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Abstract 

Common methods for measuring soil moisture disturb the soil and do not represent large 

areas with varying topography.  We estimated volumetric water content (VWC) using 

apparent electrical conductivity (ECa) while comparing chisel plow tillage and no-till as well 

as crop rotations on a split-plot design. Weekly measurements of ECa were converted to 

VWC using multiple linear regression (r = 0.89, p = 0.0) with the additional variables 

growing degree days, elevation, clay content, and silt content using a principal component 

analysis.  VWC and ECa were well correlated (r = 0.60, p = 2.2x10-12); with a similar percent 

decrease from April to October.  Spring peas retained the highest predicted VWC, followed 

by spring barley and winter wheat.  The spatial and temporal maps of moisture content 

provided a comprehensive view of the amount, location, and timing of volumetric water 

content as a function of agronomic management practices.    
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Chapter 1. Introduction 

Dryland winter wheat is the staple crop for farmers in the Palouse, an area with a 

landscape of rolling loess hills within southeastern Washington and north central Idaho.  

Farmers depend on stored soil water from precipitation in winter and spring months as 

summers bring higher temperatures and minimal rain.  With the lack of summer 

precipitation, spring moisture accumulation is important to sustain plant growth over the 

growing season (Singh et al., 2011).  Climate change in the inland Pacific Northwest could 

alter the spatial distribution and timing of soil water patterns and ultimately impact winter 

wheat yields in the area (Elsner et al., 2010), creating the need to collect temporal soil 

water distribution data. 

The dependence of soil moisture distribution on topography and soil properties is 

guided by seasonal changes in precipitation and vegetation.  Topography based surface and 

subsurface lateral flow is a main determinant in water flow and distribution in wet spring 

months (Western, 1998; Zhu, et al., 2010).  Soil properties become a larger factor in 

unsaturated soil water conditions based on soil texture, porosity, and hydraulic 

conductivity as runoff and saturated flow decreases (Vereecken et al., 2013).  In the 

Palouse, Ibrahim and Huggins (2011) found that elevation and the topographic wetness 

index (upper slope-dependent water accumulation) were the most influential variables in 

determining soil moisture distribution in the spring months.  They determined that soil 

properties, such as apparent electrical conductivity and bulk density, were more dominant 

with the onset of summer and drier conditions.  Despite these general trends, correlations 
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between topography, soil properties, and water distribution are site specific (Corwin and 

Lesch, 2005a, b).  Site specific water accumulation in the Palouse is also influenced by snow 

accumulation and agronomic practices.  For example, Qiu, et al. (2011) found that when 

more residue is left on a crop field with rolling hill topography, snow accumulation tends to 

be more evenly distributed across the landscape.  In contrast, conventional tillage fields, 

with little residue to hold the snow water in place, showed larger spatial variation for snow 

accumulation.  This likely leads to a larger variation across the landscape of stored soil 

water (Qiu, et al., 2011).  Another topographical feature, aspect, is important for 

understanding the distribution of water on rolling hill topography.  South facing aspects of 

the rolling hills dry faster in summer months compared to north facing slopes due to the 

angle of the sun, more direct sunlight, and increased evaporation (Brooks et al., 2012).  In 

addition, vegetative growth can be an indicator of soil moisture fluctuations and including 

vegetation type and distribution would increase the reliability of topographically based 

water prediction models (Hupet and Vanclooster, 2002; Wilson, 2005).  With changes 

across the landscape, it is important to analyze the correlation of spatial and temporal 

water content in regards to soil properties, vegetation, and topographical features. 

Vegetation and agronomic practices, such as crop rotations, are impacted by site-

specific factors, such as precipitation and aspect, adding complexity to understanding soil 

moisture distribution on crop fields.  With the positive correlation between soil-water 

storage and wheat yield (Fuentes et al., 2003; Machado et al., 2008), annual variation in 

precipitation leads to less predictable yields (Schillinger and Papendick, 2008).  

Understanding variations in soil water content across the landscape will benefit crop yield 
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potential.  In the Palouse, there is an east-west gradient with increasing annual 

precipitation eastward (Brooks, et al., 2012).  Locations with higher precipitation, have a 

rotation of spring wheat or barley and a legume, such as peas, built into their three year 

rotation (Schillinger and Papendick, 2008) in addition to the main crop, which is winter 

wheat.  Crop rotations are not used in areas where water is limiting as barley and/or peas 

would deplete soil moisture for the following year.  Locations on the western side of the 

Palouse, with less precipitation, have a year of fallow implemented before wheat planting 

to maintain higher soil water content and greater wheat yields (Payne et al., 2001; Fuentes 

et al., 2003).  Even in areas with adequate mean-annual precipitation, water conservation 

remains a concern for the latter portion of the dry season, specifically on ridge tops and 

south facing slopes (Papendick, 1987).  Spring wheat and barley have been shown to 

deplete soil water to a greater extent than winter wheat (Schillinger and Papendick, 2008; 

Qi et al., 2013), leaving less water for the successional year.  For this reason, spring peas, 

which are less water intensive (Miller et al., 2006), are planted before a rotational winter 

wheat year in order to maintain sufficient soil water.   

Another agronomic factor, tillage practice, may influence soil water distribution.  

The increased use of no-till or conservation tillage practices in the Palouse – for the 

purpose of reduction in soil erosion – could lead to some benefits from added residue.  

These benefits, such as increased infiltration and reduced evaporation, help maintain 

higher soil-water storage (Williams, 2011; Su et al. 2007; Fuentes et al., 2003).  However, 

many farmers remain hesitant to move to this type of system for fear of reduced yields 

(Schillinger and Papendick, 2008).  A few studies show that no-till agriculture produces 80% 
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of the yields of conventional tillage.  However, most studies have shown that this is not a 

consistent correlation and yields under no-till management are no different than those 

measured under conventional tillage (Cochran et al., 1982; Lafond et al., 1992; Payne et al., 

2001; Fuentes, et al., 2003; Machado et al., 2008).  Furthermore, studies addressing tillage-

based soil moisture differences do not always show no till as having greater soil moisture 

storage than conventional tillage.  In a 2 year study of 2 wheat fields, Riar et al., (2010) 

found that seed-zone soil moisture (9-11 cm) was greater under conventional tillage for 

one of the two years for one field, but soil moisture was not significantly different based on 

tillage practices for the other field/year(s).  In addition, there was greater soil moisture in 

the no till section of one field at depth (60 – 150 cm) for one of the years but the difference 

was not significant for the other field/year(s).  Machado et al. (2008) showed increased soil 

moisture for wheat in the upper 30 cm for reduced tillage and more soil moisture for all 

other depths to 150 cm for conventional tillage.  For peas, they found that reduced tillage 

consistently had greater soil moisture at all depths, suggesting trends are crop dependent.  

The influence of tillage practice on soil moisture content is unclear in wheat fields and may 

also be site specific. 

As discussed, soil water storage fluctuates temporally and spatially (Eagleson, 1978) 

due to climate (Seneviratne et al., 2010), heterogeneity of soil profiles (Sheets and 

Hendrickx, 1995), topography (Burt and Butcher, 1985), and vegetation (Eagleson, 1978; 

Cassiani et al., 2012), resulting in the need for wide-scale water measurements.  The 

majority of studies addressing soil water storage are conducted on a point scale, with data 

collections at specified locations across a field.  These techniques, which use soil sampling 
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(e.g. gravimetric) or some form of soil-water sensing (e.g. time domain reflectometry), are 

time intensive and intrusive.  Hupet and Vanclooster (2002) found that between 2 and 33 

samples per 6300 m2 (1.6 ac) were needed in order to predict mean soil moisture at a given 

depth with 95% confidence on a relatively flat field.  Varying topography adds to the 

complexity and makes comparisons of point scale data difficult (Tromp-van Meerveld and 

McDonnell, 2009; Robinson et al., 2012).  In the Palouse, this variation in soil moisture 

would likely require more extensive data collection due to the rolling hill topography.  With 

elevation, landscape position (e.g. shoulder, toeslope), aspect, and slope varying across the 

hills, it would be difficult for farmers or researchers to maintain this many sample sites for 

water monitoring.  

Spatial scale monitoring of soil moisture is important for precision agriculture 

(Corwin and Lesch, 2003).  Geographic information systems (GIS) are generally paired with 

other measurement techniques to apply and monitor soil nutrients and properties 

(Western et al., 2002).  Of particular interest for this study is the determination of soil 

moisture distribution.  Due to the difficulties of collecting and interpolating point-scale soil 

moisture, remote sensing techniques (RST) could provide a more spatial, data intensive 

alternative (Kornelsen and Coulibaly, 2013).  Normalized Difference Vegetation Index 

(NDVI), which measures vegetative growth, is correlated to soil moisture content (Wang, 

2007).  Nonetheless, since plant growth is required for NDVI measurements, NDVI would 

not be able to be used before crop planting to determine soil stored in the profile.  RSTs 

that use microwave wavelengths, such as synthetic aperture radar (SAR), use satellites to 

determine the dielectric constant, soil surface roughness, and vegetation distribution 
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(Kornelsen and Coulibaly, 2013).  The dielectric constant is highly related to soil moisture 

content (Kornelsen and Coulibaly, 2013).  However, these types of RSTs only gather soil 

moisture data in the upper few cm (Western et al., 2002), which is not useful for 

determining soil moisture storage for crops in dryland agriculture.   

Electromagnetic induction (EMI) could provide a better means of efficiently 

measuring spatial and temporal water distribution.  EMI is used to determine the apparent 

electrical conductivity (ECa) of the soil, such as with the CMD-1 (GF Instruments, Brno, 

Czech Republic) conductivity meter or, similarly, EM-38 (Geonics, Leighton Buzzard, United 

Kingdom).  These devices are not invasive and can be carried or pulled behind a four 

wheeler or other similar vehicle as long as they remain consistently close to the soil surface 

(McNeill, 1980).  The effective depth of signal penetration is 0.75 or 1.5 meters for the 

CMD-1.  This is an important depth for being able to quantify soil moisture storage in the 

root zone (Corwin and Lesch, 2005a).  An electromagnetic field given off by the receiver 

interacts with conductive properties of the soil to induce a secondary magnetic field and is 

relayed to the receiver with the primary magnetic field.  A value of electrical conductivity, 

termed apparent electrical conductivity (ECa), is outputted for every measurement point.  

Measured ECa is influenced by soil properties that are conductive, such as salinity, soil 

water content, and clay content (Corwin and Lesch, 2005a, b).  The high cation exchange 

capacity of clay generally means its outer surface is largely negatively charged.  Cations 

such as calcium, magnesium, potassium, or hydrogen ions are attracted to and adsorb to 

clay’s surface, making the clay mineral conductive.  Since dissolved solutes remain a 

necessary part of soil water, soil water content can be correlated to the conductivity 
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readings by the EMI device.  In the absence of saline soils, the ECa has been shown to be 

linearly related to water content (Rhoades et al., 1976; Sheets and Hendrickx, 1995; 

Khakural et al., 1998; Tromp-van Meerveld and McDonnell, 2009), but topographic and soil 

properties, such as clay content should still be used for calibration of ECa data (Corwin and 

Lesch, 2003; Corwin and Lesch, 2005b).  In California, Sheets and Hendrickx (1995) and in 

Missouri, Sudduth et al. (2001) found that the spatial ECa measurements using EMI 

represent soil water more accurately when done temporally.  Temporal maps allow the 

identification of changes in EC that correlate to water content, while soil properties such as 

clay content remain constant (Robinson et al., 2009; Robinson et al., 2012).  On hilly 

terrain, topographic measurements are also useful for the prediction of water content 

(Sauer, et al., 2013).  Topographical data can be calculated based on the geo-referenced 

electrical conductivity data points given by the EMI device.   

Objectives 

Soil moisture determinations for optimizing crop yield would benefit from more 

complete spatial and temporal maps of water, climate, and topographic features.  The 

specific objectives of this study were to (1) analyze the tillage and crop system comparisons 

in terms of spatial and temporal ECa and ECa predicted water distribution, and (2) 

determine site-specific impacts of topographic and soil properties on distribution of ECa 

and soil water content and (3) predict temporal and spatial volumetric water content using 

ECa and correlated features.  For this study the EMI conductivity meter was used to 

measure ECa of the soil and determine a relationship to total soil water content.  A 
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comparison of tillage system, as no-till versus chisel plow tillage, as well as crop system, 

with a rotation of winter wheat, spring peas, and spring barley, was made.   
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Chapter 2. Material and Methods 

Field Location, Climate, and Soil Descriptions 

The study was conducted at an experimental field on the University of Idaho 

Kambitsch Farm near Genesee, ID, USA.  The farm is in the Palouse region (Fig. 1) of 

northern Idaho characterized by a mesic temperature regime (Soil Survey Staff, 2010) with 

a mean annual temperature of 8.5⁰C with cold winters and hot summers (Western 

Regional Climate center, 2012).  Although the mean effective precipitation is 605 mm/yr 

(Western Regional Climate Center, 2012), being in a xeric precipitation regime (Soil Survey 

Staff, 2010), the majority of the precipitation occurs during winter and spring months (Fig. 

2).  During our study, the annual precipitation was 591 mm in 2012 (Western Regional 

Climate Center, 2013).  The dominating soil series is a Palouse silt loam classified by the 

NRCS as a Fine-silty, mixed, superactive, mesic Pachic Ultic Haploxeroll (Soil Survey Staff, 

2010).  The fine textures, high cation exchange capacity, and deep A horizon of a Mollisol 

give the soil naturally high fertility and high water holding capacity.  The depth to water 

table is generally over 200 cm deep (Soil Survey Staff, 2010).   

Experimental Design 

The 3.9 acre experimental field (192 x 82 m) is managed as a split plot design with 

alternating rows perpendicular to the slope testing both tillage management and crop 

rotations as shown in Fig. 3.  Tillage treatments were chisel plow (CP) and no-till (NT).  The 

CP and NT main plots alternated going up the hillslope, starting with NT at the foot slope 

and ending with CP on the shoulder of the top of the field, for a total of ten plots.  Within 
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each CP or NT plot there was one subplot of winter wheat (WW), spring barley (SB), and 

spring pea (SP) each, giving three subplots within each CP or NT main plot.  Each subplot 

measured 6 m by 82 m with 1.2 m of unplanted soil between each main plot.   

Winter wheat (WW) (Triticum Asetivum, 528/523 blend) was planted on October 

27th, 2011 at a rate of 110 lbs/ac with 260 lbs of 31-10-0-7.5 deep banded dry fertilizer.  

The entire field was top dressed via a plane with 40-0-0-6 (with chloride) fertilizer on April 

9th, 2012 at a rate of 100 lbs per acre.  Spring peas (SP) (Pisum sativum, Aragorn peas) were 

planted the following spring on May 14th, 2012 at 120 lbs/ac.  Spring barley (SB) (Hordeum 

vulgare) was planted on May 16th, 2012 at 80 lbs/acre with 260 lbs of 31-10-0-7.5 deep 

banded dry fertilizer applied at the same time.  At the end of the growing season, SB 

averaged 1.94 tons/acre and SP averaged 0.24 tons/ac.  The yields in the NT and CP plots 

were not significantly different.  Winter wheat averaged 82.2 bu/ac.  CP plots were 

significantly greater (p < 0.05) with yields of 85.7 bu/ac compared to the NT plot yields of 

72.6 bu/ac (Bull, 2012). 

Spatial measurements of soil variability 

We used the non-invasive CMD-1 electromagnetic induction (EMI) conductivity 

meter (GF Instruments, Brno, Czech Republic) to collect subsurface apparent conductivity 

(ECa).  The instrument collected a geo-referenced datum (including elevation) every second 

(approx. every 1.3 m) using a sub-meter accuracy GPS receiver (SX BlueII, Geneq, Montreal, 

Canada).  The EMI instrument was carried at a walking pace between crop rows, 

perpendicular to the slope, with ~84 cm linear distance between each measurement path.  
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There were four measurement paths per each subplot.  The instrument was held 

approximately 8 cm above the ground on the vertical co-planar (VCP) setting for an 

effective depth of approximately 1.5 m (McNeill, 1980).  This depth range was chosen to 

maximize sensitivity to root zone moisture as suggested by Corwin and Lesch (2005).  

Throughout the 2012 growing season, May to October, thirteen time-lapse field-scale EMI 

measurements were collected (Fig. 2).  Approximately 8,000 apparent electrical 

conductivity (ECa) data points were collected per field measurement.  The sensed ECa is a 

function of depth weighted subsurface electrical conductivity given by the 1-dimensional 

vertical sensitivity distribution found in McNeill (1980): 

𝐸𝐶𝑎 = ∫ 𝜙𝑉(𝑧)𝑑𝑧
∞

𝑧

          (1) 

Where z is the depth, V indicates VCP setting, and ф is the real conductivity at depth z.   

ECa data were normalized to a reference temperature of 25⁰C using the equation found in 

Reedy (2003):   

𝐸𝐶25 = 𝐸𝐶𝑎 (0.4779 + 1.3801𝑒(
−𝑇

25.654
))        (2) 

In lieu of measured soil temperatures profiles, we estimated the depth-weighted 

temperature T based on the model found in Van Wijk and De Vries (1963) with average air 

temperature and diurnal amplitude as input parameters derived from daily measurements 

at the field location weather station.  The characteristic damping depth and phase constant 

were estimated by fitting the model to observations of daily average soil temperatures 

over one year measured at the 10-cm depth using a standard Levenberg-Marquardt least 
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squares algorithm implemented in Matlab 13b (The Mathworks, Natick, MA, United 

States).  Depth weighing of T used the sensitivity distribution in Eq. (1) to calculate an 

effective temperature for conversion to EC25.  From this point forward ECa will represent 

EC25 as temperature-corrected apparent electrical conductivity. 

A digital elevation model (DEM) was derived by fitting a local linear regression 

surface to pooled elevation data collected along with the EMI measurements.  Slope and 

aspect were derived from the DEM using scripts in TopoToolbox (Schwanghart and Kuhn, 

2010).  The topographic wetness index (TWI) was calculated using Beven and Kirkby (1979). 

Calibration Data 

Soil samples were collected and analyzed to determine volumetric water content 

(VWC), particle size, soil pH, bulk density, bulk EC and electrical conductivity of the pore 

fluid (ECe).  Fig. 3 gives the locations of the sixty sampling sites for bulk density and twelve 

sites used for all other soil samples.  Two soil samples per subplot were collected for bulk 

density determination using a Giddings probe (Giddings Machine Co., Colorado, USA).  The 

samples went to a depth of 100 - 150 cm depending on refusal and were collected on 

October 31st, 2012. Bulk density was determined in 10 cm increments from 0 to 30 cm and 

in 30 cm increments from 30 cm to maximum depth.  The twelve sampling locations were 

selected using ESAP-RSSD software (US Salinity Laboratory, California, USA) to optimize 

sampling design based on a response surface sampling design (Lesch et al., 2000).  The 

response surface sampling design used the spatial variability in ECa derived from the EMI 

measurements in the wet state (December 8, 2011) to create a regression model and 
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sample sites that represent the electrical conductivity data (Lesch et al., 2000).  At each 

site, soil samples were collected at 0-10, 10-20, 30-40, 50-60, and 90-100 cm depths with a 

2.5 cm diameter soil probe.   

Soil texture was determined by pipette procedure using collected soil samples from 

each of the twelve sites and thirty of the sixty locations (approx. every other location going 

up the hill) from the bulk density measurements, for a total of 42 samples.  Texture analysis 

was done on the lower and upper 50 cm to a depth of 100 cm.  For better accuracy of 

texture analysis, samples were tested and were negative for carbonates, and had organic 

matter (Mikhail and Briner, 1978) and excess ions (95% methanol and 95% ethanol 

washings) removed.  Texture analysis was done via pipette procedure per Kilmer and 

Alexander (1949) based on USDA-NRCS standards for classification.   

VWC and bulk EC were measured using a Trime-Pico IPH/T3 soil moisture sensor 

(IMKO, Etlingen, Germany) starting June 17th, 2012 (Fig. 2).  At each of the twelve sites 

TECANAT PC plastic access tubes were augered without pre-boring to a soil depth of 80 cm.  

The tubes allowed repeated measurements on days of EMI data collection in 15-cm depth 

increments.     

Soil pH and the electrical conductivity of the pore fluid (ECe) were determined using 

the saturated paste extract method (Burt, 2004).  ECe and pH data from soil samples 

collected on May 8th and May 24th were compared via a paired t-test for differences.  The 

two dates were used as there were fertilizer applications between them and to determine 

if the fertilizer application impacted the ECe and pH.  
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Statistical Analysis 

The average ECa within plots planted to winter wheat (WW), spring barley (SB), and 

spring peas (SP) under chisel plow (CP) or no-till (NT) management were compared.  There 

were 30 subplots in the field or 10 per crop type and 15 per tillage type, making up 10 total 

plots with each containing one type of tillage and three crops (Fig. 3).  The subplots within 

a plot were paired together relative to their location on the field and compared with a 

paired t-test based on average ECa.  This procedure was done for comparing WW to SB, 

WW to SP, SP to SB, NT to T, and also crop and tillage combinations, such as WW NT to 

WW T. 

Sensor water, VWC, bulk density, and texture were depth weighted based on the 

sensitivity distribution given by Equation 1.  The data was normal-score transformed and 

fitted with a variogram (Table 1). Univariate ordinary kriging in Spacestat (Biomedware, 

Michigan, USA, ver. 3.8.5) was used to estimate spatial distributions of elevation, bulk 

density, clay, silt, and sand percentages as well as ECa (Table 1).  Continuous maps of the 

variables were created with a back transformation of the kriged data.   

We used principal component analysis (PCA) to determine variability in site-specific 

data using Biomedware’s Spacestat.  PCA was used to create eigenvectors, or for our 

purpose condensed variables (CV) of the original measured variables (MVs) and accounts 

for the original covariance and multicollinearity.  A correlation matrix was used to 

determine the correlation coefficients between the MVs: growing degree days (GDD), 

elevation, sand, silt, and clay percent, VWC, bulk density, topographic wetness index, slope, 
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and aspect.  Since VWC data was collected at the 12 collection sites, data inputted into the 

PCA was only from these 12 locations for all collection dates (Fig. 3).  GDD represents the 

cumulative GDD starting on April 1st, 2012 and was determined based on the maximum and 

minimum temperatures taken from the weather station near the field, using 0⁰C as a 

reference.  On dates where temperature data was missing (3% of dates), average 

temperature from the days before and after were used for calculation.  The variables that 

were highly correlated to VWC and ECa were used as inputs for PCA.   

The resulting CVs and the categorical values, crop and tillage type, were then used 

in a multiple linear regression to predict VWC for the 12 sites from April to October and 

compared to the measured VWC.  VWC was then predicted for the entire field for all 

collection dates using the regression equation created with growing degree days (GDD), 

and kriged elevation, silt, clay, and ECa.    
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Chapter 3. Results 

Soil properties 

Predicted clay, silt, and bulk density distributions are shown in Fig. 4 a-c.  Seventy 

four percent of the field was classified as silty clay loam and 26% was silt loam.  The clay 

percentage ranged from 23 to 37%, with an average of 30%.  The lower half of the field had 

a relatively higher clay content compared to the upper portion of the field, with notably 

higher clay content on the southeast side.  Silt content was greatest on the upper northern 

half of the field and decreased on the lower half.  Silt ranged from 57 to 71% and averaged 

64% for all soil samples.  Bulk density (BD) was lowest on the upper half of the field and on 

the lower southwest side and ranged from 1.44 to 1.7 g/cm3, with an average of 1.61 g/cm3 

(Fig. 4c).  BD increased towards the East and midsection of the field, as did clay content.  

The upper portion of the field had the greatest silt content and lowest clay and BD.  The 

reverse was true for the lower half of the field, except for BD, which varied across the 

toeslope. 

Soil samples collected on May 8th and 24th of 2012 were analyzed to determine the 

impact of fertilizer application on pH and ECe.  The soil pH and ECe before and after 

fertilizer application did not differ significantly for the surface nor any other depth (paired 

t-test, α=0.05).  The average pH for all depths (maximum depth 55 cm) before and after 

fertilizer application was 4.98 and 4.84, respectively.  Specifically, the mean surface pH (0-5 

cm) for before and after fertilizer application was 4.51 and 4.53, respectively.  The average 

ECe for all depths (maximum depth of 55 cm) before and after fertilizer application was 
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0.34 and 0.40 mS/m, respectively.  At the surface, the mean ECe was 0.40 and 0.35 mS/m, 

respectively.  Due to the relative stability in soil pH and ECe over time with fertilizer 

application, they were not included as factors that influence transient ECa for this field in 

the PCA and linear regression discussed later.   

Agronomic Differences 

Kriged maps of ECa were used to compare agronomic practices (Figs. 5a-g and 6). 

Patterns of ECa among crops changed distinctly between the beginning and the end of the 

growing season (Fig. 6a).  Spring rains resulted in slight increases in ECa between April and 

June (Figs. 2 and 6a).  With precipitation for the growing season ending in July, ECa began 

to decrease.  From August through October, the ECa remained at a constant and relatively 

low value, with no precipitation during these dates (Figs. 2 and 6a).  These trends were 

consistent for all crops (Fig. 6a).  At the beginning of the crop season (May – July 2), spring 

pea (SP) (42 mS m-1) and spring barley (SB) (40 mS m-1) had greater average ECa compared 

to winter wheat (WW) (35 mS m-1). At the end of the season (Aug – Oct), SB (23 mS m-1) 

and WW (23 mS m-1) had lower average ECa values compared to that measured in SP (28 

mS m-1).  Between April 17th and June 17th, 2012 SP did not have significantly different ECa 

compared to SB (paired t-test, α=0.05).  WW ECa was about 17% less than SP and 12% less 

than SB from May 24th to July 19th and remained about 19% less than SP ECa for the 

majority of the rest of the season.  SB ECa became significantly less than SP ECa starting on 

July 11th and continued to be about 18% less for most of the season.  In the latter portion 

of the growing season, from July 30th to October 4th, 2012 WW and SB were not 
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significantly different.  On July 30th the ECa was not significantly different between the 

different crop sections.  Between May 24th and October 4th, 2012, ECa in WW, SB, and SP 

subplots decreased by 46%, 43%, and 36%, respectively.   

Chisel plow (CP) plots had between 6 and 12% less ECa than no-till (NT) plots for all 

collection dates (Fig. 6b).  From April to October, average ECa decreased by 12.3 mS m-1 for 

CP and 12.9 mS m-1 for NT. From May 24th to July 30th, average ECa decreased by 45% in NT 

plots and 48% in CP plots.  From August 19th to October 4th, 2012 neither the CP or NT plots 

significantly changed (Fig. 6b).  The difference in means between ECa in NT and CP plots 

ranged from 2.21 and 4.43 mS m-1, with NT maintaining greater ECa, with the beginning of 

the season having the largest difference.   

  Tillage had a stronger influence on ECa within SB and WW sections as compared to 

within SP sections (Fig. 7).  Between April and July SB NT maintained similar ECa to SP 

subplots.  SB CP had lower ECa values than did SB NT and was at about the same level of 

ECa as WW NT from May to July.  WW CP had the lowest ECa from May to July.  From 

August to October, SP NT and CP plots maintained the greatest ECa, followed by SB NT and 

WW NT, with SB CP and WW CP having similar relatively lower mean ECa.  SB NT had 

significantly greater average ECa on April 17th and July 11th, with all other dates having no 

significant difference between NT and CP SB subplots.  Barley NT averaged 32.9 mS m-1 

while SB CP averaged 28.6 mS m-1 from April to October.    WW NT had greater average ECa 

compared to WW CP subplots on June 10th, July 2nd, July 11th, July 19th, July 30th, August 

19th, and September 15th, 2012, with an average of 27.2 mS m-1 for CP and 30.4 mS m-1 for 
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NT.  SP NT and CP did not have different average ECa between subplots for any collection 

date, with an average of 34.2 mS m-1 and 33.1 mS m-1 across dates, respectively.     

Water Prediction 

The measured variables (MVs) of GDD, elevation, aspect, slope, TWI, ECa, VWC, BD, 

and sand, silt, and clay percent, were compared in a correlation matrix (Table 2).  Since the 

focus of this study was to use ECa to predict VWC, we focused on the variables correlated 

to these two variables.  ECa was highly correlated with many of the other variables, 

contrasting with VWC, which was only highly correlated to 3 of the MVs according to the 

correlation matrix.  The main variables that correlated with ECa were silt (r = -0.68, p = 

1.43x10-16), clay (-0.65, 6.2x10-15), elevation (-0.63, 1.1x10-13), VWC (0.60, 2.2x10-12), GDD (-

0.48, 9.9x10-8), BD (0.40, 1.4x10-5), and TWI (0.30, 1.5x10-3).  The main MVs that correlated 

with VWC were ECa (r = 0.60, p = 2.2x10-12), GDD (-0.59, 4.7x10-12), and elevation (-0.34, 

2.7x10-4).  Slope and aspect were not highly correlated with either ECa or VWC (slope: r = 

0.19, p = 0.02; r = -0.06, p = 0.56; aspect r = 0.19, p = 0.05; r = -0.12, p = 0.20, respectively). 

For the prediction of VWC using a Principal Component Analysis (PCA) the MVs ECa, 

GDD, elevation, silt, and clay content were used due to their correlation with VWC and ECa.    

In addition, the PCA was done repeatedly with all variables and compared with respect to 

the correlation coefficient when certain variables were excluded.  For example, silt and clay 

were part of the final PCA as their inclusion resulted in a greater correlation coefficient and 

therefore prediction of VWC.  ECa, GDD, elevation, silt, and clay content MVs were used in 

a PCA by creating the 3 CVs that account for 96% of the variability in the data (Table 3).  
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The CVs were new variables created using the combination of MVs, with the MVs becoming 

independent of each other.  The first CV, which accounted for the most variability in the 

data (65%) was highly based on several of the variables including, elevation, silt, clay, and 

ECa.  The second CV was highly influenced by GDD and accounted for an additional 24% of 

the variability in data.  The main contributor to the third CV was elevation and, to a lesser 

extent, clay content and accounted for another 6.5% of the variability, giving a total of 96% 

of the variability accounted for in the PCA. 

In order to predict spatiotemporal changes in VWC, we used a multiple linear 

regression using PCA transformations of MVs to condensed variables (CVs) (eigenvectors).    

The created CVs in combination with crop type were used to create a linear regression 

equation to predict VWC.  Including tillage type in this regression did not increase the 

predictability of VWC, as evident by no change in the correlation coefficient with its 

addition, and was not considered significant in the regression (p > 0.05) and was therefore 

not included.  A prediction model for VWC in a field with WW, SB, and/or SP gives the 

following regression equation (r = 0.89, p = 0.0) (Fig. 9):  

𝜃𝑣 = 24.90497 − 2.25225𝐶𝑉1 − 2.90325𝐶𝑉2 + 2.228952𝐶𝑉3 + 6.304125𝐵𝑉 + 9.951404𝑃𝑉 

where CVs represent the variables created by PCA using a combination of ECa, GDD, 

elevation, silt, and clay contents.  BV represents whether or not the field was planted with 

SB (1 for Barley, 0 for no), and PV represents whether or not the field had SP (1 for peas, 0 

for no). A 0 for both SB and SP indicates WW. 
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Predicted VWC from the regression equation was linearly correlated with measured 

VWC (Fig. 7) and was used to create spatial maps of VWC (Fig. 5 h-n). Predicted VWC 

distribution maps show many of the same visual horizontal lines as ECa, generally 

representing crop type (Figs. 3 and 5).  The lines are more abrupt due to the addition of a 

crop-specific input into the linear regression equation.  The overall distribution trends seen 

in the ECa maps are seen in the VWC maps.  For example, on April 17th, there is an increase 

in ECa towards the bottom of the field.  Specifically, there are two oblong shaped locations 

on the lower mid-section of the field with greater conductivity.  With a closer look at the 

predicted VWC map for April 17th, higher water content is seen in these locations as well.  

The predicted VWC of WW, seen as horizontal lines with lower predicted water, on the 

lower half of the field make it harder to see this trend.  Nonetheless, this area of increased 

water is maintained over the growing season, as it is in the ECa maps.  While the crop-

specific predictions make the horizontal lines more abrupt, they do correspond to the more 

gradual lines seen in the ECa distribution maps.  There was an abrupt decrease in ECa and 

VWC distribution beginning in July.  From August to October, a drier state is predicted to be 

maintained, but it does not stay as constant as the ECa distribution did and continues to 

decrease with time due to GDD in the regression equation (Figs. 2, 8, and 9).  The average 

predicted VWC for April 17th was 36.2%.  August 19th was predicted to have 27% VWC, a 

26% decrease from April 17th.  By October 4th, the predicted VWC was down to 24%, a 33% 

decrease from April 17th.  The average ECa decreased 34% between April 17th and August 

19th, 2012 with an average ECa of 37.1 mS m-1 and 24.5 mS m-1, respectively.  On the last 

ECa collection date, October 4th, 2012, the average ECa was also 24.5 mS m-1.   



22 
 

 

Predicted VWC showed distinct differences between crop plots.  While a trend can 

be seen with the NT having greater VWC than CP subplots of SB and WW, the differences 

were not considered significant (paired t-test, α=0.05).  The SP NT and CP subplots 

maintained 10 and 5% higher VWC than WW and SB, respectively, through the course of 

the entire season.  NT and CP SB also maintain about 5% more VWC compared to the WW 

NT and CP.   
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Chapter 4. Discussion 

Correlation of variables 

For this study, ECa was shown to be an important factor in the prediction of VWC (r 

= 0.60, p = 2.2x10-12) and having a larger impact than GDD, elevation, silt, clay, aspect, TWI, 

bulk density, or slope (r = -0.60, -0.34, -0.2, 0.18, -0.12, 0.12, 0.07, -0.06, respectively).  

Elevation was the main topographic feature that correlated with ECa (r = -0.63, p = 1.0x10-

13) and to a lesser extent VWC (r = -0.34, p = 2.7x10-4).  Ibrahim and Huggins (2011) found 

that topography was the main contributor and ECa the second most important variable in 

the prediction of soil water content on a site 25 miles northwest of the Kambitsch farm 

with similar soil types.  The Ibrahim and Huggins study consisted of two ECa data surveys, 

before barley planting and after barley harvest.  The addition of multiple surveys for this 

study may increase the correlation between ECa and VWC prediction as it would better 

capture changes in ECa and water content over time.  The low correlation between TWI and 

water and ECa found by this study was also found by Robinson, et al. (2012).  The 

combination of catchment area and slope was not enough to predict locations of water 

accumulation.  They concluded that TWI would likely be more useful with the incorporation 

of spatial soil texture.  This proved to be successful, as with our study, soil texture was the 

main correlated factor with ECa (clay: r = 0.65, p = 6.2x10-15; silt: r = -0.68, p = 1.4x10-16), 

contrasting to VWC which was not well correlated to soil texture (clay: r = 0.18, p = 0.06; 

silt: r= -0.20, p = 0.04).  Sand content was not correlated with ECa or VWC (r = -0.15, p = 

0.11; r = 0.01, p = 0.95, respectively).  Despite the lower correlation with VWC for the 
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entire growing season, soil texture was still an important variable in predicting water.  

Future use of ECa for prediction of water should continue to determine the correlation 

between different factors and soil water content.  Each site offers its own unique 

combination of topographic features and soil properties.   

Differences between crops and tillage 

Few studies have addressed using ECa as a comparison for crop rotations and the 

impact on the soil moisture despite the increased use of ECa as a non-invasive option for 

prediction of water content.  The large amount of data collected per each subplot (approx. 

283 per subplot per date) allowed for greater representation of that subplot when 

conducting data analysis.    Our data showed that this is especially important when 

analyzing data on a hillslope.  For this study the variation in soil properties, VWC, ECa, and 

topography features between east and west as well as north and south was apparent.  Had 

there been point scale data, these differences would not have been represented as well.   

The ECa crop comparison results showed SB to be closer to the higher ECa of SP from April 

to the beginning of July, when there were still occasional rain events.  On July 30th, the SP 

ECa did not match its ECa pattern of the rest of the season.  This is likely due to the growth 

stage of the peas and the difficulty of transporting the ECa through the tightly wound 

tendrils causing the EMI meter to be held at a greater distance from the ground.  Towards 

the end of the season, from August to October, during which the soil was drying out, SB 

was closer in ECa to WW, which consistently had lower ECa compared to SP.  Whether it 

remained a significant difference or not, SP maintained the highest ECa and WW the lowest 
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throughout the growing season.  This overall trend was mirrored by the VWC predictions, 

with SP retaining the highest amount of water, followed by SB, and WW with maintaining 

the lowest amount of water throughout the growing season.   

Since crop type was a factor in the multiple linear regression, the differences in 

predicted VWC between crops remained constant over the growing season.  The variability 

in ECa was much greater compared to the VWC predictions.  Following a linear regression, 

the predicted VWC of individual crops slowly decreased with time rather than matching the 

ECa temporal changes of more drastic decreases from June to July and remained static from 

August to October (Compare Figs. 8 and 9).  The percent change from April to October was 

not different between ECa and predicted VWC for WW, SB, and SP (41, 36, 25% and 41, 33, 

28%, respectively; paired t-test, α = 0.05).  Despite the non-linear ECa temporal changes 

contrasting with the linearly predicted VWC, ECa could be a useful tool for predicting water 

trends for different crops over time as overall changes between the beginning and end of 

the season were consistent between the two. 

NT and CP sections showed similar trends for the crop subplots in regards to ECa 

and VWC prediction maps.  NT had greater ECa and predicted VWC than CP for the entire 

season, but the difference was only significant for ECa (p < 0.05).  The multiple linear 

regression equation did not have tillage as a specified factor in the analysis, as it did not 

increase the correlation between measured and predicted VWC.  It is possible that PCA and 

regression analysis did not include tillage practices because the differences in ECa between 

crop types was so much greater than the differences for ECa between tillage practices, 

suggesting that vegetation has a much larger impact on stored soil water than tillage 
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practices.  It could also suggest NT and CP sections have similar rates of change in VWC 

over the growing season since they follow the same regression equation.  The differences 

between mean ECa of NT and CP plots increased notably during precipitation events (Fig. 2) 

(April to July) and decreased during the later portion of the summer (July to October).  The 

changes in differences between CP and NT was minimal and not apparent when looking at 

the VWC prediction (Fig. 9).  It is likely that over time minimal amounts of increased 

infiltration would cause larger differences between NT and CP (Williams, 2011).  Robertson 

(2010) compared NT and CP soil water content on the same field as this study and showed 

that it can take 9 years for NT to have greater water content compared to CP.  The plot 

design for Kambitsch farm was changed after the Robertson study was completed and 

became the current split plot design one year prior to this study.  It is suggested that the 

timeframe of NT conversion be taken into consideration when applying multiple linear 

regression for prediction of soil water content using ECa.  Farms that have been converted 

from CP or conventional tillage to NT may require different multiple linear regression 

equations with time in order to correct for any increased infiltration with NT crop land.   
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Chapter 5. Summary and Conclusions 

This study described how spatial and temporal ECa data can be used in combination 

with properties such as elevation, soil texture, crop type, and possibly tillage practices to 

predict water content over time in dryland agriculture.  For our study location, texture (silt 

and clay content), elevation, and volumetric water content were more correlated than 

aspect, topographic wetness index, slope, or bulk density was to apparent electrical 

conductivity, given by the EMI meter.  As clay and volumetric water content increased, so 

did apparent electrical conductivity.  In locations of lower silt content and elevation, 

apparent electrical conductivity measurements were greater.  Apparent electrical 

conductivity, growing degree days, elevation, and texture (silt and clay content) were the 

most important site-specific variables for prediction of soil water content.  Soil water 

content increased in areas with lower elevation and greater apparent electrical 

conductivity, and to a lesser extent greater silt content and lower clay content.   

The addition of crop type in a model is key to predicting soil water content.  We 

found that spring pea had the greatest retention of soil water at the end of the growing 

season, followed by spring barley and winter wheat.  The differences in soil water content 

between chisel plow and no-till sections were not as apparent.  Pea sections did not show a 

difference in water between tillage practices.  In addition, while winter wheat and spring 

barley sections consistently had greater soil water content, the differences were not 

significant.  The differences in water content between crop sections was ten times greater 

than the differences between no-till and chisel plow, causing the difference in crop type to 
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be dominant in the prediction of water.  The field had only been in its current crop rotation 

and tillage set-up for 1 year prior to this study.  Other studies with longer term no-till 

practices would be beneficial to further understand the dynamics between tillage practices 

and crop rotations on soil water distribution. 

The apparent electrical conductivity of crop subsections was more dynamic 

compared to water content.  Spring pea and spring barley subsections had similar apparent 

electrical conductivity until July.  After which, spring pea subsections maintained greater 

conductivity values for most of rest of the season.  Winter wheat subsections, starting with 

lower conductivity values, maintained the same conductivity as spring barley from July to 

October.  With apparent electrical conductivity changing between crop subsections over 

the course of the growing season, conductivity based water models would benefit from 

looking at temporal conductivity changes.  The water content and apparent electrical 

conductivity of the subsections had the same percent decrease between April and October, 

indicating the potential for apparent electrical conductivity to be able to predict water 

content changes for the growing season.  Future work should include the comparisons 

between apparent electrical conductivity and soil water content on an annual basis, to 

better evaluate their differences over time.   

Soil water content was able to be effectively predicted based on apparent electrical 

conductivity and site-specific variables.  Using electromagnetic induction-derived apparent 

electrical conductivity for soil water content prediction will be very useful for farmers that 

are interested in understanding how their specific location is being impacted by climate 

change as far as water distribution, depending on their crop type or rotation.  Specifically, 
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they could have a better understanding of the timing (length and duration) of spring soil 

moisture storage and when the soil moisture becomes depleted.  Volumetric water content 

prediction based on apparent electrical conductivity values could also be useful for 

researchers in the Palouse trying to understand the dynamics of climate change on water 

distribution spatially and temporally and how different agricultural practices are impacted 

by any changes.   
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Figure 1. The Palouse area shown with its location in Idaho and Washington.  Image from 
Ebbert and Roe, 1998.
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Figure 2. Temperature, precipitation, and growing degree days (GDD) plotted for the duration of the study.  EMI/Samples represents 
dates that field scale apparent electrical conductivity with an electromagnetic induction (EMI) measuring device and soil samples 
were collected.  EMI/Sample/Sensor represents dates that EMI, soil samples, and a soil moisture sensor were used to collect data.  
EMI/Sensor are dates that had data collection done using EMI and the soil moisture sensor.  EMI represents dates that only field-
scale EMI data was collected. 
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Figure 3. Bulk density (BD) and soil sampling sites with designated crop (spring barley (SB), 
spring pea (SP), and winter wheat (WW)) subplots and tillage plots (no till (NT) or chisel 
plow (CP)).  Bulk density sites represent where samples were collected for bulk density 
determination.  The samples sites marked are locations that soil samples and/or a soil 
moisture sensor were used to collect site specific data. 
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Figure 4. Predicted maps of (a – b) 43 clay and silt content (specified as fractions) samples to a depth of 100 cm and (c) 60 bulk 
density (BD) samples to a depth of 120 cm.  Predicted distribution of the topographic features (d – g) elevation, aspect, slope, and 
topographic wetness index (TWI). 
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Figure 5. Predicted maps of (a) – (g) apparent electrical conductivity (ECa) and (h) – (n) predicted volumetric water content (VWC) for 
the duration of the study. 
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Figure 6. (a) Mean ECa of winter wheat (WW), spring barley (SB), and spring pea (SP) 
subplots compared over the growing season. (b) Mean ECa for chisel plow (CP) and no till 
(NT) plots are compared.  Within date differences between crops or tillage practice are 
indicated by the lettering above columns (paired t-test, α < 0.05). 
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Figure 7. Predicted and measured volumetric water content (VWC) for the 12 sites from April to October, 2012 shown with the linear 
trendline and correlation coefficient (r). 
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Figure 8. Mean ECa of crop (winter wheat (WW), spring barley (SB), spring pea (SP)) and 
tillage (no till (NT), chisel plow (CP)) subplot combinations throughout the growing season.  
Significant differences between combinations are listed in Table 1. 

 

 

Figure 9. Predicted mean volumetric water content (VWC) for crop (winter wheat (WW), 
spring barley (SB), spring pea (SP)) and tillage (no till (NT), chisel plow (CP)) combinations.  
There were no significant differences between NT and CP for a specified crop and date. 
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Table 1. Summary statistics and variogram parameters for kriged variables (clay, silt, sand, 
bulk density (BD), and apparent electrical conductivity (ECa) with date collected). 

 

 

 

Table 2. A correlation matrix of growing degree days (GDD), elevation, aspect, slope, 
topographic wetness index (TWI), sand, silt, and clay content (as a fraction), electrical 
conductivity (ECa), bulk density (BD), and volumetric water content (VWC) is shown.  The 
values indicate the correlation coefficient (r) between two variables. 
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Table 3. The measured variables (MVs) and their corresponding influence on the 
Condensed Variable (CV).  The larger the absolute value, the greater the influence the MV 
has on that CV.  Above the MVs is the cumulative variance for each CV.  This represents the 
amount of variance in the data that is accounted for by the corresponding CV. 

 

 

 

 

Table 4. Mean average ECa (mS m-1) for winter wheat (WW), spring barley (SB), and spring 
pea (SP) chisel plow (CP) and no till (NT) subplots throughout the growing season are 
shown.  * indicates ECa of NT and CP of crop subplots on the specified dates were 
significantly different. 
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Appendix A. Site Locations with Crop and Tillage Type 
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Site x y Tillage Crop 

1 504079.80 5159316.00 No Barley 

2 504017.00 5159318.00 No Pea 

3 504040.90 5159363.00 No Wheat 

4 504088.40 5159370.00 No Wheat 

5 504008.10 5159378.00 Yes Pea 

6 504065.50 5159405.00 No Wheat 

7 504025.90 5159413.00 Yes Wheat 

8 504058.90 5159443.00 No Pea 

9 504015.90 5159453.00 Yes Pea 

10 504043.80 5159478.00 No Wheat 

11 504004.00 5159490.00 Yes Barley 

12 504067.60 5159506.00 Yes Pea 
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Appendix B. Data Inputted into Correlation Matrix and Principal Component 

Analysis 
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Day of 
Year 

GDD Site 
Elevation 

(m) 
Aspect Slope TWI Sand Silt Clay VWC 

ECa       

(mS m-1) 
BD            

(g cm-3) 

108 102.96 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 39.56 30.08 1.58 

108 102.96 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 47.27 28.21 1.58 

108 102.96 3 845.36 193.28 0.105 5.29 0.050 0.602 0.348 39.55 42.40 1.63 

108 102.96 4 844.24 128.31 0.116 6.32 0.046 0.582 0.371 42.64 40.32 1.69 

108 102.96 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 36.48 30.16 1.64 

108 102.96 6 848.27 167.47 0.058 6.13 0.058 0.613 0.329 42.85 32.62 1.72 

108 102.96 7 848.22 223.63 0.046 7.61 0.060 0.656 0.284 40.34 25.54 1.59 

108 102.96 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 37.66 20.94 1.62 

108 102.96 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 36.17 17.25 1.58 

108 102.96 10 854.79 173.49 0.115 5.67 0.049 0.653 0.298 33.85 24.69 1.55 

108 102.96 11 858.38 148.70 0.123 4.76 0.050 0.665 0.285 33.35 20.83 1.59 

108 102.96 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 36.78 15.42 1.54 

145 488.89 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 38.47 33.53 1.58 

145 488.89 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 43.87 31.90 1.58 

145 488.89 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 38.15 36.36 1.64 

145 488.89 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 40.14 24.26 1.62 

145 488.89 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 35.50 21.19 1.54 

162 677.68 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 38.14 33.16 1.58 

162 677.68 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 47.54 31.29 1.58 

162 677.68 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 37.93 34.38 1.64 

162 677.68 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 41.91 23.24 1.62 

162 677.68 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 33.87 20.02 1.58 

162 677.68 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 36.87 19.10 1.54 

169 776.25 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 37.65 34.63 1.58 

169 776.25 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 38.38 32.83 1.58 

169 776.25 3 845.36 193.28 0.105 5.29 0.050 0.602 0.348 28.68 37.47 1.63 

169 776.25 4 844.24 128.31 0.116 6.32 0.046 0.582 0.371 33.41 37.67 1.69 

169 776.25 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 37.31 37.42 1.64 

169 776.25 6 848.27 167.47 0.058 6.13 0.058 0.613 0.329 27.81 32.38 1.72 

169 776.25 7 848.22 223.63 0.046 7.61 0.060 0.656 0.284 17.48 22.94 1.59 

169 776.25 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 36.70 25.16 1.62 

169 776.25 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 32.60 20.50 1.58 

169 776.25 10 854.79 173.49 0.115 5.67 0.049 0.653 0.298 25.14 26.86 1.55 

169 776.25 11 858.38 148.70 0.123 4.76 0.050 0.665 0.285 34.75 26.17 1.59 

169 776.25 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 33.13 21.88 1.54 

184 1005.16 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 35.82 33.98 1.58 

184 1005.16 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 35.62 31.75 1.58 

184 1005.16 3 845.36 193.28 0.105 5.29 0.050 0.602 0.348 27.17 33.18 1.63 

184 1005.16 4 844.24 128.31 0.116 6.32 0.046 0.582 0.371 33.00 33.44 1.69 

184 1005.16 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 37.83 31.61 1.64 

184 1005.16 6 848.27 167.47 0.058 6.13 0.058 0.613 0.329 28.49 28.37 1.72 

184 1005.16 7 848.22 223.63 0.046 7.61 0.060 0.656 0.284 18.12 22.10 1.59 

184 1005.16 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 34.81 21.44 1.62 

184 1005.16 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 32.21 18.18 1.58 

184 1005.16 10 854.79 173.49 0.115 5.67 0.049 0.653 0.298 25.35 16.41 1.55 

184 1005.16 11 858.38 148.70 0.123 4.76 0.050 0.665 0.285 32.02 14.90 1.59 

184 1005.16 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 32.67 16.75 1.54 

193 1178.45 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 30.92 23.13 1.58 
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193 1178.45 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 34.07 24.63 1.58 

193 1178.45 3 845.36 193.28 0.105 5.29 0.050 0.602 0.348 24.97 25.78 1.63 

193 1178.45 4 844.24 128.31 0.116 6.32 0.046 0.582 0.371 32.07 26.39 1.69 

193 1178.45 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 37.11 29.79 1.64 

193 1178.45 6 848.27 167.47 0.058 6.13 0.058 0.613 0.329 25.73 23.40 1.72 

193 1178.45 7 848.22 223.63 0.046 7.61 0.060 0.656 0.284 17.19 17.30 1.59 

193 1178.45 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 32.97 15.12 1.62 

193 1178.45 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 30.89 14.89 1.58 

193 1178.45 10 854.79 173.49 0.115 5.67 0.049 0.653 0.298 24.75 18.51 1.55 

193 1178.45 11 858.38 148.70 0.123 4.76 0.050 0.665 0.285 27.84 17.65 1.59 

193 1178.45 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 32.42 19.37 1.54 

201 1348.79 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 29.15 23.32 1.58 

201 1348.79 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 32.08 25.12 1.58 

201 1348.79 3 845.36 193.28 0.105 5.29 0.050 0.602 0.348 23.16 24.42 1.63 

201 1348.79 4 844.24 128.31 0.116 6.32 0.046 0.582 0.371 31.14 25.68 1.69 

201 1348.79 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 35.75 28.75 1.64 

201 1348.79 6 848.27 167.47 0.058 6.13 0.058 0.613 0.329 22.53 21.49 1.72 

201 1348.79 7 848.22 223.63 0.046 7.61 0.060 0.656 0.284 19.05 17.13 1.59 

201 1348.79 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 31.15 17.62 1.62 

201 1348.79 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 29.37 17.41 1.58 

201 1348.79 10 854.79 173.49 0.115 5.67 0.049 0.653 0.298 24.18 18.09 1.55 

201 1348.79 11 858.38 148.70 0.123 4.76 0.050 0.665 0.285 25.30 16.74 1.59 

201 1348.79 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 30.57 18.16 1.54 

212 1555.15 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 28.43 17.78 1.58 

212 1555.15 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 31.59 21.16 1.58 

212 1555.15 3 845.36 193.28 0.105 5.29 0.050 0.602 0.348 24.26 23.56 1.63 

212 1555.15 4 844.24 128.31 0.116 6.32 0.046 0.582 0.371 30.81 26.43 1.69 

212 1555.15 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 34.68 23.37 1.64 

212 1555.15 6 848.27 167.47 0.058 6.13 0.058 0.613 0.329 24.77 18.84 1.72 

212 1555.15 7 848.22 223.63 0.046 7.61 0.060 0.656 0.284 20.90 12.28 1.59 

212 1555.15 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 29.14 10.70 1.62 

212 1555.15 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 27.79 10.33 1.58 

212 1555.15 10 854.79 173.49 0.115 5.67 0.049 0.653 0.298 23.41 15.78 1.55 

212 1555.15 11 858.38 148.70 0.123 4.76 0.050 0.665 0.285 23.89 10.80 1.59 

212 1555.15 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 26.63 7.80 1.54 

232 1994.90 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 28.94 19.21 1.58 

232 1994.90 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 31.65 25.69 1.58 

232 1994.90 3 845.36 193.28 0.105 5.29 0.050 0.602 0.348 24.79 23.13 1.63 

232 1994.90 4 844.24 128.31 0.116 6.32 0.046 0.582 0.371 30.58 25.80 1.69 

232 1994.90 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 34.72 23.01 1.64 

232 1994.90 6 848.27 167.47 0.058 6.13 0.058 0.613 0.329 22.84 17.70 1.72 

232 1994.90 7 848.22 223.63 0.046 7.61 0.060 0.656 0.284 18.20 12.94 1.59 

232 1994.90 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 27.19 15.60 1.62 

232 1994.90 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 24.53 15.25 1.58 

232 1994.90 10 854.79 173.49 0.115 5.67 0.049 0.653 0.298 24.66 15.71 1.55 

232 1994.90 11 858.38 148.70 0.123 4.76 0.050 0.665 0.285 23.68 13.04 1.59 

232 1994.90 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 23.61 14.91 1.54 

239 2126.00 1 839.39 158.64 0.087 6.61 0.048 0.624 0.328 28.17 20.69 1.58 

239 2126.00 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 31.66 26.81 1.58 

239 2126.00 3 845.36 193.28 0.105 5.29 0.050 0.602 0.348 23.88 24.12 1.63 

239 2126.00 4 844.24 128.31 0.116 6.32 0.046 0.582 0.371 30.33 23.41 1.69 
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239 2126.00 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 34.46 27.13 1.64 

239 2126.00 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 27.28 15.20 1.62 

239 2126.00 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 24.37 14.85 1.58 

239 2126.00 11 858.38 148.70 0.123 4.76 0.050 0.665 0.285 23.90 12.33 1.59 

239 2126.00 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 23.75 14.85 1.54 

278 2738.33 2 840.60 153.84 0.050 7.74 0.052 0.614 0.334 32.00 26.53 1.58 

278 2738.33 3 845.36 193.28 0.105 5.29 0.050 0.602 0.348 24.71 23.86 1.63 

278 2738.33 4 844.24 128.31 0.116 6.32 0.046 0.582 0.371 29.75 23.42 1.69 

278 2738.33 5 845.55 214.37 0.099 5.60 0.063 0.626 0.311 33.43 26.86 1.64 

278 2738.33 8 850.72 173.14 0.095 6.09 0.056 0.657 0.287 26.81 14.55 1.62 

278 2738.33 9 852.18 169.71 0.135 5.88 0.058 0.679 0.263 24.51 14.18 1.58 

278 2738.33 11 858.38 148.70 0.123 4.76 0.050 0.665 0.285 22.88 11.81 1.59 

278 2738.33 12 855.13 102.43 0.097 3.73 0.057 0.679 0.264 23.56 14.01 1.54 
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Appendix C. Weather Data 
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Day of year GDD Average Temperature (⁰C) Max Temperature (⁰C) Min Temperature (⁰C) 

92 3.2155 2.557 6.118 0.313 

93 7.337 3.88 8.63 -0.387 

94 15.409 6.475 15.76 0.384 

95 15.7745 0.167 3.942 -3.211 

96 15.871 -0.032 3.37 -3.177 

97 17.7985 0.671 5.485 -1.63 

98 21.165 2.916 9.87 -3.137 

99 29.2585 7.59 16.14 0.047 

100 40.1495 10.82 17.64 4.142 

101 53.6015 12.18 20.45 6.454 

102 63.6705 9.56 16.13 4.008 

103 70.6565 6.362 12.68 1.292 

104 77.399 6.346 12.36 1.125 

105 84.455 7.85 13.06 1.052 

106 91.7655 7.06 11.92 2.701 

107 96.697 5.542 7.9 1.963 

108 102.9575 6.527 11.84 0.681 

109 109.6575 6.162 10.67 2.73 

110 116.139 7.94 12.41 0.553 

111 127.254 11.25 13.32 8.91 

112 140.2725 13.07 19.48 6.557 

113 157.3275 16.93 26.51 7.6 

114 175.1975 18.54 25.16 10.58 

115 190.6475 15.72 20.69 10.21 

116 205.6775 14.92 22.13 7.93 

117 213.4225 8.45 12.12 3.37 

118 218.8185 4.973 9.1 1.692 

119 224.668 6.742 10.54 1.159 

120 234.3265 9.64 16.81 2.507 

121 243.0085 8.99 13.26 4.104 

122 247.952 4.763 8.33 1.557 

123 253.1905 4.606 10.77 -0.293 

124 260.937 6.375 12.52 2.973 

125 266.117 5.635 7.96 2.4 

126 271.4835 4.954 9.27 1.463 

127 278.44 7.41 14.53 -0.617 

128 288.2915 10.9 18.51 1.193 

129 301.9315 14.76 23 4.28 

130 311.0565 10.55 14.31 3.94 

131 315.8295 5.203 10.37 -0.824 

132 322.509 7.8 15.22 -1.861 

133 333.4535 11.85 20.12 1.769 

134 348.3475 15.93 25.57 4.218 

135 367.0775 19.58 28.35 9.11 

136 385.7825 19.35 26.48 10.93 

137 402.0875 16.38 20.99 11.62 

138 413.495 12.03 16.09 6.725 

139 422.6275 9.5 14.76 3.505 

140 433.3485 11.5 18.51 2.932 

141 448.0885 14.52 21.15 8.33 
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142 462.6535 13.23 19.12 10.01 

143 471.489 8.82 12.22 5.451 

144 479.8855 7.59 12.42 4.373 

145 488.886 8.47 14.53 3.471 

146 498.8635 10.34 15.71 4.245 

147 509.1235 10.74 15.2 5.32 

148 520.301 10.47 16.37 5.985 

149 532.428 12.41 19.38 4.874 

150 542.617 10.06 14.46 5.918 

151 554.967 12.31 17.67 7.03 

152 566.937 12.78 16.48 7.46 

153 584.642 17.52 24 11.41 

159 653.0885 9.07 15.74 2.064 

160 661.1055 7.78 12.32 3.714 

161 666.5045 6.348 8.43 2.368 

162 677.6825 10.15 16.07 6.286 

163 692.2395 15 22.49 6.624 

164 707.3145 15.89 21.82 8.33 

165 720.7395 13.52 17.84 9.01 

166 733.0185 13.3 19.14 5.418 

167 745.447 13.4 19.44 5.417 

168 760.355 16.15 24.23 5.586 

169 776.25 17.19 21.35 10.44 

170 786.8755 11.13 14.7 6.551 

171 796.878 10.16 15.26 4.745 

172 809.593 14.34 22.33 3.1 

173 829.623 20.35 29.08 10.98 

174 846.623 17.54 22.86 11.14 

175 862.533 14.69 21.31 10.51 

176 877.408 14.76 20.04 9.71 

177 893.423 15.88 22.02 10.01 

178 903.1465 9.36 13.56 5.887 

179 915.3565 13.05 20.14 4.28 

180 932.8865 17.76 26.93 8.13 

181 951.0565 18.25 23.62 12.72 

182 970.6715 17.97 26.3 12.93 

183 986.9365 16.56 21.52 11.01 

184 1005.1615 18.33 25.73 10.72 

185 1017.3235 14.07 17.87 6.454 

186 1030.019 13.5 21.55 3.841 

187 1044.71 16.54 23.09 6.292 

188 1063.55 19.54 29.21 8.47 

189 1086.32 23.33 32.38 13.16 

190 1110.385 24.94 33.86 14.27 

191 1133.39 23.2 28.83 17.18 

192 1156.135 22.89 29.28 16.21 

193 1178.445 23.26 29.68 14.94 

194 1202.24 23.52 32.72 14.87 

195 1224.025 21.3 27.83 15.74 

196 1244.2 20.19 25.08 15.27 

197 1263.545 19.57 25.64 13.05 
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198 1282.135 17.55 26.23 10.95 

199 1304.02 20.49 29.31 14.46 

200 1325.335 21.61 28.13 14.5 

201 1348.79 23.64 32.48 14.43 

202 1369.585 19.8 27.56 14.03 

203 1386.855 17.92 24.69 9.85 

204 1407.07 20.06 28.57 11.86 

205 1421.305 14.33 20.91 7.56 

206 1437.3025 16.98 25.03 6.965 

207 1456.1375 19.89 29.14 8.53 

208 1477.6075 21.28 29.98 12.96 

209 1498.2725 21.65 28.54 12.79 

210 1516.6425 18.79 26.47 10.27 

211 1534.7375 20.1 28.5 7.69 

212 1555.1525 20.28 27.84 12.99 

213 1573.8725 19.47 27.73 9.71 

214 1592.3925 20.03 28.61 8.43 

215 1610.4525 18.68 25.64 10.48 

216 1628.6425 18.73 26.21 10.17 

217 1649.3925 21.34 30.99 10.51 

218 1673.2575 24.3 34.36 13.37 

219 1696.9475 23.86 32.59 14.79 

220 1722.7675 25.96 35.67 15.97 

221 1745.0975 23.42 30.29 14.37 

222 1766.8475 21.98 32.55 10.95 

224 1811.871 22.25 31.59 12.2 

225 1835.416 23.92 33.99 13.1 

226 1858.996 24.08 33.89 13.27 

227 1881.531 23.65 31.75 13.32 

228 1903.806 22.04 30.02 14.53 

229 1924.576 21.11 29.41 12.13 

230 1945.766 22.75 32.33 10.05 

231 1970.151 24.16 34.7 14.07 

232 1994.901 25.39 34.33 15.17 

233 2019.211 24.33 33.02 15.6 

234 2042.136 22.52 29.34 16.51 

235 2059.306 17.19 24.16 10.18 

236 2074.5135 16.42 23.49 6.925 

237 2088.2785 13.5 20.04 7.49 

238 2104.504 16.75 27.37 5.081 

239 2126.004 20.85 31.32 11.68 

240 2144.409 18.99 26.36 10.45 

241 2161.914 18.37 26.21 8.8 

242 2176.884 14.91 20.71 9.23 

243 2193.177 16.56 25.86 6.726 

244 2211.252 18.04 25.83 10.32 

245 2225.892 15.05 20.88 8.4 

246 2240.472 14.52 22.63 6.53 

247 2256.3175 15.99 25.06 6.631 

248 2273.4825 17.24 24.49 9.84 

249 2290.6525 17.65 26.67 7.67 
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250 2306.3675 15.57 23.06 8.37 

251 2324.2125 17.69 27.09 8.6 

252 2344.3075 20.51 31.45 8.74 

253 2363.8225 20.36 26.81 12.22 

254 2376.2745 12.33 19.15 5.754 

255 2385.1475 9.54 16.56 1.186 

256 2396.2505 11.74 20.51 1.696 

257 2412.1425 15.59 26.4 5.384 

258 2431.2975 18.32 28.81 9.5 

259 2450.8375 19.49 27.5 11.58 

260 2467.5675 17.13 24.93 8.53 

261 2483.8975 16.6 24.72 7.94 

262 2501.8675 17.74 27.23 8.71 

263 2520.3425 17.67 27.14 9.81 

264 2539.6125 18.58 29.03 9.51 

265 2559.3225 18.78 29.04 10.38 

266 2577.0625 16.92 26.37 9.11 

267 2591.4575 14.11 18.98 9.81 

268 2606.8775 15.24 22.81 8.03 

269 2621.7725 14.9 21.07 8.72 

270 2635.7585 13.65 22.42 5.552 

271 2651.5535 15.35 24.56 7.03 

272 2668.5985 16.45 24.75 9.34 

273 2685.8685 16.73 23.82 10.72 

274 2699.98 14.89 21.71 6.513 

275 2715.2845 15.03 24.09 6.519 

276 2725.6015 13.3 19.65 0.984 

277 2731.7115 5.699 13.65 -1.43 

278 2738.325 5.788 13.51 -0.283 

 


