

Online Dynamic Parameter Estimation of Synchronous Machines

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Electrical Engineering

in the

College of Graduate Studies

University of Idaho

by

Michael R. West

Major Professor: Brian Johnson, Ph.D.

Committee Members: Herbert Hess, Ph.D.; Michael Santora, Ph.D.

Department Administrator: Mohsen Guizani, Ph.D.

August 2016

ii

Authorization to Submit Thesis

This thesis of Michael West, submitted for the degree of Master of Science with a major in Electrical

Engineering and titled “Online Dynamic Parameter Estimation of Synchronous Machines,” has been

reviewed in final form. Permission, as indicated by the signatures and dates below, is now granted to

submit final copies to the College of Graduate Studies for approval.

Major Professor: _________________________________ Date:___________

 Brian Johnson, Ph.D., P.E.

Committee Members: _________________________________ Date:___________

Herbert Hess, Ph.D., P.E.

 __________________________________ Date: __________

 Michael Santora, Ph.D.

Department Administrator: __________________________________ Date: __________

Mohsen Guizani, Ph.D

iii

Abstract

Traditionally, synchronous machine parameters are determined through an offline characterization

procedure. The IEEE 115 standard suggests a variety of mechanical and electrical tests to capture the

parameters appropriate for representing the fundamental characteristics and behaviors of a given

machine. These characteristics and behaviors can be used to develop and understand machine models

that accurately reflect the machine’s performance. To perform such tests the machine is required to be

removed from service.

Characterizing a machine offline can result in economic losses due to down time and labor costs. Such

losses may be mitigated by implementing online characterization procedures. Historically, different

approaches have been taken to develop methods of calculating a machine’s electrical characteristic,

without removing the machine from service. Data from a machine’s response to external inputs when

combined with a numerical algorithm can be used to determine that machine’s characteristics. This

thesis explores such characterization methods and strives to compare results from the IEEE 115

standard for offline characterization with an iterative least squares approximation implemented on a 20

horsepower synchronous machine. This least squares estimation method shows encouraging results for

steady-state parameters in comparison with steady-state parameters obtained through the IEEE 115

standard testing.

iv

Acknowledgements

To my professors, committee members, and advisors, Dr. Brian Johnson, Dr. Herb Hess, and Dr.

Michael Santora, at the University of Idaho, Thank you for providing me with both extensive

knowledge in the field of Electrical Engineering and for this amazing research opportunity. Special

thanks to Dr. Normann Fischer and Schweitzer Engineering Laboratories for sponsoring this work as

well.

v

Dedication

This work is dedicated to my fiancé, Sibel Briggs, for her unwavering support and encouragement

towards me. To my parents, Shawn and Leslie, for their steadfast love and positivity towards me. To

my brothers, Isaac and Matt, for pushing me to my limits and being my biggest role models, and to my

friends who have walked with me throughout my graduate studies. Without them, I would have never

had the privilege of being where I am now.

vi

Table of Contents

Authorization to Submit Thesis ... ii

Abstract ... iii

Acknowledgements ... iv

Dedication ...v

Table of Contents .. vi

Figures .. viii

Tables .. xi

Acronyms ... xii

Nomenclature .. xiii

1. Introduction ...1

1.1 Background and Motivation ..1

1.2 Objectives ..2

2. Literature Review ..4

2.1 Offline Characterization ..4

2.2 Online Characterization ...10

2.2.9 Conclusion ..18

3. Laboratory Synchronous Machine Description ...19

4. State-Space Synchronous Machine Model ..25

4.1 7th Order Model Derivation ...26

4.2 The 3rd Order Model ..35

file://///faraday/home/michwest/Normann/Final%20Folder/Michael%20West%20Masters%20Thesis%2008052016.docx%23_Toc458155599

vii

4.3 MATLAB Implementation of State-Space Model ...36

5. Offline Characterization Procedures ..45

5.1 Full Load Test ..45

5.2 Open Circuit Saturation Curve ..46

5.3 Short Circuit Saturation Curve ..47

5.4 Three-Phase Bolted Fault ..49

5.5 Conclusion ...77

6. Online Characterization ...79

6.1 Least Squares Approximation Algorithm Derivation ..79

6.2 Least Squares Approximation Algorithm Results ...83

7 Conclusion ...98

8 Future Work ...101

References...103

Appendix – MATLAB Code ..106

7th Order Synchronous Machine Model ...106

Least Squares Estimation Implemented with 7th Order Synchronous Machine Model110

3rd Order Synchronous Machine Model ...120

Least Squares Estimation Implemented with 3rd Order Synchronous Machine Model124

viii

Figures

Figure 1: High Level Representation of Combined Models .. 3

Figure 2: Slip Test Simulation Model.. 6

Figure 3: Slip Test Simulation Results .. 7

Figure 4: Least Squares Estimator Algorithm [9] .. 11

Figure 5: Kalman filter general flow diagram [10] .. 12

Figure 6: Motor/Generator Set (Left: Induction Machine, Right: Synchronous Machine) 20

Figure 7: Synchronous Machine Tap Wall .. 20

Figure 8: ABB ASC550 Variable Frequency Drive .. 21

Figure 9: BEI Sensors Synchronous Machine Encoder Housing .. 22

Figure 10: University of Idaho Model Power System ... 23

Figure 11: University of Idaho Synchronous Machine Laboratory Setup ... 24

Figure 12: Synchronous Machine DQ Reference Frame [18] ... 26

Figure 13: Synchronous Machine Quadrature Axis Generator Model Equivalent Circuit [18] 27

Figure 14: Synchronous Machine Direct Axis Generator Model Equivalent Circuit [18] 28

Figure 15: Synchronous Machine Zero-Sequence Generator Model Equivalent Circuit [18]............... 28

Figure 16: Cut-Out Depiction of a Synchronous Machine [20] .. 29

Figure 17: SIMULINK Model of a Synchronous Machine in Open-Circuit Conditions 39

Figure 18: Q axis voltage, current and flux linkage from SIMULINK and MATLAB simulation results

- Open Circuit Conditions .. 40

Figure 19: D axis voltage, current and flux linkage from SIMULINK and MATLAB simulation results

- Open Circuit Conditions .. 40

Figure 20: SIMULINK and MATLAB Field Current - Open Circuit Conditions 41

Figure 21: Q axis voltage, current and flux linkage from SIMULINK and MATLAB simulation results

- Loaded Conditions .. 42

ix

Figure 22: D axis voltage, current and flux linkage from SIMULINK and MATLAB simulation results

- Loaded Conditions .. 43

Figure 23: SIMULINK and MATLAB Field Current - Loaded Conditions.. 43

Figure 24: Steady State Voltage and Current .. 46

Figure 25: Open Circuit Test Diagram .. 47

Figure 26: Short Circuit Test Diagram .. 48

Figure 27: Open Circuit and Short Circuit Saturation Curves ... 49

Figure 28: Test 1 Oscillography of raw data captured ... 51

Figure 29: Test 1 voltage and current FFT .. 52

Figure 30: Magnitude response of the lowpass butterworth filter used to remove high frequencies 53

Figure 31: Magnitude response of the lowpass butterworth filter and MATLAB "filtfilt" function 54

Figure 32: Test 1 comparison of filtered and raw data .. 54

Figure 33: Test 1 filtered output data ... 55

Figure 34: Test 1 dq0 representation of phase voltages and currents (raw data) 56

Figure 35: Test 1 dq0 representation of filtered phase voltages and currents (filtered data) 57

Figure 36: Envelope of Test 1 Short Circuit Current ... 58

Figure 37: Semilog x-axis plot of first cycles of the short circuit ... 59

Figure 38: Subtransient portion of Envelope ... 61

Figure 39: Test 2 Oscillography of raw data captured ... 63

Figure 40: Test 2 voltage and current FFT .. 64

Figure 41: Test 2 filtered output data ... 65

Figure 42: Test 2 dq0 representation of phase voltages and currents (raw data) 66

Figure 43: Test 2 dq0 representation of filtered phase voltages and currents (filtered data) 66

Figure 44: Test 3 Oscillography of raw data captured ... 68

Figure 45: Test 3 voltage and current FFT .. 69

Figure 46: Test 3 filtered output data ... 70

x

Figure 47: Test 3 dq0 representation of phase voltages and currents (raw data) 71

Figure 48: Test 3 dq0 representation of filtered phase voltages and currents (filtered data) 72

Figure 49: Test 4 Oscillography of raw data captured ... 73

Figure 50: Test 4 voltage and current FFT .. 74

Figure 51: Test 4 filtered output data ... 75

Figure 52: Test 4 dq0 representation of phase voltages and currents (raw data) 76

Figure 53: Test 4 dq0 representation of filtered phase voltages and currents (filtered data) 76

Figure 54: Least Squares Estimation Algorithm Flow Diagram ... 83

Figure 55: Least squares estimation results with +20% initial guess error .. 85

Figure 56: Least squares estimation results with +40% initial guess error .. 87

Figure 57: Least squares estimation results with -20% initial guess error for 3rd order model 88

Figure 58: Lmd Calculated Based on Rated Open-Circuit Conditions .. 90

Figure 59: Least squares estimation results with -20% initial guess error on Lmq and Llk and Lmd

known .. 91

Figure 60: LSE test on laboratory machine under steady-state, balanced conditions 92

Figure 61: Least squares estimation results with +20% initial guess error - 7th order model 93

Figure 62: Least squares estimation results with +40% initial guess error - 7th order model 94

Figure 63: Least squares estimation results with +200% initial guess error and a gain of 0.75 - 7th

order model .. 97

Figure 64: High Level Representation of Combined Models .. 99

xi

Tables

Table 1: Offline characterization tests and parameters to be determined .. 5

Table 2: Calculated reactances from slip test simulation ... 8

Table 3: Synchronous Machine Nameplate Ratings .. 19

Table 4: Synchronous Machine Input Parameters ... 38

Table 5: Steady-State Test Measured Data .. 45

Table 6: Three-phase bolted fault prefault conditions measured at machine terminals 50

Table 7: Per Unit Base Calculations .. 50

Table 8: Machine Parameters Determined from Offline Testing .. 78

Table 9: LSE Results starting with +20% Error in "Guessed" Parameters – 3rd order model 86

Table 10: LSE Results starting with +40% Error in "Guessed" Parameters – 3rd order model 88

Table 11: LSE Results starting with +20% Error in "Guessed" Parameters – 7th order model 94

Table 12: LSE Results starting with +40% Error in "Guessed" Parameters – 7th order model 95

Table 13: LSE Results starting with +60% Error in "Guessed" Parameters, gain set to 0.35 – 7th order

model ... 95

Table 14: LSE Results starting with +60% Error in "Guessed" Parameters, gain set to 0.55 – 7th order

model ... 96

Table 15: LSE Results starting with +60% Error in "Guessed" Parameters, gain set to 0.55 – 7th order

model ... 96

xii

Acronyms

DLG – Double-line-to-ground fault

hp = horsepower

IEEE – Institute of Electrical and Electronics Engineers

LL – Line-to-line fault

LSE – Least Square Estimation

NERC – North American Electric Reliability Corporation

RMS – Root-Mean-Square

SLG – Single-line-to-ground fault

Std. – Standard

UI – University of Idaho

VFD – Variable Frequency Drive

3PH – Three-phase fault

xiii

Nomenclature

Voltages

 voltagefield
fd

V

 voltageRMS sequence zero
0

V

 voltageRMS axis quadrature
q

V

 voltageRMS axisdirect
d

V

 voltageRMS ground-to-line C Phase
C

V

 voltageRMS ground-to-line B Phase
B

V

 voltageRMS ground-to-lineA Phase
A

V

Currents

current field -
fd

I

current RMS sequence zero - 0I

current RMS axis quadrature - qI

current RMS axisdirect -
d

I

current RMS C Phase - CI

current RMS B Phase - BI

current RMSA Phase - AI

Magnetic Flux

flux magnetic field -
fd

ψ

2 dingdamper winflux magnetic mutual axis quadrature -
kq2

ψ

1 dingdamper winflux magnetic mutual axis quadrature -
kq1

ψ

flux magnetic mutual axisdirect -
kd

ψ

flux magnetic sequence zero - 0ψ

flux magnetic axis quadrature - qψ

flux magnetic axisdirect -
d

ψ

xiv

Flux Linkage

linkageflux magnetic field -
fd
λ

linkage 2 dingdamper winflux magnetic mutual axis quadrature -
kq2
λ

linkage 1 dingdamper winflux magnetic mutual axis quadrature -
kq1
λ

linkage dingdamper win linkageflux magnetic mutual axisdirect -
kd
λ

linkageflux magnetic sequence zero - 0λ

linkageflux magnetic axis quadrature - qλ

linkageflux magnetic axisdirect -
d
λ

Inductances

inductance leakage field
lfd

L

inductance dingdamper win axisdirect -
kd

L

inductance 2 dingdamper win axis quadrature -
 kq2

L

inductance 1 dingdamper win axis quadrature -
kq1

L

inductance self axis quadrature -
q

L

inductance self axisdirect -
 d

L

inductance mutual axis quadrature -
mq

L

inductance mutual axisdirect -
md

L

inductance leakagestator
ls

L

Resistances

resistance windingfield
fd

r

 resistance dingdamper win axisdirect -
kd

r

resistance 2 dingdamper win axis quadrature -
kq2

r

resistance 1 dingdamper win axis quadrature
 kq1

r

resistancestator -
 s

r

xv

Reactances

kd
L

basekd
X

kq2
L

basekq2
X

kq1
L

basekq1
X

q
L

baseq
X

d
L

based
X

mq
L

basemq
X

md
L

basemd
X

ls
L

basels
X

For values and equations shown throughout this document, let superscript “r” denote rotor reference

frame, and superscript prime (`) denote rotor quantity referred to the stator. For more information on

this conversion, see Chapter 3.2. Also, let subscript “n” indicate nominal (base) value, and subscript

“pu” indicate per-unit values. It is also important to note that, in this thesis, any errors less than 5% are

considered to be acceptable.

1

1. Introduction

In the early 1900s, synchronous machines were first developed and also started to become

documented. As these devices become more and more accepted, a mathematical model known as the

“Park’s model” was developed in 1929 [1]. This model defined one of the most practical methods of

modeling a machine under ideal conditions, and gave way to much more research in this area,

resulting in widely accepted models for steady-state and dynamic simulation [2-6].

1.1 Background and Motivation

Parameter estimation of synchronous machines is central to accurately understanding machines in the

field, and in turn, understanding their dynamic response of power systems to disturbances. Generally,

manufacturers provide customers with necessary machine parameters in order to accurately model the

machine’s behaviors. As these machines age, daily “wear and tear,” and non-critical system faults

cause such parameters to drift, requiring owners to remove their machine from the system and

characterize and update their model. Following the IEEE 115-2009 standard, traditional methods of

characterization require the machine to be taken offline, resulting in economic losses [7].

This research focuses on characterizing synchronous machines by using the dynamic response created

from system faults, large changes in loading, or step changes to machine excitation. Modern

technological advances have allowed for online parameter estimation to become a reasonable, viable

option for power industry application. Online estimation practices are favored by system operation

engineers for providing the ability to characterize synchronous machines without shutting down plant

operations, and have been studied by researchers since the 1970’s [8, 9].

2

1.2 Objectives

The objectives of this research are:

 Understand numerical methods for accurately determining machine model parameters based

on a synchronous machine’s steady-state and dynamic output data

 Create a mathematical model of a synchronous machine

 Set up a laboratory synchronous machine for testing

 Determine parameters of lab machine using IEEE std. 115-2009.

 Develop a systematic approach to apply an online machine characterization technique

 Validate parameter estimation with simulation, apply the selected numerical algorithm to the

lab machine.

The contents of this thesis are broken down into 8 chapters. In Chapter 2, several historical

methodologies of synchronous machine online dynamic parameterization are reviewed. This review

provides the necessary conceptual background information, as well as introduces different approaches

that have been used in the past. Next, Chapter 3 presents a description of the synchronous machine

under investigation, as well as sets up the lab machine. Chapter 4 discusses synchronous machine

modeling. In Chapter 5, results of several offline characterization tests using methods described in

IEEE Std. 115-2009 are calculated to provide a baseline for comparison of online parameter estimates.

In Chapter 6, an algorithm for online characterization is derived and implemented using MATLAB.

Parameter estimation results are compared with a simulated machine and then tested against the lab

machine. In Chapter 7, conclusions are drawn and complications are discussed. Lastly, future work

needed to continue this investigation is discussed in Chapter 8.

Ultimately, this project aims to implement a system for both offline and online estimation, and

compare them using a live synchronous generator. The process is shown in Figure 1.

3

Figure 1: High Level Representation of Combined Models

It is important to note that this thesis focuses on several offline characterization tests, as well as an

online characterization algorithm, but does not reach the point of comparing a complete validated

offline model with a complete online model as shown in Figure 1, which represents one of the future

goals of the project that supported this work. However, testing of the online characterization algorithm

is attempted using real data captured from a synchronous machine.

4

2. Literature Review

Over time, general operation, external/non-catastrophic faults, and system disturbances tend to change

a machine’s characteristics. In order to satisfy the Western Electricity Coordinating Council (WECC)

requirements to maintain safe and reliable operations, regularly updated machine characteristics are

obtained to accurately maintain, monitor, and understand machine behaviors. Capturing these

characteristics requires de-energizing the machine and conducting electrical tests that may take several

days of labor. Both labor and machine downtime can result in significant economic losses. In addition,

many generator owners don’t have local expertise to perform offline characterization tests and instead

hire consultants. Establishment of methodologies for calculating machine parameters without

removing a machine from service has potential to mitigate these economic losses. These techniques

are referred to as “Online Characterization Methods.” The following sections capture literature on both

offline and online characterization techniques and are broken down accordingly.

2.1 Offline Characterization

Offline characterization methodologies (also known as white-box methods) for establishing

synchronous machine parameters have been well established for many years. The Institute of

Electronic and Electrical Engineers (IEEE) released the first standard for such practices in the early

1940s and the methods have been built upon ever since. The most recently updated version of this

standard was approved in 2009 and provides extensive documentation on reliable tests and

calculations to establish both dynamic and steady-state parameter approximations [7].

The offline characterization techniques documented in this thesis follow the IEEE 115-2009 standard,

and were used to develop a base line system model comparable to that of a machine owner’s model,

and to provide a basis for comparison to online techniques. Table 1 presents a few of the

recommended tests for generator owners to perform in order to create or update a reliable, accurate

model of their machine. Several of these tests are described and implemented on the University of

5

Idaho (UI) lab machine. For more detailed descriptions of tests associated with this standard, see [7].

Note that these tests in Table 1 are used to determine only some of the electrical characteristics. The

IEEE 115-2009 standard also includes tests for mechanical properties that may be required, but are

outside the scope of this thesis.

Table 1: Offline characterization tests and parameters to be determined with each test

Test Parameters To Be Found

Open Circuit Test Open Circuit Saturation Curve

Short Circuit Test Short Circuit Saturation Curve

Slip Test
qsX , quX , dsX

Applied Negative Sequence

Current

2X , 2R

Series Circuit
0X , 0R

Sudden Short Circuit
dX , dX , d , d

2.1.1 Open/Short Circuit Test

The open circuit and short circuit tests are the two most common tests performed. In order to perform

the open circuit test, the rotor is operating at rated speed, and the field current is incrementally

increased while open-circuit terminal voltages are measured. To perform the short circuit test, the rotor

is operating at rated speed, and the field current is incrementally increased while short-circuit armature

current is measured.

Open and short circuit test results can be used to determine the saturation characteristics of the

machine, along with the direct axis synchronous reactance. In addition, the IEEE 115 standard states

that in normal machine designs, the direct axis synchronous reactance is mostly equal to the direct axis

6

synchronous impedance. In other words, resistances can generally be ignored. This test will be

expanded on and demonstrated in Chapter 3.

2.1.2 Slip Test

To perform the slip test, the rotor operates at a speed slightly different from synchronous speed with

the field open-circuited. A three-phase, rated-frequency, positive-sequence power source at a voltage

below the point on the open-circuit saturation curve where the curve deviates from the air-gap line is

applied to the armature terminals. Measurements of armature current, armature voltage, and the

voltage across the open-circuit field winding are recorded. The standard suggests using oscillography

if possible. However, in the event that meters are used, a zero-center dc voltmeter should be used for

field voltage measurements [7]. Figure 2 shows a SIMULINK model for simulation of the slip test. A

large parallel resistance is used in this simulation to avoid numerical instability problems in the

simulation, but it does not affect the test because it does not consume significant current.

Figure 2: Slip Test Simulation Model

7

By following the steps discussed in the IEEE 115 Standard for the slip test, the waveforms in Figure 3

were plotted from a Simulink simulation and values for the quadrature axis synchronous reactance,

unsaturated quadrature axis synchronous reactance, and a particular saturated direct axis synchronous

reactance can be determined.

Figure 3: Slip Test Simulation Results

As defined by the IEEE 115-2009 standard, the following equations can be used to calculate the

parameters listed in Table 1.

max

min

I

E
qsX (1)

min

max

I

E
dsX (2)

dsX

qsX
duXquX (3)

8

In eq. (1) and eq. (2), minE indicates the minimum voltage peak, maxE is the maximum voltage peak,

minI is the minimum stator current peak, and maxI is the maximum stator current peak. The

minimum voltage and maximum current occur when the field voltage is at a maximum, while the

maximum voltage and minimum current occurs when the field voltage is at a minimum. The direct

axis unsaturated reactance, duX , was calculated earlier using the open and short circuit tests. Table 2

displays parameters calculated from the waveforms shown in Figure 3.

Table 2: Calculated reactances from slip test simulation

qsX [pu] 1.7493

dsX [pu] 1.9444

quX [pu] 0.9003

Error quX 7.8524%

A discrete time-step of 1E-6 seconds was selected for the simulation. The error is calculated by using

the known unsaturated reactance as entered in the machine model (set to 0.977pu in this case). This

demonstrates the slip test method, although the results are dependent upon the open circuit and short

circuit saturation curves. Note that the standard suggests using field voltage waveform instead of field

current (as field circuit is supposed to be open). Due to limitations in the simulation platform, the field

circuit cannot be truly open-circuited. However, both field current and voltage are assumed to be in

phase, thus the peak and zero crossing time stamp values of the current waveform are acceptable, but

may be the source of the significant errors from the simulation of the slip test.

2.1.2 Applied Negative Sequence Current

To perform the applied negative sequence current test, the machine is operated at rated speed with its

field winding short circuited and negative sequence set of phase currents injected into the stator of the

9

machine. Determining negative-sequence reactance necessitates the negative sequence phase currents

applied be equal to the rated current of the machine. IEEE Std. 115-2009 recommends performing two

or more tests with current values above and below rated current to allow for interpolation [7].

2.1.3 Series Circuit

To perform the series circuit test, the windings of the three phases are connected in series and an

external single-phase AC voltage is applied across the windings. Voltage and current measurements

should be taken, if possible, for several values of current up to rated current or slightly higher. If the

zero-sequence resistance is to be determined or if the resistance correction is to be applied, readings of

power input should also be taken. Armature winding temperature will affect the zero-sequence

resistance. In order to accurately measure resistance, the temperature should be measured for several

higher current values [7].

2.1.4 Sudden Short Circuit Test

Sudden short circuit tests require more detail and equipment than the slip, negative sequence current,

and series circuit tests. Care should be taken when performing such a test to ensure safety of both

personnel and equipment. Oscillography of the terminal voltages and currents should be taken. To

perform the sudden short circuit test, the machine is driven at rated speed, no load, and open circuited.

A bolted 3 phase fault is applied to the terminals of the windings. To initiate the short circuit on two or

more phases, a switch that shorts all phases approximately simultaneously is required to avoid

introducing errors in the other phases of the machine [7].

An alternative to this method is to apply a sudden step change in field voltage while the machine is

short circuited [10]. Doing so will provide the necessary dynamic response on the output of the

machine in order to determine transient and subtransient characteristics.

10

2.2 Online Characterization

Online parameter estimation research first began as early as the 1970’s as researchers began

addressing shortcomings with offline measurement techniques [8]. Since then, research has been

conducted and corresponding publications have significantly contributed to this concept. This section

focuses on a non-comprehensive list of methods to provide insight on the history of this research and

is intended to provide background information on historical techniques. Different types of numerical

approaches have been made to accurately capture machine parameters from the machine’s dynamic

response. These methods are described as either “black-box” or “gray-box” models.

Black box models can be used to simply map the machine output data to a set of input data using

either a single transfer function or cascading set of transfer functions. This method has the

disadvantage that the internal parameters remain unknown as the data gets mapped, eliminating this as

an option for most utility applications. Gray box models use numerical approximation methods to

calculate the parameters to be entered into a given machine model.

For this thesis, the least squares estimation algorithm has been selected as the gray box model to

compute the machine parameters. In 1977, an IEEE transactions article was published by C.C. Lee and

T.T. Owen that was the first to use this approach [9].

2.2.1 Least Squares Estimation

The least squares estimation method, first used by C.C. Lee, was performed on a small, salient-pole

machine. The algorithm Lee used is visually represented and shown in Figure 4. The equations

mentioned in the boxes in the figure are described below.

11

Figure 4: Least Squares Estimator Algorithm [9]

00)(

)()(

xtx

uBxAx

 (4)

xCy)((5)

In the state space equation in Eq. (4), is a 1 by N vector, where N is the dimension of all

synchronous machine electrical parameters to be identified. These parameters can include subtransient,

transient, and steady-state reactances, time constants, and resistances. Eq. (5) through Eq. (9) show the

equations defined by Lee required to implement the least squares estimation algorithm.

)(
)()(

)(
)(

00

000

x
Cx

C
ysim

 (6)

0,)(

)(
)(

)(
))(()(

0

00

0

00

00

t
x

d

u
dB

x
Ax

C
x

d

 (7)

 dtyyR

y
dt

y
R

y
r

T

a

t

t

a

T

a

t

t

ff

)(()()ˆ()()(00 0

0

00

0

 (8)

kkk kG ˆ)(ˆˆ 1
 (9)

12

By applying this method to a fifth order synchronous machine model structure, Lee was able to

successfully converge to acceptable ratios of estimated to true values in less than 15 iterations, thus

proving its capability [9]. This approach and its equations are selected for study in this thesis and will

be expanded upon in Chapter 6.

2.2.2 Kalman Filtering

In a 1981 paper, Kalman filtering was used to create a pseudo black box model estimate of a

synchronous machine connected to a local power system. Figure 5 shows the flow diagram as

described in [10].

Figure 5: Kalman filter general flow diagram [10]

13

In the general flow diagram shown in Figure 5, kU represents the input vector, kX and kY represent

the state vector and an observation vector respectively, 1kH represent a state transition matrix, ,k

represents the iteration number, and kC represents an observation matrix. These are used to solve for

the approximated state vector and the parameter vector 11
ˆ,ˆ
 kk PZ respectively.

The publication used the Park’s two axis model and only considered transient parameters due to

limited subtransient behaviors in the machine used. Disturbances were introduced by using line

switching and changes in controller settings. This method showed fairly reliable results in measured

currents and output power comparisons [10].

2.2.3 Subset Selection

In 1999, Michael Burth discusses some solutions to ill-conditioning in machine parameter estimation

calculations using the Least squares estimation for nonlinear parameters [11]. In his publication, a

subset selection scheme is used to partition ill-conditioned, measured model parameters into well-

conditioned parameters. Using the subset selection and reduced-order estimation algorithm, iterative

estimations fixed parameters associated with ill-conditioned directions of a Hessian matrix. The

Hessian Matrix)(H is described as a series of second partial derivatives of the least squares

minimization error criterion V .

)()(
))((

)(
)()()()(

1

 JJ

r
rJJH

N

n

n
n

 (10)

Where

 yyr ˆ

(11)

Vminargˆ (12)

14

N

n

nrrV
1

22
)(

2

1

2

1

(13)

)(
)(

r
J (14)

Residual vector r represents the difference between the N-dimension vector model predictions for

the measurements (ŷ) and the N-dimension vector of measurements (y) where () represents the

n-dimension vector of model parameters. The approximation of)(H is used for small residuals and

is the Hessian matrix used [11].

2.2.4 Large Disturbance Method

Also in 1999, an online parameterization technique was published that was based on using large

disturbance testing data and the extended LSE method. A dynamic response was acquired by applying

a step change in the machine’s excitation reference voltage. Using the extended LSE method,

nonlinear parameters are approximated for various operating conditions. Sub-models are then created

across the varying operating conditions and compared with large transient responses [12].

2.2.5 Volterra Series

In 2005, a method known as the Volterra series method was applied for synchronous generator model

identification. A Volterra series generalizes Taylor series expansion and convolution integrals for a

given nonlinear system. The algorithm used is described as follows:

a) Select input signal (covers all dynamics)

b) Select sampling time and experiment time

c) Apply input signal, sample input-output data

d) Select kernels (n) and terms N in the orthogonal series (lower order preferred for

modeling)

15

e) Select orthogonal functions to be used in the following equation

)()...()(...),...(2

0 0 0

1...1 nkm

N

n

N

m

N

k

nknm
N

nn aLimh

 (15)

f) Apply input to subsystems, solve for)(tus

kkkss dttu)()()((16)

g) Form the following regression equation

t

k

tt euy (17)

h) Minimize the performance index J by solving for the unknown coefficients
T using

the least squares method.

t

teJ
2 (18)

i) Calculate the output using the coefficients identified, compare with measured values

ty

̂ˆ T

tt uy (19)

Results shown in this publication used data collected from a seventh order nonlinear synchronous

generator model and with small perturbation introduced in the field voltage. Walsh functions were

selected for the orthogonal functions. This method produced acceptable errors for a range of machine

operation scenarios [13].

2.2.6 Linear H∞ Infinity Method

A linear H∞ based method for machine parameter estimation was published in 2007 [14]. This

approach was a black-box algorithm used with a pseudo random binary sequence signal applied to the

field voltage, similar to the large disturbance method described above. By measuring power output,

16

terminal voltage, and field voltage, the identification method was used on a seventh order machine

model. The algorithm is described as follows:

a) Select an appropriate input signal that will provide a wide range of system dynamics

(publication used field voltage)

b) Select sampling time and final time

c) Apply input signal and sample both input and output data

d) Select model order (n) to be used in the following:

kkk

k

m

i

ki

n

i

kik

vzy

cubzaz

 0
1

1

1

1

 (20)

e) Select appropriate value for the disturbance rejection factor through trial and error

(smallest possible value such that the following conditions are met in order to

guarantee convergence):

0

0~~~~~
111

2

1

Q

gCQgI kkkkkk
 (21)

f) Using Least Squares Approximation, find initial seed for model parameters),(ii ba

of vector 0 in:

],...,...,...[111 nnn

t

k vvbbaa

(22)

g) Establish state space matrices A, B, C0(θ0), and D

h) Update

Simulation results demonstrate a successful model for the machine under test. The publication

suggested using this model for system analysis and controller design and did not include saturation

characteristics in the model, but introduced a method on doing so in the appendix of the paper [14].

17

2.2.7 Wiener-Neural Model

Also in 2007, another black-box method known as the Wiener-Neural Model was presented at the

International Conference on Intelligent and Advanced Systems [15]. In that publication, a simulated

synchronous machine model was connected to an infinite bus through a transmission line. Field

voltage was used as the input, active output power; terminal voltage and current were selected as

output signals. The step function field voltage with noise was used to provide a rich, dynamic range of

output characteristics. The following steps list the algorithm used for this method

1. Select wide spectrum input signal to be applied. Magnitude should be large enough to cover

nonlinearities, but small enough to be avoid machine damage

2. Select sampling time and final time (total experiment time)

3. Apply input signal to system and sample input-output data using a DAQ

4. Select the number of neural layers and Wiener model degree for best modeling

5. Use Weiner-Neural Model to calculate approximated outputs

This method showed acceptable errors for modeling a synchronous machine from online information

[15].

2.2.8 Normalized Least Squares and Newton Raphson Iteration

In 2008, a gray-box method was proposed for a 3rd order model and derived [16]. This model ignored

stator dynamic effects and damper windings. In this method, the normalized least squares

identification method was used to define a multivariable linear transfer function in a Heffron-Philips

composition. Physical parameters of the machine were then determined using Newton-Raphson

iterations. This experiment was set up and compared with a motor-generator set manufacturer data

18

and show errors of no more than 5%. Field voltage was the only input considered in this method,

outputs included the electrical power and terminal voltage [16].

2.2.9 Conclusion

In conclusion, there are many different numerical algorithms that have been developed for machine

parameter estimation. In this thesis, the method of least squares estimation is used because many of the

more accurate and complex approaches build on this algorithm. These approaches use the least squares

estimation, in conjunction with other algorithms or filters, to further refine and make parameter

estimation more reliable. The least squares estimation algorithm will be tested on both a 3rd order and

a 7th order machine model. In other words, there are either 3 or 7 coupled state-space equations used to

simulate the behaviors of a synchronous generator. It is important to define these models as 3 or 7

cross coupled differential equations, not as having a 3rd or 7th order derivative. These models are built

and tested under ideal conditions and do not consider saturation, noise, or a more “realistic” external

system connected to them. In addition, the models are assumed to be operating at constant, nominal

speed.

The most important values for the least squares approximation method are the stator voltage outputs,

the field voltage input, and the rotor speed. Using this data, the least squares approximation method

can be used to iteratively calculate the machine parameters. Once these parameters are found, the

algorithm will update the machine model and compare the results the measured outputs from a

separate machine simulation or a real machine. From here, a constructive understanding of advantages

or limitations to this method can be determined.

19

3. Laboratory Synchronous Machine Description

Maintenance on machines may require that physical components of the device be replaced entirely,

causing significantly changes in the electrical characteristics. This necessitates characterization of a

given machine using traditional offline techniques. Following the IEEE Std. 115-2009, a base case of

parameters can be created to compare with the online techniques. A lab scale synchronous machine at

the University of Idaho provides access to studying both offline and online characterizations.

Nameplate ratings of the machine under investigation are shown in Table 3.

Table 3: Synchronous Machine Nameplate Ratings

Synchronous Machine (100% Loading, 24 Hrs, 40 °C Rise)

20 H.P. 1200 RPM

220 Volts 80% power factor

46 Ampere 6.00 Excitation Amps

3 Phase 125 Excitation Volts

60 Hz 3 Pole Pairs

The synchronous machine provided by the University of Idaho is mechanically coupled to a 20hp

induction motor and is controlled using an ABB ACS550 variable frequency drive (VFD). The

coupled machines are shown in Figure 6.

20

Figure 6: Motor/Generator Set (Left: Induction Machine, Right: Synchronous Machine)

The outputs of the synchronous machine are fed to a tap wall, which allows access to the machine’s

stator terminals, field terminals, and neutral point. This configuration allows for easy connection in

both “Wye” (Y) and “Delta” () configurations, and also allows access to internal winding taps for

creating internal faults. However, the work documented in this thesis focuses on response to external

behavior only. The tap wall can be seen in Figure 7.

Figure 7: Synchronous Machine Tap Wall

The induction machine is driven by a programmable ABB ASC550 variable frequency drive. This

drive comes standard with a digital front panel and analog/digital IO ports for external control. A

built-in setup procedure is followed to input induction machine nameplate machine information,

protection settings, acceleration/deceleration time constants, speed set-points. The drive uses the

21

induction machine nameplate ratings as input data for an internal machine model that is used to

determine and display information such as the rotor frequency, speed, and other important parameters.

Figure 8 displays an image of the VFD. For this work, the VFD is used to control the speed of the

generator by using the induction machine as the prime mover.

Figure 8: ABB ASC550 Variable Frequency Drive

The VFD is also equipped with an internal fieldbus module. Using Modbus communications, this

fieldbus may be connected to external devices which can feed data back to the VFD for control. An

external fieldbus may be purchased separately if different communications protocols are required.

The synchronous machine also has an encoder attached to the rotor shaft. This encoder can output

information about the rotor, including rotor frequency. With the VFD set to “Vector Speed Mode”,

and using the encoder’s data as a feedback loop, the drive can automatically modulate the frequency to

maintain constant, set-point speed with approximate accuracy of 0.1%, as described by ABB technical

support. The encoder connected to the machine under test is shown in Figure 9. The encoder is

manufactured by BEI Sensors, and communicates using a Synchronous Serial Interface (SSI).

22

Figure 9: BEI Sensors Synchronous Machine Encoder Housing

According to ABB, this particular single turn encoder is not supported by the ASC550 VFD, as the

embedded and external fieldbus options do not support the SSI communications protocol. However,

the VFD does have an internal machine model, which can closely model the rotor speed, based on the

stator frequency and slip of the prime mover (in this case, the induction machine). Since the encoder

is not directly supported by the drive, and the encoder is not yet fully operational to provide necessary

data, it is assumed that the rotor speed operates at constant 377 rad/s (60 Hz) for the testing in Chapter

6. In reality, this is not necessarily true and will impact accuracy of test results that rely on precise

rotor speed measurement. This was first noticed when testing the VFD.

By setting the VFD to operate the prime mover at a constant 60Hz, the generator output frequency was

observed to be slightly less than synchronous speed. This is due to the inherent slip of the induction

machine. However, the ABB ASC550 VFD has a slip compensation ratio that can be increased or

decreased in order to account for this effect. The terminal voltages of the synchronous machine were

connected to a SEL 411L relay and the output frequency was measured. By increasing the slip

compensation ratio in the VFD, the frequency of the ABB drive was matched to the output frequency

of the machine. This brute force process was used to make sure that the synchronous machine operates

at precisely 60Hz during testing. Synchronous speed can also be verified using a strobe light, however,

having measured rotor speed data greatly increases the accuracy of a synchronous machine model.

23

The generator stator output can also be fed into the University’s model power system, which was

originally designed to test protection systems such as relays, and which is able to simulate faults such

as 3-phase and single-line-to-ground faults. The model power system includes current transformers,

voltage transformers, SEL relays, and breakers. This system is designed with the capability to vary

line and source parameters, and with the ability to create three phase faults, line-to-line faults, double-

line-to-ground faults, and single-line-to-ground faults. Oscillography of the synchronous machine’s

behaviors can be captured and then used to study the synchronous machine’s dynamic behaviors under

external fault conditions. A one-line diagram of this system and the equipment available for use is

show in Figure 10. The breaker status’ shown in Figure 10 were used for testing in this thesis.

Figure 10: University of Idaho Model Power System

The model power system is comprised of a quasi-infinite bus from the building’s power supply.

Variable source impedances, and four transmission lines with variable impedance can be configured in

series or in parallel. Loads may be connected to different sections of the system, and fault can be

initiated at multiple locations, indicated for example by the points “0%,” “FA,” “FB,” and “FC” in the

figure. This system is rated for 208 V LL and operates at 60 Hz. Four breakers are also available and

can be controlled via SEL-351S, SEL 411L or SEL-421 relays.

24

To mimic the transformer connection of a real generator, the synchronous machine is connected to a

208:208 delta-wye transformer. In this configuration, the terminals of the machine are connected to the

delta connected transformer primary, while the terminals of the transformer secondary are connected

to the model power system in a wye configuration. By connecting the synchronous machine and

transformer to the model power system, and disconnecting the building power supply, fault tests can

be conducted almost directly on the terminals of the machine.

The configuration shown above is only one of many different connections that can be made. For

example, the synchronous machine may also be connected to “Bus R” and synchronized with the

infinite bus through one or both of the available transmission lines. Doing so provides the opportunity

to more realistically imitate the dynamic responses of a generator connected to a power system. A

visual block diagram representation of the laboratory test setup is shown in Figure 11.

Figure 11: University of Idaho Synchronous Machine Laboratory Setup

25

4. State-Space Synchronous Machine Model

To model machine characteristics for parameter estimation, both 3rd and 7th order, state space model

representations are used. These models are both implemented in the rotor referenced rotating dq

reference frame. The 3rd order model is a simplified version of the 7th order model and does not

consider the direct and quadrature axis damper windings, nor does it consider the zero sequence circuit

equation. The 7th order does include the direct and quadrature axis damper windings, and the zero

sequence equation. The models are built and validated using MATLAB [19], a popular tool used for

computational analysis. In this chapter, the 3rd and 7th order synchronous machine models are defined.

To begin, a frame of reference must first be established in order to provide context for the state-space

equations. The rotor reference frame selected to model the synchronous machine in this thesis, which

is shown in Figure 12. This is based on the machine description in [18]. The particular model shown

in Figure 12 has two quadrature axis damper windings, and one direct axis damper winding. The direct

axis is lagging the quadrature axis by 90 degrees, and the quadrature axis is referenced to the A-phase

voltage.

26

Figure 12: Synchronous Machine DQ Reference Frame [18]

Using this reference frame makes simulations much simpler to develop, which can be done using the

Park’s transformation matrix to a synchronous rotational reference frame. In turn the machine voltage,

current and flux data can be viewed from the rotor. The mathematical representation of this model will

be described later in this chapter.

4.1 7th Order Model Derivation

The circuits shown in Figures 13-15 can be used to model the synchronous machine as a generator

through the Park’s transformation. This generator reference is defined by the direction of the currents

flowing out of the d and q axis of the machine, thus implying generation. The complete circuit

diagrams in Figure 13, Figure 14, and Figure 15 are used in the 7th order model. The 3rd order model is

viewed by ignoring the damper winding circuits (kq1 and kq2 in Figure 13, and kd in Figure 14), as

well as the zero sequence circuit in Figure 15.

27

Figure 13: Synchronous Machine Quadrature Axis Generator Model Equivalent Circuit [18]

In Figure 13, the q-axis damper windings are shown with voltage V`r
kq1 and V`r

kq2. These damper bars

create opposing electromagnetic forces on the machine when non-fundamental frequency or

unbalanced currents are applied , resulting in damping of smaller transients or dynamic load changes

that may cause the rotor of the machine to move out of synchronous speed. Note that in reality, the

damper bars in a synchronous machine are shorted together, thus the terminal voltages can be assumed

to be 0 at all times. In addition, not all machines have 2 sets of q-axis damper bars.

28

Figure 14: Synchronous Machine Direct Axis Generator Model Equivalent Circuit [18]

The same can be said about the d-axis modeled damper bars in Figure 14. Because the bars on the

physical machine are shorted together, thus the voltage is assumed to be 0 at all times. However, the d-

axis circuit also shows how the excitation system couples into the d-axis voltage.

Figure 15: Synchronous Machine Zero-Sequence Generator Model Equivalent Circuit [18]

A cut-out cross-sectional representation of a synchronous machine is shown in Figure 16. The diagram

shows the physical locations of the parameters discussed in this thesis. The “gear” shaped rotor defines

the machine as a “salient pole” machine. A set of damper bars can be seen on the stator of the machine

and the field windings are located on the rotor.

29

Figure 16: Cut-Out Depiction of a Synchronous Machine [20]

Representing machine in the Park’s rotor reference frame creates the model described in the circuits in

Figures 13-15. In order to convert ABC voltages and currents from the stationary ABC reference

frame to the rotating dq0 reference frame, Eq. (23) – Eq. (25) are used.

2

1

2

1

2

1

)
3

*2
*sin()

3

*2
*sin()*sin(

)
3

*2
*cos()

3

*2
*cos()*cos(

*
3

2

ttt

ttt

K rrr

rrr

 (23)

ABCdq VKV *0
(24)

ABCdq IKI *0 (25)

As a reminder, quantities shown in Figure 13-Figure 15 circuit drawings which have a superscript ‘

denote rotor quantities referred to the stator. Eq. (26) - Eq. (28) show how these values can be referred

to the stator based on the turns ratio or nominal field and stator currents.

30

Sn

fn

f

S

I

I

N

N

3

2
 (26)

where Snfn II and represent the nominal field and stator currents respectively, and Sf N and N

represent the number of field and stator winding turns respectively. Using the turns ratio above, rotor

quantities can be referred to the stator.

fd

f

S

fd V
N

N
V (27)

f

S

f

fd I
N

N
I

3

2

 (28)

fd

S

f

fd R
N

N
R

2

2

3

 (29)

lfd

S

f

lfd L
N

N
L

2

2

3

 (30)

As shown, some values are multiplied by 2/3, others are multiplied by 1.5. These inverse ratios are

because only two axes are while in the Parks reference frame, (d and q) but there are three stator

windings. The voltage equations in equations (31)-(37) and flux linkage equations (38)-(44) are

derived from the circuits shown in Figure 13-Figure 15 [18].

qsdsrqssqs irV (31)

dsqsrdssds irV (32)

fdfdsfd irV (33)

31

ssss irV 000 (34)

kdkdkdkd irV (35)

1111 kqkqkqkq irV (36)

 2222 kqkqkqkq irV (37)

Note that indicates the time derivative,
dt

d
. Expressions for flux linkages are defined as follows

[18].

)(21 kqkqqsmqqslsqs iiiLiL (38)

)(kdfddsmddslsds iiiLiL (39)

)(kdfddsmdfdlfdfd iiiLiL (40)

slss iL 00 (41)

)(kdfddsmdkdlkdkd iiiLiL (42)

)(21111 kqkqqsmqkqlkqkq iiiLiL (43)

)(21222 kqkqqsmqkqlkqkq iiiLiL (44)

Expressing equations (31)-(44) using reactances instead of inductances results in updated voltage

equations (45)-(51) and (52)-(58)-

32

qsdsrqssqs irV (45)

dsqsrdssds irV (46)

fdfdsfd irV (47)

ssss irV 000 (48)

kdkdkdkd irV (49)

1111 kqkqkqkq irV (50)

 2222 kqkqkqkq irV (51)

Using reactances instead of inductance requires re-defining the expressions for flux linkages to flux

linkages per second, resulting in the following expressions.

)(21 kqkqqsmqqslsqs iiiXiX (52)

)(kdfddsmddslsds iiiXiX (53)

)(kdfddsmdfdlfdfd iiiXiX (54)

slss iX 00 (55)

)(kdfddsmdkdlkdkd iiiXiX (56)

)(21111 kqkqqsmqkqlkqkq iiiXiX (57)

33

)(21222 kqkqqsmqkqlkqkq iiiXiX (58)

Re-arranging the reactance based voltage equations in (45)-51), a system of state-space equations that

describe the flux linkages and are dependent upon input voltages can be solved. In order to do so,

several new quantities to further simplify the equations must be defined [18].

2

2

1

1

lkq

kq

lkq

kq

ls

qs

aqmq
XXX

X

 (59)

lkd

kd

lfd

fd

ls

ds
admd

XXX
X

 (60)

where

1

21

1111

lkqlkqlsmq

aq
XXXX

X
 (61)

1

1

1111

lkdlfdlsmd

ad
XXXX

X
 (62)

mq represents the q-axis mutual flux linkage, md represents the d-axis mutual flux linkage. In

addition, aqX and adX are the respective q-axis and d-axis Thevenin equivalent reactances.

Now, the state-space integral equations for flux linkages can be introduced in Eq. (63) – Eq. (69). Eq

(52) – Eq. (58) are used to solve for currents. This allows for simulation of the flux linkages and

currents based solely on input voltages and rotor speed. Re-arranging the flux linkage equations to

34

solve for each variable associated with the time derivative through integration, the following can be

stated.

 dtirV qssdsrqsqs (63)

 dtirV dssqsrdsds (64)

 dtire

X

r
fdfdxfd

md

fd

fd (65)

 dtirV ssss 000 (66)

 dtirV kdkdkdkd (67)

 dtirV kqkqkqkq
1111 (68)

 dtirV kqkqkqkq
2222 (69)

The integral Eq. (63) – Eq. (69) results can then be used to calculate the branch currents in the

machine circuits.

 mqqs

ls

qs
X

i
1

 (70)

 mdds

ls

ds
X

i
1

 (71)

35

 mdfd

lfd

fd
X

i

1

 (72)

 s

ls

s
X

i 00

1

 (73)

 mdkd

lkd

kd
X

i

1

 (74)

 mqkq

lkq

kq
X

i

1

1

1

1
 (75)

 mqkq

lkq

kq
X

i

2

2

2

1
 (76)

4.2 The 3rd Order Model

Following the same procedure as shown in Section 4.2, a 3rd order model can be developed. This

model is derived in the same fashion, but ignores the damper windings and zero sequence equations.

Eq. (77) – Eq. (86) show the equations used for this model.

 dtirV qssdsrqsqs (77)

 dtirV dssqsrdsds (78)

 dtire

X

r
fdfdxfd

md

fd

fd (79)

Where

36

 mqqs

ls

qs
X

i
1

 (80)

 mdds

ls

ds
X

i
1

 (81)

 mdfd

lfd

fd
X

i

1

 (82)

and

lsX

qs
aqXmq

 (83)

lfdX

fd

lsX

ds
adXmd

 (84)

1
11

lsXmqX
aqX (85)

1
111

lfdXlsXmdX
adX (86)

4.3 MATLAB Implementation of State-Space Model

In order to use the least squares estimation method selected for online characterization in this thesis, a

state-space model of the machine must first be developed. Equation (87) shows the general form of the

state-space model required for the LSE method.

00 xtx

uBxAx

)(

)()(
 (87)

37

In this case,)(A is an N×N matrix representing either the 3rd or 7th order coupled differential

equations for synchronous machine flux linkages. The vector x represents a N×1 matrix of the current

state of the flux linkages; u represents a N×1 vector of inputs to the machine. In this case, these inputs

are defined as the d-axis and q-axis terminal voltages, as well as the field voltage. In Eq. (87),)(B is

a mapping matrix relating the inputs u. For the 7th order model, N is 7. For the 3rd order model, N is 3.

The vector represents the machine parameter to be estimated.

Using the equations described in Section 4.2, a program is developed within MATLAB R2013b. The

MATLAB files written to generate the results shown in this section are shown in Appendix A.

Before implementing the equations in MATLAB, a generator model is built in SIMULINK to simulate

a “real” machine. The parameters used in the SIMULINK machine model, and subsequently, the

MATLAB model, are shown in Table 4. This is the same model that will be used to compare results

from the least squares estimation, which will be discussed later.

Using these values, the SIMULINK machine outputs can be used to test the machine model built in

MATLAB.

The SIMULINK model can also be used to simulate three-phase faults, as well as run steady-state

conditions. In the first case, the simulation is run under steady-state, open circuit conditions. Because

SIMULINK does not allow the terminals of the machine to physically be disconnected, a large

resistive bank (10E7 Ohms) is connected to the terminals of the machine. In doing so, the stator

currents are extremely low and can be considered to be in open circuit conditions.

38

Table 4: Synchronous Machine Input Parameters

Parameters referenced to stator

Stator: mdL mqL
lkL sr

Value

[H, Ohm]

3.2164E-03 9.7153E-04 3.0892E-04 2.9069E-03

Field: fdL fdr

Value

[H, Ohm]

3.0715E-04 1.9013E-03

Damper: 1lkqL 2lkqL
lkdL 1kqr 2kqr kdr

Value

[H, Ohm]

1.0365E-03 1.0365E-03 4.90764E-04 2.0081E-02 2.0081E-02 1.1900E-02

Nameplate Data

 Stator Rotor

Apparent Power [MVA] 187

Voltage [V] 13,800 226.6

Current [A] 11,000 1087

Frequency [Hz] 60

Pole pairs 20

39

Figure 17: SIMULINK Model of a Synchronous Machine in Open-Circuit Conditions

Under open circuit conditions, rated stator voltages and small output currents are expected to be seen

on the stator output of the machine. Translating these outputs to the DQ-domain, we expect to see

nominal line-to-neutral voltage in the q-axis and no voltage in the d-axis. The output data from the

SIMULINK simulation data is compared with the MATLAB model described by the equations in

Chapter 4.2. The open circuit voltages from the model under test very closely match the reference

SIMULINK model as shown in Figure 18. The MATLAB model finds small, but non-zero current,

and therefore non-zero flux linkages, where both should be zero. Considering the large stator current

rating of this machine, the error is relatively small but still worth noting the inaccuracy under this

condition. Note that the calculated plots show some transient behavior early in the simulation. Note

that the quadrature and direct axis voltages are not calculated. This is because these values are used as

the inputs to the MATLAB model to simulate the flux linkages and currents.

40

Figure 18: Q axis voltage, current and flux linkage from SIMULINK and MATLAB simulation results - Open Circuit

Conditions

Figure 19: D axis voltage, current and flux linkage from SIMULINK and MATLAB simulation results - Open Circuit

Conditions

41

Note that in both Figure 18 and Figure 19, the error appears to be extremely high. However, this is

because, ideally, there would be no currents, and no mutual flux linkage in the q-axis. Slight

deviations from such small values create high errors but the results still meet expectations for open

circuit conditions. The mutual d-axis flux linkage is non-zero due to flux from the field voltage. This

is verified by looking at Eq. (60). As this is steady state, the flux in all damper windings is zero.

During open circuit conditions, non-zero field flux is present along with direct axis flux,

corresponding to voltage aligned with the q-axis. Figure 20 shows, the field current in the MATLAB

model matches the nominal current described in the SIMULINK model (1087A) for open circuit

conditions.

Figure 20: SIMULINK and MATLAB Field Current - Open Circuit Conditions

Next, the system is run under steady-state, loaded conditions. In this case, a simple parallel resistive

and inductive load is used to draw power from the synchronous generator. Again, the results in

42

comparing the MATLAB state-space model to the reference SIMULINK model show a good match,

thus verifying the validity of the mathematical model. Again, note that the quadrature and direct axis

voltages are not calculated in the mathematical model. This is because these values are used as the

inputs to the MATLAB model to simulate the flux linkages and currents.

Figure 21: Q axis voltage, current and flux linkage from SIMULINK and MATLAB simulation results - Loaded

Conditions

43

Figure 22: D axis voltage, current and flux linkage from SIMULINK and MATLAB simulation results - Loaded

Conditions

Figure 23: SIMULINK and MATLAB Field Current - Loaded Conditions

44

In this loaded case, the calculated field current is slightly higher than the SIMULINK model results.

This results in a higher d-axis flux. However, the error is well within an acceptable tolerance. The

initial transient, shown at the beginning of the SIMULINK results in Figures 21-23, is a start-up

transient in the program. Based on the results of the comparison of the open circuit and the loaded

conditions, the state-space model discussed earlier is sufficiently accurate to use for a machine

modeling in the parameter estimation routine.

45

5. Offline Characterization Procedures

This chapter discusses offline characterization procedures used to determine the parameters for the 20

hp synchronous machine at the University of Idaho. These methods follow directly from the IEEE

115-2009 Standard for the purpose of developing an “experimental control” model to eventually be

compared with the online method results. The machine under test is fed by an ABB Variable

Frequency Drive (VFD) in order to ensure constant speed with an input signal of 60Hz.

5.1 Full Load Test

To ensure proper behavior during normal operating conditions, a full load test is performed by

connecting the synchronous generator to a resistive load bank. The test setup for the full load test is

shown in Figure 10.

To verify proper readings from the SEL 411L Relay connected to the terminals of the machine, a

steady-state test was conducted. Measurements taken using multimeters and current clamps are shown

in Table 5. Oscillography was also captured by the 411L relay.

Table 5: Steady-State Test Measured Data

Field Voltage Field Current

Line-Line, True RMS

Terminal Voltage

True RMS

Line Current

Frequency

Per Phase

Resistance

Y-connected

55.2 V 3.21A 220 V 3.3A 60.01 Hz 31 Ω

Using the data in Table 5, a comparison can be made with the oscillography taken from the SEL 411L

relay to verify that proper relay settings are entered. Oscillography captured under steady-state

conditions is shown in Figure 24.

46

Figure 24: Steady State Voltage and Current

Comparison of the oscillography and the data shown in Table 5 shows the relay data is validated to

accurately reflect the ohmmeter and current clamp measurements. The SEL 411L scales the voltage

and currents such that the fundamental frequency sinusoidal terms have peak amplitudes equal to the

RMS magnitudes. Note the harmonic content in Figure 24 as well. This is a result of slot harmonics,

and will be discussed more in Chapter 4.5.

5.2 Open Circuit Saturation Curve

The first step in developing accurate machine parameters is to understand a machine’s saturation

characteristics. As described in the IEEE 115-2009 Standard, the steps performed in this test are as

follows [7]:

47

a) Six readings should be taken below 60% of rated voltage (1 at zero excitation).

b) From 60% to 110%, readings should be taken, at a minimum, at every 5% increment in

terminal voltage (minimum of 10 points). This area is a critical range, and an attempt should

be made to obtain as many points as the excitation control resolution will allow.

c) Above 110%, readings should be taken, at a minimum, at two points, including one point at

approximately 120% of the rated no-load field current (or at the maximum value

recommended by the manufacturer).

d) At rated voltage, readings should be taken of the terminal voltage (line-to-line) of all three

phases to check phase balance. These readings should be made under constant conditions of

excitation and speed and with the same voltmeter.

From this data, the airgap line of the machine can be drawn by calculating the maximum slope of the

curve and plotting a linear curve of the same slope, tangential to the curve [9].

Figure 25: Open Circuit Test Diagram

5.3 Short Circuit Saturation Curve

The short circuit saturation curve complements the open circuit saturation curve when performing off-

line characterization. The following procedure outlines this test as described in the IEEE 115-2009

Standard.

48

The machine under test is driven at rated speed. With the armature short circuited, readings of

armature and field currents are recorded at armature current increments starting at 125% down to 25%

of rated current. It is important to start at the higher current in order to maintain a quasi-constant

temperature on the machine. If not, the changes in temperature may affect the accuracy of the test.

Figure 26: Short Circuit Test Diagram

The saturation curve test results for the laboratory synchronous machine for both the open circuit and

short circuit tests are shown in Figure 27. These tests show saturation occurring just below the rated

voltage of 220V line-to-line. The open circuit curve begins to deviate from the airgap line at

approximately 175V.

49

Figure 27: Open Circuit and Short Circuit Saturation Curves

Following the IEEE 115 Std. the unsaturated direct axis synchronous reactance can be determined

from these tests:

pu007.1

FG

FSI
du

I

I
X (88)

Where FSII

is the field current that produces the nominal armature current on the short-circuit

saturation curve, and FGI is the field current at base voltage on the air-gap line [7]. As a reminder, the

nameplate data for the laboratory machine was described in Table 3.

5.4 Three-Phase Bolted Fault

According to the IEEE 115-2009 standard, a bolted fault is to be placed on the terminals of the

machine during open circuit conditions. The Table 6 summarizes several three-phase bolted short

circuit tests conducted at varying initial voltage conditions. Prior to the fault, the machine is run under

50

open –circuit conditions. Note that all tests are below rated terminal voltage. This was done to initially

insure that fault currents would not exceed the rated current of the model power system.

Table 6: Three-phase bolted fault prefault conditions measured at machine terminals

Fault Type: 3-phase bolted fault

Test # Field

Voltage

(V)

Field

Current

(A)

Line-to-

Line

Terminal

Voltage

(V RMS)

Phase A

Current

(A RMS)

Frequency Fault

Angle

(deg)

Fault

Duration

(cycles)

1 24.4 1.37 100 0.5 60.01 90 180

2 30.3 1.73 125 0.6 60.01 90 180

3 36.3 2.11 150 0.8 60.01 90 180

4 43.7 2.54 175 1.0 60.01 90 180

The following section describes results from each of the tests described above. Note that the relay

sampled this data at 128 samples per cycle.

Any per unit calculations or conversions are selected based on nameplate rated voltage and power. For

the per unit calculations, the results for base calculations are described in Table 7.

Table 7: Per Unit Base Calculations

Apparent

Power Base

Voltage

(phase)

Current

(phase)

Voltage

(dq)

Current

(dq)

Impedance

frequency

20 h.p. 220 V 39.139 A 179.63 V 55.35 A 3.2453 60Hz

5.4.1 Test 1

Oscillography of the event report generated by the SEL 411L relay for the first three phase bolted fault

test is shown in Figure 28. The data represents the 3 phase currents and voltages as measured at the

terminals of the machine for test 1.

51

Figure 28: Test 1 Oscillography of raw data captured

As the voltage waveform clearly shows, a higher frequency is riding on top of the 60Hz signal. A Fast

Fourier Transform (FFT) of the dataset above is shown in Figure 29. In doing so, the higher order

frequencies observed at the machine terminals can be identified.

52

Figure 29: Test 1 voltage and current FFT

Both the current and voltage waveforms are dominated by the 60Hz behavior as expected and shown

in Figure 29. However, higher order frequencies can easily be seen in FFT of the voltage. FFT analysis

clearly shows a frequency of 1024Hz, or the 17th harmonic. This harmonic is a result of imperfections

in slot pitch (a.k.a. slot harmonics). Using a 7th order Butterworth filter, with a cutoff frequency of

90Hz, the higher order frequencies can be removed from the waveform. Figure 30 shows the

frequency response of the designed Butterworth filter.

53

Figure 30: Magnitude response of the lowpass butterworth filter used to remove high frequencies

This filter is designed to remove frequencies above 90 Hz. This guarantees that any frequencies

around the 60Hz range are passed with a gain of 1.0, while the higher frequencies are completely

removed. This 90Hz filter point can easily be seen at the -3dB, indicating the cutoff frequency.

MATLAB’s built-in Butterworth filter used with the application function “filter.” The use of the

Butterworth filter creates a phase shift due to the inherent nature of the Butterworth filter as shown in

Figure 30. However, MATLAB has a built in routine known as “filtfilt” which applies the filter in

both the forward and negative direction, creating a zero-phase distortion by canceling the phase shift.

By using the “filtfilt” function, a zero phase filter is created as shown in Figure 31. To verify that no

phase shift exists, the phase A voltage and currents for the raw and filtered data as shown in Figure 32.

The filtered waveform clearly is in phase with the raw information.

54

Figure 31: Magnitude response of the lowpass butterworth filter and MATLAB "filtfilt" function

Figure 32: Test 1 comparison of filtered and raw data

55

Figure 33 shows the output with the Butterworth filter and MATLAB’s filtfilt function used to filter

the data collected from the test.

Figure 33: Test 1 filtered output data

The voltage waveform with the higher frequencies clearly removed is shown in Figure 33. This result

has a clean, clear capture of the 60Hz signal, while the current waveform captures the low frequency

and dynamic response to this three-phase bolted short circuit on the transformer terminals.

The dq0 representation of the unfiltered voltages and currents for test 1 is shown in Figure 34.

56

Figure 34: Test 1 dq0 representation of phase voltages and currents (raw data)

High order frequencies shown in the voltage waveform of Figure 34 are a result of the 17th harmonic.

In order to see a clear representation of the direct and quadrature axis voltages, the filtered data is also

converted by using the Park’s transformation. The dq0 representation of the filtered voltages and

currents for test 1 are shown in Figure 35.

57

Figure 35: Test 1 dq0 representation of filtered phase voltages and currents (filtered data)

A much smoother signal can be seen in Figure 35. This shows the trending d and q-axis currents and

voltages for test 1. Following the IEEE Std. 115, the per unit d-axis reactance can be calculated from

the short circuit data. Second, an envelope of the short circuit is plotted as shown in Figure 36.

58

Figure 36: Envelope of Test 1 Short Circuit Current

By averaging the last 0.5 seconds of the fault, a steady-state, d-axis current was calculated using Eq.

(89).

455X

6617
7357

273

I

E
X

dpu

d

a
d

.

.
.

.

 (89)

Using this same envelope, the subtransient and transient reactances can be determined following Eq.

(90)

d
T

t

dd
T

t

dd IeIIeII2tienvelope dd ***)(:

 (90)

dd T
t

dd
T

t

ddd eIIeII2tiIenvelope ***)(:

 (91)

At the instance of the fault, Eq (92) can be considered to be true.

 dddd IIII2oi *)(

 (92)

59

 dd II2oi *)((93)

So, the derivation shown in Eq (90) - Eq (93) can be used to define the subtransient current.

2

Ioi
I d

d

)(
 (93)

Using Eq. (89), the subtransient reactance can be calculated by substituting the steady-state d-axis

current for the subtransient d-axis reactance, results of this calculation are shown in (94).

533X

4711
045

7657

I

E
X

dpu

d

a
d

.

.
.

.

 (94)

To calculate the transient reactance, the envelope needs to be plotted in a semilog scale to make the

transient period look more like linear. This helps in identifying where the subtransient period ends and

the transient period begins.

Figure 37: Semilog x-axis plot of first cycles of the short circuit

60

If the linear region is extended back to t(0), in this case, the peak, the same approach as shown in Eq.

(90) – Eq. (93) can be used to determine the transient reactance. This value at t(0) was determined to

be 3.5.

753X

1712
443

7657

I

E
X

dpu

d

a
d

.

.
.

.

 (95)

Now, the transient time-constant constant can be identified from the data shown in Figure 36. This can

be done by using the values shown and their associated time-stamps. For transient time-constant, at t =

1.58 seconds (or 0.58 seconds into the fault), Eq. (99) is said to be true.

 A353eII2 dT

580

dd .**

.

 (99)

Solving for T`d results in a value of 1.80 seconds

The subtransient component can then be obtained by subtracting the transient component from the

envelope, which can be seen in Figure 38. From this line, the approximate subtransient time-constant

can be calculated using the same approach shown in Eq. (99).

61

Figure 38: Subtransient portion of Envelope

For subtransient time-constant, at t = 1.06 seconds (or 0.06 seconds into the fault), Eq. (100) is said to

be true.

 A510eII2 dT

060

dd .**

.

 (100)

Solving for T”d results in a value of 0.026 seconds. A summary of the values calculated for test 1 are

shown in Table 8.

62

Table 8: Summary of Test 1 Results

Parameter Result: Description:

dX 5.45pu D-axis steady-state reactance

dX 3.75pu D-axis transient reactance

dX 3.53pu D-axis subtransient reactance

dT 1.80 s D-axis transient reactance

dT 0.026 s D-axis subtransient reactance

5.4.2 Test 2

Following the same procedure as test 1, test 2 was conducted at a slightly higher excitation level as

described in Table 6. Oscillography of the event report generated by the SEL 411L relay for test 2 can

be seen in Figure 39. The data represents the 3 phase currents and voltages as measured at the

terminals of the machine in addition to the 17th harmonic term observed in test 1.

63

Figure 39: Test 2 Oscillography of raw data captured

Again, a higher frequency term is riding on top of the 60Hz signal. This higher frequency is especially

prevalent in the voltage waveform. A fast Fourier transform (FFT) of the dataset above is shown in

Figure 40. In doing so, the higher order frequencies observed at the machine terminals can be

identified. This figure also starts to reveal a third harmonic present in the system as well.

64

Figure 40: Test 2 voltage and current FFT

The Butterworth filter designed earlier and MATLAB’s filtfilt function was used to filter the data

collected from the test is shown in Figure 41.

65

Figure 41: Test 2 filtered output data

The dynamics of the measured current and voltage waveforms are shown in Figure 41. Both clearly

show the higher frequencies removed. The dq0 representation of the unfiltered voltages and currents

for test 2 are shown in Figure 42.

66

Figure 42: Test 2 dq0 representation of phase voltages and currents (raw data)

Figure 43: Test 2 dq0 representation of filtered phase voltages and currents (filtered data)

67

The filtered data shows the trending d and q-axis currents and voltages for test 2. Following the same

approach for calculating reactances described in section 5.4.1, a summary of the values calculated for

test 2 are shown in Table 9.

Table 9: Summary of Test 2 Results

Parameter Result: Description:

dX 5.34pu D-axis steady-state reactance

dX 3.72pu D-axis transient reactance

dX 3.48pu D-axis subtransient reactance

dT 1.75 s D-axis transient reactance

dT 0.078 s D-axis subtransient reactance

5.4.3 Test 3

The testing procedures were repeated with increased excitation, continuing the sequence from Table 6.

The oscillography from the event report generated by the SEL 411L relay for test 3 is shown in Figure

44. The data represents the 3 phase currents and voltages as measured at the terminals of the machine.

68

Figure 44: Test 3 Oscillography of raw data captured

A higher frequency is again riding on top of the 60Hz signal. This higher frequency is again especially

prevalent in the voltage waveform. A FFT of the dataset above is shown in Figure 45. In doing so, the

higher order frequencies observed at the machine terminals can be identified. Note that the third

harmonic and 17th slot harmonic continue to increase as well.

69

Figure 45: Test 3 voltage and current FFT

Results of applying the applied Butterworth filter and MATLAB’s filtfilt function to filter the data

collected from the test are shown in Figure 46.

70

Figure 46: Test 3 filtered output data

The dq0 representation of the unfiltered voltages and currents for test 3 are shown in Figure 47.

71

Figure 47: Test 3 dq0 representation of phase voltages and currents (raw data)

The dq0 representation of the filtered voltages and currents for test 3 are shown in Figure 48.

72

Figure 48: Test 3 dq0 representation of filtered phase voltages and currents (filtered data)

This filtered data shows the trending d and q-axis currents and voltages for test 3. Again, a summary

of the values calculated for test 3 are shown in Table 10.

Table 10: Summary of Test 3 Results

Parameter Result: Description:

dX 5.31pu D-axis steady-state reactance

dX 3.68pu D-axis transient reactance

dX 3.46pu D-axis subtransient reactance

dT 1.77 s D-axis transient reactance

dT 0.034 s D-axis subtransient reactance

73

5.4.4 Test 4

This test is repeated with even higher excitation, in the fourth case described in Table 6. Oscillography

of the event report generated by the SEL 411L relay for test 4 can be seen in Figure 49. The data

represents the 3 phase currents and voltages as measured at the terminals of the machine.

Figure 49: Test 4 Oscillography of raw data captured

The current and voltage waveforms are now beginning to show the effects of saturation as measured

signals become more distorted. During test 4, the terminal line-to-line voltage is set to 175 V. This is

right at the cusp of when saturation appears to start affecting the machine as was seen in Figure 27. A

(FFT) of the dataset above can be seen in Figure 50. In doing so, the higher order frequencies observed

at the machine terminals can be identified.

74

Figure 50: Test 4 voltage and current FFT

Filtering the data, the waveform with the higher frequencies clearly removed is shown in Figure 51.

Again, this filtering provides a clear capture of the 60Hz signal and the machine’s dynamic response

to this three-phase bolted short circuit on the transformer terminals. A transient current peak also

shows distortion as the pre-fault conditions are changed.

75

Figure 51: Test 4 filtered output data

The dq0 representation of the unfiltered voltages and currents for test 4 is shown in Figure 52 with the

filtered dq0 representation in Figure 53.

76

Figure 52: Test 4 dq0 representation of phase voltages and currents (raw data)

Figure 53: Test 4 dq0 representation of filtered phase voltages and currents (filtered data)

77

This filtered data shows the trending d and q-axis currents and voltages for test 4. Again, a summary

of the values calculated for test 4 are shown in Table 10.

Table 11: Summary of Test 4 Results

Parameter Result: Description:

dX 5.21pu D-axis steady-state reactance

dX 3.64pu D-axis transient reactance

dX 3.40pu D-axis subtransient reactance

dT 1.74 s D-axis transient reactance

dT 0.086 s D-axis subtransient reactance

5.5 Conclusion

In conclusion, several offline tests were conducted including the open circuit test, the short circuit test,

and several different 3-phase bolted faults. Using these tests, parameters were obtained for modeling

the direct axis of the machine. These parameters include subtransient, transient, and steady-state

reactances, as well as subtransient and transient time constants. While averaging across tests is not

necessarily suggested in the standard, tests were conducted at different voltages to investigate how

much the parameters differ at different levels of excitation. Ideally, these values would not change.

Due to the slight variations in results during each test, averaging is appropriate to tie the tests together

with a final value for each parameter and is shown in Table 12.

78

Table 12: Summary of direct axis reactances and time constants

Parameter Test 1 Test 2 Test 3 Test 4 Average

dX 5.45pu 5.34pu 5.31pu 5.21pu 5.3275pu

dX 3.75pu 3.72pu 3.68pu 3.64pu 3.6975pu

dX 3.53pu 3.48pu 3.46pu 3.40pu 3.4675pu

dT 1.80 s 1.75 s 1.77 s 1.74 s 1.7650s

dT 0.026 s 0.078 s 0.034 s 0.086 s 0.0560s

Table 13 shows several other measurements taken on the machine via offline testing. The stator and

field resistances shown were measured by applying a current into the terminals of the machine, and

measuring the resulting voltage. Using Ohm’s law, the DC resistance values were calculated with the

ratio of the voltage and current. The machine turns ratio (Ns/Nf) was calculated using Eq. (26).

Table 13: Machine Parameters Determined from Offline Testing

Steady-State Parameters

Parameters

Ns/Nf 0.0870

 sr 0.1028 (Ω)

fdr 16.9771 (Ω)

79

6. Online Characterization

The online characterization method selected for this research is the Least Squares Approximation

method. This method was selected to further study the feasibility and limitations for applying the

algorithm to synchronous machines.

6.1 Least Squares Approximation Algorithm Derivation

The least squares approximation is an iterative approach for calculating a polynomial curve fit. The fit

is determined by iterating the coefficients of a set nth degree polynomials, minimizing the true error

between the actual data and the polynomial curve fit. True error can be calculated using vector norms

or other similar measures. In this thesis the error is calculated by summing the square of the difference

between each point in a variation on the Euclidean norm. This is shown in Eq. (89).

K

k

simsys yy
1

2
)()((89)

Where)(sysy is a vector representing the discrete output of the given system (in this case, the

synchronous machine), is a vector of the parameters to be determined for the current iteration, and

)(simy is the output of the current calculated polynomial curve fit for the current iteration. Once the

error has converged to an acceptable value, the polynomial is said to fit.

If needed, a weighting factor can be used to emphasize more sensitive parameters. For example, the d-

and q-axis flux linkages have more of an effect on the output of the system when viewed in

comparison to the mutual flux linkages of the damper windings. To use this weighting matrix, the

error equation can then be re-written as shown in Eq. (90).

T

simsys

T

simsys dtyyWyy
0

)()(**)()((90)

80

where W is a diagonal weighting matrix selected based on engineering judgment. However, in this

particular implementation, the weighting matrix was selected to be an identity matrix. This is because

a second weighting matrix (which will be discussed later) will be used when the required change in

parameters is calculated.

In order to converge to a global minimum, the derivative of)(simy with respect to each value of

is required and set equal to 0. For the case of this synchronous machine, the input and output equations

of the state space matrix can be expanded according to their Taylor series expansion:

sorder termhigher ...)(
)(

)()(00

0

sim
simsim

y
yy (91)

Where 0 denotes the initial guess for the machine parameters. The second derivative terms and

higher order terms are ignored due to their small influence and significant increased complexity in the

mathematics. By using the chain rule for derivatives, the derivative of the simulation output)(simy

can be calculated as follows:

)(
)()(

)(
)(

00

000

x
Cx

C
ysim

 (92)

Substituting (92) into (91), the simulation output can be stated as:

)()(
)()(

)()()(0000

00

 x

Cx
Cyy simsim (93)

where

u
B

x
Ax

A
dt

x

000

0
)(

)(
)()(

)(

)(

00

 (94)

Plugging (93) back into (90), the equation may be re-written as:

81

T
dtsimy

simysysyW

T

simy
simysysy

0
)0(

)(
)0()(**)0(

)(
)0()(

00

 (95)

In order for this equation to have successfully converged, according to [9], the following must be true:

0
)0(

(96)

Let

)(0 (97)

solving for)(0 , then

 T

simsys

Tsim
T

simTsim dtyyW
y

dt
y

W
y

0
0

0
)()(

)()()(

00

 (98)

Solving for :

T

simTsim

T

simsys

Tsim

dt
y

W
y

dtyyW
y

0

0
0

)()(

)()(
)(

0

0

 (98)

After is calculated, the parameters are updated with equation (99), thus creating an iterative

approach for solving for the machine parameters.

kkk G 1 (99)

After the parameters are updated, the process of modeling the machine in MATLAB through

equations (67)-(74), and equations (89)-(99) are repeated until convergence.

82

In Eq. (99), G is the gain vector used to weight the change in parameters. According to [9], the optimal

gain is calculated based on the following criteria.

25.0 if 25.0

25.0 if 1

k

k

k

k

G

G

 (100)

When adjusting the gains around different values, this appeared to be a good starting point. However,

a modified, more dynamic gain will be discussed later on. The modified dynamic gain adds additional

criteria to converge on more accurate machine parameters. The LSE algorithm shown in this thesis

operates on a state-space representation, thus the motivation behind development of the 3rd and 7th

order models described in Chapter 4, with flux linkages selected as the states [9]. A flow diagram of

the LSE algorithm can be seen in Figure 54.

83

Figure 54: Least Squares Estimation Algorithm Flow Diagram

6.2 Least Squares Approximation Algorithm Results

In order to test this algorithm, the first step is to implement it on the 3rd order machine model. Using

the same data collected earlier for testing the state-space model proposed in Chapter 4 against the

84

built-in SIMULINK machine model, the algorithm is implemented in an attempt to calculate

lkmdmq L and ,L,L .

6.2.1.1 3rd Order Model

To evaluate the LSE performance on the 3rd order machine model, tests are conducted by incrementing

initial guesses for parameters farther and farther from the generator parameters entered in the

SIMULINK model. Before investigating the algorithm with initial guess errors, a test case was ran

with all values remaining constant. In other words, the algorithm assumed itself to be converged to an

appropriate solution. To begin testing the limits of the LSE, the LSE is run with all parameters set to

120% of the actual values (in this case, the “real” machine is the SIMULINK model). Results of this

parameter estimation through 15 iterations can be seen in Figure 55. Table 14 shows the real values,

the initial “guessed” parameters, the resulting parameters after 15 iterations, and the associated error

with +20% error used on initial parameter guesses.

85

Figure 55: Least squares estimation results with +20% initial guess error

Lmd converges on the correct value almost immediately as shown in Figure 55. This is expected as

Lmd is one of the easier parameters to identify. Note that the Lmq and Llk values both converge to

parameters that are close, but not quite right when compared with the known values. This was

observed in several initial test cases, and a dynamic gain was introduced into the algorithm to address

this, as will be discussed. Initially, the gain is set as described in Chapter 5. If the parameters converge

for more than 2 iterations, but an error of more than 5% exists between the MATLAB calculated

currents and “measured” real machine currents the gains were then slightly adjusted to “kick” the

algorithm out of its converged local minima to try to reach a global minimum. This causes the

algorithm to continue searching for a new value for the estimated parameters.

Both Lmq and Llk converged on a set of values that are not quite correct after 7 iterations. From there,

the gains are dynamically adjusted to 0.20, and the values successfully converged.

86

Table 14: LSE Results starting with +20% Error in "Guessed" Parameters – 3rd order model

Parameter mdL mqL
lkL dL

qL

Initial Guess (α) 3.8596E-03 11.6583E-04 3.7070E-04 4.2303E-03 1.5364E-03

Actual Values

(H)

3.2164E-03 9.7153E-04 3.0892E-04 3.5253E-03 1.2804E-03

Estimated Values 3.215E-03 9.715E-04 3.0901E-04 3.5240E-03 1.2805E-03

Error (%) 0.023 E-14 3.1986 0.037 0.007

The results show excellent convergence if the initial guesses for the parameters are 120% of the actual

values. However, in not fully knowing the parameters, there is no guarantee that the initial guesses for

all parameters will be within this range. Most likely, many of the parameters will be close, especially

if it is a big enough machine to require tests for NERC or WECC.

To test the performance of the estimation algorithm, this process is repeated with initial guesses at

140% of the actual value. Results can be seen in Figure 56.

87

Figure 56: Least squares estimation results with +40% initial guess error

Comparing the results shown in Figure 56 with the results shown in Figure 55, the algorithm begins to

struggle with approximating the parameters, even after adjusting the gains. This trend continues for

initial guesses that move farther and farther away from the actual values.

Table 15 shows a summary of the results for testing the least squares estimation with an initial guess

of 140% of the actual parameters. The results show a larger error when compared to Table 14.

88

Table 15: LSE Results starting with +40% Error in "Guessed" Parameters – 3rd order model

Parameter mdL mqL
lkL dL

qL

Initial Guess (α) 4.503E-03 13.6014E-04 4.3249E-04 4.9354E-03 1.7926E-03

Actual Values

(H)

3.2164E-03 9.7153E-04 3.0892E-04 3.5253E-03 1.2804E-03

Estimated Values
3.464E-03 10.4660E-04 3.3279E-04 3.7969E-03 1.3794-03

Error (%)
7.15 7.173 7.176 7.704 7.732

Now that several cases with initial guesses above the actual parameters have been investigated, a test

is conducted with initial guesses set to 80% of the actual values.

Figure 57: Least squares estimation results with -20% initial guess error for 3rd order model

In this particular case, Llk does converge to correct value after oscillating dramatically for 15

iterations. Extending the iterations out and letting the algorithm run longer, the algorithm converges to

89

a solution. However, both Lmd and Lmq converge to local minima, but not the global minimum. This

results in solutions that are worse values than the initial guess. More research needs to be conducted in

this algorithm to fully understand this convergence to the wrong values. This error only grows more as

the initial guess moves farther and farther away from the actual value and was found to be true for all

cases where the initially guessed parameters were under-estimated.

However, some parameters are known through other testing prior to running the parameter estimation,

degrees of freedom are removed from the least squares estimation method. For example, if a user

would like to estimate 5 parameters, the LSE has the freedom to change all 5 parameters as much as

needed until the state-space model matches the real case. In other words, the LSE can compensate for

error in one parameter, by adjusting another parameter. However, if some parameters are known to a

relatively small error while others have larger errors, then the algorithm can quickly reach

convergence for the more accurately known parameters to a minimal error, while continuing to search

for convergence on the remaining values.

This poses challenges with a nonlinear system. Parameters such as field resistance and armature

resistance can easily be measured. Running a machine in open circuit conditions also allows for easy

calculation of the D-axis mutual reactance. During open circuit rated conditions, we know the

following to be true as described in Chapter 3.2.

0i , ,0 ds qsNeutralLineqd iVVV , and er

Because of this, the d-axis mutual inductance can be determined using Eq. (36) and Eq. (43), which

results in Eq. (101).

fd

qs

f

s

rfd

qs

r

md
i

V

N

N

i

V
L

2

311

 (101)

90

Using Eq. (101) and the open circuit data collected from running the SIMULINK model, Figure 58

shows the accuracy of this calculation, with a final error of 0.02%. The value of Lmd is treated as

known in the LSE estimate plot of Figure 59.

Figure 58: Lmd Calculated Based on Rated Open-Circuit Conditions

91

Figure 59: Least squares estimation results with -20% initial guess error on Lmq and Llk and Lmd known

The results shown in Figure 59 are not as expected. Reducing the degrees of freedom in this case, does

not appear to make any significant differences in the estimations. The algorithm still struggles with

identifying Lmq. It does still find Llk, but does not converge any faster than it did when treating Lmd

as unknown.

6.2.1.2 Implementing 3rd Order Model on Laboratory Machine

Applying this algorithm under steady-state loaded conditions on the actual laboratory machine, the

results of the algorithm are shown in Figure 60. The values never seem to converge. The leakage

inductance value does reach a steady-state, but the mutual d and q axis inductances oscillate, never

reaching a steady state.

92

Figure 60: LSE test on laboratory machine under steady-state, balanced conditions

The sharp, triangular wave indicates that this is an oscillation between two discrete values. However,

after adjusting the gains several times, the algorithm did not converge. It is clear that this algorithm is

not fully developed, and will need more work to refine for accuracies.

6.2.2 7th Order Model

The same process described in Chapter 6.2.1 is used here to implement the algorithm using the 7th

order model. It is expected that the models don’t show much difference in behaviors because the

estimation is performed under steady-state, balanced conditions. Therefore, the damper windings

currents and voltage should be zero due to steady-state, and no zero-sequence voltage or current

should exist under balanced conditions. The same parameters that were considered to be unknown in

93

the 3rd order model are used in the 7th order model, all other parameters were treated as known. Again,

the initial guesses are 20% above the actual values.

Figure 61: Least squares estimation results with +20% initial guess error - 7th order model

Interestingly, comparing this particular result with the results found in Figure 55, the 7th order model

does not converge as well as the 3rd order model, due to having a larger number of local optima. This

additional error might be attributed to the higher complexity of the machine equations. More equations

give room for more degrees of freedom within the least squares estimation. It is important to also note

that the gain had to be adjusted to 0.35 from 0.25 in order to obtain stable results. Table 16 shows

summary results for this test.

94

Table 16: LSE Results starting with +20% Error in "Guessed" Parameters – 7th order model

Parameter mdL mqL
lkL dL

qL

Initial Guess (α) 3.8596E-03 11.6583E-04 3.7070E-04 4.2303E-03 1.5364E-03

Actual Values

(H)

3.2164E-03 9.7153E-04 3.0892E-04 3.5253E-03 1.2804E-03

Estimated Values 2.9684E-03 8.9681E-04 2.857E-04 3.30E-03 1.182E-03

Error (%) 8.35 8.33 8.13 6.827 8.32

This process is repeated with initially guessed parameters set to 140% of the actual values. Results can

be seen in Figure 62.

Figure 62: Least squares estimation results with +40% initial guess error - 7th order model

Again, a summary table of results for this test can be seen in Table 17.

95

Table 17: LSE Results starting with +40% Error in "Guessed" Parameters – 7th order model

Parameter mdL mqL
lkL dL

qL

Initial Guess (α) 3.8596E-03 11.6583E-04 3.7070E-04 4.2303E-03 1.5364E-03

Actual Values

(H)

3.2164E-03 9.7153E-04 3.0892E-04 3.5253E-03 1.2804E-03

Estimated Values 2.9684E-03 8.9681E-04 2.857E-04 3.30E-03 1.182E-03

Error (%) 8.35 8.33 8.13 6.827 8.32

The results show a much better estimation in comparison to the +20% error results. This shows that

the 7th order model is able to accurately estimate parameters when the initial guess is far away in this

case, but appears to be too sensitive when the initial guess is much closer to the actual values.

Knowing this, it is desirable to test the limits of the algorithm used in the 7th order model. After

several additional tests, it was realized that convergence may continue to be possible as long as the

gain is adjusted accordingly.

As an example, Table 18 demonstrates that the algorithm fails to converge with the gain set to 0.35,

and the initial guesses off by +60%.

Table 18: LSE Results starting with +60% Error in "Guessed" Parameters, gain set to 0.35 – 7th order model

Parameter mdL mqL
lkL dL

qL

Initial Guess (α) 5.1452E-03 15.544E-04 4.9427E-04 5.6395E-03 2.0487E-03

Actual Values

(H)

3.2164E-03 9.7153E-04 3.0892E-04 3.5253E-03 1.2804E-03

Estimated Values 3.811E-03 2.391E-03 3.6613E-04 4.2E-03 2.8E-03

Error (%) 15.61 59.37 15.63 19.14 115

However, if the gain is adjusted again from 0.35 to 0.55, the algorithm converges on an acceptable

solution as shown in Table 19.

96

Table 19: LSE Results starting with +60% Error in "Guessed" Parameters, gain set to 0.55 – 7th order model

Parameter mdL mqL
lkL dL

qL

Initial Guess (α) 5.1452E-03 15.544E-04 4.9427E-04 5.6395E-03 2.0487E-03

Actual Values

(H)

3.2164E-03 9.7153E-04 3.0892E-04 3.5253E-03 1.2804E-03

Estimated Values 3.319E-03 10.029E-04 3.1889E-04 3.638E-03 1.322E-03

Error (%) 3.10 3.13 3.13 3.10 3.15

Once the gain was adjusted, the 7th order model did converge to acceptable values. So, this means that

a gain can be selected based on the level of confidence in an initial guess. The following table shows

suggested gains provided for given error confidence levels. These values were determined through

trial and error by setting the percent error in guessed parameters, then adjusting the gain accordingly

until the algorithm successfully converged. The values listed in Table 20 are the minimum gains

required for the algorithm to converge. If the initial guess is within the following confidence

percentages, the algorithm and 7th order model should converge for the given parameters.

Table 20: LSE Results starting with +60% Error in "Guessed" Parameters, gain set to 0.55 – 7th order model

Confidence

percent (%)
 α*120% α*140% α*160% α*180% α*200%

Gain (g) 0.35 0.35 0.55 0.65 0.75

Note that these gains are only given for cases where the initial guesses are greater than the actual

parameters. When the initial guesses are lower than the known parameters, the algorithm currently

does not converge on a proper value. Also, it is important to note that the number of iterations

increases as the error in the initial guess increases, and also depends the gain. A better understanding

of the Least Squares Estimation theory and numerical methods is needed to understand this

relationship and optimize the gain adjustments. Also note that in practice, the actual values are not

known, so setting initial guesses larger than the known parameters is not reasonable.

97

To demonstrate the results described above, values are set to be +200% of their actual values, and the

gain was set to 0.75. Results shown in Figure 63, demonstrate that the algorithm converges to

acceptable values within 20 iterations.

Figure 63: Least squares estimation results with +200% initial guess error and a gain of 0.75 - 7th order model

98

7 Conclusion

Traditional offline tests used for characterizing a synchronous machine are described in IEEE Std.

115-2009. However, removal of the machine from service is required in order to accurately conduct

these tests. The purpose of this thesis was to take initial steps toward avoid this difficulty through the

implementation of online characterization techniques.

In this thesis, offline and online characterization techniques were reviewed, revealing only a handful

of the many tests that can be conducted to understand both mathematical and physical characteristics

of a given machine. Offline tests require that a machine be physically removed from the system for

tests to be conducted. Online tests imply that the machine does not have to be taken down. Both gray

box and black box approaches to online characterization can yield significantly different, yet accurate

results. Gray box models use input and output data combined with a numerical algorithm to calculate

the machine’s electrical parameters. Black box models map input data to output data through a series

of cascading transfer functions. In either case, offline or online tests must be conducted throughout the

duration of a machine’s life, in order to maintain accurate records of the machine’s behaviors.

However, because the black box model does not actually determine machine parameters that would be

used in standard power system dynamic simulations, a gray-box algorithm was selected for the online

characterization.

This thesis did a preliminary implementation of one specific online characterization technique. The

method used in this thesis has proven to be computationally heavier than expected. More work is

needed to successfully operate the least squares approximation in both the 3rd order and 7th order

model.

This thesis focused on implementing the algorithm on only 3 parameters, but the approach can be

altered changed to determine more parameters. However, as stated in Chapter 2, one of the difficulties

with gray box models is a lack of rich data. If only steady-state parameters are desired, it is possible to

99

calculate these parameters from steady-state data. In using this technique, a confidence level must be

established in order to accurately converge on the actual parameters. The least squares approximation

method is prone to errors simply because the data generally does not have the details needed to easily

calculate the machine parameters. In other words, there are many different combinations of

coefficients that can be used which may create an accurate state-estimation for a particular case, but

may not necessarily represent a generic model for the machine. The difficulty lies in knowing which

values are the correct values.

A high level image of progress towards the online characterization method focused on in this thesis is

shown in Figure 64. Real-time data can be fed into the online characterization algorithm. This data

includes the output voltages and currents, field voltage and current, rotor frequency, at a minumum.

Figure 64: High Level Representation of Combined Models

A comparison is also made between implementing the LSE on the 3rd order model as well as the 7th

order model. Because all parameters estimated in this thesis were under steady-state conditions,

100

comparisons between the 7th order model and 3rd order model show small differences simply because

the damper windings in the 7th order model don’t affect the system under steady-state conditions.

Because the model is operating in balanced steady-state, there is no zero sequence response either.

Therefore, the models show very similar results.

Gray box models are difficult to implement due to the lack of rich data obtained from the machine.

Many degrees of freedom are allowed for the least squares estimation to adjust parameters in wrong

directions. In other words, the algorithm can compensate for errors in one parameter by changing

another parameter. However, some terms such as the d-axis mutual inductance can be obtained during

machine start-up. It is advantageous to use as many known parameters as possible in the mathematical

model in order to limit the number of degrees of freedom available for variation in the solution

process, and improve estimation of the remaining parameters.

101

8 Future Work

If this method online parameter estimation were to be continued, additional research is needed to

better understand optimization theory, numerical limits, and efficiency of the least squares

approximation. This thesis focuses mainly on the derivation and development of a computer based

model that can use live machine data to determine its parameters and validation of the LSE algorithm.

The numerical algorithm presented in this thesis needs continued development in order to improve the

performance, accuracy, reproducibility, and efficiency of the calculations. An example of this is better

understanding the relationship between changing the gains and the number of iterations required to

successfully converge on proper values. Once fully developed, the approximation algorithm can be

implemented in real, larger scale machines and compared with offline characterization results. This

will provide detailed information on real-life measurement conditions and allow researchers to further

develop its capabilities toward practical application. In addition, a real-time machine model can be

built and the parameters can be updated whenever appropriate machine responses occur.

In addition, the higher order machine model will need to consider both saturation and noise. As of

now, these are not included in the model, other than the noise in the laboratory machine which did

cause problems. In other words, the results shown are, for the most part, ideal scenarios. In practice,

there will be sources of error in approximations. If a machine is driven even partially into saturation,

the model used will inaccurately reflect the behaviors because it does not account for saturation. For

more information on saturation behavior of synchronous machines, see [18].

When ready, more rigorous testing on an actual machine is needed to see if the LSE algorithm will

converge for sub-transient and transient parameters, and possibly resistances. However, some

parameters, such as field resistance and DC stator resistances, are more easily obtainable through

measurements. These measured parameters can be used to help reduce the number of degrees of

freedom in the optimization calculation.

102

The models and tests shown in this thesis assumed constant, nominal rotor speed as well. In reality,

this is not always the case and must be considered if using dynamic response data from the machine.

As disturbances occur on the system, the speed of the machine may slowly change, thus changing

results of the state-space equations. As a result the algorithm will need to incorporate frequency

tracking.

Other online characterization approaches can also be considered to determine the best method to apply

for the task at hand. Currently, a second approach of using Kalman filtering is under development and

is also showing much more encouraging results.

103

References

[1] Park, R. H.; “Two-reaction theory of synchronous machines – generalized methods of

analysis – Part I,” AIEE Transactions, vol. 48, pp. 716-727, July 1929.

[2] Dinely, J.L., Morris, A. J.; “Synchronous generator transient control – Pt I: Theory and

evaluation of alternative mathematical models,” IEEE Transactions on Power Apparatus

and Systems, vol. PAS-92, pp. 417-422, Apr. 1973.

[3] Dandeno, P. L., Kundur, P., Schulz, R. P.; “Recent trends and progress in synchronous

machine modeling in the electric utility industry,” Proceedings of the IEEE, vol. 62, pp.

941-950, July 1974.

[4] Rotating Electrical Machines. Part 10: Conventions for Description of Synchronous

Machines, IEC Standard 34-10-1975, International Electrotechnical Commission, Geneva,

1975.

[5] Schulz, R. P.; “Synchronous machine modeling,” IEEE Symposium on Adequacy and

Philosophy of Modeling: Dynamic System Performance, IEEE Publications, 75CH0970-4-

PWR, pp. 24-28.

[6] Park, R. H.; “Two-reaction theory of synchronous machines, Part II,” AIEE Transactions,

vol. 52, pp. 352-355, June 1933.

[7] IEEE Guide for Test Procedures for Synchronous Machines Part I Acceptance and

Performance Testing Part II Test Procedures and Parameter Determination for Dynamic

Analysis, IEEE Std 115-2009 (Revision of IEEE Std 115-1995) , vol., no., pp.1,219, May 7

2010 doi: 10.1109/IEEESTD.2010.5464495

[8] Zhao, Z., Zheng, F, Gao, J., Xu L.; "A dynamic on-line parameter identification and full-

scale system experimental verification for large synchronous machines," Energy

Conversion, IEEE Transactions on , vol.10, no.3, pp.392,398, Sep 1995 doi:

10.1109/60.464859

104

[9] Lee CC, Owen TT, “A Weighted-Least Squares Parameters Estimator for Synchronous

Machines,” IEEE Transactions on PAS 96, No.1, pp97-101,1977

[10] Mainba M, “Identification of Parameter for System Stability Analysis using Kalman

Filter,” IEEE Trans. On PAS, Vol. PAS-100, No.7, 1981

[11] Burth, M.; Verghese, George C.; Velez-Reyes, M., "Subset selection for improved

parameter estimation in on-line identification of a synchronous generator," Power Systems,

IEEE Transactions on , vol.14, no.1, pp.218,225, Feb 1999

[12] Chen, X., et al; "On-line identification of synchronous generator parameter from large

disturbance testing data," Power System Technology, 1998. Proceedings. POWERCON '98.

1998 International Conference on , vol.2, no., pp.1034,1039 vol.2, 18-21 Aug 1998

[13] Fard, R.D.; Karrari, M.; Malik, O.P., "Synchronous generator model identification for

control application using volterra series," Energy Conversion, IEEE Transactions on ,

vol.20, no.4, pp.852,858, Dec. 2005

[14] Deghani, M.; Karrari, M.; Malik, O.P.; “Synchronous Generator Model Identification

Using Linear H∞ Identification Method,” IFAC 2007, ICPS’07, July 09-11, Cluj-Napoca,

Romania

[15] Sarem, Yazdan, N.; Poshtan, Javad; Poshtan, Majid; “Synchronous Generator Black Box

Modeling using Wiener-Neural Model,” International Conference on Intelligent and

Advanced Systems, 2007

[16] Perez-Londono, S.; Perez-Londono, A.; Romero-Mora, Y., "On-line identification of the

physical parameters in a synchronous generator," Transmission and Distribution

Conference and Exposition: Latin America, 2008 IEEE/PES , vol., no., pp.1,6, 13-15 Aug.

2008

[17] Chapman, S. J., Electric Machinery Fundamentals, Fifth Ed. McGraw-Hill, 2012, ISBN:

978-0-07-352954-7

105

[18] Krause, P. C., Wasynczuk, O., Sudhoff, Scott D.; Analysis of Electric Machinery and Drive

Systems; Second Ed.Wiley-Interscience, 2002. ISBN: 0-4717-14326-X

[19] MATLAB and SIMULINK Toolbox Release 2013b, The Mathworks, Inc., Natick,

Massachusetts, United States (http://www.mathworks.com/)

[20] Binder, A; Electrically excited synchronous machines, Darmstadt University of

Technology Report, 04/2016 (http://www.ew.tu-

darmstadt.de/media/ew/vortrge/greenenergyconversion/gec_4.pdf)

106

Appendix – MATLAB Code

7th Order Synchronous Machine Model
%% Author: Michael West

% Thesis: Online Dynamic Parameter Estimation of Synchronous Machines

% Purpose of Script: 7th Order Synchronous Machine Model

clc

clear all

close all

%% Machine Data/Stator Base values

V_sBASE = 13800*sqrt(2/3); %Base voltage

S_BASE = 187E6; %MVA BASE

Z_BASE = V_sBASE^2/S_BASE; %Impedance base

I_sBASE = sqrt(2)*S_BASE/(sqrt(3)*V_sBASE);

omega_BASE = 2*pi*60;

L_sBASE = Z_BASE/omega_BASE;

%% Field Base Values

load('Synch_Machine_Model_SIFundamental_SSv4.mat');

Synch_Machine_Model_OC = Synch_Machine_Model_SIFundamental;

 % Parse Data into variables

 t_OC = transpose(Synch_Machine_Model_OC(1,:)); % Timestamp

 Ifd = transpose(Synch_Machine_Model_OC(2,:)); % Field Current

 Vf = transpose(Synch_Machine_Model_OC(3,:)); % Field Voltage

 Is_a = transpose(Synch_Machine_Model_OC(4,:)); % Stator Current phase A

 Iq = transpose(Synch_Machine_Model_OC(5,:)); % Q axis Current

 Id = transpose(Synch_Machine_Model_OC(6,:)); % D axis Current

 Vd = transpose(Synch_Machine_Model_OC(7,:)); % D axis Voltage

 Vq = transpose(Synch_Machine_Model_OC(8,:)); % Q axis Voltage

 Vt = transpose(Synch_Machine_Model_OC(9,:)); % Terminal Voltage

 psimd = transpose(Synch_Machine_Model_OC(10,:)); % D axis mutual flux

 psimq = transpose(Synch_Machine_Model_OC(11,:)); % Q axis mutual flux

 Po = transpose(Synch_Machine_Model_OC(12,:)); % Output Real Power

 Qo = transpose(Synch_Machine_Model_OC(13,:)); % Output Reactive Power

 Wm = transpose(Synch_Machine_Model_OC(14,:)); % Rotor Mechanical Speed

 dWm = transpose(Synch_Machine_Model_OC(15,:)); % Change in Rotor Mechanical Speed

 theta_R = transpose(Synch_Machine_Model_OC(16,:)); % Rotor Mechanical Angle

 delta = transpose(Synch_Machine_Model_OC(17,:)); % Load Angle

 dtheta = transpose(Synch_Machine_Model_OC(18,:)); % Change in Rotor Mechanical Angle

 Ikq1 = transpose(Synch_Machine_Model_OC(19,:)); % Q axis damper winding current 1

 Ikq2 = transpose(Synch_Machine_Model_OC(20,:)); % Q axis damper winding current 2

 Ikd = transpose(Synch_Machine_Model_OC(21,:)); % D axis damper winding current

 I_abc_stator = transpose(Synch_Machine_Model_OC(22:24,:)); % ABC Phase Stator Currents

 % Number of machine poles

 n_poles = 40;

 start_point = 1;

%% Define Resistances/Inductances for SIFundamental Model

 % Stator

 Lmd = 3.2164E-03; % D-axis mutual inductance [H]

 Lmq = 9.7153E-04; % Q-axis mutual inductance [H]

 Llk = 3.0892E-04; %[H]

 r_s = 2.9069E-03; % [Ohm]

 % Field

 r_p_fd = 1.9013E-03; % field resistance [Ohm]

 L_p_lfd = 3.0712E-04; % field leakage inductance [H]

 % Dampers

 r_p_kq1 = 2.0081E-02; % Q-axis damper winding 1 resistance [Ohm]

 r_p_kq2 = r_p_kq1; % Q-axis damper winding 2 resistance

 r_p_kd = 1.1900E-02; % D-axis damper winding resistance

107

 L_p_lkq1 = 1.0365E-03; % Q-axis damper winding 1 leakage inductance [H]

 L_p_lkd = 4.9076E-04; % D-axis damper winding leakage inductance

 % let Q-axis damper winding 2 leakage inductance be defined as:

 L_p_lkq2 = L_p_lkq1; % [H]

 % Define Stator_winding/Field_winding transformation ratio:

 Ns_Nf = 0.07798;

% Define measured voltages

V_r_qs = Vq(start_point:end);%ones(1,length(t))*mean(Vq);

V_r_ds = Vd(start_point:end);%ones(1,length(t))*mean(Vd);

V_pr_fd = Vf(start_point:end)*Ns_Nf; %ones(1,length(t))*mean(Vf); % Simulink model has

specified nominal field current, so volts are entered in DC and therefore must be

referred to the stator

omega_b = omega_BASE; % Base frequency

omega_r = (n_poles/2)*Wm; % rotor speed [rad/sec] eq. 1D-8 pg 58

% Convert inductances to reactances:

 % Stator

 X_md(1) = Lmd*omega_BASE;

 X_mq(1) = Lmq*omega_BASE;

 X_ls(1) = Llk*omega_BASE;

 X_d(1) = X_md + X_ls; % Krause eq 5.5-39

 X_q(1) = X_mq + X_ls; % Krause eq 5.5-40

 % Field

 X_p_lfd = L_p_lfd*omega_BASE;

 X_p_fd = X_p_lfd + X_md; % Krause eq 5.5-40

 % Dampers

 X_p_lkq1 = L_p_lkq1*omega_BASE;

 X_p_lkq2 = L_p_lkq2*omega_BASE;

 X_p_lkd = L_p_lkd*omega_BASE;

 X_p_kd = X_p_lkd + X_md; % Krause eq 5.5-40

 X_p_kq1 = X_p_lkq1 + X_mq; % Krause eq 5.5-40

 X_p_kq2 = X_p_lkq2 + X_mq; % Krause eq 5.5-40

%% Initialize flux linkages based on first measurements

 psi_r_mq(1) = psimq(start_point);

 psi_r_md(1) = psimd(start_point);

 psi_r_qs(1) = psi_r_mq(1) - Iq(start_point)*X_ls(1);

 psi_r_ds(1) = psi_r_md(1) - Id(start_point)*X_ls(1);

 psi_pr_fd(1) = psi_r_md(1) + Ifd(start_point)*(2/3)*Ns_Nf*X_ls(1);

 % Output Initial Conditions to MATLAB Command Window

 fprintf('Initial Conditions \n psi_mq = %.2f \n psi_md = %.2f \n psi_r_qs = %.2f \n

psi_r_ds = %.2f \n psi_pr_fd = %.2f \n',[psi_r_mq psi_r_md psi_r_qs psi_r_ds psi_pr_fd])

 % Initialize Xaq and Xad

 X_aq(1) = ((1/X_mq(1)) + (1/X_ls(1))+(1/X_p_lkq1) + (1/X_p_lkq2))^-1;

 X_ad(1) = ((1/X_md(1)) + (1/X_ls(1)) + (1/X_p_lfd(1))+(1/X_p_lkd))^-1;

 % Initial flux linkage states

 x_int(:,1) = [psi_r_mq(1); psi_r_md(1); psi_r_qs(1); psi_r_ds(1); psi_pr_fd(1); 0; 0;

0; 0];

 % Put measured voltages into matrix u

 e_pr_xfd = V_pr_fd*(X_md(1)/r_p_fd); % Krause 5.5-36

 u(:,1) = [V_r_qs(1); V_r_ds(1); e_pr_xfd(1); 0; 0; 0; 0; 0; 0];

%% State Space Integral Equations

 % For trapezoidal integration

 dt = 1/8000;

 t(1) = 0;

 k=1;

108

 for n = 2:length(t_OC(start_point:end))

 A(:,:,k) = [0, 0, X_aq(1)/X_ls(1), 0, 0, 0, 0, X_aq(1)/X_p_kq1(1), X_aq(1)/X_p_kq2(1);...

%psimq

 0, 0, 0, X_ad(1)/X_ls(1), X_ad(1)/X_p_lfd(1), 0, X_ad(1)/X_p_lkd(1), 0, 0;...

%psimd

 r_s/X_ls(1), 0, -r_s/X_ls(1), -omega_r(n)/omega_b, 0, 0, 0, 0, 0;... %psiqs

 0, r_s/X_ls(1), omega_r(n)/omega_b, -r_s/X_ls(1), r_s/X_ls(1), 0, 0, 0, 0;...

%psids

 0, r_p_fd/X_p_lfd(1), 0, 0, -r_p_fd/X_p_lfd(1), 0, 0, 0, 0;... %psifd

 0, 0, 0, 0, 0, -r_s/X_ls(1), 0, 0, 0;... %psi0s

 0, r_p_kd/X_p_lkd(1), 0, 0, 0, 0, -r_p_kd/X_p_lkd(1), 0, 0;... % psikd

 r_p_kq1/X_p_lkq1(1), 0, 0, 0, 0, 0, 0, -r_p_kq1/X_p_lkq1(1), 0;... %psikq1

 r_p_kq2/X_p_lkq2(1), 0, 0, 0, 0, 0, 0, 0, -r_p_kq2/X_p_lkq2(1)]; %psikq2

 % B matrix for voltage measurements (note all damper bars are shorted,

 % no volage) and no zero sequence

 B(:,:,k) = [0 0 0 0 0 0 0 0 0;... % psi_mq

 0 0 0 0 0 0 0 0 0;... % psi_md

 1 0 0 0 0 0 0 0 0;... % psi_qs

 0 1 0 0 0 0 0 0 0;... % psi_ds

 0 0 r_p_fd/X_md(1) 0 0 0 0 0 0;... %psi_fd

 0 0 0 0 0 0 0 0 0;... % psi_0s

 0 0 0 0 0 0 0 0 0;...% psi_kd

 0 0 0 0 0 0 0 0 0;... %psi_kq1

 0 0 0 0 0 0 0 0 0]; %psi_kq2

 C(:,:,k) = [1/X_ls(k) 0 -1/X_ls(k) 0 0 0 0 0 0;... %i_qs

 0 1/X_ls(k) 0 -1/X_ls(k) 0 0 0 0 0;... % i_ds

 0 -1/X_p_lfd(k) 0 0 1/X_p_lfd(k) 0 0 0 0;... % i_fd

 0 0 0 0 0 -1/X_ls(1) 0 0 0;... % i_0s

 0 -1/X_p_lfd(1) 0 0 0 0 1/X_p_lfd(1) 0 0;... %i_pr_kd

 -1/X_p_lkq1(1) 0 0 0 0 0 0 1/X_p_lkq1(1) 0;... %i_pr_kq1

 -1/X_p_lkq2(1) 0 0 0 0 0 0 0 1/X_p_lkq2(1)]; %i_pr_kq2

 % State Space Equations X = A*x + B*u

 u(:,n) = [V_r_qs(n); V_r_ds(n); e_pr_xfd(n); 0; 0; 0; 0; 0; 0];

 % x_###(1,:) = psi_r_mq; % x_###(2,:) = psi_r_md;

 % x_###(3,:) = psi_r_qs; % x_###(4,:) = psi_r_ds;

 % x_###(5,:) = psi_r_fd; % x_###(6,:) = psi_0s;

 % x_###(7,:) = psi_pr_kd; % x_###(8,:) = psi_pr_kq1;

 % x_###(9,:) = psi_pr_kq2

 x_diff(:,n,k) =(A(:,:,k)*x_int(:,n-1) + B(:,:,k)*u(:,n-1));

 x_int(:,n,k) = (x_int(:,n-1) + 0.5*dt*(x_diff(:,n)-x_diff(:,n-1))); % Integrated

States

 % Calculate Outputs Y = Cx + v where v = 0 for now (no noise)

 i_state(:,n,k) = C(:,:,k)*x_int(:,n,k); % Outputs

 i_r_fd(1,n,k) = (3/2)*Ns_Nf^-1*i_state(3,n,k); % Field current referred back to

rotor

 % Increment Timestep

 t(n) = t(n-1)+dt;

 end

%% Plot Results

 figure(1)

 subplot(4,2,1)

 plot(t_OC(start_point:end),Vq(start_point:end))

 title('Simulink Q axis Voltage [V]')

 grid on

 ylabel('V')

 subplot(4,2,2)

 plot(t_OC(start_point:end),Vd(start_point:end))

 title('Simulink D axis Voltage [V]')

 grid on

 ylabel('V')

109

 subplot(4,2,3)

 plot(t,i_state(1,:))

 hold all

 plot(t_OC(start_point:end),Iq(start_point:end))

 title(sprintf('Q axis stator currents [A] \n error = %.2f %%',abs((mean(Iq)-

mean(i_state(1,:)))/mean(i_state(1,:)))*100))

 grid on

 ylabel('A')

 legend('Calculated','Simulink')

 subplot(4,2,4)

 plot(t,i_state(2,:))

 hold all

 plot(t_OC(start_point:end),Id(start_point:end))

 title(sprintf('D axis stator currents [A]\n error = %.2f %%',abs((mean(Id)-

mean(i_state(2,:)))/mean(i_state(2,:)))*100))

 grid on

 ylabel('A')

 legend('Calculated','Simulink')

 subplot(4,2,5)

 plot(t,x_int(1,:))

 hold all

 plot(t_OC(start_point:end),psimq(start_point:end))

 title(sprintf('Q axis psi_m_q \n error = %.2f %%',abs((mean(psimq)-

mean(x_int(1,:)))/mean(x_int(1,:)))*100))

 ylabel('Flux Linkage')

 grid on

 legend('Calculated','Simulink')

 subplot(4,2,6)

 plot(t,x_int(2,:))

 hold all

 plot(t_OC(start_point:end),psimd(start_point:end))

 title(sprintf('D axis psi_m_d \n error = %.2f %%',abs((mean(psimd)-

mean(x_int(2,:)))/mean(x_int(2,:)))*100))

 ylabel('Flux Linkage')

 grid on

 legend('Calculated','Simulink')

 subplot(4,1,4)

 plot(t,i_r_fd)

 hold all

 plot(t_OC(start_point:end), Ifd(start_point:end));

title(sprintf('Field Current [A] \n error = %.2f %%',abs((mean(Ifd)-

mean(i_r_fd))/mean(i_r_fd))*100))

 xlabel('Time [s]')

 ylabel('Amps [A]')

 legend('Calculated','Simulink')

 grid on

 figure(2)

 plot(t,i_state(1,:))

 hold all

 plot(t, i_state(2,:))

 plot(t, i_state(3,:))

 grid on

 title('Calculated Currents')

 legend('Iqs','Ids','Ifd')

 xlabel('Time [s]')

 ylabel('Amps')

110

Least Squares Estimation Implemented with 7th Order Synchronous Machine Model
%% Author: Michael West

% Thesis: Online Dynamic Parameter Estimation of Synchronous Machines

% Purpose of Script: Implement the Least Squares Estimation Algorithm on a

% 7th Order Synchronous Machine Model and Compare Results with Simulink

% Synchronous Machine Model.

clc

clear all

close all

%% Stator Base values

 V_sBASE = 13800*sqrt(2/3); %Base voltage

 S_BASE = 187E6; %MVA BASE

 Z_BASE = V_sBASE^2/S_BASE; %Impedance base

 I_sBASE = sqrt(2)*S_BASE/(sqrt(3)*13800);

 omega_BASE = 2*pi*60;

 L_sBASE = Z_BASE/omega_BASE;

%% Field Base Values

 I_fbase = 1087; % Amps

 V_fdBASE = 226.6; % Voltages

%% Real Machine Parameters;

 %% Define Resistances/Inductances for SIFundamental Model

 % Stator

 Lmd_r = 3.2164E-03; % D-axis mutual inductance [H]

 Lmq_r = 9.7153E-04; % Q-axis mutual inductance [H]

 Llk_r = 3.0892E-04; %[H]

 r_s_r = 2.9069E-03; % [Ohm]

 L_d_r = Llk_r+Lmd_r;

 L_q_r = Llk_r+Lmq_r;

 % Field

 r_p_fd_r = 1.9013E-03; % field resistance [Ohm]

 L_p_lfd_r = 3.0712E-04; % field leakage inductance [H]

 % Dampers

 r_p_kq1_r = 2.0081E-02; % Q-axis damper winding 1 resistance [Ohm]

 r_p_kq2_r = r_p_kq1_r; % Q-axis damper winding 2 resistance

 r_p_kd_r = 1.1900E-02; % D-axis damper winding resistance

 L_p_lkq1_r = 1.0365E-03; % Q-axis damper winding 1 leakage inductance [H]

 L_p_lkd_r = 4.9076E-04; % D-axis damper winding leakage inductance

 % let Q-axis damper winding 2 leakage inductance be defined as:

 L_p_lkq2_r = L_p_lkq1_r; % [H]

% Convert inductances to reactances:

 % Stator

 X_md_r(1) = Lmd_r*omega_BASE;

 X_mq_r(1) = Lmq_r*omega_BASE;

 X_ls_r(1) = Llk_r*omega_BASE;

 X_d_r(1) = X_md_r + X_ls_r; % Krause eq 5.5-39

 X_q_r(1) = X_mq_r + X_ls_r; % Krause eq 5.5-40

 % Field

 X_p_lfd_r = L_p_lfd_r*omega_BASE;

 X_p_fd_r = X_p_lfd_r + X_md_r; % Krause eq 5.5-40

 % Dampers

 X_p_lkq1_r = L_p_lkq1_r*omega_BASE;

 X_p_lkq2_r = L_p_lkq2_r*omega_BASE;

 X_p_lkd_r = L_p_lkd_r*omega_BASE;

 X_p_kd_r = X_p_lkd_r + X_md_r; % Krause eq 5.5-40

 X_p_kq1_r = X_p_lkq1_r + X_mq_r; % Krause eq 5.5-40

 X_p_kq2_r = X_p_lkq2_r + X_mq_r; % Krause eq 5.5-40

111

 % Output real machine parameters to MATLAB Command Window

 fprintf('Real Machine Parameters \n \n Stator: \n Lmd= %.8f Xmd = %.8f \n Lmq =

%.8f Xmq = %.8f \n Llk = %.8f Xlk = %.8f \n r_s = %.8f \n L_d=%.8f L_q=%.8f \n\n

Field: \n r`_fd = %.8f \n L`_lfd = %.8f X`_lfd = %.8f \n X_p_fd = %.4f

\n',...

 [Lmd_r X_md_r Lmq_r X_mq_r Llk_r X_ls_r r_s_r L_d_r L_q_r r_p_fd_r L_p_lfd_r

X_p_lfd_r X_p_fd_r])

 % Define Stator_winding/Field_winding transformation ratio:

 Ns_Nf = 0.07798;

 % Number of machine poles

 n_poles = 40;

 start_point = 1;

%% Other User Inputs - use open circuit data to calculate Lmd if desired

load('Synch_Machine_Model_SIFundamental_OC.mat');

Synch_Machine_Model_OC = Synch_Machine_Model_SIFundamental;

 % Parse Data into variables

 t_OC = transpose(Synch_Machine_Model_OC(1,:)); % Timestamp

 Ifd = transpose(Synch_Machine_Model_OC(2,:)); % Field Current

 Vf = transpose(Synch_Machine_Model_OC(3,:)); % Field Voltage

 Is_a = transpose(Synch_Machine_Model_OC(4,:)); % Stator Current phase A

 Iq = transpose(Synch_Machine_Model_OC(5,:)); % Q axis Current

 Id = transpose(Synch_Machine_Model_OC(6,:)); % D axis Current

 Vd = transpose(Synch_Machine_Model_OC(7,:)); % D axis Voltage

 Vq = transpose(Synch_Machine_Model_OC(8,:)); % Q axis Voltage

 Vt = transpose(Synch_Machine_Model_OC(9,:)); % Terminal Voltage

 psimd = transpose(Synch_Machine_Model_OC(10,:)); % D axis mutual flux

 psimq = transpose(Synch_Machine_Model_OC(11,:)); % Q axis mutual flux

 Po = transpose(Synch_Machine_Model_OC(12,:)); % Output Real Power

 Qo = transpose(Synch_Machine_Model_OC(13,:)); % Output Reactive Power

 Wm = transpose(Synch_Machine_Model_OC(14,:)); % Rotor Mechanical Speed

 dWm = transpose(Synch_Machine_Model_OC(15,:)); % Change in Rotor Mechanical Speed

 theta_R = transpose(Synch_Machine_Model_OC(16,:)); % Rotor Mechanical Angle

 delta = transpose(Synch_Machine_Model_OC(17,:)); % Load Angle

 dtheta = transpose(Synch_Machine_Model_OC(18,:)); % Change in Rotor Mechanical Angle

 Ikq1 = transpose(Synch_Machine_Model_OC(19,:)); % Q axis damper winding current 1

 Ikq2 = transpose(Synch_Machine_Model_OC(20,:)); % Q axis damper winding current 2

 Ikd = transpose(Synch_Machine_Model_OC(21,:)); % D axis damper winding current

 I_abc_stator = transpose(Synch_Machine_Model_OC(22:24,:)); % ABC Phase Stator Currents

 %% Calculate Lmd based on open circuit measurements

for n = 1:length(Ifd)

 Lmd_calc(n) = (1/omega_BASE)*Vq(n)/((2/3)*(1/Ns_Nf)*Ifd(n)); % Calculate Lmd from open

circuit data

 Lmd_calc_error(n) = ((Lmd_calc(n) - Lmd_r) /Lmd_r)*100; % calculate error

end

% figure(1)

% plot(t_OC,Lmd_calc)

% hold all

% plot(t_OC, ones(1,length(Lmd_calc))*Lmd)

% title(sprintf('Lmd Calculated \n average error = %.2f

%%',abs(mean(Lmd_calc_error))))

% xlabel('Time [s]')

% ylabel('H')

% legend('Calculated','Actual')

% grid on

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

 %% Initial Guess Machine Parameters (FOR LSE testing)

 error = 1.2;

112

% Stator

 Lmd = mean(Lmd_calc)*error ; % D-axis mutual inductance [H]*error

 Lmq = Lmq_r*error ; % Q-axis mutual inductance [H]*error

 Llk = Llk_r*error ; %[H]*error

 r_s = r_s_r*1.0; % [Ohm]

 L_d = Llk+Lmd;

 L_q = Llk+Lmq;

% Field

 r_p_fd = r_p_fd_r*1.00; % field resistance [Ohm]

 L_p_lfd = L_p_lfd_r*1.00; % field leakage inductance [H]

 % Dampers

 r_p_kq1 = r_p_kq1_r*1.00; % Q-axis damper winding 1 resistance [Ohm]

 r_p_kq2 = r_p_kq2_r*1.00; % Q-axis damper winding 2 resistance

 r_p_kd = r_p_kd_r*1.00; % D-axis damper winding resistance

 L_p_lkq1 = L_p_lkq1_r*1.00; % Q-axis damper winding 1 leakage inductance [H]

 L_p_lkd = L_p_lkd_r*1.00; % D-axis damper winding leakage inductance

 % let Q-axis damper winding 2 leakage inductance be defined as:

 L_p_lkq2 = L_p_lkq2_r*1.00; % [H]

% Convert initial guess inductances to reactances:

 % Stator

 X_md(1) = Lmd*omega_BASE;

 X_mq(1) = Lmq*omega_BASE;

 X_ls(1) = Llk*omega_BASE;

 X_d(1) = X_md + X_ls; % Krause eq 5.5-39

 X_q(1) = X_mq + X_ls; % Krause eq 5.5-40

 % Field

 X_p_lfd(1) = L_p_lfd*omega_BASE;

 X_p_fd(1) = X_p_lfd + X_md; % Krause eq 5.5-40

 % Dampers

 X_p_lkq1(1) = L_p_lkq1*omega_BASE;

 X_p_lkq2(1) = L_p_lkq2*omega_BASE;

 X_p_lkd(1) = L_p_lkd*omega_BASE;

 X_p_kd(1) = X_p_lkd + X_md; % Krause eq 5.5-40

 X_p_kq1(1) = X_p_lkq1 + X_mq; % Krause eq 5.5-40

 X_p_kq2(1) = X_p_lkq2 + X_mq; % Krause eq 5.5-40

 X_aq(1) = ((1/X_mq(1)) + (1/X_ls(1))+(1/X_p_lkq1) + (1/X_p_lkq2))^-1;

 X_ad(1) = ((1/X_md(1)) + (1/X_ls(1)) + (1/X_p_lfd(1))+(1/X_p_lkd))^-1;

 %% Load steady-state Machine Data

load('Synch_Machine_Model_SIFundamental_SSv4.mat');

Synch_Machine_Model_OC = Synch_Machine_Model_SIFundamental;

 % Parse Data into variables

 t_OC = transpose(Synch_Machine_Model_OC(1,:)); % Timestamp

 Ifd = transpose(Synch_Machine_Model_OC(2,:)); % Field Current

 Vf = transpose(Synch_Machine_Model_OC(3,:)); % Field Voltage

 Is_a = transpose(Synch_Machine_Model_OC(4,:)); % Stator Current phase A

 Iq = transpose(Synch_Machine_Model_OC(5,:)); % Q axis Current

 Id = transpose(Synch_Machine_Model_OC(6,:)); % D axis Current

 Vd = transpose(Synch_Machine_Model_OC(7,:)); % D axis Voltage

 Vq = transpose(Synch_Machine_Model_OC(8,:)); % Q axis Voltage

 Vt = transpose(Synch_Machine_Model_OC(9,:)); % Terminal Voltage

 psimd = transpose(Synch_Machine_Model_OC(10,:)); % D axis mutual flux

 psimq = transpose(Synch_Machine_Model_OC(11,:)); % Q axis mutual flux

 Po = transpose(Synch_Machine_Model_OC(12,:)); % Output Real Power

 Qo = transpose(Synch_Machine_Model_OC(13,:)); % Output Reactive Power

 Wm = transpose(Synch_Machine_Model_OC(14,:)); % Rotor Mechanical Speed

 dWm = transpose(Synch_Machine_Model_OC(15,:)); % Change in Rotor Mechanical Speed

 theta_R = transpose(Synch_Machine_Model_OC(16,:)); % Rotor Mechanical Angle

 delta = transpose(Synch_Machine_Model_OC(17,:)); % Load Angle

113

 dtheta = transpose(Synch_Machine_Model_OC(18,:)); % Change in Rotor Mechanical Angle

 Ikq1 = transpose(Synch_Machine_Model_OC(19,:)); % Q axis damper winding current 1

 Ikq2 = transpose(Synch_Machine_Model_OC(20,:)); % Q axis damper winding current 2

 Ikd = transpose(Synch_Machine_Model_OC(21,:)); % D axis damper winding current

 I_abc_stator = transpose(Synch_Machine_Model_OC(22:24,:)); % ABC Phase Stator Currents

 %----------------------------------%

 %----------------------------------%

% Define measured voltages

V_r_qs = Vq(start_point:end);%ones(1,length(t))*mean(Vq);

V_r_ds = Vd(start_point:end);%ones(1,length(t))*mean(Vd);

V_pr_fd = Vf(start_point:end)*Ns_Nf; %ones(1,length(t))*mean(Vf); % Simulink model has

specified nominal field current, so volts are entered in DC and therefore must be referred to

the stator

omega_b = omega_BASE; % Base frequency

omega_r = (n_poles/2)*Wm; % rotor speed [rad/sec] eq. 1D-8 pg 58

 % Initialze LSE

 % Initialze LSE

R = [1; 1; 1; 1; 1; 1; 1]; % for positive semi-definite weight

%% Initialize flux linkages based on first measurements

 psi_r_mq(1) = psimq(start_point);

 psi_r_md(1) = psimd(start_point);

 psi_r_qs(1) = psi_r_mq(1) - Iq(start_point)*X_ls(1);

 psi_r_ds(1) = psi_r_md(1) - Id(start_point)*X_ls(1);

 psi_pr_fd(1) = psi_r_md(1) + Ifd(start_point)*(2/3)*Ns_Nf*X_ls(1);

% Output Initial Conditions to MATLAB Command Window

fprintf('Initial Conditions \n psi_mq = %.2f \n psi_md = %.2f \n psi_r_qs = %.2f \n psi_r_ds =

%.2f \n psi_pr_fd = %.2f \n',[psi_r_mq psi_r_md psi_r_qs psi_r_ds psi_pr_fd])

%% Initialize the system based on initial parameters

 k = 1; % k = iteration, first iteration is the initialization

% Number of variables to be estimated

 nvar = 3;

% For trapezoidal integration

 dt = 1/8000;

 t(1) = 0;

% Initial flux linkage states

x_int(:,1) = [psi_r_mq(1); psi_r_md(1); psi_r_qs(1); psi_r_ds(1); psi_pr_fd(1); 0; 0; 0; 0];

% Put measured voltages into matrix u

e_pr_xfd = V_pr_fd*(X_md(1)/r_p_fd); % Krause 5.5-36

u(:,1) = [V_r_qs(1); V_r_ds(1); e_pr_xfd(1); 0; 0; 0; 0; 0; 0];

%% Initialize the system based on initial parameters

 k = 1; % k = iteration, first iteration is the initialization

% Number of variables to be estimated

 nvar = 7;

% For trapezoidal integration

 dt = 1/8000;

 t(1) = 0;

fprintf('%%---Initializing Machine Model---%%\n')

for n = 2:length(t_OC(start_point:end))

 A(:,:,k) = [0, 0, X_aq(1)/X_ls(1), 0, 0, 0, 0, X_aq(1)/X_p_kq1(1), X_aq(1)/X_p_kq2(1);...

%psimq

 0, 0, 0, X_ad(1)/X_ls(1), X_ad(1)/X_p_lfd(1), 0, X_ad(1)/X_p_lkd(1), 0, 0;... %psimd

 r_s/X_ls(1), 0, -r_s/X_ls(1), -omega_r(n), 0, 0, 0, 0, 0;... %psiqs

 0, r_s/X_ls(1), omega_r(n), -r_s/X_ls(1), 0, 0, 0, 0, 0;... %psids

 0, r_p_fd/X_p_lfd(1), 0, 0, -r_p_fd/X_p_lfd(1), 0, 0, 0, 0;... %psifd

 0, 0, 0, 0, 0, -r_s/X_ls(1), 0, 0, 0;... %psi0s

 0, r_p_kd/X_p_lkd(1), 0, 0, 0, 0, -r_p_kd/X_p_lkd(1), 0, 0;... % psikd

 r_p_kq1/X_p_lkq1(1), 0, 0, 0, 0, 0, 0, -r_p_kq1/X_p_lkq1(1), 0;... %psikq1

 r_p_kq2/X_p_lkq2(1), 0, 0, 0, 0, 0, 0, 0, -r_p_kq2/X_p_lkq2(1)]; %psikq2

114

 % B matrix for voltage measurements (note all damper bars are shorted,

 % no volage) and no zero sequence

 B(:,:,k) = [0 0 0 0 0 0 0 0 0;... % psi_mq

 0 0 0 0 0 0 0 0 0;... % psi_md

 1 0 0 0 0 0 0 0 0;... % psi_qs

 0 1 0 0 0 0 0 0 0;... % psi_ds

 0 0 r_p_fd/X_md(1) 0 0 0 0 0 0;... %psi_fd

 0 0 0 0 0 0 0 0 0;... % psi_0s

 0 0 0 0 0 0 0 0 0;...% psi_kd

 0 0 0 0 0 0 0 0 0;... %psi_kq1

 0 0 0 0 0 0 0 0 0]; %psi_kq2

 C(:,:,k) = [1/X_ls(k) 0 -1/X_ls(k) 0 0 0 0 0 0;... %i_qs

 0 1/X_ls(k) 0 -1/X_ls(k) 0 0 0 0 0;... % i_ds

 0 -1/X_p_lfd(k) 0 0 1/X_p_lfd(k) 0 0 0 0;... % i_fd

 0 0 0 0 0 -1/X_ls(1) 0 0 0;... % i_0s

 0 -1/X_p_lfd(1) 0 0 0 0 1/X_p_lfd(1) 0 0;... %i_pr_kd

 -1/X_p_lkq1(1) 0 0 0 0 0 0 1/X_p_lkq1(1) 0;... %i_pr_kq1

 -1/X_p_lkq2(1) 0 0 0 0 0 0 0 1/X_p_lkq2(1)]; %i_pr_kq2

 % State Space Equations X = A*x + B*u

 u(:,n) = [V_r_qs(n); V_r_ds(n); e_pr_xfd(n); 0; 0; 0; 0; 0; 0];

 % x_###(1,:) = psi_r_mq; % x_###(2,:) = psi_r_md;

 % x_###(3,:) = psi_r_qs; % x_###(4,:) = psi_r_ds;

 % x_###(5,:) = psi_r_fd; % x_###(6,:) = psi_0s;

 % x_###(7,:) = psi_pr_kd; % x_###(8,:) = psi_pr_kq1;

 % x_###(9,:) = psi_pr_kq2

 x_diff(:,n,k) =(A(:,:,k)*x_int(:,n-1) + B(:,:,k)*u(:,n-1));

 x_int(:,n,k) = (x_int(:,n-1) + 0.5*dt*(x_diff(:,n)-x_diff(:,n-1))); % Integrated

States

 % Calculate Outputs Y = Cx + v where v = 0 for now (no noise)

 i_state(:,n,k) = C(:,:,k)*x_int(:,n,k); % Outputs

 i_r_fd(1,n,k) = (3/2)*Ns_Nf^-1*i_state(3,n,k); % Field current referred back to rotor

 % Increment Timestep

 t(n) = t(n-1)+dt;

 % Output Status of Initialization to Command Window

 if n == round(length(t_OC(start_point:end))/3)

 fprintf('\n33%% Initialized\n')

 elseif n == round(length(t_OC(start_point:end))*(2/3))

 fprintf('66%% Initialized\n')

 elseif n == length(t_OC)

 fprintf('99%% Initialized\n')

 end

end

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

 %----------------------------------%

%% State Space Integral Equations

% For trapezoidal integration

%% Least Squares Estigmation Loop

 iterations = 20;

 num_int(1:nvar,1,1) = 0;

 den_int(1:nvar,1,1) = 0;

% Initialize C.C. Lee Equation (11)

 alpha_hat(:,1) = [Lmq; Lmd; Llk; L_p_lkq1; L_p_lkq2; L_p_lkd; r_s];

 g(1:nvar,1) = 1; % Initialize gains

 fprintf('Initializing Complete \n\n%%---Beginning Estimation Algorithm---%%...\n')

 h = waitbar(0,'Approximating Machine Parameters');

% Define a matrix of "real" machine currents (C.C. Lee y_r)

 for n = 2:length(t_OC(start_point:end));

115

 i_r(:,n) = [Iq(n); Id(n); Ifd(n)*(2/3)*Ns_Nf; 0; Ikq1(n); Ikq2(n); Ikd(n)]; % real

machine currents

 end

% Begin LSE Loop

 delta_alpha(1:nvar,1) = 0;

 gain_const = 0.3; % initial gain constant

 g_adj = 0; % tracker for number of times the gain is adjusted (used to limit gain

adjustment to only 1

for k = 2:iterations

 % Calculate gains

 for ii = 1:length(delta_alpha(:,k-1))

 if abs(delta_alpha(ii,k-1)/alpha_hat(ii,k-1)) < gain_const

 g(ii,k) = 1;

 elseif abs(delta_alpha(ii,k-1)/alpha_hat(ii,k-1)) >= gain_const

 g(ii,k) = gain_const*alpha_hat(ii,k-1)/abs(delta_alpha(ii,k-1));

 end

 end

 %% Update Parameters (alpha) C.C. Lee Eq (11)

 alpha_hat(:,k) = alpha_hat(:,1) + g(:,k).*delta_alpha(:,k-1);

 Lmq(k) = alpha_hat(1,k);

% Lmq(k) = Lmq_r;

 Lmd(k) = alpha_hat(2,k);

% Lmd(k) = mean(Lmd_calc);

 Llk(k) = alpha_hat(3,k);

 X_md = Lmd(k)*omega_BASE;

 X_mq = Lmq(k)*omega_BASE;

 X_ls = Llk(k)*omega_BASE;

 X_d = X_md + X_ls; % Krause eq 5.5-39

 X_q = X_mq + X_ls; % Krause eq 5.5-40

 X_aq = ((1/X_mq) + (1/X_ls))^-1;

 X_ad = ((1/X_md) + (1/X_ls) + (1/X_p_lfd))^-1;

 % Update Initial flux linkages

 psi_r_mq(1) = psimq(start_point);

 psi_r_md(1) = psimd(start_point);

 psi_r_qs(1) = psi_r_mq(1) - Iq(start_point)*X_ls;

 psi_r_ds(1) = psi_r_md(1) - Id(start_point)*X_ls;

 psi_pr_fd(1) = psi_r_md(1) + Ifd(start_point)*(2/3)*Ns_Nf*X_ls;

 x_int(:,1,k) = [psi_r_mq(1); psi_r_md(1); psi_r_qs(1); psi_r_ds(1); psi_pr_fd(1); 0;

0; 0; 0];

 for n = 2:length(t_OC(start_point:end))

 A(:,:,k) = [0, 0, X_aq(1)/X_ls(1), 0, 0, 0, 0, X_aq(1)/X_p_kq1(1), X_aq(1)/X_p_kq2(1);...

%psimq

 0, 0, 0, X_ad(1)/X_ls(1), X_ad(1)/X_p_lfd(1), 0, X_ad(1)/X_p_lkd(1), 0, 0;... %psimd

 r_s/X_ls(1), 0, -r_s/X_ls(1), -omega_r(n), 0, 0, 0, 0, 0;... %psiqs

 0, r_s/X_ls(1), omega_r(n), -r_s/X_ls(1), r_s/X_ls(1), 0, 0, 0, 0;... %psids

 0, r_p_fd/X_p_lfd(1), 0, 0, -r_p_fd/X_p_lfd(1), 0, 0, 0, 0;... %psifd

 0, 0, 0, 0, 0, -r_s/X_ls(1), 0, 0, 0;... %psi0s

 0, r_p_kd/X_p_lkd(1), 0, 0, 0, 0, -r_p_kd/X_p_lkd(1), 0, 0;... % psikd

 r_p_kq1/X_p_lkq1(1), 0, 0, 0, 0, 0, 0, -r_p_kq1/X_p_lkq1(1), 0;... %psikq1

 r_p_kq2/X_p_lkq2(1), 0, 0, 0, 0, 0, 0, 0, -r_p_kq2/X_p_lkq2(1)]; %psikq2

 % B matrix for voltage measurements (note all damper bars are shorted,

 % no volage) and no zero sequence

 B(:,:,k) = [0 0 0 0 0 0 0 0 0;... % psi_mq

 0 0 0 0 0 0 0 0 0;... % psi_md

 1 0 0 0 0 0 0 0 0;... % psi_qs

116

 0 1 0 0 0 0 0 0 0;... % psi_ds

 0 0 r_p_fd/X_md(1) 0 0 0 0 0 0;... %psi_fd

 0 0 0 0 0 0 0 0 0;... % psi_0s

 0 0 0 0 0 0 0 0 0;...% psi_kd

 0 0 0 0 0 0 0 0 0;... %psi_kq1

 0 0 0 0 0 0 0 0 0]; %psi_kq2

 C(:,:,k) = [1/X_ls(1) 0 -1/X_ls(1) 0 0 0 0 0 0;... %i_qs

 0 1/X_ls(1) 0 -1/X_ls(1) 0 0 0 0 0;... % i_ds

 0 -1/X_p_lfd(1) 0 0 1/X_p_lfd(1) 0 0 0 0;... % i_fd

 0 0 0 0 0 -1/X_ls(1) 0 0 0;... % i_0s

 0 -1/X_p_lfd(1) 0 0 0 0 1/X_p_lfd(1) 0 0;... %i_pr_kd

 -1/X_p_lkq1(1) 0 0 0 0 0 0 1/X_p_lkq1(1) 0;... %i_pr_kq1

 -1/X_p_lkq2(1) 0 0 0 0 0 0 0 1/X_p_lkq2(1)]; %i_pr_kq2

 % State Space Equations X = A*x + B*u

 u(:,n) = [V_r_qs(n); V_r_ds(n); e_pr_xfd(n); 0; 0; 0; 0; 0; 0];

 % x_###(1,:) = psi_r_mq; % x_###(2,:) = psi_r_md;

 % x_###(3,:) = psi_r_qs; % x_###(4,:) = psi_r_ds;

 % x_###(5,:) = psi_r_fd; % x_###(6,:) = psi_0s;

 % x_###(7,:) = psi_pr_kd; % x_###(8,:) = psi_pr_kq1;

 % x_###(9,:) = psi_pr_kq2

 x_diff(:,n,k) = A(:,:,k)*x_int(:,n-1)+B(:,:,k)*u(:,n-1);

 x_int(:,n,k) = x_int(:,n-1) + 0.5*dt*(x_diff(:,n)-x_diff(:,n-1)); % Integrated States

 % Calculate Outputs Y = Cx + v where v = 0 for now (no noise)

 i_state(:,n,k) = C(:,:,k)*x_int(:,n,k); % Outputs

 i_r_fd(1,n,k) = (3/2)*Ns_Nf^-1*i_state(3,n,k); % Field current referred back to rotor

 %% LSE EQUATIONS

 % Calculate change in input states, and A,B,C Matrices w.r.t

 dx_dalpha_alpha0(:,n,k) = (x_int(:,n,k) - x_int(:,n, 1))/(k-1);

 dA_dalpha_alpha0(:,:,k) = (A(:,:,k) - A(:,:,1))/(k-1);

 dB_dalpha_alpha0(:,:,k) = (B(:,:,k) - B(:,:,1))/(k-1);

 dC_dalpha_alpha0(:,:,k) = (C(:,:,k) - C(:,:,1))/(k-1);

 % C.C. Lee Equation (6);

 eq_6(:,n,k) = A(:,:,1)*dx_dalpha_alpha0(:,n,k) +

dA_dalpha_alpha0(:,:,k)*x_int(:,n,1)...

 + dB_dalpha_alpha0(:,:,k)*u(:,n);

 % C.C. Lee Equation (5)

 dy_dalpha_alpha0(:,n,k) = C(:,:,1)*eq_6(:,n,k) +

dC_dalpha_alpha0(:,:,k)*x_int(:,n,1);

% dy_dalpha_alpha0(:,n,k) = C(:,:,k-1)*dx_dA_alpha0(:,n,k) +

dC_dalpha_alpha0(:,:,k)*x_int(:,n,k-1);

 if n == 2;

 % Initialze C.C. Lee Eq (9) numerator and denominator integrals

 num_int(1:nvar,1,k) = 0;

 den_int(1:nvar,1,k) = 0;

 end

 % C.C. Lee Equation (9)

 num(:,n,k) = dy_dalpha_alpha0(:,n,k)'*R*(i_r(:,n) - i_state(:,n,k));

 num_int(:,n,k) = num_int(:,n-1,k) + 0.5*dt*(num(:,n,k)- num(:,n-1,k));

 den(:,n,k) = dy_dalpha_alpha0(:,n,k)'*R*dy_dalpha_alpha0(:,n,k);

 den_int(:,n,k) = den_int(:,n-1,k) + 0.5*dt*(den(:,n,k) - den(:,n-1,k));

 % Increment Timestep

 t(n) = t(n-1)+dt;

 end

 % Calculate delta_alpha (alpha_hat - alpha0 in C.C. Lee eq (9))

 delta_alpha(:,k) = num_int(:,end,k) ./ (den_int(:,end,k)+0.000001); % add to

denominator to avoid divide by 0

117

%% add some error checking, if parameters have converged but states

% still have more than 5% error, change gain and continue

% Also, adjust gains only once...any more may cause diversion.

% if k > 2

% if abs(alpha_hat(1,k)-alpha_hat(1,k-2)) < 1E-6... % Lmq converged

% && abs(alpha_hat(2,k)-alpha_hat(2,k-2)) < 1E-6... % Lmd converged

% && abs(alpha_hat(3,k)-alpha_hat(3,k-2)) < 1E-6... % Llk converged

% && ((mean(i_r(1,:))-mean(i_state(1,:,k)))/mean(i_state(1,:,k)))*100 < -5 ... % q-

axis stator current error <-5%

% && ((mean(i_r(2,:))-mean(i_state(2,:,k)))/mean(i_state(2,:,k)))*100 < -5 ... % q-

axis stator current error <5%

% && g_adj < 1;

%

%

% gain_const = gain_const - 0.07;

% g_adj = g_adj+1;

% fprintf(' \ngain constant changed to %.4f \n',gain_const)

%

% elseif abs(alpha_hat(1,k)-alpha_hat(1,k-2)) < 1E-6...

% && abs(alpha_hat(2,k)-alpha_hat(2,k-2)) < 1E-6...

% && abs(alpha_hat(3,k)-alpha_hat(3,k-2)) < 1E-6...

% && ((mean(i_r(1,:))-mean(i_state(1,:,k)))/mean(i_state(1,:,k)))*100 > 5 ...

% && ((mean(i_r(2,:))-mean(i_state(2,:,k)))/mean(i_state(2,:,k)))*100 > 5 ...

% && g_adj < 1;

%

% gain_const = gain_const + 0.05;

% g_adj = g_adj+1;

% fprintf(' \ngain constant changed to %.4f \n',gain_const)

% end

% end

 %% save num_int and den_int values

 num_int_save(:,k) = num_int(:,end,k);

 den_int_save(:,k) = den_int(:,end,k);

 waitbar(k/iterations,h,sprintf('Approximating Machine Parameters \n %.3f %%

Complete',(k/iterations)*100));

end

close(h)

 figure(1)

 subplot(4,2,1)

 plot(t_OC(start_point:end),Vq(start_point:end))

 title('Simulink Q axis Voltage [V]')

 grid on

 ylabel('V')

 subplot(4,2,2)

 plot(t_OC(start_point:end),Vd(start_point:end))

 title('Simulink D axis Voltage [V]')

 grid on

 ylabel('V')

 subplot(4,2,3)

 plot(t,i_state(1,:,end),'-b')

 hold all

 plot(t_OC(start_point:end),Iq(start_point:end),'-r')

 title(sprintf('Q axis stator currents [A] \n error = %.2f %%',abs((mean(Iq)-

mean(i_state(1,:,end)))/mean(i_state(1,:,end)))*100))

 grid on

 ylabel('A')

 legend('Calculated','Simulink')

 subplot(4,2,4)

 plot(t,i_state(2,:,end),'-b')

118

 hold all

 plot(t_OC(start_point:end),Id(start_point:end),'-r')

 title(sprintf('D axis stator currents [A]\n error = %.2f %%',abs((mean(Id)-

mean(i_state(2,:,end)))/mean(i_state(2,:,end)))*100))

 grid on

 ylabel('A')

 legend('Calculated','Simulink')

 subplot(4,2,5)

 plot(t,x_int(1,:,end),'-b')

 hold all

 plot(t_OC(start_point:end),psimq(start_point:end),'-r')

 title(sprintf('Q axis psi_m_q \n error = %.2f %%',abs((mean(psimq)-

mean(x_int(1,:)))/mean(x_int(1,:)))*100))

 ylabel('Flux Linkage')

 grid on

 legend('Calculated','Simulink')

 subplot(4,2,6)

 plot(t,x_int(2,:,end),'-b')

 hold all

 plot(t_OC(start_point:end),psimd(start_point:end),'-r')

 title(sprintf('D axis psi_m_d \n error = %.2f %%',abs((mean(psimd)-

mean(x_int(2,:)))/mean(x_int(2,:)))*100))

 ylabel('Flux Linkage')

 grid on

 legend('Calculated','Simulink')

 subplot(4,1,4)

 plot(t,i_r_fd(1,:,end),'-b')

 % plot(t,(-i_r_ds + i_pr_fd))

 hold all

 plot(t_OC(start_point:end), Ifd(start_point:end),'-r');

 title(sprintf('Field Current [A] \n error = %.2f %%',abs((mean(Ifd)-

mean(i_r_fd(1,:,end)))/mean(i_r_fd(1,:,end)))*100))

 xlabel('Time [s]')

 ylabel('Amps [A]')

 legend('Calculated','Simulink')

 grid on

 figure(2)

 plot(t,i_state(1,:,end))

 hold all

 plot(t, i_state(2,:,end))

 plot(t, i_state(3,:,end))

 grid on

 title('Calculated Currents')

 legend('Iqs','Ids','Ifd')

 xlabel('Time [s]')

 ylabel('Amps')

% create vectors to plot the real values

 Lmd_rplot = ones(1,k)*Lmd_r;

 Lmq_rplot = ones(1,k)*Lmq_r;

 Llk_rplot = ones(1,k)*Llk_r;

 Xd_rplot = ones(1,k)*X_d_r;

 Xq_rplot = ones(1,k)*X_q_r;

 for nn = 1:k

 Lmd_error(nn) = abs(((Lmd_rplot(1,nn) - Lmd(end,nn))/Lmd(end,nn))*100);

 Lmq_error(nn) = abs(((Lmq_rplot(1,nn) - Lmq(end,nn))/Lmq(end,nn))*100);

 Llk_error(nn) = abs(((Llk_rplot(1,nn) - Llk(end,nn))/Llk(end,nn))*100);

 end

 figure

 subplot(2,1,1)

 plot(Lmd(end,:))

 hold all

 plot(Lmq(end,:))

119

 plot(Llk(end,:))

 plot(Lmd_rplot)

 plot(Lmq_rplot)

 plot(Llk_rplot)

 grid on

 xlabel('Iteration')

 ylabel('Estimation')

 legend('Lmd','Lmq','Llk','Actual Lmd','Actual Lmq','Actual Llk')

 title('Estimated Machine Parameters')

 subplot(2,1,2)

 plot(Lmd_error)

 hold all

 plot(Lmq_error)

 plot(Llk_error)

 legend('Lmd error','Lmq error','Llk error')

 xlabel('Iterations')

 ylabel('% error')

 title('Estimated Inductance Error')

 grid on

 figure

 plot(Lmd(end,:)/Lmd_r)

 hold all

 plot(Lmq(end,:)/Lmq_r)

 plot(Llk(end,:)/Llk_r)

 grid on

 xlabel('Iterations')

 ylabel('Ratio')

 title('Ratio of estimated to real parameters')

 legend('Lmd','Lmq','Llk')

 L_d = Llk(end)+Lmd(end);

 L_q = Llk(end)+Lmq(end);

% Output estimated machine parameters to MATLAB Command Window

fprintf('Estimated Machine Parameters \n Lmd= %.8f \n Lmq = %.8f \n Llk = %.8f \n L_d=%.4f

L_q=%.4f\n',[Lmd(end,end) Lmq(end,end) Llk(end,end) L_d L_q])

fprintf('Estimation Complete \n')

((Lmd_r-Lmd(end))/Lmd(end))*100

((Lmq_r-Lmq(end))/Lmq(end))*100

((Llk_r-Llk(end))/Llk(end))*100

120

3rd Order Synchronous Machine Model
%% Author: Michael West

% Thesis: Online Dynamic Parameter Estimation of Synchronous Machines

% Purpose of Script: 3rd Order Synchronous Machine Model

clc

clear all

close all

%% Machine Data/Stator Base values

V_sBASE = 13800*sqrt(2/3); %Base voltage

S_BASE = 187E6; %MVA BASE

Z_BASE = V_sBASE^2/S_BASE; %Impedance base

I_sBASE = sqrt(2)*S_BASE/(sqrt(3)*V_sBASE);

omega_BASE = 2*pi*60;

L_sBASE = Z_BASE/omega_BASE;

%% Field Base Values

I_fbase = 1087; % Amps

V_fdBASE = 226.6; % Voltages

 % Number of machine poles

 n_poles = 40;

 start_point = 1;

%% Real Machine Parameters;

 % Stator

 Lmd_r = 3.2164E-03; % D-axis mutual inductance [H]

 Lmq_r = 9.7153E-04; % Q-axis mutual inductance [H]

 Llk_r = 3.0892E-04; %[H]

 r_s_r = 2.9069E-03; % [Ohm]

 L_d_r = Llk_r+Lmd_r;

 L_q_r = Llk_r+Lmq_r;

 % Field

 r_p_fd_r = 1.9013E-03; % field resistance [Ohm]

 L_p_lfd_r = 3.0712E-04; % field leakage inductance [H]

 % Convert inductances to reactances:

 % Stator

 X_md_r = Lmd_r*omega_BASE; %

 X_mq_r = Lmq_r*omega_BASE;

 X_ls_r = Llk_r*omega_BASE;

 X_d_r = X_md_r + X_ls_r; % Krause eq 5.5-39

 X_q_r = X_mq_r + X_ls_r; % Krause eq 5.5-40

 % Field

 X_p_lfd_r = L_p_lfd_r*omega_BASE;

 X_p_fd_r = X_p_lfd_r + X_md_r; % Krause eq 5.5-40

 % Output real machine parameters to MATLAB Command Window

 fprintf('Real Machine Parameters \n \n Stator: \n Lmd= %.4f Xmd = %.4f \n Lmq =

%.4f Xmq = %.4f \n Llk = %.4f Xlk = %.4f \n r_s = %.4f \n L_d=%.4f L_q=%.4f \n\n

Field: \n r`_fd = %.4f \n L`_lfd = %.4f X`_lfd = %.4f \n X_p_fd = %.4f

\n',...

 [Lmd_r X_md_r Lmq_r X_mq_r Llk_r X_ls_r r_s_r L_d_r L_q_r r_p_fd_r L_p_lfd_r

X_p_lfd_r X_p_fd_r])

 % Define Stator_winding/Field_winding transformation ratio:

 Ns_Nf = 0.07798;

load('Synch_Machine_Model_SIFundamental_SSv4.mat');

Synch_Machine_Model_OC = Synch_Machine_Model_SIFundamental;

 % Parse Data into variables

 t_OC = transpose(Synch_Machine_Model_OC(1,:)); % Timestamp

121

 Ifd = transpose(Synch_Machine_Model_OC(2,:)); % Field Current

 Vf = transpose(Synch_Machine_Model_OC(3,:)); % Field Voltage

 Is_a = transpose(Synch_Machine_Model_OC(4,:)); % Stator Current phase A

 Iq = transpose(Synch_Machine_Model_OC(5,:)); % Q axis Current

 Id = transpose(Synch_Machine_Model_OC(6,:)); % D axis Current

 Vd = transpose(Synch_Machine_Model_OC(7,:)); % D axis Voltage

 Vq = transpose(Synch_Machine_Model_OC(8,:)); % Q axis Voltage

 Vt = transpose(Synch_Machine_Model_OC(9,:)); % Terminal Voltage

 psimd = transpose(Synch_Machine_Model_OC(10,:)); % D axis mutual flux

 psimq = transpose(Synch_Machine_Model_OC(11,:)); % Q axis mutual flux

 Po = transpose(Synch_Machine_Model_OC(12,:)); % Output Real Power

 Qo = transpose(Synch_Machine_Model_OC(13,:)); % Output Reactive Power

 Wm = transpose(Synch_Machine_Model_OC(14,:)); % Rotor Mechanical Speed

 dWm = transpose(Synch_Machine_Model_OC(15,:)); % Change in Rotor Mechanical Speed

 theta_R = transpose(Synch_Machine_Model_OC(16,:)); % Rotor Mechanical Angle

 delta = transpose(Synch_Machine_Model_OC(17,:)); % Load Angle

 dtheta = transpose(Synch_Machine_Model_OC(18,:)); % Change in Rotor Mechanical Angle

 Ikq1 = transpose(Synch_Machine_Model_OC(19,:)); % Q axis damper winding current 1

 Ikq2 = transpose(Synch_Machine_Model_OC(20,:)); % Q axis damper winding current 2

 Ikd = transpose(Synch_Machine_Model_OC(21,:)); % D axis damper winding current

 I_abc_stator = transpose(Synch_Machine_Model_OC(22:24,:)); % ABC Phase Stator Currents

% Define measured voltages

V_r_qs = Vq(start_point:end);%ones(1,length(t))*mean(Vq);

V_r_ds = Vd(start_point:end);%ones(1,length(t))*mean(Vd);

V_pr_fd = Vf(start_point:end);%*Ns_Nf; %ones(1,length(t))*mean(Vf); % Simulink model has

specified nominal field current, so volts are entered in DC and therefore must be referred to

the stator

omega_b = omega_BASE; % Base frequency

omega_r = (n_poles/2)*Wm; % rotor speed [rad/sec] eq. 1D-8 pg 58

%% Convert inductances to reactances:

 % Stator

 X_md = Lmd_r*omega_BASE; %

 X_mq = Lmq_r*omega_BASE;

 X_ls = Llk_r*omega_BASE;

 X_d = X_md + X_ls; % Krause eq 5.5-39

 X_q = X_mq + X_ls; % Krause eq 5.5-40

 % Field

 X_p_lfd = L_p_lfd_r*omega_BASE;

 X_p_fd = X_p_lfd + X_md; % Krause eq 5.5-40

% Initialize flux linkages

 psi_r_mq(1) = psimq(start_point);

 psi_r_md(1) = psimd(start_point);

 psi_r_qs(1) = psi_r_mq(1) - Iq(start_point)*X_ls(1);

 psi_r_ds(1) = psi_r_md(1) - Id(start_point)*X_ls(1);

 psi_pr_fd(1) = psi_r_md(1) + Ifd(start_point)*(2/3)*Ns_Nf*X_ls(1);

 % Output Initial Conditions to MATLAB Command Window

 fprintf('Initial Conditions \n psi_mq = %.2f psi_md = %.2f \n psi_r_qs = %.2f

psi_r_ds = %.2f \n psi_pr_fd = %.2f \n \n',[psi_r_mq psi_r_md psi_r_qs psi_r_ds psi_pr_fd])

 X_aq(1) = ((1/X_mq(1)) + (1/X_ls(1)))^-1;

 X_ad(1) = ((1/X_md(1)) + (1/X_ls(1)) + (1/X_p_lfd(1)))^-1;

 e_pr_xfd = V_pr_fd*(X_md(1)/r_p_fd_r); % Krause 5.5-36

 x_int(:,1) = [psi_r_mq(1); psi_r_md(1); psi_r_qs(1); psi_r_ds(1); psi_pr_fd(1)];

 u(:,1) = [V_r_qs(1); V_r_ds(1); e_pr_xfd(1)];

%% Initialize the system based on initial parameters

 k = 1; % k = iteration, first iteration is the initialization

% Number of variables to be estimated

 nvar = 3;

% For trapezoidal integration

122

 dt = 1/8000;

 t(1) = 0;

 for n = 2:length(t_OC(start_point:end))

 % State Space Matrices

 A(:,:,k) = [0, 0, X_aq(k)/X_ls(k), 0, 0;...

 0, 0, 0, X_ad(k)/X_ls(k), X_ad(k)/X_p_lfd(k);...

 r_s_r/X_ls(k), 0, -r_s_r/X_ls(k), -omega_r(n), 0;...

 0, r_s_r/X_ls(k), omega_r(n), -r_s_r/X_ls(k), r_s_r/X_ls(k);...

 0, r_p_fd_r/X_p_lfd(k), 0, 0, -r_p_fd_r/X_p_lfd(k)];

 B(:,:,k) = [0 0 0;...

 0 0 0;...

 1 0 0;...

 0 1 0;...

 0 0 r_p_fd_r/X_md(k)];

 C(:,:,k) = [1/X_ls(k) 0 -1/X_ls(k) 0 0;...

 0 1/X_ls(k) 0 -1/X_ls(k) 0;...

 0 -1/X_p_lfd(k) 0 0 1/X_p_lfd(k)];

 % State Space Equations X = A*x + B*u

 u(:,n) = [V_r_qs(n); V_r_ds(n); e_pr_xfd(n)];

 % x_###(1,:) = psi_r_mq; % x_###(2,:) = psi_r_md;

 % x_###(3,:) = psi_r_qs; % x_###(4,:) = psi_r_ds;

 % x_###(5,:) = psi_r_fd;

 x_diff(:,n,k) = A(:,:,k)*x_int(:,n-1)+B(:,:,k)*u(:,n-1);

 x_int(:,n,k) = x_int(:,n-1) + 0.5*dt*(x_diff(:,n)-x_diff(:,n-1)); % Integrated

States

 % Calculate Outputs Y = Cx + v where v = 0 for now (no noise)

 i_state(:,n,k) = C(:,:,k)*x_int(:,n,k); % Outputs

 i_r_fd(1,n,k) = (3/2)*Ns_Nf^-1*i_state(3,n,k); % Field current referred back to

rotor

 % Increment Timestep

 t(n) = t(n-1)+dt;

 end

%% Plot Results

 figure(1)

 subplot(4,2,1)

 plot(t_OC(start_point:end),Vq(start_point:end))

 title('Simulink Q axis Voltage [V]')

 grid on

 ylabel('V')

 subplot(4,2,2)

 plot(t_OC(start_point:end),Vd(start_point:end))

 title('Simulink D axis Voltage [V]')

 grid on

 ylabel('V')

 subplot(4,2,3)

 plot(t,i_state(1,:,end))

 hold all

 plot(t_OC(start_point:end),Iq(start_point:end))

 title(sprintf('Q axis stator currents [A] \n error = %.2f %%',abs((mean(Iq)-

mean(i_state(1,:,end)))/mean(i_state(1,:,end)))*100))

 grid on

 ylabel('A')

 legend('Calculated','Simulink')

 subplot(4,2,4)

 plot(t,i_state(2,:,end))

 hold all

123

 plot(t_OC(start_point:end),Id(start_point:end))

 title(sprintf('D axis stator currents [A]\n error = %.2f %%',abs((mean(Id)-

mean(i_state(2,:,end)))/mean(i_state(2,:,end)))*100))

 grid on

 ylabel('A')

 legend('Calculated','Simulink')

 subplot(4,2,5)

 plot(t,x_int(1,:,end))

 hold all

 plot(t_OC(start_point:end),psimq(start_point:end))

 title(sprintf('Q axis psi_m_q \n error = %.2f %%',abs((mean(psimq)-

mean(x_int(1,:)))/mean(x_int(1,:)))*100))

 ylabel('Flux Linkage')

 grid on

 legend('Calculated','Simulink')

 subplot(4,2,6)

 plot(t,x_int(2,:,end))

 hold all

 plot(t_OC(start_point:end),psimd(start_point:end))

 title(sprintf('D axis psi_m_d \n error = %.2f %%',abs((mean(psimd)-

mean(x_int(2,:)))/mean(x_int(2,:)))*100))

 ylabel('Flux Linkage')

 grid on

 legend('Calculated','Simulink')

 subplot(4,1,4)

 plot(t,i_r_fd(1,:,end))

 hold all

 plot(t_OC(start_point:end), Ifd(start_point:end));

 title(sprintf('Field Current [A] \n error = %.2f %%',abs((mean(Ifd)-

mean(i_r_fd(1,:,end)))/mean(i_r_fd(1,:,end)))*100))

 xlabel('Time [s]')

 ylabel('Amps [A]')

 legend('Calculated','Simulink')

 grid on

 figure(2)

 plot(t,i_state(1,:,end))

 hold all

 plot(t, i_state(2,:,end))

 plot(t, i_state(3,:,end))

 grid on

 title('Calculated Currents')

 legend('Iqs','Ids','Ifd')

 xlabel('Time [s]')

 ylabel('Amps')

124

Least Squares Estimation Implemented with 3rd Order Synchronous Machine Model
%% Author: Michael West

% Thesis: Online Dynamic Parameter Estimation of Synchronous Machines

% Purpose of Script: Implement the Least Squares Estimation Algorithm on a

% 3rd Order Synchronous Machine Model and Compare Results with Simulink

% Synchronous Machine Model.

clc

clear all

close all

tic

%% Machine Data/Stator Base values

V_sBASE = 13800*sqrt(2/3); %Base voltage

S_BASE = 187E6; %MVA BASE

Z_BASE = V_sBASE^2/S_BASE; %Impedance base

I_sBASE = sqrt(2)*S_BASE/(sqrt(3)*V_sBASE);

omega_BASE = 2*pi*60;

L_sBASE = Z_BASE/omega_BASE;

%% Field Base Values

I_fbase = 1087; % Amps

V_fdBASE = 226.6; % Voltages

 % Number of machine poles

 n_poles = 40;

 start_point = 1;

%% Real Machine Parameters;

 % Stator

 Lmd_r = 3.2164E-03; % D-axis mutual inductance [H]

 Lmq_r = 9.7153E-04; % Q-axis mutual inductance [H]

 Llk_r = 3.0892E-04; %[H]

 r_s_r = 2.9069E-03; % [Ohm]

 L_d_r = Llk_r+Lmd_r;

 L_q_r = Llk_r+Lmq_r;

 % Field

 r_p_fd_r = 1.9013E-03; % field resistance [Ohm]

 L_p_lfd_r = 3.0712E-04; % field leakage inductance [H]

 % Convert inductances to reactances:

 % Stator

 X_md_r = Lmd_r*omega_BASE; %

 X_mq_r = Lmq_r*omega_BASE;

 X_ls_r = Llk_r*omega_BASE;

 X_d_r = X_md_r + X_ls_r; % Krause eq 5.5-39

 X_q_r = X_mq_r + X_ls_r; % Krause eq 5.5-40

 % Field

 X_p_lfd_r = L_p_lfd_r*omega_BASE;

 X_p_fd_r = X_p_lfd_r + X_md_r; % Krause eq 5.5-40

 % Output real machine parameters to MATLAB Command Window

 fprintf('Real Machine Parameters \n \n Stator: \n Lmd= %.4f Xmd = %.4f \n Lmq =

%.4f Xmq = %.4f \n Llk = %.4f Xlk = %.4f \n r_s = %.4f \n L_d=%.4f L_q=%.4f \n\n

Field: \n r`_fd = %.4f \n L`_lfd = %.4f X`_lfd = %.4f \n X_p_fd = %.4f

\n',...

 [Lmd_r X_md_r Lmq_r X_mq_r Llk_r X_ls_r r_s_r L_d_r L_q_r r_p_fd_r L_p_lfd_r

X_p_lfd_r X_p_fd_r])

 % Define Stator_winding/Field_winding transformation ratio:

 Ns_Nf = 0.07798;

%% Load Open Circuit Machine Data

load('Synch_Machine_Model_SIFundamental_OC.mat');

Synch_Machine_Model_OC = Synch_Machine_Model_SIFundamental;

125

 % Parse Data into variables

 t_OC = transpose(Synch_Machine_Model_OC(1,:)); % Timestamp

 Ifd = transpose(Synch_Machine_Model_OC(2,:)); % Field Current

 Vf = transpose(Synch_Machine_Model_OC(3,:)); % Field Voltage

 Is_a = transpose(Synch_Machine_Model_OC(4,:)); % Stator Current phase A

 Iq = transpose(Synch_Machine_Model_OC(5,:)); % Q axis Current

 Id = transpose(Synch_Machine_Model_OC(6,:)); % D axis Current

 Vd = transpose(Synch_Machine_Model_OC(7,:)); % D axis Voltage

 Vq = transpose(Synch_Machine_Model_OC(8,:)); % Q axis Voltage

 Vt = transpose(Synch_Machine_Model_OC(9,:)); % Terminal Voltage

 psimd = transpose(Synch_Machine_Model_OC(10,:)); % D axis mutual flux

 psimq = transpose(Synch_Machine_Model_OC(11,:)); % Q axis mutual flux

 Po = transpose(Synch_Machine_Model_OC(12,:)); % Output Real Power

 Qo = transpose(Synch_Machine_Model_OC(13,:)); % Output Reactive Power

 Wm = transpose(Synch_Machine_Model_OC(14,:)); % Rotor Mechanical Speed

 dWm = transpose(Synch_Machine_Model_OC(15,:)); % Change in Rotor Mechanical Speed

 theta_R = transpose(Synch_Machine_Model_OC(16,:)); % Rotor Mechanical Angle

 delta = transpose(Synch_Machine_Model_OC(17,:)); % Load Angle

 dtheta = transpose(Synch_Machine_Model_OC(18,:)); % Change in Rotor Mechanical Angle

 Ikq1 = transpose(Synch_Machine_Model_OC(19,:)); % Q axis damper winding current 1

 Ikq2 = transpose(Synch_Machine_Model_OC(20,:)); % Q axis damper winding current 2

 Ikd = transpose(Synch_Machine_Model_OC(21,:)); % D axis damper winding current

 I_abc_stator = transpose(Synch_Machine_Model_OC(22:24,:)); % ABC Phase Stator Currents

 %% Calculate Lmd based on open circuit measurements

for n = 1:length(Ifd)

 Lmd_calc(n) = (1/omega_BASE)*Vq(n)/((2/3)*(1/Ns_Nf)*Ifd(n));

 % calculate error

 Lmd_calc_error(n) = ((Lmd_calc(n) - Lmd_r) /Lmd_r)*100;

end

 figure(1)

 plot(t_OC,Lmd_calc)

 hold all

 plot(t_OC, ones(1,length(Lmd_calc))*Lmd_r)

 title(sprintf('Lmd Calculated \n average error = %.2f %%',abs(mean(Lmd_calc_error))))

 xlabel('Time [s]')

 ylabel('H')

 legend('Calculated','Actual')

 grid on

%% Initial Guess Machine Parameters

% Stator

 Lmd = mean(Lmd_calc)*1.0; % D-axis mutual inductance [H]

 Lmq = Lmq_r*1.0; % Q-axis mutual inductance [H]

 Llk = Llk_r*1.0; %[H]

 r_s = r_s_r*1.0; % [Ohm]

 L_d = Llk+Lmd;

 L_q = Llk+Lmq;

 % Field

 r_p_fd = r_p_fd_r*1.00; % field resistance [Ohm]

 L_p_lfd = L_p_lfd_r*1.00; % field leakage inductance [H]

%% Load steady-state Machine Data

load('Synch_Machine_Model_SIFundamental_SSv4.mat');

Synch_Machine_Model_OC = Synch_Machine_Model_SIFundamental;

 % Parse Data into variables

 t_OC = transpose(Synch_Machine_Model_OC(1,:)); % Timestamp

 Ifd = transpose(Synch_Machine_Model_OC(2,:)); % Field Current

 Vf = transpose(Synch_Machine_Model_OC(3,:)); % Field Voltage

 Is_a = transpose(Synch_Machine_Model_OC(4,:)); % Stator Current phase A

 Iq = transpose(Synch_Machine_Model_OC(5,:)); % Q axis Current

 Id = transpose(Synch_Machine_Model_OC(6,:)); % D axis Current

126

 Vd = transpose(Synch_Machine_Model_OC(7,:)); % D axis Voltage

 Vq = transpose(Synch_Machine_Model_OC(8,:)); % Q axis Voltage

 Vt = transpose(Synch_Machine_Model_OC(9,:)); % Terminal Voltage

 psimd = transpose(Synch_Machine_Model_OC(10,:)); % D axis mutual flux

 psimq = transpose(Synch_Machine_Model_OC(11,:)); % Q axis mutual flux

 Po = transpose(Synch_Machine_Model_OC(12,:)); % Output Real Power

 Qo = transpose(Synch_Machine_Model_OC(13,:)); % Output Reactive Power

 Wm = transpose(Synch_Machine_Model_OC(14,:)); % Rotor Mechanical Speed

 dWm = transpose(Synch_Machine_Model_OC(15,:)); % Change in Rotor Mechanical Speed

 theta_R = transpose(Synch_Machine_Model_OC(16,:)); % Rotor Mechanical Angle

 delta = transpose(Synch_Machine_Model_OC(17,:)); % Load Angle

 dtheta = transpose(Synch_Machine_Model_OC(18,:)); % Change in Rotor Mechanical Angle

 Ikq1 = transpose(Synch_Machine_Model_OC(19,:)); % Q axis damper winding current 1

 Ikq2 = transpose(Synch_Machine_Model_OC(20,:)); % Q axis damper winding current 2

 Ikd = transpose(Synch_Machine_Model_OC(21,:)); % D axis damper winding current

 I_abc_stator = transpose(Synch_Machine_Model_OC(22:24,:)); % ABC Phase Stator Currents

 %----------------------------------%

 %----------------------------------%

% Define measured voltages

V_r_qs = Vq(start_point:end);%ones(1,length(t))*mean(Vq);

V_r_ds = Vd(start_point:end);%ones(1,length(t))*mean(Vd);

V_pr_fd = Vf(start_point:end);%*Ns_Nf; %ones(1,length(t))*mean(Vf); % Simulink model has

specified nominal field current, so volts are entered in DC and therefore must be referred to

the stator

omega_b = omega_BASE; % Base frequency

omega_r = (n_poles/2)*Wm; % rotor speed [rad/sec] eq. 1D-8 pg 58

 % Initialze LSE

R = [1; 1; 1]; % for positive semi-definite weight

% Convert inductances to reactances:

 % Stator

 X_md(1) = Lmd(1)*omega_BASE; %

 X_mq(1) = Lmq(1)*omega_BASE;

 X_ls(1) = Llk(1)*omega_BASE;

 X_d(1) = X_md(1) + X_ls(1); % Krause eq 5.5-39

 X_q(1) = X_mq(1) + X_ls(1); % Krause eq 5.5-40

 % Field

 X_p_lfd(1) = L_p_lfd(1)*omega_BASE;

 X_p_fd(1) = X_p_lfd(1) + X_md(1); % Krause eq 5.5-40

%% Initialize flux linkages

 psi_r_mq(1) = psimq(start_point);

 psi_r_md(1) = psimd(start_point);

 psi_r_qs(1) = psi_r_mq(1) - Iq(start_point)*X_ls(1);

 psi_r_ds(1) = psi_r_md(1) - Id(start_point)*X_ls(1);

 psi_pr_fd(1) = psi_r_md(1) + Ifd(start_point)*(2/3)*Ns_Nf*X_ls(1);

 % Output Initial Conditions to MATLAB Command Window

 fprintf('Initial Conditions \n psi_mq = %.2f psi_md = %.2f \n psi_r_qs = %.2f

psi_r_ds = %.2f \n psi_pr_fd = %.2f \n \n',[psi_r_mq psi_r_md psi_r_qs psi_r_ds psi_pr_fd])

 X_aq(1) = ((1/X_mq(1)) + (1/X_ls(1)))^-1;

 X_ad(1) = ((1/X_md(1)) + (1/X_ls(1)) + (1/X_p_lfd(1)))^-1;

 e_pr_xfd = V_pr_fd*(X_md(1)/r_p_fd); % Krause 5.5-36

 x_int(:,1) = [psi_r_mq(1); psi_r_md(1); psi_r_qs(1); psi_r_ds(1); psi_pr_fd(1)];

 u(:,1) = [V_r_qs(1); V_r_ds(1); e_pr_xfd(1)];

%% Initialize the system based on initial parameters

 k = 1; % k = iteration, first iteration is the initialization

% Number of variables to be estimated

 nvar = 3;

127

% For trapezoidal integration

 dt = 1/8000;

 t(1) = 0;

fprintf('%%---Initializing Machine Model---%%\n')

 for n = 2:length(t_OC(start_point:end))

 % State Space Matrices

 A(:,:,k) = [0, 0, X_aq(k)/X_ls(k), 0, 0;...

 0, 0, 0, X_ad(k)/X_ls(k), X_ad(k)/X_p_lfd(k);...

 r_s/X_ls(k), 0, -r_s/X_ls(k), -omega_r(n), 0;...

 0, r_s/X_ls(k), omega_r(n), -r_s/X_ls(k), r_s/X_ls(k);...

 0, r_p_fd/X_p_lfd(k), 0, 0, -r_p_fd/X_p_lfd(k)];

 B(:,:,k) = [0 0 0;...

 0 0 0;...

 1 0 0;...

 0 1 0;...

 0 0 r_p_fd/X_md(k)];

 C(:,:,k) = [1/X_ls(k) 0 -1/X_ls(k) 0 0;...

 0 1/X_ls(k) 0 -1/X_ls(k) 0;...

 0 -1/X_p_lfd(k) 0 0 1/X_p_lfd(k)];

 % State Space Equations X = A*x + B*u

 u(:,n) = [V_r_qs(n); V_r_ds(n); e_pr_xfd(n)];

 % x_###(1,:) = psi_r_mq; % x_###(2,:) = psi_r_md;

 % x_###(3,:) = psi_r_qs; % x_###(4,:) = psi_r_ds;

 % x_###(5,:) = psi_r_fd;

 x_diff(:,n,k) = A(:,:,k)*x_int(:,n-1)+B(:,:,k)*u(:,n-1);

 x_int(:,n,k) = x_int(:,n-1) + 0.5*dt*(x_diff(:,n)-x_diff(:,n-1)); % Integrated

States

 % Calculate Outputs Y = Cx + v where v = 0 for now (no noise)

 i_state(:,n,k) = C(:,:,k)*x_int(:,n,k); % Outputs

 i_r_fd(1,n,k) = (3/2)*Ns_Nf^-1*i_state(3,n,k); % Field current referred back to

rotor

 % Increment Timestep

 t(n) = t(n-1)+dt;

 % Output Status of Initialization to Command Window

 if n == round(length(t_OC(start_point:end))/3)

 fprintf('\n33%% Initialized\n')

 elseif n == round(length(t_OC(start_point:end))*(2/3))

 fprintf('66%% Initialized\n')

 elseif n == length(t_OC)

 fprintf('99%% Initialized\n')

 end

 end

%% Least Squares Estigmation Loop

 iterations = 10;

 num_int(1:nvar,1,1) = .001;

 den_int(1:nvar,1,1) = .001;

% Initialize C.C. Lee Equation (11)

 alpha_hat(:,1) = [Lmq; Lmd; Llk;];

 g(1:nvar,1) = 1; % Initialize gains

 fprintf('Initializing Complete \n\n%%---Beginning Estimation Algorithm---%%...\n')

 h = waitbar(0,'Approximating Machine Parameters');

 % Define a matrix of "real" machine currents (C.C. Lee y_r)

 for n = 2:length(t_OC(start_point:end));

 i_r(:,n) = [Iq(n); Id(n); Ifd(n)*(2/3)*Ns_Nf]; % real machine currents

 end

% Begin LSE Loop

128

delta_alpha(1:nvar,1) = 0;

for k = 2:iterations

 % Calculate gains

 for ii = 1:length(delta_alpha(:,k))

 if abs(delta_alpha(ii,k-1)/alpha_hat(ii,k-1)) < 0.25

 g(ii,k) = 0.5;

 elseif abs(delta_alpha(ii,k-1)/alpha_hat(ii,k-1)) >= 0.25

 g(ii,k) = 0.1*alpha_hat(ii,k-1)/abs(delta_alpha(ii,k-1));

 end

 end

% g(n,1:3,k) = 0.0001;

 %% Update Parameters (alpha) C.C. Lee Eq (11)

 alpha_hat(:,k) = alpha_hat(:,k-1) + g(:,k).*delta_alpha(:,k-1);

 Lmq(k) = alpha_hat(1,k);

 Lmd(k) = alpha_hat(2,k);

% Lmd(n,k) = mean(Lmd_calc);

 Llk(k) = alpha_hat(3,k);

 X_md = Lmd(k)*omega_BASE;

 X_mq = Lmq(k)*omega_BASE;

 X_ls = Llk(k)*omega_BASE;

 X_d = X_md + X_ls; % Krause eq 5.5-39

 X_q = X_mq + X_ls; % Krause eq 5.5-40

 X_aq = ((1/X_mq) + (1/X_ls))^-1;

 X_ad = ((1/X_md) + (1/X_ls) + (1/X_p_lfd))^-1;

 % Update Initial flux linkages

 psi_r_mq(1) = psimq(start_point);

 psi_r_md(1) = psimd(start_point);

 psi_r_qs(1) = psi_r_mq(1) - Iq(start_point)*X_ls;

 psi_r_ds(1) = psi_r_md(1) - Id(start_point)*X_ls;

 psi_pr_fd(1) = psi_r_md(1) + Ifd(start_point)*(2/3)*Ns_Nf*X_ls;

 for n = 2:length(t_OC(start_point:end))

 % Update State-Space Matrices

 A(:,:,k) = [0, 0, X_aq/X_ls, 0, 0;...

 0, 0, 0, X_ad/X_ls, X_ad/X_p_lfd;...

 r_s/X_ls, 0, -r_s/X_ls, -omega_r(n), 0;...

 0, r_s/X_ls, omega_r(n), -r_s/X_ls, r_s/X_ls;...

 0, r_p_fd/X_p_lfd, 0, 0, -r_p_fd/X_p_lfd];

 B(:,:,k) = [0 0 0;...

 0 0 0;...

 1 0 0;...

 0 1 0;...

 0 0 r_p_fd/X_md];

 C(:,:,k) = [1/X_ls 0 -1/X_ls 0 0;...

 0 1/X_ls 0 -1/X_ls 0;...

 0 -1/X_p_lfd 0 0 1/X_p_lfd];

 %% State Space Equations X = A*x + B*u

 u(:,n) = [V_r_qs(n); V_r_ds(n); e_pr_xfd(n)];

 % x_###(1,:) = psi_r_mq; % x_###(2,:) = psi_r_md;

 % x_###(3,:) = psi_r_qs; % x_###(4,:) = psi_r_ds;

 % x_###(5,:) = psi_r_fd;

 x_diff(:,n,k) = A(:,:,k)*x_int(:,n-1)+B(:,:,k)*u(:,n-1);

 x_int(:,n,k) = x_int(:,n-1) + 0.5*dt*(x_diff(:,n)-x_diff(:,n-1)); % Integrated

States

 % Calculate Outputs Y = Cx + v where v = 0 for now (no noise)

 i_state(:,n,k) = C(:,:,k)*x_int(:,n,k); % Outputs

 i_r_fd(1,n,k) = (3/2)*Ns_Nf^-1*i_state(3,n,k); % Field current referred back to

rotor

129

 %% LSE EQUATIONS

 % Calculate change in input states, and A,B,C Matrices w.r.t

 dx_dA_alpha0(:,n,k) = (x_int(:,n,k) - x_int(:,n, k-1));

 dA_dalpha_alpha0(:,:,k) = A(:,:,k) - A(:,:,k-1);

 dB_dalpha_alpha0(:,:,k) = B(:,:,k) - B(:,:,k-1);

 dC_dalpha_alpha0(:,:,k) = C(:,:,k) - C(:,:,k-1);

 % C.C. Lee Equation (6);

 eq_6(:,n,k) = A(:,:,k)*dx_dA_alpha0(:,n,k) +

dA_dalpha_alpha0(:,:,k)*x_int(:,n,k)...

 + dB_dalpha_alpha0(:,:,k)*u(:,n);

 % C.C. Lee Equation (5)

 dy_dalpha_alpha0(:,n,k) = C(:,:,k)*eq_6(:,n,k) +

dC_dalpha_alpha0(:,:,k)*x_int(:,n,k);

% dy_dalpha_alpha0(:,n,k) = C(:,:,k-1)*dx_dA_alpha0(:,n,k) +

dC_dalpha_alpha0(:,:,k)*x_int(:,n,k-1);

 if n == 2;

 % Initialze C.C. Lee Eq (9) numerator and denominator integrals

 num_int(1:nvar,1,k) = .001;

 den_int(1:nvar,1,k) = .001;

 end

 % C.C. Lee Equation (9)

 num(:,n,k) = dy_dalpha_alpha0(:,n,k)'*R*(i_r(:,n) - i_state(:,n,k));

 num_int(:,n,k) = num_int(:,n-1,k) + 0.5*dt*(num(:,n,k)- num(:,n-1,k));

 den(:,n,k) = dy_dalpha_alpha0(:,n,k)'*R*dy_dalpha_alpha0(:,n,k);

 den_int(:,n,k) = den_int(:,n-1,k) + 0.5*dt*(den(:,n,k) - den(:,n-1,k));

 % Increment Timestep

 t(n) = t(n-1)+dt;

 end

 % Calculate delta_alpha (alpha_hat - alpha0 in C.C. Lee eq (9))

 delta_alpha(:,k) = num_int(:,end,k) ./ (den_int(:,end,k)+0.000001); % add to

denominator to avoid divide by 0

 % save num_int and den_int values

 num_int_save(:,k) = num_int(:,end,k);

 den_int_save(:,k) = den_int(:,end,k);

 waitbar(k/iterations,h,sprintf('Approximating Machine Parameters \n %.3f %%

Complete',(k/iterations)*100));

end

L_d = Llk(end)+Lmd(end);

 L_q = Llk(end)+Lmq(end);

% Output estimated machine parameters to MATLAB Command Window

 fprintf('Estimated Machine Parameters \n Lmd= %.4f \n Lmq = %.4f \n Llk = %.4f \n

L_d=%.4f L_q=%.4f\n',[Lmd(end,end) Lmq(end,end) Llk(end,end) L_d L_q])

 close(h)

 figure(1)

 subplot(4,2,1)

 plot(t_OC(start_point:end),Vq(start_point:end))

 title('Simulink Q axis Voltage [V]')

 grid on

 ylabel('V')

 subplot(4,2,2)

 plot(t_OC(start_point:end),Vd(start_point:end))

 title('Simulink D axis Voltage [V]')

 grid on

 ylabel('V')

 subplot(4,2,3)

130

 plot(t,i_state(1,:,end))

 hold all

 plot(t_OC(start_point:end),Iq(start_point:end))

 title(sprintf('Q axis stator currents [A] \n error = %.2f %%',abs((mean(Iq)-

mean(i_state(1,:,end)))/mean(i_state(1,:,end)))*100))

 grid on

 ylabel('A')

 legend('Calculated','Simulink')

 subplot(4,2,4)

 plot(t,i_state(2,:,end))

 hold all

 plot(t_OC(start_point:end),Id(start_point:end))

 title(sprintf('D axis stator currents [A]\n error = %.2f %%',abs((mean(Id)-

mean(i_state(2,:,end)))/mean(i_state(2,:,end)))*100))

 grid on

 ylabel('A')

 legend('Calculated','Simulink')

 subplot(4,2,5)

 plot(t,x_int(1,:,end))

 hold all

 plot(t_OC(start_point:end),psimq(start_point:end))

 title(sprintf('Q axis psi_m_q \n error = %.2f %%',abs((mean(psimq)-

mean(x_int(1,:)))/mean(x_int(1,:)))*100))

 ylabel('Flux Linkage')

 grid on

 legend('Calculated','Simulink')

 subplot(4,2,6)

 plot(t,x_int(2,:,end))

 hold all

 plot(t_OC(start_point:end),psimd(start_point:end))

 title(sprintf('D axis psi_m_d \n error = %.2f %%',abs((mean(psimd)-

mean(x_int(2,:)))/mean(x_int(2,:)))*100))

 ylabel('Flux Linkage')

 grid on

 legend('Calculated','Simulink')

 subplot(4,1,4)

 plot(t,i_r_fd(1,:,end))

 hold all

 plot(t_OC(start_point:end), Ifd(start_point:end));

 title(sprintf('Field Current [A] \n error = %.2f %%',abs((mean(Ifd)-

mean(i_r_fd(1,:,end)))/mean(i_r_fd(1,:,end)))*100))

 xlabel('Time [s]')

 ylabel('Amps [A]')

 legend('Calculated','Simulink')

 grid on

 figure(2)

 plot(t,i_state(1,:,end))

 hold all

 plot(t, i_state(2,:,end))

 plot(t, i_state(3,:,end))

 grid on

 title('Calculated Currents')

 legend('Iqs','Ids','Ifd')

 xlabel('Time [s]')

 ylabel('Amps')

% create vectors to plot the real values

 Lmd_rplot = ones(1,k)*Lmd_r;

 Lmq_rplot = ones(1,k)*Lmq_r;

 Llk_rplot = ones(1,k)*Llk_r;

 Xd_rplot = ones(1,k)*X_d_r;

 Xq_rplot = ones(1,k)*X_q_r;

 for nn = 1:k

131

 Lmd_error(nn) = abs(((Lmd_rplot(1,nn) - Lmd(end,nn))/Lmd(end,nn))*100);

 Lmq_error(nn) = abs(((Lmq_rplot(1,nn) - Lmq(end,nn))/Lmq(end,nn))*100);

 Llk_error(nn) = abs(((Llk_rplot(1,nn) - Llk(end,nn))/Llk(end,nn))*100);

 end

 figure

 subplot(2,1,1)

 plot(Lmd(end,:))

 hold all

 plot(Lmq(end,:))

 plot(Llk(end,:))

 plot(Lmd_rplot)

 plot(Lmq_rplot)

 plot(Llk_rplot)

 grid on

 xlabel('Iteration')

 ylabel('Estimation')

 legend('Lmd','Lmq','Llk','Actual Lmd','Actual Lmq','Actual Llk')

 title('Estimated Machine Parameters')

 subplot(2,1,2)

 plot(Lmd_error)

 hold all

 plot(Lmq_error)

 plot(Llk_error)

 legend('Lmd error','Lmq error','Llk error')

 xlabel('Iterations')

 ylabel('% error')

 title('Estimated Inductance Error')

 grid on

 figure

 plot(Lmd(end,:)/Lmd_r)

 hold all

 plot(Lmq(end,:)/Lmq_r)

 plot(Llk(end,:)/Llk_r)

 grid on

 xlabel('Iterations')

 ylabel('Ratio')

 title('Ratio of estimated to real parameters')

 legend('Lmd','Lmq','Llk')

fprintf('Estimation Complete \n')

toc

