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Abstract 

Histopathological image analysis is challenging but essential for cancer detection, diagnosis, and 

prognosis prediction. Traditionally, pathologists examine the shapes and distributions of tissues under 

the microscope to identify the presence of carcinoma and quantify the level of malignancy. Because of 

the large number of tissue details, the whole process is time-consuming, low-throughput, and prone to 

human error. To overcome these challenges, computer-aided diagnosis (CAD) systems are leveraged 

to extract biologically relevant and human-interpretable features from histopathology images 

automatically. This automated process can significantly improve the performance of disease detection 

and enhance the reproducibility of results. However, the conventional single-task-based machine 

learning algorithms achieved poor generalizability in histopathology image analysis, particularly when 

only limited annotated histopathological data is available.  

In this dissertation, I build a suite of deep multi-task learning (MTL) approaches to enhance the 

generalizability of machine learning models for the most challenging tasks in histopathology image 

processing. MTL uses multiple domain information-enriched tasks as inductive biases to improve the 

generalization of machine learning models. It enables machine learning models to learn shared 

representation from multiple tasks to exploit the commonalities and differences between them, which 

could greatly reduce models’ dependency on large datasets. The main objective of this research is to 

utilize MTL neural networks to accurately extract objects of interest, such as glands and nuclei, in 

histopathology images and quantify the presence of tissue’s morphology, topology, and geometry 

information. This information enables further analysis of digital biomarkers and is employed as the 

fundamental knowledge for cancer analysis.  

First, I propose a novel MTL network with a bending loss regularizer to separate overlapped nuclei 

accurately. The newly proposed MTL architecture enhances the generalization by learning shared 

representation from three tasks: instance segmentation, nuclei distance map prediction, and overlapped 

nuclei distance map prediction. The proposed bending loss defines high penalties to concave contour 

points with large curvatures and applies small penalties to convex contour points with small curvatures. 

Minimizing the bending loss avoids generating contours that encompass multiple nuclei.  

Second, I propose a novel topology-aware MTL network to accurately segment severely deformed 

and densely clustered glands. The proposed network has an MTL architecture and enhances the 

generalization of gland segmentation by learning shared representation from two tasks: instance 

segmentation and gland topology estimation. The proposed topology loss computes gland topology 
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using gland skeletons and markers. It drives the network to generate segmentation results that comply 

with the true gland topology.  

Third, we propose a style-guided instance-adaptive normalization (SIAN) approach to synthesize 

realistic color distributions and textures for histopathology images from different organs. SIAN 

contains four phases, semantization, stylization, instantiation, and modulation. The first two phases 

synthesize image semantics and styles by using semantic maps and learned image style vectors. The 

instantiation module integrates geometrical and topological information and generates accurate nuclei 

boundaries. SIAN can generate realistic images from the layout to the histopathology images with target 

styles that align with different organs and cancer.  

Lastly, I review MTL approaches for other image modalities and applications, and I demonstrate 

the effectiveness of MTL in Scanning Electron Imagining examination for metallic fuels.  
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Chapter 1: Introduction  

1.1 Histopathology Image Processing 

Cancer is a global public health problem and is one of the leading causes of death worldwide. According 

to the American Cancer Society, there were an estimated 1,918,030 new cancer cases and 609,360 

cancer deaths in the United States in 2022 (Siegel et al., 2022). Histopathology offers the gold standard 

for cancer detection, diagnosis, and prognosis. It refers to the examination of tissues and cells at the 

microscopic level to detect diseases. Traditionally, pathologists visually examined histopathological 

samples, and the whole process was entirely manual and relied solely on the pathologist's expertise and 

experience. With the increasing number of cancer patients, tissue samples, and the complexity of 

diseases, pathologists face challenges in diagnosing cancer efficiently, accurately, and consistently. 

Recently, machine learning (ML) has been increasingly adopted to assist with the diagnosis of 

cancer by automating routine tasks. ML uses algorithms to automatically learn patterns and insights 

from big data, instead of relying on pre-determined empirical equations. It offers a more accurate and 

efficient solution for analyzing and interpreting large volumes of histopathological image data, such as 

classifying, detecting, and segmenting specific structures or tissues within histopathology samples 

(Chen et al., 2016; Graham, Chen, et al., 2019; Graham, Vu, et al., 2019; Naylor et al., 2018; Oda et 

al., 2018; Qu et al., 2019; Vu et al., 2019; Xing et al., 2015; Yan et al., 2020; Zeng et al., 2019; Zhou 

et al., 2019). These methods show promising results and significant improvement in the speed of the 

diagnostic process and ensure consistent completion of tasks, which can reduce the workload of 

pathologists and allow them to focus on more complex cases that require their high-level professional 

expertise. 

1.1.1 Major Challenges  

Although encouraging progress has been achieved in ML-enhanced histopathology image analysis and 

processing, there still remain challenges for the computer-aided diagnosis system. The major challenges 

pertinent to hematoxylin and eosin (H&E)-stained histopathology image processing are summarized as 

follows.  

1. Accurate segmentation for overlapped and clustered tissues. Overlapped and clustered tissues 

are one of the major challenges in histopathology image analysis (Graham, Vu, et al., 2019), where 

two or more different tissues overlap and cluster together in the image. This issue can be occurred 

by a variety of factors, such as tissue deformation (malignancy), pathological conditions, different 

tissue preparation procedures, and variations in imaging quality. Figure 1.1 illustrates an image 
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patch that contains hundreds of nuclei that are overlapped and clustered in a small region, making 

it difficult to distinguish and classify each individual tissue. It presents a challenge not only for 

pathologists but also for machine learning algorithms to accurately segment and separate each 

individual nucleus. Separating overlapped tissues is important for accurate quantification and 

diagnosis. Overlapping tissues can cause errors in the quantification of various histopathological 

features, such as size, shape, and texture. If two or more objects are detected as a single object, 

their individual characteristics may be lost, leading to inaccurate measurements. For example, in 

cancer diagnosis, accurate counting and characterization of the nuclei are critical for determining 

the grade and stage of cancer. 

2. Accurate segmentation for malignant tissues. Malignant tissues are characterized by abnormal 

and uncontrolled cell growth that can invade nearby tissues and spread to other parts of the body 

(Epstein et al., 2005). These tissues are cancerous or have the potential to become cancerous, and 

they often appear irregular in shape and size. The irregularity of malignant tissues poses challenges 

to accurately distinguishing and segmenting them. In histopathology images, healthy glands 

typically appear in round or oval shapes and are uniform in appearance in terms of size and shape. 

In contrast, malignant tissues tend to grow oversize, and invade adjacent tissues, causing severe 

deformation of their shapes, and cluster densely in histopathology images (Figure 1.2). The 

accurate detection and treatment of malignancy is crucial for improving patient outcomes and 

survival rates. Early diagnosis and prompt treatment are important for managing malignant tumors 

and preventing them spread to other parts of the body. However, accurately segmenting malignant 

        

Figure 1.1 A sample H&E stained histopathology image patch (Graham, Vu, et al., 2019). Left shows the 

original image. Right shows the annotated nuclei in the image; different color refers to different types of 

nuclei. 
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tissues can be challenging due to their large variation in irregularities such as shape, size, 

alignment, and nuclear morphology. 

3. Color variation among various cancer and organs. Cancers are diagnosed by the first developed 

organ (primary site) or the tissue type where cancer originated (histological type). In 

histopathology images, different types of cancer can have large variations in color and texture 

(Figure 1.3). Color variations can arise from different structure types, staining techniques, imaging 

settings, and processing methods (Veta et al., 2014). For example, the choice of staining techniques 

and dyes used, different imaging settings, and processing techniques may vary among different 

tissue types and cancers, ultimately leading to variations in the color of histopathology images. 

This color variation can impact the accuracy of detection and segmentation algorithms, which in 

turn affects the effectiveness of diagnosis and treatment. 

    

    

Figure 1.2 The H&E stained histopathology images show healthy and malignant glands with yellow contours 

(Sirinukunwattana et al., 2015). The first row displays healthy glands, the second row shows malignant glands. 

The malignant glands are appeared in deformed shape and in close proximity to their neighboring glands. 

    
Figure 1.3 Color variations among H&E stained histopathology images (Kumar et al., 2017).  
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4. Limited annotated samples. Supervised learning algorithms have demonstrated the b est overall 

performance in histopathology image processing, but they require a substantial amount of 

annotated data for effective model training and convergence. Current large-scale image datasets, 

such as ImageNet (Deng et al., 2009), and Microsoft COCO (Lin et al., 2014), contain hundreds 

of thousands to millions of samples. However, existing Hematoxylin and eosin (H&E) stained 

histopathological image datasets are comparatively limited, and only tens to hundreds of image 

patches were used in Graham, Chen, et al. (2019); Graham, Vu, et al. (2019); Kumar et al. (2017); 

Naylor et al. (2018); Vu et al. (2019); Kumar et al. (2019); Sirinukunwattana et al. (2015). 

Consequently, the current heavily over-parameterized learning models may overfit the limited 

training data and lack generalizability on new and unseen data. Figure 1.1 shows a sample of H&E 

stained histopathology image patch from the CoNSeP dataset (Graham, Vu, et al., 2019), which 

contains hundreds of nuclei in a 1000 × 1000 pixel patch. Thus, annotating large histopathology 

image datasets with pixel-accurate annotations can be extremely costly, especially for images that 

contain substantial amounts of tissues.  

These challenges present researchers with opportunities to develop innovative solutions. In the 

dissertation, we focus on these four major challenges, which are addressed in different chapters of the 

study. To tackle these challenges, multi-task learning is employed as a primary method to advance our 

understanding of histopathology image processing and contribute to the development of more accurate 

and efficient methods for histopathology image analysis. 

1.2 Multi-task Learning  

Multi-task learning (MTL) is a machine learning approach that aims to train a model to learn multiple 

independent tasks simultaneously. MTL comprises shared feature extractor layers that extract shared 

features from input data and multiple tasks that produce predictions for each task-specific output. This 

design exploits the similarities and differences among tasks, enabling the transfer of knowledge 

between them, which improves model generalization, strengthens latent representations, and enables 

domain adaptation (Caruana, 1998). The learning procedure mimics how humans excel at recognizing 

similarities between new problems and prior experiences.  

There are two main categories of existing MTL methods: hard-parameter sharing and soft-

parameter sharing (Crawshaw, 2020; Ruder, 2017).  Hard-parameter sharing is the most commonly 

used strategy to perform MTL in deep neural networks. In this approach, shared hidden layers between 

tasks are jointly learned in a representation learning subnetwork, and multiple subnetworks are used to 

predict each task-specific output, as illustrated in Figure 1.4 (a). In soft parameter sharing, each task 
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has its own model with its own parameters, where the associated parameters are highly constrained, 

and they could learn similar knowledge for each task, as evidenced in Figure 1.4 (b). However, soft-

parameter sharing can limit the learning of dissimilar tasks due to its constrained layers and introduce 

more computational costs when the number of tasks is large. Therefore, hard-parameter sharing MTL 

is the most prevalent design in recent studies.  

It is crucial to distinguish MTL from other deep learning architectures that can predict multiple 

tasks, such as multiple single-task learning (MSTL) and Multi-label learning (MLL). MSTL uses 

multiple single-task learning models, one for each task, to predict multiple tasks simultaneously, as 

illustrated in Figure 1.4 (c). In the inference, these models are combined to predict multiple tasks. 

MSTL suffers from a lack of shared knowledge across multiple tasks and requires more computational 

resources as the number of tasks increases. MLL involves each data point being associated with 

multiple labels. If each label is treated as a separate task, it can predict multiple tasks using MLL, as 

depicted in Figure 1.4 (d). However, learning multiple labels using one architecture could limit 

performance if different labels have relatively unrelated tasks, such as predicting classification labels 

                               

                                             

                   
Figure 1.4 Deep neural network architectures can predict multiple tasks.   

(a) Hard-parameter Sharing MTL (b) Soft-parameter Sharing MTL 

(c) (d) 
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and segmentation labels simultaneously. In this dissertation, we focus on hard-parameter sharing 

MTL, which is the most prevalent and effective design in comparison to other MTL architectures such 

as MSTL, MLL, and soft-parameter sharing MTL. For simplicity, the term "MTL" refers to the hard-

parameter sharing MTL throughout the rest of this dissertation. 

In formulating MTL for image recognition, we define 𝒙 be the input data, and 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏 be the 

output tasks. We aim to learn an MTL function 𝑓 that can simultaneously map the input data to multiple 

outputs by minimizing the loss/error between 𝑓(𝒙) and 𝒚𝒊. The MTL learning objective is defined as 

follows:  

ℒ(𝑓(𝒙,𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏)) =  ∑𝜆𝑖 ℒ𝑖(𝑓(𝒙),𝒚𝒊)+  ℓ(𝑓)

𝑛

𝑖=1

  

  (1.1)                                            

where ℒ𝑖  is a pre-defined task-dependent loss function for task i, such as cross-entropy for a discrete 

target or mean squared error for a continuous target, 𝜆𝑖 is a weighting factor for each task, ℓ(𝑓) is 

the regularization term to prevent overfitting and improve the generalization performance of the model. 

The first term in the loss function is the overall summation for each task-specific loss, controlled by 

weighting factor 𝜆𝑖. The second term, ℓ(𝑓), encourages the model to learn a shared representation 

across all tasks, which helps to improve generalization performance. During training, the network 

minimizes the loss function for all tasks simultaneously, encouraging the network to learn task-specific 

representations that are also informative for other tasks. The shared feature representations enable the 

model to generalize better to new tasks, while the task-specific output layers allow the model to make 

multiple task-specific predictions. By jointly learning multiple tasks, multi-task learning can improve 

data efficiency, improve model generalizability, reduce the risk of overfitting, and introduce faster 

convergence compared to learning each task independently. 

One important advantage of MTL is to alleviate the data sparsity problem, as it improves data 

efficiency and enhances model generalizability. Each task has a limited number of annotated data could 

be insufficient to train an accurate model. MTL addresses this problem by aggregating the annotated 

data from all the tasks to train a more accurate model. This can help reuse existing knowledge and 

reduce the cost of manual annotations for model training. Furthermore, MTL benefits from diverse data 

from different learning tasks. This leads to learning more robust and universal representations from 

different tasks, resulting in more accurate and effective models. Recent studies have demonstrated the 

effective accuracy, efficiency, and generalizability of MTL in various fields, including natural language 

processing (Worsham & Kalita, 2020), computer vision (Kendall et al., 2018), and biomedical image 

analysis (Chen et al., 2016; Graham, Vu, et al., 2019).  
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In histopathological image processing, MTL is particularly advantageous because it can address 

multiple tasks simultaneously to enhance model generalizability, such as object segmentation, object 

classification, and object morphology and topology. This design is important to address various 

histopathological challenges, such as malignant tissues and overlapped and clustered tissues, by 

integrating sufficient topological, morphological, and geometrical features to the common features, 

such as object foreground, object attributes, allowing the model to tackle the challenges from different 

prospects. Furthermore, in the case of limited annotated histopathological data, MTL can improve data 

efficiency from the data provided by other tasks and enable more effective transfer learning between 

tasks. Additionally, MTL helps to reduce the risk of overfitting on any specific task and facilitates faster 

convergence on the network since the network can utilize the diverse data attributes to learn the shared 

feature representations. Figure 1.5 illustrates an MTL network that takes advantage of foreground 

segmentation, and topology estimation simultaneously for accurate gland segmentation.  

To design an effective MTL, several factors need consideration while creating MTL and its shared 

architecture, such as the portion of the parameters to share between tasks, the architecture design of 

parameterization, and the combination of task-specific and shared modules (Vandenhende et al., 2021). 

Existing proposed MTL architectures involve a trade-off in the degree of information sharing between 

tasks. Over-sharing can lead to negative transfer, resulting in a worse performance of the joint multi-

task model than multiple individual models for each task. Conversely, limiting sharing may hinder the 

model from leveraging information effectively between tasks. Thus, the optimal performance of MTL 

architecture strikes an effective balance in sharing information between tasks.  

 
Figure 1.5 A sample multi-task learning network in histopathology images. The MTL takes histopathology image 

inputs into a shared feature extractor and learns multiple tasks simultaneously with task-specific outputs, such as 

foreground and topology. 
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1.3 Contribution 

The main objective of this research is to utilize multi-task learning neural networks to accurately extract 

structures within tissue, such as glands and nuclei, and analyze their morphology for accurate cancer 

detection. The study primarily employs machine learning algorithms and key concepts from multi-task 

learning theory. This thesis is organized into chapters that address various cancer diseases and 

challenges related to histopathological diagnosis.  

In Chapter 2, we introduce the novel deep multi-task networks with bending loss regularizer for 

accurate nuclei segmentation and overlapped nuclei segmentation:  

In Chapter 3, we propose a novel deep multi-task network to learn the gland instance and gland 

topological and morphological information simultaneously for accurate gland segmentation and 

deformed gland segmentation.  

In Chapter 4, we propose a deep generator network that can accurately generate realistic 

histopathology images and align images to different disease styles to increase the histopathology data 

and improve the supervised training performance.  

Chapter 5 discusses the application of the proposed network in other image domains and image 

modalities, such as scanning electron microscopy images.  

Overall, our studies present convincing visual representations and promising statistical 

improvements in many histopathology image applications including nuclei segmentation, gland 

segmentation, histopathology image generation, and realistic manipulation of histopathological 

textures, and the images in other scientific domains.     

https://www.google.com/search?rlz=1C1VDKB_enUS1018US1018&sxsrf=AJOqlzWJFxcYAeF_ae9IjCe23wZcphqEQA:1679515330205&q=simultaneously&spell=1&sa=X&ved=2ahUKEwiI8ZqVqvD9AhWfLUQIHX2MAeIQkeECKAB6BAgHEAE
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Chapter 2: Bending Loss Regularized Multi-Task Learning Network for 

Histopathology Nuclei Segmentation 

Wang, H., Xian, M., & Vakanski, A. (2020). Bending loss regularized network for nuclei segmentation 

in histopathology images. 2020 IEEE 17th International Symposium on Biomedical Imaging 

(ISBI), 

Wang, H., Vakanski, A., Shi, C., & Xian, M. (2021). Bend-Net: Bending Loss Regularized Multitask 

Learning Network for Nuclei Segmentation in Histopathology Images. arXiv preprint 

arXiv:2109.15283.  

2.1 Introduction 

Histopathology nuclei analysis provides direct and reliable evidence for cancer detection. Nuclei are 

the most distinguishable structures in H&E-stained histopathology images, and accurate segmentation 

of nuclei is essential for various quantitative analyses such as movement tracking, morphological 

changes, and nuclei counting. Traditionally, pathologists inspect nuclei morphology and distributions 

under microscopes to diagnose carcinoma and assess malignancy level. However, the large number of 

nuclei makes the whole process inefficient and prone to human error. Therefore, automated and 

accurate nuclei segmentation is essential for efficient and accurate cancer detection and diagnosis in 

clinical practice.  

Traditional approaches (Ali & Madabhushi, 2012; Cheng & Rajapakse, 2008; Yang et al., 2006) 

utilized thresholding and watershed algorithms to segment nuclei, but these approaches have limited 

robustness in handling images with various nucleus types, fat tissue, and staining procedures. In recent 

years, deep learning-based approaches have been successfully applied to biomedical image processing 

tasks (Badrinarayanan et al., 2017; Long et al., 2015; Ronneberger et al., 2015), and nuclei 

segmentation (Chen et al., 2016; Graham, Chen, et al., 2019; Graham, Vu, et al., 2019; Naylor et al., 

2018; Oda et al., 2018; Qu et al., 2019; Vu et al., 2019; Xing et al., 2015; Yan et al., 2020; Zeng et al., 

2019; Zhou et al., 2019). For instance, Xing et al. (2015) proposed a convolution neural network (CNN) 

that produces probability maps, and improved robustness with postprocessing techniques such as 

distance transformation, H-minima thresholding, and region growing. Kumar et al. (2017) presented a 

three-class CNN that computes the label for each pixel as an instance, boundary, or background for 

nuclei segmentation. Naylor et al. (2018) proposed a deep regression network that utilized the nuclei 

distance representations to separate overlapped nuclei for accurate nuclei segmentation. Although these 
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methods have demonstrated better results compared to traditional approaches, however, it is still 

challenging to segment nuclei accurately due to the presence of a large amount of overlapped nuclei.  

Overlapped nuclei segmentation is challenging due to the lack of clear boundaries among nuclei, 

similar background textures, and large size and morphology variations. Recently, deep learning-based 

approaches have been proposed to address this challenge using three main strategies. The first strategy 

utilized the neural network to split the overlapped nuclei by generating both nuclei instances and 

boundaries. For example, Kumar et al. (2017) proposed a three-classes CNN, including instances, 

boundaries, and background to segment the overlapped nuclei. Chen et al. (2016) proposed a multi-task 

learning framework that outputs instance map and boundary map in separate branches. Vu et al. (2019) 

constructed a multiscale deep residual network with instances and boundary classes to segment nuclei. 

The second strategy integrated features from overlapped nuclei to improve overall segmentation 

performance. Zhou et al. (2019) proposed the CIA-Net that utilized spatial and texture dependencies 

between nuclei and contours to improve the robustness of nuclei segmentation. Alemi Koohbanani et 

al. (2019) proposed a SpaNet that captures spatial features in a multiscale neural network. Graham and 

Rajpoot (2018) proposed a new weighted cross-entropy loss that was sensitive to the Hematoxylin stain. 

Qu et al. (2019) constructed a loss to learn spatial features for improving localization accuracy. The 

third strategy utilized the deep regression networks and Watershed algorithm to segment the overlapped 

nuclei. Naylor et al. (2018) constructed a regression network that generated markers for the Watershed 

algorithm. Graham, Vu, et al. (2019) proposed the HoVer-Net architecture to output the instance map 

and horizontal and vertical nuclei distance maps for obtaining the markers of the Watershed algorithm. 

According to the reported results, these approaches achieved better overall performance than traditional 

methods, but their ability to separate overlapped nuclei is still limited, as shown in Figure 2.1.  

   (e) DCAN                   (f) DIST             (g) HoVer-Net           (h) Bend-Net 

   (a) Image patch     (b) Ground truth           (c) U-Net               (d) SegNet  

                                                                                                                                                                                                                     

 

 

 

Figure 2.1 Examples of state-of-the-art approaches in segmenting overlapped nuclei. 
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To address the challenges above, we proposed a novel bending loss regularized deep multi-task 

network for nuclei segmentation. First, our proposed multi-task network comprises three decoder 

branches: 1) instance segmentation branch, 2) boundary-distance branch for all nuclei, and 3) boundary-

distance branch for overlapped nuclei, which is designed to identify overlapped nuclei. The proposed 

multi-task network aims to learn a shared representation from three nuclei representations for accurate 

nuclei segmentation. Second, we propose the bending energy-based regularizer to penalize large 

curvatures of nuclei contours. In histopathology images, the curvatures of nucleus contour points 

change smoothly; but if one contour contains two or multiple overlapped or touching nuclei, their 

touching points on the contour will have sharp curvature changes (Figure 2.2). Inspired by this 

observation, we develop the bending loss to generate large penalties for contour points with large 

curvatures. Additionally, we propose two new metrics to evaluate overlapped nuclei segmentation. 

Previous approaches evaluate overlapped nuclei segmentation using metrics for overall segmentation 

performance, which hides the real performance of the overlapped nuclei segmentation. Finally, we 

validate the proposed approach on the CoNSeP and MoNuSegv1 datasets using seven quantitative 

metrics: Aggregate Jaccard Index, Dice, Segmentation Quality, Recognition Quality, Panoptic Quality, 

AJIO, and ACCO. Extensive experiments demonstrate that the proposed Bend-Net outperforms eight 

state-of-the-art approaches.  

Compared to the closest work, HoVer-Net (Graham, Vu, et al., 2019), both the proposed approach 

and the HoVer-Net follow the multi-task learning architecture and use ResNet-50 as building blocks. 

There are two major differences between the two approaches: firstly, our proposed method includes a 

new decoder branch that specifically focuses on the segmentation of overlapped nuclei; secondly, we 

introduce the bending loss, which penalizes large curvatures of nuclei contours, to improve the accuracy 

of segmentation in cases where multiple nuclei are in close proximity or overlapping. 

 

 

             (a)                                                                    (b) 

Figure 2.2 Two contours. (a) An ideal nucleus contour; and (b) a contour contains two nuclei. Red rectangles 

highlight the touching points on the contour. 
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2.2 Bend-Net Method 

The proposed method, namely Bend-Net, consists of two key components: the bending loss and multi-

task learning architecture. Firstly, we propose a bending energy-based regularizer for penalizing 

touching nuclei points. Secondly, we propose a multi-task learning network with three decoder 

branches that focus on overlapped nuclei contours. The final loss function consists of the regular 

segmentation loss (Graham, Vu, et al., 2019), overlapped nuclei loss, and bending loss. 

2.2.1 Bending Loss 

Bending energy has been widely applied in measuring the shapes of biological structures, e.g., blood 

cells (Canham, 1970), cardiac (Duncan et al., 1991), vesicle membranes (Du et al., 2006), and blood 

vessels (Stuhmer et al., 2013). Young et al. (1974) used chain-code representations to model bending 

energy. Verbeek and Van Vliet (1993) used the derivative-of-Gaussian filter to model bending energy 

in the gray-scale image for motion tracking. Bergou et al. (2008) modeled the discrete curvature and 

bending loss both in kinematic and dynamic treatment to solve the smoothness problem.  

For 2D digital images, a contour is composed of discrete pixels, and the curvature of a contour 

point is computed by using the vectors created by neighboring points on the contour. For histopathology 

images, a nucleus usually has a smooth contour, and the points on the contour have small curvature 

changes; the points on the contour with large curvature have a high probability to be the touching points 

of two/multiple nuclei (Figure 2.2). To split the touching nuclei, we define the bending loss that gives 

high penalties to the contour points with large curvatures and small penalties to points with small 

curvatures. The proposed total loss is given by 

ℒ =  ℒ0 + 𝛼 ∙ ℒ𝑏𝑒                                                          (2.1) 

where L0 refers to conventional segmentation loss (Section 2.3); ℒ𝑏𝑒 denotes the proposed bending loss; 

and the parameter α controls the contribution of the bending loss. Let 𝐶 = {𝑐𝑖}𝑖=1
𝑚  be the set of contour 

points of nuclei in an image, and ℒ𝑏𝑒 is defined by 

ℒ𝑏𝑒(𝐶) =   
1

𝑚
∑ 𝐵𝐸(𝑖)𝑚
𝑖=1                                                          (2.2) 

where BE(i) is the discrete bending energy at the point 𝑐𝑖,  

𝐵𝐸(𝑖) =
𝜅(𝑖)2 ((1 − 𝛿(𝑐𝑖)) + 𝛿(𝑐𝑖) ∙ 𝜇)

|𝑣(𝑖, 𝑖 + 1)| + |𝑣(𝑖 − 1, 𝑖)|
                                                 

(2.3) 
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𝜅(𝑖) =  
2|𝑣(𝑖 − 1, 𝑖) × 𝑣(𝑖, 𝑖 + 1)|

|𝑣(𝑖 − 1, 𝑖)||𝑣(𝑖 − 1, 𝑖)| + 𝑣(𝑖 − 1, 𝑖) ∙ 𝑣(𝑖, 𝑖 + 1)
                              

(2.4) 

in Eq. (2.3), 𝛿(𝑐𝑖) is 1 if ci is a concave contour point, and 0 if ci is a convex point; 𝜅(𝑖) is the curvature 

at 𝑐𝑖. For three consecutive pixels on a nucleus boundary with coordinates xi-1, xi and xi+1, v(i-1, i) is the 

edge vector from point i-1 to i, such that v(i-1, i) = xi - xi -1; and v(i, i+1) is the edge vector from i to 

i+1, such that v(i, i+1) = xi+1 - xi. Operator |·| calculates the length of a vector. 𝜇 defines the weight for 

concave contour points.  

The 8-neighborhood system is applied to search neighbors for contour points. Ideally, a contour 

point only has two neighboring points, and their coordinates are used to calculate the edge vectors in 

Eqs. (2.3) and (2.4). As shown in Figure 2.3, a point with eight neighbors has 28 combinations of 

possible curve patterns. All curve patterns are divided into five groups; in each group, the concave 

points and the convex points have different discrete bending loss values. In the first group, the four 

patterns construct straight-line segments, and their bending losses are all 0s. The second group shows 

patterns with a 3π/4 angle between ed ge vectors, and their bending losses are relatively small. In the 

last group, the eight patterns have large curvatures, and their bending losses are the largest in all 

patterns. The third and fourth groups illustrate patterns with the same angles between edge vectors, but 

they have different bending losses due to the different vector lengths.  

To determine the concave and convex points, the mid-point of two extended neighboring points is 

calculated. If the mid-point is out of the predicted nucleus, we define it as a concave point; otherwise, 

 

Figure 2.3 Discrete bending losses for different curve patterns. In the value pairs ‘A/B’, ‘A’ represents 

the convex bending loss for the center point, and ‘B’ denotes the concave bending loss. The value 

rounds to two decimal places. 
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the point is a convex point. The concave points are more likely to be overlapped contour points, and 

the convex points are usually regular/normal points. Eq. (2.3) gives a larger penalty to concave points. 

The previous approach (Wang et al., 2020) calculated bending loss using curvature directly. Points with 

the same curvatures could be convex or concave, convex points are more likely regular contour points, 

and concave points are likely to be overlapped contour points. The previous approach cannot 

distinguish convex and concave contour points and tends to over-segment nuclei.  

A sample of overlapped nucleus contour is shown in Figure 2.4. The red dots highlight the concave 

points and the green dots highlight the convex points. The concave points’ bending loss values are 

28.28. The mid-points of green dots are inside of the predicted nucleus, and they are convex points; 

their bending loss values are less than 1.41. In Figure 2.4, the concave points with a bending loss of 

28.28 and the convex points with a bending loss of 1.41 have the same curve pattern; however, the 

concave points produce 20 times as much loss as the convex points.  

The proposed bending loss is rotation invariant since all patterns with the same angle between two 

edge vectors have the same bending loss. In practice, if two nuclei contours share some contour 

segments, one contour point may have more than two neighbors. In this scenario, we calculate the 

   

  

  

   (a) Nuclei contours         (b) Poorly-segmented           (c) Well-segmented 

Figure 2.5 Different bending losses of different segmentation results.  (a) Ground truth of eight nuclei contours; 

(b) bending losses of contour points of poorly-segmented nuclei; and (c) bending losses of well-segmented 

nuclei. Red: BE = 193.14, green: BE=28.28 and BE=40.0, blue: BE≤9.66, and grey: BE=0. 

 
 

1.41 

0.28 0.28 

0.28 0.28 

0.28 0.28 

28.28 

28.28 

0.28 0.28 

1.41 

Figure 2.4 A contour with both concave and convex bending energy points. Red dots highlight the concave 

points, and green dots highlight the convex points. 
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bending loss for all possible combinations and choose the smallest loss as the discrete bending loss for 

the point.   

As shown in Figure 2.5, for poorly-segmented nuclei contours, all these touching contour points 

have relatively high (red and green points) bending losses. If the touching nuclei are well separated 

(Figure 2.5(c)), and the bending loss of all contour points are less than 9.66.  

2.2.2 Multi-task Learning Network  

The proposed multi-task learning architecture is shown in Figure 2.6. The network follows an encoder-

decoder design, and has three decoder branches. The encoder employs ResNet-50 (He et al., 2016) as 

a feature extractor. In the first convolutional layer, 64 7×7 kernels with a stride of 1 are applied, but the 

following max-pooling layer is removed to preserve more information. The network has three 

decoders/tasks. The first task predicts the nuclei instance map (INST); the second produces each 

nucleus’s horizontal and vertical boundary-distance map (HV); and the third outputs the overlapped 

nuclei’s horizontal and vertical boundary-distance map (OHV). All decoders in the three branches have 

the same sub-architectures and dense units. The OHV and HV branches share weights through skip 

connections.  

The weight-sharing among decoders is designed to use features learned from similar tasks. In 

traditional multi-task learning networks, different branches typically addressed different tasks. 

However, in the proposed network, both the HV and OHV branches share some comment results; one 

for all nuclei, and the other for overlapped nuclei. To take advantage of the features from two similar 

tasks, we design skip connections among two branches to share weights. Specifically, the network first 

 

Figure 2.6 Overview of the proposed Bend-Net. ⊕ denotes the summation; © denotes the concatenation; red 

arrow represents the skip connections; number with red circle denotes the connected position of skip-connections. 
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learns the distance maps of overlapped nuclei and aggregates them through skip connections to distance 

maps in the HV branch.  

2.2.3 Loss Function 

As shown in Figure 2.6, the loss function of the proposed network has four terms: the losses from three 

different decoders and the proposed bending loss. Let ℒ𝐼𝑁𝑆𝑇 denote the loss of the binary instance map; 

ℒ𝐻𝑉 be the loss of the horizontal and vertical distance maps from the HV branch; and  ℒ𝑂𝐻𝑉 denote the 

loss of the horizontal and vertical distance maps from the OHV branch; ℒ𝑏𝑒 is the bending loss. The 

proposed loss function also can split into the segmentation loss (ℒ0) and the bending loss regularizer 

(Eq. 2.1). The total loss is given by:  

ℒ = ℒ𝐼𝑁𝑆𝑇 + ℒ𝐻𝑉 + ℒ𝑂𝐻𝑉⏟              
ℒ0

 + 𝛼 ∙ ℒ𝑏𝑒                                        (2.5) 

where 𝛼 is the weight of the bending loss in all loss functions. We follow the design in (Graham et al., 

2019) to set the losses of the three branches to have equal contributions to the total loss.  

Loss of the INST branch. To segment the nuclei instance, we calculate the binary classification 

for each image pixel. I and I* are the predicted instance map and the ground truth instance map for all 

nuclei. The loss (ℒ𝐼𝑁𝑆𝑇) is a summation of the cross-entropy loss (ℒ𝐶𝐸) and Dice loss (ℒ𝐷𝑖𝑐𝑒). They are 

given by 

ℒ𝐼𝑁𝑆𝑇(𝐼, 𝐼
∗) =  ℒ𝐶𝐸(𝐼, 𝐼

∗) + ℒ𝐷𝑖𝑐𝑒(𝐼, 𝐼
∗)                                        (2.6) 

ℒ𝐶𝐸(𝐼, 𝐼
∗) =  −

1

𝑛
∑ 𝐼𝑖

∗ log(𝐼𝑖)
𝑛
𝑖                                              (2.7) 

ℒ𝐷𝑖𝑐𝑒(𝐼, 𝐼
∗) =  1 − 

2 × ∑ 𝐼𝑖𝐼𝑖
∗𝑛

𝑖  

∑ 𝐼𝑖+∑ 𝐼𝑖
∗𝑛

𝑖  𝑛
𝑖

                                             (2.8) 

where 𝐼𝑖 is the class prediction at point i, and n denotes the number of pixels in an image patch. The 

INST branch separates the nuclei instance from the background.  

Loss of the HV branch. The loss function is to compare the predicted distance maps (D)  with the 

ground truth distance maps (D*) for all nuclei. We employed the distance loss function in (Graham et 

al., 2019). The distance loss function is defined by 

ℒ𝑑𝑖𝑠𝑡(𝐷, 𝐷
∗) =  ℒ𝑀𝑠𝑒(𝐷, 𝐷

∗) + 2 ∙  ℒ𝑀𝑠𝑔𝑒(𝐷, 𝐷
∗)                                   (2.9) 

ℒ𝑀𝑠𝑒(𝐷, 𝐷
∗) =  

1

𝑛
 ∑ 𝑑𝑖

2𝑛
𝑖                                                    (2.10) 
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ℒ𝑀𝑠𝑔𝑒(𝐷, 𝐷
∗) =  

1

𝑛
 ∑ (∇𝑑𝑖)

2
                                           𝑛

𝑖   (2.11) 

where ℒ𝑀𝑠𝑒 is the mean square error loss and ℒ𝑀𝑠𝑔𝑒 is the mean square gradient error loss; d is D – D*, 

and ∇ denotes the gradient calculation. 

Loss of the OHV branch. ℒ𝑂𝐻𝑉 is also defined using mean square error and the mean square 

gradient error (Eq. 2.9). But ℒ𝑂𝐻𝑉  is calculated using the predicted distance maps (D) and the ground 

truth distance maps of overlapped nuclei.  

2.3 Experimental Results and Discussion 

In this section, we first discuss the datasets, evaluation metrics, and experimental settings. Then, we 

show the effectiveness of each component of the Bend-Net. Then, we compared it to state-of-the-art 

methods using overall segmentation performance, and overlapped nuclei segmentation.    

2.3.1 Datasets and Evaluation Metrics 

We validate the proposed method using two histopathology nuclei datasets: CoNSeP (Graham, Vu, et 

al., 2019) and MoNuSegv1 (Kumar et al., 2017). CoNSeP is provided by the University of Warwick 

and has 41 H&E-stained images from 16 colorectal adenocarcinomas (CRA) WSIs collected using the 

Omnyx VL120 scanner. Six types of nuclei, normal epithelial, tumor epithelial, inflammatory, necrotic, 

muscle, and fibroblast exist in the dataset. The dataset contains 24,319 manually annotated nuclei 

(13,256 overlapped). The image size is 1000 × 1000 with the magnification at 40×. In the experiment, 

27 images are utilized for training and validation, and 14 images for testing. The training and validation 

sets have 15,582 nuclei, and the test set has 8,791 nuclei. 

MoNuSegv1 contains 30 images from TCGA (The Cancer Genomic Atlas) dataset. The original 

size of the images is 1000 × 1000, and there are more than 21,000 manually annotated nuclei from the 

breast, liver, kidney, prostate, bladder, colon, and stomach. The magnification is at 40×. In experiments, 

16 images (4 breasts, 4 livers, 4 kidneys, 4 prostates) are used for training and validation, and 14 images 

for testing. The training and validation sets contain over 13,000 nuclei (4,431 overlapped), and the test 

set has 6,000 nuclei (2,436 overlapped). The author recently extended the dataset and published in 

(Kumar et al., 2020); however, it was not adopted in this study because it contains much less overlapped 

nuclei in their new test set compared with the previous test set (Kumar et al., 2017). 

We employed five quantitative metrics to evaluate the overall performance of nuclei segmentation 

approaches: Aggregate Jaccard Index (AJI) (Kumar et al., 2017), Dice coefficient (Dice, 1945), 

Recognition Quality (RQ) (Kirillov et al., 2019), Segmentation Quality (SQ) (Kirillov et al., 2019), and 

Panoptic Quality (PQ) (Kirillov et al., 2019). We propose two new metrics to evaluate the overlapped 
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nuclei segmentation: Aggregated Jaccard Index of overlapped nuclei and accuracy for overlapped 

nuclei.  

Let 𝐺 = {𝐺𝑖}𝑖=1
𝑁  be the nuclei ground truth of an image, N denotes the total amount of segments in 

G; and let 𝑆 =  {𝑆𝑘}𝑘=1
𝑀  be the predicted segments of the corresponding image, M denotes the total 

amount of segments in S. AJI is an aggregate version of the Jaccard Index and is defined by 

AJI =  
∑ 𝐺𝑖 ∩ 𝑆𝑗
𝑁
𝑖=1

∑ 𝐺𝑖 ∪ 𝑆𝑗
𝑁
𝑖=1 + ∑ 𝑆𝑘𝑆𝑘𝜖𝑈

 

where Sj is the matched predicted segments that produce the largest Jaccard Index value with Gi; and 

U denotes the set of unmatched predicted segments, where the total amount of U is (M – N).  

Dice coefficient (DICE) is utilized to evaluate overall segmentation performance, the DICE is given 

by 

𝐷𝐼𝐶𝐸 = 
2|𝐺 ∩ 𝑆|

(|𝐺| + |𝑆|)
 

where operator |·| denotes the cardinalities of the segments.  

PQ is used to estimate both detection and segmentation results. RQ is the familiar F1-score, and 

SQ is known as the average Jaccard Index of matched pairs. RQ, SQ, PQ are defined as  

𝑅𝑄 = 
𝑇𝑃

𝑇𝑃 +
1
2
𝐹𝑃 +

1
2
𝐹𝑁 

 

𝑆𝑄 = 
∑ 𝐼𝑜𝑈(𝑝, 𝑔)(𝑝,𝑔)∈𝑇𝑃

𝑇𝑃
 

𝑃𝑄 = 𝑅𝑄 × 𝑆𝑄 

where p refers to prediction, 𝑔 refers to the ground truth. The matched pairs (p,𝑔) are mathematically 

proven to be unique matching (33) if their IoU(p,𝑔)> 0.5. The unique matching splits the prediction 

and ground truth into three sets: the number of matched pairs (TP), the number of unmatched 

predictions (FP), and the number of unmatched ground truths (FN).  

Metrics for Overlapped Nuclei Segmentation. We improved the Aggregated Jaccard Index (AJI) 

and accuracy metrics and proposed two new metrics to evaluate overlapped nuclei segmentation, 

namely, AJI of overlapped nuclei (AJIO), and accuracy for overlapped nuclei (ACCO). Because of the 

existence of many non-overlapped nuclei in images, traditional evaluation metrics cannot accurately 

validate the performance of overlapped nuclei segmentation. The proposed two metrics exclude all non-
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overlapped nuclei and focus on the evaluation of overlapped nuclei. Let 𝐺 = {𝐺𝑖}𝑖=1
𝑁  be the overlapped 

nuclei in a ground truth image; and 𝑆 =  {𝑆𝑘}𝑘=1
𝑀  be the nuclei in the output image. AJIO is defined by 

AJIO =  
∑ 𝐺𝑖 ∩ 𝑆𝑗
𝑁
𝑖=1

∑ 𝐺𝑖 ∪ 𝑆𝑗
𝑁
𝑖=1

 

where Sj is the matched nucleus in S that produces the largest Jaccard Index value with Gi.  

Let M be the number of matched nuclei pairs between the segmentation and ground truth, and O 

denote the total number of overlapped nuclei in an image. For each overlapped nuclei, we iterate all the 

predicted segments and count two nuclei matched if their Jaccard Index value is larger than a threshold 

τ (0.5). The ACCO is given by  

ACCO =
𝑀

𝑂
 

The two metrics are general and can be applied to other overlapped object segmentation.  

2.3.2 Implementation and Training 

The proposed approach is trained by using an NVIDIA Titan Xp GPU. The encoder was pre-trained on 

ImageNet, and we trained the decoder for 100 epochs to obtain the initial parameters for the decoder 

branches. The network was further fine-tuned for 100 epochs on the nuclei training set. The size of the 

final output images is 80×80 pixels, and these output images are merged to form images with the same 

size (1000×1000) as the original images. In experiments, the initial learning rate is 10-4 and is reduced 

to 10-5 after 50 epochs. The batch size is 8 for training the decoder and 2 for fine-tuning the network. 

Moreover, processing an image of size 1000×1000 with our architecture takes about one second.  

The input dimensionality of the network is 270×270×3. We prepare the training, validation, and 

test sets by extracting patches from images with 270×270 pixels size. During the training stage, data 

augmentation strategies, i.e., rotation, Gaussian blur, and median blur, are utilized for generating more 

 

Figure 2.7 Ground truth of an example histopathological nuclei image (Graham, Vu, et al., 2019). From left 

to right: original image, ground truth of all nuclei, and ground truth of overlapped nuclei. 
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images. The ground truths of overlapped nuclei are two or multiple individual nuclei have connected-

component labeling. An example histopathology image, the ground truth of all nuclei, and the 

overlapped nuclei are demonstrated in Figure 2.7.  

The proposed scheme comprises three stages: 1) preprocessing; 2) training of the proposed multi-

task learning network; and 3) postprocessing. The preprocessing performs color normalization to 

reduce the impact of variations from the H&E staining and scanning processes (Vahadane et al., 2016). 

The postprocessing described in Graham, Vu, et al. (2019) is employed in this study, which applies 

Sobel operators to the distance maps to generate the initial contour map; then the difference between 

the initial nuclei contour map and nuclei instance map is used to generate markers; and finally, the 

watershed algorithm is applied to generate nuclei regions.  

2.3.3 Effectiveness of the Network Architecture  

The proposed multi-task learning architecture uses HoVer-Net as the backbone and integrates our 

newly proposed overlapped nuclei (OHV) branch and skip connections (Figure 2.6). To demonstrate 

the effectiveness of the proposed architecture, we compare the proposed network with the single-task 

network (Instance-Net), and two-task network (HoVer-Net). To perform a fair comparison, the 

proposed bending loss is not used. The approaches are evaluated on the CoNSeP dataset by using AJI, 

Dice, RQ, SQ, and PQ scores. As shown in Table 2.1, the Instance-Net does not apply any strategy to 

separate the overlapped nuclei and achieved very limited performance, e.g., AJI is only 0.371. The 

proposed network with the OHV branch (‘Ours-OHV’) achieved better average performance than the 

Instance-Net and HoVer-Net. With the new skip connections between the HV and OHV branches, the 

AJI, RQ, and PQ scores of the proposed approach (‘Ours-skip’) increased by 3.54%, 3.30%, and 4.04%, 

respectively. The AJIO scores demonstrate that the proposed approach outperforms HoVer-Net in 

separating overlapped nuclei.   

 

Methods 
Metrics 

AJI ↑ Dice ↑ RQ ↑ SQ ↑ PQ ↑ AJIO ↑ 

Instance-Net 0.371 0.841 0.603 0.771 0.471 0.296 

HoVer-Net 0.545 0.840 0.674 0.773 0.522 0.520 

Ours-OHV* 0.559 0.847 0.692 0.774 0.537 0.531 

Ours-skip* 0.565 0.850 0.697 0.779 0.544 0.537 

* Ours-OHV denotes the proposed approach with the OHV branch; Our-skip has additional skip connections 

between the HV and OHV branches. 

  
Table 2.1 Bend-Net: effectiveness of the proposed multi-task learning architecture using the CoNSeP dataset. 
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2.3.4 Effectiveness of the Bending Loss 

The newly proposed bending loss improves our original bending loss calculation (Wang et al., 2020) 

by characterizing the difference between the concave and convex contour points.  First, we compare 

the proposed multi-task learning network without any bending loss, with the bending loss (Lbe v1) in 

(Wang et al., 2020), and with the newly proposed bending loss (Lbe v2). Second, we demonstrate the 

effectiveness of the bending loss by adding it to HoVer-Net. The CoNSeP dataset and AJI, Dice, RQ, 

SQ, and PQ scores are used in experiments. As shown in Table 2.2, the proposed architecture with the 

v1 bending loss (Wang et al., 2020) achieves better performance than that of the network without any 

bending loss, and the proposed architecture with the newly proposed v2 bending loss outperforms the 

network with the v1 bending loss. The results demonstrate that the v2 bending loss can improve the 

overall performance (AJI: from 0.565 to 0.578) of nuclei segmentation. Meanwhile, adding the v1 or 

v2 bending losses to HoVer-Net improves its overall performance, which demonstrated the potential of 

applying the bending loss to improve the performance of other approaches. In addition, the AJIO scores 

demonstrate that the proposed approach with the v2 bending loss outperforms all other approaches in 

separating overlapped nuclei.   

2.3.5 Parameter Tuning 

Two hyper-parameters, 𝛼 𝑎𝑛𝑑 𝜇, exist in the proposed loss function. 𝛼 balances the bending loss and 

all other losses (Eq. 2.5); and 𝜇 (Eq. 2.3) gives different weights to the concave and convex contour 

points when calculating the bending loss. We conducted a grid search for the two parameters on the 

CoNSeP dataset by using the AJI score. Figure 2.8 shows the AJI results of nine parameter 

combinations (𝜇: 10, 20, 40; α: 0.5, 1.0, 2.0). As shown in Figure 2.8, the proposed approach achieved 

the best performance when 𝜇 is 20, and 𝛼 is 1.0. Therefore, the bending loss of a concave curve pattern 

Methods 
w/o bending 

loss 
Lbe v1 Lbe v2 

Metrics 

AJI ↑ Dice ↑ RQ ↑ SQ ↑ PQ ↑ AJIO ↑ 

HoVer-Net 

   0.545 0.840 0.674 0.773 0.522 0.520 

   0.552 0.844 0.683 0.774 0.530 0.523 

   0.559 0.846 0.690 0.776 0.537 0.528 

Ours 

   0.565 0.850 0.697 0.779 0.544 0.537 

   0.570 0.847 0.701 0.777 0.547 0.541 

   0.578 0.851 0.709 0.781 0.555 0.552 

* Lbe  v1 and Lbe  v2 refer to our previous bending loss [35] and the newly proposed bending loss, respectively. 

 Table 2.2 Bend-Net: effectiveness of the proposed bending loss using the CoNSeP dataset. 



22 

 

 

is twenty times the quantity of the same convex curve pattern. Refer to Figure 2.3 for the bending loss 

of different curve patterns.   

2.3.6 Performance Comparison of State-of-the-art Approaches 

We compared eight deep learning-based approaches, including three widely used biomedical 

segmentation architectures: FCN8 (Long et al., 2015), U-Net (Ronneberger et al., 2015), and SegNet 

(Badrinarayanan et al., 2017), and five state-of-the-art nuclei segmentation approaches: DCAN (Chen 

et al., 2016), DIST (Naylor et al., 2018), Micro-Net (Raza et al., 2019), HoVer-Net (Graham, Vu, et 

al., 2019), and BEND (Wang et al., 2020). Table 2.3 shows the overall performance of nine approaches 

on two public datasets (CoNSeP and MoNuSegv1) using five metrics AJI, Dice, RQ, SQ, and PQ. Note 

that all other approaches are tested using the described experiment settings, and therefore, the values in 

Table 2.3 may not be the same as those reported in the original publications. The Watershed algorithm 

is applied to FCN8, U-Net, and SegNet for postprocessing, whereas the rest of the approaches are 

implemented by following the same strategy as in the original papers. As shown in Table 2.3, the 

 

Methods 
CoNSeP MoNuSegv1 

AJI ↑ Dice ↑ RQ ↑ SQ ↑ PQ ↑ AJI ↑ Dice ↑ RQ ↑ SQ ↑ PQ ↑ 

FCN8  0.289 0.782 0.426 0.697 0.297 0.426 0.779 0.592 0.708 0.421 

U-Net  0.482 0.719 0.490 0.668 0.328 0.520 0.722 0.635 0.675 0.431 

SegNet  0.461 0.699 0.482 0.667 0.322 0.508 0.797 0.672 0.742 0.500 

DCAN  0.408 0.748 0.492 0.697 0.342 0.515 0.778 0.659 0.718 0.473 

DIST 0.489 0.788 0.500 0.723 0.363 0.560 0.793 0.618 0.724 0.449 

Micro-Net  0.531 0.784 0.613 0.751 0.461 0.581 0.785 0.700 0.737 0.517 

HoVer-Net  0.545 0.840 0.674 0.773 0.522 0.606 0.818 0.765 0.767 0.588 

BEND  0.553 0.846 0.683 0.776 0.530 0.627 0.827 0.770 0.766 0.590 

Bend-Net 0.578 0.851 0.709 0.781 0.555 0.635 0.832 0.780 0.771 0.601 

 

 Table 2.3 Bend-Net: overall test performance on the CoNSeP and MoNuSegv1 datasets. 

Figure 2.8 Fine-tuning parameters using AJI scores. 
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proposed method outperforms other eight approaches in terms of all five metrics. Among three general 

biomedical segmentation architectures, U-Net achieved the highest AJI and RQ scores, but it has lower 

Dice and SQ scores than those of FCN8. DCAN and DIST built upon FCN8 and U-Net, respectively. 

DCAN outperforms the FCN8 in all five metrics, and DIST outperforms U-Net in all five metrics. 

However, their overall segmentation performances still are limited. Micro-Net, HoVer-Net achieve 

comparative segmentation results. The proposed Bend-Net achieves better results than all other 

approaches on the two datasets in all five metrics.  

2.3.7 Overlapped Nuclei Segmentation 

We proposed two new metrics, AJIO and ACCO, to evaluate overlapped nuclei segmentation. Table 

2.4 shows the performance of overlapped nuclei segmentation on the CoNSeP and MoNuSegv1 datasets 

by using AJIO and ACCO scores. The DIST, Micro-Net, HoVer-Net, and the proposed method applied 

strategies to separate overlapped nuclei; therefore, their performances are significantly better than 

FCN8, U-Net, and SegNet. Our method achieved the best AJIO and ACCO scores on two datasets. 

Figure 2.9 shows segmentation examples of six image regions with overlapped nuclei from the CoNSeP 

and MoNuSegv1 datasets. In the ground truth images, overlapped nuclei are represented using different 

colors. In the result images, if an approach can separate two overlapped nuclei, the two nuclei should 

be in two different colors.  As shown in Figure 2.9, FCN8, SegNet, and U-Net tend to miss small nuclei, 

and cannot separate overlapped nuclei. DCAN is slightly better at handling overlapped nuclei than 

FCN8, SegNet, and U-Net, but tends to miss nuclei that are not small. DIST separates overlapped nuclei 

better than the last four approaches, but it tends to over-segment nuclei and generate many small 

regions. Micro-Net performs well in segmenting overlapped nuclei, but it produces smaller nuclei 

 

 CoNSeP MoNuSegv1 

Methods AJIO ↑  ACCO ↑ AJIO ↑ ACCO ↑ 

FCN8  0.350 0.328 0.337 0.358 

U-Net  0.486 0.395 0.472 0.464 

SegNet  0.411 0.262 0.407 0.406 

DCAN  0.417 0.293 0.427 0.423 

DIST 0.542 0.476 0.543 0.536 

Micro-Net  0.513 0.495 0.513 0.504 

HoVer-Net 0.520 0.558 0.542 0.613 

BEND  0.529 0.561 0.553 0.627 

Bend-Net 0.552 0.586 0.570 0.656 

 

Table 2.4 Bend-Net: overlapped nuclei segmentation performance on the CoNSeP and MoNuSegv1 Datasets. 
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regions than the ground truth and tends to over-segment nuclei. Hover-Net shows better segmentation 

results than the other six approaches. It can segment out small nuclei, and the sizes of result nuclei 

regions are close to those of the ground truth. It outperforms the other six approaches in segmenting 

overlapped nuclei; however, it has difficulty in separating closely touched nuclei. In Figure 2.9, the 

proposed method achieves the most accurate results on six images. The proposed approach not only 

can segment out small nuclei but also can separate closely touched nuclei accurately.  

2.4 Bend-Net Conclusion 

In this study, we propose a novel deep multi-task learning network to address the challenge of 

segmenting overlapped nuclei in histopathology images. Firstly, we propose the bending loss 

regularizer, which defines different losses for the concave and convex points of nuclei contours. 

Experimental results demonstrated that the bending loss effectively improves the overall performance 

of nuclei segmentation, and it can also be integrated into other deep learning-based segmentation 

approaches. Secondly, the proposed multi-task learning network integrates the OHV branch to learn 

knowledge from the overlapped nuclei, which enhances the segmentation of touching nuclei. Thirdly, 

we proposed two quantitative metrics, AJIO and ACCO, to evaluate overlapped nuclei segmentation. 

The extensive experimental results on two public datasets demonstrate that the proposed Bend-Net 

achieves state-of-the-art performance for nuclei segmentation. In the future, we will extend the 

 
(a) Images (b) Ground truth   (c) FCN8     (d) SegNet      (e) U-Net       (f) DCAN     (g) DIST    (h) Micro-Net (i) HoVer-Net (j) 

Bend-Net             Figure 2.9 Samples of comparative segmentation results for state-of-the-art models. 
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proposed approach to more challenging tasks, such as gland segmentation and semantic image 

segmentation. 
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Chapter 3: Topology-Aware Network for Histopathology Gland 

Segmentation 

Wang, H., Xian, M., & Vakanski, A. (2022). TA-Net: Topology-aware network for gland 

segmentation. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer 

Vision.  

3.1 Introduction 

In histopathology image analysis, the assessment of gland morphology is crucial for determining the 

stages of several cancers, e.g., colon cancer (Fleming et al., 2012), breast cancer (Bloom & Richardson, 

1957), and prostate cancer (Montironi et al., 2005). Accurate gland segmentation can aid in identifying 

various histopathological features, such as glandular shape, size, distribution, and density, which can 

be useful for cancer diagnosis, grading, and prognosis. Traditionally, pathologists examine gland 

morphology to assess the malignancy degree using microscopes, which is a time-consuming, expensive, 

and error-prone process. Recently, with the availability of whole slide images (WSI), digital pathology 

has gained popularity by developing computational tools to aid routine tasks. Automatic and accurate 

gland segmentation is often required before calculating gland morphology. However, this task is 

challenging due to the large morphological differences among glands and the large number of clustered 

glands. 

Early approaches for gland segmentation focused on applying prior knowledge of glandular 

structures, such as morphology-based methods (Nguyen et al., 2010; Paul & Mukherjee, 2016), and 

graph-based methods (Tosun & Gunduz-Demir, 2010). These methods achieved promising 

performance on low-grade adenocarcinoma. However, these methods failed to accurately segment 

malignant glands, which tend to grow, invade adjacent tissues, and cluster densely, causing severe 

deformation of their shapes in histopathology images (as shown in Figure 3.1). Recently, deep learning-

based methods provide state-of-the-art performance in many computer vision tasks (Badrinarayanan et 

al., 2017; Chen et al., 2017) and biomedical image analysis tasks (Ronneberger et al., 2015). For 

instance, Chen et al. (2016) proposed a DCAN that has FCN-based multi-task learning network to 

generate gland instances and contours simultaneously. The complementary contour information helped 

separate clustered glands. Xu et al. (2017) developed a deep three-channel network to jointly separate 

the clustered glands using instance, contour, and location information. Raza et al. (2019) proposed the 

Micro-Net that inputs the multiple resolutions of image patches at different down-sampling stages for 
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better localization and context information and back-propagates the results by using multi-resolution 

outputs. Qu et al. (2019) proposed a full-resolutional network that outputs three-class probability maps 

(instance, contour and background). The strategy shared by all the above methods is to use gland 

contour information to separate clustered glands. However, these approaches achieved limited success. 

A segmentation example of densely clustered glands is shown in Figure 3.2, SegNet (Badrinarayanan 

et al., 2017), DCAN (Chen et al., 2016), and Micro-Net (Raza et al., 2019) failed to separate close 

glands.  

 

 

     (a) Image patch                  (b) Ground truth                (c) DCAN       

           (d) SegNet                    (e) MicroNet                     (f) TA-Net      

Figure 3.2 A segmentation example of densely clustered glands. Colors are used to differentiate different glands. 

The white dash rectangles highlight the poorly-separated glands. 

 

 
Figure 3.1 Hematoxylin and Eosin (H&E) stained histopathology images with labeled (yellow contours) glands 

(Sirinukunwattana et al., 2015). The first row shows healthy glands, the second row shows malignant glands. 

Noted that the malignant glands are close their their neighboring glands and appear in deformed shape. 
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Three major challenges exist in gland segmentation using contour information. 1) The contour 

strategy fails when glands are densely clustered because overlapped glands share contour sections. 

Usually, in a glandular structure, epithelial nuclei form a gland border. In practice, a digital WSI scanner 

flattens gland tissues into a near two-dimensional histopathology slice, and two or multiple glands 

cluster together will not have a regular and clear epithelial nuclei border. Note the red arrow in Figure 

3.3 (a), the clustered regions do not have regular epithelial nuclei. 2) The coarse annotations of the 

contours introduce noise and reduce the effectiveness of the contour strategy. A gland tissue in a 20 × 

magnification could be 1k × 1k pixels wide and height, and it is difficult to annotate all contour pixels 

correctly. Existing datasets in the literature still have many annotation issues (Figure 3.3 (b)). 3) It is 

difficult to identify the contours of malignant glands accurately. Because malignant glands continue to 

grow and become deformed. their components appear distorted. The green arrows in Figure 3.3 (c) 

indicate the distorted boundary of a malignant gland. In this study, we introduce a novel approach that 

utilizes gland topology to separate densely clustered glands. The gland topology is characterized by the 

 

 Figure 3.3 Issues of segmenting densely clustered glands by using a gland contour annotation. Left column shows 

the histopathology image patches; right column shows the image patches with the labeled gland contours (yellow). 
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topological skeleton of glands, which differentiates clustered glands more accurately than gland 

contours. Furthermore, the gland topology is more robust than contours in the presence of noisy 

annotations. This work has the following two major contributions. 1) We propose a topology-aware 

network that can simultaneously perform instance segmentation and gland topology estimation. The 

topology branch of the network predicts the Medial Axis (Blum, 1967) distance map, which provides 

an accurate description of gland topology. 2) We propose a new topology loss that utilizes the Medial 

Axis distance map and gland markers. This loss penalizes the topological difference between segmented 

glands and the true glands, forcing the network to generate segmentation results that adhere to the gland 

topology.   

3.2 Related Works 

Histopathology Gland Segmentation. Histopathology gland segmentation aims to segment the gland 

tissue from the Hematoxylin & Eosin (H&E) stained histopathology image. Recently, deep learning 

(DL)-based method successfully demonstrates the robustness and efficiency in the literature. Graham, 

Chen, et al. (2019) proposed the MILD-Net, which utilized both instance and contour segmentation, as 

well as multi-level aggregation, atrous spatial pyramid pooling block, and dilated convolutional design. 

Ding et al. (2020) proposed a multi-scale Fully convolutional network to extract different receptive 

field features at different convolutional layers. These studies, as well as those described in the previous 

section (Chen et al., 2016; Qu et al., 2019; Raza et al., 2019; Xu et al., 2017), build up a deep 

architecture for segmenting the gland instance and contours. Yan et al. (2020) proposed a shape-aware 

adversarial learning network that integrates a deep adversarial network and a shape-preserve loss. Qu 

et al. (2019) proposed a spatial loss for recognizing the glands. The proposed loss placed a spatial 

constraint on the boundary pixels and forced the network to learn gland shapes. 

Topology Aware Network. Different Topology aware networks have been proposed in various natural 

image segmentation (Clough et al., 2020; Estrada et al., 2014; Mosinska et al., 2018) and biomedical 

image segmentation tasks (Hu et al., 2019; Shit et al., 2021). Hu et al. (2019) introduced a loss function 

that makes the segments have the same Betti number as the ground truths for the topological 

correctness; and the method utilized the topology information to make the corrections on some 

biological structures, e.g., broken connection. Clough et al. (2020) proposed a method that integrated 

the differentiable properties of persistent homology into the network training process; the network 

extracts useful gradients even without ground truth labels. Shit et al. (2021) introduced a centerline 

Dice that measured the topological similarity of the segmentation masks and their skeleton. Mosinska 

et al. (2018) constructed a loss that models higher-order topological information. These methods 

employed regional topological constraints, e.g., connectivity and loop-freeness. However, these 
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methods are hard to generalize to other objects without linear structures, e.g., blood vessels, retinas, 

cracks, and roots. In this work, we introduce a new topology-aware network to preserve the topological 

skeletons of glands, which can be easily reproduced in objects with irregular shapes and overlapping 

issues. 

Medial Axis (MA) Transform. The MA/topological skeleton of an object is the set of all inner points 

that have more than one closest point on the object’s boundary. The MA transformation was first 

introduced by Blum (1967) for shape recognition, and it is well-known as the locus of local maxima 

with distance transformation. The MA transform is a powerful tool for shape abstraction, and provides 

a shape representation that preserves the topological property of skeleton structures; these properties 

are invariant to crop, rotation, and articulation and robust to overlapped and clustered objects. Recently, 

many studies applied medial axis transforms in different computer vision tasks, e.g. segmentation 

(Noble & Dawant, 2011), shape matching (Siddiqi et al., 1998), recognition (Sebastian et al., 2001), 

image reconstruction (Tsogkas & Dickinson, 2017), and body tracking (Shotton et al., 2012). In a 

densely clustered gland region, different glands may contain different skeletons. The skeleton structure 

may assist to distinguish the densely clustered glands. However, to the best of our knowledge, no 

studies have employed MA transform in histopathology image analysis. 

3.3 Topology-Aware Network for Gland Segmentation 

Figure 3.4 illustrates the architecture of the proposed TA-Net. It is a deep multi-task neural network 

designed to enhance gland segmentation by simultaneously learning shared representation from two 

tasks: gland instance segmentation (INST) and gland topology estimation (TOP). The INST task 

 

Figure 3.4 The architecture of the proposed network. The architecture takes image patches as input and outputs 

the gland instance (INST) map and medial axis (MA) distance map. The marker map is generated using the MA 

map. 
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extracts glands from the background. The second task learns gland topology to separate clustered glands 

and segment the glands accurately.  

3.3.1 TA-Net Architecture 

The proposed TA-Net has one encoder and two decoder branches. The first decoder predicts the 

foreground map for glands (INST), and the second decoder learns the topology information of glands 

(TOP). Two decoders share the same feature maps from the encoder. SegNet (Badrinarayanan et al., 

2017) is utilized as the backbone architecture. Meanwhile, dense-connected blocks (Gao Huang, 2017) 

are applied to the decoders to ensure a large receptive field for detecting the instances over wider areas 

in images. In the proposed network, the two decoders have the same architectures except for the final 

output layers. The INST decoder ends with a 2 by 2 convolutional layer and follows a softmax 

activation layer, and the TOP decoder ends with a 1 by 1 convolutional layer for outputting the medial 

axis distance map. In the encoder, three convolutional layers and the following max-pooling layer form 

a downsampling convolutional block. In total, there are five downsampling blocks. In the decoder, there 

are five upsampling blocks that contain different numbers of stacked densely connected layers and 

convolutional layers. Different from the standard SegNet encoder architecture, there have three 

convolutional layers in the first two downsampling blocks that aim at extracting more fundamental 

features. In TA-Net, all convolutional kernels are 3×3, and the numbers of kernels for the convolutional 

layers in each block are the same. The numbers of convolutional kernels from blocks 1 to 5 in the 

encoder are 64, 128, 256, 512, and 512, respectively. In the two decoders, the numbers of kernels from 

blocks 1 to 5 are 512, 512, 256, 128, and 64, respectively; and the numbers of stacked densely-

connected layers are 8, 8, 8, 8, 4, 4, and 4, respectively. The loss function of TA-Net. As shown in 

Figure 3.4, the proposed TA-Net’s loss function has two terms: the instance loss (ℒ𝐼𝑁𝑆𝑇) and the 

topology loss (ℒ𝑇𝑂𝑃). The total is defined by  

ℒ𝑇𝐴−𝑁𝑒𝑡 = ℒ𝐼𝑁𝑆𝑇 +  𝛼 ∙  ℒ𝑇𝑂𝑃                                        (3.1) 

where α denotes the contribution of the topology loss. The loss ℒ𝐼𝑁𝑆𝑇 is the cross-entropy (CE) loss on 

gland instances map for segmenting the foreground gland instances from the background. The loss 

ℒ𝑇𝑂𝑃 is discussed in Section 3.4.2, α controls the contribution of the ℒ𝑇𝑂𝑃 loss. 

3.3.2 Topology Loss 

The proposed topology loss is given by  

ℒ𝑇𝑂𝑃 = ℒ𝑀𝐴 + ℒ𝑀𝐶                                                 (3.2) 
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where ℒ𝑀𝐴 is computed using the medial axis distance map to preserve the geometry of glands, and 

ℒ𝑀𝐶 uses markers in glands to avoid over-segmentation and under-segmentation. Medial Axis (MA) 

Distance Map. The MA/topological skeleton of an object is the set of all inner points that have more 

than one closest point on the object’s boundary. It is well-known as the locus of local maxima with 

distance transformation. In this work, we employ the MA-based distance map to model the topological 

property of glands. Let 𝐺 = {𝐺𝑖}𝑖=1
𝑛  be a set of glands in an image patch, and n be the number of glands. 

For every gland from 𝐺1 to 𝐺𝑛, the MA transformation iterates the one-pixel morphological erosion 

process starting through the gland contour. The topological skeleton of a gland (Figure 3.5(c)) is a set 

of points having more than one closest point on a gland’s contour, and the skeletons are one-pixel width 

and follow the same connectivity as the original gland shape. The number of iterations from a gland’s 

contour to the topological skeleton is normalized to form the MA distance map. The MA distance map 

value at point 𝑝𝑗 is defined by  

              (3.3) 

where 𝑑(𝑝𝑗) is the number of erosion iterations from point 𝑝𝑗 to the corresponding skeleton. Examples 

of the MA distance map is shown in Figure 3.5 (d). As shown in Figure 3.5 (a), it is challenging to 

separate the clustered glands; however, in Figure 3.5 (c) and (d), the skeleton and distance map 

 

 

 
Figure 3.5 Examples of Medial axis (MA) transformation. a) A histopathology image patch with labeled (yellow 

contours) clustered glands; b) the binary annotation of gland regions; c) the topological skeletons of glands, noted 

that skeletons are morphological dilated to be visible; and d) the MA distance map. 

(a)                                     (b)                                        (c)                                       (d) 
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emphasizes the geometrical and topological properties of each gland and clearly separates all clustered 

glands. Eq. 3.3 and the MA transformation are applied to generate the ground truth for the MA distance 

map. To ensure that the proposed gland segmentation network preserves gland topology, we design the 

second decoder branch to predict the MA distance map. The loss function ℒ𝑀𝐴 is defined by  

                                  (3.4) 

where 𝑀�̂� denotes the predicted distance map, and m is the number of image pixels.  

Marker loss. The Watershed algorithm is commonly applied as a postprocessing step to produce fine 

segmentation, especially separating the clustered objects. The watershed markers represent the number 

and locations of objects and are critical for accurate segmentation. More markers lead to over-

segmentation, and fewer markers produce under-segmented results. We introduced the marker loss to 

separate clustered glands and prevent over-segmentation. The marker loss is defined as the Dice loss 

between the predicted marker map (𝑀�̂�) and the true marker map (MC)  

                                               (3.5) 

the predicted marker map is generated by thresholding the outputs from the medial axis distance map. 

3.4 Experimental Results 

3.4.1 Datasets and Evaluation Metrics 

Datasets. The Colorectal adenocarcinoma gland (CRAG) dataset (Graham, Chen, et al., 2019) and the 

Gland Segmentation challenge (GlaS) dataset (Sirinukunwattana et al., 2015) are used in this work. 

CRAG has 213 H&E-stained histopathology images from 38 WSI images. The scanned image size is 

1512 × 1516 pixels with the corresponding instance-level ground truth. The training set has 173 images 

and the test set has 40 images with different cancer grades. The GlaS dataset has 165 H&E-stained 

histopathology images extracted from 16 WSI images. The image size mostly is 775 × 522 pixels. The 

training set has 85 images (37 benign and 48 malignant). The test set is split into two sets: Test A (60 

images) and Test B (20 images), because two test sets are released in different stages in GlaS challenge. 

Both datasets are scanned with a 20× objective magnification. The CRAG dataset has more densely 

clustered glands.  

Evaluation Metrics. We use the F1-score, object-level Dice coefficient (Obj-D), and object-level 

Hausdorff distance (Obj-H). In the F1 score, a segmented gland is counted as a true positive if it has 

>50% overlap with the ground truth, and counted as a false positive (FP) if otherwise; all missed glands 
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in the ground truth are counted as false negatives. Refer to Sirinukunwattana et al. (2017) for detailed 

descriptions of the Obj-D and Obj-H in the Colon Histology Images Challenge Contest (GlaS) at 

MICCAI 2015.  

3.4.2 Implementation Details  

The TA-Net is trained and tested using a deep learning server with an NVIDIA Quadro RTX 8000 

GPU, 512 GB memory, and two 2.4 GHz Intel Xeon 4210R CPUs.  

The patch size of the GlaS dataset is 512 × 512 pixels, and the patch size of the CRAG dataset is 

768 × 768 pixels. Different patch sizes are applied because 1) the two datasets have images with 

different sizes, and 2) larger patches improve the performance of segmenting white lumen regions 

inside the gland tissues. The larger patches could generate the whole white lumen region in the gland 

in one patch. The GlaS dataset generates 340 training patches and 320 test patches. The CRAG dataset 

generates 692 training patches and 160 test patches. The augmentation approaches, e.g., random flip, 

random rotation, Gaussian blur, and median blur, are utilized in the training stage. The segmentation 

results of image patches are merged to form images of the same size as the original images.  

The training epoch is set as 200, and the initial learning rate for the Adam optimizer is set as 10-4 

and is reduced to 10-5 after 100 epochs. The batch size is 4 for training the model.  

The postprocessing applies the Watershed algorithm to produce the final output. We apply a 

threshold value to the outputs from the instance branch (INST) to generate the glands binary map and 

utilize it as the Watershed filling region. The output from the MA distance branch is the local elevation 

of those glands. Further, thresholding the MA distance map to generate the Watershed markers. 

Morphology operations, e.g., fill the holes, remove the small objects are utilized to generate fine glands 

regions and makers. In the end, the generated gland region, gland elevation, and markers are input to 

the Watershed algorithm for fine gland segmentation results.  
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3.5 Results and Discussion 

In this section, we discuss the overall performance of our method, followed by the results using the 

contour map, and single-task/multi-task networks. Finally, we discuss the performance of our network 

on different distance metrics. 

3.5.1 Overall performance 

We compare the proposed method with nine recently published approaches using the GlaS dataset and 

six approaches using the CRAG datasets. We implemented SegNet (Badrinarayanan et al., 2017), 

DCAN (Chen et al., 2016) DeepLab (Chen et al., 2017) by following the same strategies in the original 

papers and MILD-Net (Graham, Chen, et al., 2019), Micro-Net (Raza et al., 2019), FullNet (Qu et al., 

2019), DSE (Xie et al., 2021), MSFCN (Ding et al., 2020), Yan et al. (2020) are cited from their original 

papers. The test performance of the GlaS dataset is reported as the average performance on its test A 

and test B sets. We employed F1-score, object-level Dice coefficient (Obj-D), and object-level 

Hausdroff (Obj-H) distance to measure the overall performance. Table 3.1 shows the test performance 

of different approaches on two public datasets. The proposed TA-Net outperforms all other methods 

on CRAG datasets in terms of the F1 score, Obj-D; and achieved the best results in Obj-D, Obj-H, and 

the second-best results in F1-score on GlaS datasets. The GlaS dataset has a small number of densely  

clustered gland regions; therefore, compared to the second-highest result (MSFCN), TA-Net is only 

slightly better, e.g. 4.3% improvement of the Obj-H. The CRAG dataset has more densely clustered 

 

 

Table 3.1 TA-Net: overall segmentation performance on GlaS and CRAG datasets. 
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glands, and our method improves the Obj-H significantly (19.3%). Figure 3.6 (d) demonstrates that 

TA-Net separates densely clustered glands accurately.  

3.5.2 Effectiveness of Medial Axis Distance Map 

We compared the proposed TA-Net with a multi-task network (Ours-CNT) which has the same 

architecture as TA-Net but outputs the gland instance map and the gland contour map. The only 

difference between the two networks is that TA-Net uses the MA distance map, while Ours-CNT uses 

the gland contour map as the ground truth of the second decoder. As shown in Table 3.2, TA-Net 

compared to the Ours-CNT, ObjH has been improved by 5.7% and 35% on the GlaS and CRAG 

datasets, respectively. The results demonstrate that the network using the MA distance map generates 

more accurate gland contours than the contour map-based network, especially on the CRAG dataset. 

 
(a) Original Images          (b) DCAN              (c) Ours-CNT               (d) TA-Net          (e) Ground truth 

Figure 3.6 Segmentation results of five image patches (top three from CRAG, bottom two from GlaS). 

Different colors represent different glands. Yellow dash region highlighted the clustered gland regions. 
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Figure 3.6 demonstrates that the contour map-based strategy fails to separate many clustered glands (in 

dashed rectangles).  

3.5.3 Effectiveness of Multi-task network 

We compared the proposed multi-task learning network with the singl e-task learning network, which 

outputs the binary instance branch only (Ours-INST), and MA distance  bra nch only (Ours-MA) . In 

the experiment of the Ours-INST, the Watershed algorithm is applied in the postprocessing for 

separating the clustered glands. In the experiment of MA distance branch, we output the MA distance 

branch only. In the post-processing, we utilized thresholding to produce a binary gland region map and 

gland markers. Then, the Watershed is used to produce the final segmentation. From Table 3.2, we 

noted that the designed multi-task learning network outperforms one task networks (Ours-INST, Ours-

MA). Integrating both gland instance and MA distance map will produce a reliable performance in 

gland segmentation.  

3.5.4 Effectiveness of the Marker Loss 

The proposed TA-Net is compared with the same network without the marker loss (Ours-WoM). Table 

3.3 shows the results on two public datasets. From the quantitative results, we noted that the marker 

loss only improves the overall performance slightly on both two datasets. But we observed that the 

marker loss alleviates the over-segmentation and under-segmentation problems in clustered glands and 

deformed glands in many qualitative cases (Figure 3.7).  

 

 

Table 3.2 TA-Net: ablation study on multi-task learning and decoders 

 

Table 3.3 TA-Net: ablation study on marker loss 
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3.5.5 Comparison on Various Distance Maps 

Deep Watershed-based regression algorithms provide a successful demonstration  to separate the 

occluded objects and overlapped objects (Bai & Urtasun, 2017). The most related method to ours is by 

Naylor et al. (2018), which proposed a chessboard distance-based deep regression network for nuclei 

segmentation. First, compared to their U-Net shape architecture, we employed the multi-task learning-

based Densely connected SegNet. We achieved promising performance in segmenting the gland 

foreground from the background. Second, the Medial Axis distance map preserves the topological 

property of the objects, which maintains the gland structure information during the training stage. Third, 

the marker loss will control the over-segmentation and under-segmentation issues for accurate marker 

detection. To demonstrate the effectiveness of MA distance transform with other distance-based 

metrics, we set up an experiment using our network test with different distance metrics, including the 

Euclidean distance, Chessboard distance, and Medial axis (MA) distance. To conduct a fair comparison, 

marker loss will not apply in this study, and we replace the MA distance metrics to other distance 

metrics. Similar to our post-processing approach, the predicted gland foreground segmentation and the 

 

Figure 3.7 Examples of the effectiveness of the marker loss. 

(a) Images patches         (b) Ground truth             (c) Ours-WoM                 (d) TA-Net 

         

 

        Table 3.4 TA-Net: ablation study on different distance metrics on CRAG dataset 
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predicted distance map is utilized to produce the final fine segmentation. From the results in Table 3.4, 

we noted that our methods outperform the other two distance metrics. It gives the fact that medial axis 

distance metrics achieved the best performance comparing to use Euclidean and chessboard distance 

metrics.  

3.6 TA-Net Conclusion 

In this study, we propose a topology-aware network (TA-Net) to address the challenge of partitioning 

densely clustered glands in histopathology images. Firstly, the proposed multi-task learning 

architecture integrates both instance segmentation and gland topology learning and learns their shared 

representation. Experimental results show that TA-Net outperforms the state-of-art multi-task 

architectures, e.g., DCAN, and single-task architectures. Secondly, we propose a topology loss using a 

Medial Axis distance map and gland makers. The loss penalizes the topology changes between the 

segmented glands and the actual glands. The extensive experimental results on two public datasets 

demonstrate that the proposed TA-Net achieves state-of-the-art performance for densely clustered 

gland segmentation. In the future, we will extend the proposed approach to other challenging tasks, 

such as nuclei segmentation and semantic image segmentation.  
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Chapter 4: Style-Guided Instance-Adaptive Normalization for Multi-

Organ Histopathology Image Synthesis 

Wang, H., Xian, M., Vakanski, A., & Shareef, B. (2023). SIAN: Style-Guided Instance-Adaptive 

Normalization for Multi-Organ Histopathology Image Synthesis. 2023 IEEE 20th International 

Symposium on Biomedical Imaging (ISBI).  

 

4.1 Introduction 

Histopathology image analysis has achieved great success in automatic tissue segmentation (Graham, 

Vu, et al., 2019; Wang et al., 2020) and cancer grading (Shaban et al., 2020). Existing deep learning-

based methods require large fully-annotated datasets during the training stage, but current annotated 

datasets are relatively small. For example, only tens of image patches were used in Graham, Vu, et al. 

(2019); Kumar et al. (2017); Naylor et al. (2018); Vu et al. (2019). With large annotated datasets, we 

could train more accurate and reliable models. However, it is expensive to annotate large datasets for 

histopathology images, because each image may contain more than tens of thousands of nuclei.  

To overcome the challenge, image synthesis is adopted. Recent works have demonstrated that high-

quality synthetic images could improve the overall performance in histopathology image analysis 

(Butte et al., 2023; Butte et al., 2022; Deshpande et al., 2022; Wei et al., 2019; Xue et al., 2021). 

 Figure 4.1 Examples of image synthesis for multiple organs. The top row shows real histopathology images from 

six organs. The second and third rows are synthesized images generated using the proposed approach (SIAN). 
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However, these methods generated images only for single cancer or cancers with shared similarity, e.g., 

colorectal cancer (Deshpande et al., 2022; Wei et al., 2019), lymph node (Xue et al., 2021); thus, their 

models cannot generate different image styles for different cancer types. In practice, H&E-stained 

images for cancers from different organs could have large color and texture variances both in 

foreground nuclei and background stroma (first row of Figure 4.1). Therefore, it is important to have 

the network to generate histopathology images well in various stain distribution across multiple organs.  

Recently, neural style transfer (NSF) methods have been widely exploited in many natural image 

synthesis tasks for manipulating image styles (Huang & Belongie, 2017; Karras et al., 2019; Park et al., 

2019), they aim to learn the style from a reference image and apply it to the target image. SPADE (Park 

et al., 2019) extended the AdaIN norm (Huang & Belongie, 2017) into the spatially adaptive manner 

for obtaining semantic alignments and used the encoded style vector at the beginning of a network, 

which enabled simultaneously style manipulation and semantic image synthesis. However, most 

existing histopathology image synthesis methods applied semantic layouts as the network input to learn 

object-level image appearance (Deshpande et al., 2022; Park et al., 2019; Wei et al., 2019). In 

histopathology image analysis, a large amount of clustered and overlapped objects may have the same 

semantic class label, which makes it difficult to generate accurate boundaries among clustered objects.  

To alleviate the above issues, we proposed a style-guided instance-adaptive normalization (SIAN) 

to combine the image style vector with the instance layout for modulating the GAN generator. The 

learned transformation can effectively propagate the network to learn style factors for synthesizing 

histopathology images across various color distributions and instance features for generating accurate 

densely-clustered nuclei. SIAN allows the user to choose a style image from a specific organ and 

synthesizes histopathology images with a similar style. 

4.2 Related Work 

Conditional Image Synthesis. Conditional generative adversarial networks (cGANs) engage 

additional information to guide image generation, and they have achieved promising results in many 

image synthesis tasks, e.g., image-to-image synthesis (Isola et al., 2017), multi-modal synthesis (Park 

et al., 2019), high-resolution image synthesis (T.-C. Wang et al., 2018), image-guided image synthesis 

(P. Wang et al., 2021). Pix2Pix GAN (Isola et al., 2017) learned mapping from an input image to an 

output image using the U-Net architecture. SPADE (Park et al., 2019) adopted a semantic layout for 

preserving the semantic class features and improved unconditional normalization methods. 

Histopathology Image Synthesis. Histopathology image synthesis provides a promising solution for 

data-efficient methods without requiring extensive human resources. It has been widely studied in many 

applications (Deshpande et al., 2022; Hou et al., 2019; Wei et al., 2019; Xue et al., 2021). Deshpande 
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et al. (2022) proposed a SAFRON GAN to address high-resolution histopathology image generation. 

SAFRON could generate large-size images without requiring same-size inputs. Wei et al. (2019) 

introduced a GAN to generate synthetic images belonging to diagnostically less common samples to 

mitigate the data imbalance issue in adenoma detection.  

Style Manipulation. Style manipulation and editing has achieved great success in image synthesis and 

translation tasks (Gong et al., 2021; Huang & Belongie, 2017; Karras et al., 2019; Park et al., 2019). 

Gong et al. (2021) converted different histopathology images to one target style for minimizing the 

impact of the various stain distributions. StyleGAN (Karras et al., 2019) proposed an encoder network 

for encoding style images into the latent vector; and one model could learn multiple image styles from 

a training set. This network could generate images with various styles while using the pre-trained 

encoder. Many recent style manipulation GANs such as StyleGAN (Karras et al., 2019), SPADE (Park 

et al., 2019) applied the style encoding method for effective style transfer.  

4.3 SIAN Method 

4.3.1 Architecture and Learning Objectives 

Figure 4.2 shows the overall architecture of the proposed generator. We employed SPADE (Park et al., 

2019) as our baseline architecture, and all the SPADE blocks and SPADE ResNet blocks are replaced 

with our SIAN blocks and SIAN residual blocks, respectively. Our generator has seven SIAN residual 

blocks (SIAN ResBlk) and the following up-sampling layer. Each SIAN ResBlk contains two 

consecutive SIAN blocks followed by ReLU and convolutional layers, the skip connection has a SIAN 

block, a ReLU, and a convolutional layer. All input factors are down-sampled to the same height and 

width with the corresponding feature maps in the generator. We follow the same encoder and 

 

Figure 4.2 Architecture of the proposed method. The encoder learns style vectors from a referred image; and the 

SIAN blocks integrate image style (S), semantic map (M), directional map (P), and distance map (Q) into a 

generator network. 
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discriminator architecture, loss function described in Park et al. (2019). Overall, the loss function 

contains four components, including the hinge-based conditional adversarial loss (Miyato et al., 2018), 

the feature matching loss (T.-C. Wang et al., 2018) to minimize the difference between synthetic and 

real images in the multiscale discriminator, the perceptual loss (Johnson et al., 2016) for minimizing 

the features between real and synthetic images, the KL divergence loss (Kingma & Welling, 2014) for 

the encoder to constrain the style vector to the standard Gaussian distribution.  

4.3.2 Style-guided Instance-adaptive Normalization 

We propose a new conditional normalization block, namely, the Style-guided Instance-Adaptive 

Normalization (SIAN) to learn instance-level features and integrate image styles for cancers from 

different organs. Figure 4.3 shows the details of the SIAN block. The block has four phases: 

semantization, stylization, instantiation, and modulation. The block takes four inputs besides image 

feature maps, i.e.,  semantic mask M, style vector S, direction mask P, and distance mask Q. The 

semantization phase embeds image semantics from the input mask; the stylization creates a style matrix 

from a referred image and integrates image semantics and style. The instantiation phase uses direction 

and distance maps to distinguish individual nuclei. The modulation phase learns the scale and bias and 

integrates them into the network. Let h denote the input activation of the current layer of the proposed 

 

 

 

Figure 4.3 SIAN normalization. SIAN block takes four inputs: semantic masks M, style vector S, directional mask 

P, and distance mask Q for combining different features at multiple phases in the block. ⊗ denotes element-wise 

multiplication, and ⊕ is element-wise addition.  
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neural network with a batch size of N. Let H, W, and C denote the height, width, and channels of an 

activation map in ith layer. The final modulated activation value (n ∈ N, c ∈ C, y ∈ H, x ∈ W) is defined 

as  

𝛾𝑐,𝑦,𝑥(𝐌, 𝐒, 𝐏, 𝐐)
ℎ𝑐,𝑦,𝑥−𝜇𝑐

𝜎𝑐
+ 𝛽𝑐,𝑦,𝑥(𝐌, 𝐒, 𝐏, 𝐐)                          (4.1) 

where ℎ𝑐,𝑦,𝑥 is the activation output before normalization; the modulation parameter 𝛾𝑐,𝑦,𝑥 and 𝛽𝑐,𝑦,𝑥 

are the elementwise summation of modulation parameters of two branches, i.e., 𝛾𝑐,𝑦,𝑥
𝑖 + 𝛾𝑐,𝑦,𝑥

𝑗
 and 

𝛽𝑐,𝑦,𝑥
𝑖 + 𝛽𝑐,𝑦,𝑥

𝑗
. 𝜇𝑐  and 𝜎𝑐  are the mean and standard deviation of the activation of channel c, 

respectively. In the SIAN block, the semantic layout first passes to two convolutional layers, which 

split the semantic information into two separate branches to learn the directional features and distance 

features separately. The two branches have the same architecture. In each branch, the convolutional 

kernel first multiplies with the reshaped style vector, which combines style factors in the block. After 

that, the instance layouts (direction or distance) are fed through a 1 × 1 convolutional layer and 

multiplied with the previous convolutional layer. The next convolutional layer learns the compensation 

of semantic, style, and instance features and then split into two convolutional layers to learn the 

modulation parameters (γ and β) spatially. Finally, those modulation parameters and the output of batch 

normalization are integrated for accurate histopathology image synthesis. All convolutional layers in 

SIAN use the 3×3 kernel size with 128 filters. Instance masks are applied to generate the semantic 

mask, and nuclei directional and distance maps. The semantic map is used to separate nuclei and stroma, 

and the directional and distance maps are useful to demonstrate the boundaries and centroids between 

two or more touching nuclei. We employed the 2-bin direction mask (Chen et al., 2018) and Medial 

Axis (MA) distance mask (Wang et al., 2022) as the instance descriptors. The direction map provides 

important centroid and directional information of nuclei. MA distance mask shows the distance between 

the nucleus boundary to its skeleton while providing nuclei topological and geometrical features. Figure 

4.4 shows two examples. 2-bin direction mask uses two parts of 8 directional regions (8 class insider, 

8 class outsider) to obtain directional features, and each class label points to the nucleus centroid. These 

contain a total number of (16 + 1) classes in the feature map. As shown in Figure 4.4  

(c), the inside 8 classes in our direction maps can provide important centroid information of nuclei, 

which could improve the traditional eight-directional class. MA distance mask shows the distance 

between the nucleus boundary to its skeleton while providing nuclei topological and geometrical 

features. It can be observed from Figure 4.4 that the semantic masks lack the ability to show clear 

boundaries on clustered nuclei, while direction masks and distance masks provide useful important 

information, e.g., nuclei connectedness, distance, and centroids.  
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4.4 Experimental Results 

4.4.1 Dataset, metrics, and setting 

Dataset. The experiments are conducted on the multi-organ nuclei segmentation dataset (MoNuSeg) 

(Kumar et al., 2019), which has 44 H&E stained histopathology image patches. Both the training and 

test sets contain images from six organs including breast, liver, kidney, prostate, bladder, and colon; 

while the training set includes stomach as the seventh organ, and the testing set has brain images. 

Evaluation metrics. We employed five metrics to evaluate the method performance for image 

synthesis, e.g., FID (Heusel et al., 2017), SSIM (Wang et al., 2004), DQ (Kirillov et al., 2019), SQ 

(Kirillov et al., 2019), and PQ (Kirillov et al., 2019). We used two metrics FID and SSIM to measure 

the distribution distance and structural similarity between real images and synthetic images, 

respectively; and used DQ, SQ, and PQ are utilized to assess the nuclei segmentation performance. 

Specifically, we run a pre-trained segmentation model (SegNet (Badrinarayanan et al., 2017)) which is 

trained on real images, and then test and evaluate using the synthetic images. In addition, we show the 

visual comparison of our synthetic images compared to other methods. 

Implementation details. The input image size of our approach is 256×256. We used random flip, 

rotation and median blur for data augmentation. We use the ADAM optimizer with the total training 

epochs of 50 and batch size of 8 to train the network. The experiments are conducted on an NVIDIA 

RTX 8000 GPU.  

 

 

 

(a)                              (b)                             (c)                            (d) 

Figure 4.4 Examples of clustered nuclei. a) Real histopathology image patches; b) semantic masks with nuclei in 

white and stroma in black; c) 2-bin directional masks, which split each nucleus into 16 directional regions 

(different colors represent different regions); and d) the MA distance masks. 
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During inference, for the style encoder, we take an arbitrary histopathology image as input and 

output the encoded style vectors. Then, the encoded style vectors together with an arbitrary instance 

mask are input into the trained generator network to produce histopathology images.  

4.4.2 Image Quality Assessment 

The proposed method is compared with four state-of-the-art image synthesis models: pix2pixGAN 

(Isola et al., 2017), Sharp-GAN (Butte et al., 2022), pix2pixHD (T.-C. Wang et al., 2018), and SPADE 

(Park et al., 2019) using FID, SSIM, DQ, SQ, and PQ metrics. The quantitative results of different 

approaches on the MoNuSeg test set are shown in Table 4.1. The proposed method outperforms the 

state-of-the-art methods both in image reconstruction quality using SSIM and FID, and segmentation 

quality using PQ, SQ, and DQ. In addition, we integrated the instantiation phase (INST) only, and the 

SIAN block with the style vectors (STYLE), all the evaluation metrics are improved from the baseline 

SPADE. Overall, we can conclude that our SIAN achieved the best quantitative performance among 

other methods. Figure 4.5 compares the proposed method, Sharp-GAN, and SPADE using three 

examples. We noted that Sharp-GAN cannot recover the texture and color distributions of nuclei and 

stroma in real images, especially in the first and second rows, i.e., the synthetic nuclei have different 

appearances from real nuclei, and their background stroma lacks meaningful texture and color. SPADE 

achieved better performance compared to Sharp-GAN, but the generated images were not realistic. Our 

SIAN generates more realistic images than SPADE and Sharp-GAN. SPADE used the semantic layout 

as input, while our method used the instance layouts. As shown in Figure 4.6, SPADE tends to generate 

blur and incorrect nuclei in the clustered region. Our approach produces more accurate boundaries for 

clustered nuclei.  

  

 

 

Table 4.1 SIAN: overall performance on MoNuSeg dataset with reconstruction metrics and 

segmentation metrics 
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     Referred Image            Instance Mask               Sharp-GAN                    SPADE                      SIAN 

   

Figure 4.5 Visual comparison of histopathology image synthesis for the MoNuSeg test set. 

 

 

 Table 4.2 SIAN: performance comparison of image synthesis for multiple organs using the FID score. 
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4.4.3 Multi-organ Image Synthesis 

To evaluate synthetic images across multiple organs, we compare the generation performance of four 

methods for each organ using FID scores. The results are shown in Table 4.2. The proposed method 

outperforms other state-of-the-art methods in kidney, prostate, bladder, colon, and brain images, and 

achieved the second-best results for synthesizing breast and lung images. Figure 4.1 shows the results 

of SIAN across multiple organs, the color and texture distribution of foreground nuclei and background 

stroma is close to the reals.  

4.4.4 Nuclei Segmentation using Synthetic Images 

In this experiment, we evaluate the effectiveness of synthetic augmentation for training segmentation 

networks. We train SegNet (Badrinarayanan et al. (2017)) with different input configurations (as shown 

in Table 4.3). In experiments, nucleus-like polygons are generated as the synthetic nuclei instance 

masks (Hou et al., 2019), in total 5,000 synthetic instance masks are generated and applied to produce 

corresponding semantic, directional, and distance masks. Then, the pre-trained SIAN is used to apply 

seven different style vectors encoded from seven different organs (around 700 synthetic images per 

organ) and generate realistic histopathology images. Finally, we test and evaluate the segmentation 

performance with the MoNuSeg test set using DQ, SQ, and PQ metrics. We compared the proposed 

approach to other methods on synthetic augmentation. Synthetic images generated from other methods 

follow their design. As shown in Table 4.3, with synthetic training images from pix2pixHD, Sharp-

 

 Figure 4.6 Synthesis for clustered nuclei. First row: instance masks (different colors represent different nuclei). 

Second row: semantic masks. Third row: results of SPADE. Fourth row: results of SIAN. 
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GAN, and SPADE, the performance of nuclei segmentation could be significantly improved. The 

proposed SIAN help generate the best segmentation performance.  

4.5 SIAN Conclusion 

In this study, we propose style-guided instance-adaptive normalization (SIAN) for multi-organ 

histopathology image synthesis, which integrates instance layouts and encodes style vectors into a 

generative network. SIAN synthesizes histopathology images with styles that align with the image 

styles of multiple organs. SIAN utilizes the directional and distance masks from the nuclei instance 

maps and generates clear boundaries for densely-clustered nuclei. With the integration of the stylization 

phase, SIAN allows style editing for synthesizing images of multiple organs. In addition, SIAN 

demonstrates its effectiveness in augmenting the training set and improving the overall performance of 

a deep learning model for nuclei segmentation.  

  

 

Table 4.3 SIAN: performance of SegNet using different training sets. ∗ denotes the training set augmented using 

traditional augmentation techniques, e.g., flip, rotate, blur. ’+method’ denotes applying synthetic augmentation∗ 

with 5,000 synthetic images generated from ’method’ to the training set. 
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Chapter 5: Application to other imaging modalities and problems 

Wang, H., Xu, F., Cai, L., Salvato, D., Capriotti, L., Yao, T., & Xian, M. (2023) A Fine Pore-preserved 

Deep Neural Network for Porosity Analytics of a High Burnup U-10Zr Metallic Fuel.  

5.1 Application to Other Image Modalities  

Multi-task learning (MTL) has shown great promise in various image modalities and image processing 

applications, including satellite images (Bischke et al., 2019; Liu et al., 2018; Pandey et al., 2018), 

ultrasound images (Chowdary et al., 2022; Shareef et al., 2023; Zhou et al., 2021), computerized 

tomography (CT) images (He et al., 2020; Zhai et al., 2020), natural images (Abdulnabi et al., 2015; 

Huang et al., 2021; Wang et al., 2009; Yim et al., 2015; Zhang et al., 2014; Zhao et al., 2018), and 

scene images (Ishihara et al., 2021; Jha et al., 2020; Kendall et al., 2018; Zhang et al., 2021). For 

example, Abdulnabi et al. (2015) proposed a multi-task convolutional neural network (CNN) that 

predicts each data attribute using multiple attribute-specific subnets for accurate image recognition. 

This model can simultaneously share visual knowledge among different tasks; under-sampled attributes 

can leverage shared knowledge from other classifiers to improve their performance. Zhang et al. (2021) 

proposed a DPSNet that performed depth estimation, camera pose estimation and semantic scene 

segmentation simultaneously for accurate scenario understanding. Shareef et al. (2023) presented a 

multi-task learning approach that utilized tumor segmentation as a regularizer and an auxiliary task to 

improve the representation and performance of the primary task of tumor classification for breast 

ultrasound imaging. Bischke et al. (2019) introduced a multi-task learning network and a loss that 

predicts the distance map and semantic map to preserve the accurate building footprints in satellite 

images. Numerous real-world applications increasingly use MTL to boost their performance and 

improve generalizability by training a uniform model to predict multiple tasks simultaneously. Due to 

the space limit, more MTL applications can refer to the survey paper, such as Crawshaw (2020), Ruder 

(2017), Vandenhende et al. (2021). 

It is worth noting that in this study, we focus on deep learning approaches for MTL in computer 

vision applications. For a comprehensive overview of MTL in other application domains, the reader 

could refer to the relevant literature, such as natural language processing (A. Wang et al., 2018; 

Worsham & Kalita, 2020), speech recognition (Deng et al., 2013), biomedical text mining (Peng et al., 

2020), bioinformatics (Widmer et al., 2010), chemoinformatics (Sosnin et al., 2019), web search 

(Chapelle et al., 2010), reinforcement learning (Vithayathil Varghese & Mahmoud, 2020), etc.  



51 

 

 

5.2 Application to Scanning Electron Microscopy (SEM) Imaging 

Advanced scanning electron microscopy SEM image analysis technologies have enabled researchers 

to gain a quantitative understanding of the irradiation behavior of metallic fuel, including Zr 

redistribution, FCMI, and FCCI (Benson et al., 2021; Carmack et al., 2016; Harp et al., 2018; Harp et 

al., 2017; Liu et al., 2021; Salvato et al., 2022; Yao et al., 2020). The traditional approaches to learning 

metallic fuel in SEM imaging using image processing, such as image thresholding, to manually select 

and measure the microstructure of interest, are prone to human bias and inconsistent operation during 

the inference. Furthermore, the presence of multiple sources, scales, and diverse image conditions can 

introduce significant morphological variation across different microstructures, and color and texture 

variance. It is challenging to accurately detect and segment the microstructures in SEM images, such 

as pores and Zr. Figure 5.1 highlights how the same microstructure can exhibit large color and texture 

 

 

 

 

           (a) 250× SE images                                 (b) 250× BSE images                               (c) 2500× BSE images 

Figure 5.1 Images patches of U-10Zr fuel from Secondary Electron Microscop (SE) and Backscattered Electron 

(BSE) images captured at different magnifications. In each row, red circles highlight the target microstructure 

in different image formats and magnification, the same microstructures could have large variance in color and 

textures.  

https://www.sciencedirect.com/topics/physics-and-astronomy/image-processing
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variance at different image types and magnifications. Thus, an automatic, robust, and generalizable 

model for accurately detecting microstructures in SEM images is highly desired in SEM image analysis.  

In this research, we proposed a novel deep-learning architecture for analyzing porosity in SEM 

examination. The proposed network utilized the Bend-Net architecture (Chapter 2) as a backbone 

network for segmenting pores from SEM images. Due to the majority of neural network architecture 

following the previous Bend-Net work and quantitative analysis of porosity for metallic fuel is out of 

the histopathological domain. The detailed description of the method and the quantitative analysis can 

be found in Wang, Xu, et al. (2023). From the overall qualitative results, Figure 5.2 shows the 

comparison of our method to two benchmark semantic segmentation methods, SegNet (Badrinarayanan 

et al., 2017), U-Net (Ronneberger et al., 2015). It can observe that our results are closer to the ground 

truth, and the prediction of the SegNet and U-Net have high false negatives compared to our methods 

(low recall), especially for small pores detection and the pores with irregular shapes.  

  

          (a) Image                (b) Ground truth              (c) SegNet                   (d) U-Net                     (e) Ours 

Figure 5.2 The visual representation of pore segmentation comparison with state-of-the-art methods on BSE 

images. 
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Chapter 6: Conclusion  

Through the thesis, we discuss the applications of multi-task learning for addressing the challenges in 

histopathology image processing. We explore the solutions of deep neural networks and multi-task 

learning for histopathology nuclei segmentation, and histopathology gland segmentation. We propose 

novel multi-task learning networks with task-specific objective functions to model tissue topological 

differences. We introduce the generative model for synthesizing realistic histopathology images and 

enabling histopathological style transfer in images. Meanwhile, our research in histopathology image 

analysis can be adapted and extended into other image domains and modalities. The proposed 

morphological and topological knowledge on the tissue patterns can be applied to other image patterns, 

such as city roads and human movements. The research experience that I have gained through the Ph. 

D. studies includes analyzing the data, identifying the issues, collecting useful information, creating 

plans and steps to solve the problems, sharing insights, and providing the conclusion and 

recommendations.  

6.1 List of Publications 

Wang, H., Xian, M., Vakanski, A., & Shareef, B. (2023). SIAN: Style-Guided Instance-Adaptive 

Normalization for Multi-Organ Histopathology Image Synthesis. IEEE International 

Symposium on Biomedical Imaging (ISBI),  

Wang, H., Xian, M., & Vakanski, A. (2022). TA-net: Topology-aware network for gland segmentation. 

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,  

Wang, H., Vakanski, A., Shi, C., & Xian, M. (2021). Bend-Net: Bending Loss Regularized Multi-task 

Learning Network for Nuclei Segmentation in Histopathology Images. arXiv preprint 

arXiv:2109.15283.  

Wang, H., Xian, M., & Vakanski, A. (2020). Bending loss regularized network for nuclei segmentation 

in histopathology images. 2020 IEEE 17th International Symposium on Biomedical Imaging 

(ISBI),  

Wang, H., Xu, F., Cai, L., Salvato, D., Capriotti, L., Yao, T., & Xian, M. (2023) A Fine Pore-preserved 

Deep Neural Network for Porosity Analytics of a High Burnup U-10Zr Metallic Fuel. (under 

review) 

Wang, H, Xian, M., Vakanski, A., FATANet: Feedback Attention Topology-aware Network with 

Glandular Structures for Histopathology Gland Segmentation. (under review) 

Butte, S.*, Wang, H.*, Vakanski, A., & Xian, M. (2023). Enhanced Sharp-GAN For Histopathology 

Image Synthesis. IEEE International Symposium on Biomedical Imaging (ISBI) (*Co-first 

author contributed equally),  

Butte, S.*, Wang, H.*, Xian, M., & Vakanski, A. (2022). Sharp-GAN: Sharpness Loss Regularized 
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CT Segmentation. Medical Image Analysis, 73, 102152.  
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