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Abstract

Species in the wild exhibit an immense diversity of forms, functions and abundances. To under-

stand this diversity we must consider the processes that have shaped it along with the biological details

these processes emerge from. For example, species are often found interacting with other species in an

ecological community and these interspecific interactions can lead to a wide variety of ecological and

evolutionary processes. The frequency of interspecific interactions across a set of species is determined

in part by the abundance of each species. More abundant species tend to interact more often. How-

ever, the fluctuations in species abundance is itself determined in part by interspecific interactions. The

combination of these two causal pathways creates a feedback loop between the patterns of interspe-

cific interactions among species and the patterns of species abundance. Although classical community

ecology has largely focused on studying patterns of diversity through the lense of feedbacks between

interspecific interactions and species abundances, much of this work has ignored an important aspect

of species. In particular, species are not monolithic entities, but are comprised of diverse sets of indi-

viduals. Furthermore, these individuals are characterized by suites of behavioural and morphological

traits that mediate the outcomes of interactions with other individuals, including lifetime reproductive

output (i.e., fitness). When particular trait values are associated with increased fitness, the species ex-

periences selection for those trait values. If those trait values are also heritable, so that offspring traits

resemble parental traits, they will tend to increase in frequency. Hence, interactions among individu-

als provide building blocks from which both ecological and evolutionary processes emerge. In turn,

the evolution of traits mediating interactions can modify the patterns and outcomes of interactions,

generating feedbacks between the ecological and evolutionary processes emerging from individual

interactions. Thus, to understand the patterns and dynamics of species and the ecological communi-

ties they compose, we must consider a holistic framework that treats the evolutionary and ecological

responses of species to their interactions as the products of a common underlying phenomenon; inter-

actions among individuals. In this dissertation I introduce a novel mathematical framework rigorously

derived from biological first principles that accomplishes this goal. Using this framework to investi-

gate communities of species competing along a resource gradient, I find a positive correlation between

the strength of selection and the strength of competition across interacting species pairs. I then apply

this framework to study the consequences of coevolutionary races for the stability of mutualistic in-

teractions, demonstrating that the tendency for mutualisms to disintegrate into parasitisms depends

on the phenotypic interface of the interaction. Finally, I introduce a new statistical method to measure

the strength of coevolution between pairs of species in the wild. Applying this method to two well

studied cases, I find support for the role of coevolution in both cases and calculate first ever estimates

for the strength of coevolution in the wild. Overall, this work contributes to a coevolutionary theory

of community ecology by developing rigorous mathematical tools that embrace the interwoven nature

of ecological and evolutionary processes, deriving novel results on the consequences of coevolution in

shaping interspecific interactions, and introducing a new statistical method to infer the coevolutionary

process from empirical patterns. Future research based on this work may lead to a deeper synthetic

understanding of the diverse and dynamical nature of life along with methods to forecast the responses

of wild populations to our changing world.
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Chapter 1: A White Noise Approach to Evolutionary Ecology

Abstract

Although the evolutionary response to random genetic drift is classically modelled as a sampling

process for populations with fixed abundance, the abundances of populations in the wild fluctuate over

time. Furthermore, since wild populations exhibit demographic stochasticity, it is reasonable to con-

sider the evolutionary response to demographic stochasticity and its relation to random genetic drift.

Here we close this gap in the context of quantitative genetics by deriving the dynamics of the distribu-

tion of a quantitative character and the abundance of a biological population from a stochastic partial

differential equation driven by space-time white noise. In the process we develop a useful set of heuris-

tics to operationalize the powerful, but abstract theory of white noise and measure-valued stochastic

processes. This approach allows us to compute the full implications of demographic stochasticity on

phenotypic distributions and abundances of populations. We demonstrate the utility of our approach

by deriving a quantitative genetic model of diffuse coevolution mediated by exploitative competition

for a continuum of resources. In addition to trait and abundance distributions, this model predicts

interaction networks parameterized by rates of interactions, competition coefficients, and selection gra-

dients. Analyzing the relationship between selection gradients and competition coefficients reveals

independence between linear selection gradients and competition coefficients. In contrast, absolute

values of linear selection gradients and quadratic selection gradients tend to be positively correlated

with competition coefficients. That is, competing species that strongly effect each others abundance

tend to also impose selection on one another. This approach contributes to the development of a syn-

thetic theory of evolutionary ecology by formalizing first principle derivations of stochastic models

that underlie rigorous investigations of the relationship between feedbacks of biological processes and

the patterns of diversity they produce.

1.1 Introduction

Current mathematical approaches to synthesize the dynamics of abundance and evolution in pop-

ulations have capitalized on the fact that biological fitness plays a key role in determining both sets

of dynamics. In particular, while covariance of fitness and genotype is the basis of evolution by natu-

ral selection, the mean fitness across all individuals in a population determines the growth, stasis or

decline of abundance. Although this connection has been established in the contexts of population

genetics (Crow and Kimura, 1970; Roughgarden, 1979), evolutionary game theory (Hofbauer and Sig-

mund, 1998; Lion, 2018; Nowak, 2006), quantitative genetics (Doebeli, 1996; Lande, 1982; Lion, 2018)

and a unifying framework for these three distinct approaches to evolutionary theory (Champagnat

et al., 2006), there remains a gap in incorporating the intrinsically random nature of abundance into

the evolution of continuous traits. Specifically, in theoretical quantitative genetics the derivation of

a populations response to random genetic drift is derived in discrete time under the assumption of

constant effective population size using arguments based on properties of random samples (Lande,

1976). Though this approach conveniently mimics the formalism provided by the Wright-Fisher model
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of population genetics, real population sizes fluctuate over time. Furthermore, since these fluctua-

tions are themselves stochastic, it seems natural to derive expressions for the evolutionary response to

demographic stochasticity and consider how the results relate to characterizations of random genetic

drift. This can be done in continuous time for population genetic models without too much technical

overhead, assuming a finite number of alleles (Gomulkiewicz et al., 2017; Lande et al., 2009; Parsons

et al., 2010). However, for populations with a continuum of types, such as a quantitative trait, finding

a formal approach to derive the evolutionary response to demographic stochasticity has remained a

vexing mathematical challenge. In this paper we close this gap by combining the calculus of white

noise with results on rescaled limits of measure-valued branching processes (MVBP) and stochastic

partial differential equations (SPDE).

Our goal in this chapter has two components: 1) Establish a novel synthetic approach to theoret-

ical evolutionary ecology that provides a formal connection between demographic stochasticity and

random genetic drift in the context of quantitative traits. 2) Communicate some useful properties of

space-time white noise, MVBP and SPDE to a wide audience of mathematical evolutionary ecologists.

With this goal in mind we will not provide a rigorous treatment of any of these mathematically rich

topics. Instead, we introduce a set of heuristics that only require the basic concepts of Riemann integra-

tion, partial differentiation and some exposure to Brownian motion and stochastic ordinary differential

equations (SDE). A concise introduction to SDE and Brownian motion has been provided by Evans

(2014).

Since MVBP are abstract mathematical objects and their associated literature tends to be written

with an unfortunate amount of mathematical detail, their study is quite demanding. Hence, the use

of MVBP in mainstream theoretical evolutionary ecology has been limited. However, they provide

natural models of biological populations by capturing various mechanistic details. In particular, MVBP

generalize classical birth-death processes, such as the Galton-Watson process (Dawson, 1993; Kimmel

and Axelrod, 2015), to model populations of discrete individuals that carry some value in a given type-

space. Selection can then be modelled by associating these values with average reproductive output

and mutation can be incorporated using a model that determines the distribution of offspring values

given their parental value. For population genetic models the type-space is the discrete set of possible

alleles individuals can carry. In quantitative genetic models tracking the evolution of d-dimensional

phenotypes, this type-space is typically set to the Euclidean space Rd. By starting with branching

processes we can implement mechanistic models of biological fitness that account for the phenotype

of the focal individual along with the phenotypes and number of all other individuals in a population

or community. By taking a rescaled limit, we can then use these detailed individual-based models

to derive population-level models tracking the dynamics of population abundance and phenotypic

distribution driven by selection, mutation and demographic stochasticity. Hence, rescaled limits of

MVBP provide a means to derive mathematically tractable, yet biologically mechanistic models of

eco-evolutionary dynamics.

For univariate traits (i.e., d = 1) Konno and Shiga (1988), Reimers (1989), Li (1998) and Champag-

nat et al. (2006) have shown rescaled limits for a large class of MVBP converge to solutions of SPDE.

Although cases in which d ≥ 1 can be treated using the so-called martingale problem formulation
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(Dawson, 1993), the SPDE formulation provides a more intuitive description of the biological processes

involved. We therefore focus on the case d = 1 here. This allows us to introduce a concrete set of

heuristics for deriving SDE tracking the dynamics of abundance, phenotypic mean and phenotypic

variance to a wide audience of mathematical evolutionary ecologists. Following our approach to sim-

plify notation and develop heuristics for calculations, future work can use the martingale formulation

to extend the results presented here for d > 1 and even for infinite-dimensional traits (Dawson, 1993;

Stinchcombe et al., 2012). Rigorous introductions to SPDE and rescaled limits of MVBP have been

respectively provided by Da Prato and Zabczyk (2014) and Etheridge (2000).

In this paper we begin in §1.2 by introducing the basic framework of our approach. We first outline

the essential ideas behind deriving evolutionary dynamics from abundance dynamics using a deter-

ministic partial differential equation (PDE). Following this, we review rescaled limits of MVBP, their

associated SPDE and introduce an approach to derive SDE tracking the dynamics of abundance, phe-

notypic mean and phenotypic variance. This approach requires performing calculations with respect

to space-time white noise processes and we provide heuristics for doing so in Appendix A.10. We

then discuss consequences of the derived SDE for general phenotypic distributions and simplify their

expressions by assuming normally distributed phenotypes. For added biological relevance, we incorpo-

rate models of inheritance and development following classical quantitative genetics. To demonstrate

how our framework can be used to formulate a synthetic theory of evolutionary ecology, in §1.3 we

derive a model of diffuse coevolution for a set of S species competing along a resource continuum. The

basic approach follows classical niche theory to develop biological fitness as a function of niche pa-

rameters and niche locations of other individuals in the community. We then use this model to derive

formula for selection gradients and competition coefficients. Finally, we investigate the relationship

between selection gradients and competition coefficients using an analytical approximation.

1.2 The framework

At the core of our approach is a model of stochastic abundance dynamics for a structured popu-

lation in continuous time and phenotypic space. From this stochastic equation we derive a system of

SDE for the dynamics of total abundance, mean trait and additive genetic variance of a population. In

particular, our approach develops a quantitative genetic theory of evolutionary ecology. A popular al-

ternative to quantitative genetics is the theory of adaptive dynamics (Dieckmann and Law, 1996; Metz

et al., 1996). As demonstrated by Page and Nowak (2002) and Champagnat et al. (2006), the canonical

equation of adaptive dynamics can be derived from the replicator-mutator equation, which in turn can

be derived from models of abundance dynamics, revealing a synthesis of mathematical approaches

to theoretical evolutionary ecology. In this section we review derivations of the replicator-mutator

equation and trait dynamics from abundance dynamics in the deterministic case. We then extend

these formula along with related results to the case of random reproductive output (i.e., demographic

stochasticity).
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1.2.1 Deterministic dynamics

Finite number of types We start by considering the dynamics of an asexually reproducing popu-

lation in a homogeneous environment. For simplicity, we first assume individuals are haploid and

carry one of K alleles each with a different fitness expressed as growth rate before introducing a model

involving a quantitative trait. Under these assumptions, the derivation of the evolution of allele fre-

quencies due to natural selection can be derived from expressions of exponential growth. This, and a

few related approaches, have been provided by Crow and Kimura (1970). Mutation can be included

using a matrix of transition rates. Specifically, denoting νi the abundance of individuals with allele i,

mi the growth rate of allele i (called the Malthusian parameter in Crow and Kimura, 1970), µij the mu-

tation rate from allele i to allele j and assuming selection and mutation are decoupled (Bürger, 2000),

we have

dνi
dt

= miνi +
K

∑
j=1

(µjiνj − µijνi). (1.1)

Starting from this model, we get the total abundance of the population as N = ∑i νi, the frequency

of allele i as pi = νi/N and the mean Malthusian fitness of the population as m̄ = ∑i pimi. Note we

have used the abbreviation ∑i = ∑K
i=1 to simplify inline notation. Observing ∑ij µjiνj = ∑ij µijνi, we

use linearity of differentiation to derive the dynamics of abundance dN/dt as

dN
dt

=
K

∑
i=1

miνi +
K

∑
i,j=1

(µijνj − µjiνi) = m̄N. (1.2)

To derive the dynamics of the allele frequencies p1, . . . , pK, we use the quotient rule of elementary

calculus to find

dpi
dt

= (mi − m̄)pi +
K

∑
j=1

(µji pj − µij pi). (1.3)

Two important observations of these equations include: (i) Mean Malthusian fitness m̄ is equivalent

to the population growth rate and thus determines the abundance dynamics of the entire population.

(ii) Selection for allele i occurs when mi > m̄ and selection against allele i occurs when mi < m̄. Hence,

as mentioned in the introduction, fitness plays a key role in determining both abundance dynamics

and evolution.

Equation (1.3) is known in the field of evolutionary game theory as a replicator-mutator equation

(Nowak, 2006). Instead of being explicitly focused on alleles, the replicator-mutator equation describes

the fluctuations of relative abundances of various types in a population in terms of replication and anni-

hilation rates of each type and hence can be used to model dynamical systems outside of evolutionary

biology (Nowak, 2006).

Continuum of types Inspired by equations (1.1)-(1.3), we derive an analog of the replicator-mutator

equation for a continuum of types (that is, for a quantitative trait). In particular, we model a continu-

ously reproducing population with trait values x ∈ R and an abundance density ν(x, t) that represents
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the amount of individuals in the population with trait value x at time t. Hence, the abundance density

satisfies N(t) =
∫

ν(x, t)dx and p(x, t) = ν(x, t)/N(t) is the relative density of trait x which we also

refer to as the phenotypic distribution. Note we have used the abbreviation
∫
=
∫ +∞
−∞ to simplify inline

notation.

In analogy with the growth rates mi for equation (1.1) we write m(ν, x) as the growth rate associated

with trait value x which depends on the abundance density ν. We assume mutation is captured by

diffusion with coefficient µ
2 . Hence, we model the demographic dynamics of a population and the

dynamics of a quantitative character simultaneously by the PDE

∂

∂t
ν(x, t) = m(ν, x)ν(x, t) +

µ

2
∂2

∂x2 ν(x, t). (1.4)

Equation (1.4) qualifies both as a semilinear evolution equation and also a scalar reaction-diffusion

equation. Although the general theory of such equations is quite rich, it is also quite difficult (Evans,

2010; Zheng, 2004). Hence, to stay within the realms of analytical tractability and biological plausibility,

we require a set of technical assumptions.

Firstly, our expression for the growth rate m(ν, x) is an abbreviation for m((Kν)(x, t), x) where

K is an operator that accounts for nonlocal effects, such as resource competition, on growth rates

(Champagnat et al., 2006; Volpert, 2014). In particular, we are concerned with operators K taking the

form

(Kν)(x, t) =
∫ +∞

−∞
κ(x− y)ν(y, t)dy, (1.5)

where κ is a non-negative bounded function.

Secondly, to ensure existence and uniqueness of solutions to (1.4), we further assume m(ν, x) is

bounded above by some real number R and satisfies a continuity condition. In particular, for two

abundance densities ν1(x), ν2(x) with total abundances N1 =
∫

ν1(x)dx, N2 =
∫

ν2(x)dx, we assume

that, for every positive number M > 0, there exists a constant LM > 0 depending on M such that when

N1, N2 ≤ M, then

∫ +∞

−∞
|m(ν1, x)ν1(x)−m(ν2, x)ν2(x)| dx ≤ LM

∫ +∞

−∞
|ν1(x)− ν2(x)|dx. (1.6)

Existence and uniqueness of solutions to (1.4) also require an initial abundance density that is twice

continuously differentiable and integrable. That is, we require the second partial derivative ∂2

∂x2 ν(x, 0)

to be continuous in x and N(0) =
∫
|ν(x, 0)|dx < +∞.

These conditions satisfy some technical mathematical requirements, but to satisfy biological plausi-

bility we also require the initial condition to be non-negative with finite trait mean and variance. That

is, we assume ν(x, 0) ≥ 0 for all x ∈ R and

−∞ < x̄(0) =
∫ +∞

−∞
xp(x, 0)dx < +∞, (1.7a)

σ2(0) =
∫ +∞

−∞
(x− x̄(0))2 p(x, 0)dx < +∞, (1.7b)
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where x̄(t) and σ2(t) are respectively the phenotypic mean and variance at time t ≥ 0. In Appendix

A.1 we combine the above assumptions on growth rate, mutation and initial condition to prove that

solutions to (1.4) satisfy N(t), |x̄(t)|, σ2(t) < +∞ for all t ≥ 0.

Equation (1.4) can be seen as an analog of equation (1.1) for a continuum of types. By assuming

mutation acts via diffusion, the effect of mutation causes the abundance density ν(x, t) to flatten out

across phenotypic space. In fact, if the growth rate is constant across x, then this model of mutation

will cause ν(x, t) to converge to a flat line in x as t → ∞. Interpreting the trait value x as location

in geographic space, equation (1.4) becomes a well-studied model of spatially distributed population

dynamics (Cantrell and Cosner, 2004).

Although clearly an idealized representation of biological reality, this model is sufficiently general

to capture a large class of dynamics including density dependent growth and frequency dependent

selection. As an example, logistic growth combined with stabilizing selection can be captured using

the growth rate

m(ν, x) = R− a
2
(θ − x)2 − c

∫ +∞

−∞
ν(y, t)dy = R− a

2
(θ − x)2 − cN(t), (1.8)

where a > 0 the is strength of abiotic stabilizing selection around the phenotypic optimum θ, c > 0 is

the strength of intraspecific competition and we refer to R as the innate growth rate (see §1.3.3 below).

In the language of population ecology, r = R− a
2 (θ − x)2 is the intrinsic growth rate of the population

(Chesson, 2000). We have set κ(x− y) = 1 so that competitive interactions cause the same reduction in

fitness regardless of trait value.

This exemplary fitness function has a few convenient properties. First, the effect of competition

induces a local carrying capacity on the population, leading to a finite equilibrium abundance over

bounded subsets of phenotypic (or geographic) space. Second, abiotic selection prevents the abundance

density from diffusing too far from the abiotic optimum. In particular, when R > 1
2
√

aµ > 0, x̄(0) is

finite, σ2(0) is non-negative and finite and N(0) is positive and finite, this leads to a unique stable

equilibrium given by

N̂ = 1
c (R− 1

2
√

aµ), (1.9a)

ˆ̄x = θ, (1.9b)

σ̂2 =

√
µ

a
. (1.9c)

We demonstrate this result in Appendix A.2. The equilibrial phenotypic variance predicted by this

model coincides with a classic quantitative genetic result predicted by modelling the combined effects

of Gaussian stabilizing selection and the Gaussian allelic model of mutation (Bürger, 2000; Johnson

and Barton, 2005; Lande, 1975; Walsh and Lynch, 2018).

To derive a replicator-mutator equation from equation (1.4), we employ the chain rule from calculus.

Writing m̄(t) =
∫

m(ν, x)p(x, t)dx for the mean fitness, we have
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d
dt

N(t) =
d
dt

∫ +∞

−∞
ν(x, t)dx =

∫ +∞

−∞

∂

∂t
ν(x, t)dx

=
∫ +∞

−∞
m(ν, x)ν(x, t)dx +

∫ +∞

−∞

µ

2
∂2

∂x2 ν(x, t)dx

= N(t)
∫ +∞

−∞
m(ν, x)p(x, t)dx = m̄(t)N(t). (1.10)

Using our assumptions on mutation and fitness, we show in Appendix A.1 ν(x, t) is twice differen-

tiable with respect to x and N(t) < +∞ for all t ≥ 0. This implies that we are justified in swapping the

order of differentiation and integration and the result
∫

∂2

∂x2 ν(x, t)dx = 0 can be derived from the fun-

damental theorem of calculus. Biological reasoning agrees with this latter result since mutation neither

creates nor destroys individuals, but merely changes their type from their parental type. Taking the

same approach, we derive the dynamics of the phenotypic distribution p(x, t) in response to selection

and mutation as

∂

∂t
p(x, t) =

∂

∂t
ν(x, t)
N(t)

=
1

N2(t)

(
N(t)

∂

∂t
ν(x, t)− ν(x, t)

d
dt

N(t)
)

=
1

N(t)

(
m(ν, x)ν(x, t) +

µ

2
∂2

∂x2 ν(x, t)− m̄(t)ν(x, t)
)

=
(

m(ν, x)− m̄(t)
)

p(x, t) +
µ

2
∂2

∂x2 p(x, t). (1.11)

This result closely resembles Kimura’s continuum-of-alleles model (Kimura, 1965). The primary

difference being that our model utilizes diffusion instead of convolution with an arbitrary mutation

kernel. However, our model of mutation can be derived as an approximation to Kimura’s model, which

has been referred to as the Gaussian allelic approximation in reference to the distribution of mutational

effects on trait values at each locus in a genome (Bürger, 1986, 2000; Johnson and Barton, 2005; Lande,

1975), the infinitesimal genetics approximation in reference to modelling continuous traits as being

encoded by an infinite number of loci each having infinitesimal effect (Barton et al., 2017; Fisher, 1919)

and the Gaussian descendants approximation in reference to offspring trait values being normally

distributed around their parental values (Bulmer, 1971; Turelli, 2017).

To distinguish this model from previous models of phenotypic evolution we refer to PDE (1.4)

from which (1.11) was derived as the Deterministic Asexual Gaussian allelic model with Abundance

dynamics (abbreviated DAGA). Later, we will extend this model to include the effects of demographic

stochasticity, which we refer to as the Stochastic Asexual Gaussian allelic model with Abundance

dynamics (abbreviated SAGA).

Evolutionary dynamics We now apply DAGA to derive the dynamics of mean trait x̄ and pheno-

typic variance σ2. Both of these dynamics are expressible in terms of covariances with fitness. For an

abundance distribution ν(x) and associated phenotypic distribution p(x), the covariance of fitness and
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phenotype across the population is defined as

Covt
(
m(ν, x), x

)
=
∫ +∞

−∞

(
m(ν, x)− m̄(t)

)(
x− x̄(t)

)
p(x, t)dx. (1.12)

Hence, the dynamics of the mean trait x̄(t) can be derived as

d
dt

x̄(t) =
d
dt

∫ +∞

−∞
xp(x, t)dx =

∫ +∞

−∞
x

∂

∂t
p(x, t)dx

=
∫ +∞

−∞
x
(
m(ν, x)− m̄(t)

)
p(x, t) + x

µ

2
∂2

∂x2 p(x, t)dx = Covt
(
m(ν, x), x

)
. (1.13)

Equation (1.13) is a continuous time analog of the well known Robertson-Price equation without

transmission bias (Frank, 2012; Lion, 2018; Price, 1970; Queller, 2017; Robertson, 1966). Whether or not

the covariance of fitness and phenotype creates change in x̄ to maximize mean fitness m̄ depends on

the degree to which selection is frequency dependent (Lande, 1976). Since this change is driven by

a covariance with respect to phenotypic diversity, the response in mean trait to selection is mediated

by the phenotypic variance. In particular, when σ2 = 0, x̄ will not respond to selection. The result∫
x ∂2

∂x2 p(x, t)dx = 0 can be found by applying integration by parts.

Following the approach taken to calculate the evolution of x̄, we find the response of phenotypic

variation to this model of selection and mutation is

d
dt

σ2(t) = Covt

(
m(ν, x), (x− x̄)2

)
+ µ. (1.14)

For the sake of space we relegate the derivation of dσ2/dt to Appendix A.3. In the absence of

mutation equation (1.14) mirrors the result derived by Lion (2018) for discrete phenotypes. From a

statistical perspective, if we think of (x − x̄)2 as a square error, then in analogy to the dynamics of

the mean trait, we see that the response in σ2 to selection can be expressed as a covariance of fitness

and square error, which is defined in analogy to Covt(m(ν, x), x). Just as for the evolution of x̄(t), this

covariance also creates change in σ2 that can either increase or decrease mean fitness m̄, depending on

whether or not selection is frequency dependent. The effect of selection on phenotypic variance can be

positive or negative depending on whether selection is stabilizing or disruptive.

Extending DAGA to stochastic dynamics In Appendix A.12, we extend these results to include

the effects of demographic stochasticity. The idea is to add an appropriate noise term to DAGA. Hence,

we wish to study stochastic partial differential equations (SPDE) that provide natural generalizations

of DAGA. Fortunately, rigorous first principle derivations of such SPDE have been provided by Li

(1998) and Champagnat et al. (2006). The noise terms driving these SPDE are space-time white noise

processes, which are random processes uncorrelated in both space and time. In Appendix A.10, we

provide a set of heuristics for performing calculations with respect to space-time white noise, including

methods to derive SDE from SPDE in analogy to our derivations of ordinary differential equations

(ODE) from PDE above. Since our aim is to present this material to a wide audience of mathematical

evolutionary ecologists, our treatment of space-time white noise and stochastic integration deviates
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from standard definitions to remove the need for a detailed technical treatment. However, in Appendix

A.11, we show our heuristics are consistent with the rigorous infinite-dimensional stochastic calculus

presented in Da Prato and Zabczyk (2014). Using our simplified approach, the reader will only need

some elementary probability and an intuitive understanding of SDE, including Brownian motion, in

addition to the notions of Riemann integration and partial differentiation already employed.

To understand how SPDE can be derived from biological first principles, we provide in the fol-

lowing subsection an informal discussion of measure-valued branching processes (MVBP) (which treat

populations as sets of discrete individuals) and their diffusion limits (which treat populations as a mass

of “infinitesimal” individuals). We start by introducing a MVBP that models populations of individu-

als reproducing and passing away independently of each other and their trait value. We then discuss

a so-called superprocess (Etheridge, 2000) derived from a diffusion limit of this MVBP and, in the case

of univariate traits, an associated SPDE. Following this, we consider SPDE of superprocesses derived

from MVBP accounting for biological fitness functions that depend on the trait values of interacting

individuals.

Under the simplifying assumptions inherited from our treatment of deterministic dynamics and the

additional assumption that the magnitude of demographic stochasticity is independent of trait values,

we obtain as a special case a relatively simple expression for an SPDE that generalizes DAGA. The

simplicity of our special case allows us to use properties of space-time white noise processes to derive

a set of SDE that generalize equations (1.10), (1.13) and (1.14) to include the effects of demographic

stochasticity. Classical expressions for the effects of random genetic drift on the evolution of mean

traits are obtained as a further special case.

1.2.2 From branching processes to SPDE

In real populations individuals are born and potentially reproduce before they ultimately die. These

three events provide the basic ingredients of a branching process. Mathematical investigations of such

processes have a relatively deep history (Kendall, 1966). The most simple branching process, known as

the Galton-Watson process, describes the number of individuals alive at a given time t ≥ 0 as a non-

negative random integer (Kimmel and Axelrod, 2015). In these models individuals give rise to random

numbers of offspring which leads to a biological process known in theoretical ecology as demographic

stochasticity (Gotelli, 2001). By increasing the rate at which individuals reproduce and decreasing their

individual contributions to population size, Feller (1951) introduced a formal method to approximate

branching processes with diffusion processes that are continuous in time and in state (i.e., population

size is approximated as a continuously varying quantity). Since diffusion processes possess greater

analytical tractability than branching processes, Feller’s method, known as the diffusion limit, has

acquired immense popularity particularly in the field of mathematical population genetics (Ewens,

2004).

For over the past half of a century a great deal of accomplishments have been achieved in formal-

izing the diffusion limits of structured branching processes that describe populations of individuals

occurring in some continuous space (Barton and Etheridge, 2019; Bertoin and Le Gall, 2003; Dawson,

1975, 1978; Etheridge, 2008; Li, 1998; Méléard and Roelly, 1992, 1993; Perkins, 1992, 1995; Watanabe,
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1968). This space can represent geographic space or, relevant to our context, phenotypic space. Mathe-

matically, these processes can be formalized using MVBP (Dawson, 1993). In what follows we describe

a particularly important MVBP known as branching Brownian motion (BBM). This process has been

very useful in the study of SPDE due to its simplifying assumption that individuals do not interact.

However, this assumption imposes an unfortunate restriction by precluding the modelling of ecological

interactions. We therefore follow our discussion of BBM with a review of a few important results on

spatially structured branching processes that account for interactions.

Branching Brownian motion A BBM tracks individuals navigating d-dimensional Euclidean space

that reproduce and senesce between exponentially distributed intervals. Unlike other stochastic pro-

cesses that take values in Rd, BBM takes values in the set of non-negative finite measures over Rd. An

excellent introduction to the theory of measures has been provided by Axler (2019). Intuitively, one can

think of a finite measure as a function that maps subsets of Rd to real numbers. In particular, denoting

X a BBM, for a measurable subset D ⊂ Rd and a time t ≥ 0, X(D, t) returns the (random) integral

number of individuals alive within the region D at time t. By concentrating on so-called measurable

subsets (defined in Axler, 2019), we avoid pathological technical issues that would otherwise prevent

the use of stochastic integration needed later. For brevity, we write X(t) as shorthand for X(D, t) eval-

uated at an arbitrary measurable subset D. To keep our focus on the biological application, we refer to

a measure describing the state of a population, such as X(t), as a population distribution.

It will be useful to interpret the BBM X as a sum of point masses. A point mass at y ∈ Rd can

be represented by the Dirac measure δy which returns δy(D) = 1 if y ∈ D and δy(D) = 0 if y /∈ D.

Hence, one can think of the measure δy as a probability measure for a degenerate random variable

(i.e., a random variable that has no variance). Then, supposing at time t there are n(t) ∈ {0, 1, 2, . . . }
individuals with (random) trait values x1(t), . . . , xn(t)(t) and denoting δxi(t) the point mass located at

xi(t), we can express X(t) as

X(t) =
n(t)

∑
i=1

δxi(t). (1.15)

The BBM has three main components:

1) Branching rate: In our formulation of BBM we assume lifetimes of individuals are exponentially

distributed with death rate λ > 0 and reproduction occurs simultaneously with death. Bio-

logically, this implies individuals are semelparous. An alternative formulation treats birth and

death events separately to model iteroparity. However, under the appropriate rescaling, both

approaches converge to the same diffusion limit (Champagnat et al., 2006; Li, 1998). We therefore

choose the former approach for the sake of simplicity.

2) Reproductive law: When a birth event occurs we assume a random (possibly zero) number of off-

spring are produced. The distribution of offspring left is called the reproductive law or branching

mechanism. Traditional biological notation utilizes W to denote the average lifetime reproductive

output of an individual (i.e., fitness). However, since W is used here to denote either Brownian



11

motions or Brownian sheets, we adopt W to denote fitness. The variance of reproductive output

around this mean is denoted by V. The case of W = 1 is referred to as the critical condition. Since

the process tracking the total number of individuals, calculated for time t as X(Rd, t), is a Galton-

Watson branching process, it is well known the critical condition implies extinction in finite time

with probability one, given the initial total number of individuals is finite (i.e., X(Rd, 0) < +∞)

(Athreya and Ney, 1972).

3) Spatial movement: Each offspring is born at the current location of their parent. Immediately

after birth they move around space according to d-dimensional Brownian motion with diffusion

coefficient
√

µ. In our context we interpret spatial movement as mutation so that the location

where an individual dies represents the value of its expressed trait. Then an individual born at

location x ∈ Rd that lives for τ > 0 units of time will have a normally distributed trait centered

on x with covariance matrix equal to τµ times the d× d identity matrix. Hence, offspring inherit

normally distributed traits centered on their parental trait.

Although BBM provides a very flexible framework for simulating biological populations, its analyt-

ical tractability is limited due to the detailed description at the individual level. Evolutionary ecologists

are often concerned with population level details, such as abundance, mean trait and variance around

this mean trait. To extract tractable expressions that describe the evolution of such population level de-

tails while retaining key biological ingredients such as demographic stochasticity, we take a diffusion

limit of BBM. There are several ways to do this, but we summarize a simple approach.

First we rescale the mass of individuals by N0/n0 for positive integers n0 and some fixed positive

continously valued number N0 > 0. In particular, this means the point mass δxi(t) used to represent

the i-th individual of the population is replaced by N0
n0

δxi(t) for each i = 1, . . . , n(t). Hence, denoting

X(n0)(t) the rescaled version of the population distribution X(t), we have

X(n0)(t) =
N0

n0

n(t)

∑
i=1

δxi(t). (1.16)

We also rescale the branching rate by λ → n0 and fitness by W → W1/n0 and consider the limit as

n0 → ∞. Note that the initial rescaled measures satisfy X(n0)(Rd, 0) = N0 for each n0 = 1, 2, . . . . If

the sequence of rescaled initial population distributions X(1)(0), X(2)(0), . . . converges to a population

distribution X(0) with finite total abundance such that X(Rd, 0) = N0, the limiting process X defined

by X(D, t) = limn0→∞ X(n0)(D, t) is a superprocess known as a super-Brownian motion (Etheridge,

2000; Watanabe, 1968). Technically, super-Brownian motion refers to the special case of W = 1 and

X(Rd, 0) = 1. However, we also refer to the superprocess limit X as a super-Brownian motion for any

W > 0 and X(Rd, 0) ≥ 0.

Instead of returning the integral number of individuals alive in a region of space, a super-Brownian

motion returns the mass of the population concentrated in a region of space. Since we have rescaled

individual mass by N0/n0 and took the limit n0 → ∞, individuals are no longer discrete units. Instead,

the particle view of the population gets replaced by a blob spread across d-dimensional space. In
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particular, the value of X(D, t) is a continuously varying non-negative random variable for any t ≥
0 and D ⊂ Rd with an initial condition X(0) that satisfies X(Rd, 0) = N0. The initial population

distribution X(0) can be chosen by specifying a sequence of initial rescaled population distributions

X(n0)(0) that converge to X(0). Similar to the case of branching processes, when the initial total

abundance is finite (X(Rd, 0) < +∞), we have finite total abundances (X(Rd, t) < +∞) for all t > 0

(Etheridge, 2000). For the sake of biological plausibility and analytical tractability, we always assume

finite initial abundance.

Unfortunately, just as with cream cheese spread across too much toast, the blob perspective of the

population may exhibit some complicated spatial discontinuities that make precise results difficult to

obtain. However, for spatial dimension d = 1, it turns out that X(t) is absolutely continuous with

respect to the Lebesgue measure for each t ≥ 0 (Konno and Shiga, 1988; Reimers, 1989). This means

that we can write X(D, t) =
∫

D ν(x, t)dx for some density process ν(x, t) that is continuous in both x

and t and satisfies the SPDE

∂

∂t
ν(x, t) = (lnW)ν(x, t) +

µ

2
∂2

∂x2 ν(x, t) +
√

Vν(x, t)Ẇ(x, t), (1.17)

where Ẇ(x, t) is a space-time white noise process as defined in Appendix A.10.

Since ν(x, t) is not generally differentiable in x, the spatial derivative in expression (1.17) is taken

in the weak sense (Evans, 2010; Walsh, 1986). In particular, denoting C2
b(R) the set of bounded and

twice continuously differentiable functions on R, this means the spatial derivative in equation (1.17) is

defined indirectly such that

∫
R

f (x)
∂2

∂x2 ν(x, t)dx :=
∫

R
ν(x, t)

∂2

∂x2 f (x)dx, (1.18)

for every f ∈ C2
b(R). If ν(x, t) happens to be twice differentiable with respect to x, this definition

coincides with integration by parts. Hence, to rigorously interpret SPDE (1.17), we rewrite it as

∫
R

ν(x, t) f (x)dx−
∫

R
ν(x, 0) f (x)dx

=
∫ t

0

∫
R

ν(x, s)
(

lnW f (x) +
µ

2
∂2

∂x2 f (x)
)

dsdx

+
√

V
∫ t

0

∫
R

f (x)
√

ν(x, s)Ẇ(x, s)dxds, ∀ f ∈ C2
b(R). (1.19)

This expression is referred to as the weak solution of (1.17) (Walsh, 1986). Note that since ν(x, t) is

the density of a finite measure, it is integrable for each t ≥ 0. Thus, since f ∈ C2
b(R), it is bounded

and hence for some M > 0, | f (x)| ≤ M for every x ∈ R. This implies that
∫ t

0

∫
R
| f (x)|2ν(x, s)dxds

is finite with probability one for each t ≥ 0. As mentioned above, ν(x, t) is also continuous with

respect to t. In combination, these results enable us to employ the heuristics developed in Appendix

A.10 to understand and evaluate the white-noise integral on the right-hand side of equation (1.19).

In particular, evaluating equation (1.19) for the constant function f (x) ≡ 1 returns the total mass



13

process of the super-Brownian motion, which we refer to as the total abundance N(t) in our biological

application.

A convergence theorem for the diffusion limit of a generalization of BBM was established by Watan-

abe (1968). Dawson (1975) suggested that, for spatial dimension d = 1, this diffusion limit should ad-

mit a density process that satisfies a SPDE. Konno and Shiga (1988) and Reimers (1989) independently

proved Dawson’s suggestion was indeed correct. The diffusion limit of this more general branching

process (in arbitrary spatial dimension) is referred to as a Dawson-Watanabe superprocess (Etheridge,

2000). Conditioning a Dawson-Watanabe superprocess to have constant mass returns a Fleming-Viot

process (Etheridge and March, 1991; Perkins, 1991) which has been popular in studies of spatial pop-

ulation genetics. In particular, an extension of the Fleming-Viot process, which Etheridge (2008) has

dubbed the Λ-Fleming-Viot process, was introduced by Bertoin and Le Gall (2003). Etheridge (2008)

used the Λ-Fleming-Viot process to resolve a long-held technical challenge in modelling isolation by

distance (Barton and Etheridge, 2019; Barton et al., 2013; Felsenstein, 1975).

Although this provides an impressive list of accomplishments, the Dawson-Watanabe superprocess

falls short of our needs. In particular this process assumes individuals do not interact and thus pre-

cludes its ability to model nonlocal effects on the fitness of individuals, such as those produced via

competitive interactions. Fortunately, this concern has been addressed by Champagnat et al. (2006);

Evans and Perkins (1994); Li (1998); Méléard and Roelly (1992, 1993) and others, leading to construc-

tions of superprocesses that account for interactions among individuals. In the next subsection we

summarize relevant results in this area and introduce the SPDE that provides the basis for our ap-

proach to theoretical evolutionary ecology.

Interacting superprocesses Above we reviewed the diffusion limit of an especially tractable measure-

valued branching process, the branching Brownian motion (BBM). However, we found the simplicity

of this process restricts us from modelling the effects due to interactions between individuals. Here,

we discuss superprocesses that account for such effects. The existence of diffusion limits for a class of

MVBP allowing for individual interactions has been treated by Méléard and Roelly (1992, 1993). The

interactions can manifest as dependencies of the spatial movement or reproductive law of individuals

on their position x and the state of the whole population described by X(t).

An important result of Méléard and Roelly (1992, 1993) is a theorem that provides sufficient condi-

tions to construct a sequence of rescaled measure-valued branching processes that converge to a gener-

alization of the Dawson-Watanabe superprocess that includes interactions. The rescaling is analogous

to that described above for non-interacting Dawson-Watanabe superprocesses, but now the mean and

variance in reproductive output W(X(t), x) and V(X(t), x), branching rate λ(X(t), x) and mutation

rate µ(X(t), x) are allowed to depend on the whole population X(t) and individual location x. Since

these parameters are now functions of X(t) and x, we need to extend the diffusion limit presented for

the non-interacting processes.

Although Méléard and Roelly (1992, 1993) provide a very general strategy for taking diffusion

limits of interacting MVBP, we focus on a tractable, yet flexible approach. For simplicity we assume

spatial dimension d = 1 and branching rate λ, mutation rate µ and variance in reproductive output V
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are constant with respect to X(t) and x so that the effects of interactions only manifest in the fitness

W(X(t), x) of individuals. When it exists, we denote by ν(x, t) the density of the limiting superprocess.

We again rescale the branching rate by λ → n0 and individual mass by N0/n0. Then, the Malthusian

fitness m(ν, x) can be calculated as

m(ν, x) = lim
n0→∞

n0

(
W1/n0(X(t), x)− 1

)
. (1.20)

In Figure 1.1 we demonstrate this rescaling in discrete time for a population experiencing stabilizing

selection and logistic growth. In particular, we employed a rescaled fitness such that the limit (1.20)

converges to the Malthusian fitness given by equation (1.8) in §1.2.1. Since time is discretized, the

process we simulate is formally a branching random walk. For further details on our simulation see

Appendix A.6.

Li (1998) built directly off of the construction of Méléard and Roelly (1992, 1993) to study properties

of interacting superprocesses and, by assuming individual spatial movement occurs independently of

location x and the entire population X(t), showed the evolution of associated density processes can

be described by a SPDE. Assuming the interactions manifest only in the reproductive law and that

spatial movement follows Brownian motion with mutation rate µ independent of both X(t) and x and

the growth rate m(ν, x) is bounded both above and below, Li’s (1998) result implies the interacting

superprocess on one dimensional trait space has a density ν(x, t) which is non-negative, integrable,

continuous in time and space and satisfies the SPDE

∂

∂t
ν(x, t) = m(ν, x)ν(x, t) +

µ

2
∂2

∂x2 ν(x, t) +
√

Vν(x, t)Ẇ(x, t). (1.21)

As mentioned in §1.2.1, we refer to SPDE (1.21) as the Stochastic Asexual Gaussian allelic model

with Abundance dynamics (abbreviated SAGA).

By assuming growth rates are only bounded above, Evans and Perkins (1994) proved a result

that demonstrates the existence and uniqueness for multiple interacting superprocesses. The result

is known as a bivariate Girsanov transform and formally demonstrates existence for a pair of interact-

ing superprocesses engaged in resource competition following our treatment provided in Appendix

§A.7. By lumping the pair of interacting superprocesses into a single superprocess such that individu-

als are now represented by a discrete trait indicating which species they belong to in addition to their

trait value, we can consider interactions with yet another superprocess and in this way extend the bi-

variate Girsanov transform to a multivariate Girsanov transform which then establishes existence of S

superprocesses engaged in resource competition. Although we are unaware of conditions under which

these superprocesses admit density processes that satisfy SPDE, the derivations of SDE from SPDE us-

ing weak solutions given below can be thought of as shorthand for deriving SDE from superprocesses

by extending the dual space to include the test functions f (x) = 1, x, x2 when possible. We therefore

continue our treatment from the SPDE perspective in what follows.

Deriving SDE from SPDE Assuming solutions to SAGA are well defined, we can calculate the total

mass process N(t) using the weak solution (see eqn. (1.19)) of SPDE (1.21) with f (x) ≡ 1. This implies
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Figure 1.1: Rescaled sample paths of a branching random walk under stabilizing selection and logistic
growth. The top plot displays a sample path without scaling (n = 1), the middle plot shows a sample
path rescaled by n = 5 and the bottom plot shows a sample path rescaled by n = 20. For each of
these plots we have set the innate growth rate to R = 1.0, phenotypic optimum to θ = 0, strength of
abiotic stabilizing selection to a = 0.01, sensitivity to competition to c = 2× 10−3 and mutation rate to
µ = 1× 10−3.
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N(t)− N(0) =
∫ t

0

∫
R

ν(x, s)
(

m(ν, x) · 1 + µ

2
∂2

∂x2 1
)
+ 1
√

Vν(x, s)Ẇ(x, s)dsdx

=
∫ t

0
m̄(s)N(s)dt +

√
V
∫ t

0

√
N(s)dŴs

(√
ν(x, s)

)
, (1.22)

where the population growth rate is calculated as

m̄(t) =
1

N(t)

∫
R

m(ν, x)ν(x, t)dx, (1.23)

and Ŵs

(√
ν(x, s)

)
is a standard Brownian motion (see Appendix A.10) given by

∫ t

0
dŴs

(√
ν(x, s)

)
=
∫ t

0

∫
R

√
ν(x, s)√∫

R
ν(x, s)dx

Ẇ(x, s)dxds. (1.24)

Setting W1(t) = Ŵt(
√

ν(x, t)), we can use traditional stochastic differential notation to write

dN = m̄Ndt +
√

VNdW1. (1.25)

To find the associated SDE for x̄(t) and σ2(t), we want to repeat the same approach for f (x) = x, x2

and apply Itô’s lemma. However, for these cases f /∈ C2
b(R) since f will not be bounded. But, if we can

show
∫

R
(|x|+ x2 + x4)ν(x, t)dx < +∞ for all t > 0 given this condition is satisfied by ν(x, 0), then we

can apply the weak solution of (1.21) to derive SDE for x̄(t) and σ2(t). To illustrate, let us suppose this

is the case. Setting x̃(t) =
∫

R
xν(x, t)dx, we have

x̃(t) = x̃(0) +
∫ t

0

∫
R

ν(x, s)m(ν, x)x + x
√

Vν(x, s)Ẇ(x, s)dxds. (1.26)

Similarly, setting ˜̃σ2(t) =
∫

R
x2ν(x, t)dx, we have

˜̃σ2(t) = ˜̃σ2(0) +
∫ t

0

∫
R

ν(x, s)
(

m(ν, x)x2 + µ
)
+ x2

√
Vν(x, s)Ẇ(x, s)dxds. (1.27)

Since x̄(t) = x̃(t)/N(t) and σ2(t) = ˜̃σ2(t)/N(t) − x̄2(t), we can use Itô’s lemma to derive SDE

for x̄(t) and σ2(t), which we perform in Appendix A.12. We make no attempt in finding sufficient

conditions to ensure
∫

R
(|x|+ x2 + x4)ν(x, t)dx < +∞ and hence make no general assertions about the

existence or uniqueness of x̄(t) or σ2(t). Regardless, we will later assume ν(x, t) can be approximated

by a Gaussian curve in x for all t ≥ 0. This assumption implies
∫

R
|x|nν(x, t)dx < +∞ for all n ∈

{1, 2, . . . } and for all t ≥ 0 and hence guarantees the existence of x̄(t) and σ2(t) for all t > 0.

1.2.3 Equations of evolutionary and demographic dynamics

Here we return to our biological application of measure-valued branching processes and white noise

calculus. In particular, we introduce SDE modeling the dynamics of total abundance N(t), mean trait

x̄(t) and trait variance σ2(t). In Appendix A.12 we derive these SDE from equation (1.21) of the main
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text, which we refer to as the Stochastic Asexual Gaussian allelic model with Abundance dynamics

(SAGA). SAGA is a SPDE model tracking the dynamics of an abundance density ν(x, t) driven by a

Malthusian growth rate m(ν, x), diffusive mutation at the rate µ ≥ 0 and demographic stochasticity

modulated by the variance in reproductive output V ≥ 0. We begin by considering a general form of

these expressions that hold for a wide range of phenotypic distributions. However, the generality of

these expressions come at the cost of pragmatic applicability. Then, to transform these equations into

useful tools for deriving stochastic models of biological populations, we consider a particular case by

assuming normally distributed trait values. Following this simplification we incorporate a model of

imperfect inheritance based on classical quantitative genetic theory. Under this model of inheritance

we derive a SDE that tracks the stochastic dynamics of additive genetic variance G(t) (the component

of trait variance σ2(t) explained by additive allelic effects) in response to mutation, selection and

demographic stochasticity. The expressions we present in this section provide a general set of tools

for deriving stochastic eco-evolutionary dynamics and sets the stage for deriving our model of diffuse

coevolution presented in §1.3.

General expressions As mentioned above, we begin with general expressions describing the stochas-

tic evolution of abundance, mean trait and trait variance. In particular, these expressions hold for

abundance densities ν(x, t) that are continuous (but not necessarily differentiable) in x and t such that∫
(x2 + x4)ν(x, t)dx < +∞. The second condition implies the total abundance N(t) is finite and the

mass of the population is not spread out too far in phenotypic space (e.g., finite trait variance). Al-

though future work is needed to understand the restrictions on growth rate m(ν, x) that rigorously

justify the following expressions, our simulations suggest that quadratic stabilizing selection combined

with an upper bound on m(ν, x) is sufficient. Assuming these conditions are met, we find the following

system of SDE;

dN(t) = m̄(t)N(t)dt +
√

VN(t)dW1(t), (1.28a)

dx̄(t) = Covt

(
x, m(ν, x)

)
dt +

√
V

σ2(t)
N(t)

dW2(t), (1.28b)

dσ2(t) = Covt

(
(x− x̄(t))2, m(ν, x)

)
dt +

(
µ−V

σ2(t)
N(t)

)
dt

+

√
V
(x− x̄(t))4 − σ4(t)

N(t)
dW3(t), (1.28c)

where W1, W2 and W3 are standard Brownian motions and barred expressions such as m̄(t) and

(x− x̄(t))4 are averaged quantities across phenotypic space with respect to p(x, t) = ν(x, t)/N(t).

Dividing by dt one can interpret equations (1.28) as if they are ordinary differential equations, but this

is not technically rigorous since Brownian motion is nowhere differentiable with respect to time. In

Appendix A.12 we show that in general W1(t) is independent of both W2(t) and W3(t), but W2(t) and

W3(t) may covary depending on the shape of p(x, t).
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Many known results follow directly from expressions (1.28). Firstly, assuming no variance in re-

productive output so that V = 0 recovers the deterministic dynamics derived in §1.2.1. Alternatively,

one can take N(t) → ∞ to recover the deterministic dynamics for x̄(t) and σ2(t). Characteristically,

we note the effect of demographic stochasticity on abundance grows with
√

N(t). Hence, dividing

by N(t), we find the effects of demographic stochasticity on the per-capita growth rate diminish with

increased abundance. Relating the response to demographic stochasticity derived here to the effect of

random genetic drift derived in classic quantitative genetic theory, if we set σ2(t) = σ2 and N(t) = N

constant with respect to time, then integrating the stochastic term in equation (1.28b) over a single unit

of time returns a normally distributed random variable with mean zero and variance equal to Vσ2/N.

In particular, assuming perfect inheritance, when reproductive variance is unity (V = 1) this random

variable coincides with the effect of random genetic drift on the change in mean trait over a single

generation derived using sampling arguments (Lande, 1976). There is also an interesting connection

with classical population genetics. A fundamental result from early population genetic theory is the

expected reduction in diversity due to the chance loss of alleles in finite populations (Fisher, 1923;

Wright, 1931). This expected reduction in diversity due to random genetic drift is captured by the third

term in the deterministic component of expression (1.28c), particularly −Vσ2(t)/N(t). The component

of SDE (1.28c) describing random fluctuations in σ2(t) is more complicated and is proportional to the

root of the difference between the centralized fourth moment of p(x, t) and σ4(t).

These expressions can be used to investigate the dynamics of the mean and variance for a very

general set of phenotypic distributions. However, in the next subsection we simplify these expressions

by assuming normally distributed trait values, known as the Gaussian population assumption (Turelli

2017). Under this assumption we guarantee the existence of x̄(t) and σ2(t) for all t such that N(t) > 0.

Furthermore, in Appendix A.12 we show that under the Gaussian case W1, W2 and W3 are independent.

Hence, although the Gaussian population assumption is very restrictive as a model of phenotypic

diversity and, except for very special cases of Malthusian growth rates, is not formally justified, its

exceedingly convenient properties make it an important initial approximation.

Particular results assuming a Gaussian phenotypic distribution By assuming normally dis-

tributed trait values, expressions (1.28) transform into efficient tools for deriving the dynamics of pop-

ulations given a fitness function m(ν, x). Gaussian phenotypic distributions can be formally obtained

through Gaussian, exponential or weak selection approximations together with a simplified model of

mutation, genotype-phenotype mapping and asexual reproduction or random mating (Bürger, 2000;

Lande, 1980; Turelli, 1984, 1986, 2017). Hence, given appropriate assumptions on selection, mutation

and reproduction, the abundance density ν(x, t) can be approximated as a Gaussian curve in x when

the ratio V/N is small (i.e., when the variance in reproductive output is much smaller than the pop-

ulation size). As with any diffusion approximation, this requires a sufficiently large abundance to

accurately reflect the dynamics of populations. Therefore, models developed in this framework are not

suitable for studies involving very small population sizes. Allowing for these restrictions, we assume

ν(x, t) =
N(t)√
2πσ2(t)

exp

(
−
(
x− x̄(t)

)2

2σ2(t)

)
. (1.29)
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Under this assumption we find in Appendix A.4 covariances with fitness can be written in terms of

fitness gradients. In particular,

Cov(x, m) = σ2

(
∂m̄
∂x̄
− ∂m

∂x̄

)
, (1.30a)

Cov
(
(x− x̄)2, m

)
= 2σ4

(
∂m̄
∂σ2 −

∂m
∂σ2

)
(1.30b)

and (x− x̄)4 = 3σ4. These results imply trait dynamics can be rewritten as

dx̄ = σ2

(
∂m̄
∂x̄
− ∂m

∂x̄

)
dt +

√
V

σ2

N
dW2, (1.31a)

dσ2 = 2σ4

(
∂m̄
∂σ2 −

∂m
∂σ2

)
dt +

(
µ−V

σ2

N

)
dt + σ2

√
2V
N

dW3. (1.31b)

These equations allow us to derive the response in trait mean and variance by taking derivatives of

fitness, a much more straightforward operation than calculating a covariance for general phenotypic

distributions. Note that in the above expressions, the partial derivatives of m̄ represent frequency inde-

pendent selection and the averaged partial derivatives of m represent frequency dependent selection.

This relationship has already been pointed out by Lande (1976) for the evolution of the mean trait in

discrete time, but here we see an analogous relationship holds in continuous time and also for the

evolution of trait variance.

In what follows we generalize this result to the case when traits are imperfectly inherited. In this

case, the phenotypic variance σ2 is replaced by a genetic variance G. This genetic variance represents

the component of σ2 explained by additive effects among genetic loci encoding for the focal phenotype

(Bulmer, 1971; Roughgarden, 1979; Walsh and Lynch, 2018). It is therefore fitting that G is referred to

as the additive genetic variance.

Inheritance To model imperfect heritability we consider the relationship between expressed pheno-

types x ∈ R and associated genetic values g ∈ R known as breeding values. The breeding value (called

genotypic value in Bulmer, 1971; Walsh and Lynch, 2018) of an individual is the sum of additive effects

of the alleles carried by the individual on its expressed trait. Hence, if the trait is encoded by L loci and

the additive effect at locus l is al , then g = ∑L
l=1 al . The additive genetic variance G is just the variance

of breeding values in a population (Bulmer, 1971; Walsh and Lynch, 2018). Following Lande (1975),

we assume a mutation at locus l occurs with probability M and replaces the additive effect al with

al + κl where κl is normally distributed with a mean of zero and variance µ/M. Hence, we adopt the

Gaussian allelic model of mutation. Next, we implement an infinitesimal approximation by assuming

breeding values are determined by an infinite number of loci. Although very general infinitesimal

approximations have been provided by Barton et al. (2017), for the sake of simplicity we employ a

less technical approach. In particular, we rescale the mutational effects κl by 1/
√

L and take the limit

L → ∞. Then, denoting g′ the breeding value of an offspring produced by a parent with breeding



20

value g and Il the indicator variable determining whether or not a mutation occurs at locus l, we have

g′ = g + lim
L→∞

1√
L

L

∑
l=1

Ilκl . (1.32)

This limit implies that g′ has expected value g and variance µ. Thus, our assumptions yield the

Gaussian descendants approximation coined by Turelli (2017). For a detailed treatment of breeding

values, additive genetic variances and more general genetic architectures see Walsh and Lynch (2018).

Development Our treatment of the relationship between breeding values and expressed traits follows

classical quantitative genetic assumptions such as those used by Bulmer (1971) to investigate the effect

of selection on genetic variation. In particular, we ignore epistatic interactions so that effects at different

loci combine additively. Since our treatment assumes haploid asexuals, there are no contributions of

dominance or inbreeding depression to phenotypic variance. We assume expressed traits for given

individuals are normally distributed around their breeding values with a fixed variance η. Hence,

phenotypic variance decomposes as σ2 = G + η. The variance η is referred to as developmental noise

(Walsh and Lynch, 2018). For a fixed breeding value g, we denote the probability density of a randomly

drawn expressed trait x by ψ(x, g) so that

ψ(x, g) =
1√
2πη

exp
(
− (x− g)2

2η

)
. (1.33)

Selection On Breeding Values To include the relationship between breeding values and expressed

traits in our framework, we write ρ(g, t) as the abundance density of breeding values at time t so that

∫ +∞

−∞
ρ(g, t)dg =

∫ +∞

−∞
ν(x, t)dx = N(t). (1.34)

We switch our focus from directly modelling the evolution of ν(x, t) to modelling the evolution of

ρ(g, t). Once ρ(g, t) is determined, we can compute ν(x, t) via

ν(x, t) =
∫ +∞

−∞
ρ(g, t)ψ(x, g)dg. (1.35)

However, since selection acts on expressed phenotypes, we use the assumed relationship between

breeding values and expressed traits to calculate the fitness of breeding values. To motivate the ap-

proach taken, consider the problem of inferring the breeding value of an individual given its expressed

trait x. Denote g a random variable representing the unknown breeding value. Under the above model

of development we know x is a random sample from a normal distribution with mean g and variance

η. Maximizing likelihood suggests x is our best guess for g, but the actual value of g is normally dis-

tributed around x with the variance η. Hence, for fixed x, we obtain ψ(x, g) as the probability density

of g. Thus, the mean fitness of a breeding value g across all individuals carrying g can be written as

m∗(ρ, g) =
∫ +∞

−∞
m(ν, x)ψ(x, g)dx. (1.36)

This is similar to the approach taken by Kimura and Crow (1978) to calculate the overall effects
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of selection for expressed characters onto the changes in the distribution of alleles encoding those

characters. However, instead of focusing on the frequencies of alleles at particular loci, our results focus

on the densities of breeding values. With the relationship between m(ν, x) and m∗(ρ, g) established, we

define the evolution of ρ(g, t) by the SPDE

ρ̇(g, t) = m∗(ρ, g)ρ(g, t) +
µ

2
∂2

∂2g
ρ(g, t) +

√
Vρ(g, t)Ẇ(g, t). (1.37)

Equation (1.37) is a stochastic generalization of DAGA, the deterministic PDE (1.4) from §1.2.1.

However, equation (1.37) describes the evolution of the distribution of breeding values instead of ex-

pressed characters. Regardless, whether modelling expressed characters or breeding values, we refer

to SPDE of the form (1.37) as Stochastic Asexual Gaussian allelic models with Abundance dynamics

(abbreviated SAGA). In §1.2.2 we reviewed the origins of equation (1.37) and in Appendix A.10 we

develop some heuristics to perform calculations with respect to the space-time white noise term Ẇ.

Evolution Assuming ρ(g, t) is Gaussian implies its mode coincides with x̄. Furthermore, since

σ2 = G + η, we can use equation (1.36) and the chain rule from calculus (see Appendix A.5) to find

∂m̄
∂G

=
∂m̄
∂σ2

∂σ2

∂G
=

∂m̄
∂σ2 , (1.38a)

∂m
∂G

=
∂m
∂σ2

∂σ2

∂G
=

∂m
∂σ2 . (1.38b)

Thus, equations (1.31) become

dx̄ = G

(
∂m̄
∂x̄
− ∂m

∂x̄

)
dt +

√
V

G
N

dW2, (1.39a)

dG = 2G2

(
∂m̄
∂G
− ∂m

∂G

)
dt +

(
µ−V

G
N

)
dt + G

√
2V
N

dW3. (1.39b)

From expressions (1.39) we see that, under this model of inheritance, focusing on additive genetic

variance G instead of the variance in expressed traits σ2 makes no structural changes to the basic

equations describing the dynamics of populations. Instead we see the role played by the variance of

expressed traits is now being played by the additive genetic variance. In the next section, we make use

of these expressions to develop a model of diffuse coevolution in a guild of S species competing along

a resource continuum.

1.3 A model of diffuse coevolution

In this section we demonstrate the use of our framework by developing a model of diffuse coevolu-

tion across a guild of S species whose interactions are mediated by resource competition along a single

niche axis. Because our approach treats abundance dynamics and evolutionary dynamics simultane-

ously, this model allows us to investigate the relationship between selection gradients and competition

coefficients, which we carry out in what follows.
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1.3.1 Formulation

The dynamics of phenotypic distributions and abundances have been derived above and so the

only task remaining is the formulation of a fitness function. Our approach mirrors closely the theory

developed by Levins (1968); MacArthur and Levins (1967) and MacArthur (1969, 1970, 1972). The

most significant difference, aside from allowing evolution to occur, is the treatment of resource quality,

which we replace with a model of abiotic stabilizing selection. A derivation is provided in Appendix

A.7.

Abiotic selection and competition For species i we inherit the above notation for trait value,

distribution, average, variance, abundance, etc., except with an i in the subscript. Real world examples

of niche axes include the size of seeds consumed by competing finch species and the date of activity in

a season for pollinators competing for floral resources. For mathematical convenience, we model the

axis of resources by the real line R. The value of a resource along this axis is denoted by the symbol ζ.

For an individual in species i, we assume the resource utilization curve ui can be written as

ui(ζ, xi) =
Ui√
2πwi

exp
(
− (xi − ζ)2

2wi

)
. (1.40)

We further assume the niche center xi is normally distributed among individuals in species i, but

the niche breadth wi and total niche utilization Ui are constant across individuals in species i and

therefore cannot evolve. Among all the resources available (ie., among all possible real numbers), we

suppose species i benefits most from resources with value θi ∈ R. In the absence of competition, we

further suppose individuals leave on average Qi offspring when their utilization curve is concentrated

at θi (that is, when xi = θi and wi = 0). We assume the benefits for individuals of species i derived

from resources with value ζ ∈ R decreases as (ζ − θi)
2 increases at a rate Ai > 0. In particular, we

assume abiotic stabilizing selection along the resource axis can be modelled by the curve

ei(ζ) = Qi exp
(
−Ai

2
(θi − ζ)2

)
. (1.41)

The effect of abiotic stabilizing selection on the fitness for an individual of species i with niche

location xi is then given by

∫ +∞

−∞
ei(ζ)ui(ζ, xi)dζ =

QiUi√
Aiwi + 1

exp
(
− Ai

2(Aiwi + 1)
(θi − xi)

2
)

. (1.42)

To determine the potential for competition between individuals with niche locations xi and xj,

belonging to species i and j respectively, we compute the niche overlap

Oij(xi − xj) =
∫ +∞

−∞
ui(ζ, xi)uj(ζ, xj)dζ =

UiUj√
2π(wi + wj)

exp

(
−

(xi − xj)
2

2(wi + wj)

)
. (1.43)

To map the degree of niche overlap to fitness, we assume competition between individuals with

niche locations xi and xj decreases the expected reproductive output for the individual in species i

at the rate ciOij(xi − xj) for some ci > 0. We refer to ci as the strength of competition for species i.
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The term ciOij(xi − xj) coincides with a special case of a term used to capture competition in Daw-

son’s geostochastic logistic model, an SPDE model developed to study the combined effects of demo-

graphic stochasticity, spatial dispersion and locally finite carrying capacity (Dawson, 1978). Recalling

the constraints on fitness discussed in §1.2.1, we see this model of competition also coincides with

κ(xi − xj) = Oij(xi − xj), where κ was introduced in §1.2.1 to capture nonlocal effects of the abundance

density ν(x, t) on the fitness of individuals (Champagnat et al., 2006; Volpert, 2014).

The fitness function Assuming the effects due to competitive interactions and abiotic stabilizing

selection on the expected reproductive output of individuals accumulates multiplicatively, we derive

in Appendix A.7 an expression for the expected reproductive output of individuals in each. Applying

a series of diffusion limits, we then find the following expressions for the Malthusian growth rate

associated with trait value x for species i along with the population growth rate of species i:

mi(x) = Ri −
ai
2
(θi − x)2 − ci

S

∑
j=1

NjUiUj

√
b̃ij

2π
e−

b̃ij
2 (x−x̄j)

2
, (1.44a)

m̄i = Ri −
ai
2

(
(θi − x̄i)

2 + Gi + ηi

)
− ci

S

∑
j=1

NjUiUj

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2
, (1.44b)

where ai is the strength of abiotic stabilizing selection on species i. The variables b̃ij, bij determine

the sensitivity of competitive effects on species i to differences in trait centers between species i and

j. We refer to Ri as the innate growth rate of species i to distinguish it from the intrinsic growth rate

commonly referred to in the field of population ecology. These are composite parameters given by the

following expressions:

Ri = ln
(

QiUi√
1 + Aiwi

)
, (1.45a)

ai =
Ai

1 + Aiwi
, (1.45b)

b̃ij(t) =
(
wi + wj + ηj + Gj(t)

)−1, (1.45c)

bij(t) = bji(t) =
(
wi + wj + ηi + ηj + Gi(t) + Gj(t)

)−1. (1.45d)

1.3.2 The model

In Appendix A.7 we combine equations (1.28a), (1.39) and (1.44) to find

dNi =

{
Ri −

ai
2

(
(θi − x̄i)

2 + Gi + ηi

)
− ci

S

∑
j=1

NjUiUj

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2

}
Nidt +

√
Vi NidW1, (1.46a)

dx̄i =

{
aiGi(θi − x̄i)− ciGi

( S

∑
j=1

NjUiUjbij(x̄j − x̄i)

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2
)}

dt +

√
Vi

Gi
Ni

dW2, (1.46b)
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dGi =

{
ciGi

2
( S

∑
j=1

NjUiUjbij

(
1− bij(x̄i − x̄j)

2
)√ bij

2π
e−

bij
2 (x̄i−x̄j)

2

+ NiU2
i bii

√
bii
2π

+ µi − aiGi
2 −Vi

Gi
Ni

)}
dt + Gi

√
2Vi
Ni

dW3. (1.46c)

Model behavior Despite the convoluted appearance of system (1.46), there are some nice features

that reflect biological reasoning. For example, the dynamics of abundance are just a generalization of

Lotka-Volterra dynamics. In particular, the effect of competition with species j on the fitness of species

i grows linearly with Nj. However, as biotic selection pushes x̄i away from x̄j, the effect of competition

with species j on the fitness of species i rapidly diminishes due to the Gaussian weights capturing a

reduction in niche overlap. These Gaussian weights have been usefully employed to capture interaction

preference in recent investigations of coevolution in mutualistic networks (de Andreazzi et al., 2019;

Guimarães et al., 2017; Medeiros et al., 2018). The divergence of x̄i and x̄j due to competition is referred

to in the community ecology literature as character displacement (Brown and Wilson, 1956). We also

see that the fitness of species i drops quadratically with the difference between x̄i and the abiotic

optimum θi. Hence, abiotic selection acts to pull x̄i towards θi.

The response in mean trait x̄i to natural selection is proportional to the amount of heritable variation

in the population, represented by the additive genetic variance Gi. However, we have that Gi is itself a

dynamic quantity. Under our model, abiotic stabilizing selection erodes away heritable variation at a

rate that is independent of both Ni and x̄i. The effect of competition on Gi is a bit more complicated.

When bij(x̄i − x̄j)
2 < 1, competition with species j acts as diversifying selection which tends to increase

the amount of heritable variation. However, when bij(x̄i − x̄j)
2 > 1, competition with species j acts

as directional selection and reduces Gi. In the following subsections we demonstrate the behavior of

system (1.46) by plotting numerical solutions and investigate implications for the relationship between

the strength of ecological interactions and selection.

Community dynamics For the sake of illustration we numerically integrated system (1.46) for a rich-

ness of S = 100 species. We assumed homogeneous model parameters across species in the community

as summarized by Table 1.1. We repeated numerical integration under the two scenarios of weak and

strong competition. For the first scenario of weak competition we set c = 1.0× 10−7 and for the second

scenario of strong competition we set c = 5.0× 10−6. With these two sets of model parameters, we

simulated our model for 1000.0 units of time. For both scenarios, we initialized the trait means to

x̄i = 0.0, additive genetic variances to Gi = 10.0 and abundances to Ni = 1000.0 for each i = 1, . . . , S.

Temporal dynamics for each scenario are provided in Figure 1.2. This figure suggests weaker

competition leads to smoother dynamics and a higher degree of organization within the community.

Considering expression (1.46a) we note that, all else equal, relaxed competition allows for larger growth

rates which promote greater abundances. From (1.46a) we also note that the per-capita effects on

demographic stochasticity diminish with abundance. To see this, divide both sides by Ni.

Inspecting expressions (1.46b) and (1.46c), we see that larger abundances also erode the effects of

demographic stochasticity on the evolution of mean trait and additive genetic variance. These effects



25

Figure 1.2: Temporal dynamics of mean trait (top), additive genetic variance (middle) and abundance
(bottom) for the scenario of weak competition (left) and strong competition (right).

Table 1.1: Values of model parameters used for numerical integration.

Parameter Description Value
S species richness 100
R innate growth rate, see §1.3.3 1.0
θ abiotic optimum 0.0
a strength of abiotic selection 0.01
c sensitivity to competition {1.0× 10−7, 5.0× 10−6}
w niche breadth 0.1
U total niche use 1.0
η developmental noise 1.0
µ mutation rate 1.0× 10−7

V variance of reproductive output 5.0
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were already noted in §1.2.3, and thus are not a consequence of our model of coevolution per-se, but we

revisit them here since Figure 1.2 demonstrates the importance of demographic stochasticity in struc-

turing ecological communities even when populations are very large. Hence, contrary to the common

assumption that stochastic effects can be ignored for large populations, we find that minute asymme-

tries generated by demographic stochasticity remain significant drivers of community structure. In

particular, although we initialized each species with identical state variables and model parameters,

we found an enormous amount of asymmetry in both the evolutionary and abundance dynamics and

even some peculiar synchronized shifts. Although future work may show these bizarre features always

dissipate after the system has been given sufficient time to evolve, we see demographic stochasticity

has pronounced effects on communities experiencing non-equilibrium dynamics.

Although Figure 1.2 displays interesting patterns in the dynamics of abundance and trait evolution,

we are interested in developing a quantitative understanding of the relationship between abundance

dynamics and trait evolution. In the following subsection we take a step in this direction by approx-

imating correlations between competition coefficients and components of selection gradients induced

by interspecific interactions.

1.3.3 The relation between the strength of ecological interactions and selection

Here we investigate the relationship between competition coefficients, which measure the effect of

ecological interactions on abundance dynamics, with selection gradients, which measure the magni-

tude and direction of selection on mean trait and trait variance. We start by considering the expressions

of absolute competition coefficients implied by equations (1.46). However, it turns out absolute com-

petition coefficients display some unfortunate behaviour with respect to our model. We therefore in-

troduce a slightly modified form of absolute competition coefficients. We then provide formula for the

components of linear and quadratic selection coefficients corresponding to the effects of interspecific

interactions. Lastly, we use a high richness (large S) approximation to obtain analytical approxima-

tions of the means, variances and covariances between competition coefficients and selection gradients

across the community. Associated calculations are provided in Appendix A.9.

Competition coefficients Relating our treatment of resource competition to theoretical community

ecology, the absolute competition coefficient α̃ij, which measures the effect of species j on the growth

rate of species i (sensu Chesson, 2000), becomes a dynamical quantity that can be written as

α̃ij(t) =
ci

ri(t)

∫ +∞

−∞

∫ +∞

−∞
pi(x, t)pj(y, t)Oij(x, y)dxdy

=
ciUiUj

ri(t)

√
bij(t)
2π

exp
(
−

bij(t)
2
(

x̄i(t)− x̄j(t)
)2
)

, (1.47)

where

ri(t) = Ri −
ai
2

(
(x̄i(t)− θi)

2 + Gi(t) + ηi

)
, (1.48)



27

is the intrinsic growth rate of species i. Then, dNi(t) can be expressed as

dNi(t) = ri(t)

(
1−

S

∑
j=1

α̃ij(t)Nj(t)

)
Ni(t)dt +

√
Vi Ni(t)dW1(t). (1.49)

Following our model, the classically defined absolute competition coefficient for species i is param-

eterized with the intrinsic growth rate of species i appearing in the denominator. In turn, these intrinsic

growth rates depend on the balance between the innate growth rate Ri and the effect of abiotic stabi-

lizing selection. However, this balance further depends on mean trait and additive genetic variance,

which evolve freely. This leads to the potential for the signage of ri to switch between positive and

negative which implies the potential for infinite absolute competition coefficients. Furthermore, we see

these competition coefficients are influenced by abiotic stabilizing selection instead of solely capturing

the effects of inter/intraspecific interactions. Hence, we find it necessary to introduce a modification

of the absolute competition coefficient α̃ij that avoids these caveats. In particular, we define

αij = riα̃ij = ciUiUj

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2
. (1.50)

We call αij the specific competition coefficient mediating the effects of species j on the growth rate

of species i. Under this parameterization, the abundance dynamics of species i is now expressed as

dNi =

(
ri −

S

∑
j=1

αijNj

)
Nidt +

√
Vi NidW1. (1.51)

Selection gradients Linear and quadratic selection gradients have been defined by Lande and

Arnold (1983). While the linear selection gradient β measures the effect of selection on mean trait

evolution, the stabilizing selection gradient γ measures the effect of selection on additive genetic or

phenotypic variance. Since these quantities are classically defined with respect to discrete-time models

of trait evolution, we provide the analogous definitions for continuous-time models in Appendix A.8.

Following our model of diffuse coevolution, we then show these selection gradients can be additively

partitioned into components due to interactions with each species and abiotic stabilizing selection. In

particular, we find the components of linear and quadratic selection gradients for species i induced by

species j are given respectively by

βij = ciUiUjNjbij(x̄i − x̄j)

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2
, (1.52a)

γij = ciUiUjNjbij

(
1− bij(x̄i − x̄j)

2
)√ bij

2π
e−

bij
2 (x̄i−x̄j)

2
, i 6= j, (1.52b)

γii = 2ci NiU2
i bii

√
bii
2π

, i = j. (1.52c)
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With these expressions, the dynamics of mean trait and additive genetic variance simplify to

dx̄i = Gi

(
ai(θi − x̄i) +

S

∑
j=1

βij

)
dt +

√
Vi

Gi
Ni

dW2, (1.53a)

dGi =

{
Gi

2
(
− ai +

S

∑
j=1

γij

)
+ µi −Vi

Gi
Ni

}
dt + Gi

√
2Vi
Ni

dW3. (1.53b)

High richness approximation We now make use of the expressions derived for competition co-

efficients and selection gradients to investigate their relationship. As a first pass, we assume the

niche-breadths wi and intraspecific variances σ2
i are equivalent across species so that the sensitivity

parameters bij = 1/(wi + wj + σ2
i + σ2

j ) = b are constant across interacting pairs of species. We also

assume abundances Ni, niche-use parameters Ui, strengths of competition ci and mean traits x̄i are

distributed independently of each other with respective means and variances denoted by N̄, VN , Ū,

VU , c̄, Vc, ¯̄x, Vx̄. We further assume that richness S is large and the distribution of mean trait values is

approximately normal.

Figure 1.3: Heatmaps of the correlation between the magnitude of linear selection gradients and compe-
tition coefficients (left) and between stabilizing selection gradients and competition coefficients (right)
as functions of community-wide variance of mean trait values Vx̄ and intraspecific trait variances σ2. In
both plots we set w = 1.0, c̄ = 1.0× 10−7, Vc = 0.0, Ū = 1.0, VU = 0.0, N̄ = 1.0× 105, and VN = 100.0.

Under these assumptions we obtained analytical approximations for the correlations between spe-

cific competition coefficients αij and selection gradients βij, γij. These calculations are provided in

Appendix A.9. In particular, we found linear selection gradients are not associated with competition

coefficients (Corr(α, β) ≈ 0). However, we did find a non-trivial relationship between the magnitudes

of linear selection gradients and competition coefficients (Corr(α, |β|) 6= 0) and also between quadratic
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selection gradients and competition coefficients (Corr(α, γ) 6= 0). Their expressions can be found in

Appendix A.9.

To understand if associations between competition coefficients and selection gradients tend to be

positive or negative, we visualized these relationships in Figure 1.3. We fixed w, c̄, Vc, Ū, VU , N̄ and VN

and allowed the amounts of intraspecific trait variance σ2 and interspecific trait variance Vx̄ to vary. We

found, for biologically realistic areas of parameter space, absolute values of linear selection gradients

and quadratic selection gradients tend to be positively associated with competition coefficients. Hence,

if we know of competing species that strongly effect each others abundances then we can guess they

also impose directional and diversifying selection on one another. However, based on this information

alone, we cannot guess at the direction of selection.

1.4 Conclusion

We have introduced a novel approach to derive eco-evolutionary models using the calculus of

white noise and diffusion limits of measure-valued branching processes (MVBP) and coined SAGA,

a SPDE model of phenotypic evolution that accounts for demographic stochasticity. From SAGA we

derived SDE that track the dynamics of abundance, mean trait and additive genetic variance. Observing

the expressions of these SDE, we find the effects of demographic stochasticity on the evolution of

mean trait and additive genetic variance characterize the effects of random genetic drift. Although

Lande (1976) has previously characterized the effects of random genetic drift on mean trait evolution

in quantitative genetic models, the approach taken assumed constant effective population size and

discrete non-overlapping generations. In contrast, our approach shows random genetic drift is a result

of demographic stochasticity for continuously reproducing populations with fluctuating abundances.

To illustrate the relevance of our approach to studies of evolutionary ecology, we combined our SDE

with classical competition theory to derive a model of diffuse coevolution. We then used this model

to investigate the relationship between standardized selection gradients and competition coefficients.

We found absolute values of linear selection gradients and raw values of quadratic selection gradients

are positively related with competition coefficients. In the process, we derived expressions for compe-

tition coefficients and components of selection gradients due to pairwise interactions as functions of

niche-use parameters (niche breadth, total use and mean and variance of niche location), strength of

competitive interactions and abundance.

Although the framework outlined here holds great potential for developing a synthetic theory

of coevolving ecological communities, there are two technical gaps in the mathematical foundations

of our approach. Firstly, we did not provide any formal conditions under which trait means and

variances remain finite for finite time. However, a result due to Evans and Perkins (1994) shows

that the diffusion limit for a pair of interacting MVBP following our simple niche-based treatment

of competition exist when growth rates, as functions of trait values and abundances, are bounded

above. This result can be easily extended to finite sets of competing species and therefore formally

establishes the existence of abundances as diffusion processes. Further work is needed to determine

the conditions under which trait means and variances exist as diffusion processes. The models studied
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here provide likely sufficient conditions. In particular, since diffusive mutation does not lead to “heavy-

tailed” phenotypic distributions, we expect the mean trait and trait variance to remain finite so long

as total abundance is positive, given finite initial values for trait mean and variance. That is, since we

have not included any processes that would cause blow-up either in mean trait or trait variance, we

expect solutions of the SDE (1.28) to exist for all finite time t such that N(t) > 0 when |x̄(0)|, σ2(0) <

+∞. This assumption appears especially well-founded under quadratic stabilizing selection. Since

fitness indefinitely decreases as individual trait value becomes indefinitely large (see equation (1.44)),

the diversifying effects of mutation and competition will eventually be overwhelmed by stabilizing

selection. Hence quadratic stabilizing selection prevents the abundance densities of populations from

venturing indefinitely far from their phenotypic optima.

Secondly, although SDE derived under the assumption of normally distributed phenotypes pro-

vide particularly useful formula by replacing covariances between phenotype and fitness with fitness

gradients, this assumption is mathematically rigorous only under deterministic dynamics and when

the growth rate is a linear or concave-down quadratic function of trait value. However, following

our derivation based on classical competition theory, we found the associated growth rate is highly

non-linear. While this extreme non-linearity is mathematically inconvenient, it also captures important

biological details and thus allows for a more realistic model of community dynamics. In spite of this in-

consistency in our model formulation, we found resulting dynamics under the assumption of normally

distributed trait values retained well-founded biological intuition. Furthermore, previous work in the

field of theoretical quantitative genetics has demonstrated the assumption of normally distributed trait

values is robust to fitness functions that select for non-normal trait distributions when inheritance is

given a more realistic treatment and when populations reproduce sexually (Barton et al., 2017; Turelli

and Barton, 1994). Hence, future work is needed to extend our approach to account for sexual repro-

duction, more realistic models of inheritance and to investigate the community-level consequences of

non-normally distributed trait values.

Overall, this work demonstrates that connecting contemporary theoretical approaches of evolution-

ary ecology with some fundamental results in the theory of measure-valued branching processes and

their diffusion limits allows for the development of a rigorous, yet flexible approach to synthesizing

the dynamics of abundance and distribution of quantitative characters. In particular, equations (1.28a)

and (1.39) provide a fundamental set of equations for deriving stochastic eco-evolutionary models in-

volving quantitative traits. However, these equations require an expression for growth rates associated

with each trait value. Conveniently, equation (1.20) in Appendix §1.2.2 provides a means to derive such

growth rates from individual based models. Taken together, these results provide a means to derive

analytically tractable dynamics from mechanistic formulations of fitness as a function of phenotype.

The derivation of our model of diffuse coevolution, located in Appendix §A.7, demonstrates how to

derive eco-evolutionary models involving a set of interacting species from biological first principles.

Hence, this work provides a novel set of mathematical tools and a tutorial for their use in theoretical

studies of evolutionary ecology and therefore paves the way for future work that provides a holistic

theoretical treatment of coevolving ecological communities.
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Chapter 2: Coevolutionary Arms Races and

the Conditions for the Maintenance of Mutualisms

Abstract

Empirical evidence suggests coevolutionary arms races between flowering plants and their pollina-

tors commonly occur in wild populations. In extreme cases, trait escalation can result in evolutionary

switching from mutualism to parasitism. However, theoretical approaches to study coevolution typi-

cally assume fixed types of ecological interactions and ignore the evolution of absolute fitness. Here

we introduce a novel approach to track the evolution of absolute fitness as a framework to determine

when escalatory coevolution results in a switch from mutualism to parasitism. We apply our approach

to two mechanisms mediating selection as a function of phenotype. Our results demonstrate interac-

tions mediated by a ”bigger-is-better” mechanism evolve towards parasitism. In contrast, generalizing

the classical trait-matching mechanism so that fitness of each species is optimized when trait values

mismatch by a particular amount, we find theoretical support for indefinite trait exaggeration that pre-

serves mutualistic interactions. Building on our results, we discuss a path towards the development of

statistical methods to project when mutualisms are at risk of evolutionary disintegration. Moving be-

yond pairwise interactions, we consider the ramifications of coevolution in a South African pollination

network for the evolution of parasitism. Future work extending our approach beyond pairwise inter-

actions can lead to a framework for understanding the evolution of parasitism in mutualistic networks

and further insights into the structure and dynamic nature of ecological communities in general.

2.1 Introduction

Coevolution between pairs of species has long been considered an important driver of phenotypic

exaggeration (Anderson and Johnson, 2007, 2009; Anderson et al., 2010; Benkman et al., 2003; Brodie

et al., 2005; Darwin, 1862; Muchhala and Thomson, 2010; Nuismer, 2017; Nuismer and Week, 2019;

Pauw et al., 2009; Thompson, 2014; Toju and Sota, 2006; Wallace, 1867; Week and Nuismer, 2019).

In particular, coevolutionary theory predicts antagonistic victim-exploiter interactions, such as host-

parasite and predator-prey interactions, often result in coevolutionary arms races (Gavrilets, 1997;

Gavrilets and Hastings, 1998; Nuismer et al., 2007). If unchecked by external sources of stabilizing

selection, the interacting species are predicted to evolve ever greater defensive and offensive trait val-

ues. However, this dynamic is not unique to antagonistic interactions. Indeed, several cases of apparent

trait escalation involving mutualistic interactions have been documented (Anderson and Johnson, 2007,

2009; Pauw et al., 2009). Furthermore, the dichotomy between mutualism and antagonism is, to some

degree, artificial. For example, if one mutualistic partner outpaces the other in the evolutionary race,

the carefully balanced mutual benefits may disintegrate leading to the evolutionary switching from

mutualism to parasitism Jones et al. (2015); Pauw et al. (2009). Here we study this evolutionary disinte-

gration of mutualisms under two mechanisms mediating fitness as a function of phenotype. Our goal

is to determine whether these interaction mechanisms preserve or destroy mutualistic interactions.

Although coevolutionary models of victim-exploiter interactions often predict indefinite trait esca-
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lation, most coevolutionary models of mutualistic interactions rarely, if ever, predict coevolutionary

arms races and sustained escalation of traits (Nuismer, 2017). Instead, coevolution driven by a mutual-

ism is often modelled with a trait-matching mechanism that promotes evolutionary convergence of trait

values (Kiester et al., 1984; Nuismer, 2017). While this dichotomy between antagonistic and mutualistic

interactions is generally accepted, striking counter-examples exist in a range of empirically well-studied

mutualistic interactions characterized by extremely exaggerated traits (Anderson and Johnson, 2007,

2009; Muchhala and Thomson, 2010; Pauw et al., 2009). For instance, in the interaction between the

long-proboscid fly Prosoeca ganglbaueri and the flowering plant Zaluzianskya microsiphon, Anderson and

Johnson (2007) found extreme trait exaggeration including proboscis lengths of up to 50mm and floral

tube depths of up to 55mm. Furthermore, these authors discovered significant spatial correlations in

mean proboscis length and floral tube depth, suggesting a role for coevolution in explaining patterns

of phenotypic exaggeration. Similarly, Pauw et al. (2009) found significant spatial correlations between

another long-proboscid fly, Moegistorhynchus longirostris, and a long-tubed flower Lapeirousia anceps.

Using a clever experimental design, Pauw et al. (2009) also demonstrated evidence for reciprocal di-

rectional selection caused by this interaction for longer floral tubes and pollinator proboscises.

The biological reasoning behind mutualsitic trait exaggeration dates back at least to Darwin (1862)

and Wallace (1867). In particular, it was reasoned that pollinators benefit from having slightly longer

mouth-parts than nectar-tube depths in order to retrieve their nectar rewards, thus inducing selec-

tion for longer mouth-parts. Simultaneously, flowers benefit from having nectar-tubes slightly longer

than pollinator mouth-parts to ensure pollen transfer, thus inducing selection for deeper nectar-tubes.

This ”bigger-is-better” mechanism of selection has been captured mathematically by the so-called trait-

differences mechanism Nuismer (2017); Nuismer et al. (2007). In particular, given ample genetic vari-

ation and lack of selective forces that oppose trait elongation, the verbal arguments of Darwin and

Wallace agree with mathematical analysis of the trait-differences mechanism in predicting a coevolu-

tionary arms race for ever longer mouth-parts and ever deeper nectar-tubes. In fact, it was this line

of reasoning that lead Darwin to famously predict the existence of a large moth pollinator while ex-

amining the exaggerated nectar spur of the orchid Angraecum sesquipedale (Darwin, 1862; Wasserthal,

1997).

The above examples suggest coevolutionary trait exaggeration commonly occurs in plant-pollinator

mutualisms. However, if trait escalation of one partner outpaces that of the other, the interaction may

cease to be beneficial for the second partner. That is, the mutualism may collapse into a parasitism

(Jones et al., 2015). For instance, if the fly mouth-part evolves to exceed the nectar-tube depth by an

extreme amount, the fly may be better described as a nectar thief rather than a pollinator (Inouye, 1980;

Pauw et al., 2009). This motivates the following two questions;

1. Can sustained arms races within mutualistic interactions continue indefinitely without disinte-

grating into antagonisms?

2. If so, which mechanisms mediating fitness as a function of phenotype favor the stability of mu-

tualism in the face of ongoing arms races for ever increasing trait values?

Here we answer these questions by analyzing two simple models of mutualistic arms races. In one
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model, the arms race is driven by a ”bigger-is-better” (ie., trait-differences) mechanism where fitness

increases indefinitely with trait size. In the other model, the arms race is driven by an ”offset-matching”

mechanism where fitness is a unimodal function peaking at some value larger than the trait of the

interacting partner. By tracking the absolute fitness of interacting species, our results demonstrate

unchecked mutualistic arms races driven by a weak selection approximation of trait-differences are

doomed to a parasitic fate. In contrast, offset-matching (with weak or strong selection) can preserve

mutualistic interactions in spite of ever increasing trait values.

2.2 Methods

Our analysis focuses on two interaction mechanisms determining fitness of individuals as functions

of their phenotype and the phenotype of an encountered individual; the trait-differences mechanism

(Nuismer et al., 2007) and the offset-matching mechanism (Week and Nuismer, 2019). We therefore be-

gin the description of our methods with a brief review of trait-differences and offset-matching. We then

describe our approach to modelling coevolutionary dynamics and present population growth rates as-

sociated with each interaction mechanism. We show these growth rates can be additively decomposed

into a component representing the overall effect on fitness due to the interaction and a component

representing effects due to sources outside of the interaction. By tracking the component describing

the overall effect of the interaction on absolute fitness we develop a method to model the evolutionary

switching of interaction types and the transition from mutualism to parasitism in particular. In the

results we combine our models of coevolutionary dynamics with our approach to model the evolution-

ary switching of interaction types to determine when trait-differences and offset-matching promote an

evolutionary switch from mutualism to antagonism.

2.2.1 Trait-differences

The trait-differences mechanism assumes the component of fitness due to a biotic interaction changes

monotonically with the trait value of the focal individual. Nuismer et al. (2007) used trait-differences

to derive quantitative genetic models of coevolutionary trait escalation driven by antagonistic interac-

tions. The coevolutionary behavior implied by the trait-differences mechanism exhibits two character-

istic features. First, the mean trait will diverge towards ever larger values. Second, in the limit of weak

selection, the rate of trait evolution for one species does not depend on the trait value of the other

leading to independent evolutionary trajectories.

The trait differences mechanism has frequently been modeled using a logistic curve describing the

probability of a successful interaction given the trait values of the interacting individuals (Nuismer,

2017; Nuismer and Week, 2019; Nuismer et al., 2007; Toju and Sota, 2006). Under this model, the prob-

ability of successful interaction grows asymptotically towards one as this difference in traits increases

towards positive infinity and decreases towards zero as this difference decreases towards negative in-

finity. Theoretical studies of coevolutionary trait-escalation are traditionally based on a logistic curve

fitness function and make use of weak selection approximations to obtain analytically tractable models.

However, the same ”bigger-is-better” mechanism can also be modelled with an exponential curve. Al-
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though not as biologically realistic, the latter option simplifies analysis and yields the same dynamics

as the logistic curve in the limit of weak selection (Nuismer et al., 2007; Week and Nuismer, 2019, also

see Appendix B). We therefore make use of the exponential curve instead of the logistic curve in our

derivations. In particular, denoting x the trait value of an individual of species X, y the trait value of

an individual of species Y, and assuming each individual engages in a single interaction, individual

fitness can be captured by

WX(x, y) ∝ eBX(x−y), (2.1a)

WY(y, x) ∝ eBY(y−x), (2.1b)

where BX and BY determine the sensitivity of fitness to trait values and hence mediate the strengths

of selection on the respective species. We therefore refer to these parameters as the strengths of biotic

selection. This interaction mechanism is summarized graphically in Figure 2.1.

Figure 2.1: Fitness curves under trait-differences (left) and offset-matching (right) as functions of the
difference in individual traits x− y. Solid lines represent the fitness of individuals in species X. Dashed
lines represent the fitness of individuals in species Y. Vertical dotted lines mark the location of offset
fitness optima. In the case shown we have set δ = 0.5. In both plots we have set BY < BX so that
species X experiences stronger selection than species Y.

2.2.2 Offset-matching

The offset-matching mechanism generalizes the trait-matching mechanism frequently used to model

coevolutionary interactions (Kiester et al., 1984; Week and Nuismer, 2019). In particular, offset-matching

relaxes the key assumption that trait values from interacting pairs must be perfectly matched to opti-

mize fitness for both species. Instead, fitness for each species is optimized when their trait value differs

from the other by a particular amount, which we refer to as the optimal offset. By assuming fitness
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is maximized at a positive optimal offset for both species, we obtain a mechanism similar to that de-

scribed by Darwin (1862) and Wallace (1867) reviewed in the introduction. That is, each species benefits

from having a slightly larger trait, but suffers reduced fitness beyond a certain threshold. This model

of fitness was introduced by Week and Nuismer (2019) to simultaneously explain trait exaggeration

and correlations of mean traits across multiple populations, enabling the use of a simple maximum

likelihood approach to measure the strength of coevolution in the wild. By setting the optimal offset

to zero, the trait-matching model generally used to model mutualistic coevolution is recovered. Figure

2.1 compares fitness curves under trait-differences and offset-matching.

Following the notation introduced above, we denote by x the trait value of an individual in species

X and y a trait value in species Y. Assuming each individual participates in a single interaction,

individual fitness under the offset-matching model can be described by

WX(x, y) ∝ e−
BX
2 (x+δ−y)2

, (2.2a)

WY(y, x) ∝ e−
BY
2 (y+δ−x)2

, (2.2b)

where δ is the optimal offset and BX , BY again determine the strength of biotic selection on the respec-

tive species. A formal connection with the trait-differences model can be established using a simulta-

neous weak selection and large optimal offset approximation. In particular, substituting BX , BY := ε3

and δ := 1/ε, the trait-differences mechanism can be obtained using a second order Taylor expansion

around ε ≈ 0. We illustrate this calculation in Appendix B.

2.2.3 Modelling approach

Beginning with the above models of individual fitness, we follow Chapter 1 and formally derive the

continuous-time growth rates for interacting populations using diffusion limits (see Appendix B). In

particular, Chapter 1 introduced a framework to rigorously derive models of evolutionary and ecolog-

ical dynamics from structured branching processes. These branching processes are used as individual-

based models of populations evolving in phenotypic state space. By rescaling time, reproductive output

and ”mass” of individuals and taking a large population size limit, the derivations in Chapter 1 pro-

vide deterministic and stochastic models that extend classical quantitative genetic models to account

for abundance dynamics and demographic stochasticity in continuous time. Specifically, the Stochastic

Asexual Gaussian allelic model with Abundance dynamics (abbreviated SAGA), introduced in Chap-

ter 1, provides a set of stochastic differential equations that determines the dynamics of mean trait,

additive genetic variance and population abundance in response to mutation, demographic stochas-

ticity, random genetic drift and selection. Although these equations can accommodate a wide array

of phenotypic distributions, they express phenotypic responses to selection in terms of covariances

between growth rates and trait values which are generally difficult to calculate. We therefore assume

normally distributed phenotypes to formally replace these covariances with gradients of growth rates

which are typically much easier to calculate. Although our focus here is neither on stochastic nor

abundance dynamics, this framework provides a means to track absolute fitness through time. In the

following paragraph, we summarize our approach to diffusion limits and a series of assumptions used
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to isolate the effect of interaction mechanism and mean trait evolution on the evolutionary switching

of ecological relationships.

To focus our models of coevolutionary dynamics on trait evolution and the effects of interaction

mechanisms, we assume each individual of species X interacts with a single individual of species Y

and each individual of species Y interacts with a single individual of species X. Under this condition,

selection for species X does not depend on the density of species Y and vice versa, allowing us to

control for the effects of eco-evolutionary feedbacks. We provide more detail on this assumption in

Appendix B where we develop our approach to diffusion limits. Our diffusion limits lead to a set

of stochastic differential equations tracking the dynamics of abundance, mean trait and trait variance.

To control for the effects of demographic stochasticity and random genetic drift, we assume infinitely

large abundances. These assumptions reduce each of our models to a set of ordinary differential equa-

tions describing the evolution of trait means, phenotypic and additive genetic variances. We further

simplify our models by assuming conditions that fix phenotypic and additive genetic variances. In

particular, our model of trait-differences implies phenotypic and additive genetic variances are fixed

when mutation is absent. Hence, for the trait-differences model we set mutation rates to zero. In

contrast, our model of offset-matching implies these variances evolve to unique positive stable equilib-

ria given by mutation-selection balance. Hence, for the offset-matching model, we initiate phenotypic

and additive genetic variance to these stable equilibria. Details are provided in Appendix B. The final

models obtained each consist of a pair of ordinary differential equations tracking the coevolution of

mean traits.

Aside from our simplifying assumptions of fixed phenotypic and additive genetic variances and

infinite population abundances, we further assume the lack of external selective pressures such as

abiotic stabilizing selection. Although this allows for indefinite trait escalation, which is clearly not

biologically feasible, our goal is to focus on evolutionary and ecological outcomes driven solely by

the ecological interaction. Future models using our framework could extend our investigation by

confronting the combined effects of various selective agents, non-equilibrium additive genetic vari-

ances, eco-evolutionary feedbacks and demographic stochasticity, but such ambitions remain outside

the scope of our inquiry.

To formalize our models mathematically, we denote by m̄X and m̄Y the continuous-time growth

rates for species X and Y respectively. We assume trait values x and y are normally distributed with

means x̄, ȳ and variances σ2
X , σ2

Y. We denote by GX , GY the additive genetic variances, rX , rY the intrinsic

growth rates and eX , eY the intrinsic effects of interactions on growth rates (ie., the effects on growth

rates due to the interaction when BX = 0 or BY = 0) for species X and Y respectively. This notation is

summarized in Table 2.1.

Using D to denote results under trait-differences and O for offset-matching, we find the following

pairs of growth rates;

D

{
m̄X = rX + eX + BX(x̄− ȳ),

m̄Y = rY + eY + BY(ȳ− x̄),
(2.3a)
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Table 2.1: Summary of notation.

Parameter Description
x, y Individual trait values
x̄, ȳ Mean traits
σ2

X , σ2
Y Traits variances

GX , GY Additive genetic variances
m̄X , m̄Y Population growth rates
rX , rY Intrinsic growth rates
IX , IY Overall interaction effects
eX , eY Intrinsic interaction effects
BX , BY Strengths of biotic selection
δ Optimal offset

O

{
m̄X = rX + eX − BX

2 (ȳ + δ− x̄)2 − BX
2 (σ2

X + σ2
Y),

m̄Y = rY + eY − BY
2 (x̄ + δ− ȳ)2 − BY

2 (σ2
X + σ2

Y).
(2.3b)

In Appendix B we show these growth rates do not exhibit frequency dependent selection. Hence,

following our approach to derive deterministic dynamics, we calculate the evolution of mean traits via

dx̄
dt

= GX
∂m̄X
∂x̄

, (2.4a)

dȳ
dt

= GY
∂m̄Y
∂ȳ

. (2.4b)

This yields the following two sets of mean trait dynamics;

D

{
dx̄
dt = GXBX ,
dȳ
dt = GYBY,

(2.5a)

O

{
dx̄
dt = GXBX(ȳ + δ− x̄),
dȳ
dt = GYBY(x̄ + δ− ȳ).

(2.5b)

Under our assumption of fixed phenotypic variances, the population growth rates presented in

equations (2.3) change only through mean trait evolution. In particular, we find growth rates for each

species can be additively partitioned as m̄X = rX + IX and m̄Y = rY + IY, where IX , IY represent

the components due to the interspecific interaction and the intrinsic growth rates rX , rY represent the

components due to everything else. Hence, IX and IY determine the type of interaction between species

X and Y. Specifically, if IX , IY > 0, the interaction is a mutualism and if either IX < 0 or IY < 0, the

interaction is an antagonism. Thus, by tracking the signs of IX and IY as mean traits evolve, we

can track the evolutionary switching of ecological interaction types. In particular, if an interaction

mechanism promotes the evolutionary switching from a mutualism to a parasitism, then IX , IY begin

with positive values and eventually one of either IX or IY becomes negative due to the evolution of x̄

and ȳ. Following equations (2.3), trait-differences and offset-matching respectively yield
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D

{
IX = eX + BX(x̄− ȳ),

IY = eY + BY(x̄− ȳ),
(2.6a)

O

{
IX = eX − BX

2
[
(ȳ + δ− x̄)2 + σ2

X + σ2
Y
]

,

IY = eY − BY
2
[
(x̄ + δ− ȳ)2 + σ2

X + σ2
Y
]

.
(2.6b)

In the following section we combine the coevolutionary models presented above with this criteria

to determine when an interaction mechanism promotes the evolutionary switching from mutualism to

parasitism.

2.3 Results

2.3.1 Trait-differences promotes switching to parasitism

We begin by exploring the conditions under which sustained trait exaggeration can occur under

the model of trait-differences without the interaction dissolving into antagonism. Specifically, because

the trait differences model yields sustained trait exaggeration under positive selection strengths (ie.,

BX , BY > 0), we study how the ecological nature of the interaction evolves under this regime. Com-

bining equations (2.5a) and (2.6a), we find the overall effects of the interaction on species growth rates

evolve via

dIX
dt

= BX(GXBX − GYBY), (2.7a)

dIY
dt

= BY(GYBY − GXBX). (2.7b)

Hence, unless the products of additive genetic variance and strength of biotic selection is perfectly

balanced between the two species so that GXBX = GYBY, the effects on species growth rates will indef-

initely evolve in opposite directions. This symmetry condition is unlikely to hold in nature implying

one of the species will evolve to become a parasite of the other. Thus, no matter how large the intrinsic

effects eX and eY are, mutualisms mediated by a trait-differences mechanism tend towards parasitism.

The left panel of Figure 2.2 displays this steady disintegration of mutualism by tracking the evolution

of overall interaction effects IX , IY. For the particular parameters chosen, species Y becomes the host

and species X becomes the parasite. The right panel of Figure 2.2 displays the rate of transition from

mutualism to parasitism as a function of GXBX − GYBY. When GXBX < GYBY, species Y becomes the

parasite and when GXBX > GYBY, species X becomes the parasite.

There are two important caveats to this result: 1) the lack of stabilizing selection and 2) the assumed

independence of ecological and evolutionary dynamics. Both may have important consequences for

our predictions which we work through in detail in the discussion.

2.3.2 Offset-matching stabilizes mutualistic interactions

Following the logic of Darwin (1862) and Wallace (1867), we assume fitness for each individual is

increased by having a trait value that exceeds that of its partner. However, we also assume a limit
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Figure 2.2: (Left) A time-series plot illustrating the trajectories of overall interaction effects IX , IY. The
solid line represents the overall interaction effect on species X and the dashed line represents the overall
interaction effect on species Y. The horizontal dotted line marks the threshold determining interaction
type. When IX or IY are below this line, the interaction is an antagonism. Hence, for the particular
parameters chosen, this figure shows species X evolves to become a parasite of species Y. (Right)
Rate of transition from parasitism to mutualism as a function of GXBX − GYBY under the assumption
BX < BY. On the left side of the plane, species X becomes a parasite of species Y. On the right side of
the plane this relationship is reversed.

exists, such that fitness is maximized when an individual’s trait value exceeds that of its partner by

some specific amount. Hence, we assu me a positive optimal offset δ > 0 and positive selection

strengths BX , BY > 0. Under these assumptions equations (2.5b) yields ever increasing trait values.

Combining equations (2.5b) and (2.6b), we find the effects on species growth rates evolve via

dIX
dt

= −BX(δ− ∆)
d∆
dt

, (2.8a)

dIY
dt

= −BY(δ + ∆)
d∆
dt

, (2.8b)

where ∆ = x̄− ȳ. In turn, the difference in mean traits ∆ evolves via

d∆
dt

= (GXBX + GYBY)

(
GXBX − GYBY
GXBX + GYBY

δ− ∆
)

. (2.9)

Under our assumption of positive selection strengths BX , BY > 0, consistent with escalatory trait

evolution, equation (2.9) implies that, although the mean traits x̄, ȳ evolve indefinitely greater values,

their difference ∆ will always evolve to the stable equilibrium

∆̂ =
GXBX − GYBY
GXBX + GYBY

δ. (2.10)
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In spite of ever escalating mean trait values x̄, ȳ, when ∆ is at its equilibrium, the components of

species growth rates IX , IY have also reached a stable equilibrium given by

ÎX = eX −
BX
2

[(
2GYBYδ

GXBX + GYBY

)2
+ (σ2

X + σ2
Y)

]
, (2.11a)

ÎY = eY −
BY
2

[(
2GXBXδ

GXBX + GYBY

)2
+ (σ2

X + σ2
Y)

]
. (2.11b)

Hence, trait escalation under the offset-matching model promotes the stabilization of interaction

effects in the absence of all other evolutionary forces. This means if the intrinsic effects eX and eY are

large enough, the interaction will remain a mutualism even as trait values escalate indefinitely toward

larger values. Furthermore, this result implies novel interactions that begin as a parasitism may evolve

towards mutualism when mediated by an offset-matching mechanism. Figure 2.3 illustrates these

results by tracking the evolution of overall interaction effects IX , IY for two scenarios.

Figure 2.3: Time-series plots of overall interaction effects IX , IY under two scenarios. Solid lines
represent the overall interaction effect on species X and dashed lines represent the overall interaction
effect on species Y. The horizontal dotted lines mark the threshold determining interaction type. When
IX or IY are below this line, the interaction is an antagonism. The left plot illustrates a mutualism that
is preserved in spite of indefinitely escalating trait values. The right plot illustrates a novel parasitism
that experiences an evolutionary switch to mutualism.

Inspection of equations (2.11) reveal the minimal intrinsic benefits eX , eY needed to preserve mutu-

alism increase logistically with the selection strength of the partner species. For example, the minimal

value of eX required to maintain benefits for species X does not increase indefinitely with BY. In con-

trast, we see these minimal quantities increase indefinitely with the selection strengths of their focal

species, the optimal offset δ, and phenotypic variances σ2
X , σ2

Y. Since additive genetic variance com-
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prises the component of expressed trait variance explained by additive allelic effects, we have GX ≤ σ2
X

and GY ≤ σ2
Y. Hence, the minimal intrinsic benefits required to maintain mutualisms also increase in-

definitely with additive genetic variances. To summarize, mutualisms mediated by an offset-matching

mechanism are more likely will dissolve into parasitisms when fitness is maximized for large offsets,

when either species maintains a sufficiently large trait variance it induces a phenotypic load, or when

either species experiences strong selection.

2.4 Discussion

We have shown that mutualistic interactions can be preserved in the face of indefinite coevolu-

tionary trait escalation. However, this result depends on the mechanism mediating interspecific in-

teractions. In particular, we found interactions mediated by a weak selection approximation of the

trait-differences mechanism, which has been traditionally employed to model trait escalation in coe-

volving antagonisms (Nuismer et al., 2007; Toju and Sota, 2006), encourages the dissolution of mu-

tualism into parasitism. In contrast, employing the recently introduced offset-matching mechanism

(Week and Nuismer, 2019), which generalizes the classical trait-matching mechanism (Kiester et al.,

1984), we found mutualistic interactions are preserved when the intrinsic benefits of the interaction are

sufficiently large (eqn. 2.11).

Our analyses are particularly relevant for the study of pairwise plant-pollinator interactions. In-

deed, the primary motivation of this work is the hypothesis that exaggerated floral tubes and pollina-

tor proboscises observed in the wild are explained by pairwise coevolutionary races. Plant-pollinator

interactions provide classical examples of mutualisms in which the plant provides a nutritional or

metabolic resource to the pollinator in trade for movement of pollen. Under the trait-differences mech-

anism, our results imply the difference between average proboscis length and average floral tube depth

will increase indefinitely, leading to one of two outcomes; 1) Floral tube depth will eventually exceed

pollinator proboscis length such that that the pollinator is essentially tricked into transferring pollen

without access to any reward. 2) Pollinator proboscis length will eventually exceed floral tube depth

such that the pollinator drains the flower of nectar without transferring pollen. In both of these cases

one species is eventually exploited while the other continues to profit from the interaction. Quanti-

tatively, this implies the overall interaction effect on absolute fitness becomes negative for one of the

species and hence results in a host-parasite relationship.

Alternatively, results based on the offset-matching mechanism imply this parasitic fate is not univer-

sal among mutualistic pairs engaged in a coevolutionary arms race. Returning to the plant-pollinator

example above, the offset-matching mechanism implies the difference in average proboscis length and

average floral tube depth will converge to a stable equilibrium proportional to the optimal offset, even

though these mean traits will themselves continue to escalate indefinitely. In this case there are three

conditions required to maintain the mutualism; 1) The optimal offset must be sufficiently small, 2)

biotic selection cannot be too strong and 3) phenotypic variances cannot be too large. If all three of

these conditions are satisfied then the phenotypic distribution of each species remains in a range that

benefits the other species, even though these ranges are dynamic.
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Although these analyses shed light on the outcomes of pairwise interactions, plant-pollinator in-

teractions based on a trade between pollen movement and food tend to be generalized (Vázquez and

Aizen, 2004; Waser et al., 1996). To understand the dynamics of evolutionary interaction switching

in the community context, the analytical methods developed here can be extended to models of co-

evolving mutualistic networks that account for multispecific interactions (eg., Medeiros et al., 2018).

In the case that a subset of the community engages in a multispecific coevolutionary arms race, the

species left behind are at risk of becoming parasitized. For example, in the fly-flower pollination sys-

tem investigated by Pauw et al. (2009), the long-proboscid fly M. longirostris is known to visit at least

20 long-tubed flower species (Manning and Goldblatt, 1997). This plant guild includes L. anceps, which

is the most abundant and widespread member (Pauw et al., 2009). The exaggerated nectar tube of L.

anceps exhibits strong spatial correlations with the proboscis length of M. longirostris. By interfacing

these patterns of trait exaggeration and spatial correlation with coevolutionary theory, Week and Nuis-

mer (2019) were able to provide quantitative evidence for a coevolutionary arms race between the two

species. However, in the course of this arms race it is likely M. longirostris imposed and received selec-

tion pressures from other members of the long-tubed plant guild, leading to a compartment of species

engaged in a coevolutionary arms race (Pauw et al., 2009). As a consequence, mutualistic interactions

between M. longirostris and flower species outside of this compartment are at risk of disintegrating into

parasitisms.

In particular, M. longirostris has been observed to frequently visit flowers of Babiana thunbergii,

which is usually pollinated by Malachite sunbirds and has a much shorter and wider floral morphol-

ogy. Pauw et al. (2009) noted that M. longirostris rarely contacts the reproductive organs of B. thunbergii

while draining its nectar and hence acts as a parasitic nectar thief. In the case that B. thunbergii origi-

nally profited from visits of M. longirostris, before the evolution of extreme proboscis lengths, external

sources of selection, such as those due to sunbirds, may have countered selection for floral elongation.

In this case, the disintegration of mutualism follows a different path from what we have described

above. Instead of direct pairwise interactions leading to an intimate race for exaggerated trait values,

indirect coevolutionary effects due to interactions with other community members impose inconsistent

patterns of selection for each member of the focal pair. A recent theoretical result supports this view

by suggesting such indirect effects are as important for shaping coevolutionary dynamics in ecological

networks as direct effects (Guimarães et al., 2017).

Alternatively, the association between B. thunbergii and M. longirostris may be novel and thus have

no coevolutionary history. If so, it is possible that future evolution induced by selection pressure from

M. longirostris will cause the short and wide floral morphology of B. thunbergii, currently adapted for

sunbirds, to become thinner and longer as it adapts to the fly. Thus, it is reasonable to ask whether

the novel parasitism will evolve into a mutualism or whether patterns of selection induced by other

community members will prevent B. thunbergii from building defenses to nectar robbers such as M.

longirostris. Extending the analytical approach developed here to the context of mutualistic networks

will undoubtedly shed light on this curious situation.

For the sake of analytical tractability and clarity of results, we have kept our analysis as simple as

possible, while recognizing our assumptions are unlikely to be satisfied literally in real biological sys-
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tems. For instance, ignoring stabilizing selection implies the absence of well-established physiological

and anatomical constraints that prevent indefinite runaway coevolution in most systems. Similarly, we

have ignored the possible depletion of heritable variation, the influence of abundance dynamics, and,

in the case of trait-differences, considered only weak coevolution. Although these assumptions come

at the cost of biological realism, they have allowed us to understand and illuminate the tendency of

trait-differences and offset-matching to motivate or resist evolutionary transitions from mutualism to

parasitism. Hence, our results should be interpreted in much the same way as experiments conducted

in controlled, but biologically unrealistic environments. To predict and understand when wild popu-

lations of coevolving mutualists are doomed to an inevitable parasitic fate, however, we must confront

these complications directly and with more complex and biologically realistic models.

Out of the large set of processes we have controlled for, perhaps the most important are eco-

evolutionary feedbacks. Future models using our framework can incorporate the effects of eco- evolu-

tionary feedbacks by replacing the assumption that each individual interacts with a single individual

of their partner species with the assumption that individual interaction frequencies depend on abun-

dances. As an example, assuming each individual of species X interacts once with each individual

of species Y and vice versa yields intrinsic benefits eX , eY and strengths of biotic selection BX , BY that

depend linearly on the abundance of the partner species. Hence, this assumption leads to generaliza-

tions of classical mass-action models of population dynamics, such as the Lotka-Volterra predator-prey

model (Lotka, 1925; Volterra, 1926), that allow for the evolutionary switching of interaction type in

tandem with the fluctuations of abundance. In this case, the overall interaction effects can be expressed

as IX = ζX NY, IY = ζY NX , where ζX , ζY represent the interaction coefficients corresponding to species

X and Y respectively. To formally remove demographic stochasticity while considering finite abun-

dances, one can set the variance in reproductive output of individuals equal to zero (see Appendix

B). This returns a set of ordinary differential equations modelling the dynamics of abundance, mean

trait and additive genetic variance for each species. In principle, the same approach developed here to

analyze evolutionary interaction switching can be directly extended to this more complicated scenario.

However, without doing this analysis we can still draw some basic conclusions. For example, in the

case that X evolves to parasitize species Y, the growth rate of species Y will diminish. If the intrinsic

growth rate rY is not sufficiently large, this will result in decreased abundance of species Y which, in

turn, results in decreased selection pressure on species X. In the extreme case, as the abundance of

species Y falls towards zero, the absolute fitness of species X will be approximately equal to the intrin-

sic growth rate rX . Hence, although intrinsic growth rates played no role in the conditions maintaining

mutualisms based on our simple coevolutionary models, we anticipate intrinsic growth rates to play a

fundamental role in these conditions when accounting for eco-evolutionary feedbacks.

Our results imply that empirical studies aimed at inferring or projecting evolutionary interaction

switching will need to determine which interaction mechanisms are at play (eg., trait-differences, trait-

matching or offset-matching) along with quantitative estimates of model parameters. For approaches

building on models introduced here, these parameters include the strengths of biotic selection BX , BY,

additive genetic variances GX , GY, intrinsic benefits eX , eY and, in the case of offset-matching, phe-

notypic variances σ2
X , σ2

Y and the optimal offset δ. Furthermore, these studies will need to confront
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the effects of eco-evolutionary feedbacks and evolutionary processes occurring outside of the interac-

tion, such as abiotic stabilizing selection, which will require the estimation of associated parameters.

Although further development is needed to fully parameterize the models studied here, the maximum-

likelihood and Bayesian methods of coevolutionary inference introduced by Week and Nuismer (2019)

and Nuismer and Week (2019) provide a useful starting point. Extending these methods to disentangle

absolute fitness into intrinsic growth rates rX , rY, intrinsic benefits eX , eY and the combined effects of

phenotypic distributions and biotic selection would move us closer to the ultimate goal of forecast-

ing the evolutionary stability of species interactions and the potential future dissolution of mutualistic

interactions.

2.5 Conclusion

We introduced a novel approach to model the evolutionary switching of interaction types by track-

ing the evolution of absolute fitness. Applying our approach to two models of coevolutionary trait es-

calation inspired by plant-pollinator interactions revealed mutualisms mediated by a ”bigger-is-better”

(ie., trait-differences) mechanism inevitably dissolve into parasitism. In contrast, our results show that

mutualisms mediated by an offset-matching mechanism, a generalization of classical trait-matching,

are preserved when the intrinsic benefits of the interaction are large enough. Our results are based on

minimal models of mean trait coevolution determined by different interaction mechanisms and hence

ignore the effects of external evolutionary processes and eco-evolutionary feedbacks. Predicting when

wild populations of mutualists are prone to disintegration via coevolutionary arms races will likely

require more complex models that account for a variety of processes such as abiotic stabilizing selec-

tion, gene-flow, random genetic drift and multispecific interactions. Building on recently established

methods of coevolutionary inference, we discussed a path towards developing methods to project the

evolutionary switching of interaction types. Future work applying the analytical approach developed

here to models that account for realistic sets of evolutionary processes can enrich our understanding

of the dynamical nature of ecological relationships observed in the wild and produce novel statistical

tools to forecast the evolutionary stability of ecological relationships.
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Chapter 3: The Measurement of Coevolution in the Wild

1

Abstract

Coevolution has long been thought to drive the exaggeration of traits, promote major evolutionary

transitions such as the evolution of sexual reproduction, and influence epidemiological dynamics. De-

spite coevolution’s long suspected importance, we have yet to develop a quantitative understanding of

its strength and prevalence because we lack generally applicable statistical methods that yield numer-

ical estimates for coevolution’s strength and significance in the wild. Here we develop a novel method

that derives maximum likelihood estimates for the strength of direct pairwise coevolution by coupling

a well established coevolutionary model to spatially structured phenotypic data. Applying our method

to two well-studied interactions reveals evidence for coevolution in both systems. Broad application

of this approach has the potential to further resolve long-standing evolutionary debates such as the

role species interactions play in the evolution of sexual reproduction and the organization of ecological

communities.

3.1 Introduction

Our current understanding of coevolution’s importance rests upon methods that fall into two gen-

eral classes: those that are broadly applicable but yield only qualitative evidence for coevolution and

those that produce quantitative estimates for the strength of coevolution but can be applied only in a

narrow range of systems. For example, one popular approach for inferring coevolution relies on mea-

suring the spatial correlation between traits of interacting species and using significant interspecific

correlations as evidence of a coevolutionary process (Berenbaum et al., 1986; Hanifin et al., 2008; Pauw

et al., 2009; Toju, 2008). Strengths of this approach include the relative ease of collecting the relevant

data and its broad applicability to a wide range of species interactions. The critical weakness of this

approach, however, is that significant interspecific correlations are neither necessary nor sufficient for

demonstrating coevolution (Janzen, 1980; Nuismer et al., 2010). Similarly, time-shift experiments have

been broadly implemented in systems where experimental evolution is a tractable approach, but do

not yield quantitative estimates of the strength of coevolution (Blanquart and Gandon, 2013; Gaba and

Ebert, 2009; Koskella, 2014). In contrast, more quantitative approaches such as selective source analy-

sis, a method that additively partitions selection gradients into independent components of selection

(Ridenhour, 2005), require the collection of extensive trait and fitness data from interacting species and

thus have proven difficult to employ in all but a few specialized systems (Brodie III and Ridenhour,

2003; Burkhardt et al., 2012; Nuismer and Ridenhour, 2008). As a consequence of these trade-offs in ex-

isting approaches, rigorous quantitative estimates of the strength of coevolution in natural populations

are extremely scarce.

A promising alternative to existing approaches is the development of model-based inference meth-

ods that use easily collected phenotypic data to estimate the significance of well established coevo-

lutionary models and hence to test for the significance of coevolution. In particular, coevolutionary
1This chapter was previously published as: Week, B., Nuismer, S.L. 2019. The Measurement of Coevolution in the Wild.

Ecology Letters 22(4):717–725. DOI: 10.1111/ele.13231.
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models now exist that predict the statistical distribution of traits across multiple populations for a pair

of interacting species that evolve in response to random genetic drift, abiotic selection, and coevolution

(Nuismer et al., 2010). Crucially, these models predict that the distribution of local population trait

means in the interacting species across a metapopulation will approach a bivariate normal distribution

entirely described by five statistical moments: the average value of the key trait in each species among

populations, the variance of the key trait in each species among populations, and the spatial association

(covariance) between the key traits in each species. The phenotypic data necessary to calculate these

statistical moments can be visualized as a two-dimensional scatter plot. Where each axis measures the

mean trait value for one of the species. Hence, each point in the scatter plot corresponds to a pair of

mean traits of the two interacting species within a given population.

Because the models predict a bivariate normal distribution of traits, calculating the likelihood of

observing any particular set of trait values in a pair of interacting species is straightforward. With the

five statistical moments that describe the bivariate normal distribution, we can infer up to five model

parameters. The five parameters our method infers includes strengths of reciprocal selection caused

by the focal interaction (the strengths of biotic selection B1, B2), the strengths of selection due to any

other source (the strengths of “abiotic” selection A1, A2), and the optimal offset between trait values

that optimize biotic fitness (δ). The parameters quantifying selection (Bi and Ai) are proportional to

the selection gradients due to the biotic and abiotic components of selection in each population (see

Appendix C.1.3). By maximizing the resulting likelihood with respect to these key parameters, our

method can be used to rigorously test for the presence of coevolution. Specifically, for a coevolutionary

hypothesis to be supported, reciprocal selection must be demonstrated (Janzen, 1980; Thompson, 1994).

In our maximum likelihood framework, this long-standing and widely accepted definition of coevolu-

tion corresponds to demonstrating that both strengths of biotic selection are significantly non-zero. By

performing likelihood ratio tests, support for the coevolutionary hypothesis can be compared relative

to support for the null hypotheses of unilateral evolution where B1 = 0 or B2 = 0 (also referred to as

tracking, see Figure 3.1). Due to the nested structure of these models, the likelihood of coevolution and

the likelihoods of the null models can be directly compared via likelihood ratio tests. Figure 3.1 shows

that each p-value p1 and p2 must be less than the significance threshold α (we use α = 0.05) to support

a coevolutionary hypothesis. Rejecting either null hypothesis of unilateral evolution automatically im-

plies the rejection of evolution completely absent of biotic selection (B1 = B2 = 0) since the likelihood

of the this third null model will always be less than the likelihoods of tracking.

While showing both B1 and B2 are non-zero is necessary for demonstrating the significance of

pairwise coevolution, the strength of coevolution can most easily be quantified as the geometric mean

of the absolute value of the two biotic selection strengths: C ≡
√
|B1B2|. If either strength of biotic

selection is zero, and hence coevolution is absent, then C = 0 as desired and if |B1| = |B2|, then

C = |B1| = |B2|. However, our metric C fails to capture a sense of balance in the forces of biotic

selection. We therefore propose an accompanying measure based on Shannon entropy that takes this

into account. Setting bi = |Bi|/(|B1|+ |B2|) we define the balance of coevolutionary selection as

B ≡ (b1 ln b1 + b2 ln b2)

ln(1/2)
. (3.1)
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Figure 3.1: The network structure of hypotheses that can be distinguished using our approach. Nodes
represent the three relevant hypotheses for coevolutionary inference. Edges represent comparisons
labeled by their p-values. The upper node (in green) represents the coevolutionary hypothesis in which
both strengths of selection induced by the interaction are non-zero. The pink colored nodes represent
the hypotheses of unilateral evolution, or tracking, where one species experiences biotic selection, but
the other does not. By ruling out tracking this approach automatically rejects evolution completely
absent of biotic selection.

Standardizing by ln(1/2) makes 0 ≤ B ≤ 1 with B = 1 representing perfect balance and B = 0

representing unilateral evolution. Though the strength and balance of coevolution can be subjectively

inferred upon inspection of the biotic selection strengths, these two metrics provide a way to quantita-

tively compare these aspects of coevolution across systems.

3.2 Materials and methods

3.2.1 The coevolutionary model

To model the coevolutionary process, we begin by considering a local population level model of

pairwise coevolution. This model assumes fitness is a function of the environment, the trait of the focal

individual and the trait of the individual being encountered. In particular, we assume species i has an

optimal phenotype θi that maximizes fitness in the absence of the interaction (the abiotic phenotypic

optimum). We define Ai to be the strength of abiotic selection on species i so that the abiotic component

of fitness (WA,i), as a function of the trait value zi, is proportional to

WA,i ∝ exp
(
−Ai

2
(θi − zi)

2
)

. (3.2)

Likewise, beginning from first principles, we derive the biotic component of fitness for an individual

of species i. We assume that biotic fitness is maximized when the trait value of the focal individual zi
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is offset from the trait value being encountered zj by an ideal amount δ. We refer to δ as the “optimal

offset”. A simple example of an optimal offset comes from considering the interaction between long-

tubed flowers and the long-proboscid flies that visit them. The biotic component of fitness for the fly

is maximized when its proboscis is slightly longer than the nectar tube depth of the flower, allowing

the fly to easily extract its nectar reward. The difference between tube depth and proboscis length

that maximizes the flies biotic fitness component is the optimal offset for the fly. Note how this differs

from a “bigger is better” situation commonly referred to for the explanation of coevolutionary arms

races. Under the optimal offset model, fitness is a unimodal function and therefore does not increase

indefinitely with larger (or lesser) trait values. A more general model would allow different δ’s for

each species, but since our method can only infer up to five parameters we make the parsimonious

assumption that both species have the same optimal offset. Defining Bi to be the strength of biotic

selection on species i, the biotic component of fitness (WB,i) is proportional to

WB,i ∝ exp
(
−Bi

2
(z̄j + δi − zi)

2
)

(3.3)

when biotic selection is weak (|Bi| � 1). Here z̄j is the within population average phenotype of species

j. Net fitness is given by the product of the abiotic and biotic components of fitness. Since the amount

by which fitness is proportional to these values is irrelevant for evolutionary dynamics, we leave them

out here. Detailed derivations are provided in Appendix C.1. As noted above our method infers values

for B1, B2, A1, A2 and δ and can thus accommodate most coevolutionary scenarios including escalation

(δ 6= 0) and matching (δ = 0, B1, B2 > 0).

With a functional form of fitness in hand, we employed theoretical quantitative genetics to formally

derive the local population model of mean trait dynamics for the two species. From this local model

we derived the dynamics of the distribution of pairs of mean traits across the metapopulation. Since

our model predicts the metapopulation distribution of mean-trait-pairs will converge to a bivariate

normal (a proof is given in Appendix C.1.6), we are justified in tracking only the first five moments of

the metapopulation distribution. These are the metapopulation mean traits of each species (µ1 and µ2),

the metapopulation variance of local mean traits for each species (V1 and V2) and the metapopulation

covariance of local mean traits for the two species (C). For species i we denote the additive genetic vari-

ance by Gi and the local effective population size by ni. Results derived in Appendix C.1 demonstrate

that the five moments change according to the following recursions:

∆µ1 = G1 {B1δ + B1(µ2 − µ1) + A1(θ1 − µ1)} (3.4a)

∆µ2 = G2 {B2δ + B2(µ1 − µ2) + A2(θ2 − µ2)} (3.4b)

∆V1 = −2A1G1V1 + 2B2G2(C−V1) + G1/n1 (3.4c)

∆V2 = −2A2G2V2 + 2B1G1(C−V2) + G2/n2 (3.4d)

∆C = B2G2(V1 − C) + B1G1(V2 − C)− (A1G1 + A2G2)C. (3.4e)
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3.2.2 Parameter estimation

After solving for the equilibrium expressions of the first five moments from equations (4), we use

maximum likelihood to estimate the selection strengths (A1, A2, B1 and B2) and the optimal offset

(δ). However, to do so requires more than estimates of mean trait pairs from multiple populations.

Background parameters of the model also need to be estimated. These include the effective population

sizes n1, n2, the optimal phenotypes favored by abiotic stabilizing selection θ1, θ2 and the additive

genetic variances G1, G2.

We show in Appendix C.1.4 that if ni has been estimated from multiple locations, these can be

included by using their harmonic mean as the effective population size in our model. Likewise, if Gi

has been estimated from multiple populations, these can be included by using their arithmetic mean

as the effective additive genetic variance for our model. Finally, the model used in this manuscript

assumes the abiotic optimum is constant across space. In the associated Mathematica notebook, we

expand the model to formally account for variable θi. The results of this notebook demonstrate that

the two models are equivalent when variation in θi is small and therefore implies that the average

abiotic optimum across space works as the effective abiotic optimum needed to perform inference.

This notebook also implies that our method is readily adaptable for the inclusion of spatially varying

optima as such data become available.

The likelihood is a routine calculation in terms of the first five moments which are in turn functions

of model parameters (n1, n2, θ1, θ2, G1, G2, δ) and selection strengths (A1, A2, B1, B2). In Appendix C.2

we show how to invert these expressions to obtain analytic solutions for the maximum likelihood

estimates of selection strengths. Full expressions are provided in the associated Mathematica notebook.

Although our focus is on finding point estimates for the strengths of biotic selection, coevolution

and coevolutionary balance, we also estimated uncertainty due to error caused by sampling from the

metapopulation. To do so we calculated 95% confidence intervals for each selection strength.

3.2.3 Estimating significance

Denoting the likelihood of the coevolutionary model by Lc and the likelihood of null model i (for

which Bi = 0) by Li, we compute the log-likelihood difference statistic by

Λi = 2(ln Lc − ln Li). (3.5)

Denote by Fj(x) the distribution function of a χ2 random variable with degrees of freedom j. Wilk’s

theorem implies the distribution of Λi is approximately a χ2 (Wilks, 1938). Since in each null model

we fix just one parameter, the degrees of freedom is one for both tests. Thus, the p-value associated

with testing against null hypothesis i (written pi) has the following approximation

pi ≈ 1− F1(Λi). (3.6)

If both p1 and p2 < 0.05 for a given study system then our method asserts significant evidence

for coevolution exists in this system. We provide a tutorial for implementing our approach using the
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statistical programming language R at the following url:

https://bobweek.github.io/measuring_coevolution.html

3.2.4 Evaluation of performance

Before applying our maximum likelihood methodology to specific study systems, we evaluated its

performance when challenged with simulated data. We assessed the type-1 error rate and statistical

power of our method across a range of biotic selection strengths and metapopulation sample sizes.

These analyses were performed by simulating data under the model with randomly drawn model

parameters. Distributions used for each background parameter are reported in Table 3.1. For error

rates as functions of biotic selection strengths, sample sizes were drawn at random from a Poisson

distribution with a mean of 20. Draws were repeated until a sample size of at least three was obtained.

For type-1 error rates as functions of unilateral selection we chose one biotic strength to be zero and

set the other to the strength of unilateral selection. For type-2 error rates as functions of the strength

of coevolution C, we drew one biotic selection strength from a uniform distribution on the interval

(C/10, 10C) and set the other such that their geometric mean equates to C. When calculating type-2

error rates as functions of sample size, strengths of biotic selection were drawn independently from a

uniform distribution on (0,0.01). A similar approach was taken for calculating type-1 error rate as a

function of sample size, except one or both of the biotic selection strengths were set to zero at random.

If either strength of biotic selection was set to zero in the simulation and reported significantly non-

zero by our method, a false positive was accumulated. Likewise, if both strengths of biotic selection

were set to some non-zero number and our method failed to detect coevolution, then a type-2 error

was accumulated. This scheme was repeated 10,000 times for each estimated error rate.

Table 3.1: Distributions of background parameters used for generating error rates and regression anal-
yses.

Parameter(s) Description Distribution
Ai Strength of abiotic selection Uniform(0,0.01)
δ Optimal offset Exp(0.1)
θi Abiotic optima Normal(0,10)
Gi Additive genetic variance Exp(1)
ni Effective population size Exp(0.01)

Alongside our analyses of error rates, we investigated our methods ability to accurately infer the

strength of coevolution using simulated data. For each replicate, we simulated phenotypic data using

the coevolutionary model with known selection strengths and background parameters drawn from the

same set of distributions as those used for the error rates as functions of sample size analysis. We

then estimated the strength of coevolution as defined above using our maximum likelihood approach

and compared it against its actual value via linear regression. Each regression was performed across a

range of sample sizes (Figure 3.2). We also extended this analysis using more general simulations that

relax key assumptions such as the absence of gene-flow and normality of data in Appendix C.3.

https://bobweek.github.io/measuring_coevolution.html
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Numerical analyses of our methods performance were done using the statistical programming

language R. The scripts are publicly available at the following Github repository:

https://github.com/bobweek/measuring.coevolution

3.2.5 Measuring coevolution in the wild

We next applied our maximum likelihood approach to two well-studied species interactions where

previous work implicated coevolution as a cause of trait exaggeration and spatial variability (Pauw

et al., 2009; Toju, 2011): the mutualism between the long tongued fly Moegistorhynchus longirostris and

a plant it pollinates Lapeirousia anceps as well as the antagonism between the camellia plant Camellia

japonica and its seed predator, the weevil Curculio camelliae. In both cases, the interactions are thought to

depend largely on a single key trait in each species (fly proboscis and plant floral tube lengths or weevil

rostrum length and camellia pericarp thickness). This is a crucial detail as the models upon which our

method is based assume interactions are mediated by a single trait in each species. Phenotypic data

for these systems have been collected from several populations, providing a sample of pairs of mean

trait values, the core data required by our method. In addition to the essential phenotypic data,

previous work in both systems provided valuable additional information that allowed us to estimate

the key background parameters required by our method: the likely trait optima in the absence of the

interaction (the “abiotic” optima), the effective population sizes for each species (assumed fixed over

time and space), and the effective additive genetic variances for each species (also assumed to be fixed

over time and space).

The long proboscid fly, M. longirostris, resides in lowland habitats near the coast of South Africa and

pollinates a guild of at least 20 plant species (Manning and Goldblatt, 1997). Among these species, the

most widespread is L. anceps, a long tubed perennial whose distribution extends outside the range of M.

longirostris (Pauw et al., 2009). We were able to estimate the likely optimal tube and proboscis lengths

for these species in the absence of this particular interaction. Using the phenotypic data published

by Pauw et al. (2009), we inferred this parameter for the flower as the average mean tube length of

two populations not visited by the fly. Estimating the abiotic optima for the fly was more challenging

because we were unable to identify fly populations where the plant did not co-occur. However, there

are data available for the proboscis lengths in three sister species of M. Longirostris (41.0 mm for M.

braunsi, 11.5 mm for M. brevirostris, and 32.0 mm for M. perplexus) (Bequaert, 1935). Since these sister

species do not interact with L. anceps (Barraclough and Slotow, 2010), their traits represent potential

evolutionary trajectories that could have been taken by M. longirostris in the absence of its interaction

with L. anceps. Given that none of the three sister species underwent a similar arms race with some

other flower (which appears likely based on their relatively modest proboscis lengths), we therefore

take these values as rough approximations of the actual abiotic optimal phenotype for M. longirostris.

Hence, we estimated selection strengths and significance when the abiotic optimum was set equal

to each of the three trait values and the average of all three. The result presented in the main text

correspond to the average of all three sister species, but we present the results for all four abiotic optima

in Appendix C.4. Effective population sizes have not been estimated for either species. We therefore

https://github.com/bobweek/measuring.coevolution
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relied on the biologically plausible census sizes of 1000 for L. anceps and 100 for M. longirostris, as

suggested by B. Anderson (personal communications). Since heritabilities for neither of these traits

have been estimated, we relied on within population phenotypic variances as a rough proxy for the

additive genetic variances in this system.

We complement our analysis of this plant pollinator mutualism with an analysis of the antagonistic

interaction between C. camelliae and C. japonica (Toju and Sota, 2005). Female weevils bore holes into

the woody pericarps of the camellia to oviposit. Inside the fruit, weevil larvae feed on the seeds of the

camellia up until the fourth instar, at which time they exit the fruit and overwinter (Toju and Sota, 2005).

These two species co-occur across Japan, although camellia populations where the weevil is absent also

exist (Toju and Sota, 2005). We were able to establish point estimates of each background parameter

using data from previously published work (Toju et al., 2011a,b) and the fact that male weevil rostrum

lengths could be used as a proxy for the abiotic optimum of the female weevils since males do not

interact with the camellia. Hence, our method does not inherently require estimates of abiotic optima

to come from populations where the interaction is absent. However, using male traits as a surrogate for

the abiotic optimum assumes that male and female trait values are either genetically uncorrelated or

have reached equilibrium. The abiotic optimum for the pericarp thickness of the camellia was inferred

by averaging pericarp thicknesses across populations where weevils are absent. Heritability of pericarp

thickness has been estimated directly (Toju et al., 2011a) and can be at least crudely inferred for weevil

rostrum length via estimates of related species (Toju and Sota, 2009). We used the average of these

values for each species multiplied by the average within population phenotypic variances to estimate

additive genetic variances in this system.

To assess the biological significance of the strengths of coevolution inferred, we compared the

distribution of trait values we would expect in the presence vs absence of coevolution. This was

accomplished by setting both B1 and B2 equal to zero and maximizing the resulting restricted likelihood

function with the remaining free parameters (A1, A2 and δ). Using a multivariate generalization of

effect size (see Appendix C.4.3), we summarize with a single number the effect of coevolution in each

system.

3.3 Results

3.3.1 Evaluation of performance

Regressions of randomly drawn strengths of coevolution onto those inferred by our method were

heteroskedastic with variation proportional to the strength of coevolution (Bartlett’s test: p-value <

2.22e − 16). To rectify this we used weighted least squares. For each point in the regression we set

its weight equal to the inverse of its Euclidean distance to the origin. Analysis of regression results

demonstrates that at low sample sizes our method tends to overestimate the strength of coevolution,

but this bias rapidly diminishes with sample size (see Figure 3.2).

False positive rates are greatly exaggerated for small sample sizes (e.g., < 5), modestly inflated for

sample sizes between 5− 10, but approach their set value (0.05) for sample sizes > 10 (Figure 3.2).

This behavior is attributable to two factors. First, statistical artifacts accumulate in sample moments for
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small sample sizes. For example, the correlation of a sample of size two will always be ±1. Second, the

distribution of our p-values may significantly diverge from a Chi-square distribution at small sample

sizes (Wilks, 1938). We therefore suggest this method only be used for sample sizes of at least five.

Another important caveat, however, is that as biotic selection becomes increasingly imbalanced under

the null scenario when one strength is zero and the other set to some non-zero number, the false

positive rate increases monotonically (see Figure 3.2). Hence, our method can be tricked by extreme

unilateral selection.

Power to detect coevolution is reasonably high at low sample sizes (≈ 0.9) and increases monoton-

ically with sample size. As a function of the strength of coevolution, power is initially negligible but

increases quickly and monotonically.
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Figure 3.2: Top row: Performance of parameter estimation as a function of sample size. The left-hand
panel shows the slope of the regressions converging near one as sample size increases. The right-hand
plot shows the percent variance explained (R2) increasing with sample size. Lower two rows: Error
rates as functions of sample sizes and selection strengths. The left-hand column shows the type-1 and
type-2 error rates as functions of sample size. The right-hand column shows type-1 error as a function
of the strength of tracking (ie, unilateral selection where the species being tracked does not experience
biotic selection) and power as a function of the strength of coevolution.
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3.3.2 Measuring coevolution in the wild

We found that the biotic selection strengths B1 and B2 acting on M. longirostris and L. anceps both

differ significantly from zero (Table 3.2). Thus, our analysis supports the hypothesis of pairwise co-

evolution in this system. Likewise, both B1, the strength of biotic selection on the weevil, and B2,

biotic selection on the camellia plant, significantly differed from zero. Hence, we also found evidence

for pairwise coevolution between the seed-eating weevil C. camelliae and its host plant C. japonica. For

numerical estimates of biotic selection strengths, p-values, and the strength and balance of coevolution,

see Table 3.2. Cross-system comparison of biotic selection strengths is visualized in Figure 3.3.

Table 3.2: Biotic and abiotic selection strengths, optimal offsets, p-values, and strengths of coevolution
and coevolutionary balance for each system. CW refers to the camellia-weevil system and FF refers to
the fly-flower system. Units of selection strengths are all inverse square phenotypic units (mm−2 in this
case). Optimal offsets (δ) are in phenotypic units (mm). The p-values and balances of coevolutionary
selection are unitless.

CW FF
B1 7.17e-04 6.40e-05
B2 5.00e-06 1.84e-06
A1 2.59e-04 7.04e-06
A2 8.05e-06 3.13e-06
δ 4.51 14.2
p1 <2.22e-16 <2.22e-16
p2 <2.22e-16 1.19e-07
C 5.99e-05 1.08e-05
B 5.97e-02 1.84e-01

In addition to providing information on the magnitude and significance of coevolution, we quanti-

fied the extent of trait exaggeration produced by coevolution by comparing the equilibrium phenotypic

distribution we would expect with and without the levels of coevolution we estimated (Figure 3.4). This

comparison reveals that although the numerical estimates of coevolutionary selection appear superfi-

cially small, for the camellia-weevil interaction coevolution results in a 111% increase in the mean

rostrum length of the camellia weevil and a 66.0% increase in the pericarp thickness of the camellia

fruit (Figure 3.4). For the fly-flower system coevolution appears to have caused a 134% increase in

proboscis length and a 34.5% increase in floral tube depth compared to equilibrium estimates for these

values we predict when coevolution is absent. Using a multivariate analog of effect size we calculated

the effect of coevolution in each system. We found an effect size of 7.55 for the fly-flower system and

an effect size of 3.07 for the camellia-weevil interaction.

3.4 Discussion

Our results demonstrate that coupling existing coevolutionary models with a maximum likelihood

approach allows the strength of coevolutionary selection to be estimated using routinely collected

phenotypic data. Regression analysis shows that with sufficient sample sizes we can obtain accurate
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Figure 3.3: The estimated strength of biotic selection for the M. longirostris-L. anceps interaction (pink)
and the C. japonica-C. camelliae interaction (green). Units for each strength are in mm−2, the inverse of
the square of the phenotypic units. 95% confidence intervals are shown around each estimate. Each
selection strength was found to be statistically significant and hence coevolution was detected in both
systems.

estimates of the strength and significance of coevolution. Furthermore, our method is robust to modest

amounts of gene flow and weakly non-normal data (Appendix C.3).

Applying our method to two textbook examples of pairwise coevolution, we find strong evidence

for significant coevolution in both systems. This qualitative result is complemented by quantitative

estimates of the strength of coevolution in the wild. By applying this method to various systems, it

will be possible to obtain an empirical distribution of the strength of coevolution in nature. After

the appropriate transformation (analogous to standardizing selection gradients with respect to pheno-

typic distributions) such data will allow for a meta-analysis akin to (Kingsolver et al., 2001; Siepielski

et al., 2009, 2013) which would provide a yardstick allowing us to further understand the biological

significance of our numerical results.

In spite of the various merits of our method, there are serious limitations that must be confronted

empirically. Most notable is the necessity of providing estimates of abiotic optima. Since these param-

eters are seldomly estimated for natural populations, we are restricted in our analysis here to two data

sets in which sufficient information was provided. In particular, phenotypic measurements in pop-

ulations that do not partake in the interaction (due to geographical isolation or sexual dimorphism)

provide reasonable estimates of the abiotic optima, though other means of estimating these parameters

exist as demonstrated above.

Alongside the empirical work necessary for estimating background parameters of our model, our

results suggest that increasing the number of populations used in studies of trait matching would also

substantially improve opportunities for coevolutionary inference. Specifically, we suggest sample sizes
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Figure 3.4: The effect of coevolution on the trait distributions predicted by our model. The point in the
center of each contour represents the mean traits of the species involved. The green contours represent
data predicted without coevolution and the pink contours represent the observed data.

of at least five and ideally more than twenty to avoid type-1 errors. Taken together, these considerations

outline a reasonably tractable set of sufficient conditions empirical data-sets must meet in order to

utilize our method.

Theoretical limitations of our approach stem from its grounding in classic quantitative genetics and

include the assumptions of fixed additive genetic variance and weak selection. Although we do not

assume strict equilibrium for each component population, we do assume that the system as a whole

has reached approximate statistical equilibrium so that the means, variances and spatial covariance

have become relatively constant with respect to time. This implies that pairs of species for which

this method is ideal have been interacting for a sufficiently long period of time. In reality, however,

empirical systems may be far enough from equilibrium that a significant contemporary trend in the five

moments describing their distribution should be accounted for. Lastly, our method assumes the key

traits mediating the interaction are univariate which may not be ubiquitous across coevolving systems.

Future work that generalizes our approach to multivariate traits, strong selection and non-equilibrium

(ie, time-series data) will result in a more broadly applicable method.

By providing a methodology that does not rely on extensive and system specific experimental ma-

nipulation, our approach greatly expands the range of systems for which the strength of coevolutionary

selection can be estimated, paving the road for a more quantitative and critical assessment of coevolu-

tion’s importance in natural systems. To add substance to this claim we provide three examples. First,

with finer spatial resolution in phenotypic data this method can be applied to the same pair of species

across different partitions of their range to infer the strength of selection mosaics argued to be central

to the coevolutionary process by the Geographic Mosaic Theory of Coevolution (Thompson, 2005). Sec-

ond, previous investigations have resulted in mixed views on the significance of pairwise coevolution

in shaping various aspects of ecological communities including inter- and intraspecific diversity, de-

mographic stability, network structure and ecosystem function (Althoff et al., 2014; Iwao and Rausher,
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1997; Nuismer et al., 2013; Roughgarden, 1979; Yamamura et al., 2001). By applying our method to

each pairwise interaction in a set of interacting species, the distribution of pairwise coevolution can be

inferred within a community to provide empirical insight into the degree to which coevolution molds

the previously mentioned properties of ecological communities. Third, theoretical studies suggest that

only very strong coevolution favors the evolution of sexual reproduction (Agrawal, 2006; Lively, 2010;

Otto and Nuismer, 2004). Our method could inform this hypothesis by determining the strength of

coevolution in specific systems where the evolution of sex has been attributed to interspecific interac-

tions. Hence, when coupled with data from a broad range of empirical systems, this method and its

future iterations hold the potential to settle long standing debates involving the importance of species

interactions and coevolution in the evolution of various phenomena including phenotypic diversity,

sexual reproduction, community structure, and epidemiological dynamics (Anderson and May, 1982;

Hamilton, 1980; McPeek, 2017; Yoder and Nuismer, 2010).
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P. R. Guimarães, M. M. Pires, P. Jordano, J. Bascompte, and J. N. Thompson. Indirect effects drive

coevolution in mutualistic networks. Nature, 550(7677):511–514, Oct. 2017.

W. D. Hamilton. Sex versus non-sex versus parasite. Oikos, pages 282–290, 1980.

C. T. Hanifin, E. D. Brodie Jr, and E. D. Brodie III. Phenotypic mismatches reveal escape from arms-race

coevolution. PLoS biology, 6(3):e60, 2008.

J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press,

May 1998.

D. W. Inouye. The terminology of floral larceny. Ecology, 61(5):1251–1253, Oct. 1980.

K. Iwao and M. D. Rausher. Evolution of plant resistance to multiple herbivores: quantifying diffuse

coevolution. The American Naturalist, 149(2):316–335, 1997.

D. H. Janzen. When is it coevolution. Evolution, 34(3):611–612, 1980.

T. Johnson and N. H. Barton. Theoretical models of selection and mutation on quantitative traits.

Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1459):1411–1425, July 2005.
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Appendix A: Supplementary Material for

A White Noise Approach to Evolutionary Ecology

Throughout this supplement, we set use dot notation for time derivatives so that ḟ (x, t) = ∂
∂t f (x, t)

and denote by ∆ = ∑d
i=1

∂2

∂x2
i

the Laplace operator on Rd.

A.1 Sufficient conditions for finite moments under DAGA

In this section we investigate the conditions under which the trait mean x̄(t), trait variance σ2(t)

and abundance N(t) remain finite for finite time t ≥ 0 when they evolve according to DAGA, the

deterministic PDE (1.4) of the main text.

Recall the growth rate expression m(ν, x) is shorthand for the more accurate expression m((Kν)(x, t), x)
where (Kν)(x, t) =

∫
R

κ(x− y)ν(y, t)dy for some non-negative and bounded function κ. Hence, Kν is a

non-negative function whenever ν is a non-negative function. In particular, this implies m is actually a

bivariate function of two real numbers h ≥ 0 and x ∈ R. Following the main text, we assume the exis-

tence of R ∈ R such that m(h, x) ≤ R across all h ≥ 0 and x ∈ R. We also assume a twice continuously

differentiable and integrable initial condition u(x) that satisfies

0 <
∫

R
(|x|+ x2)u(x)dx < +∞. (A.1)

In particular, this implies finite initial moments N(0), |x̄(0)|, σ2(0) < +∞ and positive initial abun-

dance and trait variance 0 < N(0), σ2(0). Following DAGA, we consider the Cauchy problem{
ν̇(x, t) = m(ν, x)ν(x, t) + µ

2 ∆ν(x, t) t > 0

ν(x, 0) = u(x) t = 0.
(A.2)

We assume the operator F defined by ν(x, t)→ m(ν, x)ν(x, t) is locally Lipschitz continuous, corre-

sponding to equation (1.6) of the main text. To be specific, we define the domain of the Laplacian as

D(∆) = C2(R) ∩ L1(R) with the norm ‖v‖ =
∫

R
v(x)dx and define F as an operator on D(∆). That

is, F maps between functions that are integrable and twice continuously differentiable. Then Theorem

2.5.6 of Zheng (2004) implies for some maximal T > 0, the Cauchy problem (A.2) admits a unique

classical solution ν(x, t) for t ∈ [0, T). This implies the solution ν(x, t) is continuously differentiable

with respect to t and twice continuously differentiable with respect to x for all t ∈ [0, T). Furthermore,

Theorem 2.5.6 of Zheng (2004) implies either T = +∞ and N(t) < +∞ for all t > 0 or T < +∞ and

limt↑T N(t) = +∞. The latter case corresponds to the notion of blow-up.

In this section we show that our assumption m(h, x) ≤ R for all h ≥ 0 and x ∈ R implies T = +∞

and N(t) < +∞ for all t > 0. Replacing m with it’s upper bound R ∈ R, PDE (A.2) reduces to a simple

parabolic equation that can be solved using elementary techniques (Farlow, 1993). In particular, when

m(h, x) ≡ R = 0 we denote the solution to (A.2) by ν0(x, t). Then, denoting

Φ(x, t) =
exp

(
−x2/2µt

)√
2πµt

, (A.3)
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we have

ν0(x, t) =
∫

R
Φ(x− y, t)u(y)dy. (A.4)

In the more general case, when m(ν, x) ≡ R ∈ R, equation (A.2) has the solution νR(x, t) =

eRtν0(x, t). Hence, νR(x, t) ≥ 0 for all x ∈ R and
∫

R
νR(x, t)dx = eRtN(0) < +∞ for all t ≥ 0.

Furthermore, denoting

NR(t) =
∫

R
νR(x, t)dx, (A.5a)

pR(x, t) = νR(x, t)/NR(t), (A.5b)

x̄R(t) =
∫

R
xpR(x, t)dx, (A.5c)

σ2
R(t) =

∫
R
(x− x̄R(t))2 pR(x, t)dx, (A.5d)

we have

x̄R(t) =
∫

R
x
∫

R
Φ(x− y, t)pR(y, 0)dydx =

∫
R

ypR(y, 0)dy = x̄(0), (A.6)

σ2
R(t) =

∫
R
(x− x̄R(t))2

∫
R

Φ(x− y, t)pR(y, 0)dydx =
∫

R

(
(y− x̄(0))2 + µt

)
pR(y, 0)dy = σ2(0) + µt.

(A.7)

Hence, |x̄R(t)|, σ2
R(t) < +∞ for all t ≥ 0. For the sake of contradiction, suppose there exists x ∈ R

and t > 0 such that ν(x, t) > νR(x, t). Then

ν(x, t)− u(x) =
∫ t

0
m(ν, x)ν(x, s) +

µ

2
∆ν(x, s)ds >

∫ t

0
RνR(x, s) +

µ

2
∆νR(x, s)ds = νR(x, t)− u(x)

(A.8)

which implies there exists h ≥ 0 and x ∈ R such that m(h, x) > R. But this contradicts our assumption

m(h, x) ≤ R for all h ≥ 0 and x ∈ R. So we have ν(x, t) ≤ νR(x, t) for each x ∈ R and t ≥ 0. This

implies that, for all t > 0, N(t) =
∫

R
ν(x, t)dx < +∞ and

0 ≤
∫

R
x2ν(x, t)dx ≤

∫
R

x2νR(x, t)dx < +∞. (A.9)

Furthermore, since ν(x, t) is a classical solution of Cauchy problem (A.2) and since we assumed

N(0) > 0, we conclude N(t) > 0 for all finite t > 0. Hence, for each t > 0,

0 ≤ σ2(t) + x̄2(t) =
1

N(t)

∫
R

x2ν(x, t)dx < +∞. (A.10)
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A.2 Equilibrium moments for a population experiencing logistic growth and

stabilizing selection under DAGA

Here we show, under DAGA, the population moments N, x̄ and σ2 evolve to the following stable

equilibrium

N̂ = 1
c (R− 1

2
√

aµ), (A.11a)

ˆ̄x = θ, (A.11b)

σ̂2 =
√

µ
a , (A.11c)

given the initial condition N(0) > 0 and growth rate

m(ν, x) = R− a
2
(θ − x)2 − c

∫
R

ν(y, t)dy = R− a
2
(θ − x)2 − cN(t) (A.12)

that satisfies θ ∈ R, a, c, µ > 0 and R > 1
2
√

µa. Following equation (A.12), mean fitness becomes

m̄(t) = R− a
2

[
(θ − x̄(t))2

+ σ2(t)
]
− cN(t), (A.13)

and the ODE for N(t) becomes

d
dt

N(t) =
{

R− a
2

[
(θ − x̄(t))2

+ σ2(t)
]
− cN(t)

}
N(t). (A.14)

Solving for equilibrium total abundance N̂ amounts to setting d
dt N(t) = 0 and solving for N(t).

Ignoring the equilibrium N(t) = 0, this reduces to solving m̄(t) = 0 for N(t), which, assuming finite

equilibrial ˆ̄x and σ̂2, returns

N̂ =
1
c

{
R− a

2

[
(θ − ˆ̄x)2 − σ̂2

]}
. (A.15)

Unfortunately, deriving ODE for x̄(t) and σ2(t) leads to expressions involving higher moments and

finding ODE for these higher moments will lead to expressions involving yet even higher moments. To

avoid this infinite regression, we find the equilibrium abundance density ν̂(x) by solving ∂
∂t ν(x, t) = 0

for ν(x, t). This implies the following ordinary differential equation

d2

dx2 ν̂(x) =
(

2c
µ

N̂ +
a
µ
(θ − x)2 − 2R

µ

)
ν̂(x) (A.16)

which has the solution

ν̂(x) =
N̂√
2π

(
a
µ

) 1
4

exp
(
−
√

a
µ

(θ − x)2

2

)
. (A.17)

From this expression we infer ˆ̄x = θ and σ̂2 =
√

µ
a . Hence N̂ = 1

c

(
R− 1

2
√

aµ
)

. To show this

equilibrium is stable, we use linear stability analysis. Since ν̂(x) is Gaussian, we do not run into the
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same issue with higher moments as above. Furthermore, following equations (1.31) of the main text,

ODE for x̄(t) and σ2(t) can now be expressed as

d
dt

x̄(t) = σ2(t)

(
∂m̄(t)
∂x̄(t)

− ∂m(t)
∂x̄(t)

)
= aσ2(t)(θ − x̄(t)), (A.18a)

d
dt

σ2(t) = 2σ4(t)

(
∂m̄(t)
∂σ2(t)

− ∂m(t)
∂σ2(t)

)
+ µ = µ− aσ4(t). (A.18b)

These expressions confirm our findings that ˆ̄x = θ and σ̂2 =
√

µ
a . Furthermore, calculating

∂

∂σ2(t)
d
dt

σ2(t) = −2aσ2(t) (A.19)

and evaluating at σ2(t) = σ̂2 demonstrates the equilibrium phenotypic variance is stable when a, µ > 0.

Hence, calculating

∂

∂x̄(t)
d
dt

x̄(t) = −aσ2(t) (A.20)

and evaluating at σ2(t) = σ̂2 and x̄(t) = ˆ̄x demonstrates the equilibrium phenotypic mean is stable

when a, µ > 0. Finally, calculating

∂

∂N(t)
d
dt

N(t) = R− a
2

[
(θ − x̄(t))2

+ σ2(t)
]
− 2cN(t) (A.21)

and evaluating at σ2(t) = σ̂2, x̄(t) = ˆ̄x and N(t) = N̂ demonstrates the equilibrium total abundance is

stable when a, c, µ > 0, and R > 1
2
√

aµ.

A.3 Dynamics of σ2
under DAGA

In this section we derive the dynamics of the phenotypic variance σ2 under DAGA. Recall ν(x, t) is

the abundance density in phenotypic space, N(t) =
∫

R
ν(x, t)dx is the total abundance and p(x, t) =

ν(x, t)/N(t) is the phenotypic distribution. Picking up from the main text §1.2.1, we have

d
dt

σ2(t) =
d
dt

∫
R
(x− x̄(t))2 p(x, t)dx =

∫
R

2(x− x̄(t))
d
dt

x̄(t) + (x− x̄(t))2 ∂

∂t
p(x, t)dx

=
∫

R
(x− x̄(t))2

(
(m(ν, x)− m̄(t))p(x, t) +

µ

2
∂2

∂x2 p(x, t)
)

dx

=
∫

R

(
(x− x̄(t))2 − σ2(t) + σ2(t)

)
(m(ν, x)− m̄(t))p(x, t) + (x− x̄(t))2 µ

2
∂2

∂x2 p(x, t)dx

= Covt

(
(x− x̄(t))2, m(ν, x)

)
+

µ

2

∫
R
(x− x̄(t))2 ∂2

∂x2 p(x, t)dx, (A.22)

where Covt

(
f (x), g(x)

)
=
∫

R

(
f (x)− f̄

)(
g(x)− ḡ

)
p(x, t)dx is the covariance between f and g across

the phenotypic distribution p(x, t). Applying integration by parts twice yields
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∫
R
(x− x̄(t))2 ∂2

∂x2 p(x, t)dx = 2. (A.23)

Hence,

d
dt

σ2(t) = Covt

(
(x− x̄(t))2, m(ν, x)

)
+ µ. (A.24)

A.4 Simplifying fitness covariances when traits are normally distributed

Here we show when traits are normally distributed the evolutionary dynamics of x̄ and σ2 can be

expressed in terms of growth rate gradients. In particular, we set

p(x, t) =
1√

2πσ2(t)
exp

(
− (x− x̄(t))2

2σ2(t)

)
(A.25)

and calculate

σ2

(
∂m̄
∂x̄
− ∂m

∂x̄

)
= σ2

(
∂

∂x̄

∫
R

m(ν, x)p(x, t)dx−
∫

R
p(x, t)

∂

∂x̄
m(ν, x)dx

)
= σ2

∫
R

m(ν, x)
∂

∂x̄
p(x, t)dx = σ2

∫
R

x− x̄(t)
σ2 m(ν, x)p(x, t)dx

=
∫

R
(x− x̄)(m(ν, x)− m̄)p(x, t)dx = Covt(m, x), (A.26)

2σ4

(
∂m̄
∂σ2 −

∂m
∂σ2

)
= 2σ4

(
∂

∂σ2

∫
R

m(ν, x)p(x, t)dx−
∫

R
p(x, t)

∂

∂σ2 m(ν, x)dx
)

= 2σ4
∫

R

(x− x̄)2 − σ2

2σ4 m(ν, x)p(x, t)dx =
∫

R

(
(x− x̄)2 − σ2

) (
m(ν, x)− m̄

)
p(x, t)dx

= Covt

(
m, (x− x̄)2

)
. (A.27)

A.5 Relating fitness of expressed traits to fitness of breeding values

In the main text we extended our models of trait evolution to the case of imperfect inheritance. In

this case, the expressed trait x of an individual is normally distributed around the individuals breeding

value g. We denote by ψ(x, g) the density of this normal distribution and by η its variance. We then

apply either DAGA or SAGA to track the dynamics of the abundance density across breeding values,

denoted ρ(g, t), instead of tracking the dynamics of the the abundance density across expressed traits

ν(x, t). We denote by G the variance of breeding values, traditionally referred to as the additive genetic

variance, and by m∗(ρ, g) the continuous time growth rate of breeding value g. To obtain ν(x, t) from

ρ(g, t), we calculate
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ν(x, t) =
∫

R
ρ(g, t)ψ(x, g)dg. (A.28)

Denoting by σ2 the variance of expressed traits and m(ν, x) the continuous time growth rate of

expressed trait x, equation (A.28) implies σ2 = G + η and

m∗(ρ, g) =
∫

R
m(ν, x)ψ(x, g)dx. (A.29)

Furthermore, equation (A.28) implies expressed traits are normally distributed whenever the breed-

ing values are. In this case both ν(x, t) and ρ(g, t) share a common mean x̄. Hence, the averaged fitness

gradients ∂m∗
∂x̄ , ∂m∗

∂G can be expressed as

∂m∗

∂x̄
=
∫

R

ρ(g, t)
N(t)

∂

∂x̄

(∫
R

m(ν, x)ψ(x, g)dx
)

dg =
∫

R

(∫
R

ρ(g, t)
N(t)

ψ(x, g)dg
)

∂

∂x̄
m(ν, x)dx

=
∫

R
p(x, t)

∂

∂x̄
m(ν, x)dx =

∂m
∂x̄

, (A.30)

∂m∗

∂G
=
∫

R

ρ(g, t)
N(t)

∂

∂G

(∫
R

m(ν, x)ψ(x, g)dx
)

dg =
∫

R

(∫
R

ρ(g, t)
N(t)

ψ(x, g)dg
)

∂

∂G
m(ν, x)dx =

∫
R

p(x, t)
∂m
∂σ2

∂σ2

∂G
dx =

∂m
∂σ2 . (A.31)

A.6 Simulating the rescaled process

Here we provide a detailed description of the branching random walk and how we have chosen to

rescale it. To reduce the potential for extinction and to keep the population density concentrated near

a particular trait value, we focus on the case of logistic growth and stabilizing selection as described in

equation (A.12). In particular, we focus on a growth rate which, as a function of trait value x ∈ R and

a measure-valued process X, can be written as

m(X(t), x) = R− a
2
(θ − x)2 − cX(R, t). (A.32)

We have implemented this simulation in the programming language Julia. A copy can be found at

the url:

https://github.com/bobweek/branching.brownian.motion.and.spde

A.6.1 Description of simulation

We begin by describing the branching random walk before introducing our scheme to rescale it.

Our branching random walk follows closely the description of branching Brownian motion in the main

https://github.com/bobweek/branching.brownian.motion.and.spde
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text. However, we replace exponentially distributed lifetimes with deterministic unit time steps for

easier implementation. Hence, we restrict time to t = 0, 1, 2, . . . , and so on. Furthermore, we allow

individual fitness to depend on both trait value and the state of the entire population. At time t we

write {x1(t), . . . , xn(t)(t)} as the set of trait values across all n(t) individuals alive in the population.

Since our simulation follows discrete individuals instead of continuous distributions of trait values, we

can write

X(t) =
n(t)

∑
i=1

δxi(t), (A.33)

where δxi(t) denotes the point mass located at xi(t). For simplicity we assume perfect heritability. At

each iteration we draw, for each individual, a random number of offspring from a Negative-Binomial

distribution. We use the Negative-Binomial distribution so that we can fix the variance in reproductive

output while allowing the mean reproductive output to change. In particular, this coincides with our

treatment of diffusion limits of interacting measure-valued processes in the main text.

Recall the Negative-Binomial distribution models the number of failed Bernoulli trials that occur

before a given number of successful trials. Denoting q the probability of success for each trial and s the

number of successes, the mean and variance are given respectively by

W =
s(1− q)

q
, V =

s(1− q)
q2 . (A.34)

This imposes the restriction V > W. Requiring the ith individual to have mean number offspring

W(X, xi) and variance equal to V, the parameters of the associated Negative-Binomial distribution

become

q(X, xi) =
W(X, xi)

V
, s(X, xi) =

W2(X, xi)

V −W(X, xi)
. (A.35)

For each offspring produced by the individual with trait value xi, we assign independently drawn

trait values normally distributed around xi with variance µ. This summarizes the basic structure of

our simulation. To impose selection and density dependent growth rates, we set

W(X, xi) = exp
(

R− a
2
(θ − xi)

2 − cX(R, t)
)

, (A.36)

where X(R, t) = n(t).

A.6.2 Rescaling

To rescale the branching random walk by a positive integer n0, we replace individual mass with
N0
n0

for some fixed continuously varying number N0 > 0, write the rescaled population distribution

as X(n0), rescale generation time by 1/n0 (which implies mutational variance is rescaled by 1/n0) and

expected reproductive output by
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W(X(n0), xi)→
(
W(X(n0), xi)

)1/n0
= exp

(
R
n0
− a

2n0
(θ − xi)

2 − c
n2

0
X(n0)(R, ·)

)

= exp

(
R
n0
− a

2n0
(θ − xi)

2 − cn
n2

0

)
. (A.37)

When it exists, we denote by X = limn0→∞ X(n0), the limiting process of the sequence of rescaled

processes X(1), X(2), . . .. Then, as desired, we find

lim
n0→∞

n0

((
W(X(n0)(t), x)

)1/n0 − 1
)
= R− a

2
(θ − x)2 − cX(R, t). (A.38)

Since the limiting growth rate is bounded above by R, the bivariate Girsanov transform given by

Evans and Perkins (1994) can be used to demonstrate existence and uniqueness of X (see also §7.5 of

Etheridge, 2000).

A.7 Derivation of diffuse coevolution model

In this section we provide a derivation of our model of diffuse coevolution driven by resource

competition. Since most of the work in this derivation has been completed in Appendix A.12, we focus

here on deriving the Malthusian fitness of each species as a function of trait values and abundance

densities of across all species in the community. We then use this fitness function to calculate selection

gradients.

A.7.1 Individual fitness

We begin with discrete populations of individuals. In particular, we begin by assuming population

size ni is an integer for each species i = 1, . . . , S before passing to the large population size limit. We

assume the competitive effects on fitness for each individual accumulates multiplicatively. For species

i, the magnitudes of these negative effects increase with the degree of niche-overlap, mediated by the

sensitivity ci > 0.

We model niche space using the real line R and represent locations along this gradient with the

symbol ζ. We assume individuals of species i sample the niche gradient following a probability distri-

bution with density ui(ζ, x), x being the average niche location sampled or niche center. In particular,

we assume individuals sample their environment following a normal distribution so that

ui(ζ, x) =
Ui√
2πwi

e−
(ζ−x)2

2wi , (A.39)

where Ui represents total niche use (since Ui =
∫

ui(ζ, x)dζ) and wi represents niche breadth (the

width of the bell curve ui). Following the main text, we define the niche-overlap between individuals

of species i and j with trait values xi and xj respectively as
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Oij(xi − xj) =
∫

R
ui(ζ, xi)uj(ζ, xj)dζ =

UiUj√
2π(wi + wj)

e
−

(xi−xj)
2

2(wi+wj) . (A.40)

Denote by xij the niche center of the j-th individual belonging to species i. The set of niche centers

across all individuals in the community is written C = {xij}. We denote by Bij a function that maps

C to the cumulative effect of all competitive interactions on the fitness of the j-th individual in species

i. Since individuals do not compete with themselves the net multiplicative effects on fitness of both

interspecific and intraspecific competition on the j-th individual in species i can be summarized by

Bij(C) = exp

(
−ci ∑

l 6=j
Oii(xij − xil)− ci ∑

k 6=i

nk

∑
l=1

Oik(xij − xkl)

)
. (A.41)

To capture abiotic stabilizing selection we assume resources are normally distributed along the

niche gradient. We also assume the concentration of resources is proportional to expected reproductive

output. Combining these assumptions, we denote by ei(ζ) the fitness benefits for individuals sampling

at niche location ζ so that

ei(ζ) = Qie−
Ai
2 (θi−ζ)2

, (A.42)

where Qi is the maximum expected reproductive output in the absence of competitive interactions,

θi is the phenotypic optimum (location along niche axis of most abundant resources) and Ai > 0

determines the strength of abiotic stabilizing selection (the sharpness of the resource distribution).

Then, we calculate the effect of mismatch between resource use and resource distribution on the fitness

of individuals in species i with niche center x as

Ai(x) =
∫

R
ei(ζ)ui(ζ, x)dζ =

QiUi√
1 + Aiwi

e−
Ai

1+Aiwi
(θi−x)2

. (A.43)

Writing Wij(C) as the average number of offspring left by the j-th individual of species i, we have

Wij(C) = Ai(xij)Bij(C)

=
QiUi√

1 + Aiwi
exp

(
− Ai

1 + Aiwi
(θi − x)2 − ci ∑

l 6=j
Oii(xij − xil)− ci ∑

k 6=i

nk

∑
l=1

Oik(xij − xkl)

)
. (A.44)

A.7.2 The diffusion limit

To make sense of the diffusion limit, we recall the components of the interacting measure-valued

branching process discussed in the main text §1.2.2: (1) the branching rate λ, (2) the mean W(X(t), x)

and variance V of reproductive output and (3) spatial movement given by Brownian motion with

diffusion parameter
√

µ. For integers n = 1, 2, . . . , we rescale the branching rate by λ → n and fitness

by Wij(C) →W1/n
ij (C). We rescale the mass of individuals in species i by Ni(0)/n for a fixed positive

continuously valued number Ni(0) > 0. In the diffusion limit, we take n → ∞. We assume the



76

sequence of initial measures for species i, X(1)
i (0), X(2)

i (0), . . . , converges to a limiting measure Xi(0)

that admits a density νi(x, 0) (i.e., Xi(D, 0) =
∫

D νi(x, 0)dx) such that
∫

R
(|x|+ x2 + x4)νi(x, 0)dx < +∞

and Xi(R, 0) =
∫

R
νi(x, 0)dx = Ni(0) < +∞. Hence, rescaled fitness becomes

W1/n
ij (C) = Ai(xij)

1/n exp

(
− ci

n
Ni(0)

n ∑
l 6=j

Oii(xij − xil)−
ci
n ∑

k 6=i

Nk(0)
n

n

∑
l=1

O1k(xij − xkl)

)
. (A.45)

For large n, we have the approximation

W1/n
ij (C) ≈ Ai(xij)

1/n

(
1− ci

n
Ni(0)

n ∑
l 6=j

Oii(xij − xil)−
ci
n ∑

k 6=i

Nk(0)
n

n

∑
l=1

Oik(xij − xkl)

)
. (A.46)

Then, writing ννν = (ν1, . . . , νS), the Malthusian growth of an individual with trait value xij is

mi(ννν, xij) = lim
n→∞

n
(
W1/n

ij (C)− 1
)

= lim
n→∞

n
(
Ai(xij)

1/n − 1
)
− ciAi(xij)

1/n

(
Ni(0)

n ∑
l 6=j

Oii(xij − xil) + ∑
k 6=i

Nk(0)
n

n

∑
l=1

Oik(xij − xkl)

)

= lnAi(xij)− ci

(∫
R
Oii(xij − y)νi(y, t)dy + ∑

k 6=i

∫
R
Oik(xij − y)νk(y, t)dy

)

= lnAi(xij)− ci

(
S

∑
k=1

∫
R
Oik(xij − y)νk(y, t)dy

)
. (A.47)

The resulting expression can be used to compute the Malthusian growth rate for species i associated

with any trait value x ∈ R, which we write as mi(ννν, x).

A.7.3 Computing fitness gradients

We compute the average niche overlap of an individual in species i with niche location x across all

individuals in species j as

Ōij(x, t) =

∫
R
Oij(x− y)νj(y, t)dy∫

R
νj(y, t)dy

=
1

Nj(t)

∫
R
Oij(x− y)νj(y, t)dy. (A.48)

Following our assumption that individuals of species i sample their environment via a normal

distribution with density ui(ζ), we further assume normally distributed phenotypes for each of the S

species. In this case Ōij(x, t) simplifies to
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Ōij(x, t) =
1

Nj(t)

∫
R
Oij(x− y)νj(y, t)dy

=
UiUj√

2π(wi + wj + σj
2(t))

exp

(
−

(x− x̄j(t))2

2(wi + wj + σj
2(t))

)
, (A.49)

where σ2
i (t) is the variance of niche-centers in species i at time t. Adopting the model of imperfect

inheritance formulated in the main text we recall the expressed trait of an individual xi is normally

distributed around its breeding value gi with variance ηi. We call ηi the variance of environmental

deviation and Gi, which is the variance of breeding values, the additive genetic variance for species i.

Under this model of inheritance variance of expressed traits decomposes as σ2
i (t) = Gi(t) + ηi.

To simplify notation we set

Ri = ln
(

QiUi√
1 + Aiwi

)
, (A.50a)

ai =
Ai

1 + Aiwi
, (A.50b)

b̃ij(t) =
1

wi + wj + σ2
j (t)

, (A.50c)

where Ri is the innate growth rate, ai is the strength of abiotic stabilizing selection and b̃ij is an

intermediate variable mediating the sensitivity of fitness of individuals in species i to interactions with

species j. With this notation, the Malthusian fitness mi(ννν, x) can be expressed as

mi(ννν, x) = Ri −
ai
2
(x− θi)

2 − ci

S

∑
j=1

NjUiUj

√
b̃ij

2π
exp

(
−

b̃ij

2
(x− x̄j)

2

)
. (A.51)

For the remainder of the derivation we suppress notation indicating dependency on ννν and x. From

(A.51) we calculate

∂mi
∂x̄i

= ci NiU2
i b̃ii(x− x̄i)

√
b̃ii
2π

exp
(
− b̃ii

2
(x− x̄i)

2
)

, (A.52)

∂mi
∂Gi

=
ci NiU2

i
2

(
(x− x̄i)

2 − Gi − ηi − 2wi
(Gi + ηi + 2wi)2

)√
b̃ii
2π

exp
(
− b̃ii

2
(x− x̄i)

2
)

=
ci NiU2

i b̃2
ii

2

(
(x− x̄i)

2 − σi
2 − 2wi

)√ b̃ii
2π

exp
(
− b̃ii

2
(x− x̄i)

2
)

. (A.53)

Note that
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√
b̃ii
2π

exp
(
− b̃ii

2
(x− x̄i)

2
)√

1
2πσi

2 exp
(
− (x− x̄i)

2

2σi
2

)

=

√
1

2π(σi
2 + 1/b̃ii)

√
σi

2 + 1/b̃ii

2πσi
2/b̃ii

exp
(
−σi

2 + 1/b̃ii

2σi
2/b̃ii

(x− x̄i)
2
)

=

√
1

4π(σi
2 + wi)

√
2(σi

2 + wi)

2πσi
2(σi

2 + 2wi)
exp

(
−σi

2(σi
2 + 2wi)

4(σi
2 + wi)

(x− x̄i)
2
)

. (A.54)

Hence, gradients of the Malthusian fitness mi averaged across the phenotypic distribution pi become

∂mi
∂x̄i

= 0, (A.55)

∂mi
∂Gi

=
ci NiU2

i
2(σi

2 + 2wi)2

(
(σi

2 + 2wi)σi
2

2(wi + σi
2)
− σi

2 − 2wi

)√
bii
2π

=
ci NiU2

i
2(σi

2 + 2wi)

(
σi

2

2(σi
2 + wi)

− 1
)√

bii
2π

= −
ci NiU2

i bii

2

√
bii
2π

, (A.56)

where

bij =
1

wi + wj + σi
2 + σj

2 . (A.57)

The growth rate for species i is

m̄i = Ri −
ai
2

(
(x̄i − θi)

2 + Gi + ηi

)
− ci

S

∑
j=1

NjUiUj

√
bij

2π
exp

(
−

bij

2
(x̄i − x̄j)

2
)

. (A.58)

Thus, we find the following growth rate gradients

∂m̄i
∂x̄i

= ai(θi − x̄i)− ci

S

∑
j=1

NjUiUjbij(x̄j − x̄i)

√
bij

2π
exp

(
−

bij

2
(x̄i − x̄j)

2
)

, (A.59)

∂m̄i
∂Gi

= − ai
2
+

ci
2

S

∑
j=1

NjUiUjbij

(
1− bij(x̄i − x̄j)

2
)√ bij

2π
exp

(
−

bij

2
(x̄i − x̄j)

2
)

. (A.60)

In particular, we will see

(
∂m̄i
∂Gi
− ∂mi

∂Gi

)
= − ai

2
+

ci
2

NiU2
i bii

√
bii
2π

+
S

∑
j=1

NjUiUjbij

(
1− bij(x̄i − x̄j)

2
)√ bij

2π
e−

bij
2 (x̄i−x̄j)

2

 .

(A.61)
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Applying equations (1.28a), (1.39a) and (1.39b) of the main text recovers system (1.46) of the main

text.

A.8 Selection gradients

Here we derive expressions for selection gradients under our model of diffuse coevolution driven

by resource competition.

A.8.1 Definition

Our definition of selection gradients differs slightly from traditional definitions. In particular, Lande

and Arnold (1983) express the linear selection gradient β in general as

β =
1
σ2 Covt(W, x). (A.62)

When expressed traits are normally distributed, Lande (1976) has shown this simplifies to

β =

(
∂ ln W̄

∂x̄
− ∂ lnW

∂x̄

)
, (A.63)

where W̄ is individual fitness averaged across expressed trait values and ∂ lnW
∂x̄ represents frequency

dependent selection. This is convenient for discrete time models of mean trait evolution where the

change in mean trait between generations is captured by

∆x̄ =
G
σ2 Covt(W, x) = Gβ. (A.64)

However, in our case, we model mean trait evolution in continuous time via

dx̄
dt

=
G
σ2 Covt(m, x), (A.65)

which in the case of normally distributed expressed traits simplifies to

dx̄
dt

= G

(
∂m̄
∂x̄
− ∂m

∂x̄

)
. (A.66)

Hence, we define the linear selection gradient β as

β :=
1
σ2 Covt(m, x) (A.67)

which, under normally distributed expressed traits, simplifies to

β =

(
∂m̄
∂x̄
− ∂m

∂x̄

)
. (A.68)

Similarly, the quadratic selection gradient γ is expressed in Lande and Arnold (1983) as
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γ =
1
σ4 Covt(W, (x− x̄)2). (A.69)

Then, in analogy to our definition of β, we define γ by

γ :=
1
σ4 Covt(m, (x− x̄)2). (A.70)

Following results derived in Appendix A.4, the case of normally distributed expressed traits sim-

plifies γ to

γ = 2

(
∂m̄
∂G
− ∂m

∂G

)
. (A.71)

A.8.2 Selection gradients under abiotic stabilizing selection and resource competition

Combining our definitions of selection gradients with the results found in Appendix A.7, our model

of diffuse coevolution yields, for species i,

βi = ai(θi − x̄i)− ci

S

∑
j=1

NjUiUjbij(x̄j − x̄i)

√
bij

2π
e−

bij
2 (x̄j−x̄i)

2
, (A.72a)

γi = −ai + ci

NiU2
i bii

√
bii
2π

+
S

∑
j=1

NjUiUjbij

(
1− bij(x̄i − x̄j)

2
)√ bij

2π
e−

bij
2 (x̄i−x̄j)

2

 . (A.72b)

Note these selection gradients can be additively partitioned as βi = β
(a)
i + ∑S

j=1 βij and γi = γ
(a)
i +

∑S
j=1 γij where β

(a)
i , γ

(a)
i denote the components due to abiotic stabilizing selection and βij, γij denote

the components due to interactions with species j. In particular, we find β
(a)
i = ai(θi − x̄i), γ

(a)
i = −ai

and

βij = ci NjUiUjbij(x̄i − x̄j)

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2
, (A.73a)

γij = ci NjUiUjbij

(
1− bij(x̄i − x̄j)

2
)√ bij

2π
e−

bij
2 (x̄i−x̄j)

2
, i 6= j (A.73b)

γii = 2ci NiU2
i bii

√
bii
2π

, i = j. (A.73c)

A.9 The relation between competition coefficients and selection gradients

Here we derive covariances between competition coefficients and selection gradients following the

model of diffuse coevolution derived in Appendix A.7. We assume the community is very rich (i.e.,

the number of species S is very large) and that the distribution of mean traits is approximately normal

and independent of the distribution of abundance. We denote by ¯̄x, Vx̄ the community-wide mean
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and variance of species mean traits and by N̄, VN the community-wide mean and variance of species

abundances. For simplicity we assume constant species trait variances and niche breadths so that σ2
i =

σ2 and wi = w for some σ2, w > 0. Thus bij = b = 1/(2σ2 + 2w) for each i, j = 1, . . . , S. Under these

conditions, we can express competition coefficients, linear selection gradients and quadratic selection

gradients respectively as

αij = ciUiUj

√
b

2π
e−

b
2 (x̄i−x̄j)

2
, (A.74a)

βij = ciUiUjNib(x̄i − x̄j)

√
b

2π
e−

b
2 (x̄i−x̄j)

2
, (A.74b)

γij = ciUiUjNib(1− b(x̄i − x̄j)
2)

√
b

2π
e−

b
2 (x̄i−x̄j)

2
, i 6= j. (A.74c)

To compute statistical distributions of these quantities we draw i and j independently from the set

{1, . . . , S} each with probability 1/S. Then the event i = j occurs with probability 1/S2. We suppose S

is large enough that we can safely ignore the event i = j.

Under our model of diffuse coevolution, the competition coefficients and selection gradients can be

written in terms of the difference Dij = x̄i− x̄j. By our assumption that i and j are drawn independently

and that x̄i, x̄j approximately follow a normal distribution with mean ¯̄x and variance Vx̄, we see the

distribution of Dij is approximated by a normal distribution with mean zero and variance 2Vx̄.

We suppose the strengths of competition ci and niche-use parameters Ui are distributed indepen-

dently of mean traits, abundances and each other. We write c̄, Ū and Vc, VU as the mean and variance

of these parameters respectively.

A.9.1 Means and variances of competition coefficients and selection gradients

Combining the above assumptions and notation, we can approximate the expectations of competi-

tion coefficients and selection gradients via

ᾱ =
1
S2

S

∑
i,j=1

αij ≈ c̄Ū2
∫

R

√
b

2π
e−

b
2 D2 1√

4πVx̄
e−

D2
4Vx̄ dD = c̄Ū2

√
b

2π(2Vx̄b + 1)
, (A.75a)

β̄ =
1
S2

S

∑
i,j=1

βij ≈ c̄Ū2N̄b
∫

R
D

√
b

2π
e−

b
2 D2 1√

4πVx̄
e−

D2
4Vx̄ dD = 0, (A.75b)

γ̄ =
1
S2

S

∑
i,j=1

γij ≈ c̄Ū2N̄b
∫

R
(1− bD2)

√
b

2π
e−

b
2 D2 1√

4πVx̄
e−

D2
4Vx̄ dD

= c̄Ū2N̄b

√
b

2π(2Vx̄b + 1)

(
1

2Vx̄b + 1

)
=

ᾱN̄b
2Vx̄b + 1

. (A.75c)
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Similarly, their variances can be approximated as

Var(α) = α2 − ᾱ2 ≈ (Vc + c̄2)(VU + Ū2)2
∫

R

b
2π

e−bD2 1√
4πVx̄

e−
D2
4Vx̄ dD− ᾱ2

=
(Vc + c̄2)(VU + Ū2)2

2

√
b
π

√
2b

2π(4Vx̄b + 1)
− ᾱ2

=
(Vc + c̄2)(VU + Ū2)2b

2π
√

4Vx̄b + 1
− ᾱ2, (A.76a)

Var(β) = β2 − β̄2 ≈ (Vc + c̄2)(VU + Ū2)2(VN + N̄2)b
∫

R
D2 b

2π
e−bD2 1√

4πVx̄
e−

D2
4Vx̄ dD

= (Vc + c̄2)(VU + Ū2)2(VN + N̄2)b

√
b
π

√
2b
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(
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4Vx̄b + 1

)
=

(Vc + c̄2)(VU + Ū2)2(VN + N̄2)b2Vx̄

π(4Vx̄b + 1)3/2 , (A.76b)

Var(γ) = γ2 − γ̄2 ≈ (Vc + c̄2)(VU + Ū2)2(VN + N̄2)b
∫

R
(1− bD2)

2 b
2π

e−bD2 1√
4πVx̄

e−
D2
4Vx̄ dD− γ̄2
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)
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)2
)
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(Vc + c̄2)(VU + Ū2)2(VN + N̄2)b2

π
√
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1− 2b

(
Vx̄

4Vx̄b + 1

)
+ 3b2

(
Vx̄

4Vx̄b + 1

)2
)
− γ̄2. (A.76c)

To accomplish these calculations, we used the fact that if

f1(x) =
1√

2πσ2
1

exp

(
− (µ1 − x)2

2σ2
1

)
, f2(x) =

1√
2πσ2

2

exp

(
− (µ2 − x)2

2σ2
2

)
, (A.77)

then

f1(x) f2(x) =
1√

2π(σ2
1 + σ2

2 )
exp

(
− (µ1 − µ2)

2

2(σ2
1 + σ2

2 )

)
1√

2πσ̃2
exp

(
− (µ̃− x)2

2σ̃2

)
, (A.78)

where

µ̃ =
σ2

2 µ1 + σ2
1 µ2

σ2
1 + σ2

2
, σ̃2 =

σ2
1 σ2

2
σ2

1 + σ2
2

. (A.79)
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A.9.2 Mean and variance of absolute values of linear selection gradients

Since our above assumptions imply a certain degree of symmetry across the community, we find the

average linear selection gradient is zero. Then, to extract information about the total quantity of linear

selection occurring in the community, we consider the absolute values of linear selection gradients.

Following the above assumptions we can express |βij| as

|βij| = ciUiUjNib|Dij|
√

b
2π

e−
b
2 D2

ij . (A.80)

The mean of |βij| can then be approximated as

|β| ≈ c̄Ū2N̄b
∫

R
|D|
√

b
2π

e−
b
2 D2 1√

4πVx̄
e−

D2
4Vx̄ dD

= c̄Ū2N̄b

√
b

2π(2Vx̄b + 1)

∫
R
|D|

√
b

2π(2Vx̄b + 1)
e−

2Vx̄b+1
2b D2

dD. (A.81)

Computing the integral on the RHS is equivalent to computing the mean of the absolute value of a

normally distributed random variable with mean zero and variance b
2Vx̄b+1 . It is well known that the

absolute value |Z| of a normally distributed random variable Z, itself taking mean zero and variance

VZ, has mean |Z| =
√

2VZ/π. Hence, we can use this information to compute

|β| ≈ c̄Ū2N̄b

√
b

2π(2Vx̄b + 1)

√
2b

π(Vx̄b + 1)
=

c̄Ū2N̄b2

π(2Vx̄b + 1)
. (A.82)

The variance Var(|β|) is a bit easier to calculate. In particular, we can approximate the variance of

absolute values of β via

Var(|β|) = |β|2 − |β|2 = β2 − |β|2 ≈ Var(β)− |β|2, (A.83)

where we have capitalized on the result β̄ ≈ 0.

A.9.3 Correlations between competition coefficients and selection gradients

Following the above assumptions and notation, the covariance of competition coefficients αij and

linear selection gradients βij can be approximated as

Cov(α, β) = αβ− ᾱβ̄ ≈ (Vc + c̄2)(VU + Ū2)2N̄b
∫

R
D

b
2π

e−bD2 1√
4πVx̄

e−
D2
4Vx̄ dD = 0. (A.84)

Again, this result follows from our assumptions on the distribution of model parameters across the

community. Instead, to extract information about the covariance between competition coefficients and

the magnitude of linear selection, we compute Cov(α, |β|). This quantity can be approximated by
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Cov(α, |β|) = α|β| − ᾱ|β| ≈ (Vc + c̄2)(VU + Ū2)2N̄b
∫

R
|D| b

2π
e−bD2 1√

4πVx̄
e−

D2
4Vx̄ dD− ᾱ|β|

=
(Vc + c̄2)(VU + Ū2)2N̄b2

π(4Vx̄b + 1)

√
Vx̄

π
− ᾱ|β|, (A.85)

where we have again made use of the properties of absolute values of normally distributed random

variables.

The covariance between competition coefficients and quadratic selection gradients can be approxi-

mated by

Cov(α, γ) = αγ− ᾱγ̄ ≈ (Vc + c̄2)(VU + Ū2)2N̄b
∫

R
(1− bD2)

b
2π

e−bD2 1√
4πVx̄

e−
D2
4Vx̄ dD− ᾱγ̄

=
1
2
(Vc + c̄2)(VU + Ū2)2N̄b

√
b
π

√
2b

2π(4Vx̄b + 1)

(
2Vx̄b + 1
4Vx̄b + 1

)
− ᾱγ̄

=
(Vc + c̄2)(VU + Ū2)2N̄b2(2Vx̄b + 1)

2π(4Vx̄b + 1)3/2 − ᾱγ̄. (A.86)

Finally, these approximations can be used to approximate the correlations between competition

coefficients and selection gradients via

Corr(α, |β|) = Cov(α, |β|)√
Var(α)Var(|β|)

, (A.87a)

Corr(α, γ) =
Cov(α, γ)√

Var(α)Var(γ)
. (A.87b)

A.10 Heuristics for the White Noise Calculus

Before introducing heuristics to operationalize white noise calculus, we begin with a brief concep-

tual introduction. One can think of white noise as the static seen on old television sets or infinitely

detailed random dust spread across both time and space. From a more mathematical, yet still infor-

mal perspective, white noise can be thought of as a stochastic process. That is, we can picture white

noise as a collection of random variables indexed by time and possibly space. In relation to Brow-

nian motion, denoted by W, white noise can be interpreted of as the derivative of Brownian motion

with respect to time, denoted Ẇ. Since Brownian motion can be thought to take infinitesimally small

Gaussian distributed jumps at each time point, this leads to the conceptualization of white noise as a

collection of independent Gaussian distributed random variables. Figure A.1 illustrates realizations of

this conceptualized white noise in one (left) and two (right) dimensions.

However, it turns out that realizations of white noise do not exist as functions in the classical sense.

Indeed, since Brownian motion is nowhere differentiable with respect to time, white noise cannot be

formally understood as a time derivative. Thus our notation Ẇ is only meant to aid intuition and not



85

Figure A.1: Approximations of sample paths of temporal white noise (left) and space-time white noise
(right) with brightness scaled to value.

be taken as formal. A formal understanding is possible by considering white noise as a generalized

process that acts on classically defined stochastic processes to return other classically defined stochastic

processes (Da Prato and Zabczyk, 2014; Krylov and Rozovskii, 1981).

Although the treatments of SPDE provided by Krylov and Rozovskii (1981) and Da Prato and

Zabczyk (2014) extend the theory of SDE to formally treat SPDE in a general and elegant fashion, they

require the navigation of an enormous amount of technical definitions and detailed proofs. To extract

some particularly useful results from this theory relevant to our goal of synthesizing the stochastic

dynamics of biological populations, we provide a streamlined approach by capitalizing on the solid

ground these authors have established. For instance, instead of rigorously proving properties of white

noise, we simply define them to be so, taking comfort in the fact that the technical details have been

worked out elsewhere. In Appendix A.11 we show how our informal treatment is related to the

rigorous treatment provided by Da Prato and Zabczyk (2014).

Before diving in, we shed a bit of light on the idea of a generalized process. A generalized process

is analogous to a generalized function, such as the Dirac delta distribution δy, which places a point

mass at position y. Often one sees δy defined as a function satisfying the properties δy(x) = 0 for

x 6= y and
∫

δy(x)dx = 1. However, since there is no function that satisfies these properties, we refer to

δy as a generalized function. An alternative definition of δy considers its action on classically defined

functions f . In particular, δy( f ) = f (y), which can be heuristically written as
∫

f (x)δy(x)dx = f (y).

Similarly, other generalized functions can be defined by their action on classically defined functions.

Then, just as a generalized function operates on classical functions to return a value, a generalized

process acts on a set of processes to return another stochastic process. For a brief primer on the theory

of generalized functions, see the addendum to chapter 3 of Kolmogorov and Fomin (1999).

A.10.1 Definition and basic properties of space-time white noise

Throughout this section, we write
∫

R
f (x)dx for the integral of f over the whole real line and

similarly
∫

D f (x)dx for the integral of f over D ⊂ R. We define N2 as the set of stochastic processes
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f (x, t) that are continuous in t and satisfy E
(∫ t

0

∫
R
| f (x, s)|2dxds

)
< +∞ for each t ≥ 0. The operator

E denotes expectation with respect to the underlying probability space. For each t ≥ 0 we set

‖ f ‖t =

√
E

(∫ t

0

∫
R
| f (x, s)|2dxds

)
, (A.88)

and make use of the convention f = g if ‖ f − g‖t = 0 for all t ≥ 0. Following the main text, since

the abundance density process ν(x, t) satisfying SAGA is continuous in t and integrable with respect

to x for each t ≥ 0, it also satisfies
√

ν ∈ N2. This enables us to utilize the heuristics developed in this

section for the derivation of SDE describing the stochastic dynamics of N(t), x̄(t) and σ2(t). To begin

developing these heuristics, we introduce a generalized process that captures the essence of space-time

white noise in a mathematically tractable format.

We define a generalized stochastic process W that maps processes f ∈ N2 to real-valued stochastic

processes indexed by time t ≥ 0, but not by space. To evaluate W for a process f ∈ N2 and some

time t ≥ 0 we write Wt( f ). Specifically, for any f , g ∈ N2, we define W( f ) and W(g) to be Gaussian

processes satisfying, for any t, t1, t2 ≥ 0,

E(Wt( f )) = E(Wt(g)) = 0, (A.89a)

C(Wt1( f ), Wt2(g)) = E

(∫ t1∧t2

0

∫
R

f (x, s)g(x, s)dxds
)

, (A.89b)

where t1 ∧ t2 = min(t1, t2) and C denotes covariance with respect to the underlying probability space.

In particular, denoting V the variance operator with respect to the underlying probability space, we

have V(Wt( f )) = ‖ f ‖2
t for all t ≥ 0 and f ∈ N2.

The operators E and C are to be distinguished from expectations and covariances with respect to

phenotypic diversity such as x̄(t) and Covt(m, x). In particular, since we model phenotypic diversity

as a random process, the phenotypic moments x̄(t) and Covt(m, x) are random variables and E(x̄(t)),

E(Covt(m, x)) denote the expectations of these random variables with respect to the underlying prob-

ability space.

Since Gaussian processes are characterized by their expectations and covariances and since we

assume the N2 processes are continuous in time, the processes W( f ) and W(g) are well defined. As an

example, if f ∈ N2 is independent of time, then W( f ) is a Brownian motion with variance at time t ≥ 0

equal to ‖ f ‖2
t = t E(

∫
R

f 2(x, 0)dx). With the generalized process W defined, we define the space-time

white noise Ẇ(x, t) implicitly via the stochastic integral

“
∫ t

0

∫
R

f (x, s)Ẇ(x, s)dxds” = Wt( f ), ∀ f ∈ N2, t ≥ 0. (A.90)

We place quotations in the above expression to emphasize its informal nature and that it should not

be confused with classical Riemann integration. Following this definition of white noise, we compute

its value by sampling it using N2 processes. For example, integrating white noise over a region D ×
[0, t], with t > 0 and D a bounded subset of R, is equivalent to evaluating Wt(ID) for the deterministic

process
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ID(x, t) =

{
0, x /∈ D

1, x ∈ D
. (A.91)

Since

‖ID‖2
t = E

(∫ t

0

∫
R

I2
D(x, s)dxds

)
= t

∫
D

dx = t|D| < +∞, (A.92)

where |D| denotes the length of D, we have ID ∈ N2. Thus, using equations (A.89a) and (A.89b) and

adopting the informal notation introduced in equation (A.90), we can write the following

E

(∫ t

0

∫
D

Ẇ(x, s)dxds
)
= 0, (A.93a)

V

(∫ t

0

∫
D

Ẇ(x, s)dxds
)
= t|D|. (A.93b)

Using this informal notation, equations (A.89a) and (A.89b) can be rewritten as

E

(∫ t

0

∫
R

f (x, s)Ẇ(x, s)dxds
)
= 0, (A.94a)

C

(∫ t1

0

∫
R

f (x, s)Ẇ(x, s)dxds,
∫ t2

0

∫
R

g(x, s)Ẇ(x, s)dxds
)

=
∫ t1∧t2

0

∫
R

f (x, s)g(x, s)dxds. (A.94b)

To relate these formula to the common notation used for SDE, we write

f̂ (x, t) =
f (x, t)√∫

R
f 2(y, t)dy

and dŴt( f ) =
(∫

R
f̂ (x, t)Ẇ(x, t)dx

)
dt (A.95)

so that

∫ t

0
dŴs( f ) =

∫ t

0

∫
R

f (x, s)√∫
R

f 2(s, y)dy
Ẇ(x, s)dxds. (A.96)

This implies

E

(∫ t

0
dŴs( f )

)
= 0, C

(∫ t1

0
dŴs( f ),

∫ t2

0
dŴs( f )

)
= t1 ∧ t2 (A.97)

and in particular, as a function of t,
∫ t

0 dŴs( f ) is a standard Brownian motion for any f ∈ N2. Hence,

dŴt( f ) is analogous to the traditional shorthand used to denote stochastic differentials. Thus, equation

(A.94b) effectively extends Itô’s multiplication table to:

The extension of Itô’s multiplication table and properties of white noise outlined in this subsection

provide a useful set of tools for working with SPDE. In Appendix A.12 we employ these tools to derive

SDE that track the dynamics of abundance, mean trait and phenotypic variance of a population from
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Table A.1: An extension of Itô’s multiplication table.

× dŴt( f ) dŴt(g) dt

dŴt( f ) dt
(∫

R
f̂ (x, t)ĝ(x, t)dx

)
dt 0

dŴt(g)
(∫

R
f̂ (x, t)ĝ(x, t)dx

)
dt dt 0

dt 0 0 0

a particular SPDE. In the following subsection, we review how this particular SPDE naturally arises as

the diffusion limit of a measure-valued branching process (MVBP).

A.11 Comparing the white noise heuristics to Da Prato and Zabczyk (2014)

Our approach in the main text is inspired by the treatment provided in §4.2 of Da Prato and Zabczyk

(2014). Here the authors develop a stochastic integral of operator-valued processes. In particular, they

consider processes indexed by time t ≥ 0 valued as Hilbert-Schmidt operators Φ(t) and define the

norm

‖Φ‖t =

√
E

(∫ t

0
Tr[Φ(s)Φ∗(s)]ds

)
, t ≥ 0. (A.98)

In our case we only consider the so-called multiplication operators. That is, processes that consist

of operators Φ(t) having the form Φ(t)g(x) = ϕ(x, t)g(x) such that ϕ(·, t) ∈ L2(R) a.s. for each t ≥ 0.

In this case Φ(t) = Φ∗(t) and

‖Φ‖t = ‖ϕ‖t =

√
E

(∫ t

0

∫
R

ϕ2(x, s)dxds
)

, t ≥ 0. (A.99)

Da Prato and Zabczyk (2014) form the space N2
W(0, T) of Hilbert-Schmidt operator-valued pre-

dictable processes Φ(t) that satisfy ‖Φ‖T < +∞ for some T > 0. This corresponds to our more

specialized space N2 that consists of L2(R) valued processes ϕ(x, t) such that ‖ϕ‖t < +∞ for all t ≥ 0.

In their treatment, W(t) plays a similar role to our generalized process Wt. For Φ ∈ N2
W(0, T), they

denote the stochastic integral for t ∈ [0, T] by Φ ·W(t). Hence, for Φ(t)g(x) = ϕ(x, t)g(x) as above,

Wt(ϕ) = Φ ·W(t). The authors then prove the following:

Proposition 4.28 Assume that Φ1, Φ2 ∈ N2
W(0, T). Then

E(Φi ·W(t)) = 0, E(‖Φi ·W(t)‖2) < +∞, ∀ t ∈ [0, T].

Corollory 4.29 Under the same assumptions as Proposition 4.28,
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C(Φ1 ·W(t), Φ2 ·W(s)) = E

(∫ t∧s

0
Tr[Φ2(r)Φ∗1(r)]dr

)
, ∀ t, s ∈ [0, T].

Simplifying these expressions for the multiplication operators described above returns equations

(A.94a) and (A.94b) above.

A.12 Derivation of SDE for x̄ and σ2

Here we derive the stochastic dynamics of x̄ and σ2 under SAGA by combining weak solutions of

SPDE, an extension Itô’s multiplication table summarized in Table 1 of the main text and Itô’s quotient

rule. This calculation requires the abundance density ν(x, t) to have finite first, second and fourth

moments. Hence, we assume

∫
R

ν(x, t)(|x|+ x2 + x4)dx < +∞. (A.100)

Following §1.2.2 of the main text, we set

x̃(t) =
∫

R
xν(x, t)dx, ˜̃σ2(t) =

∫
R

x2ν(x, t)dx. (A.101)

Applying the weak solution of SAGA we obtain diffusion processes defined by

N(t) = N(0) +
∫ t

0

∫
R

ν(x, s)m(ν, x) + x
√

Vν(x, s)Ẇ(x, s)dxds, (A.102a)

x̃(t) = x̃(0) +
∫ t

0

∫
R

ν(x, s)m(ν, x)x + x
√

Vν(x, s)Ẇ(x, s)dxds, (A.102b)

˜̃σ2(t) = ˜̃σ2(0) +
∫ t

0

∫
R

ν(x, s)
(

m(ν, x)x2 + µ
)
+ x2

√
Vν(x, s)Ẇ(x, s)dxds. (A.102c)

In the following two sections we use Itô’s quotient rule to derive expressions for the evolution of

x̄ = x̃/N and σ2 = ˜̃σ2 − x̄2. Following these two sections we investigate stochastic dependencies

between the processes N, x̄ and σ2.

A.12.1 Derivation for trait mean

We make use of the notation 

‖N‖2 =
√

V
∫

R
ν(x, t)dx =

√
VN

‖x̃‖2 =
√

V
∫

R
x2ν(x, t)dx

〈x̃, N〉 = V
∫

R
xν(x, t)dx = x̄VN.

(A.103)

Rewriting formula (A.102b) as an SDE provides
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dx̃ =

(
xmN +

µ

2

∫
R

x∆ν(x, t)dx
)

dt + ‖x̃‖2dW̃2, (A.104)

where,

dW̃2 = dŴt(
√

Vx2ν) =
1
‖x̃‖2

∫
R

x
√

Vν(x, t)Ẇ(x, t)dxdt. (A.105)

Using Itô’s quotient rule on x̄ = x̃/N, we obtain

dx̄ = d
(

x̃
N

)
=

x̃
N

(
dx̃
x̃
− dN

N
− dx̃

x̃
dN
N

+
(dN

N

)2
)
=

dx̃
N
− x̄

dN
N
− dx̃

N
dN
N

+ x̄
(dN

N

)2
. (A.106)

From Table A.1 we have dx̃dN = 〈x̃, N〉 and dN2 = ‖N‖2
2. Hence,

dx̄ = xmdt +
‖x̃‖2

N
dW̃2 − x̄

(
m̄dt +

√
V
N

dW1

)
− 〈x̃, N〉

N2 dt + x̄
‖N‖2

2
N2 dt

= (xm− x̄m̄)dt +
‖x̃‖2

N
dW̃2 − x̄

√
V
N

dW1 −V
x̄
N

dt + V
x̄
N

dt

= Covt(x, m) +
‖x̃‖2

N
dW̃2 − x̄

√
V
N

dW1. (A.107)

Note that

‖x̃‖2

N
dW̃2 − x̄

√
V
N

dW1 =
1
N

∫
R

x
√

Vν(x, t)Ẇ(x, t)dx− x̄
N

∫
R

√
Vν(x, t)Ẇ(x, t)dx

=
∫

R

x− x̄
N

√
Vν(x, t)Ẇ(x, t)dx (A.108)

and

V

(∫
R

x− x̄
N

√
Vν(x, t)Ẇ(x, t)dx

)
=

V
N

∫
R
(x− x̄)2 p(x, t)dx = V

σ2

N
. (A.109)

Hence, by setting

dW2 =

∫
R

(x−x̄)
N

√
Vν(x, t)Ẇ(x, t)dx
√

Vσ2/N
(A.110)

we can write

dx̄ = Covt(x, m)dt +

√
V

σ2

N
dW2. (A.111)
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A.12.2 Derivation for trait variance

We make use of the notation
‖ ˜̃σ2‖2 =

√
V
∫

R
x4ν(x, t)dx

〈 ˜̃σ2, N〉 = V
∫

R
x2ν(x, t)dx = x2VN.

(A.112)

Applying formula (A.102c) provides

d ˜̃σ2 =
(

x2mN + µN
)

dt + ‖ ˜̃σ2‖2dW̃3 (A.113)

where

dW̃3 = dŴt(
√

Vx4ν) =
1
‖ ˜̃σ2‖2

∫
R

x2
√

Vν(x, t)Ẇ(x, t)dx. (A.114)

Using Itô’s quotient rule on x2 = ˜̃σ2/N, we obtain

dx2 = d
( ˜̃σ2

N

)
=

˜̃σ2

N

(
d ˜̃σ2

˜̃σ2 −
dN
N
− d ˜̃σ2

˜̃σ2
dN
N

+
(dN

N

)2
)
=

d ˜̃σ2

N
− x2 dN

N
− d ˜̃σ2

N
dN
N

+ x2
(

dN
N

)2
.

(A.115)

Table A.1 implies dW̃3dW1 = 〈 ˜̃σ2, N〉 and hence

dx2 =
(

x2m + µ
)

dt +
‖ ˜̃σ2‖2

N
dW̃3 − x2

(
m̄dt +

√
V
N

dW1

)
− 〈

˜̃σ2, N〉
N2 dt + x2 ‖N‖2

2
N2 dt

=
(

x2m− x2m̄dt + µ
)

dt +
‖ ˜̃σ2‖2

N
dW̃3 − x2

√
V
N

dW1 − x2 V
N

dt + x2 V
N

dt

=
(

Covt

(
x2, m

)
+ µ

)
dt +

‖ ˜̃σ2‖2

N
dW̃3 − x2

√
V
N

dW1. (A.116)

Setting F(y, z) = y− z2, use Itô’s formula on σ2 = F(x2, x̄) = x2 − x̄2 to obtain:
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dσ2 = dx2 − 2x̄dx̄− (dx̄)2 =
(

Covt

(
x2, m

)
+ µ

)
dt +

‖ ˜̃σ2‖2

N
dW̃3 − x2

√
V
N

dW1

− 2x̄

(
Covt(x, m) + µdt +

√
Vσ2

N
dW2

)
−
(

Covt(x, m)dt + µdt +

√
Vσ2

N
dW2

)2

=
(

Covt

(
x2 − 2x̄x, m

)
+ µ

)
dt +

‖ ˜̃σ2‖2

N
dW̃3 − x2

√
V
N

dW1 − 2x̄

√
Vσ2

N
dW2 −

(
Vσ2

N

)
dt

=

(
Covt

(
x− x̄)2, m

)
+ µ− Vσ2

N

)
dt +

‖ ˜̃σ2‖2

N
dW̃3 − x2

√
V
N

dW1 − 2x̄

√
Vσ2

N
dW2. (A.117)

In light of

‖ ˜̃σ2‖2

N
dW̃3 − x2

√
V
N

dW1 − 2x̄

√
Vσ2

N
dW2 =

1
N

∫
R

(
x2 − σ̃2 − 2x̄(x− x̄)

)√
Vν(x, t)Ẇ(x, t)dx

=
1
N

∫
R

(
(x− x̄)2 − σ2

)√
Vν(x, t)Ẇ(x, t)dx (A.118)

and

1
N

∫
R

( (
(x− x̄)2 − σ2

)√
Vν(x, s)

)2
dx =

V
N

(∫
R
((x− x̄)4 − 2(x− x̄)2σ2 + σ4)p(x, t)dx

)
=

V
N

(
(x− x̄)4 − σ4

)
(A.119)

we set

dW3 =

∫
R

(
(x− x̄)2 − σ2)√Vν(x, t)Ẇ(x, t)dx

V
(
(x− x̄)4 − σ4

) (A.120)

so that

dσ2 = Covt

(
(x− x̄)2, m

)
dt +

(
µ−V

σ2

N

)
dt +

√
V
(x− x̄)4 − σ4

N
dW3. (A.121)
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A.12.3 Stochastic dependencies between N, x̄ and σ2

Table A.1 implies

dW1dW2 =

∫
R
(x− x̄)ν(x, t)dx
√

Nσ2
dt = 0, (A.122a)

dW1dW3 =

∫
R

(
(x− x̄)2 − σ2)ν(x, t)dx√

(x− x̄)4 − σ4
dt = 0, (A.122b)

dW2dW3 =

∫
R
(x− x̄)

(
(x− x̄)2 − σ2)p(x, t)dx√

σ2
(
(x− x̄)4 − σ4

) dt =
N(x− x̄)3√

σ2
(
(x− x̄)4 − σ4

)dt. (A.122c)

Hence, stochastic fluctuations in the evolution of abundance N are independent of stochastic fluc-

tuations in the evolution of x̄ and σ2. However, the stochastic fluctuations in the evolutions of x̄ and

σ2 may be correlated. This is not the case when p is a Gaussian curve as equation (A.122c) would then

imply dW2dW3 = 0.



94
Appendix B: Supplementary Material for

Coevolutionary Arms Races and the Conditions for

the Maintenance of Mutualisms

B.1 Derivation of evolutionary dynamics from individual-based models

Our approach to deriving models of evolutionary dynamics follows three main steps. First we in-

troduce the individual fitness functions for the trait-differences and offset-matching interaction mech-

anisms. Second, we derive the continuous-time growth rates of trait values using diffusion limits.

Averaging these growth rates over phenotypic distributions returns population growth rates. Third,

following Chapter 1, we apply SAGA, a continuous time stochastic model of trait dynamics that gener-

alizes the well-known breeders equation (Lande, 1976) by accounting for demographic dynamics and

arbitrary trait distributions. Assuming normally distributed traits, we use SAGA to derive mean trait

dynamics in terms of growth rate gradients. We then assume infinitely large abundances to remove

stochastic effects.

B.1.1 Individual fitness

Trait-matching For simplicity, we begin by formulating fitness under trait-matching. Letting x

denote the trait value for the individual of species X and y for species Y, we can model the effect

of trait-matching on fitness for individuals of species X by the concave down quadratic polynomial

− BX
2 (x− y)2. Since we assume both species interact via the same mechanism, the formula determining

their dynamics will be of the same form. Hence, we focus on species X without losing any generality in

our conclusions. We call the parameter BX ≥ 0 the strength of biotic selection (introduced in Week and

Nuismer, 2019). Denote by RX > 0 the number offspring produced by individuals in species X in the

absence of ecological interactions and EX > 0 the multiplicative effect on RX due to the interspecific

interaction when BX = 0. We call EX the intrinsic effect of the interspecific interaction. Suppose each

individual of species X interacts with a single individual of species Y with trait value denoted by y.

Then, under trait-matching, we model the number of offspring produced when BX > 0 by

WX(x, y) = RXEXe−
BX
2 (x−y)2

. (B.1)

Note if EXe−
BX
2 (x−y)2

< 1, the interaction is antagonistic and if EXe−
BX
2 (x−y)2

> 1, species X benefits

from the interaction. Following the same approach for species Y, we have

WY(y, x) = RYEYe−
BY
2 (x−y)2

. (B.2)

Trait-differences Following the approach taken to formulate individual fitness for the trait-matching

mechanism, we replace the concave quadratic polynomial with the linear term BX(x− y), yielding

WX(x, y) = RXEXeBX(x−y), (B.3)
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WY(y, x) = RYEYeBY(y−x). (B.4)

Under this model, the interaction is antagonistic if EXeBX(x−y) < 1 or EYeBY(y−x) < 1, and is a

mutualism if EXeBX(x−y), EYeBY(y−x) > 1.

Offset-matching Offset-matching is just a slight modification of trait-matching, summarized by

WX(x, y) = RXEXe−
BX
2 (y+δX−x)2

, (B.5)

WY(y, x) = RYEYe−
BY
2 (x+δY−y)2

. (B.6)

Here we have assumed the optimal offset δX of species X is distinct from the optimal offset δY

of species Y. This seems more likely to occur in nature rather than identical offsets between the two

species. However, we can always reduce such asymmetry via a change of variables. In particular,

setting δ = δX+δY
2 , x′ = x + δY

2 and y′ = y + δX
2 , we find

WX(x, y) = RXEXe−
BX
2 (y′− δX

2 +δX−x′+ δY
2 )2

, (B.7)

WY(y, x) = RYEYe−
BY
2 (x′− δ

2+δY−y′+ δX
2 )2

. (B.8)

which simplifies to

WX(x, y) = RXEXe−
BX
2 (y′+δ−x′)2

, (B.9)

WY(y, x) = RYEYe−
BY
2 (x′+δ−y′)2

. (B.10)

Thus, from hereon we assume the common optimal offset δ for both species.

B.1.2 Deriving growth rates

To derive the dynamical equations of the main text starting with individual fitness we begin by

taking a diffusion limit. Our approach follows a special case of the framework developed in Chapter

1, which we now summarize.

Outline of diffusion limits In the special case treated here, a diffusion limit implies that we begin

with a population at the initial time t = 0 of n discrete individuals and rescale their ”mass” by N0
n for

some continuously positive number N0 > 0. We then consider the limit n → ∞. The total mass of the

population, which is interpreted as the initial abundance N(0), is computed as the sum of individual

masses and hence remains equal to

N(0) =
n

∑
i=1

N0

n
= N0 (B.11)

as we send n → ∞. Once the diffusion limit is taken, we arrive at a model for the dynamics of

the abundance N(t). When taken appropriately, this diffusion limit results in a continuous-time,

continuous-state stochastic process where the magnitude of stochasticity is modulated by the variance
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in reproductive output V.

Starting with individual-based models of discrete individuals allows us to formulate mechanistic

models of fitness and, by taking their diffusion limits, we formally derive models at the population

level. In particular, these diffusion limits track the dynamics of abundance and phenotypic distri-

bution instead of tracking the dynamics of a discrete set of individuals. Results found in Chapter 1

demonstrates these dynamics can be summarized by a set of stochastic differential equation tracking

the dynamics of abundance and phenotypic moments. Under the assumption of normally distributed

phenotypes, the population can be completely described by abundance N(t), mean trait x̄(t) and

trait variance σ2(t). Since the dynamics of abundance and phenotypic moments are interwoven via

the expected reproductive output as a function of phenotype (ie., individual fitness) W(x), the crux

component for deriving the dynamics of N(t), x̄(t) and σ2(t) is calculating a rescaled limit of W(x).

Although there are many ways to compute this limit, a useful approach is to set

m(x) = lim
n→∞

n
(

W(x)1/n − 1
)

. (B.12)

When fitness is constant with respect to trait value (ie., W(x) ≡ W), then this limit converges to

m(x) = ln W for each x. When this limit converges in general, m(x) is the Malthusian (ie., continuous

time) growth rate associated with trait value x. The average of m(x) across all trait values in the

population, denoted m̄, is the growth rate of the population as a whole. Chapter 1 revealed, under the

assumption of normally distributed phenotypes, the dynamics of mean trait can be derived by taking

partial derivatives of m̄ and m(x) with respect to x̄. While the partial derivative ∂m̄
∂x̄ represents the effect

of frequency independent selection on mean trait evolution, the partial derivative ∂m(x)
∂x̄ represents

the effect of frequency dependent selection on mean trait evolution. In Chapter 1 this observation

was extended by noting, again under normally distributed phenotypes, the action of selection on

the evolution of phenotypic variance can be summarized by the partial derivatives ∂m̄
∂σ2 , ∂m(x)

∂σ2 which

again represent frequency independent and frequency dependent selection respectively. The resulting

stochastic differential equations describing the dynamics of N(t) and the evolution of x̄(t) and σ2(t)

are provided below in the section titled Deriving evolution equations.

Diffusion limits for trait-differences and offset-matching Following the main text, we isolate

the effect of interaction mechanism by assuming each individual of species X interacts with a single

individual of species Y and each individual of species Y interacts with a single individual of species X.

To formally justify this assumption we require identical abundances for each species (nX = nY = n).

Although this will clearly never hold in the wild, this assumption acts as a mere stepping stone in our

derivation as eventually we take nX , nY, n → ∞. In particular, for any continuously positive numbers

NX , NY > 0, we rescale individual mass by NX/nX for individuals in species X and by NY/nY for

individuals in species Y. Hence, in the diffusion limit, the initial abundances for species X and Y are

given by

lim
nX→∞

nX

∑
i=1

NX
nX

= NX (B.13a)
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lim
nY→∞

nY

∑
i=1

NY
nY

= NY. (B.13b)

In particular, since this holds for any NX , NY, we can choose NX 6= NY in spite of setting nX = nY =

n. To picture why this is so, consider a specific case such as n = 4. Since we have exactly n individuals

in each species, we can pair each individual of species X with a unique individual of species Y, forming

n distinct pairs of interacting individuals. However, individuals in species X are weighted by NX/n

and individuals in species Y are weighted by NY/n and, since we can freely choose NX and NY, these

weights can be different. Hence, the ”total mass” of species X at time t = 0, which is interpreted as

the initial abundance of X, is NX for any n. By the same argument, the initial abundance of species Y

is NY for any n.

Following Chapter 1, we derive the growth rates for traits x and y respectively as

mX(x, y) = lim
n→∞

n
(

WX(x, y)1/n − 1
)

, (B.14a)

mY(y, x) = lim
n→∞

n
(

WY(y, x)1/n − 1
)

. (B.14b)

In the following, we apply these limits to derive the continuous time growth rates for species X and

Y under trait-differences and offset-matching.

Trait-differences For the trait-differences mechanism, equation (B.14a) becomes

mX(x, y) = lim
n→∞

n
((

WX(x, y)
)1/n

− 1
)
= lim

n→∞
n
(
(RXEX)

1/n exp
(

BX
n

(x− y)
)
− 1
)

. (B.15)

For large n we have

n
(
(RXEX)

1/n exp
(

BX
n

(x− y)
)
− 1
)

≈ n
(
(RXEX)

1/n
(

1 +
BX
n

(x− y)
)
− 1
)

= n
(
(RXEX)

1/n − 1
)
+ (RXEX)

1/nBX(x− y). (B.16)

Since n
(
(RXEX)

1/n − 1
)
→ ln(RXEX) and (RXEX)

1/n → 1, we find

mX(x, y) = rX + eX + BX(x− y), (B.17)

where rX = ln RX and eX = ln EX . Applying the same limit to equation (B.14b) returns

mY(y, x) = rY + eY + BY(y− x). (B.18)
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Recall that we assumed individuals interact at random with each other. This implies the growth

rates mX(x, ·) and mY(y, ·) are random variables with means

EmX (x) = rX + eX + BX(x− ȳ), (B.19a)

EmY (y) = rY + eY + BY(y− x̄), (B.19b)

and variances

VmX (x) = B2
Xσ2

Y, (B.20a)

VmY (y) = B2
Yσ2

X . (B.20b)

However, by formally following our assumption that individuals interact with a single individual of

the other species, averaging mX(x, y) across species X requires us to simultaneously average mX(x, y)

across species Y as well and vice versa for average mY(y, x) across species Y. Hence, we find the

population growth rates

m̄X = rX + eX + BX(x̄− ȳ), (B.21)

m̄Y = rY + eY + BY(ȳ− x̄), (B.22)

where x̄, ȳ are the mean traits for species X and Y respectively.

Offset-matching For the offset-matching mechanism, equation (B.14a) becomes

mX(x, y) = lim
n→∞

n
((

WX(x, y)
)1/n

− 1
)
= lim

n→∞
n
(
(RXEX)

1/n exp
(
−BX

2n
(y + δ− x)2

)
− 1
)

. (B.23)

For large n we have

n
(
(RXEX)

1/n exp
(
−BX

2n
(y + δ− x)2

)
− 1
)

≈ n
(
(RXEX)

1/n
(

1− BX
2n

(y + δ− x)2
)
− 1
)

= n
(
(RXEX)

1/n − 1
)
− (RXEX)

1/n BX
2
(y + δ− x)2. (B.24)

Hence,
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mX(x, y) = rX + eX −
BX
2
(δ + y− x)2. (B.25)

Applying the same limit to equation (B.14b) returns

mY(y, x) = rY + eY −
BY
2
(x + δ− y)2. (B.26)

Then, following the same argument made in deriving growth rates under trait-differences, we find

the population growth rates

m̄X = rX + eX −
BX
2
(ȳ + δ− x̄)2 − BX

2
(σ2

X + σ2
Y), (B.27)

m̄Y = rY + eY −
BY
2
(x̄ + δ− ȳ)2 − BY

2
(σ2

X + σ2
Y), (B.28)

where σ2
X , σ2

Y are the trait variances for species X and Y respectively.

B.1.3 Deriving evolution equations

With the growth rates for each mechanism derived, we apply a general formula for the dynamics

of abundances NX , NY, mean traits x̄, ȳ and additive genetic variances GX , GY following the model

SAGA introduced in Chapter 1. We also assume a simple model of inheritance where expressed

traits are normally distributed around genotypic values (ie., breeding values). This implies σ2
X =

ηX + GX and σ2
X = ηX + GX where ηX , ηY capture developmental noise (Walsh and Lynch, 2018). In

particular, assuming normally distributed trait values, normally distributed offspring breeding values,

and Gaussian alleles, the dynamics of abundances, mean traits and additive genetic variances are given

by the stochastic differential equations;

dNX
dt

= m̄X NX +
√

VX NX
dWNX

dt
, (B.29a)

dNY
dt

= m̄Y NY +
√

VY NY
dWNY

dt
, (B.29b)

dx̄
dt

= GX

(
∂m̄X
∂x̄
− ∂mX

∂x̄

)
+

√
VX

GX
NX

dWx̄

dt
, (B.29c)

dȳ
dt

= GY

(
∂m̄Y
∂ȳ
− ∂mY

∂ȳ

)
+

√
VY

GY
NY

dWȳ

dt
, (B.29d)

dGX
dt

=

[
2G2

X

(
∂m̄X
∂GX

− ∂mX
∂GX

)
+ µX −VX

GX
NX

]
+ GX

√
2VX
NX

dWGX

dt
, (B.29e)

dGY
dt

=

[
2G2

Y

(
∂m̄Y
∂GY

− ∂mY
∂GY

)
+ µY −VY

GY
NY

]
+ GY

√
2VY
NY

dWGY

dt
. (B.29f)

Here VX , VY ≥ 0 are variances in reproductive output, µX , µY ≥ 0 are rates of mutation, terms

of the form dWQ
dt represent independent white noise processes driving the stochastic component of
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variable Q and the terms ∂mX
∂Q and ∂mY

∂Q are averages of the partial derivatives ∂mX
∂Q and ∂mY

∂Q with respect

trait distributions of species X and Y respectively. As noted above, these partial derivatives capture

frequency dependent selection. With respect to both trait-differences and offset-matching mechanisms,

we find

∂mX
∂x̄

=
∂mY
∂ȳ

=
∂mX
∂GX

=
∂mY
∂GY

= 0. (B.30)

Hence, frequency dependent selection is absent in our models of trait evolution. In contrast, frequency

independent selection is summarized by;

D



∂m̄X
∂x̄ = BX ,

∂m̄Y
∂ȳ = BY,
∂m̄X
∂GX

= 0,
∂m̄Y
∂GY

= 0.

(B.31)

O



∂m̄X
∂x̄ = BX(ȳ + δ− x̄),

∂m̄Y
∂ȳ = BY(x̄ + δ− ȳ),

∂m̄X
∂GX

= BX/2,
∂m̄Y
∂GY

= BY/2.

(B.32)

Taking the limits NX , NY → ∞ and incorporating the growth rate gradients above, equations (B.29)

return the ordinary differential equations;

D


dx̄
dt = GXBX ,
dȳ
dt = GYBY,
dGX

dt = µX ,
dGY
dt = µY,

(B.33)

O


dx̄
dt = GXBX(ȳ + δ− x̄),
dȳ
dt = GYBY(x̄ + δ− ȳ),

dGX
dt = µX − G2

XBX ,
dGY
dt = µY − G2

YBY.

(B.34)

Then, to further simplify our models, for trait-differences we set µX = µY = 0 and for offset-

matching we set GX =
√

µX/BX and GY =
√

µY/BY so that additive genetic variances remain fixed.

This reduces each of our models to a pair of ordinary differential equations describing mean trait

dynamics.

B.2 Weak selection approximations

Here we show how various interaction mechanisms can be related through weak selection and/or

large offset approximations.
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B.2.1 Exponential trait-differences approximates logistic trait-differences

under weak selection

Under the logistic trait-differences mechanism traditionally employed (Nuismer et. al., 2006; Nuis-

mer 2017), fitness for an individual of species X that engages in a single interaction is captured by

WX(x, y) =
RXEX

1 + e2BX(y−x)
, (B.35)

where, as above, RX and EX denote the intrinsic fitness and the intrinsic effect on fitness due to an in-

teraction and the variable BX is the strength of biotic selection. We take a weak selection approximation

by Taylor expanding around BX ≈ 0. To leading order this returns

WX(x, y) ≈ RXEX
2

(1 + BX(x− y)) . (B.36)

Following the approach taken above, we calculate the continuous-time growth rate of individuals

of species X with trait value x via mX(x, y) = limn→∞ n((WX(x, y))1/n − 1). This provides

mX(x, y) = rX + eX + ln (1 + BX(x− y)) , (B.37)

where rX = ln RX and eX = ln EX − ln 2. Following through again with our weak selection approxima-

tion, we have

mX(x, y) ≈ rX + eX + BX(x− y). (B.38)

This approximation coincides with the growth rate we found using the exponential version of the

trait-differences mechanism above. Hence, an exponential fitness curve provides an approximation for

the logistic fitness curve when selection is weak.

B.2.2 Offset-matching approximates trait-differences

under weak selection and a large offset

As mentioned in the main text, the offset-matching model is formally connected to the trait-

differences model via a combined weak selection, large offset approximation. Recall individual fitness

for species X under offset-matching is given by

WX(x, y) = RXEX exp
(
−BX

2
(y + δ− x)2

)
, (B.39)

Under the substitution BX := ε3 and δ := 1/ε, equation (B.39) simplifies to

WX(x, y) = RXEX exp
(
−ε3 (y− x)2

2
− ε2(y− x) +

ε

2

)
, (B.40)

Hence, a second order Taylor expansion around ε ≈ 0 leads to

WX(x, y) ≈ RXEX

(
1 + ε2(x− y) +

ε

2

)
. (B.41)
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This approximation of fitness has the same form as the approximation of the logistic trait-differences

mechanism derived above. Thus, the offset-matching mechanism produces an approximation of trait-

differences for weak selection and large offset.
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Appendix C: Supplementary Material for

The Measurement of Coevolution in the Wild

Sections C.1 and C.2 derive the mathematical and statistical foundations for our approach respec-

tively. Section C.3 evaluates the performance of our approach. Section C.4 describes the data and data

analysis.

C.1 Derivation of the coevolutionary model

C.1.1 Selection

We assume the biotic effects on fitness act on the fecundity of an individual while the abiotic effects

act on the viability of an individual with WB,i as the expected reproductive output of an individual of

species i given that it survives to reproduce and WA,i being the probability of surviving until repro-

duction for an individual of species i. Specifically, assuming that abiotic selection is Gaussian with a

constant phenotypic optimum θi, tolerance αi and maximum 0 < pi ≤ 1, we define the probability of a

member of species i with trait zi surviving abiotic selection by

WA,i(zi) ≡ pi exp
(
− (θi − zi)

2

2αi

)
. (C.1)

To model fecundity selection based on the interactions between species we assume the interactions

are mediated by what we call an offset matching mechanism. In this model biotic fitness is maximized

for an individual when its trait is offset from the trait of the individual it is interacting with by some

constant δ. A simple example of an optimal offset comes from considering the interaction between

long-tubed flowers and the long-proboscid flies that visit them. The biotic component of fitness for the

fly is maximized when its proboscis is slightly longer than the nectar tube depth of the flower, allowing

the fly to easily extract its nectar reward. The difference between tube depth and proboscis length that

maximizes the flies biotic fitness component is the optimal offset for the fly. Note how this differs from

a “bigger is better” situation since fitness with an optimal offset is unimodal and therefore does not

increase indefinitely with larger (or lesser) trait values.

To capture this we assume biotic selection is also Gaussian but with γi as the tolerance and zj + δi

as the phenotypic optimum where zj is the trait value of the individual being encountered and δ is

the optimal offset in trait value that maximizes the biotic component of fitness. By assuming there

is an upper bound on the potential number of offspring (which we will denote by ci), we define the

proportion of this upper bound achieved by an individual of species i given that it has encountered an

individual of species j by

si(zi, zj) ≡ exp

(
−
(zj + δ− zi)

2

2γi

)
. (C.2)

Next, we assume individuals encounter each other at random (with respect to their trait values) and

that traits are normally distributed with densities denoted by φ1(z1) and φ2(z2). We denote the means

of these distributions by z̄1, z̄2 and variances by σ2
1 , σ2

2 . Then for an individual in species i with trait zi,
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the expected proportion of the maximal reproductive output is defined as

bi(zi) ≡
∫

R
φj(zi)s(zi, zj)dzj (C.3)

=
∫

R

1√
2πσ2

j

exp

(
−
(z̄j − zj)

2

2σ2
j

)
exp

(
−
(zj + δ− zi)

2

2γi

)
dzj

=

√
γi

γi + σ2
j

exp

(
−
(z̄j + δ− zi)

2

2(γi + σ2
j )

)
.

Proving this statement is a matter of elucidating the algebra of Gaussian functions. For example,

if f1(x) and f2(x) are Gaussian functions of x then f1(x) f2(x) will also be a Gaussian function of

x. Similarly, if f1(x) and f2(x) are the densities of two normal distributions then, f1(x) f2(x) will be

proportional to a density of another normal distribution. Specifically, we have

1√
2πσ2

1

exp

(
− (µ1 − x)2

2σ2
1

)
1√

2πσ2
2

exp

(
− (µ2 − x)2

2σ2
2

)
(C.4)

=
1√

2π(σ2
1 + σ2

2 )
exp

(
− (µ1 − µ2)

2

2(σ2
1 + σ2

2 )

)
1√

2πσ̃2
exp

(
− (µ̃− x)2

2σ̃2

)

where

µ̃ =
σ2

2 µ1 + σ2
1 µ2

σ2
2 + σ2

1
, σ̃2 =

σ2
1 σ2

2
σ2

1 + σ2
2

.

To demonstrate this equality rigorously requires a lengthy calculation involving the Fourier trans-

form and can be found elsewhere. We therefore omit it here. This result can be used to evaluate

equation (C.3) and will be employed a great deal throughout the rest of the derivation.

Putting the pieces together, biotic fitness for an individual of species i with trait zi can then be

written as

WB,i(zi) = cibi(zi) = ci

√
γi

γi + σ2
j

exp

(
−
(z̄j + δ− zi)

2

2(γi + σ2
j )

)
. (C.5)

Hence the expected reproductive output of an individual with trait zi in species i is expressed as

Wi(zi) = WB,i(zi)WA,i(zi) = ci pi

√
γi

γi + σ2
j

exp

(
−
(z̄j + δ− zi)

2

2(γi + σ2
j )

)
exp

(
− (θi − zi)

2

2αi

)
. (C.6)

C.1.2 Phenotypic response to selection

Denoting the population mean fitness by Wi and the phenotypic distribution of species i by φi(zi),

we have

Wi =
∫

R
Wi(zi)φi(zi)dzi. (C.7)
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Using equation (C.6) from above we have

Wi = Ki exp

(
−

αi(z̄j + δ− z̄i)
2 + (γi + σ2

j )(θi − z̄i)
2

2(γiαi + γiσ
2
j + γiσ

2
i + αiσ

2
j + αiσ

2
i + σ2

i σ2
j )

)
, (C.8)

where Ki is independent of both z̄i and z̄j. Once again, we have capitalized on two iterations of (C.4)

to obtain (C.8). We can now employ our weak selection approximations by assuming both selective

tolerances αi and γi are sufficiently large so that γi + σ2
j + σ2

i ≈ γi and αi + σ2
j + σ2

i ≈ αi. Mean fitness

is then approximated as

Wi ≈ Ki exp

(
−
(z̄j + δ− z̄i)

2

2γi
− (θi − z̄i)

2

2αi

)
. (C.9)

Hence, the breeders equation (sensu Lande, 1976) returns

∆z̄i = Gi
∂ ln Wi

∂z̄i
≈ Gi

(
γ−1

i (z̄j + δ− z̄i) + α−1(θi − z̄i)
)

(C.10)

where Gi is the additive genetic variance for the trait in species i. For simplicity, we assume that the

Gi are constant with respect to time for both species. We define the strength of abiotic selection as

Ai ≡ α−1
i . Similarly we define the strength of biotic selection by Bi ≡ γ−1

i . Hence, the response of the

population mean phenotype to selection and reproduction is approximated by

∆z̄i ≈ Gi
(

Biδ + Bi(z̄j − z̄i) + Ai(θi − z̄i)
)

. (C.11)

C.1.3 Relating selection strengths to selection gradients

A selection gradient, commonly denoted by β, provides an alternative measure of selection. It oc-

curs in the breeders equation given by ∆z̄ = Gβ (Lande and Arnold, 1983). Assuming that independent

sources of selection can be decomposed (Ridenhour, 2005) so that β = βB + βA represents the decom-

position of selection into “biotic” and “abiotic” sources then, in terms of the offset matching model, we

have

βB,i = Biδ + Bi(z̄j − z̄i), βA,i = Ai(θi − z̄i). (C.12)

C.1.4 Drift

Drift is modeled as the response to randomly sampling the offspring population. Denoting Z1, . . . , Zni

as the breeding values of a random sample of individuals drawn from species i where ni is the effec-

tive population size, we can calculate the random variable z̃i =
1
ni

∑ni
k=1 Zk. Assuming these breeding

values are drawn independently of one another and that their distribution is normal with mean z̄i

and variance h2
i σ2

i = Gi (h2
i denotes heritability), we have z̃i is distributed normally with mean z̄i and

variance Gi/ni. We denote the response to drift in species i by ξi ≡ z̃i − z̄i.

In the case that ni is different across N populations we must alter our treatment of drift. We denote

by nij the effective population size of species i in population j and Zijk the trait of individual k in this
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population. At first it may seem that replacing ξi with the average 1
N ∑j ξij would be appropriate.

However this average reduces in variance as N grows. The effect of drift on local populations should

not attenuate as sample size increases. We therefore instead take motivation from the Lindeberg-

Lévy central limit theorem and define ξ̃i ≡ 1√
N ∑j ξij as our “effective” response to drift. Under this

definition we have

Var(ξ̃i) =
1
N ∑

j
∑
k

Var(Zikj) =
1
N ∑

j

Gi
nij

= Gi
∑j n−1

ij

N
. (C.13)

Hence, if there are multiple estimates of effective population size available from different locations

(such as for our camellia-weevil example) we recommend using the harmonic mean of these values.

Likewise, to calculate the effective additive genetic variance for our model when the additive genetic

variance is known to be different across space we repeat the above approach to obtain

Var(ξ̃i) =
1
N ∑

j
∑
k

Var(Zikj) =
1
N ∑

j

Gij

ni
=

1
ni

∑j Gij

N
. (C.14)

Thus, we recommend using the arithmetic average of additive genetic variances when they vary

across space.

Beyond the change in mean phenotype, we ignore the effects of drift on variance or any other

property of the population. Then the total change in the mean trait of the population for species i after

selection, reproduction and drift is

∆z̄i = Gi
(

Biδ + Bi(z̄j − z̄i) + Ai(θi − z̄i)
)
+ ξi. (C.15)

C.1.5 Metapopulation dynamics

We denote by the random vector (Z̄1(t), Z̄2(t)) the pair of trait means for each species within a given

(but unspecified) population at time step t. Motivated by the result for local mean trait dynamics, we

define the next generation mean trait pair by

Z̄i(t + 1) ≡ Z̄i(t) + Gi
[
Biδ + Bi(Z̄j(t)− Z̄i(t)) + Ai(θi − Z̄i(t))

]
+ ξi(t). (C.16)

This defines a two dimensional random process. We describe the statistical behavior of this process

by focusing on its distribution. In general, to fully describe the distribution of a random process we

need to write down all of the statistical moments at each time step. Of course this is not feasible, but,

as shown in Appendix C.1.6 below, for our model we only need to calculate the first five moments. The

first two are the average values of the two local mean traits (µ1, µ2) across the entire metapopulation.

The third and fourth moments are the variances of the local mean traits among the metapopulation

(V1, V2), which can take on positive values in our model solely due to drift. Finally, the fifth moment

is the spatial covariance of the two mean traits (C) which can be non-zero in our model due to either

B1 6= 0, B2 6= 0 or both B1, B2 6= 0. Then to construct the metapopulation model we identify µi(t) ≡
EZ̄i(t), Vi(t) ≡ E[(µi(t)− Z̄i(t))2], and C(t) ≡ E[(µ1(t)− Z̄1(t))(µ2(t)− Z̄2(t))]. The simplicity of the

local dynamics makes it a straightforward calculation to show that this definition coincides with the
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recursions

µ′i = µi + Gi
[
Biδ + Bi(µj − µi) + Ai(θi − µi)

]
(C.17a)

V′i = (1− AiGi)
2Vi + 2(1− AiGi)BjGj(C−Vi) + B2

i G2
i (Vi + Vj − 2C) + Gi/ni (C.17b)

C′ = (1− A1G1)(1− A2G2)C + (1− A1G1)B2G2(V1 − C) + (1− A2G2)B1G1(V2 − C) (C.17c)

+B1B2G1G2(2C−V1 −V2).

Taking this approach makes the implicit assumption of infinitely many localities. This is due to

the fact that the moments are calculated are over all possible sample paths. Each sample path is

associated with some theoretical location. However, in the real world metapopulations are comprised

of just a finite number of localities. Then, in view of our model, they provide just a subset of all the

possibilities. The true metapopulation moments of those empirical systems would then be looked at

as sample moments with respect to the theoretical metapopulation moments predicted by our model.

These observations dove-tail nicely with the fact that true empirical metapopulation moments exhibit

some stochastic behavior while the metapopulation moments of our model evolve deterministically.

Finally, we implement simplifications of the expressions (C.17) by assuming each Bi and Ai are of

some small order ε� 1 and neglect all terms of order ε2 and higher.

C.1.6 Proof of normality

Here we demonstrate that as long as selection is weak, the distribution describing population

mean phenotypes across the metapopulation converges to a bivariate normal distribution regardless

of the initial distribution of the metapopulation. Our model is 2-dimensional, but the proof is eas-

ily obtained for the more general d-dimensional situation. Using ‖x‖ = ∑d
i=1 |xi| for x ∈ Rd and

‖U‖ = max{|λ| : λ is an eigenvalue of U} for matrices, we have the following:

Claim: If X(t) is a d-dimensional random process defined by X(t + 1) = UX(t) + W(t) where U

is a d × d nonsingular matrix with real entries, ‖U‖ < 1 and the sequence W(t) is comprised of iid

d-dimensional multivariate normal variables, then X(t) will converge in distribution to a multivariate

normal random variable regardless of the distribution of X(0).

Proof: For clarity we move the time index t to the subscript. The solution is immediately obtained

as Xt = UtX0 + ∑t−1
k=0 UkWk. The hypothesis implies limt→∞ Ut = 0, the d× d zero matrix. So, we have

X∗ ≡ limt→∞ Xt = ∑∞
k=0 UkWk. Note that ‖Uk‖ ≤ ‖U‖k for each k = 0, 1, . . . , that E‖Wi‖ = E‖Wj‖ <

∞ for each i, j = 0, 1, . . . , and that ∑∞
k=0 ‖U‖k = (1− ‖U‖)−1 < ∞. Hence, using Tonelli’s Theorem to

reverse the order of the expectation and summation, we have

E‖X∗‖ = E

∥∥∥ ∞

∑
k=0

UkWk

∥∥∥ ≤ E

(
∞

∑
k=0
‖Uk‖‖Wk‖

)

= E‖W0‖
∞

∑
k=0
‖Uk‖ ≤ E‖W0‖

∞

∑
k=0
‖U‖k < ∞.
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This demonstrates that the mean vector of X∗ has finite magnitude. Denote by Var(X) the variance

covariance matrix of a d-dimensional random vector X. Then, by the iid assumption on the Wt we have

‖Var(X∗)‖ =
∥∥∥ ∞

∑
k=0

Var(UkWk)
∥∥∥ =

∥∥∥ ∞

∑
k=0

UkVar(W0)(Uk)>
∥∥∥ ≤ ∞

∑
k=0
‖Uk‖‖Var(W0)‖‖Uk‖ = ?.

By hypothesis ‖U‖ < 1 which implies ‖Uk‖2 ≤ ‖U‖k for each k = 1, 2, . . . . Hence,

? = ‖Var(W0)‖
∞

∑
k=0
‖Uk‖2 ≤ ‖Var(W0)‖

∞

∑
k=0
‖U‖k < ∞.

This shows that Var(X∗) has finite entries. The higher cumulants of X∗ will be zero since the Wt

contribute nothing more than second order cumulants, which is characteristic of the multivariate nor-

mal distribution (Bryc, 1995; Lukacs, 1970). Hence, X∗ is a d-dimensional multivariate normal random

variable. �

In the notation used in the above proof, our model of coevolution corresponds to

U =

(
1− G1(B1 + A1) G1B1

G2B2 1− G2(B2 + A2)

)
. (C.18)

The eigenvalues λ of the above matrix satisfy

|λ| ≤ 1
2
|2−G1(A1 + B1)− G2(A2 + B2)|+

1
2

√
4G1G2B1B2 + [G1(A1 + B1)− G2(A2 + B2)]2

(C.19)

By construction of our model we assume Ai > 0. If we futher impose 0 < Gi(Bi + Ai) < 1 it can

be demonstrated with basic calculus that the right hand side of the above inequality is restricted to

the half-open unit interval [0, 1). Hence, these conditions are sufficient for our model to satisfy the

above claim. This allows us to focus on just the first and second order moments without losing any

information predicted by the model.

C.2 Maximum likelihood

In this section we describe our use of maximum likelihood for estimating model parameters defin-

ing the strength of coevolution.

C.2.1 Estimating selection parameters and hypothesis testing

To connect our model to data, we assume that the metapopulation dynamics have reached equilib-

rium in distribution. This means that the distribution of the random variables representing the mean

traits of each species within a given population is not changing. This assumption allows us to write the
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means and variances as static functions of the model parameters. By assuming the equilibrium distribu-

tion of the metapopulation is bivariate normal, the likelihood of the data (the mean traits of each species

in each population; D = {Di}N
i=1 ≡ {(z̄1, z̄2)

>
i }N

i=1) given the two metapopulation mean trait values

(µ = (µ1, µ2)
> ≡ E(Z̄1, Z̄2)

>), the two metapopulation trait variances (V1 ≡ Var(Z̄1), V2 ≡ Var(Z̄2)),

and the metapopulation spatial covariance of the two traits (C ≡ Cov(Z̄1, Z̄2)), ie, the first five mo-

ments, can be expressed as

L(D|µ, Σ) =
N

∏
i=1

exp
(
− 1

2 (Di − µ)>Σ−1(Di − µ)
)

2π
√
|Σ|

, Σ =

(
V1 C

C V2

)
. (C.20)

Using equations (C.17) we can easily derive the following equilibrium solutions of the first five

moments

µi =
Ai Ajθi + AiBjθi + AjBi(θj + δ) + 2BiBjδ

Ai Aj + AiBj + AjBi
(C.21a)

Vi =
BiC + 1

2ni

Ai + Bi
(C.21b)

C =
B1(A1 + B1)G1n1 + B2(A2 + B2)G2n2

2(A1 A2 + A1B2 + A2B1)((A1 + B1)G1 + (A2 + B2)G2)n1n2
. (C.21c)

These expressions can in turn be used to solve for the two strengths of abiotic selection, the two

strengths of biotic selection and the optimal offset. Because these expressions are quite cumbersome,

however, we refer the reader to the Mathematica notebook associated with this paper for their full

expressions. However, for the sake of developing intuition and for later use, we show the expressions

of just the selection strengths as functions of other model parameters and statistical moments

Ai =
µj + δ− µi

2ni(Vi(µj + δ− θi)− C(µi − θi))
(C.22a)

Bi =
µi − θi

2ni(Vi(µj + δ− θi)− C(µi − θi))
. (C.22b)

Since the sample moments of a multivariate normal distribution are the maximum likelihood es-

timates of its underlying moments and our solutions for the selection strengths and optimal offset

correspond precisely with the sample moments, our solutions also maximize likelihood of our model

given the data. That is, they maximize the function

L(D|A1, A2, B1, B2) ≡ L(D|µ(A1, A2, B1, B2), Σ(A1, A2, B1, B2)). (C.23)

Restricting the selection parameters Bi to match our null hypotheses of unilateral evolution (B1 = 0

or B2 = 0) results in a restricted likelihood (specifically, L(D|A1, A2, 0, B2) or L(D|A1, A2, B1, 0)), one

whose value is always less than that of L(D|A1, A2, B1, B2). Then to calculate the significance of B1, for
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example, we compute the probability that the statistic

Λ1 = 2 ln
(

L(D|A1, A2, B1, B2)

L(D|A1, A2, 0, B2)

)
(C.24)

lands within a given percentile of its distribution under the assumption of the null hypothesis B1 = 0.

We adopt the standard 95th percentile as our threshold for determining significance (hence, α = 0.05).

According to Wilk’s Theorem, the distribution of this statistic is approximated by a Chi-square (Wilks,

1938). We therefore use this distribution to approximate our p-values.

We now use the results of this section to derive expressions for the restricted maximum likelihood

moments under the two null conditions just described. Note that according to equation (C.22b), when

Bi = 0 we must have µi = θi for otherwise some parameter or moment must be infinite. This leaves

one parameter fixed and one statistical moment fixed. The remaining four parameters can be solved

for in terms of the remaining four statistical moments. Without loss of generality, we consider the

situation when B1 = 0. This results in the following solutions for the remaining strengths of selection

and optimal offset

A1 =
1

2n1V1
(C.25a)

A2 =
1

C2 −V1V2

(
C−V

2n2
+

CG1(V2 − C)
2n1G2V1

)
(C.25b)

B2 =
1

C2 −V1V2

(
− C

2n2
− CG1V2

2n1G2V1

)
(C.25c)

δ = (θ2 − θ1) + (µ2 − θ1)
G2n1V2

1 + G1n2C2

G2n1V1C + G1n2V2C
(C.25d)

That the remaining four equations for the equilibrium of statistical moments are invertible with

respect to the remaining selection strengths and optimal offset indicates that the only moment whose

value changes under the restricted maximum likelihood when B1 = 0 is µ1. Likewise, when we fix

B2 = 0 the only change in the resulting maximum likelihood moments is µ2 = θ2. Hence, formulating

the likelihood ratios used to estimate the significance of the Bi are relatively straightforward.

C.3 Inference under broken assumptions

In this appendix we evaluate the performance of our method when some key assumptions are

broken. Specifically, we extend the analyses described in the main text to inference when gene-flow

is present, when data are significantly non-normal and when there is error in estimating the abiotic

optima.

C.3.1 Inference for systems with gene-flow

Although our method formally assumes the absence of gene-flow among populations, we anticipate

its usefulness persists in the face of weak gene-flow. To determine the validity of this assertion we
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extend our model to include gene-flow as captured by an island model. Under this model the effect

of gene-flow is to reduce the metapopulation variances (and hence covariance, but not correlation).

As both strengths of selection also act to reduce variance across the metapopulation, we expect the

inclusion of gene-flow to negatively bias our estimates of biotic selection.

In terms of the local model, the inclusion of gene-flow is approximated by an additional linear term.

Denoting the strength of gene-flow by mi, we have

∆z̄i = Gi(Ai(θi − z̄i) + Biδ + Bi(z̄j − z̄i)) + mi(µi − z̄i) + ξi. (C.26)

Assuming weak migration along with weak selection, we obtain

∆µi = Gi
[
Biδ + Bi(µj − µi) + Ai(θi − µi)

]
(C.27a)

∆Vi = −2(AiGi + mi)Vi + 2BjGj(C−Vi) + Gi/ni (C.27b)

∆C = B2G2(V1 − C) + B1G1(V2 − C)− (A1G1 + A2G2 + m1 + m2)C. (C.27c)

We can then solve for the selection strengths at equilibrium to arrive at

Ai =

(
1

2ni
− miVi

Gi

)(
µj + δ− µi

Vi(µj + δ− θi)− C(µi − θi)

)
(C.28a)

Bi =

(
1

2ni
− miVi

Gi

)(
µi − θi

Vi(µj + δ− θi)− C(µi − θi)

)
. (C.28b)

From these expressions we see that if the additive genetic variance within populations is much

greater than the variance in mean phenotype among populations, gene-flow can safely be ignored. Of

course, this will not likely be the case. Hence, we repeat our analysis of method performance described

in the main text for data simulated with gene-flow present. In Figure C.1 of this appendix we display

error rates for detecting coevolution and regression statistics for inferring the quantity of coevolution

as functions of the amount of gene-flow present. These results demonstrate that low rates of gene-flow

have negligible effects on our methods ability to infer coevolution, but that more extreme rates of gene-

flow (e.g. 0.01) significantly reduces our methods precision in inferring the strength of coevolution as

demonstrated by a reduced R2.

C.3.2 Inference using non-normal data

The requirement that phenotypic data be bivariate normal will likely restrict the applicability of

this method. However, if this method can be shown to be robust to non-normal data, the range of

potentially coevolving systems for which this method can be used will expand greatly. We are therefore

motivated to investigate the effect of non-normal data on inference. To understand this effect we repeat

the methods discussed in the main text for simulated non-normal data sets.

To achieve this we repeatedly simulated data under our model until the resulting data set failed to

be normal. We used the Shapiro-Wilks test with a threshold of normality τ to determine whether or not



112

0.00

0.05

0.10

1e−04 1e−02

Gene flow

F
a

ls
e

 p
o

s
it
iv

e
 r

a
te

0.00

0.25

0.50

1e−04 1e−02

Gene flow

R
2
 o

f 
lin

e
a

r 
re

g
re

s
s
io

n

0.8

0.9

1.0

1e−04 1e−02

Gene flow

P
o
w

e
r

0.8

1.0

1.2

1e−04 1e−02

Gene flow

S
lo

p
e

 o
f 

lin
e

a
r 

re
g

re
s
s
io

n

Figure C.1: Error rates and regression statistics as functions of the strength of gene-flow.

the data are normal (R Core Team, 2016). That is, if the p-value returned by the Shapiro-Wilks test is

less than τ, we conclude the data to be non-normal. Using only those data sets which were determined

to be significantly non-normal, we proceeded to perform inference as described above. We performed

regression analysis on our estimates of biotic selection strengths and analysed false positive rates and

power across a range of threshold values. Results are displayed in Figure C.2 of this appendix. From

this figure we see the effect of non-normality on inference is negligible, even for highly non-normal

data.

C.3.3 Inference with measurement error

We analyzed the effect of measurement error in the background parameters has on our ability

to infer coevolution. In doing so we focused on error in measuring abiotic optima. We assume the

estimates of abiotic optima are normally distributed and centered on the ”true” optima. Using the

same approach for performance analysis as described in the main text, we examine regression statistics

and error rates as functions of the standard deviation in the estimated abiotic optima. Results are

displayed in Figure C.3 of this appendix. These results demonstrate that our method of coevolutionary

inference is insensitive to measurement error in the abiotic optima.

C.4 Analysis of data

Here we describe the data and methods used for the analysis of coevolution. At its most basic level,

our approach requires estimates of the mean phenotypes for both species in at least two populations

where they are known to interact. This data is used to calculate the metapopulation means, variances

and covariance upon which our maximum likelihood estimation rests. In addition to this core data,
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Figure C.2: Error rates and regression statistics as functions of τ, the threshold for which data is
determined to be non-normal. The smaller τ is the more non-normal the data is according to the
Shapiro-Wilks test.

our approach requires estimates for several key background parameters: the effective local population

sizes for each species ni, the optimal traits in the absence of the interaction θi (the abiotic optima) and

the additive genetic variances Gi. Model parameters that are inferred by our method are the strengths

of abiotic selection Ai, the strengths of biotic selection Bi, and the optimal offset δ.

For many systems, it will be possible to estimate effective population sizes using molecular tech-

niques (e.g. Beerli, 2005). If these are known for each population, or for a subset of populations, the

harmonic mean of these should be used for the parameter ni. This is justified in Appendix C.1.4. In

the absence of effective population size estimates, one can instead infer the composite parameters Aini

and Bini. As shown in equation (C.22b) the selection strengths are directly proportional to the effec-

tive population sizes. Hence, the suggested composite parameters provide reasonable proxies for the

strengths of selection.

The abiotic optima are particularly important for inference. If these parameters are close to the

biotic optima, it becomes difficult to assess the relative importance of biotic selection as its signal

becomes partially masked by the patterns resulting from abiotic selection. In our analyses, three distinct

approaches were used to estimate these parameters: (1) We used the trait means of populations isolated

from the interacting species as an estimate for θi. However, if there is significant gene flow between

these populations and populations where the interaction is taking place, the resulting estimate for θi

may be biased towards the biotic optimum, which would weaken the coevolutionary signal and make

our approach conservative. Also, this approach assumes the form and strength of abiotic selection is

equal in locations where the interaction does and does not occur. (2) We also used the mean phenotypes

of members of a species that do not partake in the interaction at any point in their life history to

estimate θi. For example, in the camellia-weevil interaction, the males do not oviposit and hence do
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Figure C.3: Error rates and regression statistics as functions of the amount of measurement error in
abiotic optima.

not interact with camellia by boring holes in its pericarp at any point in their life histories. Hence,

we assume their rostrum lengths provide decent estimates of the abiotic optima. This approach also

assumes approximately equivalent abiotic selection surfaces for both individuals within a population

that do and do not partake in the interaction. (3) Lastly, we estimated the abiotic optimum for the fly

M. longirostris through data on closely related species. We reason that each sibling species represents

an alternative evolutionary trajectory, especially since they do not coincide with the M. longirostris

pollination guild (Barraclough and Slotow, 2010). Hence, we may crudely estimate the abiotic optimal

phenotype as the trait values of these sibling species.

In the following sections, we describe how we applied this general approach to interactions between

the flower Lapeirousia anceps and its fly pollinator Moegistorhynchus longirostris as well as the camellia

fruit Camellia japonica and its weevil seed-predator Curculio camelliae. In both interactions, values sub-

scripted with the number 1 indicate the insect species and values subscripted with the number 2 the

plant species. All computations were performed in the statistical programming language R (R Core

Team, 2016). Data and scripts used in this analysis will be made available at:

https://github.com/bobweek/measuring.coevolution

C.4.1 The interaction between L. anceps and M. longirostris

Phenotypic data was obtained from previously published work (Pauw et al., 2009) estimating the

population mean proboscis length and population mean tube length for eight populations in South

Africa where this interaction occurs. These data are summarized in Table C.1.

The abiotic optimum trait value for L. anceps was assumed to be equal to the average of the mean

https://github.com/bobweek/measuring.coevolution
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tube lengths found in Red Hill and Uitkomsberge, the only two populations recorded which are not

visited by M. longirostris (Pauw et al., 2009). This average came to be 41.45 mm. For the fly, we estimated

the abiotic optimum in four different ways. For the first three we set the abiotic optimum equal

to the recorded trait-value of one of the sister species (found in Bequaert, 1935): (1) M. braunsi, (2) M.

brevirostris and (3) M. perplexus. Only for M. braunsi were separate measurements recorded for each sex.

We therefore use the average of these two lengths as the species wide mean. (4) Lastly, we estimated

the abiotic optimum as the average of the mean traits for the three sibling species. These estimates

are summarized in Table C.2. We implemented our method for measuring coevolution separately

for each of these four different parameterizations. Table C.2 shows the results under each of these

parameterizations do not substantially differ.

Table C.1: Moments used for analysis in the fly-flower interaction.

Moments Sample Moments
µ1 65.83 mm
µ2 55.74 mm
V1 206.4 mm2

V2 163.6 mm2

C 143.4 mm2

Table C.2: Results under different abiotic optima for M. longirostris.

Parameter M. brevirostris M. perplexus M. braunsi Average
θ1 11.5 mm 32.0 mm 41.0 mm 28.17 mm
B1 6.409660e-05 mm−2 6.394011e-05 mm−2 6.386160e-05 mm−2 6.397159e-05 mm−2

B2 1.718896e-06 mm−2 1.867071e-06 mm−2 1.941416e-06 mm−2 1.837269e-06 mm−2

A1 7.025746e-06 mm−2 7.073487e-06 mm−2 7.097440e-06 mm−2 7.063885e-06 mm−2

A2 3.140721e-06 mm−2 3.122435e-06 mm−2 3.113260e-06 mm−2 3.126113e-06 mm−2

δ 16.03591 mm 13.82320 mm 12.84025 mm 14.23957 mm
p1 <2.22e-16 <2.22e-16 2.22e-16 <2.22e-16
p2 1.19e-07 1.19e-07 1.19e-07 1.19e-07
C 1.049645e-05 mm−2 1.092615e-05 mm−2 1.113472e-05 mm−2 1.084126e-05 mm−2

B 0.1745277 0.1861598 0.1918956 0.1838421

C.4.2 The interaction between C. camelliae and C. japonica

Phenotypic data was obtained from previously published work (Toju et al., 2011a) estimating the

population mean rostrum length and population mean pericarp thickness for weevil and camellia

populations throughout Japan. We follow the approach of Toju et al. (2011a) by focusing on female

weevils as male weevils do not oviposit and hence are not involved with the interaction. Of the

phenotypic data available we included only those populations for which each species was sampled.

This made for 25 populations (see the csv for more details). Table C.3 summarizes the metapopulation

means, variances and covariance of these data.
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Effective population sizes were taken as the harmonic means of those reported in Toju et al. (2011b).

We assumed the male weevil rostrum length to be the abiotic optimum of the weevil species. Means

for the rostrum length of male weevils are available from 11 different populations (Nagaoka, Kyoto,

Jurinji, Taiji, Muroto, Ashizuri, Reihoku, Takahama, Yahazu, Shitoko and Hyanyama). The optimal

pericarp thickness for the camellia was estimated as the average of mean pericarp thicknesses from 17

populations with no recorded weevil populations (Miyatsuka, Hatake, Mukai, Izuhara, Kamitsuki, Izu,

Igatani, AkoN2, Tsubota, Jinoshima, Kishiku, Tomie, Kuwanoura, Ichinoura, Nakakoshiki, Kashima

and Teuchi). These values were taken from Toju et al. (2011a). The resulting background parameters

can be found in Table C.4.

Table C.3: Moments used for analysis in the camellia-weevil interaction.

Moments Sample Moments
µ1 12.5 mm
µ2 10.4 mm
V1 14.2 mm2

V2 28.8 mm2

C 19.3 mm2

Table C.4: Parameter values used for analysis in the camellia-weevil interaction.

Parameters C. camelliae C. japonica
θi 5.91 mm 6.26 mm
ni 3.08e+04 1.79e+03

C.4.3 Effect sizes

To estimate the effect of coevolution on the bivariate distribution of mean-trait-pairs, we used our

model to predict the parameters of the metapopulation distribution in the absence of coevolution.

Referring to the equlibrium expressions C.21 in Appendix likelihood, we can calculate the maximum

likelihood solutions for A1 and A2 when B1 = B2 = 0. Under this condition we find µi = θi, C = 0 and

Vi =
1

2ni Ai
.

Thus, in the absence of coevolution both V1 and V2 remain equal to their observed values. The

remaining three moments, however, must shift from their observed values.

To calculate the magnitude by which these moments shift, we calculate a metric for the effect size.

In general, the effect size of a treatment is typically defined as the difference between sample means

with and without the treatment divided by the pooled standard deviation of the samples. A natural

multivariate extension of such a metric is the Mahalonobis distance. Setting µc, Σc and µ0, Σ0 equal to

the observed and predicted moments with and without coevolution respectively, we use the following

expression as our effect size
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E ≡
√
(µc − µ0)>Σ−1(µc − µ0)

where Σ is the pooled covariance matrix, which in our case simplifies to

Σ =
Σc + Σ0

2
.
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