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Abstract 

 
Tree growth is mechanistically linked to the global water and carbon (C) cycles 

and is thus a key area of research. As part of this research studies have explored linkages 

between remote sensing data products and tree growth, but the majority of this research 

has focused on tracking photosynthesis and inter-annual tree growth. Only a fewstudies 

have explored intra-annual stem radial growth, which provides information on long term 

carbon sequestration.  

The following chapters explore new remote sensing-based approaches for monitor 

intra-annual stem radial growth in North American forests. Chapter 1 outlines some of 

the previous work that has used remote sensing approaches to monitor tree growth, as 

well as some of the potential challenges that exist.  

Chapter 2 explores possible connections between remotely sensed snow 

disappearance date and the onset of stem radial growth in conifers at the forest-tundra 

ecotone (FTE) in North America. Specifically, we posed two hyphotheses: 1) that 

satellite based SDD estimates from the Moderate Resolution Imaging Spectroradiometer 

(SDDMODIS) are not significantly (p < 0.05) different than in situ measurements of SDD 

from soil temperature probes (SDDST), thereby suggesting that SDDMODIS is a reliable 

proxy for in situ SDD, and; 2) that estimates of SDD are not significantly different than 

the onset of tree radial growth, implying that SDDMODIS could reliably detect the start of 

tree wood growth at the FTE. To test our hypotheses, we used data from two field sites at 

the FTE - one located in Alaska (AK) and one in the Northwest Territory (NWT). 

SDDMODIS and SDDST were synchronous at AK, while they were asynchronous at NWT. 

Both SDD estimates were significantly different from tree growth onset at AK in both 

years but were similar in NWT. These results highlight the ecological heterogeneity of 

the FTE and the key knowledge gaps remaining in our understanding of environmental 

factors driving tree growth at this ecotone. However, our finding that remote estimates of 

SDD were statistically similar to tree growth onset at one field site demonstrates that 

remote sensing holds promise for detecting shifts in springtime tree growth phenology in 

response to climate change at the FTE. 

Chapter 3 explores connections between branch level remotely sensed leaf 
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temperatures (TL) and intra-annual stem radial variations (SRVs). We posed two main 

questions. Can we use a combination of remote sensing information and environmental 

variables to predict 1) tree water status, and 2) tree growth? Within Question 2, we also 

had two sub-questions: 2.1) Can we predict if trees are growing or not, and 2.2) Based on 

the results of Question 2.1, can we predict the amount of daily growth? We hypothesized 

that the strength of the relationship between remotely sensed TL and SRVs would vary 

depending on the time of day which TL was measured. We used an existing 

environmental monitoring network that collected near continuous SRV and TL 

measurements through the 2019 – 2021 growing seasons to answer these questions. 

Results showed that TL, along with other environmental variables, could predict SRVs 

reasonably well, with maximum R2 values between 0.5 – 0.75 for the best models. 

However, the time of day which TL was measured also changed the strength of the 

models, as well as the shape of the predicted model curves. These results show promise 

for using remotely sensed TL as a proxy for daily SRVs, though there are still key 

questions that remain, including how well the observed relationships scale to coarser 

spatial scales. This project provides a crucial first step in the development of novel 

remote sensing based approaches for monitoring intra-annual SRVs and outlines potential 

future directions. 

Chapter 4 highlights some of the key findings from Chapters 2 and 3, and 

discusses potential avenues for future research. One highlighted area of future research 

includes scaling stem radial growth measurements up to a spatial and temporal 

resolutions equivalent to many airborne and satellite remote sensing data products. This 

will be a crucial area of research to continue evaluating how well remote sensing 

products can monitor stem radial growth in North American forests. 
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Chapter 1: Introduction 

 
 Forests occupy roughly half of the Earth’s land surface (Boisvenue and Running, 

2006) and make important contributions to global water and carbon cycles, contributing 

to over 40% of the terrestrial carbon sink (Le Quéré et al., 2012; Pan et al., 2011). 

Besides their importance as a global carbon (C) sink, forests provide other benefits, 

including serving as habitat for a variety of animals and plants. Forests also serve as 

homes for 1.6 billion people across the world, including 11% of the population of the 

United States (Newton et al., 2020), and provide ecosystem services (e.g., timber 

production, freshwater reservoirs, etc.) which people worldwide depend on. Given the 

socioecological importance of forests it is critical that robust, effective monitoring 

systems are in place to detect changes in forest structure and function, as well as 

determine how these changes may impact ecosystem services which human communities 

rely on. 

 Human-induced climate change is affecting boreal and temperate forests across 

North America in numerous ways but is having particularly detrimental impacts to 

hydrologic regimes (Fyfe et al., 2017; Mote et al., 2018). Both forest types are located 

mostly in high-latitude or high-elevation regions and as such are characterized by long, 

cold winters with a seasonal snowpack and short growing seasons. There is evidence that 

seasonal snowpacks influence numerous forest processes, including the onset of the 

growing season and water availability for tree growth (Rossi et al., 2011; Vaganov et al., 

1999). Thus, any changes in the amount and duration of seasonal snowpacks in North 

American forests could affect physiological processes that influence important ecosystem 

services.  

Climate-change induced effects on seasonal snowpacks in North America are 

already being observed, including declines in the amount of snow each winter as well as 

changes in the length of the snow season, typically in the form of earlier snow melt (Fyfe 

et al., 2017; Mote et al., 2018). While some studies have explored the effects of these 

changing snow regimes on tree growth (Bowling et al., 2018; Rasmus et al., 2011), more 
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robust methods are needed to assess the impacts of these alterations on subsequent tree 

growth.  

Stem radial growth is a foundational physiological process with key linkages to 

global C and water cycles (Drew and Downes, 2009). Thus, this process is uniquely 

suited to provide information on hydrologic-related changes to tree growth in forested 

ecosystems. Stem radial growth is the expansion of a tree bole over time, and this 

expansion can be measured at diurnal and seasonal (intra-annual growth), or yearly 

(inter-annual growth) time scales (De Swaef et al., 2015; Drew and Downes, 2009). 

Radial growth occurs when there is sufficient water in the cambial cells to increase the 

turgor potential enough to allow cell expansion and division (Jones, 2014). During wood 

production C is then captured and stored in the new wood for decades to centuries. While 

many studies have used inter-annual growth measurements to determine the efficiency of 

carbon uptake for a given growing season, intra-annual tree growth may be better suited 

to study carbon uptake efficiency and how it responds to within-season variability in 

growth conditions.  

 Intra-annual stem radial growth can be measured in-situ using point 

dendrometers, which are instruments that are fixed to a tree bole and can detect 

micrometer level expansions and contractions of stem radius (referred to as stem radial 

variations, or SRVs) at very high temporal resolutions (minutes to hours) (Drew and 

Downes, 2009). SRVs have been used to monitor tree water status, stem radial growth 

and the onset of radial growth in forests (Dietrich et al., 2018; Eitel et al., 2020; 

Oberhuber, 2017; Zweifel et al., 2021, 2005). While dendrometers provide a wealth of 

ecophysiological information, they do have their limitations, mainly that they can only 

provide spatially limited information and that large dendrometer networks are expensive 

and time consuming to install and maintain. Thus, it can be difficult to generalize the 

results from these fine-scale physiological measurements across entire forested 

ecosystems. Developing approaches to assess these intra-annual SRVs across entire 

ecosystems and regions is vital to allow an understanding of sub-yearly changes in forest 

hydrologic and C regimes. 
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 Remote sensing techniques are also well positioned to monitor climate-induced 

alterations to tree growth. From the advent of Earth-orbiting satellites like Landsat, 

remote sensing technologies have been able to measure processes related to forest 

function and change (Dye and Tucker, 2003; Loveland and Dwyer, 2012; Tucker and 

Sellers, 1986). To do so a wide range of remote sensing data products have been 

developed, which provide information on many inter-annual tree growth processes, 

including vegetative phenology (Dye and Tucker, 2003; Karkauskaite et al., 2017; 

Karlsen et al., 2008), plant growth (Berner et al., 2013; White et al., 2016), and C cycling 

and sequestration (Xiao et al., 2004; Zhu et al., 2016). Many of these products are also 

easy to obtain and use compared to traditional forest mensuration approaches which often 

require costly field sampling to collect spatially limited data (Kerr and Ostrovsky, 2003; 

Marceau and Hay, 1999). These technologies allowed researchers and managers to 

conduct ecosystem level studies that were not possible solely with in-situ methods, 

getting looks at how water availability, C cycling, and plant growth varied across entire 

landscapes (Kerr and Ostrovsky, 2003). However, few remote sensing approaches for 

tracking intra-annual tree growth have been developed, which leaves a critical knowledge 

gap in our understanding of how carbon, water, and other key nutrient cycles that are 

closely linked to tree growth vary across regions and ecosystems.  

 Linking point dendrometer measurements with remote sensing methods could 

provide a robust technique for monitoring intra-annual stem radial growth at ecosystem 

scales and how this process will respond to climate change. However, before airborne 

and spaceborne level remote sensing data can be used, relationships must be studied 

between SRVs and in-situ sensors acquiring branch or tree level remote sensing data. 

This is a crucial step for any remote sensing technique as field studies help to identify 

linkages between remotely sensed information and the physiological process of interest 

(e.g., tree growth) that might be more difficult to identifyfrom airborne or satellite remote 

sensing data (Zellweger et al., 2019). Field studies can also highlight potential challenges 

to using satellite level data as well. An example of a study that used in-situ remote 

sensing information is Eitel et al. (2020), who explored if a remotely sensed vegetation 

index (e.g., photochemical reflectance index, or PRI) could track intra-annual radial 

growth in conifers at eh forest-tundra ecotone. They used branch level PRI data to answer 
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this question and found that PRI closely tracked stem radial growth through the growing 

season and highlighted some of the challenges that could be associated with using coarser 

scale PRI data (e.g., variation in background reflectance, cloud and snow cover, and the 

scalability of the observed mechanistic relationships between PRI and growth) for 

monitoring stem radial growth (Eitel et al., 2020). Thus, this study demonstrates the 

tremendous value of in-situ remote sensing studies to develop and validate remote 

sensing approaches for monitoring physiological processes at the landscape scale. 

 The following chapters explore relationships between various remote sensing 

techniques and stem radial growth metrics to better understand if remote sensing 

approaches can be used to track intra-annual stem radial growth in North American 

forests. Chapter 2 evaluates the effectiveness of using remotely sensed snow 

disappearance date (SDD) estimates for detecting the onset of stem radial growth in 

conifers at the FTE. Past studies have shown that SDD and radial growth onset 

correspond well in high latitude forests (Rossi et al., 2011; Vaganov et al., 1999), while 

other remote sensing indices have had success in predicting the end of the growing 

season at the FTE (Eitel et al., 2020). Thus, SDD (if shown to be effective) combined 

with other remote sensing information, could provide an accurate estimate of the length 

of the growing season in high-latitude forests. 

 Chapter 3 explores connections between branch level remotely sensed TL and 

SRVs in a subalpine temperate forest. Due to the mechanistic linkages to tree water 

status, TL is well positioned to detect and monitor intra-annual changes in SRVs. This 

work lays the foundation for future work exploring the suitability of using TL as a proxy 

for SRVs in temperate coniferous forests and is made relevant by the recent (as of 2022) 

launch of several spaceborne instruments (e.g., ECOSTRESS and Landsat 9) which 

measure TL at increasing spatial and temporal resolutions. Chapter 4 highlights the key 

findings of chapter 2 and 3 and outlines potential future research areas to continue 

developing the remote sensing approaches described in chapters 2 and 3. 
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Chapter 2: Determining the Suitability of Remotely Sensed Snow 

Disappearance Date as a Proxy for the Onset of Tree Wood Growth 

in Conifers at the Forest Tundra Ecotone 
 

Abstract 

Tree wood growth is a key phenological process governing the seasonal duration 

of carbon sequestration, but relatively little is known about how climate change affects 

tree growth. Hence, methods for detecting and monitoring tree growth onset are needed, 

particularly in regions like the forest-tundra ecotone (FTE) that are sensitive to climatic 

changes. Because snow disappearance date (SDD) is observable across large spatial 

scales using satellite remote sensing and may influence tree growth onset, we tested the 

reliability of remotely sensed SDD as a proxy for tree wood growth onset at the FTE. We 

pose two research hypotheses: 1) that satellite based SDD estimates from the Moderate 

Resolution Imaging Spectroradiometer (SDDMODIS) are not significantly (p < 0.05) 

different than in situ measurements of SDD from soil temperature probes (SDDST), 

thereby suggesting that SDDMODIS is a reliable proxy for in situ SDD, and; 2) that 

estimates of SDD are not significantly different than the onset of tree radial growth, 

implying that SDDMODIS could reliably detect the start of tree wood growth at the FTE. 

To test our hypotheses, we used data from two field sites at the FTE - one located in 

Alaska (AK) and one in the Northwest Territory (NWT). SDDMODIS and SDDST were 

synchronous at AK, while they were asynchronous at NWT. Both SDD estimates were 

significantly different from tree growth onset at AK in both years but were similar in 

NWT. These results highlight the ecological heterogeneity of the FTE and the key 

knowledge gaps remaining in our understanding of phenological processes driving tree 

growth at this ecotone. However, our finding that remote estimates of SDD were 

statistically similar to tree growth onset at one field site demonstrates that remote sensing 

holds promise for detecting shifts in phenology in response to climate change at the FTE. 

 

Introduction 

Vegetation phenology is strongly linked to the timing and magnitude of carbon (C) 

sequestration. Therefore, the value of phenological research and monitoring has 

strengthened in recent years as climatic changes affect the timing of plant growth in many 
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ecosystems (Jeganathan et al., 2014; Jeong et al., 2011; Wang et al., 2011; White et al., 

2005). This shift often results in a longer growing season (earlier start in spring and/or 

later end in autumn) which potentially increases the amount of wood production 

(Delpierre et al., 2016b; Lempereur et al., 2015) and aboveground C that can be 

sequestered over long timescales (Babst et al., 2014; Thomas and Martin, 2012). Despite 

its importance, the phenology of wood growth is difficult to track especially at large 

spatial scales, and its response to climate change compared to leaf phenology is relatively 

understudied (Delpierre et al., 2016a; Ford et al., 2016). Hence, suitable monitoring 

approaches are needed to ensure that the phenology of tree wood growth can be 

understood in the context of climate change. 

Tree wood growth phenology is particularly important to study in the arctic-boreal 

region where temperatures are rising 2.5 times faster than the global average (Overland et 

al., 2018). Within this region is the 13,000 km circumpolar transition zone between the 

boreal forest and the treeless tundra known as the forest-tundra ecotone (FTE). Because 

trees growing at the FTE are at the northernmost extent of their global distribution, it has 

been posited that treeline may be particularly sensitive to subtle changes in climate 

(Korner, 2012; Malanson et al., 2019), thus providing a valuable opportunity to explore 

how climatic changes may affect physiological processes such as tree wood growth. In 

particular, the timing of snow disappearance (with subsequent soil thaw and increases in 

soil moisture) could affect the length of the growing season for trees at the FTE 

(Buermann et al., 2013; X. Zhang et al., 2019), where the snow disappearance date 

(SDD) already appears to be occurring earlier than historically (Callaghan et al., 2011; 

Pivot et al., 2002; Semmens and Ramage, 2013). How tree wood growth phenology will 

respond to this is not known, though it will undoubtedly have implications for regional 

carbon sequestration. 

 Phenologically sensitive remote sensing techniques could be useful for 

monitoring the onset of tree wood growth across the FTE. Many studies have 

demonstrated strong relationships between the onset of photosynthetic activity and 

remotely sensed vegetation indices (e.g., NDVI) (Beck et al., 2006; Böttcher et al., 2014; 

Gamon et al., 2016; Vierling et al., 1997)) or solar-induced chlorophyll fluorescence 

(SIF) (Magney et al., 2019; Parazoo et al., 2018; Pierrat et al., 2021; Walther et al., 
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2016). However, to date few studies have explored linkages between remote sensing 

products and tree wood growth onset, especially in evergreen trees that are common at 

the FTE and have limited seasonal turnover of foliage. 

 Recently, Eitel et al. (2020) explored the linkages between foliar-scale 

observations of the photochemical reflectance index (PRI) and tree wood growth at the 

FTE. This study utilized point dendrometers affixed to evergreen conifers to determine 

seasonality of sub-millimeter scale stem growth. Eitel et al. (2020) showed that the PRI 

signal corresponded closely to daily tree wood growth measurements throughout the 

growing season, and that PRI was particularly effective at determining the cessation of 

tree wood growth in late summer. However, PRI did not track tree wood growth onset at 

the FTE closely. While Eitel et al. (2020) provided a novel method for tracking tree wood 

growth both during and at the end of the season, a method for detecting tree wood growth 

onset is still needed to provide an efficient, reliable, and scalable approach for monitoring 

the seasonality of tree wood growth across the FTE.  

 Several proxies for detecting tree wood growth onset at coarse spatial scales have 

been proposed. One such metric is remotely sensed snow disappearance date (SDD). 

Previous work suggests that the timing of spring snow disappearance corresponds closely 

with the timing of tree growth onset in evergreen needleleaf trees in the boreal forest 

(Kirdyanov et al., 2003; Rossi et al., 2011; Vaganov et al., 1999; Yun et al., 2018). 

Modelling and field studies have shown that physiological processes driving wood 

growth, including cambial activation and xylogenesis, begin at or immediately after SDD 

(Rossi et al., 2011; Vaganov et al., 1999). Kirdyanov and colleagues (2003) concluded 

that areas with later snow disappearance experience a shorter growing season and hence 

exhibit reduced tree growth due to delayed growth onset. The relationship between SDD 

and the onset of plant growth has been observed in other vegetation types besides 

conifers as well, including in tundra systems (Carrer et al., 2019; Cooper et al., 2011; 

Schmidt et al., 2006). Remote sensing studies further support the idea that there are 

linkages between SDD and the onset of biomass production, as spectral indices sensitive 

to the timing of spring green-up have shown a rapid increase after snowmelt (Barichivich 

et al., 2013; Dye and Tucker, 2003; Pierrat et al., 2021). Finally, Böttcher and colleagues 

(2014) showed that fractional snow cover dynamics detected by satellites could be an 
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effective metric for determining and spatially scaling the onset of photosynthetic activity 

in a boreal conifer forest. 

 Remote sensing instruments such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) mounted on the Aqua and Terra satellites can quantify snow 

cover and thus SDD across the FTE (Frei et al., 2012; Hall and Riggs, 2007). MODIS 

snow products are well studied and validated, and are frequently used to monitor changes 

in snowpack phenology across landscapes (Coll and Li, 2018; Dong et al., 2014; Gudex-

Cross et al., 2021; Hall and Riggs, 2007; Huang et al., 2018; Petersky and Harpold, 2018; 

Selkowitz et al., 2014; Wang et al., 2008; H. Zhang et al., 2019). These products also 

have a high temporal resolution (1 day), increasing their popularity for satellite-derived 

snow detection (Riggs et al., 2016). While the use of MODIS snow products may be 

limited by their relatively coarse spatial resolution (~500 m at nadir, but can vary 

depending on the sensor view angle), frequent cloud cover interference, and reduced 

reliability under forested canopies (Frei et al., 2012; Nolin, 2010; O’Leary et al., 2018; 

Raleigh et al., 2013; Selkowitz et al., 2014), these products can provide a valuable 

estimate for the end of the snow season at spatial and temporal scales that are not possible 

to get with in situ instruments.  

 

Table 2.1: Site characteristics, along with vegetative cover and climate data, for the two FTE field sites. 

 

 

 

AK NWT

No. of Plots 6 4
No. of Instrumented Trees 36 24

Latitude 68
o
 N 68.6

o
 N

Longitude 149.8
o
 W 133.7

o
 W

Elevation 610 - 760 90 - 100
Average Canopy Cover (%) 19.8 13.1

Average Stem Density (stems/km
2
) 3.4 6

Average Soil Temperature (
o
C) 1.3 0.13

Average Snow Depth (cm) 37.8 36.5
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 The overarching goal of this project was to determine if remotely sensed SDD 

could be used as a proxy for the onset of tree wood growth in evergreen needleleaf trees 

growing at the FTE. To accomplish this goal, we tested the following two hypotheses: 1) 

MODIS-derived SDD (SDDMODIS) is not significantly different than in-situ soil 

temperature-derived SDD (SDDST) at the FTE, thereby suggesting that SDDMODIS is a 

reliable proxy for in-situ SDDST, and; 2) SDD estimates are not significantly different 

than the onset of radial growth, thus implying that SDDMODIS could reliably determine the 

start of tree wood growth in evergreens at the FTE. To test our hypotheses, we used 

observations from field sites at the North American FTE, leveraging direct measurement 

of stem wood biomass change with point dendrometers, soil temperature observations, 

and remotely sensed spectral imaging. 

 

Methods 

Study Sites and Observational Setup 

Field data were collected from two FTE study sites during the spring and early 

summer of 2018-2019 (Figure 2.1). The first site is in the Brooks Range, Alaska, USA 

(hereafter referred to as AK) and includes six plots located along a north-south transect in 

the Dietrich River Valley near the Dalton Highway. The area is topographically diverse, 

Figure 2.1: Map showing the location of the AK (blue star) and NWT (red star) sites at the forest 
tundra ecotone, along with images that are representative of both sites. 
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with white spruce (Picea glauca (Moench) Voss) and black spruce (P. mariana (Mill.) 

BSP) dominant in the valley bottom and low-stature tundra vegetation growing along the 

upper slopes. Various willow (Salix spp.), birch (Betula spp.) and alder (Alnus spp) 

species dominate the understory in the area. Canopy cover among the six plots varied 

between 9.7% - 28.8%, with an average canopy cover among all six plots of 19.8%. 

 The second site is in the Mackenzie River Delta near Inuvik, Northwest 

Territories, Canada (hereafter referred to as NWT) and includes four plots located along a 

north-south transect. The topography is much less diverse than AK, with white spruce 

prevalent on the low rolling hills. These trees tend to grow in clumps surrounded by 

tundra vegetation, with no clear delineation of treeline compared to the AK site. Canopy 

cover at NWT varied between 2.3% - 40.3%, with an average canopy cover of 13.1% 

amongst the four plots. At both sites, the first cumulative snowfall generally occurs 

around October, with snow disappearing some time in May (Semmens and Ramage, 

2013; Shi et al., 2015). Table 2.1 includes other important site characteristics for both 

study sites. 

At each plot location, six mature trees were identified and a series of 

physiological and biophysical sensors were installed at each tree. All instrumented trees 

(n = 36) in AK were white spruce, while in NWT most of the instrumented trees (n = 18) 

were white spruce whereas six were black spruce. Sensors included soil temperature 

probes (RT-1; Meter Group Inc. or 5TM; Meter Group, Inc., USA ) placed at a depth of 

10 cm below the soil surface and underneath the canopy of each target tree and point 

dendrometers (LP-10F; Midori USA) affixed to the tree bole at breast height (137 cm). 

Point dendrometers measure small changes (micrometer scale) in tree stem radius and 

have been previously used to accurately determine the onset of tree wood growth (Cruz-

Garcia et al., 2019; Eitel et al., 2020; Zweifel et al., 2010). All sensors were connected to 

a datalogger (CR300; Campbell Scientific, USA or EM50; Meter Group Inc., USA) and 

continuously collected measurements throughout each study year at either 5- or 20-

minute intervals. Data used in this study was collected from 2018 – 2019. 

Snow Disappearance Date 

Two different approaches were used to determine SDD based on in situ and 

satellite measurements. The first method (hereafter referred to SDDST) used plot-level 
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soil temperature data. During snow-free conditions, surface soil temperatures closely 

track changes in air temperature, but when snow is present soil temperature decouples 

from air temperature due to the insulating properties of the snowpack (Lundquist and 

Lott, 2010; Taras et al., 2002; Tyler et al., 2008) (Figure 2.2). Following previous studies 

in arctic and alpine ecosystems, SDDST was defined as the last day in which soil 

temperatures were stable at approximately 0o C, after which soil temperatures began to 

fluctuate with air temperatures (Taras et al., 2002).  

 

The second SDD approach utilized the MODIS MOD10A1 data product (Hall and 

Riggs, 2016) to find a remotely sensed estimate of SDD (SDDMODIS). This product 

provides daily estimates of NDSI snow cover derived from images collected from the 

Terra satellite (Riggs et al., 2016). Specifically, the Normalized Difference Snow Index 

(NDSI), which is derived using the difference in reflectance between the visible-near 

infrared (0.3 – 1.0 µm) and shortwave-infrared (0.9-1.7 µm) wavelengths, is used to 

determine snow cover within a pixel (Riggs et al., 2017, 2016). NDSI is calculated using 

MODIS (from the Terra satellite) band 4 (0.55 µm)  and band 6 (1.64 µm):  

Figure 2.2: Example soil temperature signal from an instrumented tree at the AK field site. The snow cover 
period, snowmelt period, snow disappearance date, and snow free period are all shown. 
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A NDSI value of 0.0 indicates snow absence and any NDSI value > 0.0 indicates at least 

some snow within the pixel (Riggs et al., 2016). While the daily observations provided by 

the MOD10A1 product are often limited by cloud cover (especially at high latitudes), 

past studies have shown that snow presence and SDD determined from the MOD10A1 

data product do correlate well with ground observations (Ault et al., 2006; Hall and 

Riggs, 2007; Wang et al., 2008). We analyzed data from the MOD10A1 product 

collocated with the study sites (5 pixels from AK, 4 pixels from NWT) between Julian 

Days 121-196 (May 1 – July 15). Due to the heterogeneity inherent in a MODIS pixel at 

the FTE (where it collects information from both forest and tundra), SDDMODIS was 

defined as the first day in which the NDSI value for the pixel of interest was equal to 0, 

indicating complete snowmelt within the pixel (Dong et al., 2014; Huang et al., 2018; H. 

Zhang et al., 2019). 

Onset of Stem Radial Growth  

 Stem radial growth in conifers follows a predictable annual pattern which is 

useful in deciphering the onset and cessation of growth (Cruz-Garcia et al., 2019; Zweifel 

et al., 2010). In the early spring and summer stem radius increases until reaching a 

maximum size in the late summer or fall. After this time, stem radius contracts through 

the winter and carbon uptake ceases. In late winter the stem contracts to its seasonally 

minimum radius, after which it begins expanding again. This expansion is indicative of 

trees refilling stem tissues with water (Drew and Downes, 2009; Zweifel et al., 2006). 

Irreversible stem radial growth (i.e. woody growth, or xylogensis) begins once the stem 

radius of the current year surpasses the maximum radius of the previous year and 

continues through the summer until a new maximum stem radius is reached (Drew and 

Downes, 2009; Zweifel et al., 2006). Point dendrometers can determine these radial 

growth patterns as they track minute changes in tree stem radius (De Swaef et al., 2015). 

Therefore, to determing the onset of radial growth for each study tree in 2018 and 2019 

we first found the maximum stem radius reached during the previous year, then following 

previous work (e.g., Zweifel et al., 2010) we determined the onset of radial growth as the 

day in which the previous year’s maximum stem radius was exceeded. 



17 
 

Statistical Analysis 

 To test our first hypothesis that SDDMODIS is not statistically different from 

SDDST we used Mann-Whitney U tests (for non-parametric data) for each site and each 

year. To test our second hypothesis that SDD is not statistically different than the onset of 

tree radial growth we again used Mann-Whitney U tests, parsing by SDD method, site, 

and year. We tested the two sites separately because each site is different in terms of 

topography, vegetative structure, and snowfall (see Table 2.1). Also, given the increasing 

criticism of using a significance level threshold (e.g., α = 0.05) that dichotomously 

separates significant from insignificant differences (e.g., see Amrhein et al., 2019), we 

discuss p-values in the context of “evidence for rejecting the null hypothesis of no 

difference.” All statistical analyses were conducted using the open source software 

package R version 3.6.2 (R Core Team, 2019). Due to sensor malfunction, insufficient 

data, etc., some instrumented trees were left out of the analysis. In total, eight and 16 

trees distributed across the six plots were included for 2018 and 2019, respectively, at 

AK. Five and 10 trees across the four plots were included from 2018 and 2019, 

respectively, at NWT.  

 

Table 2.2: Mean day of year (DOY) and mode for SDDMODIS, SDDST, and radial growth onset for both 
sites in 2018 and 2019. 
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Results 

Comparisons of SDDST and SDDMODIS 

At AK, median SDD occurred between Julian day (DOY) 139 – 147 (May 19 – 

May 27) in 2018 and 2019 for both methods (Figure 2.3, Table 2.2). SDDMODIS appeared 

to occur earlier than SDDST for both 2018 and 2019. There was also a smaller difference 

between median SDDMODIS and median SDDST in 2019 (three days) than in 2018 (eight 

days). The results of the Mann-Whitney U test suggests that there is no difference (alpha 

≤ 0.05) between the distributions of SDDMODIS and SDDST in 2018 (p = 0.31) and in 2019 

(p = 0.05) (Table 2.3), indicating that SDDMODIS and SDDST were synchronous. 

 

 At NWT, median SDD occurred between DOY 144 – 172 (May 24 – June 21) in 

2018 and 2019 for both methods used for determining SDD (Figure 2.4, Table 2.2). 

Similar to AK, there was variability between years and SDD methods. For example, 

SDDMODIS occurred earlier than SDDST in both years, and there was a larger difference 

between median SDDST and SDDMODIS in 2018 than in 2019. Median SDDMODIS and 

SDDST were separated by 20 days in 2018 and 18 days in 2019. The Mann-Whitney U 

tests indicated that there was sufficient evidence to reject the null hypothesis of no 

difference between the distributions of SDDMODIS and SDDST in both 2018 (p = 0.01) and 

2019 (p ≤ 0.01), thus indicating that SDDMODIS and SDDST were asynchronous (Table 

Figure 2.3: Boxplots showing the timing of SDDST, SDDMODIS, and the start of radial growth at the AK 
site in 2018 (left) and 2019 (right). The black line in each box indicates the median value. The number of 
trees sampled is also shown. 
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2.3). 

Comparisons Between SDD Estimates and the Start of Radial Growth 

The median tree wood growth onset at AK occurred on DOY 170  (June 19) in 

2018 and DOY 164 (June 13) in 2019 (Figure 2.3, Table 2.2). This timing follows the 

same pattern observed in both SDD estimates, with stem radial growth onset occurring 

earlier in 2019 than in 2018. However, for both years the start of tree growth occurred 

approximately two to three weeks after SDD estimates. Results of Mann-Whitney U tests 

provided strong evidence (p ≤ 0.01) to reject the statistical null hypothesis of no 

difference between either SDDMODIS or SDDST and tree growth onset for both years at the 

AK site (Table 2.3). 

 Relative to AK, stem radial growth onset differed more between 2018 and 2019 at 

NWT (Figure 2.3). On average, radial growth began earlier in 2018 (DOY 127; May 7) 

than in 2019 (DOY 145; May 25). In addition, in each study year, radial growth began 

earlier in NWT relative to AK. Radial growth also may have begun at NWT in 2018 

before snow had entirely melted (Table 2.2), as radial growth occurred before the median 

estimate of SDDST and after that of SDDMODIS. 

 There was statistically significant inter-annual variability when comparing stem 

radial growth onset and the timing of both SDD estimates at NWT. In 2018, Mann-

Whitney U tests showed that radial growth onset was statistically different from the 

SDDST (p = 0.02) but not from SDDMODIS (p = 0.14) (Table 2.3). However, in 2019, 

neither SDD metric was significantly different from the onset of tree wood growth 

(SDDST: p = 0.12, SDDMODIS: p = 0.08) (Table 2.3).  

 



20 
 

Table 2.3: P-values from the Mann-Whitney U tests. 

 

Discussion 

Previous work exploring relationships between SDD and radial growth 

(Kirdyanov et al., 2003; Rossi et al., 2011; Vaganov et al., 1999; Yun et al., 2018) 

suggest that remotely sensed SDD may be a suitable proxy for estimating the onset of 

stem radial growth. Thus, remotely sensed SDD could represent a key indicator of 

springtime tree phenology. However, the results of this study showed differences 

between the timing of SDDMODIS and SDDST, and this asynchrony was also observed 

when comparing SDD estimates to radial growth onset. It is important to note, however, 

that there was limited evidence from NWT which indicated that SDD and stem radial 

growth onset do correspond, thus showing the relationship between SDD and radial 

Figure 2.4: Boxplots showing the timing of SDDST, SDDMODIS, and the start of radial growth at the 
NWT site in 2018 (left) and 2019 (right). The black line in each box indicates the median value. The 
number of trees sampled is also shown. 
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growth onset at the FTE may be more complex than initially thought and warrants further 

investigation.  

 

 The differences between SDDMODIS and SDDST varied by site, yet median 

SDDMODIS consistently occurred earlier than median SDDST at both sites, though often 

only by a few days. The two methods for determining SDD (SDDMODIS and SDDST) 

produced similar estimates at AK, lending support to Hypothesis 1 that there would be no 

difference in the timing of these two SDD estimates. However, this was not the case at 

NWT where SDDMODIS was earlier than SDDST, a finding similar to that of Raleigh et al. 

(2013). The asynchrony between SDDMODIS and SDDST is most likely indicative of 

canopy cover interference. It is documented that MODIS snow products has difficulty 

detecting snow presence in areas with moderate to high canopy cover (Nolin, 2010; 

Raleigh et al., 2013), and due to the spatial heterogeneity of the FTE, MODIS pixels 

undoubtedly contain elements of tundra and forest where SDD often differs (Burles and 

Boon, 2011; Dickerson-Lange et al., 2017; Lundquist and Lott, 2010; Raleigh et al., 

2013). Thus, it is likely that the earlier estimates of SDDMODIS relative to SDDST, 

particularly at NWT, were due at least in part to a residual snowpack that was hidden 

from sensor view by tree crowns. In fact, our results suggest that the sub-canopy soil 

temperature probes at each tree detected the thermal properties associated with this 

residual sub-canopy snowpack (Figure 2.2), and thus provided later estimates of SDD 

relative to the remotely sensed estimates. These results further support findings by 

Raleigh and colleagues (2013) suggesting ground-based sensors are needed to validate 

results of MODIS snow products, especially in forested environments with spatially 

heterogenous pixels. 
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The earlier detection of SDDMODIS when compared to SDDST could also be caused 

by variations in snow distribution at NWT. Snow distribution depends on many factors 

including topography, wind speed and direction, vegetation structure, and insolation (Egli 

et al., 2011; Hiemstra et al., 2002; Winstral and Marks, 2002). At treeline ecotones, 

where factors such as vegetation structure, wind speed, and solar radiation can change 

abruptly, snowpack spatial variability is even more pronounced. This variability then 

affects melt rates and subsequent snow disappearance in these systems, where snow can 

often linger in protected sites around trees (Hiemstra et al., 2002). The AK site is 

considerably different than NWT in topography, vegetation and canopy structure, thus 

creating potential differences in snowpack characteristics (Table 2.1). Not only could the 

timing of snow disappearance be changed between the two sites, but the capability of 

satellite-based products (e.g., SDDMODIS) to detect snow disappearance could also be 

altered. Treeline at AK is more well-defined than NWT: stem density and canopy cover 

decrease rapidly upon approaching the tundra. Average stem density is also lower at AK 

Figure 5: Soil temperature conditions at the AK (blue) and NWT (red) sites during 2018 and 2019. 
The solid line in each plot indicates the average value, while the gray shaded area indicates the 95th 
and 5th percentiles of the data. 
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than at NWT (Table 2.1). This could allow MODIS to more accurately identify SDD 

when compared to SDDST at the AK forest-tundra boundary where our instrumented trees 

are located. 

 Our second hypothesis stated that SDD estimates would occur at approximately 

the same time as the onset of stem radial growth in evergreens at the FTE. Results were 

again somewhat mixed, mostly by site. There was strong evidence that all SDD estimates 

and radial growth onset were asynchronous at AK, with SDD estimated to have been 

three to five weeks before trees began growing. At NWT, these results varied mainly by 

year, with SDD and radial growth onset occurring at similar times in 2019, but not 2018 

where radial growth actually began before SDD. These differences in the timing of SDD 

and radial growth were among the most surprising findings of this study and were 

contrary to the results of many previous studies in boreal ecosystems (Kirdyanov et al., 

2003; Rossi et al., 2011; Vaganov et al., 1999; Yun et al., 2018) that have explored 

similar phenomena. This discrepancy raises the question: is the timing of snowmelt the 

key biophysical driver governing the onset of stem radial growth at the FTE, or is it some 

other variable? More than likely there are a combination of biophysical drivers 

influencing radial growth onset at high-latitudes, further confounding efforts to find new 

metrics for monitoring tree growth phenology in these systems (Li et al., 2017; Piao et 

al., 2019; Treml et al., 2015; Tumajer et al., 2021). While snow melted earlier at the AK 

site, presumably creating optimal conditions to start growth, perhaps low air or soil 

temperatures inhibited growth from occurring. There is evidence that low air or soil 

temperatures in the spring can delay the onset of photosynthesis, stem radial growth 

onset, and other physiological processes (Ensminger et al., 2004; Reinmann et al., 2018; 

Reinmann and Templer, 2016; Tanja et al., 2003; Treml et al., 2015). At both field sites 

there is evidence that soil temperatures remained low (< 5oC) through spring and into late 

June – early July (Figure 2.5). Thus, these low temperatures may have inhibited growth 

in AK despite the completion of snowmelt. Water availability (from either snow melt or 

active layer thaw) may also govern tree growth onset, as the expansion of new cambial 

cells requires water uptake and soil water availability can increase during the snow melt 

period even when snow is still present (Bowling et al., 2018; Harpold et al., 2015; 

Zweifel et al., 2000). These possible interactions between snow disappearance, tree 
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growth onset, and other biophysical variables deserve further study to better understand 

the uncertainty regarding the hierarchy of environmental drivers affecting growing season 

phenology at the FTE. 

 

Conclusion 

 We tested the hypothesis that remotely sensed SDD measurements could be used 

as a proxy for monitoring the timing of tree growth onset at the FTE, thus providing a 

novel method for monitoring vegetative phenology in high-latitude coniferous forests. 

We found intriguing links between remotely sensed SDD and the timing of tree growth 

onset at the FTE. Overall, results indicate that there are too many confounding factors to 

use either SDDMODIS or SDDST as a reliable proxy for tree growth onset at the FTE, 

though some observations at NWT provide support for this hypothesis. These mixed 

results highlight the inherent ecological complexities present at the FTE which are 

difficult to capture with only one biophysical driver. These results suggest scientists 

should exercise caution when using remotely sensed SDD as a proxy for tree growth in 

high-latitude systems, where questions still remain about how site characteristics drive 

potential linkages between tree growth onset and SDD. However, we leverage the 

apparent limitations of our findings to highlight the key knowledge gaps still present in 

our understanding of the fundamental biophysical variables driving tree growth at the 

FTE and across the far north. These gaps must be addressed before we can fully 

understand and monitor the effect of climate change on vegetation phenology at the FTE.  
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Chapter 3: Linkages Between Conifer Leaf Temperatures and Stem 

Radial Variations in Forests of the Intermountain West 
 

 

Abstract 

 Climate-induced changes to forest hydrologic regimes are affecting key 

ecosystem processes in subalpine forests across the Intermountain West of North 

America. Of particular interest is how stem radial variations (SRVs), which measure tree 

water status and stem radial growth (i.e., carbon storage) are affected by these hydrologic 

changes. Point dendrometers, which measure SRVs, are an effective means of monitoring 

both tree water status and radial growth in forests. However, point dendrometers have a 

practical deployment limit and may not be applicable for monitoring SRVs across broad 

regions unless they prove scalable. Thus, a key area of research is combining these point 

dendrometer measurements with remote sensing data to better monitor water stress and 

tree growth in forests. Leaf temperatures (TL) measured from thermal remote sensing 

instruments are well-linked to plant water status and could provide an effective method 

for monitoring SRVs at larger spatial scales given the wide array of remote sensing 

instruments collecting thermal data. Thus, the main goal of this study was to determine 

the suitability for using thermal remote sensing measurements as a proxy for daily 

changes in SRVs in subalpine forests of the Intermountain West. Specifically, we were 

interested in answering two main questions: Can we use a combination of remote sensing 

information and environmental variables to predict 1) tree water status, and 2) tree 

growth? Within Question 2, we also had two sub-questions: 2.1) Can we predict if trees 

are growing or not, and 2.2) Based on the results of Question 2.1, can we predict the 

amount of daily growth? We hypothesized that the strength of the relationship between 

remotely sensed TL and SRVs would vary depending on the time of day which TL was 

measured. We used an existing environmental monitoring network that collected near 

continuous SRV and TL measurements through the 2019 – 2021 growing seasons to 

answer these questions. Results showed that TL, along with other environmental 

variables, could predict SRVs well, with maximum R2 values between 0.5 – 0.75 for the 

best models. However, the time of day which TL was measured also changed the strength 

of the models considerably. These results show promise for using remotely sensed TL as a 
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proxy for daily SRVs. However, there are still key questions that remain, including how 

well these relationships scale to the coarser spatial scales. However, this project provides 

a crucial first step in the development of novel methods for monitoring seasonal SRVs 

and outlines potential future directions. 

 

Introduction 

The hydrologic cycle is intimately linked to ecosystem productivity via plant growth. 

Thus, alterations to hydrologic regimes due to climate change could have lasting 

repercussions on ecosystems across western North America and particularly on their 

ability to sequester carbon (Restaino et al., 2016; USGCRP, 2017; Williams et al., 2020). 

Subalpine forests of the Intermountain West are particularly vulnerable to changes in the 

hydrologic cycle, as these ecosystems rely on melting winter snowpack for much of their 

water availability throughout the year (Case et al., 2021; Restaino et al., 2016; Winchell 

et al., 2016). As the climate continues to change, snow regimes in the region are more 

variable than they were in the past, often resulting in shallower snowpacks and earlier 

snow melt (Fyfe et al., 2017; Klos et al., 2014; Mote et al., 2018). How these snowpack 

changes will affect ecosystem processes (i.e., carbon capture and sequestration) in 

subalpine forests is therefore of great importance to the resilience of the Intermountain 

West (Babst et al., 2014; Bowling et al., 2018; Coulthard et al., 2021).  

Stem radial variations (SRVs) could provide insight into how climate change induced 

changes in snow regimes of subalpine forests will affect tree growth and carbon 

sequestration. SRVs are the temporal patterns of the expansion and contraction of a tree 

bole. SRVs are mechanistically linked primarily to tree water status and play a critical 

role in the forest carbon cycle (Dietrich et al., 2018; Preisler et al., 2021; Zweifel et al., 

2001). Diurnally, patterns in SRVs are attributable to tree water status. An increasing 

atmospheric water demand causes a subsequent contraction of the tree stem as water 

leaves the phloem, cambial cells and newly forming xylem (also called tree water deficit, 

or TWD), while cells expand and grow during the night and early morning when the 

atmospheric water demand is much less (Jones, 2014; Steppe et al., 2015; Zweifel et al., 

2021, 2016). SRVs can also provide information on intra-annual (i.e., hourly to daily) 

stem radial growth and subsequent carbon sequestration at seasonal and annual scales 
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(Drew and Downes, 2009; Steppe et al., 2015).  SRVs are highly vulnerable to changes in 

hydrologic regimes and reductions in water availability could cause declines in processes 

like stem radial growth (Dietrich et al., 2018). This will adversely affect key ecosystem 

services like timber production, habitat provisioning for forest dependent fauna, and 

long-term carbon sequestration. Automated point dendrometers are instruments which 

offer extremely fine micrometer-level sensitivity (i.e., micrometer) and high temporal 

resolution and have been applied to monitor drought stress and tree growth in forests and 

agricultural settings (Fig. 1) (Preisler et al. 2021; Zweifel et al., 2021). However, point 

dendrometers have a practical deployment limit and may not be applicable for monitoring 

SRVs across broad regions and ecosystems unless they prove scalable. Thus, improved 

methods for monitoring how future snow regime changes will affect landscape scale 

SRVs in subalpine forests of the Intermountain West are urgently needed. 

 

 

Figure 3.1: a) Stem radial measurements derived from a point dendrometer (inset) at the 
Nokes Experimental Forest in Central Idaho. The blue line represents the cumulative growth 
line, while the blue shaded area represents daily stem radial growth, and the red shaded area 
indicates tree water deficit. b) Map (left) showing the location of the Nokes Experimental 
Forest (red star) along with an image of a study tree in the forest (middle) and an infrared 
thermometer (top right) and a point dendrometer (bottom right). 
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Remote sensing techniques could the gap between spatially limited tree-level 

measurements regional-scale estimates. Specifically, leaf and canopy temperatures (TL 

and TC, respectively) measured using thermal remote sensing have shown strong 

relationships with intra-annual variability in plant-water status, which is also a primary 

driver of SRVs. At its most fundamental level, TL is determined by the leaf energy 

balance, in which evapotranspiration (ET) plays a foundational role (Campbell and 

Norman, 1998; Jones, 2014). As a plant transpires, energy is used to evaporate water 

from the leaf surface which subsequently lowers TL  (Maes and Steppe, 2012; Still et al., 

2019). Transpiration occurs during photosynthesis when stomata are open and leaves are 

assimilating carbon (Jones, 1999; Jones, 2014). Thus, not only is TL usually regulated by 

plant-water status, but it is closely linked to photosynthetic activity and carbon uptake 

(Kim et al., 2016; Niu et al., 2012; Pau et al., 2018; Slot and Winter, 2017).  

 
Table 3.1: Components of the general additive mixed models tested during this project. Models will be 
referred to by their model names in the left-hand column throughout the text. SRVs stand for stem radial 
variations. 



38 
 

While early research in thermal remote sensing primarily focused on  the 

development of techniques to monitor water use (Idso et al., 1977; H G Jones, 1999), 

develop stress indices (Idso et al., 1981; Jackson et al., 1981), and schedule irrigation in 

agricultural environments (Leinonen and Jones, 2004; Page et al., 2018; Struthers et al., 

2015), thermography is now widely applied to various environments, including forests. 

Most of the current work is focused on determining how leaf and canopy temperature 

measurements vary with canopy structure in different plant functional types (Kim et al., 

2018; Leuzinger and Körner, 2007). Studies have also linked canopy temperature to 

water stress in forest trees (Lapidot et al., 2019; Smigaj et al., 2017), and others have 

related thermal remote sensing measurements to variables such as net ecosystem 

exchange, gross primary productivity, and photosynthesis in forests to determine how 

carbon sequestration may be impacted by canopy temperature measurements (Kim et al., 

2016; Niu et al., 2012; Pau et al., 2018). However, to date little work has focused on 

using thermography to track intra-annual patterns in SRVs. 

Figure 3.2: Seasonal environmental conditions at the Nokes Experimental Forest during the 2019 – 2021 
growing seasons. The red line in each plot indicates the average value, while the gray shaded area indicates 
the 95th and 5th percentiles of the data. 
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Thermal remote sensing, with its long history of monitoring plant water status, could 

provide valuable insights into the effects of hydrologic variability on SRVs which are 

also mechanistically linked to water availability. However, we know surprisingly little 

about (1) the strength and type (linear vs nonlinear) of the relationship between remotely 

sensed thermographic data and SRVs and (2) how this relationship is affected by the 

timing (e.g., morning vs. afternoon) of thermal remote sensing observations. Hence, there 

is a clear need to better understand the linkages between thermal remote sensing data and 

SRVs. This research is especially relevant given the recent (2018) launch of NASA’s 

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS). This instrument, which measures land surface temperatures (LSTs) 

every 1 – 3 days, may provide a spaceborne platform for this novel, thermographic 

approach to monitor the effects of hydrologic variability on SRVs across the 

Intermountain West (Fisher et al., 2020). However, before thermographic information can 

be used to track intra-annual SRVs, we need validation studies that leverage 

thermographic measurements similar to those collected by ECOSTRESS, but at finer 

spatiotemporal resolution, to track tree-level radial variations which could then enable 

up-scaling. 

 

 

The main goal of this study is to determine the suitability for using thermal remote 

sensing as a proxy for measuring daily changes in SRVs in subalpine forests of the 

Intermountain West. Specifically, we were interested in answering two main questions: 

Table 3.2: Model results for Question 1, including the R2 values, Akaike Information Criterion (AIC), and 
time for the best model of each combination of covariates tested. 
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Can we use a combination of remote sensing information and environmental variables to 

predict 1) tree water status, and 2) tree growth? Within Question 2, we also had two sub-

questions: 2.1) Can we predict if trees are growing or not, and 2.2) Based on the results of 

Question 2.1, can we predict the amount of daily growth? We hypothesized that the 

strength of the relationship between remotely sensed TL and SRVs would vary depending 

on the time of day which TL was measured. The results of this project will help inform 

future efforts to utilize airborne and spaceborne thermographic products for monitoring 

SRVs in conifer forests of the Intermountain West. 

Methods 

Study Site 

 Data for this project were collected from an existing in-situ monitoring network in 

the Nokes Experimental Forest located near McCall Idaho (Figure 3.1). The area is 

mostly mixed subalpine conifer forest with ponderosa pine (Pinus ponderosa subsp. 

Ponderosa), Douglas fir (Pseudotsuga menziesii var. glauca), grand fir (Abies grandis), 

Figure 3.3: R2 values for Model 1.4 (Sqrt.TWDmax ~ f (TL) + f (photoperiod) + f (PAR) + f (soil moisture)) 
at each 30-minute interval which TL was measured. 
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western larch (Larix occidentalis), and lodgepole pine (Pinus contorta subsp. latifolia). 

Elevation is approximately 1500 m and the forest is characterized by warm, dry summers 

and cold, wet winters with most of the annual precipitation falling as snow. Snow cover 

generally lasts from November – May each year (USDA NRCS). Soils across the forest 

generally consist of several centimeters of coarse plant material with sandy loam 

underneath (Soil Survey Staff). 

 

 The monitoring network was established in spring/summer 2019 and consisted of 

10 instrumented trees (five Douglas firs and five grand firs). Instrumented trees were 

distributed across the forest and vary widely in terms of aspect, surrounding canopy 

cover, and position within the forest canopy. Several instruments were installed at each 

tree, including an infrared thermometer (SIF-411, Apogee Instruments, Logan, UT) to 

measure TL and point dendrometers (LP-10F, Midori, USA) to monitor SRVs. Infrared 

thermometers were installed at a height of approximately 2 m and were checked to ensure 

that foliage of the study tree was maximized within each sensor’s field of view. Point 

dendrometers were installed by carefully scraping off the outer layer of bark and then 

mounting the sensor on the north side of the tree at breast height (i.e., 1.37 meters) (Eitel 

Figure 3.4: R2 values for Model 1.8 (Sqrt.TWDmax ~ f (TL-TA) + f (photoperiod) + f (PAR) + f (soil 
moisture)) at each 30-minute interval which TL-TA was measured. 
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et al., 2020). Other sensors at each tree include a portable weather station (ATMOS14, 

METER, Pullman, WA) which tracks air temperature, vapor pressure deficit, and air 

pressure, along with soil moisture/temperature probes (5TM; Meter Group, Inc., USA). 

All sensors were connected to a ZL6 datalogger (METER, Pullman WA) and set to 

measure every 10-15 minutes through the growing season. Due to sensor malfunction, 

data from eight of the 10 trees collected during the 2019, 2020, and 2021 growing 

seasons were used during analysis. 

Data Processing 

 Diurnally, SRVs can be detrended into either TWD or daily stem radial growth 

(Fig. 1). TWD occurs as the stem contracts during the day and is a measure of tree water 

stress (Zweifel et al., 2005). Daily stem radial growth occurs as the stem begins to expand 

once again and surpasses its previous maximum radial value (Zweifel et al., 2016). 

Unlike TWD, which occurs daily, stem radial growth only occurs when environmental 

Figure 3.5: Smooth curves for Model 1.4 with TL measured every 6 hours. TWDmax was transformed using a 
square root transformation to ensure model assumptions were met. 



43 
 

conditions (e.g., VPD, soil moisture, etc.) are favorable and typically only during the 

night/early morning hours (Zweifel et al., 2021). We used the ‘treenetproc’ R package to 

process the SRV measurements from each instrumented tree (Knüsel et al., 2021).This 

package converts the raw SRV values into three measurements of interest: stem radius, 

TWD, and cumulative annual growth. Specifically, TWD is a measure of how much the 

stem has contracted from its maximum growth value. Cumulative annual growth shows 

the incremental increase in stem radius from the initial radius at the beginning of the 

season. The maximum daily TWD (TWDmax), which indicates the tree at its most water-

stressed point, was then found for each tree per day using the calculated TWD values. We 

calculated mean daily stem growth by finding the average cumulative stem growth for 

each day during the growing season, and then finding the difference between the current 

and previous days’ growth values. TWDmax was used to answer Question 1 while mean 

daily stem growth was used to answer Question 2. 

 While conifer TL measured from the infrared thermometer can provide 

information on tree water status, we also calculated the leaf-air temperature difference 

(TL- TA) (Johnson and Smith, 2008). This is another thermal based stress metric which 

can provide better insight into a tree’s stomatal activity (and thus, carbon uptake) 

(Hoffmann et al., 2016; Osroosh et al., 2015; Ruidong et al., 2019). TL and TL- TA were 

calculated for every half-hour interval through the day, providing 46 observations per tree 

per day (times 0:00 and 0:30 were not available due to data errors). Photoperiod for each 

day of the data record was also found using the ‘insol’ package in R (Corripio, 2021). 

Mean daily soil moisture derived from the in-situ soil moisture sensors as well as 

Table 3.3: Model results for Question 2, including the R2 values, AIC, and time for the best model 
of each combination of covariates tested. 
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photosynthetically active radiation (PAR) measured at each tree were also used as 

predictor variables during analysis. We collected PAR data using the linear relationship 

between the hemispherical photochemical reflectance index (PRI) sensors (SRS; 

METER, Pullman, WA) at each tree and PAR measured with an Apogee SQ100X 

(Apogee Instruments, Logan, UT). The irradiance at 532 nm (measured from the PRI 

sensor) was the predictor in the linear model, while measured PAR was the dependent 

variable. From the resulting model equations, we were able to extrapolate PAR based on 

irradiance at 532 nm. 

Statistical Analysis 

 We used a generalized additive mixed modelling (GAMM) approach to address 

Question 1 and test how well remotely sensed TL, along other environmental variables, 

could predict daily TWDmax. We used a GAMM approach as based on previous work 

(e.g., Liu et al., 2020; Pau et al., 2018) we assumed the relationship between TL and 

TWDmax would be nonlinear. We fit models using the ‘mgcv’ package (Wood, 2011) with 

TWDmax as the dependent variable and a combination of thermal remote sensing and 

environmental covariates as predictors (Table 3.1). Other environmental covariates tested 

included air temperature, vapor pressure deficit, and soil temperature. We removed air 

Figure 3.6: Smooth curve for Model 1.8. TWDmax was transformed using a square root transformation to 
ensure model assumptions were met. 
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temperature and vapor pressure deficit from the models, as these covariates had high 

collinearity with TL and were not significant in the model.  We also included the tree 

identification number (tree ID) as a random effect in each of the models. To aid in 

evaluating the models, each model was given a name, which can be found in Table 3.1. 

Models with TL, photoperiod, and PAR as covariates were also defined as ‘remote-

sensing models’, as these covariates can all be easily found using widely available remote 

sensing information. 

We created models of daily TWDmax using TL at each half-hour interval through 

the day (i.e., 01:00, 01:30, 02:00, 02:30… 23:30). We then compared the results of each 

model using the R2 values and the Akaike Information Criterion (AIC) (Akaike, 1974). 

Predictors were considered statistically significant if p-values were ≤ 0.05. To ensure that 

model assumptions of normality were met, TWDmax observations were transformed using 

a square root transformation. 

 We used a logistic regression  (Bonney, 1987) to answer Question 2.1 and 

determine if it was possible to predict days when trees were growing or not. We first 

found days where daily stem radial growth was > 0 (indicating growth) and labelled these 

days as “1” for growth, while days where daily stem radial growth = 0 (indicating no 

growth) were labelled “0” for no growth. We then fit logistic regression models where 

the probability of growth was the dependent variable while remotely sensed TL, 

photoperiod, and other environmental variables were predictors. A classification table 

was used to find the accuracy of the models and we also found the thresholds of each 

predictor for which growth was expected to occur. These results directly informed the 

analysis for Question 2.2. 

 Question 2.2 asked whether we could predict how much daily stem radial growth 

occurred on days where growth was predicted. We thus first used the logistic regression 

model from Question 2.1 to filter the dataset to only include days on which the 

probability of stem radial growth was ≥ 0.5. We then used a GAMM approach similar to 

Question 1, except with daily stem radial growth as the dependent variable. All other 

components of the model were the same as those created in Question 1 (Table 3.1), and 

we also used the same criteria to evaluate the strength of the models. Tree ID was also 

included as a random effect in the models. 
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Results 

Site conditions  

Air temperatures across all three growing seasons ranged from -1.8oC to 35.2oC, 

with an average air temperature of 18.0oC (Figure 3.2). Air temperatures generally 

increased during the early part of the growing season until about day of year (DOY) 200 

(July 18/19), at which time air temperatures began a general downward trend. This 

seasonal pattern was also observed with VPD (Figure 3.2). 

 TL varied between -2.04oC & 42.7oC with a mean value of 18.1oC across the 

period of record. Seasonally TL showed a trend similar to air temperature and VPD, 

increasing early season followed by general decreases late in the growing season (Figure 

3.2). TL- TA remained consistent through the growing season around 0oC with a mean of 

0.07oC, indicating that TL tracked air temperatures well throughout the season. However, 

leaves did deviate from air temperatures with a maximum TL- TA value of 12.8oC  and a 

minimum of -4.7oC. 

 Soil moisture increased in the early season until approximately DOY 175, at 

Figure 3.7: R2 values for Model 2.4 (Sqrt.Growth ~ f (TL) + f (PAR) + f (soil moisture)) at each 30-
minute interval which TL was measured. 
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which time it began decreasing (Figure 3.2). This trend was also observed in stem radial 

growth where growth was generally highest before DOY 175 and minimal after this date. 

There were occasional increases in TWDmax before DOY 175 (when stem radial growth 

was highest) but values generally remained < 0.1 mm. TWDmax did show an observable 

increase, however, after DOY 175 after which it generally increased steadily through the 

remainder of the season. 

 It is also important to note that the study area, along with much of the 

Intermountain West, underwent a severe drought during the 2021 growing season 

(NDMC et al., 2021). At the Nokes Experimental Forest, the highest recorded air 

temperatures, as well as mean VPD and TL values in the period of observation were 

observed during summer 2021. 

Question 1 

 Models using a combination of either TL (Model 1.4) or TL- TA (Model 1.8), 

photoperiod, PAR, and mean daily soil moisture were best at predicting TWDmax (Table 

3.2). These models explained 75% of the observed variability. Remote sensing-based 

Figure 3.8: R2 values for Model 2.8 (Sqrt.Growth ~ f (TL-TA) + f (PAR) + f (soil moisture)) at each 30-
minute interval which TL-TA was measured. 
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models (Models 1.2, 1.3, 1.6, 1.7) captured between 56% - 60% of the observed 

variability when TL- TA was a covariate and 54% - 55% of the variability in models 

where TL was a predictor. Overall, R2 values were similar between models using TL or 

TL- TA, though AIC values for Models 1.1 – 1.4 were consistently less than Models 1.5 – 

1.8. Models 1.1 and 1.5, which only used a TL metric as a covariate explained up to 32% - 

34% of the observed variance.  

 Model strength also varied depending on the time-of-day TL was measured 

(Figure 3.3). For Models 1.1 – 1.4 more variance was explained when TL was measured 

in the evening (19:30 – 21:00) than any other time of day. TWD also appeared to be more 

sensitive to TL during the early morning and evening hours than during any other time of 

day. Models 1.5 – 1.8 explained more of the observed variance when TL- TA was 

measured around early afternoon (13:00 – 15:30), and showed a pattern where TWD 

seemed more sensitive to TL- TA measured during this midday period than any other time 

Figure 3.9: Smooth curves for Model 2.4 with TL measured every 6 hours. Stem growth was transformed 
using a square root transformation to ensure model assumptions were met. 
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of day (Figure 3.4). 

When examining the smoothing curves for models best predicting TWDmax, 

models using TL as a covariate showed a clear threshold where TWDmax values increased 

as TL met and exceeded a particular temperature threshold. For Models 1.1 – 1.4 this 

temperature threshold was approximately 15oC (Figure 3.5d). However, this threshold 

value varied depending on the time which TL was measured (Figure 3.5). In Models 1.5 – 

1.8 TWDmax increased as TL- TA increased. There was again a threshold value, however, 

and when this TL- TA threshold was reached TWDmax values begin to decrease (Figure 

3.6). 

Question 2 

 Results of the logistic regression model showed that days with growth could be 

predicted well by photoperiod alone. Using a classification table, we found the 

probability of growth through 3 growing seasons could be predicted with 79% accuracy. 

Model results also showed that growth was only predicted to occur on days where 

photoperiod ≥ 14.1 hours. Based on these results the remaining dataset was adjusted to 

only include days where photoperiod was ≥ 14.1 hours. 

 Models using TL (Model 2.4) or TL- TA (Model 2.8), PAR and mean daily soil 

moisture best predicted daily stem radial growth based on the R2 and AIC values (Table 

3.3). These models at best explained 55% of the observed variance. Remote sensing-

based models (Models 2.1, 2.2, 2.5, 2.6) explained between 14% - 25% of the observed 

variance. Models 2.1 and 2.5 only explained 14% - 18% of the variability. There were not 

large differences in the strength of each model regardless of whether TL or TL- TA was 

used as a predictor. 

 The time of day which measurements were collected also affected the strength of 

the models. Models that included soil moisture as a predictor generally had higher R2 

values in the morning (9:00) than other times of the day. Models just including TL or TL- 

TA as a predictor had better R2 values in the midafternoon or at night (see Model 2.1 and 

2.5 in Table 3.3). As a whole Models 2.1 – 2.4 showed trends with higher R2 values in 

the morning and evening (Figure 3.7), while Models 2.5 – 2.8 had higher R2 values in the 

morning and midafternoon (Figure 3.8). 

 Smoothing curves for the best models predicting stem radial growth vary 
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depending on the predictor variables used to predict growth as well as the time that TL 

was measured. When looking at the smooth curves for Model 2.4, stem growth seems to 

increase slightly with increasing temperatures (Figure 3.9). However, this pattern changes 

in the afternoon as stem growth begins decreasing with increasing temperatures. At low 

TL there is a steep decline in stem radial growth, but it appears that TL reaches a threshold 

where stem growth remains steady or increases slightly with increasing TL. The TL value 

where this threshold occurs varies depending on the time. Smooth curves for Models 2.5-

2.8 also vary. Model 2.8 shows more linear relationships, with stem growth decreasing 

slightly with increasing TL- TA in the morning, while stem growth generally increases 

with increasing TL- TA in the afternoon (Figure 3.10).  

 

Discussion 

 The results of this project show promise in using thermal remote sensing to track 

changes in SRVs of subalpine forests across the Intermountain West. Models using a 

combination of TL and other environmental covariates were able to capture up to three-

quarters of the observed variability when predicting TWDmax and just over half the 

variability when predicting stem radial growth. When predicting TWDmax, models using 

TL- TA appeared to be slightly more sensitive than models using TL, though these 

differences were not large and we did not test for statistical significance. Whereas TL can 

be influenced by air temperatures, TL- TA corrects for air temperature effects and can 

provide better insight into plant water stress. Results from other studies have also found 

TL- TA and other thermal metrics to be more sensitive to water stress than TL alone 

(Dhillon et al., 2014; Smith, 1978). However, it is important to recognize that models 

using TL still explained much of the observed variability and could be better suited for 

remotely based monitoring of SRVs than TL-TA as many spaceborne instruments (e.g.,  

ECOSTRESS) measure land surface temperatures (LST), which is analogous to TL, but 

do not measure TA. Hence, in order to calculate TL-TA at scales comparable to 

ECOSTRESS, meteorological reanalysis data would be needed. 
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 Data acquisition timing was another key factor for predicting SRVs. Plots of R2 

values clearly showed diurnal patterns in the observed variability (Figures 3.3-3.4 and 

3.7-3.8). When predicting TWDmax, models typically showed the highest R2 values in the 

afternoon and early evening, the time when water potentials are usually at their minimum 

and the tree is under the greatest water stress (Figures 3.3-3.4) (Lo Gullo and Salleo, 

1988; Meinzer et al., 1986). Models predicting stem radial growth also showed diurnal 

patterns, with R2 values typically peaking in the morning or late evening hours, which 

corresponds with the times of day when atmospheric water demand is lowest and the 

transpiration stream should be relaxed (Figures 3.7-3.8) (Ziaco and Biondi, 2018; Zweifel 

et al., 2021, 2001). This result is similar to the findings of Zweifel et al. (2021), who 

discovered that stem radial growth is most sensitive to environmental conditions during 

the early morning hours. Acquisition timing also affected the predicted smooth curves for 

each model (particularly for models including TL as a covariate), both in the shape of the 

curve and the temperatures which SRVs were sensitive to changes (Figures 3.5-3.6 and 

Figure 3.10: Smooth curves for Model 2.8 with TL- TA measured every 6 hours. Stem growth was 
transformed using a square root transformation to ensure model assumptions were met. 
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3.9-3.10). This could impact future efforts to use remotely sensed TL to track SRVs, as 

many remote sensing platforms (e.g., ECOSTRESS) have irregular overpass times 

(Fisher et al., 2020; Hulley et al., 2017) and could collect measurements at times when 

relationships between TL and SRVs may not be as strong. However, this irregular 

overpass time also provides an advantage as it can provide insight into the diurnal 

patterns and dynamics of key ecosystem processes that may not be detectable in 

instruments with set overpass times (Xiao et al., 2021). The results of this study show that 

the relationships between daily SRVs and TL can vary depending on the time which TL is 

measured. Thus, this study demonstrates how important it is to detect these diurnal 

patterns. 

 While thermal remote sensing shows promise for monitoring SRVs, there are 

some possible limitations to this approach that still need to be addressed. Namely, these 

models were not able to detect exact changes in SRVs, as TWDmax and stem radial 

growth values were transformed using a square root transformation to ensure that model 

assumptions were met. Still, while exact values cannot be obtained these models could 

provide insight into relative changes of SRVs over time using thermal remote sensing 

information in an approach similar to the LandTrendr algorithm for Landsat imagery 

(Kennedy et al., 2010). If spaceborne instruments like ECOSTRESS, which has a revisit 

frequency of 1 – 5 days (Fisher et al., 2020), are used to collect TL  information then this 

approach could help estimate relative changes in SRV dynamics in subalpine coniferous 

forests at diurnal to sub-weekly scales. Other instruments, such as the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and Landsat, which collect LST data 

could also be used for tracking SRVs, but with coarser spatial and temporal resolutions 

than ECOSTRESS. 

 Another consideration for possible remote sensing methods is how well these 

models will predict SRVs at coarser spatial scales. This project utilized in-situ, shoot-

level measurements of TL, which can vary greatly from average canopy temperatures (TC) 

and LST due to canopy positioning, shading effects, and microclimatic conditions 

(Johnston et al., 2021). Thus, there still remains a key question: whether the relationships 

between SRVs and TL observed in this study will be as strong when using TC instead of 

TL. Further vital work is needed to test these models using canopy level data as well as 
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LST at the scale of a spaceborne instrument pixel.  

The best models found that TWDmax and stem radial growth were predicted by TL, 

photoperiod, PAR, and mean daily soil moisture as covariates. Of these predictors, TL, 

photoperiod, and PAR are relatively easy to obtain from spaceborne instruments with 

high accuracy and fine spatial resolution. Soil moisture measurements, however, can be 

quite complex and difficult to obtain using remote sensing techniques, as soil moisture is 

highly spatially variable and can be confounded by factors such as vegetation cover and 

soil physical properties (Cosby et al., 1984; D’Odorico et al., 2007). Indeed, remote 

sensing techniques can only measure surface level soil moisture, which may not be the 

most ecologically relevant information (Karthikeyan and Mishra, 2021). Despite these 

limitations, however, there have been advancements in our ability to measure soil 

moisture using remote sensing techniques, including with thermal remote sensing 

instruments (Babaeian et al., 2019). However retrieval of high resolution soil moisture 

data is still a key challenge that will need to be addressed to before further application of 

these results. 

 Even with these current limitations, this study presents novel linkages between 

diurnal SRVs and remotely sensed TL in subalpine coniferous forests of the Intermountain 

West. These results could inform efforts to develop new approaches for monitoring 

diurnal and seasonal changes in SRVs using thermal remote sensing data across forested 

regions like the Intermountain West. These efforts will be crucial as hydrologic regimes 

continue to change, impacting SRVs and carbon cycling in these forests. This project 

provides a crucial first step in the development of these novel methods and outlines 

potential future directions. 
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Chapter 4: Conclusions 
 

Stem radial growth is an important physiological process in the temperate and 

boreal forests of North America and influences global water and carbon (C) cycling. 

Despite this importance, few methods exist to measure intra-annual stem radial growth at 

landscape and ecosystem level scales. This project sought to remedy this by exploring 

linkages between 1) remotely sensed snow disappearance date (SDD) estimates and the 

timing of stem radial growth onset in the spring, and 2) remotely sensed leaf and canopy 

temperatures (TL and TC, respectively) and intra-annual stem radial variations (SRVs). 

While these studies do not present new space-based remote sensing approaches for 

monitoring stem radial growth, they do lay a vital foundation for future studies to explore 

the effectiveness of spaceborne instruments to track radial growth. 

 The results of Chapter 2 showed mixed results when using SDD as a 

proxy for radial growth onset at the forest-tundra ecotone (FTE). There was limited 

evidence from the FTE site in the Northwest Territories (NWT) showing that MODIS-

derived SDD (SDDMODIS) occurred at the same time as radial growth onset. However, 

different results were seen at the Alaska FTE site (AK), where SDDMODIS and radial 

growth onset were asynchronous. Results also showed that SDDMODIS and in-situ soil 

temperature derived SDD estimates (SDDST) were asynchronous as well, suggesting a 

mismatch between satellite level and ground-based estimates of SDD. These mixed 

results were contrary to our hypotheses and the findings of past studies (Kirdyanov et al., 

2003; Rossi et al., 2011; Vaganov et al., 1999) examining the same phenomenon. 

However, these results are not wholly unexpected, as past studies have demonstrated that 

SDDMODIS can struggle to detect snow under forest canopies or other dense vegetation 

(Raleigh et al., 2013). This could explain the disconnect between SDDMODIS and the onset 

of stem radial growth at the FTE, where canopy cover is spatially heterogeneous and 

MODIS pixels are undoubtedly a mixture of forest cover and open tundra. MODIS 

products may have detected snow cover in the open areas of the pixel while not being 

able to detect a lingering snowpack underneath the tree canopies, thus determining no 

snow cover for the pixel. Indeed, the in-situ estimates of snow disappearance indicate the 

presence of a lingering snowpack underneath the forest canopies, as SDDST was detected 
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later than SDDMODIS. This could be true particularly for NWT where SDDMODIS was 

detected earlier than SDDST. 

The asynchrony between SDD and radial growth onset, especially at AK, also 

points to the influence of other biophysical factors besides SDD on the timing of radial 

growth onset in the spring. Springtime air temperatures, soil temperatures, and 

photoperiod can all influence radial growth phenology  (Ensminger et al., 2004; Parazoo 

et al., 2018; Tanja et al., 2003). Low air and soil temperatures especially can delay stem 

radial growth onset in high-latitude and mountain environments where cold conditions 

can linger for days to weeks after snow disappearance (Reinmann et al., 2018; Reinmann 

and Templer, 2016). This could have influenced the timing of radial growth onset at the 

FTE, as soil temperatures did not increase substantially until mid-June – July at both 

sites. Were these other biophysical factors delaying the radial growth onset so it didn’t 

correspond with SDD? More research is needed into the biophysical drivers of springtime 

growth phenology of conifers at the FTE to help better contextualize the results from this 

study. 

Chapter 3 explored relationships between leaf level remotely sensed TL and intra-

annual SRVs to better understand if TL could serve as a proxy for SRVs. Results showed 

that TL, along with other environmental variables, could predict both tree water deficit 

and stem radial growth reasonably well through the growing season (R2 > 0.5). However, 

tree water status was better predicted than stem radial growth, possibly due to the more 

direct linkage between tree water deficit, TL, and tree water status. The time of day which 

TL was measured also influenced the strength of the models, with TL usually measured in 

either the morning or the evening best predicting SRVs. This finding has significant 

potential contributions to any effort to use TL measured from spaceborne sensors to 

monitor SRVs, as the timing of data collection will affect the strength of the relationship. 

Satellite sensors like ECOSTRESS or Landsat 9 may be uniquely situated to monitor this 

relationship, as they could provide a satellite level glimpse into not only the weekly and 

seasonal dynamics of SRVs, but also diurnal SRV patterns (Fisher et al., 2020). 

While the results of this study were promising, there were also several 

considerations for future studies. When predicting SRVs, models used a combination of 

TL and other environmental variables. These included air temperature, photoperiod, 
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photosynthetically active radiation (PAR), and average soil moisture. Most of these 

predictors (TL, photoperiod, PAR) can be measured precisely using remote sensing 

products. However, both air temperature and soil moisture can be difficult to detect using 

remote sensing platforms, especially in forests. While there have been advancements in 

remote sensing of soil moisture in recent decades (Babaeian et al., 2019), this information 

could still prove difficult to obtain at spatial and temporal scales that are compatible with 

the other remote sensing information used in these models. Air temperature may also 

need to be derived from a nearby weather station for a practical application of some of 

these models, which may also pose scaling problems. Thus, to use some of the models 

presented in this study, meteorological reanalysis data may be needed. However, despite 

these challenges the results of this project show promise for using remotely sensed TL as 

a proxy for intra-annual SRVs in subalpine forests of the Intermountain West. 

Chapters 2 and 3 both showed intriguing linkages between remote sensing 

information and stem radial growth. However, both studies highlight the importance of 

scaling in remote sensing studies and show that more work needs to be done to accurately 

scale SRV measurements acquired with point dendrometers to a level that is ecologically 

relevant for most spaceborne remote sensing data. In Chapter 2, the large size (500 m) of 

MODIS pixels and the heterogeneity of the landscape within these pixels appeared to 

affect SDD estimates, causing them to be earlier than in-situ SDD estimates. Chapter 3 

results show that branch level TL can predict intra-annual SRVs, but more research is 

needed to determine if these relationships are scalable to the canopy, and landscape 

levels. This scaling issue is common in remote sensing studies and there is a wealth of 

information available to address this (Kerr and Ostrovsky, 2003; Marceau and Hay, 

1999). However, little of this work has focused on scaling intra-annual stem radial 

growth measured with point dendrometers to relevant scales. There are some important 

considerations when scaling stem radial growth, including stem density in the area of 

interest, the number and types of tree species, size of the trees, etc. All these factors will 

influence the scaling of stem radial growth to some degree, yet how is still relatively 

unknown. Thus, more research is clearly needed into scaling stem radial growth 

measurements to spatial scales relevant for spaceborne remote sensing products. 

While there are still key challenges that need to be addressed, the results from 
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Chapters 2 and 3 demonstrate that there is promise for using remote sensing 

measurements to track stem radial growth in temperate and boreal forests of North 

America. While combining these sources of data is a relatively new area of research, 

these approaches are urgently needed given the linkages between stem radial growth and 

global water and C cycles. The studies presented here did not provide new methods for 

monitoring stem radial growth using remote sensing information; however, they do 

provide a critical first step in developing these new, robust approaches for monitoring 

stem radial growth in the forests of North America using satellite remote sensing 

approaches. 
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