain options. A study done in 2005 found a 45% success rate for 

Record Route and a 36% success rate for the Timestamp option when implemented in a 

SYN packet sent to web servers located on the Internet (Fonseca, Porter, Katz, Shenker, 

& Stoica, 2005). Another study, performed in 2010, on 267,736 Internet addresses found 
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a 47.7% response rate to Timestamp requests delivered in an ICMP Echo Request 

(Sherry, 2010). These studies show that, despite being optional, a significant number of 

devices provide some level of support and therefore make it a concern for emulation. 

Honeyd is built with a library named libdnet. This library has the requisite functionality 

to correct the issues noted. 

Honeyd uses an older version of the Nmap database scheme. There are two 

primary drawbacks to this condition. First, the fingerprints are not updated and are 

missing more modern signatures. Second, there is very little control of the emulation 

behavior outside of the signature definitions. Effectively this means emulation is 

dependent almost entirely on the definitions. A better solution might be a melding of a 

historical signature with observed characteristics found in the live network traffic and 

upgrading to the latest Nmap version 2 formatted database. 

Finally, as was noted earlier, a host on the network used a custom protocol that 

did not utilize IP addresses and consequently was not recognized by Ettercap. The host 

communicates using raw Ethernet frames and is characteristic of a Honeywell proprietary 

protocol. However Ntop did notice the host communication and tracked the host in its 

node list. 

The choices are to choose Ettercap, Ntop or merge data from both sources of 

information. A weakness with Ntop is in the data export routine. The interface does not 

contain all the information needed to create a configuration. Ettercap was chosen based 

on its XML output functionality and general recognition performance. It is feasible to 

correct the Ntop programmatic interface to provide all necessary information as it is an 

open source project and it internally tracks the data. Likewise, Ettercap could be modified 

to track host information on IP's or MAC addresses. 

3.3.4 Aggregation Approach to Minimize False Alerts 

To enhance the cyber security of a network system various approaches can be 

applied. One approach, utilized by the AICS IAA module is anomaly detection. An 

anomaly detection system is trained on a set of 'normal' network behavior. The extracted 

behavior model is then used to detect anomalous behavior in newly observed testing data. 

The system first identifies individual communication streams in the overall network 

traffic and then individually applies a developed network security cyber-sensor algorithm 
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to selected streams. This approach allows for learning accurate normal behavior models 

specific to each network communication stream. In addition, an Interval Type-2 Fuzzy 

Logic System (IT2 FLS) is used to model human background knowledge about the 

network system and to dynamically adjust the sensitivity threshold of the anomaly 

detection algorithms. The IT2 FLS is used to model the linguistic uncertainty 

in describing the relationship between various network communication attributes and the 

possibility of a cyber attack. 

The proposed anomaly detection system was implemented and tested on 

an experimental control system test-bed. It was demonstrated that the system does learn 

normal behavior models for each selected communication stream and performs 

accurate anomaly detection. In addition, it was also demonstrated that the 

availability of domain knowledge can improve the performance of the anomaly detection 

method. Table 10 in section 3.2.3 shows results from monitoring two different hosts on 

the network while testing with intrusive activity. For comparison purposes the first three 

values in the Threshold column represent a fixed sensitivity value. The IT2 FLS row 

depicts the results of a sensitivity value that changes according to the human created logic 

rules. At first glance, a correct identification rate of 99.8722% and 99.9111% looks good. 

However, on the test network with 46 directly connected devices 635,560 packets were 

captured over a 5 hour interval. If it is assumed that the performance monitoring of 

stream 1 and 2 are representative of monitoring all devices then 813 and 565 packets, 

respectively, would be misidentified. This equates to 813 false positives or alerts from the 

stream 1 performance. For stream 2 performance this means 462 alerts and 103 missed 

malicious packets. From a human operator perspective this number of alerts is relatively 

high in a 5 hour time frame. 

An anomaly alerts occur for each packet that is identified as not belonging to a 

normal cluster. This makes for a possibly large amount of alerts depending upon the 

traffic seen. It was observed in the test scenarios that anomalous traffic tends to occur in 

bursts of continuous packets. A mechanism was implemented to aggregate related alerts 

together and result in a single alert. This has several desirable effects. The first is the 

reduction of alert traffic for the same incident. The second is the possible reduction of 

false positives. The false positive traffic has also been observed to occur in continuous 
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segments. This type of mechanism would not repair the recognition mechanism but 

would effectively filter the false positive reporting and reduce the volume sent to a 

consumer of alerts.  

Log::Log4perl is a Perl port of the popular log4j logging package. It allows for 

effectively controlling the amount of logging messages generated. Logging levels can be 

changed during the running of a process. Additionally messages can be redirected to 

multiple outputs such as a file, email or database. Extensive logging functionality can 

change without having to modify a programs source code. The AICS messaging 

component utilizes a standard centralized interface based on PERL. Therefore Log4perl 

is a natural candidate to implement both syslog capability and managing alert message 

volume. 

Log4perl has a concept called appenders. Appenders define logic for which output 

devices the log data is to be written. There are default appenders provided as part of the 

distribution but custom logic can be implemented as well. This later functionality was 

utilized by the AICS project. A custom appender was developed to aggregate alerts from 

the anomaly detection routine. The appender consumes an alert as it is created and stores 

the information in an internal buffer. Any subsequent alerts are then examined for 

similarity to the buffered alert. If it is identical in IP addresses, port numbers and IP 

protocol then a counter value is incremented. If these criteria are not met then the 

buffered alert is released and the current alert is buffered. This has the effect of reducing 

the amount of alerts sent from the sensor device. In addition to a change in alert values, if 

the incremental counter reaches a configurable limit the message will be sent. A trivial 

enhancement to the appender would be to add a default time limit on how long alerts are 

held. This would ensure timely delivery of alerts if the monitored network has few 

anomalies. In addition to the aggregation logic a syslog output capability was added to 

the appender. 

The test scenario in section 3.2.2, when run initially without aggregation, 

produced 178,191 alerts to the system syslog file. Of these alerts 1,549 messages were 

false positives. The aggregate appender was enabled with an increment count maximum 

of 20. The total number of alerts was reduced to 29,270 and the false positive message 

totaled 845. These messages included the criteria mentioned previously with the addition 
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of a confidence value extracted from the alert. The 20 count maximum test was run 

without considering the confidence value in the message similarity logic. The total 

number of alerts from this change was 17,631. The number of false positives was reduced 

to 352. These simple measures reduced the false positive rate to 23% of the original. An 

example message is shown Fig. 3-21. The 12 in brackets is the value of the increment 

counter for the message. 

3.4 Comparison to Existing Work 

An anomaly detection project from (Dussel, Gehl, Laskov, Buber, Stormann, & 

Kastner, 2010) relies on the computation of similarity between transport-layer packet 

payloads embedded in a geometric space. They performed experiments on traffic from a 

SCADA test bed containing various application-layer protocols. In contrast to AICS use 

of header statistics derived from a sliding window, the project used packet data content to 

create n-gram populated feature vectors. This is a common technique utilized in 

document comparison routines. A simple distance measure is then compared with stored 

‘normal’ vectors to determine if an anomaly exists in the traffic. The AICS IAA 

algorithm maintains two models of system behavior: a global threat model that considers 

all traffic and a set of individual models for a given stream. Their solution appears to 

broadly apply itself to all traffic. It is difficult to compare results with different test data 

sets but their average detection rate of 88%-92% at a false positive level of 0.2% may be 

due to the differences just mentioned. 

Another approach taken in (Macia-Perez, Mora-Gimeno, Marcos-Jorquera, 

GilMartinez-Abarca, Ramos-Morillo, & Lorenzo-Fonseca, 2011) is similar to the AICS 

architecture. The design incorporates a self-organizing map (SOM) anomaly detection 

routine and SOAP communication. The routine is embedded on a small sized low power 

MOXA device with two wired Ethernet ports. This implementation is comparable to 

work done at the genesis of the AICS solution (Linda O. , Vollmer, Wright, & Manic, 

2011). A binary XML (MTOM) version of SOAP is used for eternal messaging. The 

detection rate is apparently affected by the limited hardware. As network traffic increases 

2013/12/10 13:31:33 INFO [12]: CS:ID1:001:IAA:1:anomaly:20:192.168.99.135 

192.168.99.10 192.168.99.206 192.168.99.140:6:43.52124 -112.05260 

 Figure 3-21.  Alert Message 



75 

 

 

the anomaly detection rate decreases. For example, the detection rate is 80% with a 6 

Mb/s network load. It was not clear if this was a result of the feature extraction algorithm 

or a loss of packets captured. In addition to the different computational intelligence 

routines utilized, the AICS algorithm is effectively an evolution of this design that takes 

advantage of improved hardware. Furthermore, AICS is able to provide complementary 

services such as virtual honeypots (DHP) and host identification (NEI).  

The use of IF-MAP by AICS is an additional improvement over the previously 

mentioned designs. IF-MAP provides a predefined data dictionary for network security 

information that eases integration efforts with other components. The modular nature and 

common communications infrastructure provides a flexible platform for changing 

functionality. The AICS solution delivers observed information via a published interface 

for integration with a system wide solution. While the components are self-configuring, 

the data used to perform that configuration comes from passive observations. Because of 

the IF-Map communication scheme, host information could be provided by external 

entities. For instance, information about host entities could be published on the IF-MAP 

SOAP interface. This broadens the potential use of AICS in a more sophisticated 

hierarchical security system. 

An additional beneficial outcome of the presented solution is removal of the 

configuration burden from the human operator. This capability stems from the self-

configuring aspects of an Autonomic design. For example, the IAA anomaly detection 

routine doesn’t require human created rules. It learns normal behavior from observations 

of the system. Additionally the dynamic honeypots are configured from system 

observations. This functionality reduces dependence on network expertise and level of 

human configuration effort. 

3.5 Chapter Summary 

Inspired by self-configuring aspects of Autonomic computing, the work presented 

here supports the important goal of securing industrial ecosystems by providing network 

security awareness in a heterogeneous control system network. Contributions of this 

chapter include: 1) A flexible two level communication layer based on Autonomic 

computing and Service Oriented Architecture. 2) Description of a module that utilizes 

clustering and fuzzy logic to monitor traffic for abnormal behavior. 3) Exploration of 
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tools and characteristics appropriate to passively monitor network traffic and identify 

network hosts. 4) An algorithm to deploy deceptive virtual network hosts utilizing the 

AICS communication system. 

As can be seen in the architecture and test sections, the self-configuration 

capability of Autonomic systems is exemplified by the IAA and DHP components. The 

DHP host entities are created automatically based upon passive monitoring of network 

activity. Anomaly behavior in IAA is detected by clustering of information retrieved 

from a moving window of traffic. The only source of outside information explicitly 

provided is the IP addresses of devices deemed to be crucial in the functioning system. 

This information is asynchronously delivered by a decoupled two-part communication 

system.  

A novel working sensor prototype, based on a unique implementation of the 

Trusted Network Group’s IF-MAP web services based communication protocol, is 

described. Sensor communication between self-contained modules is accomplished with 

D-Bus. At multiple steps of a test scenario, the communication layer was utilized to 

provide information in a well-defined format between components and to external 

entities. 

Multiple intelligent modules were deployed on a test system to monitor for 

anomalous behavior and create deceptive emulated hosts. The modules are exemplary 

implementations of self-learning components. In a test scenario, 45 of the 46 network 

attached devices were recognized and 10 of the 12 emulated devices were created with 

representative characteristics. Additionally, 99.9% of anomalous packets were 

recognized. The modules utilized the communication layer to provide notifications and 

retrieve information. 

An algorithm was proposed and demonstrated to automatically deploy deceptive 

virtual network entities in a control system network. Six open source passive network-

monitoring tools were evaluated and Ettercap was chosen for host identification. This 

differs from prior work in the field in which p0f is typically used. The algorithm created 

unique network stack signatures for twelve test devices. Eight of the twelve emulated 

devices were correctly identified by an aggressive Nmap scan. Several deficiencies with 

both the monitoring tools and virtual honeypot implementation Honeyd were discovered 
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and discussed. These problems are: non-IP based traffic, OS identification database 

support, missing information and well formatted program output. 

In order to show the necessary depth of the proposed automatic deployment and 

configuration, a usage scenario was executed. In this scenario an anomaly detection 

system monitored the network activity of the honeypots. The role of the automatically 

deployed honeypots was to attract and possibly delay an intruder on the network. The 

primary enabling technologies included continual host monitoring, reconfigurable 

deceptive virtual hosts and a network anomaly behavior monitor. The benefits of the 

presented system include: 1) reduced operator interaction, 2) low operational network 

impact, 3) increased awareness of the security state, and 4) an independent view of hosts 

and services that are active on the network. The behavior system alerted on 100% of the 

packets targeted at the virtual hosts.  



78 

 

 

Chapter 4. Communication Algorithms for Security Awareness 

In the AICS architecture the IAA component is an anomaly based detection 

algorithm. Network monitoring systems in general and anomaly based systems in 

particular often provide information that is difficult for non-expert operators to 

comprehend. For instance, low-level network traffic information such as protocol types, 

port numbers or packet data is often times beyond the experience of common control 

system operators. This chapter contributes a novel solution to provide a human centric 

categorization of anomalies. 

The first contribution of this chapter details a Human Interface for Security 

Awareness (HISA) algorithm for interpreting cyber incident information from anomaly 

based intrusion detections systems to present to a user (Vollmer & Manic, 2009). A 

similarity algorithm mapping anomaly results to signature based intrusion system rules is 

developed. Categorizations of attacks found in rules created for the Snort intrusion 

system were used as a basis of information to present to the user. A proof of concept 

system was developed using Perl native functions and custom modules. 

The second contribution of this chapter an enhanced version of HSIA called the 

Computationally efficient Neural Network Intrusion Security Awareness algorithm 

(CeNISA) (Vollmer & Manic, 2009). A unique aspect is the training of an error back-

propagation neural network with intrusion detection rule features to provide a recognition 

basis. Ethernet network packet details are subsequently provided to the trained network to 

produce a classification. This leverages rule knowledge sets to produce classifications for 

anomaly based systems. Several test cases executed on ICMP data packets revealed a 

60% identification rate of true positives.  This rate matched the previous work, but 70% 

less memory was used and the run time was reduced to less than 1 second from 37 

seconds. 

4.1 Problem Description 

HISA/CeNISA focuses on the specific manner in which the results of anomaly-

based systems are presented to an operator by making use of information from a signature 

based IDS. Rule based systems can identify specific intrusions and report human friendly 

messages. The rules themselves are created by people allowing for the opportunity to 
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embed relevant information in the rule definition such as an attack category or well 

known vulnerability reference. Hence these rules are easy to comprehend as they present 

an abstract view of the information that is typically beyond the knowledge of the 

common control system operator. 

Network traffic that is outside the norm can be identified by anomaly based 

systems. This feature provides the ability to detect new attacks. Systems such as these can 

report on the peculiarities that caused identification of traffic determined to be outside the 

norm. They do not have the information or generally the capability to express the attack 

alert in human terms. In contrast, rule based systems have a built in categorization 

mechanism. The human creation of rules provides the opportunity for general 

categorization of attack features. In addition to the rules primary purpose as an attack 

recognition repository, they are a valuable source of community knowledge. They 

provide a useful historical database of information and characteristics. This database of 

attack features can be used for similarity comparisons to help describe previously unseen 

attacks. 

Anomaly based systems can identify new attacks and alert users. However, there 

have been few proposed mechanisms for delivering alert information in a meaningful 

way to system operators. Specifically anomaly systems can report whether or not traffic 

is anomalous or if it closely matches a known signature. The signature match requires 

either training a system with tagged data or generating rules based on known attack 

characteristics. The later method is similar to the HISA/CeNISA approaches. However 

the algorithms presented in this chapter makes use of community defined rule sets, 

instead of sample network data, which is unique. 

4.1.1 Intrusion Detection Systems 

There are two primary types of IDS’s, signature and anomaly based. The primary 

purpose of both is to detect and possibly react to illicit network intrusion activity. The 

signature based systems provide monitoring and alert services based on static rule sets.  

Static rule sets perform well on known signatures but rely upon human experts to 

recognize an issue, perform analysis and develop a detection rule. As is shown in virus 

protection products, small variances in behavior can bypass static rules. This necessitates 

constant and expensive updates by the vendors. Rule based systems are analogous to 
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virus protection software resident on personnel computers. Predefined rule sets capture 

characteristics of attack vectors. These sets perform well on known signatures but 

generally do not recognize novel attacks. In addition, minor variations in the signature of 

a known attack may not be noticed by the system. However, rules are developed and 

distributed by an active community and widely distributed. It is even possible to convert 

rules between different formats (Gosh, Schwartzbard, & Schatz, 1999). This provides a 

rich base of historical information that is readily available for exploitation by HISA. 

An anomaly IDS is based on recognizing deviations from a learned model of 

normal behavior (Gosh, Schwartzbard, & Schatz, 1999). A representative model is built 

primarily on historical data. The features of future intrusions are not assumed a priori and 

anomaly decisions are based on profiling current activity, in contrast to the stored normal 

behavior (Linda, Vollmer, & Manic, 2009). Such a system is capable of detecting 

previously unknown and dynamically changing intrusion instances. This is most effective 

when the intrusions are distinctively different from the learned model of acceptable 

behavior. 

Anomaly based IDS’s usually report events via one of three different 

mechanisms. The first is simply if an anomaly event was detected or not (Zanero & 

Savaresi, 2004). This can be based on passing some threshold and may contain a 

confidence factor.  Second, when labeled data is available, a supervised network can be 

trained to distinguish between different input vectors (Khan, Awad, & Thuraisingham, 

2007). The output then can present the appropriate label if it closely matches any of the 

known categories. Third, a new set of rules for identifying attacks can be created (Huang 

& Wenke, 2003). These rules use a derived set of attributes from the data sets that are 

identified as anomalous. This requires analyzing the known attack attributes and choosing 

those that are general enough to identify a group of attack types. 

IDS rules are used as a basis for network anomaly detection reporting in the HISA 

algorithm. A simple similarity algorithm was developed mapping the network packet 

characteristics to an IDS rule fields. The details of each anomaly packet are compared to 

all rule fields and a match is recorded as a Boolean value. After an exhaustive evaluation 

of all rules and packets, a summation of matches for each rule is computed. The category 

feature of the rule(s) with the largest match values is then presented as a classification. 
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According to (Analoui, Bidgoli, & Rezvani, 2007), IDS implementations 

primarily make use of the previously mentioned static rule configuration. Most of these 

IDS systems are generic in application and have rules designed for more typical 

information technology infrastructures. Control systems networks have similar 

communication infrastructures, but different behavior patterns. Research detailed in this 

section may help drive the control industry to make use of both types of systems working 

cooperatively together. These systems used in combination may be robust enough to 

cover a significant portion of both novel and known intrusions. 

Even though current IDS systems implement a different approach to attack 

recognition, they have a common base in regards to input and intent. In turn, this can 

provide a common basis for notification output. As is shown in this chapter, the power of 

anomaly detection can be combined with the inherent knowledge representation of rule-

based systems to provide attack information to an operator. The information is presented 

in terms of similarity to well defined attack classes, such as denial of service, and 

references to known vulnerabilities. 

4.1.2 Snort Rule Analysis 

Snort is an open source IDS created by Martin Roesch (1999). It is capable of 

performing protocol analysis, content searching/matching and many other abilities 

including using rule sets. Several rule sets are available for use including those officially 

approved by the Sourcefire Vulnerability Research Team (VRT) and those contributed by 

other communities (Emerging threats, 2012). Snort supports a simple rule language that 

matches against network packets, generating alerts or log messages. Rules are broken into 

two logical sections: rule headers and rule options. Because of these factors it was chosen 

as a starting point for our algorithm implementation. 

Rule headers contain necessary protocol fields that every rule must have and rule 

options contain a list of optional information used to refine a match. The rule field format 

and an example rule is as follows: 

 

<action> <protocol> <source IP> <source port> <direction> <destination IP> 

<destination port> (<rule options>) 

Alert tcp any any -> 192.168.1.0/24 any (content:”ELHO”) 
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The rule action tells Snort what to do when a match occurs. A common action is 

to log information to an alert file. The protocol field specifies one of four possible values: 

TCP, UDP, ICMP and IP. Each value has options specific to the protocol available for 

use in the option section. The source IP address section can contain the keyword any, a 

single IP address or a CIDR (Classless Inter-Domain Routing) block. CIDR blocks allow 

for specifying ranges of IP addresses. Port numbers may be specified as a single static 

port, a range or use the keyword any. 

There are two direction operators. One specifies that the source and destination 

sections of a rule must match the appropriate items from a packet. The bidirectional 

operator indicates that the source and destination sections can match either portion of a 

packet. This allows for tracking two way conversations (e.g. FTP sessions). 

Rule options provide further refinement of matching parameters and tie the rule to 

a rule identification system. There are four major categories of rule options: general, 

payload, non-payload and post-detection. General options provide knowledge about the 

rule such as reference information, rule identification, and specific log messages. Payload 

options examine data contained in the packet data such as content matching expressions. 

Non-payload options provide matching specifications against packet header data outside 

of ports and IP addresses. Options include fragment offsets, time-to-live values and 

specific IP options. 

An important option keyword is classtype. This keyword is used to mark a rule as 

belonging to a specific attack class. The attack classes are predefined in a configuration 

file. This makes for a consistent description and format for the attack information. 

Although it is an optional field, all rules provided for general consumption include a 

classification. These classifications can be provided to operators as they convey 

meaningful information without requiring a lot of in-depth technical knowledge about 

cyber incident specifics. The default classifications are show in Table 11. The classtype 

names are descriptive but further details can be found in (Sourcefire Inc., 2009). 
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Snort builds a tree structure used to compare against packet features. Each 

mandatory field in a Snort rule is stored in a Rule Tree Node (RTN). An OTN (Optional 

Tree Node) is associated with an RTN and used to store optional rule fields. If multiple 

rules have the same RTN fields, a single node represents them. This optimization feature 

allows for removal of multiple rules from consideration once a negative match occurs. 

This is a detrimental aspect to the proposed HISA algorithm and it is important to 

recognize the impact on the processing time. 

The intrusion rule can be seen as a Boolean truth statement. In order for Snort to 

identify a match, a logical and of all positive field matches is necessary. Upon discovery 

of a false condition in the and evaluation, further processing of that rule is halted. The set 

of all rules would then be equivalent to a logical or. Short circuit of rule evaluation 

Classtype Classtype 

attempted-admin rpc-portmap-decode 

attempted-user successful-dos 

kickass-porn successful-recon-largescale 

policy-violation successful-recon-limited 

shellcode-detect suspicious-filename-detect 

successful-admin suspicious-login 

successful-user system-call-detect 

trojan-activity unusual-client-connection 

unsuccessful-user web-application-activity 

web-application-attack icmp-event 

attempted-DOS misc-activity 

attempted-recon network-scan 

bad-unknown not-suspicious 

default-login-attempt protocol-command-decode  

denial-of-service string-detect 

misc-attack unknown 

non-standard-protocol tcp-connection 

 

Table 11.  Snort Classifications 
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prevents using a modified Snort source as a base. As the Snort engine processes a rule 

section that proves false for a rule that rule is no longer considered for a possible match. 

This is a logical performance enhancement that speeds the execution of the rule engine. 

However this inhibits the implementation of the proposed algorithm.  

In the HISA process, all parts of a rule will be evaluated to see if it matches the 

packet data regardless of a previous rule section match. A value of 1 for each header field 

indicates a match, 0 otherwise. The header values are a necessary match condition but are 

not always a strong indicator of similarity. For instance, a TCP packet on port 80 is a 

very common packet as this is traditionally where the http protocol takes place. However, 

a large amount of attacks of varying types can take place via http. A stronger indicator of 

an attack type is in the packet header and payload details (i.e. Snort rule option fields). 

Consequently, these details are required for a stronger response upon match. Detailed 

rules that provide precise indicators are typically a more relevant match indicator.  

Three sources for acquiring rules were used. Sourcefire VRT certified rules and 

community rules are available online from the Snort repository. The third set was 

obtained from emerging threats and is available online at www.emergingthreats.net. All 

of these sets combined to define 16,181 rules covering 31 of the 34 class categories. 

Table 12 describes the protocol and number of related rule sets available in these sets.  

 

4.1.3 IP/ICMP 

The Internet Protocol (IP) layer is a connectionless datagram delivery service 

defined in RFC 791. The transport layer, i.e. TCP, is responsible for any reliability or 

ordering of traffic. Routing of the datagram is the responsibility of the IP layer as each 

instance contains a source and destination address. IPv4 defines a data structure 

containing this information (Stevens, 2003). Other protocol versions are not considered in 

this evaluation. The header portion of the datagram has many different fields. Those that 

are relevant to this discussion are described next. 

Protocol (number) Protocol (number)  

TCP (12,325) UDP (890) 

IP (2,808) ICMP (158) 
 

Table 12.  Snort Rule Protocol Counts 
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Enabling fragmentation and reassembly, the IP identification field is a 16 bit 

value set to different values for each datagram. A datagram may be broken into smaller 

datagram’s (fragmented) if its size exceeds the Maximum Transmission Unit (MTU) of a 

path. This field is not always set if there is no fragmentation possible. 

Time to live (TTL) is an 8 bit field set by the originator. Each time the datagram 

is forwarded by a router the value is decremented by 1. Given the field size the maximum 

value is 255. If this value reaches 0 then the packet is discarded. 

Forty bytes of optional data are allowed to follow the fixed size twenty byte 

header. Ten different options are defined for use: no-operation (NOP), end-of-list (EOL), 

loose source and record route (LSRR), strict source and record route (SSRR), Timestamp, 

Record route, Basic security, Extended security, Stream Identifier, Router alert. 

The Internet Control Message Protocol (ICMP) is defined in RFC 792. ICMP 

messages are encapsulated within an IP datagram. The first four bytes of these messages 

have the same format. These bytes are composed of 3 fields: 8-bit type, 8-bit code and 

16-bit checksum. Composition of the remaining bytes depends upon the message type.  

The type field has 15 different possible values. This field in conjunction with the 

code field defines the message type.  ICMP messages belong to one of two categories that 

encompass all the type and code combinations: query and error.  Some messages that 

belong to the error category are handled differently. 

The sequence number and identifier field can appear in address mask request and 

reply messages. They are both 16-bit fields and can be set to any value that fits in the 

range. The intent is for the responder to provide these fields back to the sender to allow 

for synchronization of messages. 

4.1.4 Work Related to HISA/CeNISA 

Rule based IDS’s are being used to provide an important layer of security for 

computer systems and networks. The work in (Aickelin, Twycross, & Hesketh-Roberts, 

2007) states that an IDS’s responsibility is to detect suspicious or unacceptable system 

and network activity and to alert a systems administrator to this activity. Their intent was 

to identify a way in which Snort could be improved by generalizing rules to identify 

novel attacks. The conditions and parameters of a sample set of rules were modified to 

include broader ranges. Empirically the approach was shown to be effective using a set of 
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network capture data obtained from the Massachusetts Institute of Technology. 

Previously undetected variants of attacks were identified with a subsequent increase in 

false positive rate. 

Reduction of false positive rates is important in rule based systems. Because the 

definition of a rule can be general, it is increasingly likely that false positives will occur 

given a large volume of network traffic. Long, Schwartz and Stoekclin (2006) made use 

of Snort alerts in XML format to form clusters.  The clusters were formed using an XML 

distance measure. This proved effective in discriminating between normal sessions that 

raised false alerts and those that contained real attack information. 

Many IDS’s use rule based signature solutions. Rule formats used by most of 

these systems are not standard. This leads to duplication of effort making definitions for 

the same attack in multiple expressions. In (Eckmann, 2001) the authors proposed and 

implemented an automated rule conversion system. The results showed that Snort rules 

could be generalized for use in other systems. A system such as this could be used by the 

HISA/CeNISA algorithms to broaden the scope of rules. 

Lee, Stolfo and Mok (1999) describe data mining techniques to construct network 

behavior models that are both accurate and efficient doing real time processing. These 

techniques were used to build network intrusion models. Patterns of normal network 

traffic were created and stored. As new network traffic was presented to the system, a 

pattern was created. A comparison of this pattern to the stored patterns determined if the 

traffic was considered abnormal. The concept of comparing a normal baseline to real time 

data is similar to HISA/CeNISA. However CeNISA uses signature rules to establish a 

normal baseline and a neural network for pattern comparison. 

4.2 Human Interface for Security Awareness 

The increased threat of cyber attacks is well documented and has been 

acknowledged by many governmental, commercial and academic entities world wide 

(Meserve, 2007). Computer based systems used within many critical infrastructures to 

monitor and control physical functions are not immune to this threat and may potentially 

be more vulnerable than common information technology systems (Taylor, Oman, & 

Krings, 2003). Despite large expenditures of effort, systems will continue to be 

penetrated or threatened by human failings. These issues provide incentive to develop 
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capabilities that enhance operator’s awareness and understanding of system security 

measures. 

Comprehensive state awareness of safety and security is a preeminent concern for 

critical infrastructures. Modern implementations of these infrastructures rely heavily on 

networked communication systems. Network intrusion attacks and anomalies can lead to 

high financial costs and the endangerment of public safety. Connecting operators to cyber 

anomalies in an understandable manner is one part of a resilient design (Rieger, Moore, 

& Baldwin, 2013). Therefore it is imperative that control operators receive relevant and 

comprehensible cyber health information from systems like AICS, which is described in 

Chapter 3.. In this section a solution for presenting cyber incident information from 

anomaly based Intrusion Detection Systems (IDS) to human operators is presented. The 

stored knowledge inherent in rule based intrusion systems is used to classify newly 

identified attack vectors. A similarity algorithm, mapping novel to known attack 

classifications, is presented. 

4.2.1 HISA Algorithm Description 

The goal of HISA is to present information characterizing an unknown attack to a 

human user. An approach utilizing prior rule definitions to find a close match is 

described. The computational process necessary to do so is described as pseudo code in 

Fig. 4-1. Each major functional area is described in detail in the sections following. 

The network packet data is identified by an external anomaly detection routine 

and is passed to the HISA algorithm for possible identification. The identification process 

consists of traversing all rule sets looking for those rules that match as closely as possible 

by matching each part of a rule. 
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4.2.1.1 Initialization 

The rules are defined in several different file sets. These files are opened and 

loaded into memory. The Snort specific rule format is well defined in and is the only rule 

format currently supported (Sourcefire Inc., 2009). Each rule is parsed into its component 

Initialization: 

find rules and load them into a rule structure. 

open network packet file. 

 

Check for matches: 

Loop through packets 

 Decode packet; 

 Loop through rules 

  initialize matches to 0; 

  check for match on IP address; 

  check for match  on protocol; 

  switch on protocol type 

   check matches on protocol specific; 

  store match information; 

 end rule loop 

end packet loop 

 

Process results: 

Loop through packet records 

 Loop through rule match record 

  sum match results;  

 end rule match loop 

 identify largest match count rule(s); 

end packet loop 

Figure 4-1.  HISA Pseudo Algorithm 
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parts and stored in a record for fast search and retrieval. The record itself is a hash, or 

associative array, of rule part names to textual values. These rule parsing and record 

population routines were implemented using a Perl module called Net::Snort::Parse 

(Caswell, 2012). 

The record matches are stored in the records as text by default. An additional field 

is included to handle IP addresses that can be stored using Classless Inter-Domain 

Routing (CIDR) notation. The CIDR record field maintains an object reference to handle 

these types of checks. The Perl module Net::CIDR, available on CPAN, has functions for 

dealing with IP address range checks. 

Special handling of port and IP sections is required. Snort rules allow for 

variables or the keyword ‘any’ in these sections. The variables can be defined once with 

specific values that are replaced in the rules when encountered. When processing rules, 

these variables need to be accounted for, in both destination and source, by replacing 

them with legal values. Tables 13 and 14 illustrate the mapping from variable name to 

replacement value that is used. 

The anomaly network data is stored in the industry standard pcap format. The 

packet data consists of anomalous packet data only. The system assumes that each packet 

is of interest and attempts to match each packet to the stored rule information. The packet 

can be seen as a feature vector v


 where each feature v is a unique data point in the vector 

such that ivvv ...0


 . The set S contains all feature vectors v  in a collection of network 

packet data. 

Variable Definition  

any 0.0.0.0/0 

$AIM_SERVERS !0.0.0.0/0 

$*_NET 0.0.0.0/0 
 

Table 13.  IP Variable Definitions 

Variable Definition  

$HTTP_PORTS 80 

$SHELLCODE_PORTS !80 

$ORACLE_PORTS 1521 

$SSH_PORTS 22 
 

Table 14. Port Variable Definitions 
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4.2.1.2 Match Check 

The match check is a O(n
2
) portion of the algorithm as is shown in (1) where n  is 

the number of packets and rules (n approaches infinity). The match function maps the 

attributes of rule (r) to those of packets (p). The function T(n) is a constant time operation 

with a fixed set of comparison operations. 

 

 


n

p

n

r

prmatchnT
1 1

),()(  
 ( 4-1 ) 

 

Each packet in the stored file is compared against the specifics of each rule 

definition. A match record stores an integer value for each match item defined. If a match 

occurs, a 1 is stored 0 otherwise. This is a simple method to indicate a match. The value 

is stored as an integer despite the current storing of a binary value. A future improvement 

may be to weigh specific matches differently with a unique value. 

The current system matches on the following items: source IP address, source 

port, destination IP address, destination port, protocol, payload content, ICMP id, ICMP 

sequence, ICMP type, ICMP code. These are a subset of the possible match fields with a 

focus on ICMP values as is explained in the results section. 

4.2.1.3 Process Results 

The match check records are processed individually. Each match item value is 

summed and tracked. The resulting sums are sorted and grouped from largest value to 

smallest. The top matching item is then considered to be the closest match. The class 

type, as previously defined in Table 11, and message ID of the winning sum is presented 

as the closest match to the user. When the largest sum value has multiple rule matches, a 

weighted class list is presented. 

The weighted class list shows the percentage of each class that matched. For 

instance, if five rules match and three of them are of the denial-of-service class and two 

are policy-violation the resulting values of 0.60 and 0.40 respectively are presented. The 

intent is to provide the user with high level information about the possible nature of the 

attack. 

4.2.2 Experimental Results 
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ICMP rules and characteristics were the primary focus of the test data set creation 

to show a proof of concept. ICMP packets have fewer options in both packet details and 

rule match items. In addition, as can be seen in Table 15, the number and class type 

representations are reduced. This simplification could have had a negative impact on the 

results. With fewer data points to work from, the similarity measure may not have 

produced meaningful results. However this does not appear to have been the case as is 

shown in this section. 

As a base case, to prove program correctness, the system was exercised with test 

packets against all ICMP rules. These test packets were crafted to cause specific rules 

from different classes to exactly match the rule parameters. It was surmised that if the 

system could not match known vectors than it might be fundamentally flawed. The 

system correctly identified 100% of test packets with the appropriate static rule 

definition.  

Nemesis is a network packet crafting and injection tool (Nathan, 2012). 

Implemented as a command line tool, it is well suited for reproducing test scenarios. 

Nemesis can create and inject ARP, DNS, ETHERNET, ICMP, IGMP, IP, OSPF, RIP, 

TCP and UDP packets. It was used to produce the ICMP test packets.  An example 

command line used to create a packet is shown below: 

 

> nemesis -i 8 -s 0 -d 666 -d lo 

 This command will create an ICMP packet with a type of 8, a sequence number 

of 0 and ICMP-ID within the header of 666. Subsequently, the packet will be placed on 

the lo interface of the machine. 

ClassType Count (total 145) 

denial-of-service 1 

misc-activity 103 

bad-unknown 3 

attempted-recon 11 

attempted-user 1 

trojan-activity 9 

attempted-dos 16 

network-scan 1 
 

Table 15.  ICMP Rule Classifications 
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The packets created using the nemesis tool were captured and stored as a pcap 

data file. Five different test packets were created to trigger five different Snort rules. Each 

rule was chosen for its membership in a different class type. The packet nemesis 

command line specifics and class types are presented in Table 16. 

The 145 ICMP rules had representation from all three sources mentioned in 

section 3. After proving the correctness via the previously mentioned base case, the 

matching rule definitions were removed from operation. The intent was to run the test 

packets through the system without the matching rules. This simulates the availability of 

unknown attack vectors and tests the systems ability to identify similarities with known 

attacks. It also provides a known set of results to compare the categorization results 

against. The results are shown in Table 17. 

The first column in the table is the class type that the test packet originally 

matched before removal of the associated rule. The second column shows the system 

classification output. The class type is followed by the number of rule matches that had 

the highest similarity score. As is illustrated by the number in parenthesis, it was possible 

to have multiple hits with the same score. In the final column a percentage value is 

recorded. This value represents a match percentage of the output results. For example, the 

attempted-dos test had three results with the same class type. All of the class types 

Packet Details Class Type 

-i 0 -s 0 -e 667 attempted-dos 

-i 8 -s 0 -e 666 attempted-recon 

-i 5 -c 0 bad-unknown 

-i 3 -c 2 attempted-user 

-i 8 -s 14611 -c 123  misc-activity 
 

Table 16.  Nemesis Command Line and Class Types 

Correct ClassType Identified ClassType % Match 

attempted-dos attempted-dos (3) 100% 

attempted-recon attempted-recon (4) 

network-scan (1) 

80% 

bad-unknown bad-unknown (2) 

attempted-recon (3) 

misc-activity (28) 

6% 

 

trojan-activity attempted-user (1) 0% 

misc-activity misc-activity (1) 100% 
 

Table 17.  ClassType Test Results 
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matched the correct value resulting in a 100% score. The attempted-recon test had four 

correct hits and one miss. This resulted in a score of 80%. 

Overall, if a match score of 80% or greater is considered as successful, the system 

correctly identified three of the five (60%) of the test cases. Veracity and detail of rules 

makes a difference. The quality of the answer is only as good as the basis from which it is 

drawn. In this case, the Snort rule set and matching algorithm are the basis features. It 

was observed that 71% of the ICMP rules are in the misc-activity category. There may be 

an opportunity for refining these rules into a more useful category. However even with 

this limitation the results are positive and provide useful information. 

4.3 Computationally Efficient Neural Network Intrusion Security Awareness 

The work presented in this section is based on the previously presented HISA 

algorithm. An entirely new and improved solution to the same problem is detailed. This 

section describes the performance improvements of the Computationally efficient Neural 

Network Intrusion Security Awareness algorithm (CeNISA) as well as comparing results 

to the original. CeNISA is a pattern recognition algorithm that maps novel attack vectors 

recognized by anomaly Intrusion Detection Systems (IDS) to known attack 

classifications. A multi-layer feed forward Error Back Propagation network provides the 

primary performance improvement for CeNISA.  

Signature and anomaly based systems both have strengths and weakness when 

used in isolation. One issue with anomaly based systems is obtaining labeled data that is 

not artificially generated (Stolfo, Lee, Chan, Fan, & Eskin, 2001). As was pointed out 

earlier, signature based solutions can miss new signatures or variations on known attacks. 

The focus of this section is on combining the capabilities of both to overcome these 

issues. Additionally, a classification is produced that is suitable for cyber security 

awareness. The previously described Snort rules are used as training input. The use of 

features from these rules as training vectors is a unique aspect of the CeNISA algorithm. 

To show a proof of concept, the ICMP network attack packets used to test HISA were 

evaluated on the new algorithm. 

4.3.1 CeNISA Algorithm Description 

The goal of CeNISA is to present information characterizing an unknown attack 

to a cyber security consumer. A unique approach utilizing historical rule definitions to 
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find a close match is described. The algorithm consists of two critical phases: 1. Building 

the EBP network. 2. Extraction of data points from network data and subsequent 

presentation to the trained network. The Neural Network consists of three fully connected 

layers: input, hidden and output. Each major functional area is described in detail in the 

following sections.  

4.3.1.1 Network Design 

There are numerous options available for rule definitions but an analysis of 

existing ICMP rules showed that in practice only eleven are in use. Of these possible 

values, three were excluded byte_test, content and threshold. The first two specify 

specific comparisons of payload information that are inappropriate inputs for a neural 

network. The threshold option specifies Snort specific behavior on rule alerts and does 

not provide useful information. Table 18 lists the nine features (eight plus the 

classification) chosen for inclusion in the training feature vector. 

4.3.1.2 Training Features 

Normalization of these input vectors is accomplished according to (1) where xi is 

a feature instance and x represents the set of a feature type. 
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This normalized input is passed to the next layer in the network. The net input of 

node i in layer k+1 is calculated as 

Feature Description 

dsize packet payload size 

icmp_id ICMP ID field 

icmp_seq ICMP sequence  

icode ICMP code field 

id IP id field 

ipopts IP option field 

itype ICMP type field 

ttl IP time-to-live  

class Snort classification 
 

Table 18.  CeNISA Training Features 
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Here Sk denotes the number of nodes in layer k, w 
k+1

(i,j) is the weight of the 

connection from neuron j in layer k, b
k+1

(i) is the bias of neuron i and a
k
(j) is the output 

from neuron j in layer k. The output of node i in layer k+1 is 

     (       (    (   .  ( 4-4 ) 

 

where f 
k+1

 is the activation function of neuron i. In CeNISA the hidden node layer 

cardinality matches that of the input layer, which is nine. Fig. 4-2 shows the relationship 

of inputs and layers. It should be noted that the nodes are not fully connected in the figure 

to avoid cluttering the image. 

The training set only contains 8 of the possible 38 classifications therefore the 

output layer consists of 8 nodes. Each output node represents a possible classification.  

An error term is calculated using the sum of squares function where o is the network node 

output and d is the desired output.  
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After the value for the output and error is computed, weight adjustments for the hidden 

and output layers are calculated. 

Figure 4-2.  Neural Network Diagram 
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Equation 4-6 provides the delta to apply to each weight; alpha is the learning rate 

np is the number of input patterns. An alpha of 0.3 was used for training. 
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After a complete set of updates for each training input pattern, the sequence of 

calculating outputs and feeding error information back through the network layers is 

reiterated 1000 times. These weights are saved and used for evaluation of extracted 

network features after the training period is complete. 

In order to validate the recognition power of the described network a 10-fold 

cross-validation scheme is used. The input vectors are divided into 10 subsets of 

approximately equal size, which was 13 for this instance. The network is trained 10 

times, each time leaving out one of the subsets. The subset left out is subsequently used 

as the test data to judge the network error. 

The network packet data is identified by an outside anomaly detection routine and 

is passed to the CeNISA algorithm for classification. The classification process consists 

of extracting the features found in Table 18 and presenting the values as input to the EBP 

network. The processing of the packets is described next in a pseudo coding style. 

4.3.2 Experimental Results 

Open Pcap file 

Initialize feature structure 

Loop 

 strip Ethernet encapsulation 

 decode IP content information 

 decode ICMP content 

 store values in feature list 

 call EBP Network function 

 store results 

End loop  

Figure 4-3.  CeNISA Pseodo Algorithm 
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The original ICMP rule set of 145 was reduced to 129 instances. Duplicate and 

ambiguous rules (due to feature selection) were removed. Table 19 details the class types 

and associated counts of the rules. A fully trained network using these rules correctly 

identified 75% of the snort rule classifications. The confusion matrix shown in Table 20 

provides the classification details. The class values have been abbreviated for space 

considerations. As can be seen from the matrix, a large number of rules are marked as 

miscellaneous. This may have caused over fitting of the solution to this classification. 

The confusion matrix only shows the results from utilizing the Snort rules. The 

next step involved presenting the features from the five ICMP test network packets. The 

network correctly identified denial-of-service, misc-activity and attempted-recon for a 

60% success rate. These classes represent the majority of the training vectors and should 

be the most recognizable to the network.  

4.3.2.1 CeNISA versus HISA 

In comparison, using the test cases as a basis, the modified algorithm using an 

EBP network provided the same accuracy (60%) as the original. However, a large 

Class Type Count (total 129) 

denial-of-service 22 

misc-activity 81 

attempted-recon 11 

trojan-activity 9 

bad-unknown 4 

attempted-user 1 

network-scan 1 
 

Table 19.  ICMP Rule Classifications 

 a b c d e f g 

a:misc 74 2    1 4 

b:trojan 5 4      

c:network 1       

d:bad 3 1      

e:a-user 0      1 

f:recon 6     4 1 

g:dos 7      15 
 

Table 20.  Confusion Matrix 
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improvement in efficiency with regards to run time and memory usage was realized as 

can be seen in Fig. 4-4.  The HISA algorithm had a runtime of 37 seconds and utilized 

100 MB’s of RAM. The enhanced version took less than 1 second and required 30 MB’s 

of RAM. This execution time does not take in to consideration the training phase, which 

is a one-time cost.  

HISA stores the rule information as a data structure in memory and compares the 

network characteristics to values in the structure. The equivalent functionality in CeNISA 

is the EBP network. The rule attack knowledge is effectively stored within the weights 

between layers.  

4.4 Chapter Summary 

This chapter’s contribution described two algorithms: 1) HISA and 2) CeNISA. 

Both algorithms are solutions for presenting anomaly based intrusion detection alerts 

based on similarity to static rules. Rules developed for the Snort IDS and their default 

classifications were used as input features. For HISA, a similarity algorithm was 

developed that utilized a simple match summation process. This process utilized native 

Perl functionality and custom modules. For each match found in a rule, a positive value 

was noted. The rule(s) with the max sum was used to identify the attack class 

0

20

40
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80

100

120

EBP HISA

EBP 1 30

HISA 37 100

Run Time(s) M emory(M B)

Figure 4-4.  Runtime Performance Comparison 
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membership. This result was subsequently presented to the user as an indicator of system 

cyber security status. An identification rate of 60% demonstrated the effectiveness of the 

proposed algorithm on test ICMP data. 

Subsequently CeNISA, an enhanced algorithm for presenting anomaly based 

intrusion detection alerts based on an error back-propagation neural network, was 

presented. Snort rule information was used as training input vectors. The results from the 

trained network were compared with a previously derived similarity algorithm utilizing 

the input vectors gleaned from network traffic. The resulting output for both designs was 

subsequently presented to the user as an indicator of system cyber security status. An 

identification rate of 60% demonstrated the effectiveness of the proposed algorithm on 

test ICMP data. Although the test identification rates were identical, the EBP network 

based solution required 70% less main memory and executed 37 times faster.  
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Chapter 5. Autonomous Rule Creation and Distance Metrics 

The first contribution of this chapter examines the performance of three distance 

measures Mahalanobis, Euclidean and a learned metric in the context of CI routines. The 

second contribution is the presentation of a multi-modal optimization solution that maps 

anomaly traffic features to rule sets. The rule sets are distributable to a wide range of 

software solutions.  

Distance measures are a key component in several Computational Intelligence 

(CI) solutions such as multi-modal optimization problems. Optimization can be used in 

support of autonomic processing of anomaly data. This process determines the similarity 

of combined anomalous network traffic features to an idealized recognition formula. 

Therefore examining the performance of distance or similarity metrics when applied to 

autonomic computing solutions is important (Vollmer, Soule, & Manic, 2010). 

Extensions of simple Genetic Algorithms, particularly types of crowding, have 

been developed to help solve multi-modal types of problems. Within the context of the 

experiments presented in the first section of this chapter, empirical evidence shows that 

the statistical based Mahalanobis distance measure when used in Deterministic Crowding 

produces equivalent results to a Euclidean measure. In the case of Restricted Tournament 

selection, use of Mahalanobis found on average 40% more of the global optima, 

maintained a 35% higher peak count and produced an average final best fitness value that 

is 3 times better. 

The final part of this chapter explores a multi-modal genetic algorithm solution 

for autonomous rule creation (Vollmer, Alves-Foss, & Manic, 2012). Many network 

anomaly behavior techniques have been proposed as solutions for anomaly based 

network intrusion detection. However, little work has been done on communicating the 

anomaly characteristics to other systems. Translating a newly discovered intrusion 

recognition criteria into a distributable rule can be a human intensive effort. The last 

section presents an automated solution to create detection rules once an anomaly has been 

identified. Empirical tests using captured ICMP network packets from an anomaly 

detection system are used as input and Snort rules are output. Candidate output rules are 

sorted according to a fitness value and any duplicates are removed. When run against ten 

test cases, a 100 percent rule alert rate was achieved as expected. Out of 33,804 test 
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packets 3 produced false positives. Each test case produced a minimum of three rule 

variations that could be used as candidates for a production system. 

5.1 Distance Metric Comparison for Multi-Modal Genetic Algorithm Solutions 

Problems, in which a number of points are potentially good solutions, while not 

necessarily optimal, are defined as multi-modal. Genetic Algorithms (GA), including 

crowding approaches such as Deterministic Crowding (DC) and Restricted Tournament 

Selection (RTS), have been developed to maintain sub-populations that track these multi-

modal solutions. For example, multi-modal GA’s have been used in the design of a 

nuclear reactor core (Mishra, Pandey, & Chauhan, 2009). In addition, two surveys 

highlight the multiple uses of GA’s in control systems and power engineering tasks 

(Rajkumar, Vekara, & Alander, 2008), (Fleming & Purshouse, 2002). These tasks include 

optimization for controller design and model identification, fault diagnosis, reliable 

systems, robustness analysis and robot control. 

The basic idea of a multi-modal GA is to encourage the evolution of subsets 

representing diverse solutions in a single population during the evolutionary process. In 

order to measure this diversity, distance measures are employed. Given better distance 

measures, improved results may be realized. Thus, the effectiveness of Mahalanobis 

distance in comparison with Euclidean distance in two real value encoded Genetic 

Algorithm solutions is examined. 

When optimizing multi-modal functions a conventional GA’s population tends to 

converge to just one of the optimal, or near optimal points. This characteristic occurs 

because of Genetic Drift and is an artifact of the application of random selection 

processes to finite populations (DeJong, 1975). This convergence to only one solution is 

undesirable in multi-modal optimization of real problems. Because a GA utilizes a 

population of many (hundreds, thousands or more) possible solutions, modifications to 

the algorithm can enable maintaining several optima. 

One such modification, Fitness Sharing, lowers each individual’s fitness by an 

amount relative to the number of similar individuals in the population (Goldberg & 

Richardson, 1987). Similarity is determined by evaluating a distance measure between 

population elements. Another GA modification, Deterministic Crowding, is an improved 

version of De Jongs Crowding. After crossover and mutation, each resulting child 
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individual replaces the most similar parent used to create it if it has a higher fitness value. 

Similarity is typically computed using phenotypic distance (Mahfoud, 1995). Restricted 

Tournament Selection, similarly to DC, creates two new children (Harik, 1995). These 

children then compete with a fixed number of randomly chosen individuals from the 

population; the number of competing individuals is defined by the Crowding Factor (CF). 

The nearest individual chosen for the competition is selected from the CF population 

using a distance measure. 

Distance measures as a means of determining similarity or closeness are a 

common algorithmic feature for many GA implementations such as those used in 

Crowding. The distance measure used is dependent on the population definition but 

typically solutions like Euclidean distance or Hamming distance are implemented. In 

addition, these distance measures can occur in different domains of the problems set i.e. 

Phenotypic, Genotypic and Fitness (Natalia, Hugo, & Raul, 2000). 

5.1.1 Algorithm Description 

This section describes the implementation details of a Genetic Algorithm and the 

two population diversity algorithms. Equations for the two distance metrics and their 

computational complexity are discussed. The final section discusses the test functions 

used for evaluation. 

For evaluation purposes, solutions to minimize five benchmark functions with a 

range of different dimensions were evolved utilizing two forms of a crowding Genetic 

Algorithm (GA). A pseudo-code implementation of a GA is shown in Fig. 5-1 below and 

lines with numbers are described more fully later. 

1 Create an initial population 

For Each Selection Process 

 2 LOOP while below execution count 

3 select individuals as parents 

4 create children from parent (crossover/mutation) 

5 select and replace individuals with children 

6 update fitness values 

END LOOP 

End For Each 

Figure 5-1.  GA pseudo code 
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One of the first tasks in building a GA is to decide upon a representation of the 

solution population (line 1 in Fig. 5-1) and create a number of individuals in that 

population. All of the functions defined for this project make use of real values as inputs. 

This made for a natural definition of the population representation and floating point 

numbers were used to represent each of the n positions in a given individual solution. 

Therefore an individual can be seen as a vector )x,,(x n0 iv


 of floating point values x. 

The total population is a set of vectors  TvvvP


,...,, 10 . For each test function, the initial 

population size was set to 60. The initial generation of individuals is populated by 

randomly generating values uniformly in the domain range of the given function. The test 

function section provides the ranges of each function used in testing. 

After an initial population is created a series of variations and selections must take 

place on the population individuals. This can continue until some acceptable solution or 

predefined resource limit is reached. For this project, each function has an associated max 

number of iterations value and is shown in Table 21 as iterations. When this number was 

reached, after incrementing by one each pass through the loop (line 2 in Fig. 5-1) and 

initially starting at zero, processing terminated and the fittest individual in the population 

was isolated as the final best solution. The fitness, in this case, consisted of the value 

returned from exercising the test function with the real value parameters represented by 

the individual. The fittest individual produced the smallest function output. 

A steady state population model was implemented. This means that, for each 

iteration through the loop, only a small part of the original population is changed. This is 

in contrast to a generational model where the entire population is replaced by the 

offspring.  In this case, two individuals were selected as parents and two offspring were 

 

 Sphere Rastrigin Ackley Griewangk M6 

Iteration
2
 400 400 400 400 400 

Iteration
3
 500 500 500 500 - 

Iteration
5
 600 600 600 600 - 

Optima
2
 1 4 1 5 25 

Optima
3
 1 8 1 5 - 

Optima
5
 1 32 1 5 - 

niche 0.2 0.1 1 0.9 0.5 
Superscripts in column 1 indicate the dimensionality of the solution population.  

Table 21.  GA Execution Variables 
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created from them. Subsequently, two more individuals were then selected for 

replacement by the new offspring creating a new generation.  

The two candidate parent individuals were randomly selected independent of any 

fitness or distance measure (line 3 in Fig. 5-1). After crossover of the parents occurs, the 

two resulting offspring are evaluated to replace candidates in the population. This is a 

critical step for the maintenance of a multi-modal solution set. The determination of how 

replacement individuals are selected is discussed later in the section on replacement 

strategy. 

Crossover between the two parents to create two new offspring utilized whole 

arithmetic recombination (line 4 in Fig. 5-1). Each position of the child is a new value 

created from the values at the same position of the parent vectors. This new value lies 

between that of the two parents and is created for each child using equations (5-1) and (5-

2). Where x and y are the values at ith position in the parent vectors and α is a weight 

adjustment. The weight adjustment value α used for all functions is 0.6. 

 
ii yxChild  )1(1   ( 5-1 ) 

 

 
ii xyChild  )1(2   ( 5-2 ) 

 

After crossover, mutation occurs every iteration on both child individuals prior to 

replacement selection (line 4 in Fig. 5-1). This mutation is non-uniform with a fixed 

Gaussian distribution which means most of the changes made will be small. For each 

position in the selected individual, a value drawn randomly from a Gaussian distribution 

with mean zero and user defined standard deviation of 0.1 is added to it. If this operation 

results in a value outside of the acceptable function range, defined in the test function 

section, the value is set equal to the closest boundary value. 

Finally the fitness values for the mutated individuals are updated (line 6 in Fig. 5-

1). This is the last step before the next iteration is performed following the steps already 

outlined with a population set that contains the new individuals. 

This entire process is repeated for both replacement selection algorithms on a 

copy of the same population. An exact copy of the initial population is carried over from 

one replacement strategy trial to the next ensuring the same starting data sets are used. In 

addition to the multiple iterations of both selection routines on the same data set, an outer 
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loop is executed 100 times (i.e. 100 independent trials). Because of the stochastic nature 

of crossover and mutation this is done to obtain a higher confidence in the performance 

measures. 

5.1.1.1 Replacement Strategy 

In order to maintain a diverse solution set within the population, two methods of 

choosing replacement candidates were considered: Restricted Tournament Selection and 

Deterministic Crowding. As mentioned in the introduction, both of these techniques are 

capable of maintaining a diverse population of solutions. The implementation of line 5 in 

Fig. 5-1 makes use of only one of the replacement selection techniques at a time. For 

comparison purposes, both were implemented and exercised in independent trials. 

Uni-modal GA solutions using tournament selection randomly pick two 

individuals for replacement. These values are replaced if the new children have better 

fitness values. Restricted Tournament Selection (RTS) picks a candidate replacement 

individual that is closest to the new child from a subset of the population of window size 

w. The size of the population contained in w is defined by empirical testing (30 for this 

project in all cases) and each member is drawn from the original population using a 

uniformly random selection process. Closeness is determined by a distance function. 

After determination of the closest individual to the candidate child a competition is held 

based on fitness between the child and selected individual. The one with the best fitness 

is selected for inclusion into the solution population. 

Deterministic crowding introduces competition between the children and the 

individuals used to create them. After crossover and mutation each child replaces the 

nearest parent if it has a higher fitness. Given two parents (P1, P2) and two related 

children (C1, C2), two of the four possible tournaments are executed. Selection of the 

tournaments is determined by the smallest distance value between a parent and child. The 

pseudo algorithm for this procedure is shown in Fig. 5-2 where F is a fitness function and 

D is the distance function. It should be noted this is for optimizing a minimization 

problem where a smaller fitness value is better. 
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As just described, both RTS and DC require a distance measure. This distance 

measure occurs in the genotype domain in our experiments. The two distance measures, 

Euclidean and Mahalanobis, that were evaluated are presented in the following section. 

5.1.1.2 Distance Measures 

Gray coding, Hamming distances and similar algorithms can be used when binary 

encodings are utilized. However these type of distance measures are not directly 

applicable to real value encodings. In general, a Euclidean or Hamming distance 

measured is used in genetic algorithms whenever a distance measure is needed (Herrera, 

Lozano, & Verdegay, 1998), (Drezewski & Siwik, 2007). This section focuses on two 

distance measures: Euclidean and Mahalanobis. 

The Euclidean distance is the familiar geometric distance based on the 

Pythagorean formula. This distance measure is relatively simple to calculate using the 

following formula where x and y are n dimensional vectors representing points: 

 

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1

2)(),(   ( 5-3 ) 

This distance measure has a straightforward geometric interpretation, is 

computationally inexpensive and simple to code. However it does have two drawbacks 

expanded upon in the following paragraphs.  

First, in geometric problem domain variables are typically measured utilizing the 

same units of length. Data values from real world problems may have different scales. 

For example a regression problem making use of class information such as age, test 

scores and time are all on a different scale and therefore not directly comparable. The 

Euclidean distance is sensitive to the scales of the variables involved and may not 

perform optimally. A standardized or weighted Euclidean distance that incorporates 

IF (D(Pi,Ci) + D(Pj,Cj)) <= (D(Pj,Ci)+(D(Pi,Cj)) 

 If (F(Cj) < F(Pj) then replace Pj with Cj; 

 If (F(Ci) < F(Pi) then replace Pi with Ci; 

ELSE 

 If (F(Ci) < F(Pj) then replace Pj with Ci; 

 If (F(Cj) < F(Pi) then replace Pi with Cj; 

Figure 5-2.  Tournament Selection Pseudo Code 
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variances but not covariances can overcome this problem. A Mahalanobis distance 

incorporates both variances and covariances. 

Second, the Euclidean distance does not compensate for correlated variables. 

Given a test data set containing multiple variables where one variable set is an exact 

duplicate of another set, these sets are highly correlated. The Euclidean distance 

calculation will weigh the duplicate variables more heavily than the others. It has no 

method of accounting for the fact that the duplicate provides no new information. 

Mahalanobis distance was introduced by P.C. Mahalanobis in 1936. It is based on 

both the mean and variance of the variables in addition to the covariance matrix. The iso-

surface formed around the mean is an ellipse in two dimensional space or an ellipsoid or 

hyper-ellipsoid when more variables are used. It is a multivariate quantitative method that 

can solve for multiple dimensions simultaneously. The covariance among the variables is 

taken into account when calculating the distance. Because of this, the problems of scale 

and correlation inherent in the Euclidean distance are not an issue. Given an individual as 

a vector )x,,(x n0 ix


of floating point values x, a vector representing the mean of a 

data set ),...,( 0 n 


and a covariance matrix C of size n x n representing the 

covariance values between all dimensions n, the Mahalanobis distance is calculated with 

the given formula: 

 T

iii xCxxmd )()()( 1 


   ( 5-4 ) 

 

This function produces a distance value for the xivector. This vector is either a 

parent or child individual. The steady state population is used to compute the mean 


. In 

effect the distance measure utilized is not the distance between two vectors but the 

distance of a vector from the GA population. Hence the population is used as a reference 

point for all distance measures. 

5.1.1.3 Algorithmic Complexity 

Computational complexity of the Mahalanobis Distance measure is O(n
2
) for n 

dimensional data vectors in the solution population domain (Pinho, Manuel, Tavares, & 

Correia, 2006). Without any optimizations, the Euclidean distance computational 

complexity is O(n). In this implementation, the Euclidean distance was computed in the 
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genotype domain. Given a minimization problem with 0.0 being the global optimal 

solution this computational complexity is reduced to a constant time in one dimension. 

5.1.2 Experimental Results 

The intent of this analysis is to gauge the performance of the distance measures 

when used in GA crowding multi-modal solutions. The performance of the test runs was 

measured by three metrics: 1. Peak count = Average number of peaks found. 2. The 

number of times the global optimum was found in the 100 repeated runs. 3. The average 

best fitness of the final solution for the 100 repeated runs. 

Five functions were used to evaluate performance. These functions have been 

used frequently in GA evaluations. For completeness these function are described next. 

The functions were evaluated with 2, 3 and 5 dimension value sets. 

Sphere (5-5) is a continuous, convex uni-modal, n-dimensional function 

constrained to real values -5.12, 5.12. A global minimum occurs at 0. 
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The generalized Rastrigin (5-6) function is n-dimensional function with a large 

number of local minima whose value increases with the distance to the global minimum. 

The function was constrained to real values in the range -1.5, 0.5 where A=10 and w=2π. 

This limited the number of optima to 5 including the global. 

 
)cos()( 2

iira wxAxnAxF    
( 5-6 ) 

 

Ackley (5-7) is a highly multi-modal n-dimensional function. A large number of 

local minima are spread evenly over the space. One global minimum occurs at 0. 
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Greiwangk (5-8) has a product term that introduces interdependence among the 

variables. It is a continuous multi-modal function that has a global optimum at 0.0.  In 

addition it has four relatively large optima at [±π, ±π * 1.414, 0.0, …]. It is constrained to 

-600,600. 
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M6 (5-9) is called the Shekels Foxhole problem (DeJong, 1975). This is a 2-

dimensional problem with 25 optima. The two variables are restricted to the range -

65.536, 65.535. The maxima are located at (16i, 16j) where i and j are integers in the 

range [-2,2]. They are all of differing heights with a global optimum at (-32, -32). M6 is 

defined below: 
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where ]2)5mod[(16)(  iia  and   )25/(16)(  iib . 

For a solution to be considered as an optima it was not necessary to match the 

exact value. It should be noted that the goal was minimization and most of the test 

functions had a global minimum at 0. If all the points of the data vector fell within a 

small offset from the correct value it was considered to have been a match. 

In order to empirically show that the replacement selection method, using two 

distance measures, was choosing different individuals the specific individual selection 

results were tracked during a trial run of RTS. At each point in the algorithm, where a 

distance measure was required, both distance measures were calculated for the two 

children. In a run with 200 iterations, the individuals selected were identical 10% of the 

time. 46% of the selections had one individual in common. In the remaining 44% the 

individuals chosen were unique 

A similar process for evaluating replacement selection in DC was implemented. 

The test consisted of 400 iterations on the five test functions. Given that DC can select to 

replace at a maximum two parents the total number of possible replacement 

considerations the algorithm had to make was 4,000.  The Mahalanobis distance made a 

change 2,314 times and Euclidean 2,320. Of these changes all but 152 were identical 

replacements. This shows that while there were differences in the distance measures they 

were in agreement on 96% of the decisions.  
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Fig. 5-3 contains graphs of the Peak Count for both replacement solutions with a 

higher value indicating more optimal solutions are found. The data is from the two 

dimensional test sets. It shows that Mahalanobis matches or outperforms Euclidean for 

RTS. Performance results for the DC implementation showed on average the 

performance for both distance measures was equivalent and consequently the results are 

not shown in the figure. 

The number of global optimum discovered in each of the 100 independent runs is 

found in Table 22. The bold face numbers indicate the better score for each distance 

measure. If they performed equally well then both values for the distance measure are in 

 DC RTS  

Functions Euclid Mahal Euclid Mahal Dim. 

Sphere 100 100 97 100 2 

Rastrigin 98 98 91 89 2 

Ackley 100 100 70 95 2 

Griewangk 20 11 0 1 2 

M6 3 2 3 4 2 

Sphere 100 100 61 100 3 

Rastrigin 49 42 35 35 3 

Ackley 98 93 17 73 3 

Griewangk 0 1 0 0 3 

M6 2 3 2 3 3 

Sphere 100 100 5 97 5 

Rastrigin 0 1 1 3 5 

Ackley 35 36 0 33 5 

Griewangk 0 0 0 0 5 

M6 0 3 2 5 5 

 

Table 22.  Global Optimum Count 
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0

0.5

1

1.5

2

Sphere Rastrigin Ackley Griewangk M6

Euclid Mahalanobis

Figure 5-3.  RTS Peak Count 
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bold unless both values are zero. Results for all five test functions in the three different 

dimensions are available. Out of the fifteen RTS test runs, Mahalanobis scored better 

eleven times and equivalent once with two instances of both finding no optimums. In the 

fifteen DC runs, five runs were equivalent, Euclid scored better five times, Mahalanobis 

scored better five times and there was one instance where no optima were found. This is 

the second result that shows little difference in performance between the two distance 

measures in regard to DC output. 

Finally Fig. 5-4 depicts the average final best fitness value of the 100 independent 

trials of the RTS selection function for five dimension solutions. The fitness value is the 

result of executing a test function with the values of an individual of the population. For 

this experiment the goal is to find a minimum value. Consequently smaller fitness values 

are better. Mahalanobis consistently produced better (smaller) results in the four test 

functions. The M6 test function is defined for only two dimensions and therefore is not 

shown. 

In the DC implementation it was observed that only small differences existed in 

all of the experiments with the two distance measures. The DC algorithm uses the 

distance measure (in addition to fitness) as part of a replacement strategy to choose 

between two parents and two children. The conjecture is that this small population choice 

accounts for the similar performance when utilizing the different distance functions. In 

RTS the crowding factor provides a larger population (30 individuals) for distance 

comparisons. As was shown in the previous section, the two distance measures used in 
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RTS select at least one different individual 90% of the time. However for DC the 

difference in selection was only 4%. 

5.2 Autonomous Rule Creation for Anomaly Detection 

In the voluminous amounts of research on anomaly based intrusion detection 

systems, little consideration has been given to communication mechanisms (Gogoi, 

Borah, & Bhattacharyya, 2010). Network based anomaly systems typically produce two 

types of output. The network traffic may simply be identified as anomalous or not, 

perhaps with a companion confidence score. Other systems provide a label associating 

the data with a known attack type i.e. Denial of Service (Vollmer & Manic, 2009). This 

label is predicated on the system having been trained to identify a specific anomaly. 

If the ability to identify a novel intrusion is valuable in one network it seems 

reasonable that knowledge gleaned from those efforts would be useful in another. Given 

the numerous different implementations of anomaly detection, and the resulting unique 

data representations used to find anomalies, there does not appear to be an automated 

solution to translate the newly discovered detection criteria into a more widely accessible 

format.  A human expert, after arduously examining the traffic and creating a rule, 

typically performs this knowledge transfer. The rule can subsequently be used as input to 

any system capable of deciphering the syntax. 

There are two fundamental approaches for Network Intrusion Detection Systems 

(IDS): behavior and rule based. Behavior based systems typically maintain a model of 

normal system behavior and raise exceptions when parameters fall outside the norm. 

Computational Intelligence algorithms such as neural networks and clustering have been 

shown to be effective solutions at identifying anomalous behaviors (Linda, Vollmer, & 

Manic, 2009), (Taylor & Alves-Foss, 2002). Rule based systems use widely distributable 

predefined signatures to detect known network issues. 

The cost of developing and maintaining rule sets is an important issue for the rule 

based systems. Human experts are required to create, test and distribute the rules. Given a 

network trace containing anomalous packets, an expert must investigate the numerous 

attributes that uniquely identify the attack. This involves laboriously examining the 

packets for information and creating a candidate rule. Correct rule creation is then a 

manual process of trial and error where each trial run is examined for a proper alert on a 
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test file of captured network data. Finally, if the expert chooses to do so, the rule is 

submitted to a rule repository where it may be accepted into a public distribution system.  

This section explores a solution to autonomously create IDS rule sets utilizing 

evolutionary computation techniques. This is accomplished by implementing a Genetic 

Algorithm (GA) to autonomously create rules from identified network packets that are 

indicative of system misuse. These packets, used as input, originate from network traffic 

identified by a behavior based IDS. The resulting rules from processing the packets may 

not always be optimal for direct distribution but should provide a basis for reducing 

subsequent expert analysis effort. The system described here can be considered as a one 

way communication mechanism bridging the two types of intrusion detection systems. 

The GA chosen for implementation provides multiple optimal or near optimal 

unique rules that are made available for further evaluation by a human expert. The effect 

on accuracy of using different distance measures in this GA was explored in the previous 

section. It would be a straightforward process to simply provide a single rule that 

contains all possible attributes of a given network packet.  This could lead to over fitting 

of the rule to a single attack instance. In general, the more specific a rule is the more 

likely it is to eliminate false positives. However if a rule is too specific it may become 

brittle in the sense that any minor variation in the attack may be missed. In addition, the 

more detailed a rule becomes the more computational effort is required to process it. 

The solution presented here is similar in approach but different in context to past 

work in network intrusion detection. Previous work as in (Goyal & Kumar, 2007) was 

primarily concerned with developing a multiple rule set able to separate known behavior 

from unknown. Our effort is to produce a set of near optimal IDS rules for a single 

specific anomalous instance previously detected by a behavior based system. This is 

accomplished via use of a GA that has several unique characteristics differing from 

previous research efforts. Specifically, the representation of the population as 

syntactically correct Snort rules, as opposed to binary or researcher created syntax, and a 

three part fitness function. This function is designed to optimize the resulting rule sets for 

the Snort rule engine based on published best practices and characteristics of historical 

rule repositories. 
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As a consequence of the population representation a unique distance method was 

required. The cardinality of the rule genotype attributes is variable. The gene features that 

may be removed or added to Snort rules are not limited to a fixed number of fields. There 

are optional fields and most production rules contain a variety of them. Because of this, 

mutation and crossover required special consideration as well. The presented GA solution 

accommodates these features. 

The input data differs from prior work as well. A single instance of labeled data is 

presented to the system and the rule set is evolved to detect it. The question to be 

resolved is can this be done without producing a rule that provides a positive response to 

network traffic that is not an anomaly (false positive). 

5.2.1 Background 

Genetic Algorithms are an effective heuristic search technique inspired by 

concepts of evolutionary biology. They became popular with the published work of John 

Holland in the 1970’s. For an evolutionary algorithm to be categorized as a GA it needs a 

population representation of possible solutions, variation operators, selection and 

replacement mechanisms. When optimizing multi-modal functions a conventional GA’s 

population tends to converge to one of the optimal, or near optimal points. 

A specific implementation of a GA called Restricted Tournament Selection (RTS) 

provides a solution for maintaining several optimal solutions in the population (Harik, 

1995). This modification is possible because a GA utilizes a population of many 

(hundreds, thousands or more) possible solutions. This is effective in cases where the 

fitness function is not capable of representing the fitness with a high fidelity. An 

evaluation function is used to determine the ‘fitness’ of individuals in a population. This 

fitness is a measure indicating how well the individual solves a given problem. 

The RTS algorithms ability to maintain several fit solutions will be leveraged to 

produce unique rules that alert on a given anomalous packet. This assumes that the 

solution surface for generating rules is not uni-modal. There are several syntax models 

available for the rule format. Because of its widespread use the Snort rule format was 

implemented. The first section of this chapter provides more RTS details. 
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5.2.1.1 Snort Rule Processing 

For clarification this section briefly describes how Snort internally processes rules 

and a required modification to that process. The rule can be seen as a Boolean truth 

statement. In order for Snort to identify a match, a logical and of all positive field 

matches is utilized. Upon discovery of a false condition in the and evaluation, further 

processing of that rule is halted. 

Snort builds a tree data structure used to compare rule values against packet 

features. Each mandatory field in a rule is stored in rule tree node (RTN). An OTN 

(optional tree node) is associated with an RTN and used to store optional rule fields. If 

multiple rules have the same RTN fields they are only represented by a single node. This 

optimization feature allows for removal of multiple rules from consideration once a 

negative match occurs. 

The optimization aspect of this rule tree structure implementation is detrimental to 

our proposed GA fitness algorithm discussed in section 3. If the Snort engine processes a 

rule section that proves false, that rule is no longer considered for a possible match. This 

is a logical performance enhancement that speeds the execution of the rule engine. 

However this short circuit of rule evaluation prevents using a modified Snort source as a 

basis for rule fitness evaluation. 

An attempt was made to encourage the GA to craft good rules to reduce human 

expert analysis effort spent on examining the rules produced. Good being a subjective 

term is defined here with respect to three measurements. First the rule has to be able to 

recognize the packet as being an anomaly. Second it should conform to a grammar 

checker called dumbpig produced by Ward (2012). This tool parses a rule, reports on 

badly formatted entries, incorrect usage, and alerts to possible performance issues. 

Finally the rule should be similar in the number and type of fields used in existing rules. 

The assumption is that these rules have been vetted by the community of experts and are 

therefore worthy of emulation. 

5.2.2 Algorithm Description 

This section describes the implementation details of the final solution. The input 

data processing and its representation are presented. This data is fed to a GA 

implemented with RTS. A fitness function implemented in three parts is described. The 
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resulting rules produced by the GA are then sorted by fitness and the top three rules are 

presented as possible solutions. 

5.2.2.1 Input Processing 

It is assumed that the anomalous network traffic will already have been identified 

in advance. Systems, such as those described by Linda, Vollmer and Manic (2009) and 

Taylor with Alves-Foss (2002), are capable of isolating this kind of traffic. The network 

traffic data is to be contained in a PCAP formatted file. PCAP data files have become 

industry standard and are the output of an application programming interface library 

called libpcap. Utilizing the Perl CPAN module (Net::Pcap) based on this library, the 

information is read into the program memory space. Having network data stored in files, 

as opposed to real time capture on a network interface, enables offline processing. 

However the PCAP library is capable of performing both functions. 

After the packets are read into memory each one is parsed and stored in a data 

structure. For ICMP packets, this structure includes the following: source IP address, 

destination IP address, ICMP id, type, code, sequence number and packet size. These are 

all fields used in the GA population representation described in the next section. 

5.2.2.2 Genetic Algorithm Description 

A pseudo-code implementation of a GA is presented in Fig. 5-3 of the previous 

section. Details specific to this implementation are presented next. 

One of the first tasks in building a GA is to decide upon a representation of the 

solution population (line 1) and create a number of individuals in that population. Each 

individual is stored as a representation of a variable length list of Snort rule fields. A Perl 

associative array maintains these mixed type values. The field key, type and acceptable 

range values are shown in Table 23. Field key values are taken directly from the Snort 

rule syntax definitions. The ranges may include values that are not allowed according to 

specifications but are technically allowable within the data type or are specific to Snort 

rule processing. For instance, the src and dst fields can contain a variable name that Snort 

will replace with a configurable value at runtime. 



117 

 

 

Each individual in this population can be represented using a variable length 

vector )x,,(x n0 iv


 of mixed data type values x. The total population is the set of 

vectors  TT vvvP


,...,, 10 . For this experiment, the population size T was fixed at 200. 

This value was chosen as a reasonable tradeoff between time efficiency and solution 

convergence. The first generation of individuals was populated by randomly generating 

values in the domain range of the given fields with a random number of options. 

The selection of a field’s inclusion in a rule was not uniformly random in all 

cases. An analysis of the fields present in the 146 ICMP specific Snort rules was 

performed. Statistics were compiled on the type and frequency of rule option values 

present. An assumption was made that these rules, having been vetted and accepted into 

the official repositories by experts, exhibit desirable characteristics worthy of emulation.  

Whenever a decision needs to be made about a field’s inclusion a random number 

r is generated in the range 0 to N where N is the number of rules.  Given a frequency 

count fc of a given field f from the set of rules N such that fc < cardinality (N), the field f 

is included in a rule if the generated r is less than fc. In other words, a field is randomly 

selected for inclusion proportional to the relative frequency of its presence in the original 

146 ICMP rules. For example, the dsize field occurred 13 times in the set of 146 rules. 

Therefore close to a 9% chance exists that this field will be picked for inclusion. 

After an initial population is created, a series of variations and replacement 

selections must take place on some of the population individuals. This process repeats 

until some acceptable solution or predefined iteration limit is reached. For this project a 

Field Type Range 

proto string ‘icmp’ 

src string or CIDR ‘$SNET’ or 0.0.0.0/0 

sport string or integer ‘any’ 

dst string or CIDR ‘$DNET’ or 0.0.0.0/0 

dport integer ‘any’ 

itype integer 0-255 

icode integer 0-255 

icmp_id integer 0-65535 

icmp_seq integer 0-65535 

dsize integer 0-65535 

content string Any text 
 

Table 23.  Field Values 
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fixed number of 1000 iterations were selected. After looping (line 2) the defined number 

of iterations, processing terminated and the fittest individuals maintained by the RTS 

selection algorithm were isolated as the final best rule set. The details of variation and 

selection that occur in this loop are presented next. 

A steady state population model was implemented. This means that for a given 

iteration in the loop, only a maximum of two individuals in the original population are 

selected for replacement. This is in contrast to a generational model where the entire 

population is replaced by the offspring.  In this case, two individuals were selected as 

parents and two offspring were created from them. Subsequently, two more individuals 

were then selected for replacement by the new offspring creating a new generation. 

The two candidate parent individuals were randomly selected independent of any 

fitness or distance measure (line 3). Crossover between the two parents to create two new 

offspring utilized uniform crossover. Creation of these two offspring is a two-step 

process consisting of rule header creation and rule option creation. 

Rule header creation consists of randomly choosing a field from either parent and 

copying that value into the child. For the given ICMP problem, there is not much 

variability in the header portion and header creation is not that important relative to the 

option fields.  

Each option field of the new offspring rule is a copy of a field selected from a 

given parent. For each offspring a primary parent of the original two candidates is 

selected. Each option field of that primary parent is then considered for inclusion in the 

new child. A random number from a uniform distribution over 0.0-1.0 is generated. If the 

number is greater than 0.5 than the primary parents value is utilized; otherwise 

consideration is given to retrieving the information from the second parent. At this point, 

if the second parent contains the option field, it is copied into the child. However, if the 

field does not exist in the second parent, then the default action is to revert to the value 

from the primary parent. The net result of this is a child that contains the same number of 

options as the primary parent but with potentially different values from the secondary 

parent. Variation in child option count is left as a possibility in the mutation operator. 
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After crossover, mutation occurs on both children prior to replacement selection 

(line 4). As was the case in crossover, rule header mutation and rule option mutation 

behave differently. 

There is a 25% independent chance of mutating the rule header of a single child. 

Once selected for mutation the header src or dst IP field is randomly chosen for change. 

This change consists of randomly choosing between the three available options: any, 

Snort IP variable ($DNET or $SNET) and the test packet IP address (source or 

destination as appropriate). 

 Option mutation is considered separately from header mutation and it has a 25% 

chance of occurring as well on each option in the child. The reason for this separation of 

mutation is a result of programming convenience and need not occur in this manner. The 

integer domain values such as icode, itype, icmp_id and icmp_seq are processed the same 

according to their domain ranges. A random value within a window bracketing the 

original value is chosen. If this operation results in a value outside of the acceptable 

domain range defined in Table 23, the value is set equal to the closest boundary value. 

Content keyword mutation occurs by randomly selecting a range of the test packets data 

load and transforming any non printable characters into hex representation. Finally, with 

a 10% chance, it is possible that any of the options are simply removed from the rule. A 

future enhancement for consideration would be to add a nonexistent parent option field to 

the rule. 

Once mutation is performed the two resulting offspring are evaluated to replace 

candidates in the population. This is a critical step for the maintenance of a multi-modal 

solution set. Uni-modal GA solutions using tournament selection randomly pick two 

individuals for replacement. These values are replaced if the new children have better 

fitness values. RTS instead picks from a window size w, an individual that is closest to 

the new child (line 5). The size of the population contained in w is defined by empirical 

testing and each member is drawn from the original population using a uniformly random 

selection process. For this project w is set at twenty-five. Determination of the best value 

for w was not examined exhaustively and there could be a better value. Closeness is 

determined by a distance function. After determination of the closest individual to the 

candidate child a competition is held based on fitness between the child and selected 
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individual. The one with the best fitness is selected for inclusion into the solution 

population. 

5.2.2.3 Three Part Fitness Function 

In order to rank the individuals’ fitness an evaluation function called the fitness 

function was defined. The fitness function is a critical component of a GA as it is a 

primary source for determining an individual’s selection for survival and evolution. As 

was described at the end of the background section, three criteria were identified to judge 

a ‘good’ rule. The criteria are described as complete rule match, partial rule match and 

grammar check. Each criterion is implemented as a function that returns a numeric value. 

This sum of all three values constitutes the fitness value with a larger value indicating a 

higher fitness (line 6). Details of each criterion function are presented next. 

First a rule should be able to recognize the packet as being an anomaly. This is 

tested by running Snort with a candidate rule on a test packet and evaluating the result. A 

system call to the Snort command line was created that sends the output to a comma 

separated file. This output file is then read for existence of an alert related to the rule. If 

this exists a value of 10.0 is returned, otherwise the value 0.0 is returned. This relatively 

large value was chosen to promote the importance of rules that cause an actual alert. 

Second the rule is checked for a bad format, incorrect structure and possible 

performance issues. The Perl based dumbpig grammar checker was incorporated into the 

project code base to perform this check (Ward, 2012). A function call with the rule data 

results in a floating point value between 0.0 and 1.0. The fewer issues the function finds 

the greater the return value.  

The final evaluation is executed even when a rule does not completely match an 

evaluation packet. As was described in the background section, Snort rule evaluation 

short circuits processing a given rule definition whenever it finds a non match. In 

response to this behavior, a Snort rule evaluation process was recreated without this 

aspect. Instead, the processing was modified to track matches on all possible rule fields. 

For each field a Boolean value is maintained with 1 indicating match and 0 not. After a 

complete pass evaluating all fields in a rule, the final value is computed according to: 
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where N is the number of fields to compare and match is the function that returns the 

Boolean result of the comparison. 

The final fitness evaluation of a candidate rule is then computed as a sum of all 

three criteria. This fitness value is stored with a reference to the rule and only updated as 

needed. As this is the final computation step, execution resumes at the beginning of the 

loop and continues as appropriate. 

5.2.2.4 Output Processing 

The output of the GA described in the previous section is a set of rules along with 

their respective fitness values. These rules are sorted according to the fitness values with 

any duplicate rules removed. The resulting top three (highest fitness value) rules are then 

proposed as possible rule definitions to be distributed. This assumes that the top rules 

induce Snort to alert on the related packet. It was found in testing that this occurred in all 

ten tests cases, with an average 28% of the final rules producing a match. 

5.2.3 Experimental Results 

This section describes the results of running the system on two test data sets. A 

subset of the resulting rules that compiled the best fitness (largest) values are presented in 

addition to information on fitness and algorithm progression. 

5.2.3.1 ICMP Test Data 

ICMP rules and characteristics were the primary focus of a test data set created to 

show a proof of concept. Three packet creation tools: Nemesis, packETH and ISIC were 

utilized to provide two sets of test network data. The first two tools provided customized 

individual packets designed to trigger specific rules. The third tool, ISIC, was used to 

create a large set of packets composed of random values to test for false positives. The 

use of these tools and the resulting test data sets are described in this section. 

Nemesis and packETH are network packet crafting and injection tools (Nathan, 

2012), (Jemec, 2012). Details of an individual ICMP packet can be specified making 

them well suited for creating and reproducing test scenarios. They are similar in 

functionality but packETH features a graphical user interface while Nemesis is a 
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command line tool. An example Nemesis Linux command line used to create a packet is 

shown below. 

 

> nemesis -i 7 -s 0 -d 11 -d lo 

 

This command will create an ICMP packet with an itype of 7, a sequence number 

of 0 and an icmp_id value in the header of 11. Subsequently, the packet will be placed on 

the lo or loopback interface of the machine. With a packet capture tool attached to this 

interface, the data can then be captured into a static file and reused for later testing by 

replaying the file.  

The individual test packets created using the tools in the manner just described 

were captured and stored as a PCAP data file. A total of ten different test packets were 

created to trigger ten different Snort rules. Each rule was chosen for its rule keyword 

variety and membership in a rule class. The packet specifics and class types are presented 

in Table 24 in Snort rule format. 

Snort was exercised with the ten hand crafted test packets against 146 ICMP rules 

from the three sources mentioned in the background section. These test packets were 

crafted to match all conditions of ten specific rules that were categorized into a variety of 

 

 Packet Details Class Type 

0 icmp_id:667;itype:0;content:"ficken" attempted-dos 

1 same as #1 except random IP’s and IP identification 

field. 

attempted-dos 

2 dsize:0;itype:8;icode:0 attempted-recon 

3 icode:0;itype:5 bad-unknown 

4 icode:2;itype:3 misc-activity 

5 icode:2;itype:3; content:"|28 00 00 50 00 00 00 00 F9 57 

1F 30 00 00 00 00 00 00 00 00 00 00 00 00|” 

attempted-user 

6 icode:0;itype:8;dsize:20; 

content:"abcde12345fghij6789"; 

trojan-activity 

7 itype:8;icode:0;dsize:32;content:"abcdefghijklmnopqr|0

000|";depth:22; 

trojan-activity 

8 icmp_id:123;icmp_seq:0;itype:0; content:"shell bound 

to port"; 

attempted-dos 

9 icode:0; itype:40; misc-activity 
 

Table 24.  ICMP Packet Details 
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rule classes. Each individual packet was run against the original set of rules to ensure that 

a one to one relationship of packet to rule existed. In other words a single packet matched 

with a single rule. However this was not entirely possible as some of the rule definitions 

are broad enough to alert on only a few attributes. For instance test packet 8 triggered an 

alert on a rule that only specified itype 8 and icode 0. This is a generic ping rule and is 

technically correct. This type of issue aside Snort positively identified 100% of the test 

packets with no false positives or false negatives. 

A second large test set of random valued ICMP packets was created to evaluate 

the system for false positives. ISIC is a generic utility used to test the stability of an IP 

stack (Frantzen & Xiao, 2012). It is capable of creating a large number of test packets 

containing random values. The random values are correct in that they fall within a field’s 

acceptable data range. However, the value may not be currently in use or match a 

prerequisite implied by a setting in another field. These packets are then typically sent to 

a target while observing for any anomalous results. For this project 23 megabytes of data 

containing 33,794 ICMP packets were created. 

In the same manner as was described in the hand crafted packet test creation, the 

random test set was run against Snort and the original rules. This resulted in a total of 

31,929 alerts. Eighty-eight percent (28,293) of the alerts were triggered by a single rule 

designed to find undefined codes. The remaining 3,636 alerts were produced by 51 

unique rules. Of this set, 6 alerts were generated from 4 rules that were used to craft 

matches in the first test set. These were carefully noted for the evaluation phase as 

genuine alerts. They should be ignored when testing for false positives, as indeed they are 

not. 

After generating the two data sets, the original ten rule definitions used for the 

hand crafted packets were saved. These rules then became one basis for the final 

evaluation of the evolved rules correctness. It was not expected that the created rules 

exactly match the originals but they should be similar in content and behavior. 

5.2.3.2 Complexity Analysis 

Rule generation in the manner described was considered to be an offline process 

so initially minimal consideration was given to runtime performance. However the 
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complexity of the RTS GA is N x w where w is the size of the selection window. The 

complexity analysis of our implementation is complicated by the three part fitness test. 

Specifically the call to the Snort executable is an unknown quantity. The runtime 

performance of Snort varies greatly depending upon the nature of the rule set and volume 

of network traffic. In this project, the observed process run time of just the Snort binary 

was less than 1 second in all test cases on a desktop DELL with an Intel E5430 CPU and 

4 GB’s of RAM. The average run time of the test cases was 57 seconds. This reflects the 

heavy usage of string manipulation procedures. In addition, the project was implemented 

in PERL with a focus on program correctness and process visibility instead of runtime 

performance. 

5.2.3.3 Test Results 

In order to show the progression of the algorithms search for a set of optimal 

rules, Table 25 provides average fitness information, largest final rule fitness and the 

number of times a child was used to replace a member of the population. The columns 

are labeled with a test packet identifier of P0-P9. It can be seen in all test cases that the 

average final fitness values are higher than the initial average fitness. The fitness value of 

the final best solution, or rule, in each case is approximately two or three times that of the 

final average. The child creation step did produce an individual, on average, every five 

iterations that improved fitness as indicated by the replacement count. 

 Initial Avg 

Fitness Final Avg Fitness 

Best 

Fitness Replace 

P0 5.05 7.95 31 145 

P1 5.23 10.49 31 207 

P2 2.5 8.92 22 185 

P3 2.63 9.06 22 191 

P4 2.6 10.35 22 224 

P5 4.6 10.24 30.6 209 

P6 5.14 11.5 30.6 258 

P7 5.22 11.86 30.72 270 

P8 4.97 9.12 26.47 180 

P9 2.46 9.54 22 218 
 

Table 25.  Fitness and Run Data 
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Fig. 5-5 shows the top three fittest individuals for test case P0. For clarity the 

original rule definition used to create the test packet is included as the last line and is 

labeled as src. For formatting reasons the action, protocol, sid, classtype and rev number 

have been removed. These values are metadata information and do not contribute to 

Snorts recognition engine execution. As can be seen there is a variety in the rule header 

composure. The specific IP addresses were retrieved from the test packet headers. 

Retaining these in a production rule may not add value but this depends on knowledge 

not used as input into this system. A rule option commonality can be observed in the 

inclusion of similar content values and itype fields. The first rule contains an icode field 

that does not appear in the original rule. As this field was not identified in the original 

rule a default value was supplied when creating the packet. This value was manually 

verified as being correct for the test packet. Because of space considerations the other top 

three rules generated from each of the remaining nine cases are not shown. 

 A simple test of rule correctness involved running the ten test anomaly packets 

against the corresponding set of top three generated rules. All of the packets were 

recognized and generated the appropriate Snort alerts for a 100% positive identification 

rate for each of the top three rules for the 10 tests. This was expected based on the 

composition of the fitness evaluation function. It should be noted that all three of the 

rules contain valid identifying fields. A post-processing step could involve any 

combination of the defined fields to create a valid rule. A possibly more interesting test 

concerns the occurrence of false positives. It has been observed that a simple rule 

definition could contain just one field that matches a large number of packets. This would 

certainly produce a large positive identification rate. A set of random ICMP test packets 

was created to test for this scenario. In addition to the random packets, the ten hand 

crafted packets were used since they were readily available. For a given rule generated by 

our algorithm, only one of the crafted packets should generate an alert.  

235.130.217.126/32 any -> any any (itype:0; content:"ficken|0A|"; icode:0;) 

$SNET any -> 140.53.42.24/32 any (itype:0; content:"cken";) 

$SNET any -> any any (content:"fick"; dsize:7;)  

(src) $HOME_NET any -> $EXTERNAL_NET any  (icmp_id:667; itype:0; content:"ficken";)  

 

 

 

 

 

 

 

 

 

 

$HOME_NET any -> $EXTERNAL_NET any  (icmp_id:667; itype:0; content:"ficken";) 

Figure 5-5.  Packet 0 Generated Rules 
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As can be seen in Fig. 5-6 the false positive rate was very low. The vertical axis 

indicates the number of false positives for a given test rule set. A total of four false 

positives were generated from the set of 30 generated rules over the more than 33,000 test 

packets. Three false positives came from the hand crafted packets. None of the false 

positives were generated from the single top fittest rule for each test case.  

5.3 Chapter Summary 

This chapter provides two contributions: 1) A discussion and evaluation of 

similarity measures in two multi-modal GA solutions. 2) The implementation of a multi-

modal GA to autonomously create static rule sets from anomalous network traffic. The 

algorithm presents multiple rule solutions for distribution thereby reducing the effort 

required by human experts. 

Two crowding type Genetic Algorithm multi-modal solutions with real coded 

values were evaluated: Restricted Tournament Selection and Deterministic Crowding. 

The use of Mahalanobis and Euclidean distance measures in selection determination was 

evaluated. Five frequently used test functions were implemented as benchmarks to 

evaluate the performance of the selection routines. 

Mahalanobis is computationally more expensive but, within the parameters of the 

experiment, appears to be superior to Euclidean distance in Restricted Tournament 

selection and equivalent in Deterministic Crowing. The use of Mahalanobis distance, in 

the case of Restricted Tournament Selection, found 40% more of the global optimum, 

Figure 5-6.  False Positive Rate for Rules 
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maintained a 35% higher average peak count and produced an average final fitness that 

was 3 times better (lower). As is often the case, the results depict a tradeoff of 

computational complexity versus performance when choosing a distance algorithm to 

implement. 

Finally, the last section devised a solution to decrease human effort in creating 

Snort rules based on anomalous network traffic was accomplished. All of the ten hand 

crafted test packets resulted in a set of rules that caused Snort to alert. Not all of the rules 

were unique, but in each case there were at least three unique rules and as many as eight. 

Testing showed that these rules were specific to the packets and produced only four false 

positives from 33,804 test packets. These successful results indicate that analysts can use 

the generated rules as the basis for production rules. 

A key enabling technology was the use of a multi-modal GA introduced in the 

first section. A critical feature, in the performance of a GA’s search capability, is the 

ability of the fitness function to accurately indicate progress in exploration of the solution 

set. In the last section a three part fitness function was developed. It was sufficient in 

aiding generation of rules that caused alerts on test cases. Further refinement of this 

function and the addition of more rule options may increase the capability of the system 

to define robust rules. In addition, defining the capability to include session information 

instead of single packet rules could be explored. Finally expanding the domain of the test 

packets to UDP and TCP would provide a broader coverage of the anomalous network 

possibilities.  
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Chapter 6. Conclusion and Future Work 

This dissertation focuses on the problem of protecting control system devices 

attached to Ethernet networks. Utilizing standardized communication mechanisms and 

computational intelligence techniques in an autonomic computing structure; the ability to 

detect and mitigate abnormal behaviors was demonstrated. Further, despite the addition 

of complex algorithms, the resulting autonomic based system simplified the expression of 

information to the human operator. 

6.1 Summary of Contributions 

Summaries of this dissertations contribution by chapter are: 

Chapter 3 introduced the Autonomic Intelligent Cyber Sensor (AICS) architecture. 

AICS utilizes concepts of autonomic computing and a SOAP based IF-MAP external 

communication layer to create a network security sensor. This approach simplifies 

integration of legacy software and supports a secure, scalable, self-managed framework 

of modules. The contributions of this chapter include: 

1. A network security and information framework that utilizes a two level 

flexible communication platform. 

2. Intelligent Anomaly Assessment module (IAA): A custom Fuzzy Type 2 

implementation that uses clustering and a sliding window technique to model 

system behavior. 

3. Network Entity Identification (NEI): A network host identification scheme 

using Ettercap and custom logic to continuously examine traffic and maintain 

a dynamic model of the network. 

4. Dynamic virtual Honey Pot (DHP): Information from the NEI model is 

utilized to automatically create dynamic virtual honeypots with Honeyd. This 

relieves system administrators from time-consuming configuration duties. 

Chapter 4 discussed two communication algorithms for security awareness. The 

contributions of this chapter are: 

1. A Human Interface for Security Awareness (HISA) algorithm for interpreting 

cyber incident information from anomaly based intrusion detections systems 

is developed. The similarity algorithm maps anomaly results from behavior 
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systems to signature based intrusion system rules. Categorizations of attacks 

found in rules created for the Snort intrusion system were used as a basis of 

information to present to the user. 

2. The second contribution is the Computationally efficient Neural Network 

Intrusion Security Awareness (CeNISA) algorithm. The work presented in this 

section builds on the HISA algorithm. An entirely new and improved solution 

to the same problem is detailed. CeNISA is a neural network based pattern 

recognition algorithm that maps novel attack vectors recognized by anomaly 

Intrusion Detection Systems (IDS) to known attack classifications. 

Chapter 5 presented an algorithm for autonomously creating snort rules based on 

identified anomalous network traffic. The contributions of this chapter are: 

1. An exploration of distance measures used in multi-modal genetic algorithms. 

The basic idea of a multi-modal GA is to encourage the evolution of subsets 

representing diverse solutions in a single population during the evolutionary 

process. In order to measure this diversity, distance measures are employed. 

Given better distance measures, improved results may be realized.  

2. The second chapter section explores a solution to autonomously create IDS 

rule sets utilizing evolutionary computation techniques. This is accomplished 

by implementing a multi-modal GA to autonomously create rules from 

identified network packets. These packets, used as input, originate from 

network traffic identified by a behavior based IDS such as the IAA 

component. 

6.2 Future Work 

This work has identified several areas of possible future research. The use of 

virtualized networks and devices derived from the automated system presented could 

subsequently be used as a standard test bed for a variety of IDS systems. This kind of 

virtualized system is easily transportable and would provide a consistent background for 

testing. Subsequent work would be able to appropriately conduct comparisons with 

related efforts.  

One category of future work would be correcting the deficiencies found in the 

open source support software used in AICS. For instance, the virtual honeypot software 
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Honeyd could benefit from the handling of IP options. Additionally, network service 

emulation scripts for Honeyd are manually created. Many control system vendors offer 

windows based simulations of their controllers for users to test implementations. 

Integration of these implementations and development of autonomous service behaviors 

that emulate observed network communications would further the goals of deception, 

repeatable testing and reduction of human efforts. 

The distributed nature of multiple sensors could be more fully exploited. This 

would include integration of AICS with external components utilizing the IF-MAP 

standard. These components could include functionality to correlate information from the 

sensor with physical production data. Distributed sensors could share knowledge in the 

form of rules and network behaviors. In the particular case of Genetic Algorithms, this 

could potentially reduce the amount of training needed for a new deploy.  
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