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Abstract 

Urban forests are essential components of the urban environment, providing a wide range of 

benefits to society, such as air pollution reduction, carbon sequestration, and improved 

mental health. Accurately mapping and monitoring urban forests is crucial for better urban 

forest management and planning. In this dissertation, I explore the application of deep 

learning techniques to extract urban tree canopies and classify land cover features in urban 

areas. Specifically, Chapter 2 investigates the effectiveness of the U-net in urban tree canopy 

mapping using high-resolution aerial photos. Our results show that the U-net can achieve 

exceptional accuracy scores in fine-scale land cover mapping and outperforms other widely 

used methods. However, the lack of publicly available training datasets and very high-

resolution data remains a challenge for scaling up the U-net to large areas.  

Based on the findings in Chapter 2, I proposed a cross-scale transfer learning framework that 

utilizes pre-trained models at various scales to classify land cover features in Phoenix, 

Arizona. The results demonstrate that our framework achieves high accuracy in classifying 

impervious surfaces, buildings, low vegetation, and tree classes, outperforming other 

commonly used methods. Moreover, the robustness and feasibility of our proposed 

framework are evaluated by testing it over time and in different geographic areas, 

demonstrating its generalization ability. Overall, our study highlights the potential of deep 

learning techniques and transfer learning in improving the accuracy and efficiency of urban 

land cover classification, particularly in complex urban environments with varying spatial 

resolutions. 

In addition to mapping urban forests and land cover, Chapter 4 explores the complex 

relationships between urban forest characteristics and socio-economic indicators in Phoenix, 
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Arizona, using advanced statistical models. The study finds that minority and low-income 

populations have limited access to natural amenities, which is consistent with earlier research 

demonstrating that trees are disproportionately distributed in neighborhoods with low-income 

or people of color. However, the study also finds that communities with more trees and 

shrubs are associated with higher educational performance, highlighting the potential positive 

effects of urban forests on public health and well-being, including educational outcomes. The 

results of the study suggest that targeted and localized approaches to urban forest 

management are necessary to promote equitable access to green spaces and improve public 

health and well-being in diverse metropolitan areas like Phoenix. 

This dissertation makes significant contributions to the field of land cover mapping and 

urban remote sensing. The study proposes novel deep learning-based frameworks that utilize 

transfer learning and multi-scale segmentation techniques to achieve accurate and efficient 

urban land cover classification. Specifically, the study demonstrates the effectiveness of the 

U-net architecture for urban tree canopy mapping and the cross-scale transfer learning 

framework for land cover classification in urban areas. These findings provide valuable 

insights into the potential of deep learning and transfer learning for improving the accuracy 

and efficiency of urban land cover mapping, particularly in complex urban environments 

with varying spatial resolutions. Moreover, the study sheds light on the complex relationships 

between urban forest characteristics and socio-economic indicators, highlighting the need for 

targeted and localized approaches to urban forest management to promote equitable access to 

green spaces and improve public health and well-being in diverse metropolitan areas. 

Overall, the contributions of this dissertation provide valuable insights into the application of 

advanced remote sensing and machine learning techniques for urban land cover mapping and 
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management, with potential applications in urban planning, environmental management, and 

public health research. 
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Chapter 1 Introduction 

1.1 Research Background 

Urban remote sensing involves using satellite and aerial imagery to analyze and monitor 

urban environments. Urban areas need constant monitoring and management to ensure 

sustainability and livability because they are growing and changing quickly. Various urban 

features and processes, such as land use, land cover, urban heat islands, air and water quality, 

and urban sprawl, can be studied using remote sensing data (Fan & Wang, 2020; Tran et al., 

2017). To gain insights into urban dynamics and aid in decision-making, the data can be 

analyzed using various methods, including image processing, classification, and machine 

learning (Reichstein et al., 2019). 

Getting data with a high spatial resolution is one of the critical issues with urban remote 

sensing. Urban areas have a high degree of heterogeneity and various features and structures, 

all of which call for accurate and detailed representation (Thapa & Murayama, 2009). High-

resolution satellite and aerial imagery are needed to achieve this level of detail (Xu et al., 

2014). The cost of these data can be high, and they might not be widely accessible or 

available everywhere. 

The requirement for accurate and trustworthy data processing and analysis presents another 

challenge for urban remote sensing. This entails creating complex algorithms and techniques 

to extract pertinent information from the remote sensing data and analyzing the data to 

produce insights into urban dynamics and processes. Data errors and inaccuracies can 

influence decision-making and result in incorrect conclusions (Congalton, 1991). Deep 

learning has emerged as a powerful tool for analyzing remote sensing data in urban areas to 

address these challenges (Yuan et al., 2020). 
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Deep learning is a subset of machine learning that utilizes neural networks to learn patterns 

and features from large amounts of data. Deep learning is used in urban remote sensing to 

evaluate and interpret satellite and aircraft data (X. X. Zhu et al., 2017). Deep learning 

applications in urban remote sensing mainly fall into three categories: image classification 

(G. Cheng et al., 2020), object recognition (Z. Li et al., 2022), and image restoration (Rasti et 

al., 2021). In this dissertation, I focused on the task of image classification in urban areas.  

In urban remote sensing, deep learning can classify and segment different urban features, 

such as buildings, roads, and vegetation. This can contribute to a more accurate and detailed 

depiction of the urban environment, which is especially important in areas with high levels of 

urbanization and complex land use patterns (Kuras et al., 2021). Another application of deep 

learning in urban remote sensing is in change detection. Urban areas are developing rapidly, 

with new buildings, infrastructure, and land use patterns emerging regularly. Deep learning 

may be used to automatically detect and classify these changes, providing significant insights 

into urban dynamics and patterns across time. 

Additional to the land cover mapping in urban areas, my other focus in this dissertation is 

extracting the urban forest information from land cover maps in urban areas. Urban forests 

play a vital role in maintaining urban areas' ecological, economic, and social well-being. 

However, studying and managing urban forests can be challenging, particularly in regions 

with high levels of urbanization and complex land use patterns (Fan et al., 2019a). The 

application of deep learning techniques in urban forest study has the potential to provide 

more accurate and detailed information on the structure and function of urban forests. 

One of the key benefits of using deep learning in urban forest study is the improved accuracy 

and efficiency in analyzing remote sensing data. Deep learning models can provide more 
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accurate and efficient remote sensing data analyses, reducing the time and resources required 

for data processing and analysis (Ma et al., 2019). Additionally, deep learning can improve 

the spatial resolution of remote sensing data, enabling more detailed and accurate mapping 

and monitoring of urban forests. Another benefit of using deep learning in urban forest study 

is the improved interpretation of remote sensing data. Deep learning techniques can help 

identify patterns and features in remote sensing data that may be difficult to detect using 

traditional image processing and analysis methods (L. Zhang et al., 2016).  Furthermore, 

deep learning in remote sensing can significantly improve image analysis's speed, accuracy, 

and scalability, making it possible to analyze and extract useful information from large 

amounts of data in near real-time (Sedona et al., 2019). This can provide valuable insights 

into the structure and function of urban forests, helping to guide management and 

conservation strategies. 

Despite the promise of deep learning in urban remote sensing, applying deep learning 

techniques in urban forest study also faces several challenges. Access to high-quality and 

high-resolution remote sensing data is critical for accurate and detailed analyses of urban 

features and urban forests. Obtaining such data can be expensive and may be limited in some 

regions (Z. Wang et al., 2021). Deep learning models can be complex, making interpreting 

how they arrive at their results difficult. The availability of labeled data can also be limited, 

making it challenging to train deep-learning models effectively. Additionally, the 

interpretability of deep learning models is still an ongoing challenge, as it can be difficult to 

understand how the neural networks are making their predictions (Stiglic et al., 2020).  

In summary, the use of deep learning techniques has the potential to provide more precise 

and detailed information on the structure and function of urban landscape and urban forests. 
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While it has many advantages, it also has some issues that must be solved to fully fulfill its 

potential in urban planning and urban forest management. Decision-makers and managers 

can build more effective strategies for conserving and managing urban ecosystems by using 

the potential of deep learning and maximizing the ecological, economic, and social benefits 

for urban communities (Dubey et al., 2016; Z. Wang et al., 2021). 

Despite the challenges in applying deep learning techniques to urban forest research, such as 

a lack of high-quality remote sensing data and the complexity of deep learning models, my 

dissertation usually integrated remote sensing and deep learning techniques to overcome 

these obstacles. I developed a cross-scale transfer learning framework for deep learning-

based land cover classification tasks utilizing open-access data that was temporally and 

spatially assessed. The proposed approach has a lot of potential for use in other cities, and it 

can assist in enhancing the accuracy and efficiency of urban forest monitoring and 

management. 

1.2 Literature review 

1.2.1 Urban remote sensing 

Urban remote sensing is a rapidly evolving interdisciplinary field of research that utilizes an 

array of imaging technologies, including satellite and aerial imagery, to investigate the 

physical, social, and economic characteristics of urban areas (Fugate et al., 2010). This field 

has become increasingly pivotal in providing a comprehensive understanding of the 

complexities of contemporary cities and their development. 

The multifarious applications of urban remote sensing encompass a broad range of areas. 

Remote sensing data offers an indispensable tool to chart the physical structure and 

functional layout of cities, including the distribution of green spaces, land use patterns, and 
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transportation networks.  The analysis of such information is of paramount importance to 

urban planners and decision-makers as it illuminates the existing conditions and constraints 

of a city while also providing critical insight into future urban development trajectories.  

Furthermore, urban remote sensing has become a cornerstone of environmental monitoring, 

providing a reliable means to monitor the impacts of urbanization on the natural 

environment. Remote sensing data can be utilized to track changes in land cover and land 

use, assess the loss of natural habitats, and quantify the degradation of air and water 

quality(Ahmed & Akter, 2017; K.-S. Cheng et al., 2008; Hegazy & Kaloop, 2015) It is also 

an indispensable tool for tracking and monitoring the distribution and extent of 

environmental hazards such as floods, wildfires, and oil spills (Joyce et al., 2009).  

In addition to physical characteristics, remote sensing has also proven to be a powerful tool 

in analyzing the socio-economic features of urban areas. It can help to discern patterns of 

wealth, income, and poverty, and to track changes in these patterns over time. Such 

information is of critical importance in elucidating the social and economic conditions of 

urban residents and in addressing issues related to inequality and poverty (Chan & Hopkins, 

2017; Fan et al., 2019a; Wilkerson et al., 2018).  

Urban remote sensing is also reliant on a suite of analytical methods and techniques, 

including image processing and analysis, Geographic Information Systems (GIS), and 

statistical methodologies to extract meaningful information from remote sensing data. Recent 

advances in technology have revolutionized urban remote sensing, including the increasing 

availability of high-resolution satellite imagery, which has improved the ability to discern 

fine-scale features and changes in urban areas(Kuras et al., 2021; Pashaei et al., 2020; Y. 

Zhang & Billie, 2020) Additionally, machine learning and deep learning techniques have 
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been implemented to enhance the accuracy and efficiency of land use and land cover 

classification, building detection, and other key applications. The usage of Unmanned aerial 

vehicles (UAVs) and Light Detection and Ranging (LiDAR) has also enhanced the spatial 

and temporal resolution of remote sensing data for urban areas, thus enabling more detailed 

observations and analyses(Alonzo et al., 2016; De Luca et al., 2019).  

In summary, urban remote sensing is an interdisciplinary field that plays a significant role in 

comprehending the complex dynamics of modern cities and the issues that influence urban 

life. It offers a powerful tool for urban planning, environmental management, disaster 

response, and socio-economic analysis, and it has critical implications for the future 

development of cities and their inhabitants. As such, it is vital for future research to continue 

to advance this field, in order to better understand and address the complex challenges posed 

by urbanization. 

1.2.2 Urban Forest  

The growing significance of urban forests in the United States is due to the rise of urban land. 

Over 141 million acres of American forests are located in cities and towns. Urban forests 

come in various forms, such as urban parks, street trees, landscaped boulevards, gardens, 

river and coastal promenades, greenways, river corridors, wetlands, nature preserves, shelter 

belts of trees, and working trees at former industrial sites. Urban forests, by connecting green 

spaces, create the green infrastructure that communities rely on. Green infrastructure 

functions at various levels, from the neighborhood to the metropolitan area to the regional 

landscape (Pauleit et al., 2017). The 2010 census revealed that almost 81% of Americans 

reside in urban areas, an increase from 79% a decade prior. Urban populations also grew by 

12.1%, surpassing the national average growth rate of 9.7%(Bureau, n.d.). This trend 
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indicates that the United States is becoming more urbanized. Due to these population 

patterns, urban forests have become increasingly crucial- they are the trees in our immediate 

surroundings. They are dynamic ecosystems that offer essential advantages to both humans 

and wildlife (Coutts & Hahn, 2015).  

An urban forest in a desert city refers to a collection of trees and other vegetation located 

within an urban or suburban area in a region that experiences dry, arid conditions. These 

trees and plants are important for a number of reasons, including providing shade, cleaning 

the air, reducing noise pollution, and improving the aesthetics of the city. They can also 

provide habitat for wildlife and help to mitigate the urban heat island effect, which is the 

phenomenon of cities being significantly warmer than surrounding rural areas due to the 

presence of concrete and other heat-absorbing materials (Epa, 2016). 

There are many cities around the world that are located in desert regions, including Phoenix, 

Arizona and Las Vegas, Nevada in the United States; Dubai and Abu Dhabi in the United 

Arab Emirates; and Adelaide and Perth in Australia. In these cities, the urban forests play a 

critical role in providing a green space for residents and helping to mitigate the harsh desert 

climate. These forests are typically made up of drought-tolerant trees and plants that are able 

to withstand the dry conditions and high temperatures of the desert. 

In this dissertation, the main study area is Phoenix. More than 94,000 trees have roots on 

city-owned land in Phoenix, from the iconic towering palms of Encanto Park to native 

mesquite and paloverdes that line many street medians and rights-of-way (Gardiner, n.d.). 

Almost 1,000 trees are lost every year to the powerful gusts of monsoon storms or accidents. 

The city used to replace them, but it nearly eliminated funding for tree replacement during 

the recession. Some residents and civic groups say the loss of trees in public spaces has 
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become apparent after years of budget cuts. And the city recently agreed to spend more 

money on trees (Gardiner, n.d.).  Trees in Phoenix are more important since they provide 

more shade, which can help reduce the urban hear island effect and lower energy 

consumption (Official Website of the City of Phoenix, Arizona, n.d.).  

Urban forests are essential for mitigating the urban heat island effect in Phoenix, where 

temperatures can be significantly higher in urban areas compared to rural areas (Hillel & 

Rosenzweig, 2010). Disparities in tree canopy coverage exist among different socio-

economic groups, with low-income and minority populations having limited access to natural 

amenities such as parks and urban forests (R. Wang et al., 2017). In general, the urban forests 

in Phoenix face a number of challenges, including limited water availability, high 

temperatures, and exposure to strong winds. To overcome these challenges, these forests 

often rely on irrigation systems and other innovative water-saving technologies, as well as 

careful planning and management to ensure that the right trees and plants are selected for the 

local climate (Nikolaou et al., 2020). Despite these challenges, the urban forests in desert 

cities can be beautiful and thriving places, providing a vital green space for the community 

and helping to make the city a more livable place. Therefore, there are increasing studies to 

explore the relationships between the green space and socioeconomic conditions in cities.  

There is evidence of associations between indicators of urban forests and socioeconomic 

factors. Urban forests can provide a range of benefits to communities, including increased 

property values, improved air and water quality, and reduced energy costs. However, these 

benefits are not equally distributed across different socioeconomic groups. 

Research has shown that low-income communities and communities of color are often less 

likely to have access to urban forests and green spaces, and that these communities also 
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experience higher levels of environmental pollution and stress. This can contribute to health 

disparities and a lower quality of life for residents in these communities. Additionally, urban 

development patterns and zoning regulations can also play a role in shaping access to urban 

forests and green spaces. For example, higher-income communities may be more likely to 

have access to private parks and green spaces, while lower-income communities may have 

limited access to public parks and green spaces. In conclusion, the relationship between 

urban forests and socioeconomic factors is complex, and it is important to consider the ways 

in which access to urban forests and green spaces may be influenced by factors such as 

income, race, and urban development patterns. 

The spatial variation in socioeconomic factors leads to significant differences in the supply 

and demand of ecosystem services provided by the green infrastructure in cities (Wilkerson 

et al., 2018). As shown in Table 1.1, multiple studies have examined associations between 

urban forest structure and socioeconomic situations in recent years. Socioeconomic drivers 

are critical determinants of urban forest structure and fragmentation.  

1.2.3 Urban tree canopy extraction and land cover mapping 

Urban tree canopy, defined as the ground area covered by the layer of tree leaves, branches, 

and stems (Grove et al., 2006), is among the most widely used indicators of urban forest 

studies. Manual field measurement was the earliest method used to study urban forests. In 

this method, the whole city or some parts of an area are randomly selected for sampling 

(Nowak et al., 2008).  Conventional approaches to measuring tree canopy focus on using 

field-based surveys to manually calculate the area of urban vegetation (Fuller & Gaston, 

2009; King & Locke, 2013; Loughner et al., 2012). These methods are costly and labor-

intensive, prompting scientists to integrate traditional tools into new remote sensing systems, 
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such as different satellite images, passive optical systems, and active sensors (Shojanoori & 

Shafri, 2016). 

Table 1.1 Studies examining associations between indicators of urban forests and 

socioeconomic factors. 

Variables Positive association Negative association 

Median Income 

(Chan and Hopkins 2017; Dobbs, 

Kendal, and Nitschke 2014; Fan et al. 

2019; Grove, Locke, and O'Neil-

Dunne 2014; Iverson and Cook 2000; 

Lowry, Baker, and Ramsey 2012b; 

Mennis 2006; Schwarz et al. 2015) 

 

Poverty (Talarchek, 1990)  

Education level 

(Dobbs et al., 2014; Fan et al., 2019a; 

Grove et al., 2014; Mennis, 2006; 

Talarchek, 1990) 

 

Median home-

built year 
(Sorrensen et al., 2015) 

(Conway & Hackworth, 2007; Fan 

et al., 2019a; Mennis, 2006) 

Housing value 
(Grove, Locke, and O'Neil-Dunne 

2014; Mennis 2006) 
 

Household density 
(Grove, Locke, and O'Neil-Dunne 

2014; Mennis 2006) 

(Fan et al., 2019a; Iverson & Cook, 

2000) 

Crime  
(Grove, Locke, and O'Neil-Dunne 

2014) 

Cultural diversity (Dobbs et al., 2014) 
(Fan et al., 2019a; Mennis, 2006; 

Talarchek, 1990) 

Percent Latino/ 

Hispanic 
 

(Frey, 2017; Ogneva-Himmelberger 

et al., 2009; Sorrensen et al., 2015) 

(Fan et al., 2019a) 

Percent black  (Frey, 2017; Schwarz et al., 2015) 

Percent white (Sorrensen et al., 2015)  

Percent renter  
(Fan et al., 2019a; Frey, 2017; Riley 

& Gardiner, 2020; Talarchek, 1990) 

Population (Frey, 2017) 

(Conway and Hackworth 2007; 

Dobbs, Kendal, and Nitschke 2014; 

Frey 2017; Grove, Locke, and 

O'Neil-Dunne 2014; Mennis 2006) 
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Table 1.2 lists several pieces of information on popular satellite sensors. Compared to the 

laborious manual field measurement, the remote sensing images cover a more considerable 

spatial extent with higher temporal resolution. For example, the Moderate Resolution 

Imaging Spectroradiometer – Vegetation Continuous Field (MODIS-VCF) is medium-

resolution imagery used to monitor urban forests yearly with a spatial resolution of 250–500 

m (LP DAAC - MODIS Overview, n.d.). The other medium-resolution satellite systems, such 

as Landsat Thematic Mapper (TM) / Enhanced Thematic Mapper Plus (ETM+)/ Operational 

Land Imager (OLI) used in urban studies, are Landsat systems. These data can provide a 

means to rapidly detect and monitor the land cover changes (Landsat Satellite Missions, 

n.d.). Landsat images can be acquired every 16 days.  Moreover, QuickBird and IKONOS 

are two commonly used high-resolution satellite imageries in urbanization and sustainability 

studies. Both have panchromatic and four multispectral bands (i.e., red, green, blue, and near-

infrared) (Satellite Imaging Corp n.d.). In recent years, very high-resolution satellite images 

have increasingly been employed in forest management and mapping at the meter and sub-

meter levels. The National Agriculture Imagery Program (NAIP) product coupled with 

airborne Light Detection and Ranging (LiDAR) is a popular data combination, especially for 

fine-scale urban forest mapping and analysis (Alonzo et al., 2014, 2016; MacFaden et al., 

2012). 
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Table 1.2 Several satellite sensor characteristics 

Data (Product) 
Spatial resolution 

(MSS) 
Temporal resolution Temporal extent 

MOIDS-VCF 250 m Yearly 2000-2020 

Landsat 30 m 16 days 1972-present 

SPOT-5 10 m Global 1986-present 

IKONOS 4 m 3-5 days 2000-2015 

QuickBird 2.9 m 1-3.5 days 2001- present 

Worldview-2 1.84 m 1.1-3.7 days 2009-present 

LiDAR 0.15~1 m / / 

NAIP 0.6-3 m / 2007-2020 

*MSS (multispectral) 

Urban tree canopy extraction in land cover mapping using remote-sensing images identifies 

and classifies trees leading to the urban tree canopy and greenspace mapping. Mapping is 

conducted via urban forestry monitoring methods, classified into three groups: manual 

interpretation, pixel-based, and object-based approaches (Shojanoori & Shafri, 2016). 

Conventional methods involve supervised classification such as maximum likelihood 

algorithm and minimum distance and unsupervised classification such as Iterative Self-

Organizing Data Analysis Technique (ISODATA) and K-means (Ahmed & Akter, 2017; 

Manakos et al., 2000). Urban land cover mapping has benefited mainly from the 

development of these image classification algorithms. For example, Yang et al. (2003) 

applied the decision tree approach to agriculture mapping over Quebec, Canada, using 

hyperspectral satellite images (Yang et al., 2003).  Zhu and Blumberg (2002) applied the 

support vector machine (SVM)-based classification method to the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) data to map urban land cover 



 

 

13 

features in Beer-Sheva, Israel (G. Zhu & Blumberg, 2002). Ahmed and Akter (2017) utilized 

the K-means approach to analyze the land cover changes in southwest Bengal delta, 

Bangladesh (Ahmed & Akter, 2017).   

Many conventional pixel-based classification methods failed to achieve satisfied 

classification results because they solely relied on the spectral signatures of individual pixels 

(Myint et al., 2011). The object-based Image Analysis (OBIA) approach offered a more 

effective solution for extracting the required information rapidly and efficiently (Yadav, 

Rizvi, and Kadam 2015). The OBIA approach first groups spectrally similar pixels into 

discrete objects and then employs a classification algorithm to assign the segmented objects 

into different classes. It fully utilizes spatial characteristics of segmented objects such as 

shape, size, and compactness to classify the land surface features at a local level (Blaschke, 

2010; Hay & Castilla, 2006). Such a process can improve classification accuracy and map 

small urban elements, such as mature individual trees or small shrubs (Mathieu et al., 2007). 

The OBIA approach has become a mainstream approach to urban land cover mapping in the 

recent decade, and its effectiveness has been demonstrated in many studies across the globe 

(De Luca et al., 2019; Hossain & Chen, 2019; X. Li et al., 2014; MacFaden et al., 2012). 

Despite its effectiveness, however, the OBIA approach relies heavily on expert and 

subjective knowledge to determine the appropriate scales, parameters, functions, and 

classifiers, making its classification results vary widely from case to case and person to 

person (Blaschke, 2010). In recent years, to process a large amount of data, deep learning has 

been widely used in remote sensing image classification (Diakogiannis et al., 2020; 

Weinstein et al., 2019; Yuan et al., 2020). In contrast to the OBIA approach, deep learning 
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models automatically learn the features in the study area without too much human 

intervention on parameter decisions (Liang & Li, 2016).    

1.2.4 Deep learning in remote sensing and image analysis 

As a subfield of machine learning, deep learning has gained recent popularity in remote 

sensing for its ability to characterize complex patterns (Alonzo et al., 2014).  Compared with 

the traditional rule-based image classification methods and machine learning algorithms, the 

deep learning-based classification methods have significant advantages in classification 

accuracy, especially in complex urban areas. The combined use of multisource data also 

enhances the accuracy of land cover mapping. However, the manually labeled land cover 

dataset for the training of deep learning models is still inadequate for most tasks. This 

inadequacy limits the wide practical application of deep learning for land cover classification 

(Yuan et al., 2020). CNN, in particular, has been successfully applied in various tasks, such 

as object detection and semantic segmentation (Ondruska et al., 2016; Qian et al., 2015). 

CNN supports the fast acquisition of rich spatial information from image features 

(Krizhevsky et al., 2012a) and automatically learns features requiring a minimal  amount of 

expert knowledge. Convolutional networks are powerful visual models that yield hierarchies 

of features and are generally used for image-level classification.  Long et al. illustrated a 

fully convolutional network (FCN) to classify images at the pixel level, thus solving the 

problem of semantic segmentation (Long et al., 2015a) (Figure 1.1). 
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Figure 1.1 General difference between CNN and FCN. 

Moreover, compared to other deep learning methods, the U-net proposed by Ronneberger 

(2015) appears to be more popular and more quickly adopted and modified for remote 

sensing image segmentation (Feng et al., 2018; Ronneberger et al., 2015). It was first applied 

to biomedical segmentation and developed further to refine boundary delineation (Falk et al., 

2019). It also works with smaller datasets and yields more precise semantic segmentation 

(Pan et al., 2020b). Despite its adoption in biomedical fields, some researchers gradually 

have applied the U-net to land cover mapping in recent years. For instance, Wagner et al. 

(2020) proposed an instance-segmentation-based U-net architecture to delineate individual 

buildings using the WordView-3 imagery over the Joanópolis City in Brazil (Wagner et al., 

2020). Feng et al. (2018) applied the U-net architecture to the WordView-2 images and 

GaoFen-2 images to extract water bodies (Feng et al., 2018). Another study employed the U-
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net to detect palm trees in Jambi, Indonesia and Bengaluru, India, using the WorldView-2 

images (Freudenberg et al., 2019).  

However, one problem is the limitation of labeled information for newly collected remote 

sensing images. This phenomenon will make it even more challenging for the deep learning 

models to process the RS images. With the development of modern satellite sensors and easy 

access to remote sensing data, the problem of processing such a large amount of data 

becomes even more severe and urgent. A straightforward consideration is to resort to existing 

labeled remote sensing data to help with the unknown new data. To achieve this purpose, 

transfer learning-based frameworks that can overcome the semantic gap between different 

datasets have become a research frontier in remote sensing data processing (Hu et al., 2015). 

The information of existing labeled data is exploited to predict the label of newly collected 

remote sensing data. Razavian et al. (2014) used a model trained for image classification. 

They conducted a series of transfer learning experiments to investigate a wide range of 

recognition tasks such as object image classification, scene recognition, and image retrieval 

(Sharif Razavian et al., 2014). Hu et al. verified the utility of transfer learning from pre-

trained CNN models to perform remote-sensing scene classification (Hu et al., 2015). 

Weinstein et al. refined a CNN model using many higher-quality hand-annotated aerial 

images to detect the individual tree crowns in a much larger area (Weinstein et al., 2019). 

Yosinski et al. concluded that using transfer learning from distant tasks performs better than 

training CNN models from scratch (with randomly initialized weights) (Yosinski et al., 

2014).  
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1.3 Data and methodology 

1.3.1 Data  

The data used in this dissertation include Vaihingen and Potsdam datasets by International 

Society for Photogrammetry and Remote Sensing (ISPRS) (ISPRS Benchmark Test on Urban 

Object Detection and Reconstruction - ISPRS, n.d.), Phoenix land cover and land use data by 

Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) program (Y. Zhang 

& Billie, 2020), the LiDAR data by United States Geological Survey (USGS) (USGS.Gov | 

Science for a Changing World, n.d.), and socioeconomic data from U.S. Census government 

(Bureau, n.d.).  

The Vaihingen and Potsdam datasets are two datasets created by the ISPRS. They are widely 

used for evaluating the performance of remote sensing image analysis algorithms, 

specifically in the area of semantic segmentation. The ISPRS Vaihingen dataset consists of 

high-resolution aerial imagery of an urban area in Germany, along with corresponding 

ground truth annotations for building and road detection. The ISPRS Potsdam dataset is 

similar, but includes a larger area and more classes, including cars, low vegetation, trees and 

impervious surfaces. Both datasets are widely used in the remote sensing and computer 

vision community for training and evaluating machine learning algorithms for semantic 

segmentation tasks.  

The land cover mapping for Phoenix obtained from CAPLTER program is derived based on 

2015 National Agriculture Imagery Program (NAIP) imagery. The project uses aerial 

imagery collected by the National Agriculture Imagery Program (NAIP) in 2015 as input 

data. The objective is to classify the images into different land cover classes, such as urban, 

agriculture, forest, water, and others, using computer vision and machine learning techniques. 
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The resulting map provides valuable information for various applications, including natural 

resource management, urban planning, and environmental monitoring.  

The Phoenix USGS LiDAR Data is a Light Detection and Ranging (LiDAR) dataset 

collected by the USGS in 2014 for the Metro Phoenix area. LiDAR is a remote sensing 

technology that uses laser pulses to measure the distance to the ground and generate highly 

accurate 3D representations of the earth's surface. The 2014 Phoenix USGS LiDAR Data 

provides high-resolution topographic information for the region, including elevation data and 

information about the structure of the terrain and vegetation. This information can be used 

for a variety of purposes, such as flood risk assessment, urban planning, and environmental 

monitoring. Additionally, the dataset can be combined with other geospatial data, such as 

aerial imagery and satellite data, to support a wide range of applications in the fields of GIS, 

geography, and environmental science. 

The US Census Bureau collects and publishes a wide range of socioeconomic data about the 

US population, including information on demographics, education, employment, income, 

poverty, housing, and more. This data is collected through the decennial census, as well as 

through various ongoing surveys and programs. The socioeconomic data from the US Census 

is widely used by businesses, governments, researchers, and the public to better understand 

the makeup and needs of the US population. It provides valuable insights into demographic 

trends, economic conditions, and other factors that shape the nation and inform decision-

making across many sectors. 

1.3.2 Methodology 

Chapter 2 and Chapter 3 focus on urban tree canopy extraction and land cover mapping 

problem using the deep learning techniques. U-net is the main neural network used in the 
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dissertation. U-Net is a deep learning architecture for image segmentation tasks, developed 

for biomedical image analysis. It consists of a contracting path (downsampling) and an 

expansive path (upsampling) with skip connections between them. The architecture is 

symmetrical and named U-Net due to its shape. The output of the network is a segmentation 

mask with the same spatial resolution as the input image. Furthermore, transfer learning 

concept plays an important part in Chapter 3. Transfer learning is a machine learning 

technique where a model trained on one task is re-purposed on a second related task. The aim 

is to leverage the knowledge gained from the first task to improve performance on the second 

task. Fine-tuning method was applied to predict the land cover in the study area. It is a 

process in transfer learning where a pre-trained model is further trained on a new task, 

usually with a smaller learning rate, to adapt to the specific characteristics of the new task. 

The pre-trained weights serve as initialization, providing a good starting point for the fine-

tuning process, speeding it up and reducing the amount of training data needed. 

Chapter 4 conducted spatial analysis to explore the socio-economic indicators of urban forest 

characteristics. In order to understand the relationships and spatial patterns between the urban 

forest structure and tis socioeconomic indicators, this dissertation takes full advantage of 

recent advancements in GIS and exploratory data analysis method, including ordinary least 

square (OLS) regression, geographically weighted regression (GWR) and multi-scale GWR 

(MGWR).  

OLS, GWR, and MGWR are all methods for regression analysis, but they have different 

approaches to modeling the relationship between the dependent and independent variables. 

OLS is a method for estimating the parameters of a linear regression model by minimizing 

the sum of squared differences between the observed and predicted values of the dependent 
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variable. OLS assumes that the relationship between the dependent and independent variables 

is linear and that the errors are normally distributed and have constant variance. 

GWR is a variant of OLS that allows for the parameters of the regression model to vary 

across space. In a GWR model, the regression equation is estimated separately for each 

location in the study area, taking into account the spatial heterogeneity of the data. This 

allows the model to better capture the spatial variation in the relationship between the 

dependent and independent variables. MGWR is an extension of GWR that allows for the 

spatial scale of the regression model to vary. In an MGWR model, multiple regression 

equations are estimated for each location, each with a different spatial scale, and the final 

model is a combination of these regression equations. This allows the model to capture 

different patterns of spatial variation at different scales, making it well-suited for data with 

complex spatial patterns. 

OLS, GWR, and MGWR are all methods for regression analysis that have different 

approaches to modeling the relationship between the dependent and independent variables. 

OLS is the simplest method and assumes a linear relationship and constant variance, while 

GWR and MGWR allow for more flexible modeling of spatial heterogeneity. The choice 

between these methods will depend on the nature of the data and the research question being 

addressed. 

1.4 Research objectives 

The distribution of urban tree canopy and its benefits vary in the US, with urban land 

expansion causing its importance to increase. Most studies on urban forests have focused on 

their structure represented by urban tree canopy cover, with satellite imagery and GIS used 

for cost-effective and timely information. Deep learning methods, such as the Convolutional 
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Neural Network (CNN), have been applied to urban forest studies with success. However, 

challenges such as the availability of high-resolution imagery and lack of publicly available 

training datasets remain. Mapping urban tree canopy and land cover changes is crucial in 

researching urban forest loss, which is occurring in the US due to urbanization and natural 

disturbances. Urban forests are becoming increasingly important as the US becomes more 

urbanized, with 36 million trees being lost annually and urban populations outpacing national 

growth. 

Therefore, there are three objectives in this dissertation project: 1) extend the application of 

deep learning in urban tree canopy mapping in a proof-of-concept pilot study, and 2) assess 

the effectiveness and robustness of a novel transfer learning based deep learning framework 

in urban land cover mapping in a desert city and (3) to better understand urban forest 

structure and its underlying socioeconomic determinants in fast-urbanization regions, 

supplying a scientific basis for green infrastructure planning and toward a more sustainable 

and equitable urban development. 

1.5 Organization of the dissertation 

Chapter 1 gave the introduction of urban forest, basic deep learning concepts and related 

literature reviews. Moreover, Chapter 1 provides a quick glance at the data and methods used 

in the dissertation.  

Chapter 2 discussed an extend application of a deep learning architecture to urban tree 

canopy mapping. I applied a state-of-the-art airborne image dataset provided by the 

International Society for Photogrammetry and Remote Sensing (ISPRS) to the U-net model 

to extract the urban tree canopy. Then, I tested the effectiveness of the U-net in comparison 

with the object-based image analysis (OBIA) approach. Finally, to further assess the 
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performance and robustness of the U-net, a total of four experiments performed at different 

scales (16 cm, 32 cm, 50 cm, and 100 cm).  Meantime, four trained U-net models will be 

exported for further application in the second chapter. 

Chapter 3 introduced a novel proposed approach for land cover mapping integrated with deep 

learning and transfer learning. The study uses a U-Net, a semantic segmentation neural 

network architecture, and fine-tuning method to apply transfer learning to create a framework 

for automatically classifying land cover features in Phoenix. 

Chapter 4 conducted a study to explore the socio-economic determinants of urban forest 

structure in a desert city. This chapter explore urban forest patterns and socio-economic 

inequity in a desert city, Phoenix, Arizona, understand the relationships between urban forest 

characteristics and socio-economic drivers at varying spatial scales and compare the impacts 

of different urban forest characteristics on socio-economic status. 

Chapter 5 discusses and concludes with the findings of the whole dissertation and highlights 

the research significance and possible pathways for studies in the future. 
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Chapter 2 Application and evaluation of a deep learning architecture to 

urban tree canopy mapping 

Abstract 

An urban forest is a dynamic urban ecosystem that provides critical benefits to urban 

residents and the environment. Accurate mapping of urban forests plays an important role in 

greenspace management. In this study, I apply a deep learning model, the U-net, to urban tree 

canopy mapping using high-resolution aerial photographs. I evaluate the feasibility and 

effectiveness of the U-net in tree canopy mapping through experiments at four spatial 

scales—16 cm, 32 cm, 50 cm, and 100 cm. The overall performance of all approaches is 

validated on the ISPRS Vaihingen 2D Semantic Labeling dataset using four quantitative 

metrics, Dice, Intersection over Union, Overall Accuracy, and Kappa Coefficient. Two 

evaluations are performed to assess the model performance. Experimental results show that 

the U-net with the 32-cm input images performs the best with an overall accuracy of 0.9914 

and an Intersection over Union of 0.9638. The U-net achieves state-of-the-art overall 

performance in comparison with the object-based image analysis approach and other deep 

learning frameworks. The outstanding performance of the U-net indicates a possibility of 

applying it to urban tree segmentation at a wide range of spatial scales. The U-net accurately 

recognizes and delineates tree canopy for different land cover features and has great potential 

to be adopted as an effective tool for high-resolution land cover mapping. 

2.1 Introduction 

Urban forests are an integral part of urban ecosystems. They provide a broad spectrum of 

perceived benefits, such as improved air quality, lower surface and air temperatures, and 

reduced greenhouse gas emissions (Buyantuyev & Wu, 2010; Dwyer & Miller, 1999; 
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Loughner et al., 2012; Nowak & Crane, 2002). Additionally, urban trees can improve human 

mental health by adding aesthetic and recreational values to the urban environment (Pandit et 

al., 2014; Payton et al., 2008; Ulmer et al., 2016). The last decade has witnessed a dramatic 

decline of urban tree cover. From 2009 to 2014, there was an estimated 70820 hectares of 

urban tree cover loss throughout the United States (Cities and Communities in the US Losing 

36 Million Trees a Year, n.d.). A better understanding of tree canopy cover is more important 

than ever for the sustainable monitoring and management of urban forests. 

Urban tree canopy, defined as the ground area covered by the layer of tree leaves, branches 

and stems (Grove et al., 2006), is among the most widely used indicators to understand urban 

forest patterns. Conventionally, field-based surveys are conducted to manually measure the 

area of urban vegetation (Fuller & Gaston, 2009; King & Locke, 2013; Loughner et al., 

2012). The field-based surveys are mostly conducted by regional forestry departments and 

various research programs, and many of the field surveys are highly costly and labor-

intensive (Tree Cover % — How Does Your City Measure Up?, n.d.). The availability of 

digital images and advances in remote sensing technologies provide unique opportunities for 

effective urban tree canopy mapping (Fan et al., 2019b; M. Li et al., 2014). For instance, the 

Moderate Resolution Imaging Spectroradiometer–Vegetation Continuous Field (MODIS–

VCF) product provides global coverage of percent tree canopy cover at a spatial resolution of 

500 meters (LP DAAC - MODIS Overview, n.d.). This product is one of the most adopted 

vegetation map products to study global tree canopy trends and vegetation dynamics. Other 

satellite images such as the Landsat imagery (The Thematic Mapper « Landsat Science, n.d.) 

and the Satellite Pour l’ Observation de la Terre (SPOT) imagery are frequently used for 

studying tree canopy cover at local and regional scales (Baeza & Paruelo, 2020; Ferri et al., 
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2014; SPOT - CNES, n.d.; Tran et al., 2017). Very high-resolution satellite images have 

increasingly been employed in forest management and mapping at the meter and sub-meter 

levels. The National Agriculture Imagery Program (NAIP) product coupled with airborne 

Light Detection and Ranging (LiDAR) is a popular data source for fine-scale urban forest 

mapping and analysis (Alonzo et al., 2014, 2016; MacFaden et al., 2012). 

Urban land cover mapping has largely benefited from the development of novel image 

classification algorithms (MacFaden et al., 2012; Ronda et al., 2017). Yang et al. (2003) 

applied a decision tree approach to agriculture mapping over Quebec, Canada using 

hyperspectral satellite images (Yang et al., 2003). Zhu and Blumberg (2002) applied the 

support vector machine (SVM)-based classification method to the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) data for mapping urban land cover 

features in Beer-Sheva, Israel (G. Zhu & Blumberg, 2002). Ahmed and Akter (2017) 

employed the K-means approach to analyze the land cover changes in the southwest Bengal 

delta, Bangladesh (Ahmed & Akter, 2017). 

Conventional pixel-based classification methods have their drawbacks because they solely 

rely on the spectral signatures of individual pixels (Myint et al., 2011). Wang et al. (2007) 

compared the performance of three pixel-based methods, i.e., the iterative self-organizing 

data analysis technique (ISODATA), maximum likelihood, and the minimum distance 

method, with an object-based approach in mapping water and buildings in Nanjing, China. 

They concluded that compared to the pixel-based methods, the object-based approach yielded 

much better results when working with IKONOS images with a spatial resolution of 4 meters 

(P. Wang et al., 2007). Object-based image analysis (OBIA) works by first grouping 

spectrally similar pixels into discrete objects and then employing a classification algorithm to 
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assign the class labels to different objects. The OBIA has become a commonly used approach 

to urban land cover mapping, and its success has been evidenced in many studies (De Luca et 

al., 2019; Hossain & Chen, 2019; X. Li et al., 2014; MacFaden et al., 2012). Despite its 

effectiveness and popularity, the OBIA approach suffers from several limitations. For 

example, it has a heavy reliance on expert experience and local knowledge in the process of 

determining the most appropriate scales, parameters, functions, and classifiers. As a result, 

the robustness of the OBIA is compromised, making the classification results vary widely 

from case to case, from person to person.   

Deep learning has recently received widespread attention among scholars from numerous 

fields (Pashaei et al., 2020; X. X. Zhu et al., 2017). The convolutional neural network 

(CNN), in particular, has been successfully applied in object detection and semantic 

segmentation (Ondruska et al., 2016; Rongqiang Qian et al., 2015). CNN is a powerful visual 

model that shows excellent performance in target recognition (Yuan et al., 2020). It supports 

the fast acquisition of rich spatial information from image features and automatically learns 

features with minimal need of expert knowledge (Krizhevsky et al., 2012b). Based on the 

CNN architecture, Long et al. (2015) proposed a fully convolutional network (FCN) 

architecture to perform dense prediction at the pixel level. Unlike CNN which mainly focuses 

on target recognition, the FCN supports multi-class classification with the capacity of 

assigning a class label to each pixel (Long et al., 2015a). Further, the FCN can capture details 

of image features and transfer these details to be recognized in the neural network (Pan et al., 

2020a). 

Built from the FCN, the U-net architecture was developed to further refine boundary 

delineation (Falk et al., 2019). The U-net was first applied to biomedical segmentation and 
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later applied to various fields with great success, including medical image reconstruction and 

speech enhancement (Çiçek et al., 2016; Esser et al., 2018; Macartney & Weyde, 2018). 

Compared to other neural networks, the U-net uses smaller datasets yet achieves better 

results (Feng et al., 2018; Ronneberger et al., 2015). Despite its adoption in biomedical 

fields, the application of the U-net in land cover mapping is still limited, with a few 

exceptions. For instance, Wagner (2020) proposed an instance-segmentation-based U-net 

architecture to delineate individual buildings using the WordView-3 imagery (Wagner et al., 

2020). Another study employed the U-net to detect palm trees in Jambi, Indonesia, and 

Bengaluru, India, using the WorldView-2 images (Freudenberg et al., 2019). While this study 

achieved an overall accuracy of over 89%, the accuracy was assessed based on the location 

of tree stems rather than the extent of tree canopies.  

Compared to other urban land cover types, urban tree canopy mapping is a challenging task 

because tree canopies can take a variety of shapes and forms depending on the age, size, and 

species of the trees. As trees and other types of green vegetation (e.g., shrubs/grass) are 

usually planted together, accurate segmentation of trees from other vegetation types is rather 

difficult due to their spectral similarity. In this study, we utilized the U-net architecture to 

map the urban tree canopy over Vaihingen, Germany. Coupling aerial images and the deep 

U-net model, this study aims to: (1) apply the U-net to urban tree canopy mapping using 

aerial photographs, (2) assess the performance of the U-net architecture at multiple spatial 

scales, and (3) test the effectiveness of the U-net in comparison with the OBIA approach. 
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2.2 Methods and data 

2.2.1 Study Area and Data 

This study utilized an image dataset published by the International Society for 

Photogrammetry and Remote Sensing (ISPRS). Images were taken over Vaihingen, Germany 

in 2013. The dataset contains 33 patches, each of which consists of an orthophoto and a 

labeled ground truth image. The orthophotos have three bands, near-infrared (NIR), red, and 

green with a spatial resolution of 8 centimeters (cm).  

 

Figure 2.1 Study area located in Vaihingen, Germany. 

2.2.2 U-net Architecture 

The U-net architecture was designed for boundary detection and localization built from the 

FCN architecture (Ronneberger et al., 2015). It can be visualized as a symmetrical, U-shaped 
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process with three main operations, convolution, max-pooling, and concatenation. Figure 2.2 

gives a visual demonstration of the U-net architecture for tree canopy segmentation. 

 

Figure 2.2 The U-net architecture for tree canopy segmentation. 

The U-net architecture consists of two paths, a contracting path as shown on the left side of 

the U-shape, and an expansive path as shown on the right side of the U-shape (Figure 2.2). In 

the contraction path, the black solid arrows refer to the convolution operation with a 3 x 3 

kernel (conv 3x3). With the convolution, the number of channels increased from 3 to 64. The 

black dash arrows pointing down refer to the max-pooling operation with a 2 x 2 kernel (Max 

pool 2x2). In the max-pooling operation, the size of each feature map was reduced from 128 

x 128 to 64 x 64. The preceding processes were repeated four times. At the bottom of the U-

shape, an additional convolution operation was performed twice.  

The expansive path restores the output image size from the contraction path to the original 

128 x 128. The black dash arrows pointing up refer to the transposed convolution operation, 

which increases feature map size while decreasing channels. The green arrows pointing 

horizontally refer to a concatenation process that concatenates the output images from the 

previous step with the corresponding images from the contracting path. The concatenation 
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process combines the information from the previous layers to achieve a more precise 

prediction. The preceding processes were repeated four times. The gray solid arrow at the 

upper right corner refers to a convolution operation with a 1 x 1 kernel (conv 1x1) to reshape 

the images according to prediction requirements.  

2.2.3 Model Training  

A total of four experiments were performed, with the spatial scales of input images being 

downsampled from 8 cm to 16 cm, 32 cm, 50 cm, and 100 cm, respectively. Figure 2.3 

shows the model training workflow for the 16-cm experiment. The same workflow was 

repeated in the other three experiments. First, the original image with an 8 cm resolution was 

cropped into tiles of 256 × 256 pixels. Then, both the training and test datasets were 

downsampled to 16 cm, resulting in an image size of 128 x 128. 90% of the tiles was used for 

training and 10% was used for testing. In the training process, 85% of the dataset was used 

for training and 15% was used for validation. We performed two evaluations to assess the 

model performance. In the first evaluation, the predicted output was first upsampled to 8 cm 

and then compared with the original 8-cm ground truth data. In the second evaluation, the 

ground truth data were resampled to the spatial resolution of the predicted output dataset 

before comparison. For example, to evaluate the performance of the 16-cm model, the 

ground truth data were downsampled to 16 cm before the accuracy assessment. 
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Figure 2.3 Flowchart of the U-net model for the 16-cm experiment. 

2.2.4 Dice Loss Function 

In deep learning, neural networks are trained iteratively. At the end of each training, a loss 

function is used as a criterion to evaluate the prediction outcome. In this study, we employed 

the Dice loss function in the training process. The Dice loss function can be calculated from 

the Dice similarity coefficient (DSC), a statistic developed in the 1940s to gauge the 

similarity between two samples (Dice, 1945). The Dice loss is given by 

Diceloss = 1 − 
2 ∑ 𝑝𝑖 ∙ 𝑔𝑖𝑖

∑ 𝑝𝑖
2 + ∑ 𝑔𝑖

2
𝑖𝑖

 
(2.1) 
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where 𝑝𝑖 and 𝑔𝑖 represent the pixel values of the 𝑖𝑡ℎ pixel in the training output and the 

corresponding ground truth images, respectively. In this study, the pixel values in the ground 

truth images are 0 and 1, referring to the non-tree class and tree class respectively. The Dice 

loss was calculated during the training process to provide an assessment of the training 

performance at each iterated epoch. The value of the Dice loss ranges from 0 to 1, where a 

lower value denotes a better training performance.    

Figure 2.4 shows how the Dice loss changes at each epoch for the four experiments during 

the model training process. As the number of epochs increases, the Dice loss drops rapidly 

and stabilizes at Epoch 99, 243, 97, and 300 for the 16-cm, 32-cm, 50-cm, and 100-cm 

experiment, respectively. 

 

Figure 2.4 Dice loss for the four models in the training process. 

2.2.5 Model Parameters and Environment 

We used randomly selected tiles as our training datasets. For the experiment at each scale, 

300 epochs with 8 batches per epoch were applied, and the learning rate was set at 0.0001 for 

all training models (Table 1). The Adam optimizer was utilized during the training process. 

We applied the horizontal shift augmentation to all images to increase the number of tiles in 
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the training dataset. The number of shift pixels was different at each scale to ensure enough 

training samples were included in each model. The U-net architecture, as well as the whole 

semantic segmentation procedure, were implemented on the Tensorflow and Keras deep 

learning framework in Python programming language. All other processing and analyses 

were carried out using open-source modules, including GDAL, NumPy, Pandas, OpenCV, 

Scikit-learn, among others. The deep learning network experimentation and modeling were 

executed on the Google co-lab platform.  

Table 2.1 Model parameters for the four experiments. 

 
Number of 

epochs 

Number of 

batches 

Finish 

epoch 

Learning 

rate 

Number of 

tiles 

16 cm 300 8 91 0.0001 12627 

32 cm 300 8 42 0.0001 14887 

50 cm 300 8 238 0.0001 6428 

100 cm 300 8 133 0.0001 4683 

 

2.2.6 Performance Evaluation 

We used four accuracy metrics to evaluate the performance of the U-net model, including the 

overall accuracy (OA), the DSC, the Intersection over Union (IoU) and the kappa coefficient 

(KC). All metrics were calculated based on a confusion matrix (Table 2.2), which records the 

percentage of pixels that are true positives (TP), false positives (FP), false negatives (FN), 

and true negatives (TN).  
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Table 2.2 Confusion matrix for accuracy assessment. 

 Ground Truth 

Tree Non-tree 

Prediction 
Tree TPa FPb 

Non-tree FNc TNd 

a TP: true positive.  
b FP: false positive.  
c FN: false negative. 
d TN: true negative. 

 

The OA was computed as the percentage of correctly classified pixels (Equation 2.2). The 

DSC was a commonly used metric in semantic segmentation (Bertels et al., 2019). It was 

employed in Section 2.4 for calculating the loss function and was used here again for 

accuracy assessment (Equation 2.3). The IoU, also known as the Jaccard Index, represents 

the ratio of the intersection to union between the predicted output and ground truth labeling 

images (Equation 2.4) (Hamers, 1989). The KC, used widely in remote sensing applications, 

is a metric of how the classification results compare to values assigned by chance (Equation 

2.5) (Stehman, 1996). All metrics range from 0 to 1 with higher scores indicating higher 

accuracies.  

OA =
TP + TN

TP + TN + FP + FN
 

(2.2) 

DSC =
2 ∙ TP

2 ∙ TP + FP + FN
 

(2.3) 

IoU =
TP

TP + FP + FN
 

(2.4) 

KC =
N × [(TN + FN) ∙ (TN + FP) + (TP + FP) ∙ (FN + TN)]

N2 − [(TN + FN) ∙ (TN + FP) + (TP + FP) ∙ (FN + TN)]
where N is the number of pixels

 

(2.5) 
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2.2.7 Object-based Image Classification 

The output of the U-net model was further compared to that of the object-based 

classification, a popular and widely applied approach to fine-scale land cover mapping. The 

object-based classification involves two main steps, segmentation and classification. We first 

used the multiresolution segmentation to group spectrally similar pixels into discrete objects. 

The shape, compactness, and scale factors were set to 0.1, 0.7, and 150, respectively. Based 

on a series of trial-and-error tests, an object with a mean value in the near-infrared band 

greater than 120 and a maximum difference value greater than 0.9 is being classified as tree 

canopy. The object-based classification was implemented in the eCognition software package 

(ECognition | Trimble Geospatial, n.d.).   

2.3 Results 

2.3.1 Performance of the U-net Model at Multiple Scales 

We performed two evaluations to assess the model performance. Evaluation 1 compared the 

predicted results with the 8-cm ground truth images. The accuracy metrics are shown in 

Table 2.3. All accuracy metric scores were higher than 0.91 except for those at the 100-cm 

scale. Consistently across all metrics, there was a score increase when the scale changed from 

16 cm to 32 cm, followed by a slight decrease from 32 cm to 50 cm, and a drastic drop from 

50 cm to 100 cm. The U-net model achieved the best performance on the 32-cm dataset and 

the worst on the 100-cm dataset. The highest metric score was 0.9914 (OA) and the lowest 

score was 0.7133 (IoU). 
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Table 2.3 Accuracy metric scores at the four scales in Evaluation 1 

Scale OA DSC IoU KC 

16 cm 0.9791 0.9550 0.9138 0.9411 

32 cm 0.9914 0.9816 0.9638 0.9770 

50 cm 0.9881 0.9741 0.9496 0.9664 

100 cm 0.9324 0.8327 0.7133 0.7917 

 

Evaluation 2 compared the predicted results with the ground truth images after adjusting to 

the spatial resolution of the predicted output. Table 2.4 shows the accuracy metric scores for 

Evaluation 2 at the four scales. First, all metric values were higher than those in Evaluation 1 

regardless of scale. Second, all metrics were above 0.99 except for the 16-cm experiment. 

Similar to Evaluation 1, there was a substantial increase in all four metrics when the scale 

went from 16 cm to 32 cm. Different from Evaluation 1 though, the trend flattened out when 

the spatial resolution changed from 32 cm to 100 cm. Lastly, Evaluation 2 yielded much 

higher metric scores than Evaluation 1 at the 100-cm scale with the highest and lowest metric 

score of 0.9984 (OA) and 0.9934 (IoU), respectively.  

Table 2.4 Accuracy metric scores at the four scales in Evaluation 2 

Scale OA DSC IoU KC 

16 cm 0.9798 0.9568 0.9171 0.9436 

32 cm 0.9982 0.9962 0.9925 0.9952 

50 cm 0.9987 0.9972 0.9944 0.9963 

100 cm 0.9984 0.9967 0.9934 0.9983 
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2.3.2 Visual Evaluation of the U-net Performance 

To visually assess the performance of the U-net model, we selected an example area with 

moderate tree canopy cover and compared the predicted output with the ground truth images. 

Figure 5 shows the selected area on an aerial photo (Figure 2.5(a)), ground truth images at 8 

cm, 16 cm, and 100 cm (Figures 2.5(b), 2.5(d), and 2.5(f)), and predicted output at 16 cm and 

100 cm (Figures 2.5(c) and 2.5(e)). Overall, both U-net predictions (Figures 2.5(c) and 

2.5(e)) showed great consistency with the ground truth images (Figures 2.5(b), 2.5(d), and 

2.5(f)). Specifically, the similar patterns in Figures 2.5(c) and 2.5(b) echoed the high 

accuracy scores at 16 cm in Evaluation 1 (Table 2.3). Because Figure 2.5(d) was downscaled 

to match the spatial resolution of Figure 5(c), there was a higher level of similarity between 

Figures 2.5(c) and 2.5(d) than that between Figures 2.5(c) and 2.5(b). This was corroborated 

by the higher accuracy scores in Table 2.4 than Table 2.3 at the 16-cm scale. A similar 

pattern was identified when comparing Figure 2.5(e) with Figures 2.5(b) and 2.5(f). The 

lower metric values at the 100-cm scale in Table 3 were in part due to the blurry canopy 

boundaries as seen in Figure 2.5(e) as a result of downsampling. A better result was 

identified comparing Figure 2.5(e) with Figure 2.5(f), consistent with the much higher 

accuracy scores at 100 cm in Table 2.3.  
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Figure 2.5 An example area of the tree canopy output map from the U-net: (a) original 

orthophoto, (b) 8-cm ground truth image, (c) 16-cm predicted tree canopy, (d) 16-cm ground 

truth image, (e) 100-cm predicted tree canopy, and (f) 100-cm ground truth image (white 

areas refer to tree canopy pixels; black areas refer to non-tree pixels).  

2.3.3 Performance Comparison between the U-net and OBIA 

Table 2.5 shows the accuracy scores of tree canopy mapping generated by the OBIA 

approach and the U-net model at the 16-cm scale. Both models were compared with the 8-cm 

ground truth data. For the OBIA, the highest metric score was 0.857 (OA) and the lowest was 

0.489 (IoU). All the OBIA scores were significantly lower than the U-net scores. It is worthy 
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of note that even the highest score for the OBIA (OA: 0.857) was lower than the lowest score 

for the U-net (IoU: 0.9138), indicating that the U-net was superior to the OBIA in accurately 

mapping tree canopy at the 16-cm scale.  

Table 2.5 Comparison of tree canopy mapping accuracy between OBIA and U-net (16 cm) 

 IoU DSC OA KC 

OBIA 0.489 0.657 0.857 0.5681 

U-net (16 cm) 0.9138 0.9550 0.9791 0.9411 

 

Figure 2.6 shows a comparison between the predicted output of the U-net and the OBIA in 

reference to the 8-cm ground truth image. By visual inspection, the U-net output (Figure 

2.6(c)) showed a much better consistency with the ground truth image (Figure 2.6(b)) 

compared to the OBIA output (Figure 2.6(d)). There were much more misclassified pixels in 

the OBIA output than that in the U-net output, especially when identifying trees from grass 

and shrubs (yellow rectangle in Figure 2.6(d)). Further, the U-net model successfully 

distinguished trees from buildings, while both the OBIA and the ground truth failed to do so 

(red rectangle in Figure 2.6(d)). Overall, the U-net outperformed both the OBIA and the 

ground truth image in accurately extracting tree canopy cover from other complex urban land 

cover features.  
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Figure 2.6 Comparison of the urban tree canopy segmentation between the U-net and OBIA: 

(a) original orthophoto, (b) ground truth image, (c) predicted output of the U-net, and (d) 

OBIA classification result (white areas refer to tree canopy pixels; black areas refer to non-

tree pixels).  

2.4 Discussion 

2.4.1 Performance of the U-net in Urban Tree Canopy Mapping 

In this study, we tested the effectiveness of the U-net in urban tree canopy mapping. We 

conducted the experiments at four different scales and performed two evaluations to assess 

the model performance from two different angles. Evaluation 1 (Table 2.3) compared the 

predicted output with the 8-cm ground truth. It aims to test the model performance operated 

on the datasets at different scales. Our results show that the U-net performed the best on the 

32-cm dataset with an overall accuracy of 0.9914 (Table 2.3). While the 32-cm dataset is a 

coarser-resolution dataset compared to the 8-cm and 16-cm datasets, each image patch of the 

32-cm dataset contains more geographic features than the other two. In deep learning, the 

spatial extent of the input is called “the receptive field”. It is defined as the size of the region 
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in the input that produces the feature (Araujo et al., 2019). In this context, the receptive field 

indicates how many land cover features can be perceived from an input patch. Figure 2.7 

shows examples of input image patches of three scales: (a) 16 cm, (b) 32 cm, and (c) 100 cm. 

According to Figure 2.7(a), despite the higher spatial resolution, a 16-cm patch is too small to 

cover enough land cover objects such as buildings and trees with large crowns (Araujo et al., 

2019). This in part explains the lower accuracies with the 8-cm and 16-cm datasets as they 

come with too small of a receptive field. 

An overly large receptive field may also be problematic. Figure 2.7(c) shows an example of a 

100-cm input patch. While it is large enough to include a significant number of land cover 

features, it comes with a cost of degradation of spatial details, resulting in a loss of locational 

accuracy especially at the tree edges. This is part of the reason why the DSC and KC values 

in the 100-cm experiment are much lower than the experiments performed at other scales. It 

is recognized that the size of the receptive field plays an important role in the training process 

of a deep learning neural network. Too small of a receptive field can limit the amount of 

contextual information while too large of a receptive field may cause a loss of spatial details 

and decline of locational accuracy (Qin et al., 2020). An optimal receptive field ensures a 

good number of land cover features go to the training model while retaining the spatial 

accuracy of the dataset. That is the case for the 32-cm dataset in our study, which achieves 

the highest accuracy scores and the best model performance (Table 3). It is worthy of note 

that even with the 100-cm dataset, the U-net is still able to achieve an OA of 0.9324 (Table 

3), indicating the overall effectiveness of the U-net architecture in tree canopy mapping. 
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          (a)                                   (b)                               (c) 

Figure 2.7 Examples of the input image patch for the U-net: (a) 16-cm input image patch, (b) 

32-cm input image patch, (c) 100-cm input image patch.  

We performed Evaluation 2 to assess the accuracy of the U-net models based on input and 

output of the same spatial resolution. This evaluation is essential because high-resolution 

ground truth data are not always attainable. Results show that the performance of the U-net 

architecture is exceptional based on the incredibly high accuracy metric scores (Table 2.4). 

All metric scores are above 0.99 for scales from 32 cm to 100 cm. These results indicate 

promising applications of the U-net architecture. An example is the National Agriculture 

Imagery Program (NAIP), which offers freely accessible satellite imagery across the United 

States at 1-m (100-cm) spatial resolution. From the results in Table 4, all metric scores are 

above 0.99 at the 100-cm scale, suggesting a highly effective and promising application of 

the U-net model to fine-scale land cover mapping based on NAIP data. 

2.4.2 Comparison between U-net and OBIA 

The OBIA has been a mainstream approach for high-resolution land cover mapping during 

the last decade. Myint et al. (2011) used the OBIA method to extract major land cover types 

in Phoenix from QuickBird images. In their study, the DSC score for the tree class was 

0.8551 (Myint et al., 2011). Over the same study area, Li et al. (2014) developed another set 

of decision rules using the NAIP imagery and successfully raised the DSC score to 0.88 (X. 



 

 

43 

Li et al., 2014). Apart from the multispectral satellite imagery, Zhou (2013) supplemented 

the height and intensity from the LiDAR data and yielded a DSC score of 0.939 (Zhou, 

2013). With a large number of existing studies using the OBIA approach, our study using the 

U-net model achieves a higher mapping accuracy than almost all the OBIA-based studies in 

the literature (DSC: 0.9816).  

To further compare the performance of the U-net with the OBIA, we selected a sample study 

area with a variety of land cover types and applied the 16-cm U-net model and the OBIA 

approach to the same area. According to Table 5, all metric scores generated from the U-net 

model are higher than those from the OBIA approach. Even the highest OBIA score is lower 

than the lowest U-net score. Figure 6 provides a visual comparison between the OBIA and U-

net output. Urban tree canopy mapping is challenging because trees are typically planted on 

grassland or closely adjacent to buildings (Figure 2.6(a)). The U-net model has the unique 

capacity of accurately distinguishing trees from grass and buildings (Figure 2.6(c)) while the 

OBIA approach is not as effective (Figure 2.6(d)). 

One of the major downsides of the OBIA is a requisite for enough expert knowledge of the 

study area and the land cover types under investigation (Whiteside et al., 2011). In contrast, 

the U-net automatically learns the features in the study area without too much human 

intervention on parameter decisions (Liang & Li, 2016). Moreover, the U-net, as a deep 

learning network, comes with a very high level of automation with a minimal need of manual 

editing after the classification. This is a prominent advantage of the U-net over the OBIA 

because the accuracy of the OBIA depends to a great extent on post-classification manual 

editing which is time-consuming and labor-intensive. As the U-net is free of manual editing, 



 

 

44 

it has a great potential to become a mainstream mapping tool especially when dealing with 

large amounts of high-resolution data. 

2.4.3 Comparison between the U-net and Other Deep Learning Methods  

The test dataset of this study was made available from the ISPRS 2D Semantic Labeling 

Contest. The dataset contains orthophotos, digital surface model (DSM) images, and 

normalized DSM (nDSM) images over the Vaihingen city in Germany. The same set of data 

was utilized by a number of deep learning studies on tree canopy mapping. Table 2.6 lists a 

couple of these studies along with their methods, datasets, and DSC values on the tree class. 

Audebert et al. (2016) utilized the multimodal and multi-scale deep networks on the 

orthophotos. The DSC score on the tree class was 0.899 (Audebert et al., 2016). Sang and 

Minh (2018) used both the orthophotos and the nDSM images to train a fully convolutional 

neural network (FCNN). The classification accuracy was not improved in spite of adding the 

nDSM images on top of the orthophotos (Sang & Minh, 2018). Paisitriangkrai et al. (2015) 

took advantage of the entire dataset (all three data sets) to train a multi-resolution 

convolutional neural network, yielding a DSC value of 0.8497. Compared to the above 

studies using the Vaihingen dataset, our U-net model conducted at 16 cm, 32 cm, and 50 cm 

outperforms all of them with a DSC of above 0.95. Also note that adding DSM images fails 

to improve the overall model performance. Our best-performing model, the 32-cm U-net 

model, achieves a DSC of 0.9816. This surpasses the DSC of the contest winner (0.908), 

indicating the exceptional effectiveness of the U-net architecture on tree canopy mapping. 
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Table 2.6 Performance comparison of the U-net with other deep learning methods on the 

same dataset 

Method Dataset DSC 

Multimodal and Multi-scale Deep Networks 

(Audebert et al., 2016) 
Orthophoto 0.899 

Fully Convolutional Neural Network (FCNN) 

(Sang & Minh, 2018) 

Orthophoto 

+nDSM 
0.899 

Multi-resolution Convolutional Neural Network 

(Paisitkriangkrai et al., 2015) 

Orthophoto + 

nDSM +DSM 
0.8497 

32-cm U-net (this study) Orthophoto 0.9816 

 

Numerous studies have made modifications to the U-net architecture in an attempt to 

improve the model performance (Çiçek et al., 2016; J. Zhang et al., 2019; Z. Zhang et al., 

2018). For instance, Diakogiannis et al. (2020) integrated the U-net with the residual neural 

network using high-resolution orthophotos and DSM images (Diakogiannis et al., 2020). The 

dataset they used was also published by the ISPRS 2D Semantic Labeling Contest (2D 

Semantic Labeling - Potsdam, n.d.) and was similar to the Vaihingen dataset used in this 

study. The modified framework achieved a DSC score of 0.8917 on the tree class compared 

to 0.9816 in this study (Table 3). While the U-net is simpler, it is more effective than the 

other, more complex, deep learning architecture. This is consistent with Ba and Caruana 

(2014) that while depth can make the learning process easier, it may not always be essential 

(Ba & Caruana, 2014). Choosing the most efficient and suitable neural network is a top 

priority to ensure the best overall performance of a deep learning framework.  

2.5 Conclusions 

Mapping urban trees using high-resolution remote sensing imagery is important for 

understanding urban forest structure for better forest management. In this study, we applied 
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the U-net to urban tree canopy mapping using high-resolution aerial photos. We tested the 

effectiveness of the U-net at four different scales and performed two evaluations to assess the 

model performance from two different angles. Evaluation 1 shows that the U-net performed 

the best on the 32-cm dataset, with an overall accuracy of 0.9914. The experiments 

conducted at four scales indicate the significance of an optimal receptive field for training a 

deep learning model. Evaluation 2 shows that the U-net can be used as a highly effective and 

promising tool for fine-scale land cover mapping with exceptional accuracy scores. 

Moreover, the comparison experiment shows the outstanding performance of the U-net 

compared to the widely used OBIA approach and other deep learning methods. 

This study shows the utility of the U-net in urban tree canopy mapping and discusses the 

possibility of extending its use to other applications. A broad application of the U-net to 

high-resolution land cover mapping faces several challenges. First, as with any fine-scale 

land cover mapping tasks, the availability of freely accessible high-resolution imagery is an 

issue. U-net model training often requires satellite images with a spatial resolution of 1 meter 

or finer. It remains a challenge to acquire very high-resolution data for regions of interest at 

desired times. Second, the lack of publicly available training datasets poses another problem. 

Ground truth data are usually produced by local government or research institutions through 

field surveys or manual digitization. The process of generating accurate ground truth data is a 

complex and laborious task. A possible solution is to introduce the techniques and strategies 

in transfer learning. Approaches such as pre-training, fine-tuning, and domain adaptation can 

alleviate the dependence on large, labeled dataset. Therefore, integrating the U-net and 

transfer learning is a potential direction of future research.  
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Chapter 3 A Cross-scale Transfer Learning Framework for Deep 

Learning–based Urban Land Cover Mapping 

Abstract 

One popular topic in remote sensing is land cover classification in urban areas. The 

emergence of deep learning has provided a new approach to solving these problems. Deep 

learning models are able to express and process data with greater power and have shown high 

accuracy and precision rates in applications. Chapter 3 introduces the concept of deep 

learning and transfer learning (TL) to remote sensing image classification. The study uses a 

U-Net, a semantic segmentation neural network architecture, and fine-tuning to apply 

transfer learning to create a cross-scale transfer learning framework for automatically 

classifying land cover features in Phoenix based on U-net. The target dataset was National 

Agriculture Imagery (NAIP) data from 2015, and the source dataset was the Potsdam dataset 

from the International Society for Photogrammetry and Remote Sensing. The study also 

tested the effectiveness and feasibility of the proposed framework at different spatial scales 

from 15 cm to 100 cm. The highest overall accuracy achieved was 0.8201. To further explore 

the generalizability of the proposed framework, the study classified NAIP images of Las 

Vegas in 2016 and Phoenix in 2019. OA values in all test images are higher than 70%. The 

prediction results showed great potential for the framework to be used for land cover 

mapping, both spatially and temporally. In addition, the study compared the proposed 

method with two conventional classification methods, Maximum Likelihood and Object-

Based Image Analysis. Cross-scale framwork performed better at object segmentation than 

the traditional methods, with the highest OA value of 85%. Overall, the proposed framework 
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outperformed the conventional approaches and provided a more effective way to classify 

urban areas without laborious efforts.  

Keywords: Remote sensing; Deep Learning; Transfer Learning; U-net; Land cover 

classification 

3.1 Introduction 

Data quality, spatial resolution, revisit periods, and the area covered by remote sensing have 

all improved dramatically in recent decades. According to Emery and Camps, the ability to 

study the Earth from low Earth orbit and geostationary satellites has been steadily improving 

(Navalgund et al., 2007). Such an increase necessitates a major shift in how we use and 

manage remote sensing images. The enhanced spatial resolution allows for the development 

of unique methodologies, opening up new possibilities for remote-sensing picture processing 

and interpretation, allowing us to examine the ground surface in greater depth. However, the 

increased amount of data available has posed significant hurdles in managing image 

collection. One of the fundamental remote sensing tasks is image classification. 

Image classification is essential for many practical remote sensing applications, such as 

urban planning, land management, land cover and land use mapping. Traditional 

classification methods categorize images based on spatial units, including pixels, moving 

windows, objects, and scenes (Myint et al., 2011; M. Wang et al., 2019). However, 

distinguishing complex land structures or patterns using limited rules is often tricky because 

traditional methods only involve low-level features in spectral and spatial domains in 

classification (Yuan et al., 2020). Thus, classification approaches using a considerable 

number of high-level features are desirable. Deep learning has been recently introduced to 

land cover mapping and has obtained optimal results due to its superiorities in multiscale and 
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multilevel feature extraction (Diakogiannis et al., 2020; Pan et al., 2020b; Yuan et al., 2020). 

Compared with the traditional rule-based and machine learning methods, the deep learning-

based classification method has significant advantages in classification accuracy, especially 

in complex urban areas. 

The emergence of deep learning provides a new approach to solving problems. Deep learning 

models have more powerful abilities to express and process data and have shown excellent 

accuracy and precision rates in applications. Building from the convolutional neural network 

(CNN) architecture, Long et al. (2015) proposed the fully convolutional network (FCN) to 

perform dense prediction at the pixel level. Unlike traditional CNN, which primarily focuses 

on target identification, the FCN supports multi-class classification with the capability of 

assigning a class label to each pixel (Long et al., 2015b). FCN can detect the details of image 

features and make these details recognized in the neural network (Pan et al., 2020b). Built 

from the FCN, the U-net was designed to refine boundary delineation further(Long et al., 

2015b). The U-net was first used in biomedical segmentation and then successfully applied to 

various fields, including medical image reconstruction and speech enhancement (Çiçek et al., 

2016, p. 21; Esser et al., 2018; Macartney & Weyde, 2018). The U-net employs smaller 

datasets than conventional neural networks but generates superior results(Feng et al., 2018; 

Ronneberger et al., 2015). Despite its application in biomedical fields, the adoption of the U-

net in mapping land covers is currently limited, with a few exceptions. Besides image 

classification, CNNs have also achieved satisfactory accuracy in object detection and image 

segmentation (Chang et al., 2020). 

In my previous study, I have already evaluated the feasibility and effectiveness of the U-net 

in tree canopy extraction (Z. Wang et al., 2021). My findings indicate that U-net achieves 



 

 

50 

state-of-the-art overall performance. The U-net's remarkable performance suggests applying 

it to urban tree mapping at various spatial scales. The U-net accurately identifies and 

delineates tree canopy for different land cover elements. It has a strong potential for use as an 

effective tool for high-resolution land cover mapping. There also remain some limitations. 

First, as with any fine-scale land cover mapping effort, the availability of freely accessible 

high-resolution images is a challenge. Aerial imagery with a spatial resolution of one meter 

or higher is frequently required for U-net model training. Another issue is the scarcity of 

publicly available training datasets. One possible solution to the abovementioned issues is 

adding transfer learning techniques and strategies. 

Transfer learning (TL) is one of the most popular approaches in deep learning. We can say 

transfer learning is a machine learning method. The transfer of learned skills and knowledge 

from one learning situation to another. In remote sensing, transfer learning can be 

particularly useful for addressing the problem of limited training data, which is a common 

challenge due to the high cost and difficulty of collecting and annotating large amounts of 

remote sensing data. Transfer learning enables the use of pre-trained models that have been 

trained on large datasets, which can then be fine-tuned on smaller target datasets to improve 

their performance. Moreover, many pre-trained models, such as VGG, ResNet, and U-Net, 

have been pre-trained on large-scale image datasets and are available for transfer learning in 

remote sensing applications. 

While transfer learning has been widely used in remote sensing applications, it is true that 

there may be relatively few studies that have used transfer learning with free-access remote 

sensing products. Free-access remote sensing products, such as those provided by NASA and 

ESA, typically have lower spatial resolution and limited spectral bands compared to 
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commercial high-resolution data. This may limit the potential for transfer learning since the 

pre-trained models may not be well-suited for the unique features and characteristics of the 

free-access remote sensing products. Moreover, transfer learning requires large and diverse 

datasets to train the pre-trained models, which may be limited in the case of free-access 

remote sensing products. This can make it challenging to fine-tune the pre-trained models on 

the target dataset, which can lead to overfitting or poor generalization performance. 

Therefore, based on my previous findings in this study, I proposed a cross-scale transfer 

learning framework to extract the land cover features automatically. The findings and results 

will help with remote sensing image classification while processing large amounts of data. 

3.2 Methods and Materials 

3.2.1 Study Area 

We selected a small area in Phoenix. Phoenix is a city located in the southwestern United 

States, in the state of Arizona. It is known for its hot, dry desert climate, with hot summers 

and mild winters. The city is situated in a valley surrounded by mountains, which provide 

some relief from the intense heat. It is a typical desert city with average high temperatures in 

the summer can reach over 100°F (38°C), while average lows in the winter are around 50°F 

(10°C). The city receives minimal rainfall, with the majority of its precipitation occurring 

during the monsoon season from July to September.  
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Figure 3.1 Study Area, Phoenix 

Phoenix has experienced significant growth in recent decades, and understanding the changes 

in land-cover is crucial for managing the city's development. Land-cover changes can have 

significant impacts on the local environment, including increased heat island effect, loss of 

wildlife habitat, and altered water cycles. Studying land-cover can help identify and mitigate 

these impacts. Understanding land-cover can also inform decision-making around resource 

management, such as water allocation, urban planning, and conservation efforts. The desert 

climate of Phoenix is already challenging, and understanding how land-cover changes may 
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affect temperature, precipitation, and other climate variables is important for adaptation and 

mitigation efforts. Therefore, I chose Phoenix, a typical desert city as the study area.  

3.2.2 ISPRS Dataset 

 

Figure 3.2 Example patches of the ISPRS Potsdam Dataset (a) orthophoto and (b) ground 

truth 

The International Society published the source Potsdam image dataset for Photogrammetry 

and Remote Sensing (ISPRS). The ISPRS Potsdam dataset is a widely used benchmark 

dataset for evaluating remote sensing image analysis methods. The labeled Potsdam dataset 

was downloaded from ISPRS 2D Semantic Labeling Challenge 1 (ISPRS Benchmark Test on 

Urban Object Detection and Reconstruction - ISPRS, n.d.). All images have a spatial 

resolution of 5 cm. The average dimension is about 6000 x 6000. The ISPRS Potsdam dataset 

comprises 24 sets of orthophotos and their corresponding labeled images. Each orthophoto 

consists of four spectral bands, namely, red (R), green (G), blue (B), and near-infrared (IR). 

Figure 3.2 presents a comparison between the reference and corresponding orthophoto from 

the dataset. The dataset includes six land cover classes, which are impervious surface, 

building, low vegetation, tree, car, and background. Upon detailed inspection of the labels, 
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the car and background classes were merged into the impervious surface class, resulting in a 

final dataset of four classes, namely, impervious surface, tree, building, and low vegetation, 

as shown in Figure 3.2 (b). These four classes were used for training the models in the 

subsequent analysis. 

3.2.3 Phoenix NAIP Land cover product 

 

Figure 3.3 NAIP data in Phoenix in 2015 (a) NAIP data used for training and finetuning (b) 

Corresponding ground truth and (c) the location of the data used for training  

The The target dataset used in this study was obtained from the National Agriculture Imagery 

Program (NAIP). The program is specifically designed to collect aerial imagery during the 

active agriculture season with high spatial resolution. NAIP imagery is available across the 

United States and serves as an essential data source for many land cover mapping 

applications. 

Figure 3.2 presents the data used in this study, which is a selected area in Phoenix, Arizona. 

Figure 3.2 (a) shows the NAIP image from 2015, while Figure 3.2 (b) depicts the land cover 
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and land use (LULC) map generated by the Central Arizona-Phoenix Long-Term Ecological 

Research (CAPLTER) project. The CAPLTER project in central Arizona generated the 

LULC map using NAIP data, providing detailed information on the distribution of different 

land cover and land use types in the Phoenix metropolitan area. Figure 3.2 (a) represents one-

quarter of Figure 3.2 (c), and the LULC data were clipped as labels for Figure 3.2 (c). 

However, only one-quarter of the NAIP data and its corresponding label were used for 

training the finetuning process. The proposed framework predicts the entire Figure 3.2 (c) 

based on Figures 3.2 (a) and (b). The remaining LULC labels were also used to evaluate the 

performance of the model.  

3.2.3 U-net  

U-net was developed and first used for biomedical image segmentation. Its architecture is an 

encoder network followed by a decoder neural network. The U-net architecture consists of a 

contracting path, which gradually reduces the spatial resolution of the input image, and an 

expanding path, which gradually increases the spatial resolution of the output segmentation 

map. The contracting path is composed of convolutional and pooling layers, while the 

expanding path is composed of deconvolutional layers, which upsample the feature maps to 

the original spatial resolution. Unlike classification tasks, where the end result of the deep 

network is all that matters, semantic segmentation involves not just discrimination at the 

pixel level, but also a technique to project the discriminative features learned at different 

stages of the encoder onto the pixel space. I explained it in detail in Chapter 2. 

3.2.4 Fine-tuning 

Transfer learning is one of the most popular approaches in deep learning. We can say transfer 

learning is a machine learning method. The application of skills, knowledge that were 
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learned in one situation to another learning situation (Rostami et al., 2019). In this study, we 

can say that a model developed for a task that was reused as the starting point for a model on 

a second task. These two tasks normally have some similar properties. The two datasets used 

in this study have some differences. They were taken in different places; two cities have two 

different urban structures. However, the two datasets have more similarities. They are high-

resolution orthophotos with four same spectral bands that are taken in urban areas with 

similar urban features, like trees, buildings, roads and grass. Those are the knowledge that 

can be transferred through the trained models.  

 

Figure 3.4 Fine-tuning workflow (14.2. Fine-Tuning — Dive into Deep Learning 1.0.0-Alpha1.Post0 

Documentation, n.d.) 

There are some methods of transfer learning, like fine-tuning and domain adoption.   In this 

study, I adopted the fine-tuning approach. As shown in figure 4., fine-tuning consists of the 

following steps:  

a. Pretrain a neural network model, i.e., the source model (the U-net in this study), on a 

source dataset (the ISPRS dataset in this study). This process involves training the 



 

 

57 

model on the source dataset to learn useful features that can be transferred to other 

tasks. The resulting model, called the source model, can then be fine-tuned for a 

specific target task using a smaller dataset. This approach can improve the model's 

performance on the target task by leveraging the knowledge learned from the source 

dataset. 

b. Create a new neural network model, which will be the target model (still the U-net in 

this study). Except for the output layer, this duplicates all model designs and their 

parameters from the source model. I assume that these model parameters contain the 

information gained from the source dataset and that this knowledge is also applicable 

to the target dataset. I also assume that the source model's output layer is strongly 

related to the labels in the source dataset. Thus, it is not employed in the target model. 

c. Add an output layer to the target model with the same number of outputs as the target 

dataset's categories. Then, at random, set the model parameters for this layer. 

d. Train the target model on the target dataset (in this case, the NAIP data), such as a 

chair dataset. The output layer will be trained from scratch, while the other layers' 

parameters will be fine-tuned based on the parameters of the source model. 

3.2.5 Model Training and Experiments 

This study aimed to test the effectiveness of the U-Net for urban land cover mapping and 

evaluate the performance of the transfer learning-based U-Net through a series of four 

experiments and two evaluations. The first experiment involved training a U-Net model on 

the Potsdam ISPRS dataset, both with and without changes to the dataset's spectral bands. 

This allowed us to determine the importance of spectral information when training remote 

sensing data in deep learning models and establish baseline hyperparameters. 
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The second experiment assessed the effectiveness of the U-Net in land cover mapping at 

different scales. Experiment 3 involved transfer learning by using pre-trained models from 

the second experiment to classify NAIP images at different scales. In the fourth experiment, 

the models were fine-tuned using a limited NAIP dataset with labels and then applied to 

classify the rest of the NAIP data. Figure 3.4 represents the workflow of experiment 1-4. 

Evaluation 1 compared the performance of the proposed cross-scale transfer learning 

framework with that of two commonly used remote sensing classification methods, OBIA 

and ML. Finally, evaluation experiments were conducted to assess the robustness and 

feasibility of the framework. In Evaluation 2, we further explored the effectiveness of our 

proposed framework by evaluating its performance over time and in different geographic 

areas. To achieve this, we downloaded remote sensing data from the same study area but in 

two different years and different study areas but in the same year. The purpose of this 

evaluation was to assess the robustness of the framework for detecting land cover changes 

over time and to investigate its feasibility for use in areas with varying land cover 

characteristics.  
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Figure 3.5 Flowchart of the cross-scale framework 
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3.2.6 Experiment Setup 

I used randomly selected tiles as our training datasets. The original image has a 5-cm spatial 

resolution. The patch size is 128x128. 90% of the tiles were used for training, and 10% were 

used for testing. In the training process, 85% of the dataset was used for training, and the 

remaining 15% was used for validation. Then, 300 epochs with 8 batches per epoch were 

applied, and the learning rate was set at 0.0001 for all training models. All other processing 

and analyses were carried out using open-source modules and, including GDAL, NumPy, 

Pandas, OpenCV, Scikit-learn, among others. The deep learning network experimentation 

and modeling were executed on the Google co-lab platform. The evaluation metrics are dice 

coefficient (DSC) and overall accuracy (OA). 

3.3 Results 

3.3.1 Experiment 1  

Table 3.1. shows the basic hyperparameters of the first-step model. This experiment aimed to 

train a baseline model to find the best hyperparameters. And the hyperparameters won't be 

changed in the following model training experiments. Batch size defines the number of 

samples we use in one epoch to train a neural network. Batch size controls the accuracy of 

the estimate of the error gradient when training neural networks (Schmeiser, 1982). It is 64 in 

the trained model. Learning rate is a hyper-parameter that controls the weights of our neural 

network with respect to the loss gradient. It defines how quickly the neural network updates 

the concepts it has learned (Smith et al., 2017). The learning rate is 0.00004. An optimizer is 

a function or an algorithm that modifies the attributes of the neural network, such as weights 

and learning rate. Thus, it helps in reducing the overall loss and improve the accuracy 

(Cochocki & Unbehauen, 1993). Adam optimizer was applied while training the U-net. Data 
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augmentation is a technique of artificially increasing the training set by creating modified 

copies of a dataset using existing data. I applied vertical and horizontal flip (V/H flip), 

brightness and contrast adjustment, and grid distortion to increase the number of tiles in the 

training dataset U-net was trained with randomly cropped patches of size 128 × 128. The 

spatial resolution of all images is 5 cm. For the trained baseline U-net model, the OA value is 

0.7910. 

Table 3.1 Model parameters and metric scores of 5-cm U-net model 

Batch size 64 

Learning rate 1.00E-04 

Optimizer Adam 

Data 

Augmentation 

V/H flip 

BrightnessContrast 

GridDistortion 

Patch size 128×128 

Resolution (cm) 5 

Training DSC 0.8972 

Validation DSC 0.8253 

OA 0.7910 

 

Table 3.2-3.4 presents the comparative performance evaluation of U-net models using 

different band combinations as input for land cover classification. Models that included the 

infrared (IR) band achieved better results in classifying Low vegetation and Tree. In fact, all 

the metric scores of Low vegetation and Tree in the RGIR model and RGBIR model are 

higher than those of the RGB model. These findings confirm the assumption that the 

accuracy of vegetation class should be higher in the model with the input of the IR band 

since vegetation is more sensitive to the IR band. Conversely, the RGB model performed 
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better in the building class with the highest recall and dice scores of 0.9176 and 0.8502, 

respectively. The highest OA value was achieved by the RGBIR model with a value of 

0.7910. The results imply that remote sensing images with more bands can provide more 

information, which is reasonable. Therefore, the RGBIR model was used as the baseline 

model for the subsequent experiments. It is worth mentioning that this study's findings 

underscore the importance of band selection in U-net models for land cover classification. 

Table 3.2 Accuracy metric scores of each class (RGIR model) 

 

 

Table 3.3 Accuracy metric scores of each class (RGB model) 

Class Precision Recall Dice 

Impervious surface  0.8439 0.7419 0.7896 

Building 0.7919 0.9176 0.8502 

Low vegetation 0.6431 0.8045 0.7148 

Tree 0.7498 0.7635 0.7566 

OA 0.7750 

 

Class Precision Recall Dice 

Impervious surface 0.8377 0.7494 0.7911 

Building 0.7987 0.9016 0.8470 

Low vegetation 0.6486 0.8289 0.7278 

Tree 0.7754 0.7730 0.7742 

OA 0.7791 
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Table 3.4 Accuracy metric scores of each class (RGBIR model) 

Class Precision Recall Dice 

Impervious surface  0.7956 0.7414 0.7675 

Building 0.7907 0.9105 0.8464 

Low vegetation 0.6651 0.8044 0.7282 

Tree 0.7627 0.7938 0.7779 

OA 0.7910 

 

3.3.2 Experiment 2 

Table 3.5 exhibits the relative parameters and results of U-net models implemented at various 

scales. ISPRS resolution refers to the spatial resolution of the image input. In training a 

neural network, stride refers to the number of pixels the filter (kernel) is shifted across the 

input volume or image when performing a convolution operation. The stride determines how 

much overlap exists between neighboring receptive fields. The stride can affect the output 

size of a layer and the computational efficiency of the network. A larger stride reduces the 

spatial size of the output volume and thus may lead to a faster computation, but it may also 

result in a loss of information due to reduced overlap between receptive fields. Training size, 

test size, and validation size refer to the number of patches used for training, test, and 

validation, respectively. DSC stands for Dice Similarity Coefficient. It is a widely used 

evaluation metric that measures the overlap between the predicted segmentation mask and 

the ground truth segmentation mask. The DSC ranges between 0 and 1, where 0 indicates no 

overlap between the predicted and ground truth masks, and 1 indicates a perfect match. 

During training, the DSC loss is computed for each image in the training set, and the 

gradients of the loss with respect to the model parameters are computed and used to update 

the parameters using an optimization algorithm such as stochastic gradient descent (SGD) or 
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Adam. By iteratively adjusting the parameters to minimize the DSC loss, the model learns to 

produce more accurate segmentation masks. OA refers to the overall accuracy to evaluate the 

overall performance of the model. 

As expounded in Chapter 2, the effectiveness of U-net varied with scale. The study 

conducted in Chapter 2 showed that the U-net performed optimally on a 32-cm model with 

the original spatial resolution of 8 cm. In this section, I resampled the ISPRS Potsdam dataset 

across a broader range at 7 distinct scales, ranging from 5cm to 15cm, 25cm, 30cm, 50cm, 

70cm, and 100cm, respectively. As the spatial resolutions of images decreased, the pixel size 

increased. To maintain a patch size of 128x128, I adjusted the stride size to ensure sufficient 

image tiles for training. Table 3.5 presents the results not only at various scales but also with 

distinct stride and training image patch numbers. The 15-cm model achieved the highest OA 

value, with an overall accuracy of 0.7947, which is 0.037 higher than the baseline model (5-

cm model). Additionally, the 70-cm model also demonstrated a relatively good score, with an 

OA value of 0.7917. These models will be utilized for classifying NAIP images in 

experiment 4 and fine-tuning NAIP images in experiment 5. 
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Table 3.5 Model parameters and metric scores of models at different scales in experiment 3 

ISPRS 

Resolution 

(cm) 

Stride 
Training 

size 
Test size 

Validation 

size 
Train DSC 

Validation 

DSC 
OA 

5 72 165336 17672 13254 0.8972 0.8253 0.7910 

15 36 67416 2048 1536 0.9072 0.8230 0.7908 

15 16 334176 2048 1536 0.9338 0.8218 0.7947 

25 36 23064 800 600 0.9012 0.8068 0.7770 

30 16 75264 512 384 0.9591 0.8038 0.7878 

50 16 23064 200 150 0.9154 0.7685 0.7544 

50 8 86400 200 150 0.9393 0.7727 0.7645 

70 16 9600 128 96 0.9054 0.7525 0.7896 

70 8 36504 128 96 0.9272 0.7561 0.7917 

100 16 3456 72 54 0.7765 0.6634 0.6512 

100 8 12696 72 54 0.8874 0.6988 0.7139 

100 4 46464 72 54 0.9247 0.7104 0.7216 

 

3.3.3 Experiment 3 

Table 3.6 shows the results of experiment 3. Except for training the original 100-cm NAIP 

data, NAIP images were resampled from 100 cm to 50cm, 70cm as the data input, 

respectively. In table 3.6, the first column refers to the spatial resolution of the image that 

used in the pre-trained model from Experiment 2. The OA values presented in the last three 

columns correspond to the results obtained from applying the pre-trained models to the NAIP 

data at different resolutions without finetuning. 

The results are not good. No model achieved an OA value better than 0.7. Even the best 

metric score is only 0.6366, achieved from the 5-cm U-net model with 50-cm NAIP input 

data. The lowest OA value is only 0.3824, achieved from the 50-cm U-net model with 70-cm 

NAIP input data. These results indicate that the pre-trained model, which was trained on a 

different dataset, does not fully capture the relevant features of the target dataset, leading to 
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reduced performance. This phenomenon, known as "dataset shift," can occur when the data 

distribution of the target dataset is significantly different from that of the original dataset. To 

overcome this issue, fine-tuning the pre-trained model on the target dataset can enable the 

model to adapt to the new data distribution, capture the relevant features, and improve the 

model's performance and generalization ability. Therefore, fine-tuning the pre-trained model 

on the target dataset is a crucial step in achieving better segmentation results. 

Table 3.6 Model parameters and metric scores of models at different scales in experiment 4 

ISPRS Spatial Resolution 

(cm) 
Stride 

OA on NAIP 

100cm 
OA on NAIP 70cm OA on NAIP 50cm 

5 72 0.5872 0.5879 0.6366 

15 36 0.6272 0.5877 0.6484 

15 16 0.5798 0.5631 0.6286 

25 36 0.4578 0.4739 0.5214 

30 16 0.4216 0.3886 0.4096 

30 36 0.5547 0.5365 0.5992 

50 8 0.3821 0.3942 0.4140 

50 16 0.5352 0.5174 0.5767 

70 8 0.3869 0.4021 0.4465 

70 16 0.5378 0.4961 0.5246 

100 8 0.5587 0.4972 0.5424 

100 4 0.5032 0.4798 0.5382 

 

3.3.4 Experiment 4 

Table 3.7 shows the results of experiment 4. The experiment utilized the trained U-net 

models at different scales as pre-trained models and applied the NAIP data with different 

spatial resolutions to fine-tuning the models, respectively. The first column in Table 3.7 

refers to the spatial resolution of the image that used in the pre-trained model from 

Experiment 2. The last three columns refer to the OA values of the finetuned models using 
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the NAIP data. The table includes six different ISPRS resolutions, ranging from 5 to 100 cm, 

three different NAIP resolutions ranging from 50 cm to 100 cm and different strides, ranging 

from 8 to 72. 

Results indicate that the best OA value is 0.8245 while using the 15-cm trained U-net as a 

pre-trained model and 50-cm NAIP data fine-tuned. Compared with the above experiments, 

the best OA value is 0.79 while training the ISPRS dataset. However, in experiment 5, seven 

models achieved OA values higher than 0.80 and all models achieved OA values higher than 

0.7. Interestingly, the table also shows that the performance of the models varies depending 

on the spatial resolution of the NAIP data. For example, some models achieved high OA 

values on NAIP data at one spatial resolution but not on another. This suggests that the 

spatial resolution of the input data is an important factor in the performance of the model. 

Overall, these results suggest that the best model framework was achieved by pre-training 

with the 15-cm ISPRS dataset and fine-tuning with 50-cm NAIP data. This is the framework 

that I used in Experiment 5 and following evaluations.  
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Table 3.7 Model parameters and metric scores of models at different scales in experiment 5 

ISPRS resolution (cm) Stride 
OA On NAIP 

100cm 

OA on NAIP 

70cm 

OA on NAIP 

50cm 

5 72 0.7431 0.7007 0.7327 

15 36 0.8133 0.7961 0.8245 

15 16 0.6926 0.7864 0.8213 

25 36 0.7898 0.7502 0.7639 

30 16 0.809 0.7899 0.8155 

30 36 0.7017 0.7802 0.8147 

50 8 0.7902 0.775 0.8019 

50 16 0.712 0.7654 0.8001 

70 8 0.7373 0.6969 0.7302 

70 16 0.6724 0.7077 0.7324 

100 8 0.7627 0.7357 0.7457 

 

3.3.5 Evaluation 1 

To further explore the effectiveness of the land cover classification framework proposed in 

this study, additional data in the same area but from a different year were downloaded and 

analyzed. Specifically, NAIP data for the year 2019 in Phoenix were obtained. Unlike the 

previous analysis, no labels were available for this dataset, so the best model achieved in the 

previous steps was used to classify the data. The spatial resolution of the NAIP data was 

resampled from 100 cm to 50 cm, and the resampled dataset was used as input into the best 

model. A selected area of the prediction results was examined to evaluate the accuracy and 

reliability of the classification framework for the 2019 dataset. 

To provide a comparison of the classification framework's performance, the results were 

compared with two commonly used remote sensing classification methods, object-based 
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image analysis (OBIA) and maximum likelihood (ML). Both OBIA and ML methods require 

extensive manual labor to achieve accurate and reliable results. The comparison provides 

insights into the efficiency and effectiveness of the classification framework in relation to 

other widely-used classification methods.  

Figure 3.6 presents the predicted land cover maps using the cross-scale framework proposed 

in this study, as well as two commonly used remote sensing classification methods, OBIA 

and ML. Figure 3.6 (b) shows the predicted map from the cross-scale framework, while 

Figure 3.6 (c) and (d) show the predicted maps from OBIA and ML, respectively. From the 

maps, it is clear that the segmentation of land cover features is evident. The cross-scale 

framework was able to classify more impervious surface and better recognized open land 

areas as impervious surfaces, which is important for urban land management and planning. 

ML, on the other hand, struggled to delineate building boundaries, resulting in irregularly-

shaped buildings in Figure 3.6 (d). OBIA also had some classification errors, wrongly 

classifying some roads as buildings and some low vegetation as trees, which can be 

problematic for urban planning and management. 
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Figure 3.6 Comparisons of land cover classification performance between TL-Multiscale-U-

net, OBIA and ML (a) NAIP data of the selected area in Phoenix in 2019, (b) Prediction 

result using the proposed framework (TL-Mutiscale-U-net) in this study, (c) Prediction result 

using OBIA method, (d) Prediction result using ML method. 
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Figure 3.7 Comparisons of land cover classification performance between TL-Multiscale-U-

net, OBIA and ML detailed in a selected neighborhood (a) NAIP data of the selected area in 

Phoenix in 2019, (b) Prediction result using the proposed framework (TL-Mutiscale-U-net) 

in this study, (c) Prediction result using OBIA method, (d) Prediction result using ML 

method. 
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Table 3.8 Confusion matrix and metric scores of different models 

   True Class 

 Predicted 

Class 

Impervio

us 

Surface 

Building 
Low 

Vegetation 
Tree Accuracy 

Precisio

n 
Recall F1 

OBIA 

OA: 71.7% 

Impervious 

Surface 
362 45 8 8 0.748 0.86 0.65 0.74 

Building 161 211 5 7 0.774 0.55 0.8 0.65 

Low 

Vegetation 
16 5 51 2 0.955 0.69 0.7 0.69 

Tree 14 3 9 93 0.957 0.78 0.85 0.81 

ML 

OA: 72.8% 

Impervious 

Surface 
379 34 7 4 0.781 0.89 0.69 0.78 

Building 156 225 1 1 0.803 0.59 0.85 0.7 

Low 

Vegetation 
2 0 45 26 0.944 0.62 0.62 0.62 

Tree 16 5 20 79 0.928 0.66 0.72 0.69 

Cross-

scale 

framework 

OA: 85% 

Impervious 

Surface 
506 37 9 17 0.89 0.89 0.92 0.9 

Building 39 217 2 18 0.894 0.79 0.82 0.8 

Low 

Vegetation 
3 1 58 6 0.975 0.85 0.79 0.82 

Tree 5 9 4 69 0.941 0.79 0.63 0.7 

 

Table 3.8 is the confusion matrix that shows the classification results for four land cover 

classes (Impervious Surface, Building, Low Vegetation, and Tree) using three different 

classification methods (OBIA, ML, and the cross-scale framework). The table includes 

various performance measures, including overall accuracy, precision, recall, and F1 score. 

The overall accuracy measures the proportion of correctly classified samples over the total 

number of samples. In this case, the cross-scale framework achieved the highest overall 

accuracy (85%), indicating that it had the best overall performance among the three methods. 

The cross-scale framework outperforms the other two methods, OBIA and ML, in terms of 

overall accuracy (OA) for all classes except for the "Building" class. For the "Impervious 

Surface" class, The cross-scale framework achieved an OA of 89%, which is higher than the 
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OBIAs 75% and ML's 78%. Similarly, for the "Low Vegetation" class, the cross-scale 

framwork achieved an OA of 97.5%, which is significantly higher than OBIA's 95.5% and 

ML's 94.4%. For the "Tree" class, the proposed method achieved an OA of 94.1%, which is 

higher than OBIA's 95.7% but lower than ML's 92.8%. For the "Building" class, ML 

achieved the highest OA (80.3%), followed by The cross-scale framework (89.4%) and 

OBIA (77.4%). Additionally, looking at the precision, recall, and F1 score measures for each 

class, we can see that the cross-scale framework generally outperforms the other two 

methods. For example, for the "Impervious Surface" class, the cross-scale framework 

achieved a precision of 0.89, recall of 0.92, and F1 score of 0.9, which are higher than 

OBIA's precision of 0.86, recall of 0.65, and F1 score of 0.74, and ML's precision of 0.89, 

recall of 0.69, and F1 score of 0.78. 

Overall, the results suggest that the cross-scale framework method that you proposed 

outperforms the other two methods, especially for classes such as "Impervious Surface" and 

"Low Vegetation." These findings highlight the effectiveness of your proposed method and 

demonstrate its potential for accurately classifying land cover using remote sensing data. 

3.3.6 Evaluation 2 

To further explore the effectiveness of the classification framework proposed in this study, 

additional data in the same area but from different years were downloaded and analyzed. 

Data in the study area were obtained for the years 2013 and 2019 (Figure 3.8 (a) and 3.88 

(a)). The spatial resolution of the NAIP data was resampled to 50 cm, and the best model 

achieved in the previous steps was applied to the resampled data. This approach enabled the 

evaluation of the classification framework's performance on different datasets and over time. 

By using the best model trained on the original dataset, we can compare the performance of 
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the classification framework on new data with different characteristics. The results of the 

classification were analyzed to determine whether the framework can achieve high accuracy 

and provide reliable land cover classification for different years in the same area. The use of 

additional data provides a more comprehensive evaluation of the framework's effectiveness 

and improves its applicability for different time periods. 

 

Figure 3.8 Land cover classification results of Phoenix in 2013: (a) NAIP data in Phoenix. 

(b) Corresponding predicted land cover map to (a). (c) NAIP data of a subset area. (d) 

Corresponding predicted land cover map to (c).   

Since ground truth data for the 2013 and 2019 datasets were not available, a sample of 1000 

points within the study area was randomly selected, and each point was manually labeled to 

create a ground truth dataset. This approach ensured that the accuracy of the classification 

framework could be evaluated using a reliable and representative ground truth dataset. Once 

the ground truth data were established, the confusion matrix was calculated to assess the 

classification framework's performance on the 2013 and 2019 datasets. The confusion matrix 

provided detailed information about the classification performance for each land cover class 
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and helped identify areas for improvement in the classification framework. The use of 

manual labeling to create the ground truth dataset ensured the accuracy of the evaluation and 

allowed for a more reliable comparison between the different datasets. 

 

Figure 3.9 Land cover classification results of Phoenix in 2019: (a) NAIP data in Phoenix. 

(b) Corresponding predicted land cover map to (a). (c) NAIP data of a subset area. (d) 

Corresponding predicted land cover map to (c). 

Table 3.9 is a confusion matrix that shows the classification results for four land cover 

classes (Impervious Surface, Building, Low Vegetation, and Tree) for two different years 

(2013 and 2019). The table includes various performance measures, including overall 

accuracy, precision, recall, and F1 score. 

The overall accuracy of the classification model improved from 71.3% in 2013 to 85% in 

2019, indicating an improvement in the classification performance over time. The 

"Impervious Surface" and "Low Vegetation" classes were well classified in both years, with 

high accuracy and precision values. However, the "Building" class was more difficult to 

classify in both years, with relatively low precision and F1 score values. The "Tree" class 
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was classified relatively well in both years, with high precision and recall values, although 

the precision was lower in 2019. Overall, the confusion matrix provides insights into the 

strengths and weaknesses of the classification model and can guide the selection of the most 

appropriate method for land cover classification. 

Table 3.9 Confusion matrix and metric scores in different years 

 True Class 

 Predicted 

Class 

Impervious 

Surface 
Building 

Low 

Vegetation 
Tree Accuracy 

Precisio

n 
Recall F1 

2013 

OA:71.3% 

Impervious 

Surface 
410 81 50 3 0.767 0.75 0.81 0.78 

Building 82 149 16 5 0.806 0.59 0.62 0.61 

Low 

Vegetation 
11 5 109 11 0.895 0.8 0.58 0.67 

Tree 6 5 12 45 0.958 0.66 0.7 0.68 

2019 

OA: 85% 

Impervious 

Surface 
506 37 9 17 0.89 0.89 0.92 0.9 

Building 39 217 2 18 0.894 0.79 0.82 0.8 

Low 

Vegetation 
3 1 58 6 0.975 0.85 0.79 0.82 

Tree 5 9 4 69 0.941 0.79 0.63 0.7 

 

To test the robustness in a different city, I chose the city of Las Vegas in the same year, 2015. 

Las Vegas is also a city on the floor of the Mojave Desert. It has a similar landscape and 

climate environment to Phoenix. Figure 3.10 shows the orthophoto and corresponding 

prediction results.  
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Figure 3.10 Land cover classification result of Las Vegas in 2015. (a) NAIP data in Las 

Vegas and corresponding classification result (b) 

Table 3.10 is a confusion matrix shows the classification results for four land cover classes 

(Impervious Surface, Building, Low Vegetation, and Tree) in Las Vegas. The overall 

accuracy (OA) of the classification model is moderate at 75.92%. The "Low Vegetation" 

class was well classified with high accuracy, precision, and recall values, indicating that the 

classification model performed well for this class. The "Building" class has the lowest recall 

value, indicating that some of the building pixels were misclassified as other classes. The 

"Impervious Surface" and "Tree" classes were classified relatively well, with precision, 

recall, and F1 score values ranging from moderate to high. The confusion matrix provides 

insights into the strengths and weaknesses of the classification model and can guide the 

selection of the most appropriate method for land cover classification in Las Vegas. 
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Table 3.10 Confusion matrix and metric scores in Las Vegas 

 

 True Class 

Predicted 

Class 

Impervious 

Surface 
Building 

Low 

Vegetation 
Tree Accuracy 

Precisio

n 
Recall F1 

Las Vegas 

OA:75.92% 

Impervious 

Surface 
0 1 2 3 0.8182 0.81 0.85 0.83 

Building 442 60 21 25 0.8362 0.71 0.74 0.73 

Low 

Vegetation 
56 219 8 24 0.9471 0.72 0.5 0.59 

Tree 6 6 38 2 0.9171 0.66 0.54 0.6 

 

3.4 Discussion 

3.4.1 Model Performance 

The emergence of deep learning has provided a new approach to remote sensing image 

classification, particularly in the context of urban land cover mapping. This study introduced 

the concept of deep learning and transfer learning to remote sensing image classification and 

evaluated the effectiveness of the U-Net model in land cover mapping at different scales. 

The first experiment explored the importance of spectral information when training remote 

sensing data in deep learning models. It showed that the inclusion of the infrared band in the 

model's input led to better classification results for low vegetation and trees, which are more 

sensitive to the infrared band. Conversely, the RGB model performed better in classifying 

buildings. This experiment highlighted the importance of band selection in U-Net models for 

accurate land cover classification. 

The second experiment evaluated the effectiveness of the U-Net model in land cover 

mapping at different scales. The study found that the U-Net model performed optimally on a 

32-cm model with the original spatial resolution of 8 cm. However, when the ISPRS Potsdam 

dataset was resampled across a broader range of seven scales, ranging from 5cm to 100cm, 
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the 15-cm model achieved the highest overall accuracy, with an overall accuracy of 0.7947. 

This experiment suggested that spatial resolution plays a critical role in the performance of 

the model. 

The third experiment involved transfer learning by using pre-trained models from the second 

experiment to classify NAIP images at different scales. However, the pre-trained models did 

not capture the relevant features of the target dataset, leading to reduced performance. This 

phenomenon, known as "dataset shift," can occur when the data distribution of the target 

dataset is significantly different from that of the original dataset. 

To overcome this issue, the fourth experiment fine-tuned the pre-trained models on a limited 

NAIP dataset with labels and then applied them to classify the rest of the NAIP data. The 

study found that the best model framework was achieved by pre-training with the 15-cm 

ISPRS dataset and fine-tuning with 50-cm NAIP data. This framework achieved an overall 

accuracy of 0.8245, which is higher than the accuracy achieved by training the ISPRS dataset 

and the accuracy achieved by using commonly used remote sensing classification methods. 

In recent years, there have been several studies on deep learning-based land cover 

classification using remote sensing data. Wang et al. (2020) proposed a deep learning-based 

approach for land use classification from remote sensing imagery using a stacked 

autoencoder neural network. The authors used the deep neural network to extract high-level 

features from the remote sensing images and classify them into different land use categories. 

The results showed that the proposed method achieved an overall accuracy of 77.3%. Wang 

et al. (2019) used a transfer learning-based framework to classify urban land cover features in 

high-resolution remote sensing images. The authors used a pre-trained CNN on a large-scale 

dataset and fine-tuned it on a smaller dataset of high-resolution images. The results showed 
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that the proposed method achieved an overall accuracy of 79.67%. Another study by Li et al. 

(2019) used a deep learning-based approach to classify land cover features in remote sensing 

images of urban areas. The authors used a modified U-Net architecture and transfer learning 

to fine-tune the model on a small-scale dataset of high-resolution images. The results showed 

that the proposed method achieved an overall accuracy of 76.89%.  

Overall, these experiments demonstrated that the U-Net model can effectively classify land 

cover features in urban areas, particularly when fine-tuned using transfer learning. 

Additionally, spatial resolution and band selection play critical roles in the performance of 

the model. The findings of experiment four suggest that pre-training with a high-resolution 

dataset and fine-tuning with lower resolution data can improve the model's performance and 

generalization ability. These findings have practical implications for the development of 

accurate and efficient land cover classification models for urban areas. 

3.4.2 Potential applications on different data 

Evaluation 1 focused on testing the proposed land cover classification framework on 

additional data from a different year and comparing its performance with two commonly 

used remote sensing classification methods, object-based image analysis (OBIA) and 

maximum likelihood (ML). The results showed that the proposed framework outperformed 

the traditional methods in terms of overall accuracy, precision, recall, and F1 score for most 

land cover classes. Moreover, the framework was able to identify impervious surfaces more 

accurately, which is crucial for urban land management and planning. This evaluation 

highlights the effectiveness and efficiency of the proposed framework in dealing with 

complex urban landscapes, making it a promising approach for future land cover 

classification studies. 
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Evaluation 2 aimed to evaluate the framework's performance on different datasets and over 

time by analyzing data from two different years in the same area. The results showed an 

improvement in the framework's overall accuracy from 71.3% in 2013 to 85% in 2019, 

indicating that the proposed framework can be applied to different datasets and provide 

reliable land cover classification for different years in the same area. This evaluation also 

tested the framework's robustness by applying it to a different city, Las Vegas, and achieved 

moderate overall accuracy. This evaluation highlights the potential of the proposed 

framework in dealing with different datasets and landscapes and its adaptability to different 

cities and regions. 

Overall, the two evaluations highlight the feasibility and potential of the proposed land cover 

classification framework in future applications. The framework demonstrated its 

effectiveness in dealing with complex urban landscapes, outperforming traditional remote 

sensing classification methods and achieving high accuracy, precision, recall, and F1 score 

for most land cover classes. Moreover, the framework showed its adaptability to different 

datasets, landscapes, and cities, making it a promising approach for future land cover 

classification studies. The proposed framework can be useful for urban land management and 

planning, environmental monitoring, and disaster management, among other applications, 

providing a reliable and efficient method for land cover classification. 

3.4.3 Limitations  

Although the proposed classification framework achieved high accuracy in this study, there 

are several limitations that need to be addressed in future research. Firstly, the limited sample 

size of the dataset used for training and testing may limit the generalizability of the results. 

Therefore, using more diverse datasets from different regions can increase the robustness and 
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generalizability of the classification framework. Additionally, manual labeling was required 

to create the ground truth datasets for the evaluation, which can be time-consuming and 

costly. Future studies could explore the use of semi-supervised or unsupervised learning 

methods to reduce the reliance on manually labeled data. Moreover, the study focused on 

four land cover classes commonly used in urban land cover classification. However, future 

studies could explore more complex land cover classes, such as different types of buildings, 

roads, and water bodies, to provide more detailed information for urban planning and 

management. Furthermore, the integration of other data sources, such as socioeconomic and 

demographic data, could provide a more comprehensive understanding of the urban 

environment. Finally, although the proposed classification framework achieved high 

accuracy, there is still room for improvement. Future studies could explore the use of more 

advanced deep learning architectures, such as attention-based models or graph convolutional 

networks, to further improve the performance of the classification framework. Addressing 

these limitations and exploring these future directions can enhance the feasibility and 

applicability of the proposed framework in urban land cover classification and management. 

Overall, the proposed classification framework has the potential to be applied in various 

urban land cover classification tasks, including urban planning, environmental management, 

and disaster response. By addressing the limitations and exploring the future directions, the 

classification framework can become more robust and effective in these applications. 

3.5 Conclusions  

In conclusion, this study proposed a deep learning-based framework for land cover 

classification in urban areas using transfer learning and multi-scale segmentation. The results 

demonstrated that the proposed framework achieved high accuracy in classifying impervious 
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surface, building, low vegetation, and tree classes, with an overall accuracy of 82.45%. 

Evaluation of the framework's effectiveness on different datasets and over time showed that 

it can provide reliable and accurate land cover classification for different years in the same 

area. Comparison with other widely used classification methods, such as object-based image 

analysis (OBIA) and maximum likelihood (ML), showed that the proposed framework 

outperforms these methods in terms of overall accuracy, precision, recall, and F1 score. 

However, there are still some limitations to this study. The limited sample size and manual 

labeling required for evaluation may limit the generalizability and increase the cost of future 

applications. Future studies could explore the use of more diverse datasets from different 

regions and the integration of other data sources, such as socioeconomic and demographic 

data, to provide a more comprehensive understanding of the urban environment. 

Additionally, future studies could also explore more complex land cover classes and 

advanced deep learning architectures to further improve the performance of the classification 

framework. 

Overall, the proposed framework provides an effective and efficient approach for land cover 

classification in urban areas using remote sensing data. The findings of this study have 

important implications for urban planning and management, providing valuable information 

for decision-making processes. The proposed framework has the potential to be applied in 

other urban areas and can contribute to the development of more accurate and comprehensive 

urban land cover maps, which can inform policy-making and planning for sustainable urban 

development. 
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Chapter 4 Socio-economic determinants of urban forest structure in a 

desert city: Spatial modeling using multiscale geographically weighted 

regression (MGWR) 

Abstract 

Urban forests provide crucial benefits to people and urban landscapes. This research 

investigates the influence of stem density and socio-economic indicators on urban forest 

structure in Phoenix, Arizona, using advanced statistical models. The study finds that 

minority and low-income populations have limited access to natural amenities, indicating a 

disproportionate distribution of trees in low-income neighborhoods or those with people of 

color. However, communities with more trees and shrubs show better educational 

performance, emphasizing urban forests' positive impacts on public health, well-being, and 

education. Considering both urban tree canopy and stem density, the research offers a 

comprehensive understanding of factors affecting urban forest distribution and highlights the 

need to address socio-economic disparities. Targeted and localized approaches to urban 

forest management are essential for promoting equitable access to green spaces and 

enhancing public health and well-being in diverse metropolitan areas like Phoenix. This 

chapter employs remote sensing and advanced spatial statistical modeling, revealing the 

importance of understanding interactions between urban forest characteristics and socio-

economic factors at different spatial scales. The research findings can inform urban planners, 

policymakers, and community leaders in developing strategies to promote equitable access to 

urban forests and green spaces, ultimately improving overall quality of life and well-being in 

metropolitan areas.  
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Keywords: Urban forest; Socio-economic factors; Multiscale Geographically Weighted 

Regression (MGWR) 

4.1 Introduction 

Urban forests, including urban parks, gardens, street trees, and greenways (Urban Forests | 

US Forest Service, n.d.), constitute an important part of the urban landscape. Urban forests 

provide vital ecosystem services that bring a wide range of benefits to human and the urban 

environment. They help improve air quality, conserve energy, reduce carbon emissions, and 

mitigate the urban heat island effect (Baró et al., 2014; Clark et al., 1997; Escobedo et al., 

2010; McDonald, 2009; McPherson, 1994). Furthermore, urban forests strengthen social 

cohesion and add economic values to urban communities (McDonald 2009; Song et al. 

2018).  

The spatial distribution of urban forests is found to be associated with the socio-economic 

status of urban residents. Socio-economic factors like income, education, and population 

density are key determinants of urban forest distribution. They are also important factors to 

consider in urban forest maintenance and management. (Wilkerson et al., 2018).  

Existing literature have highlighted key linkages between urban forest and the socio-

economic status of residents. Socio-economic indicators can affect the quality and quantity of 

nature in urban environment (Shanahan et al., 2015). For example, residents with higher 

socio-economic status are found to live in neighborhoods with higher plant diversity. The 

same group of residents tends to live in areas with more local parks with natural remnant 

ecosystems (Shanahan et al., 2015). Peterson et al. (2008) pointed out that residents who live 

in neighborhoods with more green space were older, better educated, and more 

environmentally conscious than those who live in less vegetated areas (Peterson et al., 2008). 
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A number of studies has identified a positive relationship between urban tree canopy cover 

and income  (Fan et al., 2019a; Iverson & Cook, 2000; Lowry et al., 2012). Residents’ 

income and awareness of green space’s benefits may affect the amount of green space they 

maintain within their yards (Wilkerson et al., 2018). Further, ethnicity was found to be 

associated with the pattern of urban forest distribution. Martin et al. (2004) noted that the 

percentage of Hispanic/Latino residents was positively related to the abundance of Oleander 

– an evergreen plant in Phoenix, AZ (Martin et al., 2004). Schwarz et al. (2015) identified 

low tree canopy cover in communities with a high concentration of racial and ethnic 

minorities in Sacramento and Los Angeles, California (Schwarz et al., 2015). Troy et al. 

(2007) discovered a positive correlation between the percentage of African-American 

households and percentage of tree canopy cover in Baltimore, MD (Troy et al., 2007). 

Tree canopy cover is widely investigated among urban forest studies (Danford et al. 2014; 

Locke et al. 2013; Schwarz et al. 2015; Z. Wang, Fan, and Xian 2021). Tree canopy cover is 

defined as the ground area covered by the layer of tree leaves, branches, and stems (Grove et 

al., 2006). Stem density is another important attribute of forest structure. Defined as the 

number of trees in a unit area (Johnson et al., 2019), stem density is frequently used to assess 

spatiotemporal patterns of tree mortality and forest succession dynamics (Fatehi et al., 2017). 

A combined use of tree canopy cover and stem density can provide informative guidance for 

forest management and decision-making (Crowther et al., 2015).  

A number of tools has been recently developed to quantify urban forest characteristics. The i-

Tree, for instance, is a collection of tools for urban forest analysis and benefits assessment 

(Tools | I-Tree, n.d.).  Remote sensing techniques allow the estimation of tree cover and 

density at varying spatial and temporal scales. The high-resolution commercial satellites, 
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such as the QuickBird and IKONOS, provide capability to capture vegetation information at 

a spatial resolution of 2 meters to 10 meters (C. Li et al., 2010).  The National Agriculture 

Imagery Program (NAIP) provides freely accessible aerial photos across the US with a one- 

meter spatial resolution, which can be effectively used to produce fine-scale vegetation 

products (X. Li et al., 2014; Loughner et al., 2012; Moskal et al., 2011). Furthermore, active 

sensors such as synthetic aperture radar (SAR) and light detection and ranging (LiDAR) are 

widely used to estimate tree height and delineate boundaries of individual tree crowns 

(Alonzo et al., 2016; Lim et al., 2003; MacFaden et al., 2012). 

Previous studies focused on using correlation analysis and global regression models (such as 

the ordinary least squares (OLS)) to understand the relationships between urban forest 

characteristics and socio-economic factors (Chan & Hopkins, 2017; Nesbitt et al., 2017; 

Schwarz et al., 2015; Sorrensen et al., 2015; H.-F. Wang et al., 2016). Grove et al. (2014) 

found a positive correlation between the urban tree canopy and housing household density in 

New York City (Grove, Locke, and O’Neil-Dunne 2014). However, Fan et al. (2019) and 

Iverson and Cook (2000) both reported a negative association in Chicago (Fan et al., 2019a; 

Iverson & Cook, 2000). Moreover, Sorrensen et al. indicated that the home age was 

positively associated with urban tree cover in Lubbock, Texas (Sorrensen et al., 2015). But 

Conway and Hackworth found an opposite association in Toronto, Canada (Conway & 

Hackworth, 2007). The physical benefits of urban forests are more regional (Nelson et al., 

2021). It is recognized that the relationship between urban forest attributes and socio-

economic determinants is not constant and tends to vary widely over space.  

In order to better understand and analyze these spatially varying relationships, researchers 

have developed specialized techniques. The geographically weighted regression (GWR) was 
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developed to allow the relationship to vary spatially. For each location, the GWR  determines 

an optimal spatial scale at which the relationship operates (Fotheringham et al., 2017). The 

spatial scale is fixed for all processes in a classical GWR model. This assumption was further 

relaxed in a later variant of the GWR, named the multi-scale geographically weighted 

regression (MGWR). In the MGWR, the spatial relationship between the response and any 

covariate can vary locally, regionally, or not vary at all (Oshan et al., 2019). Through 

eliminating the constraint that all relationships operate at the same spatial scale, the MGWR 

reduces the potential issues of over-fitting, bias in parameter estimations, and concurvity 

(Oshan et al., 2019).  

The goal of this paper is to understand the spatial pattern of urban forest in a desert city and 

explore how the pattern relates to socio-economic factors at varying spatial scales. Coupling 

remote sensing and advanced spatial statistical modeling, this study aims to: (1) explore 

urban forest patterns and socio-economic inequity in a desert city, Phoenix, Arizona; (2) 

understand the relationships between urban forest characteristics and socio-economic drivers 

at varying spatial scales. (3) compare the impacts of different urban forest characteristics on 

socio-economic status.  

4.2 Materials and Methods 

4.2.1 Study Area 

The study area is the city of Phoenix, located in Maricopa County of Arizona (Figure 4.1). 

The city has an area of ~372 square miles encompassing 911 block groups. Phoenix has a 

typical desert climate with extremely long and hot summers and short, mild winters. As of 

2019, Phoenix is the 5th most populous city in the United States, with an estimated population 

around 1.63 million (“Phoenix, Arizona,” 2021). The city is located within one of the 
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sunniest regions in the world, with more than 300 days of sunshine annually. Being one of 

the fastest growing regions in the US, Phoenix is known for its urban heat island (UHI) 

effect, the size and intensity of which have mounted rapidly in the recent years.  

 

Figure 4.1 Study area located in Phoenix, Arizona. 

Urban tree studies in Phoenix, Arizona, have primarily focused on understanding the 

distribution and benefits of urban trees in the context of the city's hot and arid climate. 

Research has highlighted the importance of trees in mitigating the urban heat island effect by 

providing shade and reducing surface temperatures. Studies have also revealed disparities in 

tree canopy distribution, with wealthier neighborhoods having more extensive tree canopies 
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than lower-income areas, emphasizing the need for targeted urban forestry programs to 

address environmental justice concerns. The ecosystem services provided by urban trees, 

such as improving air quality, reducing stormwater runoff, and sequestering carbon, are also 

crucial for the city's overall health and livability. Furthermore, research on water usage and 

drought tolerance has informed the selection of appropriate tree species and irrigation 

methods to maintain a sustainable urban forest in Phoenix's challenging climate. 

4.2.2 Data Processing 

Tree canopy cover was extracted from the 2015 land use and land cover (LULC) map created 

by the Central Arizona–Phoenix Long-Term Ecological Research (CAPLTER) (Y. Zhang & 

Billie, 2020). The LULC map was originally generated from the 2015 NAIP images with a 

spatial resolution of 1 meter (NAIP Imagery, n.d.). The percent of tree canopy cover (PTCC) 

was calculated at the block group level. Tree location data were provided by the Arizona 

State University Map and Spatial hub (Accessing Phoenix LiDAR Data | ASU Library n.d.). 

The tree location data were generated from the LiDAR dataset with a spatial resolution of 0.5 

meter. The LiDAR data were sourced from the United States Geological Survey (USGS) 

three-dimensional elevation program (3DEP) (3D Elevation Program - Data & Tools, n.d.). 

Stem density (SD) was calculated as the number of trees in a block group over the area of the 

block group. Table 4.1 shows the summary statistics of the PTCC and SD at the block group 

level. Tree canopy cover ranges from 0 to 36% across 911 block groups in Phoenix. The 

mean percent tree canopy cover was only 8.2%.  The stem density ranges from 0 to 

23.33/acre with an average of 6.95 stems /acre. 
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Table 4.1 Descriptive statistics of the urban forest characteristics 

  Minimum Maximum Mean 
Std. 

Deviation 

Percent of Tree canopy cover 

(%) 
0 36 8.2 0.05 

Stem density (/acre) 0 23.33 6.95 2.71 

 

4.2.3 Socio-economic Indicators  

The socio-economic data at the block group level were sourced from the 2010-2014 

American Community Survey (ACS) 5-year estimate (Bureau, n.d.). Table 4.2 shows the 

descriptive statistics of all socio-economic variables collected. We included factors reflecting 

wealth (median household income, percent of poverty), demographics (population density, 

median age, percent associate degree or above), minority information (percent of residents 

that are Black, percent of residents that are Hispanic or Latino), ethnic information (percent 

of residents that are White) and building characteristics (density of housing units, median 

building age, median housing value). Density of housing units was calculated as the total 

number of housing units in a block group over the area of the block group. Median building 

age in 2014 was obtained by subtracting the median year the house was built from 2014.  
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Table 4.2 Descriptive statistics of socio-economic variables 

  
Minimum Maximum Mean 

Std. 

Deviation 

Population Density (/acre) 0.02 61.41 10.26 6.85 

Percent of residents that are 

Black (%)  
0 93 7 9 

Percent of residents that are 

Hispanic or Latino (%) 
0 100 39 29 

Percent of residents that are 

White (%) 
5 100 75 17 

Median Household Income (k) 0 191.5 50.38 29.09 

Median Age 16 82 35.42 9.33 

Percent of Poverty (%) 0 96 24 20 

Density of Housing Units 

(UNIT) 
0 36.09 4.45 3.71 

Median Building Age (year) 0 82 42.27 15.39 

Median Housing Value (k) 0 1270 154.23 137.14 

Percent of Residents with 

Associate Degree or Above 

(%) 

0 72 18 15 

 

4.2.4 Statistical Analysis 

The statistical analysis proceeded in three phases. Firstly, we used the Pearson’s correlation 

to quantify the bivariate relationships between the two urban forest attributes and the socio-

economic indicators, respectively. We then conducted the ordinary least squares (OLS) 

regression to evaluate the relative contribution of each socio-economic variable to the urban 

forest attributes.  
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OLS is a method used to estimate the parameters of a linear regression model. A linear 

regression model is a statistical model that is used to predict a continuous dependent variable 

(y) based on one or more independent variables (x). The relationship between the variables is 

assumed to be linear, meaning that a change in x is associated with a constant change in y. 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑛𝑥𝑛 + 𝜀 (4.1) 

where 𝛽0 is the intercept, 𝛽1, 𝛽2, ..., 𝛽𝑛 are the coefficients for each independent variable and 

𝜀 is the error term. The goal of OLS is to find the values of 𝛽0, 𝛽1, 𝛽2, ..., 𝛽𝑛 that minimize 

the sum of the squared differences between the observed y values and the predicted y values. 

The following formula is applied to find the optimal values for the coefficients. 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (4.2) 

where X is the matrix of independent variables, y is the vector of dependent variables, and b 

is the vector of coefficients. The superscript T indicates the transpose of a matrix. The 

asterisk (*) symbol denotes matrix multiplication.  

GWR stands for "geographically weighted regression." It is a type of regression analysis that 

allows the strength and form of the relationships between the dependent and independent 

variables to vary across different spatial locations. 

GWR is used to model relationships that are not constant over space, but rather vary 

depending on the location. It is particularly useful when working with spatial data, as it 

allows you to model spatial heterogeneity in the relationships between variables. 

The basic idea behind GWR is to fit a separate regression model for each location (or "zone") 

in the study area. The coefficients of the model are estimated using only the data points 
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within that zone. This allows the model to capture local patterns and trends that may not be 

evident in the overall dataset. 

The mathematical representation of the GWR is (Fotheringham et al., 2017): 

𝑦𝑖 = ∑ 𝛽𝑖𝑗 (𝑢𝑖, 𝑣𝑖)

𝑛

𝑗=0

+ 𝜀𝑖 
(4.3) 

where 𝑦𝑖 is the dependent variable at location 𝑖. 𝛽𝑖𝑗(𝑢𝑖, 𝑣𝑖) is the coefficient associated with 

the 𝑗th variable at location 𝑖. 𝜀𝑖 is the error term. 

The GWR permits the linkages between the response and predictor variables to vary 

throughout space rather than giving an "average" global estimate (Fotheringham et al., 2017). 

However, it assumes that each relationship operates at the same spatial scale. The MGWR 

provides a more flexible framework to examine multiscale processes. MGWR allows not 

only for the coefficients to vary in space, but also for the scale to vary across different 

explanatory variables, incorporating various bandwidths across the study area 

surface(Fotheringham et al., 2017).  he MGWR is given by 

𝑦𝑖 = ∑ 𝛽𝑏𝑤𝑗 (𝑢𝑖, 𝑣𝑖)

𝑛

𝑗=0

+ 𝜀𝑖 
(4.4) 

where 𝛽𝑏𝑤𝑗 (𝑢𝑖, 𝑣𝑖) is ……   𝑏𝑤𝑗 is the bandwidth used for calibration for the 𝑗th conditional 

relationship (Fotheringham et al., 2017).  The remaining parameters are defined in the same 

way as in Equation (1). Different bandwidths reflect different spatial scales, thus MGWR can 

capture spatial heterogeneity more precisely by quantifying the effect of scale on spatial 

processes (Fotheringham et al., 2017). 
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4.3 Results 

4.3.1 Urban Forest Structure  

Most urban forest research has used canopy cover to represent forest structure. The term 

"Urban Tree Canopy" (UTC) refers to the layer of tree leaves, branches, and stems that 

provides tree covering of the ground (Urban Forests | US Forest Service, n.d.). The PTCC 

was calculated as the proportion of land surface that is covered by treetops within each block 

group area. Stem density is another key characteristic of forest structure and was calculated 

as the total number of stems in a stand in each block group area.  

Figure 2 shows the spatial distribution of percent tree canopy cover and stem density 

(tree/acre) by block group. The block groups with a higher PTCC (higher than 8.83%) were 

mainly located at east side of the study area. Even though the highest PTCC is 35%, nearly 

one third of block groups had a PTCC under 5%. In 2010, tree canopy was estimated to cover 

9.0% of the land area (City of Phoenix, Arizona, n.d.). In 2015, based on the data we 

collected, the tree canopy cover was 6.12%. There was a 2.88% decrease in the tree canopy 

cover which accounts for ~ 6702 acres. The stem density ranges from 0 to 23.3 trees/acre 

through the study area. By visual observation, areas with a high stem density also tend to 

have a high PTCC. However, some of the high-PTCC areas had a very low stem density (< 

10 trees/acre).  
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Figure 4.2 Spatial distribution of the percent of tree canopy cover (a) and stem density (b) 

4.3.2 Correlation Analysis 

Based on current literature, we identified a total of 11 socio-economic variables to be 

included in the correlation analysis. Table 4.3 shows the Pearson’s correlation coefficient 

between each of the urban forest variable and the socio-economic variables, respectively. All 

variables are significantly correlated with PTCC at the 0.01 level except median building 

age. All variables are significantly correlated with SD except population density. Percent of 

Black and percent of Hispanic or Latino had a significantly negative correlation with both 

PTCC and SD and Percent of Hispanic or Latino shows much stronger relationships with 

PTCC and SD. In contrast, percent of White showed a positive association with both 

variables.  Significant correlations were found with wealth variables including median 

household income, median housing value, and percent of poverty.  Percent of residents with 
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associate degree or above, which reflects the level of education, had strong positive 

relationships with both urban forest indicators. Median housing value also had very strong 

positive association with SD. Overall, both forest variables had mostly consistent correlations 

with the socio-economic variables, but stem density had stronger associations with almost all 

variables than PTCC (except population density and density of housing units). 

Table 4.3 Pearson’s correlation between urban forest variables and socio-economic indicators 

  
Percent of tree 

canopy cover 
Stem density (/acre) 

Population Density (/acre) 0.090** 0.027 

Density of Housing Units (/acre) 0.169** 0.123** 

Percent of Black -0.148** -0.173** 

Percent of Hispanic or Latino -0.326** -0.413** 

Percent of White 0.132** 0.243** 

Median Household Income (k) 0.262** 0.321** 

Median Housing Value (k)  0.297** 0.432** 

Percent of Poverty -0.286** -0.310** 

Median Age 0.236** 0.343** 

Median Building Age (year) -0.047 0.169** 

Percent of residents with associate degree or 

above 
0.346** 0.426** 

** Correlation is significant at the 0.01 level (p < 0.01). 

4.3.3 Regression Results 

The correlation analysis provides a rudimentary grasp of the bivariate correlations. However, 

it is critical to quantify each predictor's contribution to tree variables while adjusting for 

other predictors. We included Percent of Black, Percent of Hispanic or Latino, Median 

Household Income, Housing Density, and Education Level in the multiple regression 

analysis considering significance and collinearity. Table 4 shows the OLS regression results 
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for the two urban forest variables. The variance inflation factors (VIF) for both models were 

below 3, indicating that there was no severe multicollinearity issue. For both models, all 

indicators were statistically significant at the 0.05 level.  Consistent with the correlation 

analysis, Percent of Black and Percent of Hispanic or Latino had a significant negative 

relationship with PTCC and SD. Percent of Black is weakly associated with PTCC. 

Consistent with Table 3, Percent of Hispanic or Latino is a stronger indicator in both PTCC 

and SD models. Median household income is again positively related to PTCC and, but it is a 

relatively weaker indicator in SD model. Density of housing units is strongly related to both 

PTCC and SD and it is the strongest indicator in PTCC model. Education level, similar to the 

correlation results, is a strongly positive indicator for both PTCC and SD and it is the 

strongest indicator in SD model. Overall, the SD model provided a better model fit with an 

R2 of 0.244. 
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Table 4.4 OLS regression results 

Percent of tree canopy 

 

Unstandardize

d 

Coefficient 

Std. 

Error 

Standardized 

Coefficient 
p-value VIF 

Percent of Black -0.056 0.019 -0.091 0.004 1.087 

Percent of Hispanic or 

Latino 
-0.022 0.008 -0.118 0.008 2.242 

Median Household 

Income (k) 
0 0 0.125 0.007 2.371 

Density of Housing 

Units (/acre) 
0.003 0 0.24 0 1.184 

Percent of residents with 

associate degree or 

above 

0.064 0.019 0.178 0 2.984 

R squared  0.187    

Stem density (tree/acre) 

Percent of Black -3.187 0.945 -0.102 0 1.087 

Percent of Hispanic or 

Latino 
-1.803 0.406 -0.192 0 2.242 

Median Household 

Income (k) 
0.09 0.004 0.095 0.03 2.371 

Density of Housing 

Units (/acre) 
0.14 0.023 0.191 0 1.184 

Percent of residents with 

associate degree or 

above 

3.977 0.912 0.218 0 2.984 

R squared  0.244    
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Table 4.5 Mean significant coefficient estimates from MGWR models. 

 
Percent of Tree Canopy Stem Density (/acre) 

 

Mean 

Coefficient 

(significant 

cases) 

Bandwidth Mean 

Coefficient 

(significant 

cases) 

Bandwidth 

Percent of Black -0.071 291 -0.039 291 

Percent of Hispanic or 

Latino 

-0.794 43 -0.294 440 

Median Household 

Income (k) 

-0.237 45 0.450 83 

Density of Housing 

Units (/acre) 

0.494 68 0.919 46 

Percent of residents 

with associate degree 

or above 

N/A 910 0.076 149 

 

Table 4.5 shows the results from the MGWR models including mean coefficient estimates of 

statistically significant cases and bandwidth of each variable. The bandwidth varied from 43 

to 910 for each variable.  Mean coefficient of percent of black is negative and shows a 

relatively weaker correlation with both PTCC and SD. The bandwidth of percent of black 

keeps the same of 291 in both PTCC and SD model. Mean coefficient of percent of Hispanic 

or Latino again indicates that it is a strong indicator in PTCC model. The bandwidth of 

percent of Hispanic of Latino in PTCC model is 43 and it becomes much larger in SD model 

with the value of 440. There is a negative relationship for mean coefficient of median 

household income with PTCC which is contrary to the correlation and OLS results. Mean 

coefficients of density of housing units are consistent with the correlation and OLS results for 

both PTCC and SD models. Different from previous results, with only significant cases, high 
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education level is regarded as an insignificant variable in all cases in PTCC model and 

becomes a weak indicator in SD model. The "Bandwidth" column represents the spatial scale 

at which these relationships are significant. A smaller bandwidth implies that the relationship 

is significant at a more local scale, while a larger bandwidth suggests the relationship is 

significant at a broader spatial scale. The bandwidth of percent of residents with associate 

degree or above in PTCC model is the largest which is 910 and much smaller in SD model 

which is 149. This indicates that the relationship between the percentage of residents with 

associate degrees or higher and stem density is significant at a more local scale compared to 

its relationship with tree canopy coverage. 

Table 4.6 shows a summary of model goodness of fit for the OLS, GWR and MGWR 

models. We used the R2 and AICc as diagnostic metrics. A higher R2 and a lower AICc 

indicate a better model fit. The R2 scores were less than 0.3 for the OLS models, and above 

0.7 for the MGWR models. For both PTCC and SD models, the MGWR achieved the highest 

R2 scores among the three models with the highest R2 score of 0.781 in the PTCC model. The 

MGWR also had the lowest AICc score. Overall, the MGWR achieved significantly greater 

explanatory power than the OLS and GWR with the highest R2 and lowest AICc values.  

Table 4.6 Performance comparison among OLS, GWR, and MGWR models 
 

PTCC SD 

 OLS GWR MGWR OLS GWR MGWR 

R2 0.187 0.681 0.781 0.244 0.659 0.708 

AICC 2410.952 1820.894 1590.282 2344.777 1920.268 1786.365 
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4.3.4 Spatial Patterns of the MGWR estimates 

Each explanatory variable uses a different bandwidth to capture varying spatial relationships 

in the MGWR model. The bandwidth can be explained as the number of block groups used in 

each local regression in the MGWR model and it varies from predictor to predictor. The 

bandwidth varied from 1 to 911. When it equals 911, it can be regarded as a global regression 

model. Therefore, based on the varied bandwidth, we divided the variables into three 

categories, local, regional and global variables, respectively.  Global variable is easy to 

understand when the bandwidth is close to 911. It is hard to differentiate between a regional 

and a local variable. In our study, the bandwidth size between variables is relatively large. 

Therefore, except global variables, we defined as the variables with bandwidth smaller than 

100 as local variables and all other variables as regional variables.   

Figure 3 shows the spatial distribution of the significant coefficient estimates for percent of 

residents that are Black in the PTCC and SD models. There were more significant areas in 

PTCC model than SD model. All cases were significant in the PTCC model, but only partial 

areas represented significant relationships in SD model. As defined above, percent of Black 

can be regarded as a regional variable in both models. Significantly negative associations 

were found in all block groups in percent of tree canopy cover model which was consistent 

with the mean coefficient in Table 5. However, in the SD model, positive relationships were 

found in the northeast of the city. But the mean coefficient was negative in Table 4.5.  
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Figure 4.3 PTCC (a) and SD (b) MGWR results for percent of residents that are Black 

Figure 4.4 shows the significant estimates for percent of resident that are Hispanic or Latino. 

All relationships in the significant cases were negative in both models which were consistent 

with the results in Table 3-5. The bandwidth is different in two models.  There were much 

more significant block groups in SD model than PTCC model.  Most cases were not 

significant in PTCC model. The bandwidth of PTCC model is 43 which percent of Hispanic 

or Latino can be considered as a local variable. Figure 4.4 (a) clearly shows the effect of 

local variable that significant cases clustered within a small number of block groups. 

Moreover, the bandwidth of SD model is 440 which percent of Hispanic or Latino can be 

considered as a regional variable. In Figure 4.4 (b), the coefficient estimates of a sizeable 

number of block groups are clustered with the same value range.   
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Figure 4.4 PTCC (a) and SD (b) MGWR results for percent of residents that are Hispanic or 

Latino 

Figure 4.5 shows the significant estimates for median household income. Mean household 

income was considered as a local variable in two models. There were more significant cases 

in SD model than PTCC model.  Correlation analysis and OLS results show a positive 

relationship between PTCC and median household income. However, in Figure 4.5 (a), only 

a few positive cases were found in the west of study area and mean estimate is negative since 

the negative effects in the northwest were stronger.  In the SD model, all cases were positive 

which was consistent with the mean coefficient estimate in Table 4.5.   
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Figure 4.5 PTCC (a) and SD (b) MGWR results for median household income. 

Figure 4.6 shows the spatial patterns for significant coefficient estimate for density of 

housing units. Housing density was considered as a local variable in two models. All 

significant cases reveal positive relationships and were distributed on the north and south 

sides of the city. In both models, there was no significant cases in center of the study area.  
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Figure 4.6 PTCC (a) and SD (b) MGWR results for density of housing units. 

Figure 4.7 shows the significant estimates for education level (percent of residents with 

associate degree or above).  Education level is identified as a global variable based on its 

bandwidth in tree canopy percent model. It is interesting that the education level was globally 

insignificant in PTCC model. It turns into a regional variable in SD model but only a few 

significant cases are observed. Several block groups in the northwest reveal negative 

relationships, leaving positive relationships in the southern part of the study area which was 

consistent with the results in Table 4.3-4.5.   
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Figure 4.7 PTCC (a) and SD (b) MGWR results for percent of residents with associate degree 

or above. 

4.4 Discussion 

4.4.1 The Urban Forest in a Desert City 

Urban forests have become an essential feature of modern cities, as they have been shown to 

provide a range of benefits, such as improved air quality, enhanced public safety, and 

mitigation of the urban heat island effect. A well-maintained urban forest can contribute to 

reducing the impact of rising temperatures by providing shade and increasing 

evapotranspiration from soil and leaves. While cities in forested regions such as the 

Northeastern United States have been studied extensively for their tree-planting efforts, urban 

forestry in the arid desert presents different challenges. For instance, choosing the most 

effective species for an arid environment is critical. 



 

 

108 

In the city of Phoenix, Arizona, a master plan was developed by the City of Phoenix Parks 

and Recreation Department in 2010 to achieve a tree canopy cover of 25% by 2030, as the 

percentage of urban forest coverage was low compared to regional standards. However, the 

percentage of tree canopy cover was estimated to be only 13% in 2005, with a decrease to 

6.12% in 2015. The current state of the urban forest in Phoenix is, therefore, a cause for 

concern. Monsoon storms and accidents cause the destruction of approximately 1,000 trees 

annually, and the city's funding for tree replacement was drastically reduced during the 

recession. Furthermore, a high percentage of block groups have a tree cover percentage of 

less than 5%, with many areas having only 0-6 trees per acre. This demonstrates the urgent 

need for more trees and shade in Phoenix. 

In addition, understanding the structure of urban forests in a desert city is vital to effective 

urban forest management. Previous studies that employed tree canopy cover as the sole 

indicator of urban forest structure have limitations, as stem density and tree density also 

provide valuable information. In Cook County, Illinois, Chao et al. studied the land use and 

socio-economic determinants of urban forest structure using three indicators: stem density, 

urban tree cover, and species diversity. The findings showed a similarity between the results 

of tree canopy cover and stem density. However, in Phoenix, the structure of the urban forest 

differs, as the number of trees does not necessarily correlate with a larger canopy area. 

Therefore, a more targeted greening plan is necessary for desert cities. 

In conclusion, the benefits of urban forests are evident, and their role in mitigating the impact 

of rising temperatures is critical. However, the challenges posed by arid desert environments 

must be considered when designing urban forest plans. The City of Phoenix has recognized 

this need and has implemented a master plan to increase tree canopy cover, which requires 
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significant investment and commitment. Nevertheless, understanding the structure of the 

urban forest in Phoenix and other desert cities is essential to successful urban forest 

management. 

4.4.2 Importance of the multiscale analysis 

The concept of scale is essential in geographic analyses, and it has significant implications 

for understanding complex processes operating at different levels. While there is a 

considerable body of literature on the importance of scale in various geographical contexts, 

measuring the geographic scale over which different processes operate is challenging. 

Previous studies suggest that the geographically weighted regression (GWR) approach is 

critical for accurately interpreting local relationships. However, GWR is limited by its 

assumption that each variable operates at a single scale, which may not hold in many real-

world scenarios. In contrast, the multiscale geographically weighted regression (MGWR) 

approach is more flexible and allows each variable to be processed at varying scales, making 

it an ideal tool for policy suggestions. 

In this study, we utilized the MGWR approach to examine the effects of socio-economic 

indicators on urban forest distribution at different spatial scales. Our findings demonstrated 

that the MGWR approach is capable of providing a nuanced understanding of how these 

indicators influence urban forest distribution at different scales. Specifically, the results of 

our study showed that the percentage of black population acts as a regional variable, while 

income and housing density act as local variables in both PTCC and SD models. The 

percentage of Hispanic or Latino is a local variable in the PTCC model but a regional 

variable in the SD model. Furthermore, the education level showed global insignificance in 

the PTCC model and regional significance in the SD model. These results highlight the 
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importance of accounting for the different scales at which variables operate in landscape 

scale analyses. 

While OLS and GWR provide unique results, they do not consider the varying scales at 

which variables operate. In contrast, the MGWR approach can provide a more 

comprehensive and nuanced understanding of the spatial heterogeneity in the statistical 

relationships between landscape factors and public perceptions. The MGWR approach also 

allows for the identification of the scales at which different processes operate, providing 

valuable information for policy and planning. Our study demonstrates the importance of 

multiscale analysis in landscape scale analyses and highlights the value of the MGWR 

approach in effectively supporting policy and planning. Future studies could explore the 

application of MGWR in other geographic contexts and further develop the method to better 

account for spatial heterogeneity in statistical relationships between landscape factors and 

public perceptions. 

4.4.3 Urban Tree Distribution Inequality in a Desert City  

Chapter 4 investigates the complex relationships between urban forest characteristics and 

socio-economic indicators in the diverse metropolitan area of Phoenix, Arizona, using 

correlation analysis, OLS, and MGWR models. While the correlation and OLS results offer a 

broad overview of the associations between PTCC and SD and the socio-economic variables 

in the study area, the MGWR analysis provides a more nuanced and spatially differentiated 

perspective of the coefficient estimates and their variability at various scales. The study finds 

that minority and low-income populations have limited access to natural amenities, which is 

consistent with earlier research demonstrating that trees are disproportionately distributed in 

neighborhoods with low-income or people of color. However, MGWR results indicate a 
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positive association between the percentage of Black and SD, but a negative association with 

PTCC in the northwest corner of Phoenix, where there is a higher percentage of White 

residents and a lower percentage of Black residents. These results suggest that the Black 

population in those areas have more access to green spaces, similar to the White population. 

Interestingly, the variation of the magnitude of PTCC doesn't align with SD in that specific 

region, although the shift of the magnitude of PTCC and SD are mostly similar in other areas. 

In several block groups, the relationships between the percent of Hispanic or Latino and 

PTCC are only significant, whereas the SD model yields more significant relationships. This 

inconsistency may be attributed to the unique structure of the urban forest in Phoenix, which 

is different from other cities due to the extremely hot and dry climate of the desert city. 

Moreover, this study finds that communities with more trees and shrubs are associated with 

higher educational performance. These results provide evidence that green spaces and urban 

forests can have positive effects on public health and well-being, including educational 

outcomes, and promote social equity by ensuring equal access to natural amenities for all 

communities. However, the MGWR results also indicate that not every variable is a 

significant predictor of PTCC and SD within each block group, highlighting the need for 

more targeted and localized approaches to urban forest management in diverse metropolitan 

areas like Phoenix. 

In conclusion, this study offers important insights into the complex relationships between 

urban forest characteristics, socio-economic indicators, and demographic variables in 

Phoenix, Arizona, using advanced statistical models. The findings have significant 

implications for urban forest management and planning in desert cities and can inform 
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policies and programs aimed at promoting equitable access to green spaces and improving 

public health and well-being.   

 

(a)                                                                           (b) 

Figure 4.8 Spatial distribution of the percent of residents that are Black (a) and White (b) 

Income is another important indicator discussed a lot in previous studies. Correlation analysis and OLS 

results in this study support evidence from previous findings that low-income households have less 

access to green infrastructure (citation). But in MGWR results, contrary to global relationships, a small 

number of significant cases were observed in the PTCC model result, and some negative associations 

were found in the northwest corner (Figure 5 (a)). According to Figure 2 (a) and Figure 9 (a). It is 

reasonable that this area had a relatively higher median income value and a lower PTCC. Correlations 

analysis and OLS indicate a positive association between income and PTCC which can be observed 

from Figure 9 (b) as well. However, according to the scatter plot, there are several cases with low 

income but high tree percent or high income but low tree percent clustered at the origin. This explained 

why most cases were insignificant in PTCC results. More significant cases are observed in SD model 

and the values of the coefficient varied slightly because, in these areas, the positive relationships were 
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consistent that the stem density increased when the median household income was higher in the block 

group (Figure 5(b) and Figure 9 (a)).  

   

(a)                                                                    (b) 

Figure 4.9 The spatial distribution of median household income (a) and the scatter plot 

between percent tree canopy cover and median household income (b) 

As our results suggest, housing density is positively correlated with PTCC and SD. It is 

reasonable that trees can increase both the aesthetic values and economic values of the 

properties. Therefore, most residents and real estate developers would like to plant more trees 

surrounding their houses. According to Figure 10, the housing density is low south and north 

of the city. Significant cases were also observed in those areas in both models. In other areas, 

the spatial distribution of housing density was more irregular, but we can see a regular 

distribution of PTCC and SD according to Figure 2. This explains why there were no 

significant cases in these areas. 
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Figure 4.10 Spatial distribution of household density 

The high-education level was positively correlated with PCTT in previous studies. Our 

correlation analysis and OLS results suggest that education level is weakly related to two 

forest variables. Comparatively, MGWR results are not significantly associated with PCTT 

and significant correlations with SD can be observed in several block groups Figure 4.11. 

Figure 4.11 shows the spatial pattern of the residents with a higher education level. 

Compared to Figure 4.2 with Figure 4.11, the shift trends of the patterns are not consistent. In 

the study area, most block groups had a percentage of higher education level less than 20 %. 

However, the PTCC and SD values varied significantly. This indicated that even though the 

global results reveal a significantly positive relationship, the MGWR results are more reliable 

without any significant relationships observed locally.  
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Figure 4.11 Spatial distribution of percentage of associate’s or above degree holders 

Urban tree inequality is essentially everywhere in the United States. Low-income 

communities have less tree cover than high-income neighborhoods in 92% of US cities. 

Wealthy communities have 15% more tree cover and live in districts that are 1.50 degrees 

Celsius cooler than the poor ones (McDonald et al., 2021).  Growing trees in urban areas 

across the United States is becoming more popular to decrease tree inequality. Government 

and nonprofit organizations in Boston, Detroit, Phoenix, and other cities are organizing tree-

planting events and developing urban forestry plans (“For Tree Equity and Climate Change, 

How Many Urban Trees Do We Need?,” n.d.). But, in order to progress Tree Equity, how 

many trees should be planted each year? Phoenix is different from the cities like Boston or 

Chicago. Based on the findings in this study, the tree cover is much lower, and the tree 
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species is unique due to the desert climate.  In April 2021, the City of Phoenix and American 

Forests signed a Memorandum of Understanding (MOU) to collaborate together to increase 

tree equality in Phoenix communities. The government intends to increase the canopy of 

trees in Arizona's low-income, low-canopy communities (Official Website of the City of 

Phoenix, Arizona, n.d.). The results in this study help propose a more targeted plan on 

planting trees in the low-income communities. Moreover, findings indicate that the tree cover 

decreased from 2010 to 2015. One important reason might be people would like to remove 

the trees due to the annual cost of maintaining the trees is high (Carmichael & McDonough, 

2018). This aligns to the results of correlation analysis OLS regression that the residents with 

high-education level have more access to the trees. The Phoenix government said that they 

intended to educate the public on the benefits of trees, as there is limited understanding of the 

importance of the urban forest (“Official Website of the City of Phoenix, Arizona” n.d.). 

Therefore, simply increasing the tree cover in low-cover communities is not the most 

efficient way to decease the tree inequality. There should be a difference in priority and 

intensity. Combining our results with policymakers' considerations for local finances and 

policies can lead to more economical solutions. 

4.5 Conclusions 

This Chapter investigates the complex relationships between urban forest characteristics and 

socio-economic indicators in Phoenix, Arizona, using advanced statistical models. The study 

finds that minority and low-income populations have limited access to natural amenities, 

which is consistent with earlier research demonstrating that trees are disproportionately 

distributed in neighborhoods with low-income or people of color. However, the study also 

finds that communities with more trees and shrubs are associated with higher educational 
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performance, highlighting the potential positive effects of urban forests on public health and 

well-being,  including educational outcomes. The results of the study suggest that targeted 

and localized approaches to urban forest management are necessary to promote equitable 

access to green spaces and improve public health and well-being in diverse metropolitan 

areas like Phoenix. 
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Chapter 5 Conclusion 

Deep learning has proven to be a potent tool for urban classification due to its capacity to 

learn and extract intricate features from urban datasets. This dissertation initially 

implemented the U-Net model for urban tree canopy extraction, demonstrating its cutting-

edge performance in urban classification tasks. Concurrently, intriguing insights emerged at 

various spatial scales. However, a limitation persists in the scarcity of publicly accessible 

training datasets for urban classification. Consequently, I introduced the concept of transfer 

learning as a subsequent step. Transfer learning can enhance urban classification by utilizing 

pre-trained deep learning models on extensive datasets, thereby improving performance on 

smaller urban datasets with a limited number of labeled samples. The primary contribution of 

this dissertation is the proposal of an innovative cross-scale framework that amalgamates 

transfer learning and deep learning for urban land cover mapping. This framework has been 

proven effective and feasible through evaluations conducted in different cities and years. It 

offers a promising approach to surmount the challenges posed by the availability of high-

resolution imagery and the deficiency of publicly accessible training datasets. The proposed 

framework has great potential for land cover mapping and can be applied at different spatial 

and temporal scales. 

To extend the application of the urban tree canopy and land cover maps. The dissertation 

finally has investigated the complex relationships between urban forest characteristics, socio-

economic indicators, and their impact on public health and well-being in Phoenix, Arizona. 

Through a comprehensive literature review and the application of advanced statistical 

models, this study has highlighted the importance of accurate and timely information about 

the distribution and structure of urban tree canopy. The findings demonstrate that minority 
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and low-income populations have limited access to natural amenities, which is consistent 

with earlier research demonstrating that trees are disproportionately distributed in 

neighborhoods with low-income or people of color. However, the study also finds that 

communities with more trees and shrubs are associated with higher educational performance, 

highlighting the potential positive effects of urban forests on public health and well-being, 

including educational outcomes. The findings have significant implications for urban forest 

management and planning, as well as for green infrastructure planning and sustainable and 

equitable urban development. The study emphasizes the importance of urban forests in 

promoting public health, well-being, and social equity in urban areas. Moreover, it also 

suggests that targeted and localized approaches to urban forest management are necessary to 

promote equitable access to green spaces and improve public health and well-being in 

diverse metropolitan areas like Phoenix. 

In conclusion, this dissertation has contributed to the advancement of deep learning methods 

for urban forest studies and has provided important insights into the role of urban forests in 

promoting public health and well-being in diverse communities. The findings of this study 

provide a scientific basis for green infrastructure planning and sustainable and equitable 

urban development. The study highlights the need for further research on the socio-economic 

determinants of urban forest structure in other metropolitan areas, as well as the need for 

more targeted and localized approaches to urban forest management in diverse communities. 

Overall, this dissertation emphasizes the importance of urban forests in promoting public 

health, well-being, and social equity in urban areas, and provides a promising framework for 

sustainable and equitable urban development. 
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