A Survey of Firmware Analysis Techniques and Tools

A Thesis
Presented in Partial Fulfillment of the Requirements for the
Degree of Master of Science
with a
Major in Computer Science
in the
College of Graduate Studies
University of Idaho
by
Bradley A. Whipple

Major Professor: Michael Haney, Ph.D.
Committee Members: Konstantinos Kolias, Ph.D.; Robert Hiromoto, Ph.D.

Department Administrator: Terence Soule, Ph.D.

May 2020

AUTHORIZATION TO SUBMIT THESIS

This thesis of Bradley A. Whipple, submitted for the degree of Master of Science with a
Major in Computer Science and titled "A Survey of Firmware Analysis Technigues and
Tools," has been reviewed in final form. Permission, as indicated by the signatures and dates

below, is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor: Date:
Michael Haney, Ph.D.

Committee Members: Date:
Konstantinos Kolias, Ph.D.

Date:

Robert Hiromoto, Ph.D.

Department
Administrator: Date:
Terence Soule, Ph.D.

ABSTRACT
This thesis attempts to cover many aspects concerning analysis, reverse engineering, and
provenance attribution of firmware from embedded devices. The intended reader of this thesis
is someone familiar with, or at least aware of, the software build process, the analysis of
software, and reverse engineering of software. This thesis discusses some of the differences
between firmware and traditional software and may serve as a bridge for those readers that
may be more familiar working in a software environment and are interested in analyzing
embedded devices. The thesis will include strategies for retrieving firmware binaries from a
target device, reverse engineering with the intent to provide provenance information about the

firmware, and briefly cover future work of using machine learning to analyze firmware.

ACKNOWLEDGMENTS
Thank you to the professors at the University of Idaho for their efforts in advanced education
and research. Thank you to Alice Allen for her uncanny ability to cut through red tape and
guide students through bureaucracy. Thank you to Idaho National Laboratory for enabling
me to pursue further education by allowing me to work part time professionally while taking

classes full time.

DEDICATION
This thesis is dedicated to my lovely wife who supported me during my pursuit of a higher
education. She endured my late nights studying, working, and running a business with

patience and love.

Vi

TABLE OF CONTENTS

AUTHORIZATION TO SUBMIT THESIS ... i
A B ST R A T et e e e e e e e e e e e aaaa s i
ACKNOWLEDGMENTS e e e e eas v
DEDICATION L.ttt ettt e e e e e e e e e s ettt et e e e e e e e e e e e e nbbbebeeeaeaas \
TABLE OF CONTENTS ...t e e vi
CHAPTER 1: INTRODUCTION L.ttt 1
CHAPTER 2: COMPARISON OF SOFTWARE TO FIRMWARE ..., 3
2.1, BaCKgroUNA/INTrOcuveiiieiiiiie et 3
2.2, Hardware dIffErENCESeiiiiii et 3
2.2.1. PIOCESSON ...etieiiiteet ettt e et e et e ettt e e e e e e 3
2.2.2. SHOTAQE .o 6

2.3. Lifecycle/Software DIfferenCeSc.vveeeiiiiiiiie e 8
2.3.1. Executable File Format (PE, ELF)ccoviiiiiii e 8
2.3.2. BOOUOAUET ... 9
2.3.3. OpPerating SYSIEMSccuiiiiiee i e e et e e e e s e e s e e e e r e e e nrraaee e 9
2.3.4. LIDFAIIES .ot 10

2.4, Communication SimilaritieS/DifferenCes..........cooooiiiiiiiii e 10
240, EENOIMET ... 10
242, SEIIAL ... 11
2.8.3. TPCi ettt 11
2.4.4. Serial Peripheral Interface (SPI)ccovvvieeiiiiie e 12
2.4.5. Communication Similarities/Dissimilarities Summary.............cccccoeveiinnennne 13
CHAPTER 3: TOOLS AND PRACTICES 14

1 70 I o Yo I 1011 (0o |01 (o] AP T TR 14

vii

3.2, HEX EQITOFS. ...ttt 14
3.2. 1. BIESS HEX EQIIOr ..cueiiiiiiiiiieie e 14
3.2.2. HEX WOIKSNOP .. .ouiiieiiiiiic e 15

3.3, DISASSEMDIEIS ...t 16
B 3. Ll IDA PO i 17
3.3.2. BINAry NINJa ..o 17
3.3.3. GRHOIA et 18
334, RAGAIEZ ... 18

3.4. Debugging Hardware & SOFtWare.............cooiviiiiiiiiiii e 19
B L. JTAG. it 20
B2, SWD i 22
4.3, SWIM s 23
A4, BDM oot 23
3.4.5. Debugging Hardware & Software SUMMAaryccccoceeriiiieniinieniiiee s 23

3.5, DecompressSiNg/EXIIaCTiNG.......c.uvviieiiiiiie e 23
351 BINWAIK ..ooiiiiiie 24
352, CYDEICNET ... 24
3.5.3. SRECOMM. ...ttt 24
354, U-BOOTTOOIS ...t 25

3.6. COMMUNICALION SNOOPING ...eeivviieiiiieeiiei ettt 26
3.6. 10 WITESNAIK ... 26
3.6.2. Saleae LogiC ANAIYZEL.........cccoviieieiiiiee et 26
3.6.3. BUS PIMALE ...t 27
3.6.4. FTDIFT232 ... 27

G TS TR 1110) Y/ [T 28

3.6.6. Communication SNO0PING SUMMANYccciiiurreeeeiiiireeeesiiireeeessnrreeeeessneneeens 28
CHAPTER 4: PROVINANCE DISCOVERY IN ANALYSIS. ... 29
4.1. Motivation for Provenance attribution.............ccoceeiiieiiiiiiii i 29
4.2. Vulnerable Library 1dentification.............ccoooviiiiiiiiiiiicce e 29
4.3. License Enforcement and Intellectual Property Protectionccccovvvveeiinnenne. 30
4.4, Attribution CIasSIfICAtIONoeiiiiiiiiiii e 30
CHAPTER 5: ACQUISITION OF FIRMWARE FOR ANALYSIS........ccoiiiiiiiiiiiieee 31
5.1, ACQUINING FIMWAIEcoiiiiiiiiiiieeiiie ettt 31
5.1.1. Non-Invasive Means of Capturing FIrMWare.............ccccvivieeriiieiniiie e 31
5.1.2. Invasive Means of Capturing FIMWAIEccooveeiiiiieiiiieeiiiee e 36
5.1.3. Capturing Firmware CONCIUSIONcuuiiiiiiiiiiiieiiiiie e 44
CHAPTER 6: ANALYSIS OF CAPTURED FIRMWARE..........ccooiiiiie 45
6.1. Analysis showcase: Investigating a Computer BIOSccoooiiiiiiiiiiieeiee 45
6.1.1. BACKGIOUNG ... 46
B.1.2. ANAIYSIS. . eeiiieeiiiie e e 46
6.1.3. ANAlYSIS CONCIUSIONSovieeiiiiiiie e ettt e s 53

CHAPTER7: SUMMARY & THE PITFALLS OF ANALYSIS TOOLKITS &
FRAMEWORKS 54

7.1, TOOl SNOMCOMINGS.....ctviiiee ettt e e e e e e e e e e e e e e e e annees 54

CHAPTER 8: FUTURE WORK: MACHINE LEARNING APPLIED TO FIRMWARE
ANALYSIS 55

8.1. Handling Large Data...........ccocuriiiiiiiiiiic et 55

CHAPTER 9: REFERENCES ...t 57

TABLE OF FIGURES

Figure 2-1: Memory map taken from the STM32F4 ARM processor manual [6]................... 5
Figure 2-2: Memory locations associated with various hardware peripherals taken from the

AALASNEEE [B] ..ottt 6
Figure 2-3: Wire diagram fOr 12C [14]cooveveveeeeteeeeeeeee e 12
Figure 2-4: Wire diagram of SP1 communication protocol [15]ccccooovieiiiiiiniiiieniinens 13
Figure 3-1: Bless Hex Editor with a zip file loaded. The file header is outlined in orange..... 15

Figure 3-2: Screenshot from Hex Workshop comparing two different files. Similarities are

highlighted in green with dissimilarities highlighted in yellow.cccooeiiiiii . 16
Figure 3-3: SCreenShot OF IDA TN USE.....cciiiiiiiee it e e st e e e s etee e e e e e e e e s e e e e s ennaaneeeans 17
Figure 3-4: The author hooked up the Jlink to debug an ARM development board from STM

... 20
Figure 3-5: Some standard JTAG CONNECEONS [32]cccouvveiiirieiiiieeiiii et 21
Figure 3-6: Unpopulated JTAG connector on a DD WRT router [32]ocoevvvvivveeiiiiiinneenns 22
Figure 3-7: Screenshot from Binwalk using the -B flagc.ccoceiiiiiiic 24
Figure 3-8: A snippet from an SREC file the author has come across.............cccvveeeviivnneennns 25

Figure 3-9: Rendering of the Bus Pirate device. It acts as an interface between a computer and

electronic communication ProtoColS.ooiiiiiiiiii i 27
Figure 5-1: Amazon echo dot teardown. Image taken from microcontrollertips.com [63] 32
Figure 5-2: Screen shot of Paccar Davie tool taken from http://specdiag.com [42] 34
Figure 5-3: Connecting leads to the pins of a on board flash chip. The BIOS boots from this

ol 0110 PSPPSR 37
Figure 5-4: Saleae Logic being used to 'snoop' data to/from the flash chip.c.......... 38
Figure 5-5: Using a soldering iron to de-solder the flash chip.ccccoovviiiiiii 40
Figure 5-6: Xeltec device with the socket plugged in and the target flash chip laying on top. 41
FIQUIE 5-7: ThE BUS PIFALEvviiieeiiiiiie ettt e e e e a e e et a e e e e nnnaaaneeeans 41
Figure 5-8: Flash chip connected to the BUS PIratecoocvveiiiiiiiiiiiiiiee e 42
Figure 5-9: FIaShromM N USE.....couiiiiiiiie e 42
Figure 5-10: Flashrom reading the Chipccviiiiiiii e 43

Figure 5-11: Flash chip re-soldered onto the board. The solder joints are a bit rough looking
but they aren't shorted and appear to make good CONLACL............ccccveveeeiiiiiieee e 43

file:///C:/Users/b/Documents/!Academic/Thesis/BradWhippleThesis_Formated_Rev3.docx%23_Toc37875692

Figure 5-12: After de-soldering the flash chip, reading it, and re-soldering the flash chip the

TArGEt ST WOTKS. ..o 44
Figure 6-1: Analysis of the BIOS update utility executable using Binwalk with the -B flag .. 47
Figure 6-2: Analysis of the binary retrieved from the flash chip using binwalk with the -B flag

... 48
Figure 6-3: Artifact of interest extracted from the BIOS image.ccccoooveviiiiiiiiiieniieens 49
Figure 6-4:Strings from file @1C0069 references difference builds.cccceeeiiinin 49
Figure 6-5: Strings references peripherals are likely to be found in a BIOS indicating this file
has BIOS INFOrmMation IN Itooiiieiiiiie e 50
Figure 6-6: Three snippets of strings discovered in file "@1C0069"cccoovveeviiiinneennns 50
Figure 6-7: PE file format [50]cccviiiiiiiiic e 51
Figure 6-8: PE-bear being used to identify start and end addresses of various locations on the
EXEFACIEA PE I8 .. 52
Figure 6-9: Cylance detected the extracted file as malicious and quarantined it. 52

Figure 8-1: Different results seen in disassembly from the same source code obtained by
compiling with different optimization flags ... 56

CHAPTER 1: INTRODUCTION
Note: In this thesis software refers to the personal computer (PC)/desktop environment and
the terms are used interchangeably. This thesis also uses embedded and firmware
interchangeably to refer to code or devices often removed or abstracted from the end user
such as smart thermostats or IOT security cameras. The author recognizes the term embedded
is used loosely and there is a lot of gray area between a PC system and a typical embedded

system.

Software and firmware analysis in the context of this thesis is the process of acquiring,
reverse engineering, and otherwise figuring out what makes a device ‘tick’. In other words, its
cracking open the hood of a device and figuring out what’s inside either by targeting specific
information suspected to be within, or by a sweeping drag-net approach; the method being
situation dependent. Software and firmware analysis are conducted for a myriad of reasons
but the top three are identifying vulnerable libraries, enforcement of licenses and/or

intellectual property protection, and attribution classification.

By its nature, software is inherently difficult to analyze. Information available to the
researcher performing analysis is often absent or obscured. The process of going from code to
device/executable strips information out and given that analysis is performed almost
exclusively without code it leaves the researcher with a reduced set of data/information. It is
then up to the researcher to piece together a larger picture from small snippets of information.
To add to the arduous task the data available to the researcher may have been obfuscated

intentionally by the original coder making the analysis even more difficult.

In comparison to software analysis, the analysis of firmware is even more difficult due to the
extra layers of obscurity involved. While PC based environments are often limited to a few
different processor architecture’s and operating systems with code being restricted to running
within those environments; embedded systems are more diverse. The number of different
processor architectures and design paradigms found within embedded systems is far greater
than that of PC environments. Due to the lack of a common design schemas, processor
architectures, or operating systems the process of analysis on an embedded system is more

complex.

Frameworks have been attempted to structure and organize the firmware analysis process but
the problem is often too complex and diverse to solve with a series of regimented steps and
tools. Analysis frameworks the author has investigated target a very specific scenario and
often combine a series of tools in an attempt to streamline the process. Attempts at creating
toolkits or frameworks for analysis overlook a key component to an analysis campaign which

IS intuition and researcher creativity.

This thesis covers attempts to cover some of the tools used in firmware analysis. This thesis
then offers a demonstration of the tools listed as a brief expose’ into what is involved during a
firmware analysis campaign as well as the diversity of what can be encountered. This thesis
will discuss some potential areas of future research and why attempts of developing an

analysis framework fail.

CHAPTER 2: COMPARISON OF SOFTWARE TO FIRMWARE

2.1. Background/Intro

This chapter covers some core differences between embedded systems and traditional PC
systems that readers may be familiar with. Much of this thesis focuses on the C environment
for the sake of comparison. Most firmware, albeit not all, is written in C [1] and while there
may be some analysis techniques unique to the output of other programing languages on a PC
those will not be discussed as they are out of scope.

2.2. Hardware differences

This chapter and subsequent subchapters discuss some of the hardware differences between a
traditional software environment and an embedded environment. While this has somewhat
changed in the past ~5-10 years, typically engineers working with a PC platform could remain
unaware of the hardware they were working with and conversely an engineer working in an
embedded environment had to be intimately aware of all aspects of the hardware. As
technology advances and systems become more complex there is a push to further abstract
hardware and other layers of complexity so even some dedicated firmware engineers may be
unaware of hardware specific details of the device they are supporting or working on. Recent
cyber-attacks and vulnerabilities such as Spectre and Meltdown show the importance of being
‘hardware aware’ [2] even when the scope is restricted to PC systems.

Software engineers often write processor agnostic code and are more concerned with the
operating system that will host their application. The reason for the abstraction of hardware is
there are many software layers between the hardware and the application. When engineers are
working on an embedded device, they often don’t have the luxury of having all the inner
workings of the CPU, peripherals, memory, etc. abstracted from them through layering of

code (although this is changing).

2.2.1. Processor

There are some significant differences between traditional PC based processors and embedded
specific processors that extend beyond performance and power consumption. Anecdotally
software engineers traditionally do not need to concern themselves with processor architecture

[3]; the concern lies within what runtime environment and operating system they intend to

design to. When reverse engineering a piece of code that was intended to run on a PC
platform the approach is often agnostic to what processor the code is running on.

The above points are not true when it comes to embedded systems. Engineers must not only
be capable of understanding code but have an in depth understanding of the memory interface,
memory map, user manuals describing registers, and more [4], [5]. Often on an embedded
platform memory, storage, peripherals, etc. are all internal to the processor itself with details
about specifications to the processor embedded in the part number that is laser etched on top.
Referencing the datasheet for the specific processor an engineer/researcher is working on is
commonplace when dealing with an embedded target in both development and reverse
engineering. Take for example the memory map below in Figure 2-1. This memory map

describes the how memory is allocated internally in the processor.

Figure 2. Memory map

Reserved 0xE010 0000 - 0xFFFF FFFF
Corlex-M7 internal
e |oxE000 0000 - 0xE00F FEFE
AHB3 0x60DD DOOD - OxDFFF FFFF
Reserved 0x5006 DCO0 - 0xSFFF FFFF
0x5006 DBFF
AHB2
OxFFFF FFFF [T 512 morte
Block 7
Cortex-M7 0x5000 0000
Intemal Reserved 0x4008 0000 - 0x4FFF FFFF
0xE0D0 0000 |_peripherals 0x4007 FFFF
0xDFFF FFFF
512-Mbyte
Block 6
FMC
0xDO00 0000
OxCFFF FFFF AHE
512-Mbyte
Block 5
FMC
0xC000 0000
ooFFFFFFE]
e 0x4002 0000
Block 4
Quad-SPI and Reserved 0x4001 BCOO - 0x4001 FFFF
0x8000 0000 | _FMC bank 3 0x4001 BBFF
ox7FEF FFFF | o byt
Block 3
FMC bank 1 to
bank 2
%6000 0000
OXSFFF FFFF
APB2
512-Mbyte
Block 2
Peripherals
0x4000 0000
OX3FFF FFFF
512-Mbyte
Block 1
SRAM i
022000 00 Reserved 0x2008 0000 - Ox3FFF FFFF 544001 0000
OcAFFF FFFF SRAM2 (16 KB) 0x2007 COOD - 0x2007 FFFF Reserved 0x4000 BODO - 0x4000 FFFF
0x4000 TFFF
512-Mbyte SRAM1 (368 KB) 0x2002 0000 - (x2007 BFFF
Block 0 DTCM (128 KB) 0x2000 0000 - 0x2001 FFFF
0x0000 0000 Reserved 0x1FFF 0020 - 0x1FFF FEFF
Option Bytes 0x1FFF 0000 - 0x1FFF 001F
Reserved 0620 0000 - 0x1FFE FFFF APa1
Flash memory on AXIM 1 ,085q 0000 - 0x081F FFFF
interface
Reserved 0x0030 0DQO - OxOTFF FFFF
Flash memary on ITCM 00050 0000 “0x003F FFEF
interface
Reserved 0x0011 0000 - 0x0 FFFF
System 0x0010 0000 - 0x0010 EBBF.
—— 04000 0000
Reserved 0x0000 4000 - 0x000F FFF
ITCM RAM 0x0000 D00 - 0x000O 3FFF
MSvag118v3

Figure 2-1: Memory map taken from the STM32F4 ARM processor manual [6]

This may seem mundane to the uninitiated but on an embedded processor every functionality
is controlled through memory or more specifically the Direct Memory Access (DMA)
controller [7]. Many communication protocols and other functionalities are supported by
designing hardware in the silicon to work with the CPU core. Take for example the Controller
Area Network (CAN) interface, or sometimes called “CAN bus”. On a PC platform the

protocol is not supported natively on the processor itself, must make use of additional

hardware, and often programs will import libraries such as a Dynamic Link Library (DLL) to
interact with said hardware. On an embedded system this design paradigm is completely
different. Settings for the CAN bus, data out, data in, and many other aspects of this protocol
are accessed by writing or reading to/from memory locations. Figure 2-2 was taken from a
microprocessor datasheet and shows some communication protocols, including CAN, and
their address ranges for that protocol or interface. Navigating to the associated section in the
datasheet for each interface would show in greater detail as well as describe functionality for
individual bytes and bits of the space in memory. This information can be useful during the
design process but also when it comes to analyzing firmware. For example, if there was
known functionality about an embedded system, such as a vehicle ECU, memory locations
could be pulled from the datasheet and searched for in the firmware file to identify functions

that write, read, or initialize the CAN bus.

0x4000 6800 - 0x4000 6BFF CAN2
Section 40.9.5: bxCAN register map on page 1573

0x4000 6400 - 0x4000 67FF CAN1

0x4000 6000 - 0x4000 63FF 12C4 Section 33.7.12: |12C register map on page 1239
0x4000 5C00 - 0x4000 5FFF 12C3

0x4000 5800 - 0x4000 5BFF 12C2 Section 33.7.12: |12C register map on page 1239
0x4000 5400 - 0x4000 57FF 12C1

0x4000 5000 - 0x4000 53FF UARTS

Figure 2-2: Memory locations associated with various hardware peripherals taken from the datasheet [6]

Much more could be described concerning microprocessor architecture and design paradigms,

and in fact many books and university courses do just that [8], [9]. For this thesis however,

the topic is far too expansive to try and do any more than scratch the surface of the topic. It is

also worth noting that the lines are beginning to blur as many embedded processor

manufactures have increased support for their products by releasing advanced toolsets for

their products. Toolsets that auto generate clock settings, HALS, peripheral configurations,

etc. for the engineer allowing him/her to remain unaware of the chip’s inner workings [10].

2.2.2. Storage
Software environments typically can be oblivious to what sort of storage is being used.

Software executables rely heavily on the operating system to take care of reading and writing

data and the protocols associated with that. Engineers and researchers working with

embedded systems must often be more aware of how this happens. Viable targets for storage

can take more than one form and are not nearly as standardized.

2.2.2.1. Hard Disk

Hard disks often come in one of two forms, spinning disks and Solid State Drives (SSD).
While older spinning disks are still commonly found in computer systems due to the lower
cost in terms of storage density, SSD drives are becoming more common. Spinning disks get
their name from stacks of spinning platters housed internally that are used for storing data.
SSDs employ flash storage and are significantly faster. These storage technologies are almost
always present in PC environments but rare in embedded devices. The interface to these
storage devices is standardized between manufacturers of the devices and interchangeable
between brands. While hard drives can often be the target of forensic investigations [11] [12],
they are not typically relevant when analyzing a binary or executable.

2.2.2.2. Flash memory

Even though flash memory is utilized in SSDs it is being introduced as a separate sub chapter.
Flash memory by itself is nonvolatile memory usually sold and utilized as an Integrated
Circuit (IC) but also incorporated internally as on-chip flash in microprocessors. When seen
in a PC environment it usually takes the form of an SSD but by itself is not uncommon in
embedded systems. Even though many embedded processors have internal flash it is not
uncommon to see a separate flash chip utilized in the design of an embedded system. In terms
of performing a forensics analysis or reverse engineering operation reading a flash chip
directly may be out of the question for a PC environment but for an embedded device it is

commonplace as will be discussed in greater detail in later chapters.

2.2.23. EEPROM

EEPROM (electrically erasable programmable read-only memory) is nonvolatile memory like
flash but has smaller page size than flash. EEPROM can be a common place to find user or
device data. Because of its small page size, sometimes as small as a byte, it is often used for
storing times, dates, configurations, password hashes, names, serial numbers, etc. While it
may be possible to find a stand-alone EEPROM chip in a PC environment it is heavily

abstracted.

2.3. Lifecycle/Software Differences
This chapter attempts to cover some basic differences in how code is developed and run
between embedded and PC systems. This topic can be quite extensive and complex and will

rely on reader’s implied prior knowledge on some subjects.

2.3.1. Executable File Format (PE, ELF)
Researchers working in a PC environment will likely be familiar with the PE file format if
working in a Windows environment and the ELF format if working in a UNIX environment.

These files have everything needed for the operating system to load the program and run it.

Users may find these files rare when working with embedded systems from an analysis or
reverse engineering standpoint. The ELF format is common in firmware development as it is
commonly output from the compiler/linker but these files are usually not distributed. The files
captured from a device or firmware update will usually be a binary with all the extra
information an executable file has stripped out. This is because as part of an embedded
system’s build process the firmware gets put through a relocation process. During the
relocation process physical memory addresses are assigned to offsets given by the ELF file to
align with valid memory addresses in the processor to form a single executable binary ready

to be run on the target processor.

This section leaves a lot of information about the build chain out intentionally for the sake of
brevity. The key takeaway readers should have is the difficulty of analysis from a file that is
not in an executable format. There is a high probability that the file encountered by users for
analysis will be a simple binary. This file will not have associated addresses associated with it
and figuring out a start address will be critical. Take for example a jump to address
0x80001B00; if the start address was 0x00 this would represent a jump to nearly ~2GB into
memory. This is usually unrealistic for embedded devices. However, if the start address is
defined as 0x80000000 then the jump becomes 0x1B00 (~7Kb) into memory which is more

realistic.

Figuring out the base address will be essential for rebasing the binary in analysis tools. If
reading directly from the processor using debugging tools these addresses will be explicitly
discovered by nature of the tool. Without knowledge of where the binary resides in the

address space the user and disassembly tools won’t be able to make sense of the functions and

control flow.

2.3.2. Bootloader

Bootloaders are a mainstay in embedded systems, without them it would not be possible to
push firmware updates to the device. The most common analogy to the PC environment is the
BIOS/UEFI. The purpose of a bootloader is to enable an embedded system to update its
firmware. Bootloaders are typically very simple pieces of code that either jumps to
application code or replaces existing application binary with new a new binary. It is not

entirely uncommon for a bootloader to unencrypt a binary during the update process.

Bootloaders are needed due to the nature of how embedded processors work. Upon powering
up or triggering a reset an embedded processor’s Program Counter (PC), commonly called
Instruction Pointer (IP), will start at a predefined memory location. On a design without a
bootloader (like a prototype) this will start executing application code. In order to self-
program and update the firmware this flow will need to be interrupted to execute a bootloader
first. The bootloader can either be placed at the predefined start location or the first instruction
of application code can jump to the bootloader memory location. Some embedded processors
support other bootloader mechanisms such as enabling bootloader fuses. With the bootloader
running the application can now be swapped. If no update is required, the bootloader will

simply return process flow back to the start of application code.

Bootloaders can be implemented in different ways. Sometimes guidelines will be published
from the chip manufacture but ultimately it is up to the designer to implement a bootloader as
he/she determines is necessary. Accounting for the bootloader is important to any user

analyzing or reverse engineering an embedded system.

2.3.3. Operating Systems

Operating systems on embedded devices are not at all similar to what is running on a PC.
Usually the operating systems on an embedded device is called a Real Time Operating
System (RTOS) due to the necessity of processing data coming in from peripherals and
executing tasks in real time and on a pre-defined schedule. These RTOS’s are lightweight,

minimalistic, and are part of the same code base as the project itself. Usually firmware

10

engineers import the code for the entire RTOS into their project and then write application
code in files alongside the RTOS. Researchers should keep this in mind when investigating a

firmware image as the OS will likely reside alongside application code in a binary.

2.3.4. Libraries

The use of libraries in embedded systems is common although likely not to the extent of PC
based software. The big difference between embedded systems and PC based systems and
how libraries are used is that in an embedded binary the library has been statically compiled
and included alongside the application code. Embedded systems rarely have the ability to
dynamically load a library and execute code from it so all functionalities borrowed from a
library must be included and fit within the systems useable memory. In a PC system, libraries
can be compiled statically but for the sake of keeping executables small libraries are kept

dynamic and the executable relies on the operating system to import libraries.

2.4. Communication Similarities/Differences

When comparing typical communication protocols found in PC environments vs embedded
environments there are some significant differences. It is assumed the reader is familiar with
communication protocols used in PC systems such as Ethernet, serial, USB, etc. This thesis
does not cover low level communication mechanisms such as SATA, pipelines, ram-processor
interface etc. as those are often out of scope and far from the prerogative of PC engineers/
researchers. Below are some of the most common communication protocols found in

embedded systems.

2.4.1. Ethernet

Ethernet has been prevalent in PC systems for some time and is becoming more common in
embedded systems. The low level workings of Ethernet will not be discussed in this section.
Although the Ethernet used in PC systems is identical to the usage in embedded systems
monitoring the traffic over Ethernet is often different. PCs are conducive to host-based
monitoring as the resources required for simultaneous monitoring are present and software
has been written to capture and analyze the traffic. In an embedded system this capture, and
analysis must usually be done off-host on a different machine. A common way to accomplish
this is to configure a network in a manner that allows capture from a mirror port and analyze

on a PC; although a network Test Access Point (TAP) could also be used.

11

2.4.2. Serial
Some readers may be familiar with the DB9 serial port commonly found on PCs in the 90’s
and early 2000’s. This form of communication is still very prevalent in embedded systems but

with some major caveats. Before elaborating some terms need to be defined:

e Universal Asynchronous Receiver Transmitter (UART): This is a communication
interface. It consists of a transmit (TX) and a receive (RX).

e RS-232: This is a communication standard that defines voltages, physical connections,
timing, etc. The DB9 connector PC users may be familiar with are a part of RS-232,
which is an implementation of UART.

e Serial: This term is part of common speak that encompasses both above and not really

a part of a defined standard. It is used colloquially and can mean many things.

The biggest difference between the UART on embedded systems and the UART behind RS-
232 is voltage levels. Connecting an embedded system directly to a DB9 would likely damage
it as the voltage of RS-232 is +/-12V whereas common voltages for embedded devices will be
3.3V or 5V.

Some embedded processors will have more than one UART interface and the pinout diagram
of the chip will usually list the pins associated with the UART interfaces in pairs as (TXO0,
RXO0), (TX1, RX1), etc. When investigating these interfaces hardware will need to be used
such as offerings from FTDI described in section 4.6.4. When connecting hardware to the
processor the TX is connected to RX and vis-versa. Because UART does not implement a
separate clock signal the baud rate will need to be known or guessed. Since only a small
number of baud rates are standard and only a few of those are commonplace it is usually not
that difficult. Choosing the incorrect baud rate will usually still result in data which further
limits the need to try every common baud rate before knowing whether data is present on the

communication interface.

243. I°C
I2C (pronounced “I-squared-C”) is a communication bus that is address based, uses a master
device with multiple slave devices, and is a common communication mechanism for sub-

components of a circuit board. 1°C is sometimes referred to as TWI (two wired interface) due

12

to trademark concerns [13] but the two are synonymous. Each slave device on the bus must
have its own unique address, otherwise multiple slaves may try to respond to data
transmissions. Because 1°C is a relatively slow protocol it is usually reserved for devices that
do not inherently demand high speed rates of data transfer. Low speed devices such as
humidity sensors, light sensors, analog to digital converters, etc. are ideal candidates for 1°C.
I2C relies on two signal wires (SDA-data, and SCL-clock) that multiple devices can connect
to. Both signal wires have a pullup resistor to positive voltage as seen in Figure 3. The low
level bitstreams that are part of the 1°C protocol are not being presented due to the existence

of tools to adequately abstract them from the user.

i Re \Vdd

I I [SCL

ucC ADC DAC ucC
Master || Slave || Slave || Slave

Figure 2-3: Wire diagram for 12C [14]

2.4.4. Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SP1) is often found in embedded systems, and like 1°C, is used as a
component to component communication protocol such as microprocessor to flash, display, or
other component. The protocol relies on a minimum of three signals; Master Out Slave In
(MOSI), Master In Slave Out (MISO), and a clock signal (SCK). More signals are required if
multiple devices are connected to the same SPI bus which are usually designated Slave Select
(SS) which simply enables or disables a device. If only one slave is connected to the SPI bus

it is common practice to hardwire the SS signal to its enabled condition.

13

SLAVE 1 SLAVE 2 SLAVE n
50 70 70
84, 582, 89,
WEE®D NEZE®D WEZE®D
MASTER 447 A4 Y J A Y
SCK |» —
MOSI |» -
MISO |-« -
S8

Figure 2-4: Wire diagram of SPI communication protocol [15]

2.4.5. Communication Similarities/Dissimilarities Summary

These protocols have been listed because it may be necessary to listen in on or otherwise
investigate the protocols. Investigation methods will be briefly discussed in later chapters. A
part of analysis on embedded devices usually involves going to the circuit board level and
taking into consideration the entire design of a device and what is communicating to what.
Using the information provided readers may be more aware of what they are investigating at a
component level.

14

CHAPTER 3: TOOLS AND PRACTICES

3.1 Tool introduction
This section covers some tools used to inspect and analyze firmware. The scope of this topic
IS quite large. There are many tools that are as universally applicable to firmware as they are

to software.

3.2 Hex Editors

Hex editors are used to view and edit the contents of a file in the raw byte format. They are
not specific to working with embedded systems and are just as applicable in a PC
environment. Often bytes are displayed in hexadecimal format by default, but decimal, binary,
and octal representations are supported on most hex editors. Hex editors are somewhat
interchangeable with minor variations in capability or layout. The number hex editors
available is far too great to include all of them in the report but the two most used by the
author are presented below. Hex editors can be especially useful when comparing two files,
looking for artifacts in files such as strings, or editing data at a very low level. Another
technique is to use a hex editor to view the first bytes in a file. These first bytes are often
referred to as a file signature and identify the type of file [16]. The file extension cannot be
relied on to identify the type of file and the author has found numerous times where files with
odd manufacture specific extensions end up being a common compressed file type such as

zip.

3.2.1. Bless Hex Editor

Bless is an open source hex editor for Linux that comes with a Graphical User Interface
(GUI). Itis free to use as it is licensed under the terms of the GNU General Public License
(GPL) [17]. While it is not the author’s favorite hex editor it is the one most often used by the
author in a Linux environment due to the ease of installation and zero cost. The file signature
0x50 4B 03 04 is boxed in orange in Figure 3-1 which indicates a zip file even though the file

extension was not zip. This information was useful during the analysis of a PLC’s firmware.

le Edit View Search

¢ch Tools

Qa

15

0000600050 4B
00000011 [ZE 3C
00000022 | 6E 55
0000033 |00 98
OQOGOG-’%d'lF 20

03
Cl)
70
91
66

04
Uy
2E
11
64

Signed 8 bit: |80

Unsigned 8 bit: |80
Signed 16 bit: | 20555
Unsigned 16 bit: | 20555

' Show little endian decoding

L4
00
66
04
es

00
62
74
63
33

00
00
53
60
45
Signed 32 bit:
Unsigned 32 bit:
Float 32 bit:

Float 64 bit

_| Show unsigned as hexadecimal

08
00
44
69
81

00 52
0B 00
5C eo
10 61
84 78

49
71
A4
60
5D

1347093252
1347093252
1.362389E+10

6.25550110675295E+78

Offset: 0x0 / 0x23f0a3

49
00
00
60
A5

43 D7
43 6C
00 00
30 60
F1 D9

AA
65
00
80
BD

00

9F |. fd.3YE..x]

Hexadecimal: 50480304

Decimal: |080 075 003 004
Octal: | 120113003 004
Ascil Text: | PK[EEY

Selection: None

Figure 3-1: Bless Hex Editor with a zip file loaded. The file header is outlined in orange

3.2.2. Hex Workshop

(5 1§ PR SRt et q.Clea

..... cd’i.a 8.,

Binary: 01010000 01001011 00

INS

Hex Workshop from BreakPoint Software [18] is the author’s preferred hex editor and what
he cut his teeth on. This particular hex editor also has one of the best implementations of

comparing files than any other hex editor tried. Comparing files at the binary level may not be

useful for most analysis applications but it was especially useful when comparing tuning files

from vehicle ECMs. Figure 3-2 below shows a screenshot from Hex Workshop comparing

two files.

16

[Hex Workshop - DARe

File Edit Disk Options Tools Plug-ns Window Help
SRS =R-N] GYED BRSNS @ R [Q{w oE
A BEE LPhEu @6
o [D:\Releases\hw32v513.exe ==]Eas] | B paReleases\hwazvs1d.exe o (== o
) 0 12 34|56 0123456 01|23 4|/5|6 |[p123456 &
Z [l loooooss? [9& 0o 0051 49 B8 00 Loug1B] - || |oooooss? (04 000000 B9 46 [3 00 4. - g
5| ((looooo3e4 [02 00 00 00 00 00 10| [------- 00000364 [G2 D0 00 00 OO 00 10 g
5| [||ooooos71 |00 00 10 00 00 00 GO |....... 00000371 (00 00 10 00 00 00 00 g
00000378 (10 00 00 10 00 00 00/- 00000378 (10 D0 00 10 00 00 00
00000385 (00 00 00 10 00 00 00/ ---..- nonoo3ss (G0 00 00 10 GO0 00 00
00000392 (00 00 00 00 00 00 00| .-..- 00000392 (B0 00 00 00 OO0 00 00 o
00000399 (00 5€ 1D 02 00 €8 00 |. 00000399 (00 5€ 1D 02 00 ¢8 00| |- 3
0000406 (00 00 00 50 02 00 €8 nonoo40s (00 D0 00 50 02 00 C6 a
00000413 (BS 00 00 00 00 00 00| «--... 00000413 [BS 00 00 00 00 00 00 5
00000420 |00 00 00 00[%0 EE 37 |....[- Donoo4zo (00 00 00 00[F8 FE a7 g
00000427 OO0 CB 12 DO T Attributes at offset 424 nonoo4z7 (G0 €8 12 00 00008 00 e
00000434 (00 00 00 0O 00000434 |00 00 00 00 00 00 00
00000441 (00 00 00 00 | Replaced Data:424to 426 (2 bytes) || [nono0441 |00 00 00 00 00 00 00
00000446 (00 00 00 0O 00000448 |00 00 00 00 00 00 00
00000455 (00 00 00 gp LSHEtoEnable or Disable 00000455 (00 D0 00 00 00 00 00 av.u...
00000462 (00 00 00 00 00 00 00 00000462 |00 00 00 00 00 00 00 «......
nnnnnNAco nonoAn NN oMAa iR N9 nn - nnnnnAco aonoAn 0N o mMAa 1A A nn T
hw32v514. hw32v513.
3 |7 [D\Releasesthwa2v513 exe vs DAReleases\w32vid.exe Al - By & X
1 Tyee Source) Count) Count &) Target &) Count B Count [5 -
Matched 00000000 360 0168 00000000 360 0168
Replaced 00000360 2 02 0000360 2 02
Matched 00000362 62 3 00000362 62 3E
Replaced 00000424 2 02 0000424 2 02
= Matched 00000426 183142 0002CB66 00000426 183142 0002CB66
................ 11 no. NN 9IEES 11 no -
E B compare | &, checksum | 88 Find | 4 Bookmarks | (2] output
&
Cursor, 424 Caret: 362 3670312 bytes OVR MOD READ

Figure 3-2: Screenshot from Hex Workshop comparing two different files. Similarities are highlighted in green with
dissimilarities highlighted in yellow.

3.3. Disassemblers

Disassemblers are a family of software that takes binary files and translates them into
assembly. These programs are as useful when reverse engineering firmware as they are
software. Many disassemblers also work to identify functions and control flow as well as
breaking assembly up into functional blocks. The important aspect of a disassembler as it
applies to embedded systems is the software must support the target architecture (processor)
in order to be useful. There are more disassemblers out there than the four listed, but these are

the 4 the author is most familiar with and in the author’s opinion the most well-known.

One of the biggest differences when reverse engineering firmware, aside from processor
architecture, is that having access to an Executable Linkable Format (ELF) file is often rare.
The file type and format of the firmware retrieved will vary but it will almost exclusively
always be static, stripped, and not have address information affiliated with the firmware.
What this means to the researcher will be discussed in greater detail in a later chapter but in
short having a static file means all code and functionality are included in one binary as
opposed to importing some dynamic library. Having a stripped binary means variable names,

function names, and other useful bits of information will be absent. Part of having access to

17

an executable, such as the case when working in a PC environment, is that addresses are
included, which libraries are imported are included, and the file isn’t always stripped so
sometimes function names can be retrieved. Having a disassembler that can handle these

restrictions is important if it is to be used with a firmware file.

3.3.1L IDA Pro

IDA Pro (or sometimes just called IDA) from Hex-Rays [19] , seen in Figure 3-3, has a long
history of being the De facto standard when it comes to disassemblers. The software has been
able to outshine its competition and it demands a hefty price tag for the privilege. Hex-rays
takes a tiered or Downloadable Content (DLC) approach to its licensing [20] with each
additional functionality or architecture support costing extra. With each license module cost in
the thousands it’s easy to achieve a $10k+ price tag for a fully supported software package
which is well out of reach for the casual reverse engineer. Hex Rays offers a freeware version

of IDA with reduced functionality and reduced processor architecture support.

I §} 104 - D:\AdamHMil\games\capitalism2\cap2.exe — -0 x|
Fle Edt Juw |Search View Debugger Options Windows Help
Ib QH“\“&JQ\ t [[Ten ~][WinMain@16 ~] | <,H o - S HK -~ ‘7“ e |
x Funcllonswmdowl X N Names window | v | X [Z] IDAView | x B Stuctures | X En Enums | X % Local Types | X E Expotts | X " Stiings window
Function name Segment Statt| e
1] sub_B34170 text 00634170 loc_6089DF :
| ¥ sub_634180 text 00634180 call __wincndln
‘Ll sub_634190 text 00634190 test byte ptr [ebp+Startupinfo.dwFlags], bl
1) sub_B34140 text 00634140 jz short loc_6089EF
7] sub_6341B0 text 00634180 T
] sub_6341C0 et 0034100 ¥ v
] sub_6341D0 tew 00534100 EI N 1 ELIM
] sub_B341ED text 006341E0 mouzx ecx, [ebp+StartupInfo.uShouWindou]
7] sub_6341F0 text 006341FD imp short 10c_6689F2 1:256“8952;
5] sub_634200 text 00634200 P!
Rhe pop ecx
1) sub_634210 text 00634210 T
i sub_B3421F text 0083421F T
~
b ﬂj BN
lLine 8435 of 3435 loc_6089F2: ; nShowtnd
Y Function calls: __tmainCRTStartup ox push ecx .
- - push eax ; 1pCmdLine
Address |_Caller |/ Instruction push (5] ; hPrevinstance
textO0BOBAGE $LN33 imp __tr push 400806h : hInstance
call _WinMain@16 ; WinMain(x,x,X,X)
mov [ebp+var_1C], eax
cmp [ebp+var_28], 8
4] inz short $LN44
| Addiess | Calledfunction :|‘
| 1ext00608830 call _SEH_prolog4 I}
text00B08BSD call dsGetStatuplnfod
text00B0S8B8 call ebx GetPiocessHeap ENL }
toxt00B0S8BE cal dsHeandllo _';I Ki| — — | i
< | *| |[i00.00% [(896,2602) [(-17,33) [002089FB |006089FB: __tmainCRTStartup+172
[E] output window a|
Foesn using guessed :ype (har byte_68D6BO0; =
90978: using guessed ty nt dword_690973;
Sorting 'Strings window"... "ok ;]
iogf |
au: idle up piski 1B | %

Figure 3-3: Screenshot of IDA in use

3.3.2. Binary Ninja
Binary Ninja is another commercial offering for a disassembler. While not as full featured as
IDA Pro it is significantly cheaper. At the time of writing the Personal/Student license cost

18

$149 USD and the Commercial License costs $599 [21]. There is also a demo version of
Binary Ninja although compared to the freeware version of IDA it seems a bit more restrictive
by prohibiting users to load or save databases, only allowing 25 minute sessions, and not
allowing access to the API [22]. Of the four disassemblers listed the author has the most
experience with Binary Ninja in a professional setting. Binary Ninja was chosen within the
author’s professional setting at the time due to its lower cost and excellent API which is
relatively easy to use provided the user is familiar with Python. One of the frustrating aspects
of Binary Ninja is it currently lacks the capability to rebase a file. While it is possible to do

this with a script the lack of native capability is inconvenient.

3.3.3. Ghidra

Ghidra is an open source reverse engineering tool (disassembler) developed by the National
Security Agency (NSA). Ghidra was initially released at a the RSA conference in March of
2019 and soon followed by the release of the source code in April of the same year [23].
Ghidra comes with a gambit of capabilities, and as a piece of software with a sense of
completeness, not often seen with open source tools. A tool of this caliber being released as
open source caused a stir among the reverse engineering community [24], [25], [26] with
many forum users pointing out that IDA Pro may soon have stiff competition as users expand
the functionality through software updates and plugins. This hype may be partially credited to
the nature of the organization that developed it as the NSA has long been the cyber weapons
shop for the US government. Given this tool was so new at the time of writing this thesis (< 1

year) the author has had limited experience with the software.

3.34. Radare2

Radare?2 is an open source command line decompiler. There is a front end for Radare2 called
Cutter which must be installed separately. Because it is open source it is often a great option
for academic work although some users may find the command line interface difficult to use.
The author has the least amount of time on this debugger but anecdotally from reading
reviews and exchanges among professionals in the reverse engineering space it remains a

viable option.

19

3.4. Debugging Hardware & Software

Readers may already be familiar with debuggers such as OllyDbg or the debugger built into
their programming development environment. For the readers who are not familiar; a
debugger enables a user to step through code or a binary and see the effects each line of code
or instruction has on registers and memory. Software engineers may often do this with code to
analyze what their code is doing but in the reverse engineering and binary analytics field this

is rare due to only having access to the binary being typical.

Debugging with embedded devices is similar in concept to debugging with a PC. The major
difference is usually extra hardware is involved. On a PC platform the processor architecture
on the machine is often compatible with the binary. In an embedded system the processor
architecture will be different as well as having different registers, memory locations, and
peripherals. In order to debug the target system, it will need to interface with the PC through
extra hardware. Below in Figure 3-4 the author has connected an ARM development board
from STMicroelectronics (STM) [27] to a debugger from IAR systems called the J-Link [28].
It’s worth noting that the development board pictured comes with built in debugging hardware
(left side of board) called ST-LINK/V2 [29]. The IAR J-Link was used to demonstrate
debugging a target device that does not have built in debugging hardware as is the case with

nearly 100% of production devices.

20

Figure 3-4: The author hooked up the Jlink to debug an ARM development board from STM

As opposed to following previous sections pattern and listing off some debuggers, some
debugging hardware interfaces will be listed instead. The hardware that is available is usually
distributed by the manufacture of the chipset in question; Texas Instruments, Microchip,
Atmel, STM, etc. all have different debuggers that are not compatible with each other. There
are third party vendors of debuggers, such as Laterbach [30], that make debuggers but even
their products are only compatible with different architectures if the appropriate hardware
module/add-on is used. The following interfaces are listed because these are what the
debugger will need to physically connect to. Understanding them and how to find them will
make it possible to start debugging an embedded system.

3.4.1. JTAG

JTAG (pronounced “J-tag”) stands for Joint Test Action Group which is the group that came
up with the standard. JTAG is an IEEE standard for “Test Access Port and Boundary-Scan
Architecture” [31] and has been adopted by most microprocessor companies. JTAG has long
been the De facto standard for debugging interfaces; while other companies have come up
with their own debugging mechanisms industry parlance often uses JTAG as the go-to

vernacular.

21

The pins/signals required for interfacing with JTAG on a chip are listed and described below.
There are 4 required, 1 optional, and ground needs to be connected for voltage reference but is

usually not explicitly mentioned in instructions or manuals.

e TDI: Test Data In; serial data from debugger to target

e TDO: Test Data Out; serial data from target to debugger

e TCK: Test Clock

e TMS: Test Mode Select; controls the Test Access Port (TAP) controller state
transitions

e TRST: Test Reset; optional, resets the TAP controller

The important part for users is to not understand the inter-workings and low-level
implementations of JTAG but how to connect and use it. While there are standards for
connectors as seen in Figure 3-5 these are not always present on the board. In the author’s
experience if the connector is present on the board it will rarely be populated (footprint is
there but physical connector is not soldered) such as the case in Figure 3-6. If a user desires to
connect to a production device (not prototype status) there is a strong possibility a soldering
iron will be involved. If a JTAG standard header is not present the first step should be
consulting the datasheet for the target CPU. This datasheet should have a pinout describing
what each pin on the chip does. Use this to identify which pins relate to JTAG; these will be
the pins that need connections to, either directly or follow a PCB trace to a suitable

solder/connection point.

ARM 10-PIN Interface ST 14-PIN Interface ODCDS 16-PIN Interface ARM 20-PIN Interface

IJEN 1 | 2 [TRST ™S 1 2 VCC (eptionsty VCC 1 2 VCC jeptional)
GND 3 4 NC ™o 3 4 GND TRST 3 4 GND
vec 1 1 Tms
GND 3 4 TCLK
GND § 6 TDO vee 7] ¢ 8 /RST ™ 7 8 RESET ™S 7 8§ GND
RYCK 7 8 TOI ™S o | 10 GND TRST 9 10 BRKOUT TCLK 9 10 GND
GND 9 10 RESET

o1 s (& TSIAY CPUCLK § & GND ™ § & GOND

TCLK 1 [12 GND TCLK 1 12 GNO RTCK 1 12 GND
O 13 (4 ITERR BRKIN 1) 14 OCDSE ™o 1 14 GND
TRAP 15 16 GND RESET 15 14 GND

NC V7 12 GND

NC W 20 GND

Figure 3-5: Some standard JTAG connectors [32]

22

Figure 3-6: Unpopulated JTAG connector on a DD WRT router [32]

Unfortunately, successful connection to the JTAG interface does not guarantee the ability to
read from memory and start debugging the code that is currently present on the chip. Many
processors come with options to lock down the read capabilities of debugging through a
mechanism called fuses. The term ‘fuse’ is a carry-on term to an era when literal fuses were
used inside the chip and would be permanently set by running current through specific pins to
disable functionality. Most current processors do not use this, and configurations can be set

and re-set.

3.4.2. SWD

Serial Wire Debug (SWD) is an alternative to JTAG for ARM processors [33]. One of the
drawbacks of JTAG is that it uses a lot of signals (relatively). As some chips push to reach a
smaller form factor, spare pins become a premium. 8 pin microprocessors are not out of the
question and dedicating 4 to JTAG leaves only 2 General Purpose 1/0 (GPIO) once ground
and Vcc are accounted for. The SWD protocol cuts this in half and only uses two pins; they

are listed below along with their descriptions [34].

e SWDCLK: Serial Wire Clock
e SWNDIO: Serial Wire Debug Input/Output; bi-directional signal carrying data.

The guidelines for connecting to SWD are identical to those for connecting to JTAG. Itisa
high likelihood that if a production device is the target, wires will need to be soldered on the

23

circuit board in order to interface with SWD. Consult the chip manual for identifying pins
designated for SWD functionality.

3.4.3. SWIM

Single Wire Interface Module (SWIM) is a proprietary protocol to STMicroelectronics [35]. It
is another progression in lowering the number of pins required for debugging, in this case
only 1 is needed. Going through SWIM would be superfluous and is presented to highlight the

broad spectrum of debugging interfaces a user might encounter.

3.4.4. BDM

Background Debug Mode (BDM) is a debug interface proprietary to Freescale (formerly
Motorola). It is similar to SWIM in that it needs only 1 pin for data [36]. Going through
BDM would be superfluous and is presented to highlight the broad spectrum of debugging

interfaces a user might encounter.

3.4.5. Debugging Hardware & Software Summary

In summary every embedded processor will have some form of debugging interface. The best
way to identify the interface is through the chip’s manual. JTAG is a well published standard
set forth by IEEE and can be found on nearly any processor. SWD is something ARM came
up with and can be found on a variety of manufactures that license the ARM core. Various
other debug interfaces exist that are exclusive to the chip designer/manufacturer. It is up to the
discretion of the chip designer which debug interface or interfaces to implement. Production
devices will rarely, if ever, have a debug port or connector populated on the circuit board.
Many times, a debug connection will not be made available on the circuit board and pins must

be traced in order to find viable connection points.

3.5. Decompressing/Extracting

When analyzing embedded systems, it often becomes necessary to extract the contents of a
file. This is similar to working in a PC environment with the exception of sometimes being
more specialized or specific.

24

3.5.1. Binwalk

Binwalk [37] is a command line tool for performing various analysis related tasks on a binary
file. The author has extended experience using the open source version but recently Binwalk
Pro has been released and is a cloud-based version. The author highly recommends this tool
as a first step in analyzing a piece of firmware, especially if the firmware was acquired from a
vendor and physical access to the target device is not possible or greatly restricted. Binwalk
can be used as a quick way to determine what is in a file, what sections of the file may be
empty data, what sections of the file may be encrypted or compressed, recognizing processor
architectures, as well as extracting known file types. Some of the flags the author uses the

most are as follows;

-B Scan a target file for common file signatures

-A Scan a target file for common opcode
signatures

-E Calculate a file’s entropy and generate an
entropy graph

-e Automatically extract known types

In Figure 3-7 is a screenshot of Binwalk running with the —B flag and recognizing various

characteristics and file signatures from a piece of firmware that runs on a PowerPC platform.

user@user-virtual-machine:~/Documents

HEXADECIMAL DESCRIPTION

ELF, 32-bit MSB executable, PowerPC or cisco 4500, version 1 (SYSV)
Ox1CE464 Unix path: /FLASHO/wwwroot/conf/dhcp
Ox1CEC30 Unix path: /FLASHO/wwwroot/conf/snmp/snmp.ini
Ox1CFD2E Unix path: /Eth_ETY/Eth_Integration/../../Eth_Components/SystemBase/bs_lnk.c

Figure 3-7: Screenshot from Binwalk using the -B flag

3.5.2. CyberChef

CyberChef is touted as being “The Cyber Swiss Army Knife - a web app for encryption,
encoding, compression, and data analysis” [38]. The list of capabilities is long, but it provides
an easy method of uploading a file and performing a list of operations on the file in sequence.
Bitwise manipulation, data massaging, and encryption can all be performed with one run

using an easy-to-use, drag-n-drop GUI.

3.5.3. SRecord
SRecord [39] is part of a large group of tools the author lumps together which are incredibly
useful when needed but are rarely needed. The tool SRecord is a Unix command line tool that

25

was created to manipulate Motorola S-Record files (often called SREC files). SREC files
follow a standard format, they store data as plain text so are human readable, and part of each
line of the file is a header, data, and checksum. In Figure 3-8 is a snippet of a SREC the
author has come across. The manufacturer distributed this firmware file as part of a zipped
package and once extracted it could be opened in a text editor. The data in red was not sent to
the target device but rather was used by the PC based application and not technically part of
the SREC file.

PML: Thu May 28 07:05:50 2015
pML: Device =

PML: Firmware Version = 004.020.001

PML: Flash Type = 34

PML: TriggerTime = 60000

PML: CRCTime = 80000

(crci6: 0x£396, 0x££800000, Ox££96£37d |

SQUUBUUUURC920410
$345FF800000D03EDS350016F376FFFFFF00556720BC3030342E3032302E
5345FF800040D948D0CBIB064DOABED4ECB2091013C24B124D6437BB6B42
S345FF800080F99E99B99BCDIBBSIFET892EFDEQ9BI3367CEIC3973CES

Figure 3-8: A snippet from an SREC file the author has come across

SRecord was used to then extract and manipulate data contained in the file. Data was
extracted from plain text and stored as a raw binary. This binary could then be loaded into a
disassembler, rebased to the appropriate address, and analyzed. Alternatively, if modifications
were added to the file, it could then be repackaged using SRecord with all checksums and

metadata fixed.

3.5.4. U-Boot tools

U-boot tools is a subset of the project U-Boot [40] and distributed on their Github page as a
part of U-boot. This toolset falls into the same broad category as SRecord in section 4.5.3 as a
tool that is rarely needed but when it is, users will find it incredibly useful. U-Boot is a
bootloader for embedded systems and U-boot-tools is a set suite of command line tools for
editing extracting, packaging, and otherwise editing u-boot utilities and images. The U-Boot
bootloader uses U-Boot images; think of them like executables or ROMs which can be loaded
to an embedded device. A user may not have a need to examine the bootloader itself, however
as the author has encountered real world scenarios from experience, the need to build a U-
boot image. In one such scenario the author experienced; there was a need to alter a firmware

image for a piece of equipment from the OEM without access to the source code, in other

26

terms popularized by the news, “hack” the device. A tool already discussed in section 4.5.1
called Binwalk was able to extract the U-Boot image but once the alterations were made the

only way the author was able to repackage the image was using U-Boot-tools.

3.6. Communication Snooping

When analyzing embedded systems, it may become necessary to snoop (eavesdrop) a
communication protocol. Users already familiar with software like Wireshark will already be
familiar with the concept. In fact, Wireshark itself is a very relevant tool when dealing with
embedded devices due to the widespread adoption of network connected embedded systems.
Many other snooping tools will be similar to Wireshark but will rely on some extra hardware
and may not have as robust of a user interface.

3.6.1. Wireshark

Since Wireshark has been mentioned already it would be prudent to cover it. Without getting
into too much detail about how network packets are routed to various devices, Wireshark
allows a user to capture network packets, analyze them, and even save them for later use. The
software is used heavily whenever development or analysis is taking place and ethernet

connections are involved.

3.6.2. Saleae Logic Analyzer

Saleae is a company that makes and sells a line of logic analyzers popular among engineers
and hobbyists. A logic analyzer is a tool used to measure/read digital signals. The
functionality sometimes crosses with an oscilloscope, a tool to measure voltage with respect
to time. The differentiating factor between the two is usually a logic analyzer will represent
voltages as digital values (0 or 1) where an oscilloscope will have very high resolution with

respect to voltage (microvolts).

The real value of a logic analyzer comes from its accompanying software. The software can
often decode and display common protocols (12C, SPI, Serial) as opposed to just signal
values. This of course requires the user to appropriately identify signals on the target device
and designate signal lines on the logic analyzer appropriately. Eavesdropping signals on a

circuit board may sound out of scope for most scenarios but armed with the right plug-in, the

27

Saleae logic analyzer can passively listen and stitch together sections of a flash chip. Given a
scenario in which an embedded processor has an accompanying flash chip it may be prove
fruitful to use a logic analyzer to see what the processor reads/writes at boot vs normal
operation.

3.6.3. Bus Pirate

The Bus Pirate is an open source device that interfaces with a computer and can ‘speak’
electronics. The device supports many protocols that electronic chips rely on to communicate
over copper traces on a circuit board; a graphic representing the Bus Pirate can be seen in
Figure 3-9. Some open source tools such as FlashRom support the Bus Pirate which makes it
easy to read the contents of flash chips. The Bus Pirate in a way is the antonym of a logic
analyzer; instead of passively listening to the device it can be used to actively interrogate the

device.

el

. Bus Pirate v3.5

Figure 3-9: Rendering of the Bus Pirate device. It acts as an interface between a computer and electronic communication
protocols.

3.6.4. FTDI FT232

The FTDI FT232 is a USB to serial adapter; technically USB to Universal Asynchronous
Receiver/Transmitter (UART). FTDI (Future Technology Devices International) is the
company behind the device and has been known for its line of FT232 products since the 90’s.
Really this shouldn’t be thought of as a single device but a family of devices as there are
several knock offs and other devices that do the same thing. A serial interface used to be
common on PCs but this is no longer the case which makes this device, or one like it,
necessary to communicate to devices using UART. It’s not just exposed serial interfaces on
the front or back panel that users should investigate with a USB-Serial adapter, but non-

connected pins assigned to a serial peripheral on the processor as well. The author has

28

discovered a telnet like menu operating on a serial interface not exposed externally of the

device.

3.6.5. neoVI

The neoV1 is a device made by Intrepid Control Systems that allows a computer to
communicate or snoop vehicle communication protocols such as CAN or J1939. This tool
would likely only be useful if a vehicle based embedded device was being investigated as the
use of CAN on production devices outside of vehicles is rare. The author has extensive
knowledge of tools from Intrepid Control Systems, like neoVI and valueCAN, during his

tenure at a company which reverse engineered vehicle ECMs.

3.6.6. Communication Snooping Summary
The devices listed in this section were primarily listed to highlight the diversity of tools that
may be needed to thoroughly investigate an embedded device. The selection of tools a user

chooses to employ will ultimately reflect the goals and purpose of research or analysis.

29

CHAPTER 4: PROVINANCE DISCOVERY IN ANALYSIS

4.1. Motivation for Provenance attribution

Analysis on embedded systems is motivated by many factors but a major goal is provenance
attribution; or in other words where the binary came from and what sub-components (such as
3" party libraries) make up the binary. There are three main reasons to discover the origin and
hereditary of a binary file: potentially vulnerable library identification, license enforcement
and intellectual property protection, and attribution classification.

4.2. Vulnerable Library Identification

Discovering which libraries are used in a binary is incredibly useful for vulnerability
detection. Libraries present a major pathway for vulnerabilities to persist and propagate. A
common practice for software developers is to recycle code, grabbing third party libraries that
provide desired functionality and incorporating it into their project. This design paradigm is
done for efficiency sake as the cost of implementing every little capability in-house (TCP
stack, HTTP server, drivers, etc..) into a device would be very costly. The result is that nearly
every product is comprised of multiple libraries, each with their own patch cycle. Hand the
product off to a junior engineer, as is common industry practice, and the problem is
exacerbated as the maintenance engineer may not have clarity or insight as to which libraries
were used and how. Such was the case with Busy Box version 1.21.1 and a vulnerability in its
NTP implementation. Busy box used openNTPd, a separate library, for its NTP
implementation. From the time openNTPd was patched until the time Busy Box incorporated
the patch was 7 years [41]. This significant vulnerability remained in production code for a
significant time after a patch was available due to a lack of situational awareness to

incorporated libraries and their respective patch cycles.

The scenario of an engineer not knowing what code is in the device is far more common than
people think. The author can speak from personal experience when he was working as an
embedded engineer. Anecdotally, roughly 80 percent of the code base was reused with the
remaining 20 percent changing depending on the application. The majority of the code used in
the device was untouched and unseen by the author. As an engineer working for the company,
there wasn’t a reason to know what libraries were used as only the code that needed to be

fixed, or to support new applications, was seen. It wasn’t until efforts were made towards

30

supporting a new application that it was discovered the code that was handling the
reading/writing to the SD card was an unlicensed library. This isn’t necessarily a vulnerability

but highlights the widespread problem of unseen libraries being used.

4.3. License Enforcement and Intellectual Property Protection
Enforcing license agreements or protecting intellectual property rights requires proof that it is
being used. Unless an insider is involved, access to code is usually impossible with only

access to the binary available. Identifying code use with only access to a binary is desirable.

Another related example drawn from the authors previous work experience, albeit anecdotal,
was a case where the company he was working for (Call it company ‘A”) sued another
company (company ‘B”) claiming they had stolen intellectual property. Company A had also
sued a previous employee claiming he was working for company B and handing over trade
secrets. All the intellectual property company A had was in their source code for the product
they sold. This company sued on the ground that company B had stolen the code and were
then using it in their product. The claim ultimately fell apart in court because Company A had
zero way of proving their code was being used. The nature of what company A did would
make a binary easily retrievable by one of their employees and if nothing else, through a
request of discovery. Since they had the binary the utility of a tool to perform some sort of
analysis as to what functions were in it would have been huge.

4.4. Attribution Classification

At the tail end of incident response or discovering a new piece of malware that hasn’t been
seen before is the attempt to provide attribution to who designed it. This is mostly done
through analysis of common patterns in the kill chain and methods utilized by attackers.
Understanding what is in malware, how it works, and the goals of a piece of malware help
attribute the origination of the malware.

31

CHAPTER 5: ACQUISITION OF FIRMWARE FOR ANALYSIS

5.1. Acquiring Firmware

Before any analysis can be performed, firmware must first be acquired or captured.
Technology moves quickly and as such many techniques must also adapt. There is no one
technique or tool to work in every situation which often demands creativity when attempting

to get a copy of firmware.

5.1.1. Non-Invasive Means of Capturing Firmware
There are two over-arching categories of capturing firmware: non-invasive and invasive. This
section and subsequent sections cover methods to capture firmware without opening the target

device (non-invasive).

5.1.1.1. Open sources

The first step users should take when investigating a device is to simply search around online
and find out as much as possible regarding a device. It may so happen to be that every version
of firmware for a device is hosted on the manufacture’s website available for download.
Sometimes the firmware can be freely available, sometimes it requires an account to be setup
(most likely for marketing purposes), other times firmware may be restricted but with a little
social engineering can be acquired support representative. The author has had decent luck
with playing slightly dumb, maybe an intern or new hire, saying something along the lines of
“I need this version of firmware because it’s what my boss wants to deploy the device with”.
Every company has their own policy about distributing firmware, some keep it closely
guarded in the proverbial fort Knox and others give it out openly. Once firmware has been

obtained then analysis can start. Analysis is covered in the next chapter.

The other part of device reconnaissance not strictly affiliated with firmware is to learn what’s
on the device in both hardware and software terms. Users may stumble across a blog where
someone else has done most of the work for them, hopefully even describing techniques they
used and what they learned. They may share not only pictures but a list of hardware and
software libraries they found. An example of this can be seen from an image in Figure 5-1.
This image is from an Amazon Dot teardown. The author has never owned an Amazon dot

but within a few minutes of online searching found some information on the hardware which

32

was relevant to the analysis taking place. Based on this picture, information on the hardware
architecture can be discovered such as discovering they are using on board, external from the
processor, flash. Based on past experiences it is suspected there may be some worthwhile
information on this chip, potentially even personal information that could be extracted like
Amazon user accounts, settings, and history. It can also be seen what processor they’re using.
Knowing what processor they’re using can help analysts strategize and tailor their toolset for

that particular chip and architecture.

Mediatek

MT6323 |

power ..o | % Tk 1
management ; . ;

Mediatek
MT8163V : 2

LPDDRS ARM processor
memory :

Figure 5-1: Amazon echo dot teardown. Image taken from
microcontrollertips.com [63]

If a copy of the firmware cannot be obtained by searching open sources online it is likely a

physical device will be needed. The sections following this require a physical device.

5.1.1.2. Acquiring from OEM software

If a copy of firmware was not able to be acquired from online sources analysts will need to
elevate efforts to a physical device. The first step is to understand how a firmware update
happens in the first place and there are a lot of ways this can happen. If it’s an Internet of
Things (IoT) device, the device may pull firmware automatically from the cloud or it may
require a physical media device like a USB Flash drive. If it updates from some computer
application, users may have an opportunity to extract firmware from the application in some

form of another.

33

An example of this is when the author was working on reverse engineering heavy duty trucks
(Think 18-wheeler semi-trucks). A legitimate firmware update looked something like as
follows. A truck rolls into the dealership for regular maintenance or warranty work. The
dealership technician will almost certainly have a special diagnostic laptop running software
unique to the make of vehicle and as part of the maintenance will plug the laptop, through an
adapter, to the diagnostic port of the truck to check for diagnostic codes or to simply capture
data from the truck for logging purposes. As part of the maintenance process the truck may
receive a firmware update for its Engine Control Module (ECM). The modern car/truck is a
highly computerized machine and the ECM can be considered the ‘brain’ of the vehicle. It
runs code that controls the truck; everything from tuning to speed limiting and will often get

patches released for it.

That process was investigated and monitored for a particular make of heavy-duty engine
called Paccar. Paccar engines aren’t used in small vehicles like passenger cars and pickups but
are used in long haul trucks, RVs, and marine applications. Paccar uses a software application
called Davie to run diagnostics on its ECMs, a screen shot of this software can be seen in
Figure 5-2. While modern versions of Davie have gone through a major facelift and operate
completely differently, at the time the author was able to capture a copy of the firmware
because over the course of a firmware update to the ECM, Davie would drop copies of it in a
folder under the installation directory and later delete those files. All that had to be done to
capture those firmware files was run a firmware update and copy the files before the firmware

update finished.

34

Direct Testing Chassis number 0
Direct Test Selection Installation Variant: 1623937

Select function or component

Engine system - UPEC
Programming
Basis software and parameters
Customer parameters (Limiters)
~Customer parameters (Engine speed control)
“Customer parameters (ESC conditions)
Customer parameters (Components)

- ™ ™ [» |

Figure 5-2: Screen shot of Paccar Davie tool taken from http://specdiag.com [42]

Another potential avenue for extracting a firmware image from the updating software is to
reverse engineer the software itself and/or possibly modify the software. This method isn’t

one of the authors strong points as an engineer, so is usually avoided by the author if possible.

5.1.1.3. Capture by snooping the communication protocols

If grabbing a copy of firmware directly from the computer application fails, then other
methods should be attempted. Another method of grabbing firmware is over the wire. To
attempt this, analysts will most likely need a way to initiate a firmware update which is often
done using the software. Generally speaking the method will follow the process of monitoring
whatever bus/communication the device is using to update the firmware (CAN bus, IP
network, Serial, etc.), send the firmware update to the device, save the captured bus traffic,
analyze and try to extract the firmware image from the bus traffic. The process is rarely

exactly the same and the author has done this in the following scenarios:

Scenario 1: It may be found that a firmware update is simply being sent by FTP to the target
device. An example of this is when the author was working with a PLC and looking to capture
the firmware over the network. The setup was as follows: A network switch with a SPAN port
was set up, the target device and the computer with the PLC software were set up running on
the network, network traffic was captured from the SPAN port, the firmware update was sent.

At this point a pcap file containing all of the communications the computer and target device

35

had exchanged was captured. Since a firmware update was just sent over the network, a copy
of the firmware in some form or another within that network traffic should have been
captured. Upon analyzing the network traffic in Wireshark it was discovered the files were
simply being transferred via File Transfer Protocol (FTP) and was unencrypted. The files
were able to be extracted using Wireshark since the software supports this functionality. One
of those files transferred ended up being the firmware and at this point was successfully
extracted from the network traffic. This process was able to be scripted in python to extract it
the firmware although at the time of writing has not been released. It’s worth noting that even
though users may see that the target device is being updated via FTP that doesn’t mean there
are going to be firmware files ready for reverse engineering. It’s possible the manufacturer of

the device is sending files that are encrypted via FTP.

Scenario 2: It may be observed that a firmware update is being sent over the network but
using some unknown proprietary protocol. It may be possible to reverse engineer this and
capture the firmware file. For example, the author was once working with a smart 3-phase
power meter; similar to the power meter one may find on a residential building but with more
features. A network was set up similar to the one in Scenario 1, a firmware update was sent,
network traffic was captured, and then analysis was performed on the pcap file. It was
discovered that a large amount of data was being sent to the meter which indicated to the
author that there was a firmware file being sent but in a protocol that the author nor any tools
recognized. It was possible, albeit with considerable effort, to write a script to extract the data
and stitch it together to re-create the firmware file that was sent. It is worth noting doing this
without a copy of firmware to start with would be exceedingly difficult. Because a copy of the
firmware being sent was already on hand it was possible to identify 1:1 Byte matches in the

network traffic to the firmware file.

Scenario 3: If the firmware update is being sent over an alternate means other than ethernet it
may still be possible to capture it. An example of this builds off a scenario given earlier with
the Paccar Davie software. It was mentioned that the software dropped the firmware files on
the hard drive of the computer during a firmware update and then deleted them post update
making them briefly available for copy. More recent versions of the Davie software don’t

work in the same way which forced another method to extract the files. During a firmware

36

update the software sends the firmware files across the CAN bus and due to the nature of
CAN, any device on the bus can listen in. Given previous understanding of how the ECM
worked and how the software talked to the ECM the author was able to use CAN interface
hardware and write a program to capture that file. It’s acknowledged though that this would
be incredibly difficult without prior understanding of both CAN bus but also how the

firmware was sent in the first place.

While it’s possible to capture network data from a firmware update over the network without
initiating it this would be exceedingly difficult as you would likely end up with a massive

amount of data to sift through and likely only have one shot at capturing it.

5.1.2. Invasive Means of Capturing Firmware

If non-invasive methods fail or are impractical then an escalation of the reverse engineering
process is necessary. The next steps will involve invasive means of extracting firmware from
the target.

5.1.21. External On-Board Flash

Some devices are designed with a separate flash chip on board such as the Amazon Echo
previously seen in Figure 5-1. Devices can store various amounts of data and often times even
firmware can be found on those chips which makes it a lucrative target to investigate. There
are a couple overarching methods that data can be exfiltrated with. One method passively
snoops the communications to/from the chip and the other involves actively writing/reading to

the chip.

5.1.2.1.1. Passive Capture of On-Board Flash

This method involves trying to listen in on the communication between the flash chip and
whatever device is attempting to read/write to the flash chip. Most flash chips communicate
over a protocol called Serial Peripheral Interface (SPI). Some flash chips will communicate
over 12C (sometimes called two-wire interface or TWI) but it’s rare due to speed constraints.
Both protocols can be snooped but for this section only SPI will be covered. When passively
capturing data from a flash chip an analyst will need some preliminary information.
Information primarily needed is the pinout since users will be connecting probes to the

communication lines. Unique implementations of SPI can be found with some flash chips that

37

manufactures implement to increase the speed. At a minimum information on which pins
correspond to MOSI (Master Out Slave In), MISO (Master In Slave Out) and the clock pin for
SPI communications is needed. Once pins have been identified users will need to find a way
to connect leads or probes to the pins either directly or by tracing out the circuit board and
finding suitable landing pads. For this section the flash BIOS chip from a laptop as seen in
Figure 5-3 is used as an example. A BIOS is not quite firmware but it’s somewhat simple and

makes for a good example.

Figure 5-3: Connecting leads to the pins of a on board flash chip. The BIOS boots from this chip

To listen in on the data transfer happening between a flash chip and another chip, analysts will
need some extra hardware like a logic analyzer. A logic analyzer is a tool similar to a
multimeter or an oscilloscope but used for digital signals. Often, they are used to help
engineers debug or figure out what is going on with their hardware. Think of them like
Wireshark for digital circuits for users more familiar with that software. Often times
accompanying software will be necessary to use a logic analyzer. If it is required to establish
some sort of data file from what was on the flash chip, the software being used will need to
natively, or through a plugin, assist in capturing data to/from flash chips. This is needed

because the software in stock form only makes the data used in the protocols human readable

38

in byte form. Stitching together 1MB (~1 million bytes) would not be feasible by hand,
especially since there are other bytes in the protocol.

In Figure 5-3 above the SPI pins for the flash chip have been identified by looking in the
datasheet acquired online. Those target SPI pins were then connected to a Saleae logic
analyzer. Saleae is the brand the author is most familiar with and they make a logic analyzer
at a price point lucrative to hobbyists, it has been covered in another section. The process for

capture is as follows:

1. Start capturing data through the logic analyzer
2. Boot up PC (or device)

3. End capture

4. Analyze data

What should be happening is that during boot the PC reads data from the flash chip. Based on
prior experience it is known that this is where the BIOS is located. The goal is to capture
everything the PC reads from this flash chip. In Figure 5-4 below are some screen shots from
an attempt to use Saleae to discover data being read from the flash chip. In the end data was

not able to be read successfully. It is believed this was due to inadequate speed capabilities.

Logic

Would you ke to keep the data collected so far?

7] Lower the sample rate Keep |

Figure 5-4: Saleae Logic being used to ‘snoop' data to/from the flash chip.

Even if passive capture works there is a glaring shortcoming. The only data discoverable will

be what the master device is reading/writing to the flash chip. This can force users to try and

39

manipulate the device through whatever interface is available to try and get the most
reads/writes to the flash chip available for discovery. In the case of a firmware image being on
the flash chip its possible this is stored for the sole purpose of recovery or updates. If the
design architecture of the target device is as follows: download a firmware update into the
flash chip, run a CRC or other security check on the firmware while it’s on the flash chip,
then update the processor’s internal flash chip with the firmware; it won’t be possible to
access the firmware image with passive technigques with the exception of getting extremely
lucky and snooping during a firmware update. Developing an understanding of the design

architecture is difficult without prior knowledge or moving past passive capture.

51.2.1.2. Active Capture from On-Board Flash

Another method of establishing what is on the flash chip is to read it by introducing hardware
that acts as a master. Since the flash chip is mostly a dumb chip that simply responds to
commands and those commands are readily available in datasheets, this is often possible
without much reverse engineering. The hardware required for this needs to be something that
can actively write commands out across a SPI bus. An Arduino would likely work but for the
BIOS chip example, a device called a Bus Pirate which was used. The Bus Pirate is a small
single-board device used for programming, debugging, and analyzing microcontrollers and is
covered in a different section. Since it is an open source project many hobbyists, tinkers, and
engineers have written plugins to extend its functionality. One of those extended

functionalities is to read entire flash chips.

While it may be possible to connect to the chip while its on the board it is HIGHLY
DISCOURAGED. There are two reasons for this:

1. Power: The flash chip needs to be powered in order to read from it. If the chip is
powered while still on the circuit board it will be likely that everything else on the
board will be powered as well, or at least everything on the same voltage bus.
Depending on the target this can be an enormous strain for hardware which will likely
result in damage.

2. Race Conditions: Provided that the entire device is successfully powered with no
damage to equipment, a race condition is likely to occur. Both the introduced

40

hardware and the targets hardware will be trying to behave as a SPI master and end up
stepping all over each other while trying to access the flash.

Because of the risk of reading the chip while still on the board it is recommended to de-solder
the chip. Depending on the form factor this can be incredibly difficult without damaging
surrounding components or the circuit board. Since the BIOS flash chip on the laptop was
relatively large a pair of soldering iron tweezers with wide blades as seen in Figure 5-5 was

used to remove the chip.

Figure 5-5: Using a soldering iron to de-solder the flash chip.

Once de-soldered the chip is ready to be read. The first tool selected is called a Xeltec. The
Xeltec device uses various sockets to accommodate different form factors chips come in. The
required socket was not on hand for this particular chip but a similar one was available seen in
Figure 5-6. A read was attempted using the hardware available, but it ended up failing. It is
not recommended using anything other than the correct socket at the risk of damaging the

component but in the famous words “do as I say, not as I do”.

41

Figure 5-6: Xeltec device with the socket plugged in and the target flash chip laying on top.

This read attempt failed so new methods and tools would need to be attempted. The next
suitable tool on hand was the Bus Pirate. The Bus Pirate, seen in Figure 5-7, has already been
mentioned but as a refresher; it’s an open source tool at a much lower price point that serves

as a great entry tool for hobbyists and tinkerers.

Figure 5-7: The Bus Pirate

42

Leads were connected between the Bus Pirate and the flash chip as seen in Figure 5-8. The
Bus Pirate is then connected to a computer via USB and is able to power the flash chip

natively.

Figure 5-8: Flash chip connected to the Bus Pirate

The Bus Pirate is just a hardware interface and unable to read the flash chip by itself.
Consider it like a Network Interface Card (NIC); by itself unable to communicate but
software interacts through it to communicate with devices. A tool called flashrom is able to
leverage bus pirate in order to read the flash chip. Screenshots from using flashrom have been
captured and displayed in Figure 5-9 and 5-10.

user@ubuntu:~$ flashrom -p buspirate_spi:dev=/dev/ttyUsBe,spispeed=1M

flashrom v0.9.9-r1954 on Linux 4.15.0-46-generic (x86_64)
flashrom is free software, get the source code at https://flashrom.org

Calibrating delay loop... OK.
Found Winbond flash chip "W25Q64.v" (8192 kB, SPI) on buspirate_spi.
No operations were specified.

Figure 5-9: Flashrom in use

43

n
flashrom v0.9.9-r1954 on Linux 4.15.0-46-generic (x86 _64)
flashrom is free software, get the source code at https://flashrom.org

Calibrating delay loop... OK.
Found Winbond flash chip "W25Q64.V" (8192 kB, SPI) on buspirate spi.
Reading flash... I

Figure 5-10: Flashrom reading the chip
Flashrom worked as intended and a complete capture of the contents of the flash chip was
acquired for further analysis. The flash chip is also preserved in form and function so that the
original target can be put back together. The flash chip is re-soldered onto the mother board as

seen in Figure 5-11.

Figure 5-11: Flash chip re-soldered onto the board. The solder joints are a bit rough looking but they aren't
shorted and appear to make good contact.

It’s important to ensure that the solder joints make good contact and that they don’t jump or
short any pins to anything. With that in mind everything looks good and its time to power on
the target to make sure it still works. The laptop is powered up and it looks like it boots up

without issue as seen in Figure 5-12.

44

Figure 5-12: After de-soldering the flash chip, reading it, and re-soldering the flash chip the target still works.

5.1.3. Capturing Firmware Conclusion

Now that the contents have successfully ben pulled off the flash chip analysis can be
performed. Analysis will be covered in the next section. The information provided in this
chapter is not all inclusive and if steps fail to provide a copy of firmware other methods will
need to be attempted before analysis can be performed.

45

CHAPTER 6: ANALYSIS OF CAPTURED FIRMWARE
Analysis of firmware is a broad term and what form analysis takes is dependent on what the
user/researcher hopes to achieve. In the opinion of the author the majority of firmware

analysis is motivated by the following:

e Vulnerability Discovery: The researchers wants to identify vulnerabilities within the
firmware.

e What’s in the Box?: The researcher wants to know what subcomponents make up the
firmware image or what the intent of a suspect piece of firmware is.

e Modification: The researcher would like to modify the existing firmware for benign or

malicious purposes.

Because of the breadth of firmware analysis it is difficult to develop a solid framework to
cover everything. The author presents the following as starting points for any analysis to be

performed:

e Firmware file type: Is it an elf, zip, Motorola S-record?
e Processor type/architecture: Is the processor an ARM, PowerPC, Intel architecture?
e Is there an OS within the firmware: Unix based, FreeRTOS, VxWorks?

Other frameworks have been attempted [43] but appear to be combinations of other existing
tools stacked together and only go after low hanging fruit in the analysis process. Other tools
attempt to cover the analysis process [44] but still rely on the user’s creativity and are limited

by their capabilities.

6.1. Analysis showcase: Investigating a Computer BIOS

For the sake of continuity, analysis will be performed on firmware extracted in section 5.1.2.
This analysis is presented as an exhibition of the creativity demanded in firmware analysis.
The binaries retrieved from the flash chip in section 5.1.2 are a bit of a grey area on whether
they count as firmware or software since the target device is a PC. Regardless of the intended

target device, the obfuscation of binaries make it a suitable example.

46

6.1.1. Background

In this example the author examines the contents of a flash chip from the motherboard of a
PC. Based on prior experience it is known within a high level of confidence this chip contains
the B1OS (Basic Input/Output System) of the computer. Many readers may be familiar with a
BIOS but for those who aren’t; a BIOS provides a computer with bare minimum
functionalities such as display and hardware drivers like USB, hard drive, keyboard, etc.

needed by a computer upon boot up and is read in from the flash chip upon power on.

More specifically the author intends to investigate the CompuTrace agent (also known as
“Absolute Home & Office” or “LoJack for Laptops™) that resides within the BIOS [45]. The
tool is a Remote Access Tool (RAT) used for theft prevention and recovery of laptops.
CompuTrace is installed into the BIOS from the manufacture and if activated with a paid
subscription, can assist owners and law enforcement of disabling, tracking, and managing data
from the laptop. Because CompuTrace resides in the BIOS it can persist even with a hard

drive replacement and bypass traditional security tools.
Based on prior research [46], [47] CompuTrace works as follows:

Step 1: CompuTrace code is loaded from the BIOS and scans available hard drives. It
searches for a windows installation path and then for the application called autochk.exe. Once
found CompuTrace injects code into autochk.exe

Step 2: On boot autochk.exe runs and drops rpcnetp.exe and registers it as a windows service.

Motivations for investigating CompuTrace is for better understanding of how it works and
potentially to leverage it to drop an alternative payload for proof of concept work. This work
is not novel, and malware exists in the wild that leverages CompuTrace called LoJax [48] (a

play on words to LoJack).

6.1.2. Analysis

This analysis picks up at the end of section 5.1.2 where the contents of the flash chip was read
off. At this point a 8192KB binary file that is a 1:1 copy of the contents of the flash chip is
obtained. Concurrently a BIOS update was retrieved from the manufacturer of the laptop to
create a larger surface area for analysis. Upon review of BIOS version A04 update from the

OEM it was discovered the file was a 18MB PE file (executable) that contained a lot more

47

than just the BIOS. Initial analysis of the BIOS updater was brief and shelved to a later date
due to being twice the size of the BIOS flash chip and the author’s preference to not delve
into PE file analysis. As a quick sanity check the contents of both files were analyzed with
Binwalk using the -B flag. The results of this can be seen in Figure 25 and Figure 26 for the
BIOS updater executable and the BIOS binary file respectively.

user@user-virtual-machine: topS binwalk -B 9333A04.exe
HEXADECIMAL DESCRIPTION

0xe Microsoft executable, portable (PE)
0x70 Copyright string: "Copyright (C) 1993-1995 DJ Delorie.”
0xcD Copyright string: "copyright”
0x1C790 UEFI PI firmware volume
Ox57547 UEFI PI firmware volume
0x976DF UEFI PI firmware volume
0x97748 LZMA compressed data, properties: @x5D, dictionary size: 16777216 bytes, uncompressed size: 6
0x5256DF 256 hash constants, little endian
0x530997 Certificate in DER format (x509 v3), header length: sequence length: 1552
5443543 0x530FD7 Certificate in DER format (x509 v3), header length: sequence length: 1495
5445246 0x53167E Certificate in DER format (x509 v3), header length: sequence length: 1134
5446428 0x531B1C Certificate in DER format (x509 v3), header length: sequence length: 1512
5448065 0x532181 Certificate in DER format (x509 v3), header length: sequence length: 1043
5543438 0x54960E JPEG image data, JFIF standard 1.02
5544044 0x54986C JPEG image data, JFIF standard 1.02
5545894 0x549FA6 JPEG image data, JFIF standard 1.01
5545924 0x549FC4 TIFF image data, big-endian, offset of first image directory: 8
5554214 0x54C026 Unix path: /www.w3.0rg/1999/02/22-rdf-syntax-ns#">
5554344 0x54C0OA8 Unix path: /purl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" x
5557971 0x54CED3 Copyright string: "Copyright (c) 1998 Hewlett-Packard Company"
5569288 0x54FBO8 JPEG image data, JFIF standard 1.81
5569318 0x54FB26 TIFF image data, big-endian, offset of first image directory: 8
5573510 0x550B86 Unix path: /www.w3.0rg/1999/02/22-rdf-syntax-ns#">
5573640 0x550C08 Unix path: /purl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.8/" x
5577267 0x551A33 Copyright string: "Copyright (c) 1998 Hewlett-Packard Company"
5581628 0x552B3C JPEG image data, JFIF standard 1.01
5582464 0x552E80 JPEG image data, IJFIF standard 1.02
5584999 0x553867 JPEG image data, JFIF standard 1.02
5586435 0x553E03 JPEG image data, JFIF standard 1.82
5589274 0x55491A JPEG image data, JFIF standard 1.02
5590858 0x554F4A JPEG image data, JFIF standard 1.01
5591818 0x55530A JPEG image data, JFIF standard 1.01
0x5555E6 JPEG image data, JFIF standard 1.81
0x6276DF UEFI PI firmware volume
Ox62777F Microsoft executable, portable (PE)
Ox628AFF UEFI PI firmware volume
0x62C37F Microsoft executable, portable (PE)
Ox62C5FE mcrypt 2.2 encrypted data, algorithm: blowfish-448, mode: CBC, keymode: 8bit
Ox6308FF Microsoft executable, portable (PE)
0x631BBF SHA256 hash constants, little endian
0x67261F Microsoft executable, portable (PE)
Ox6747FF Microsoft executable, portable (PE)
Ox675F57 SHA256 hash constants, little endian

Figure 6-1: Analysis of the BIOS update utility executable using Binwalk with the -B flag

48

ser@ubuntu:~5$ binwalk -B bios.bin

DECIMAL HEXADECIMAL DESCRIPTION
0x1C0000 UEFI PI firmware volume
Ox1COO69 LZMA compressed data, properties: 0x5D, dictionary size: 16777216 b

es, uncompressed size: 6832132 bytes

Ox64E000 SHA256 hash constants, little endian
Ox6592B8 Certificate in DER format (x509 v3), header length: sequence len
Ox6598F8 Certificate in DER format (x509 v3), header length: sequence len
Ox659F9F Certificate in DER format (x509 v3), header length: sequence len

Ox65A43D Certificate in DER format (x509 v3), header length: sequence len

OX65AAA2 Certificate in DER format (x509 v3), header length: sequence len

Ox671F59 JPEG image data, JFIF standard 1.602
Ox6721B7 JPEGC image data, JFIF standard 1.82
Ox6728F1 JPEG image data, JFIF standard 1.81
OxX67290F TIFF image data, big-endian, offset of first image directory: 8
Ox674971 Unix path: /www.w3.0rg/1999/02/22-rdf-syntax-ns#"=
OX6749F3 Unix path: fpurl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.a
dobe.com/photoshop/1.8/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" x
6772766 Ox67581E Copyright string: "Copyright (c) 1998 Hewlett-Packard Company"
Ox678453 JPEG image data, JFIF standard 1.01
Ox678471 TIFF image data, big-endian, offset of first image directory: 8
Ox6794D1 Unix path: /www.w3.0rg/1999/02/22-rdf-syntax-ns#">
Ox679553 Unix path: /fpurl.org/dcfelements/1.1/" xmlns:photoshop="http://ns.a
dobe.com/photoshop/1.8/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" x
65792062 OX67TA3TE Copyright string: "Copyright (c) 1998 Hewlett-Packard Company"

Figure 6-2: Analysis of the binary retrieved from the flash chip using binwalk with the -B flag

The value the author obtained from this comparison was a peace of mind that the flash chip
did indeed contain the BIOS. This conclusion was reached by the files being similar in that
they both included the same or similar copyright strings, file paths, and number of JPEGs

found.

A core principle of most reverse engineering or analysis approaches is to take the “lowest
hanging fruit”; in other words, learn as much as can be learned using the easiest methods first.
Using this approach, the strings command piped into a text file is a good starting point.
Various strings are found but no references to CompuTrace or other potential artifacts are
identified. Strings that are found are references to Hewlett-Packard which is interesting given
the computer is a Dell. References to and emails from Quanta are found; upon researching
Quanta it is discovered that they are a Taiwan based computer manufacturer. Other unique
strings are also identified such as XXXXX- XXXXX- XXXXX- XXXXX- XXXXX
(obfuscated for security purposes) which reminds the author of a Windows key although this

was not confirmed. There was also a reference to OpenSSL 0.9.81 which has vulnerabilities

49

but upon further investigation the vulnerabilities appear to be of medium consequence and its
not clear how this system would be impacted by the vulnerability as this was not the goal of

the analysis.

Initial analysis of the file by observing strings of interest did not prove fruitful for the author.
Further analysis is now required, and the next step is also an easy one which is to attempt to
extract data using Binwalk with the -e flag. Using this flag Binwalk will attempt to extract any
file systems or types that can be identified. The result of this automated extraction were
dozens of files. Again, strings was run on each file and the output was investigated. This
results in many more strings of interest; some the author chooses to store the string and file
away for later analysis if it proves to be relevant. At this stage of analysis, it is difficult to
know what is useful and what is not. An example of an artifact worthy of a mental note is in
Figure 6-3. These strings hint at some security functionality of the BIOS that may worth

further investigation once other techniques of analysis are exhausted.

New BIOS image's does not contain Boot Guard necessary data. (UPDATE ABORTED)

New BIOS image's Boot Guard SVN(ACM/BPM/KM) are lower than this platform. (UPDATE ABORTED)

New BIOS image's Boot Block is not the same as record. Please contact System Vendor for help. (UPDATE ABORTED)
New BIOS image's Boot Guard Signatures is wrong. Please contact System Vendor for help. (UPDATE ABORTED)

New BIOS image's Boot Guard ACM is an incorrect module. Please contact System Vendor for help. (UPDATE ABORTED)

Figure 6-3: Artifact of interest extracted from the BIOS image.

Of the dozens of files generated from first extraction using Binwalk, the most interesting file
and primary candidate for analysis is a file called “@1C0069”. This file is named after the
hexadecimal start address Binwalk discovered the file from the original image. This file is the
primary candidate of interest due to the number of strings found that are hypothesized to be
relevant. Strings that the author identifies as strings of interest and indicate this is the file of
the actual B1OS are as follows: Figure 6-4 references various build versions which indicate
there may be multiple versions of the BIOS available. Figure 6-5 has strings referencing

peripherals which makes sense if this file is the BIOS.

SVBT HASWELL d

BIOS_DATA_BLOCK

2179Intel(R) HSW Mobile/Desktop PCI Accelerated SVGA BIOS
Build Number: 2179 PC 14.34 10/07/2013 10:03:35
DECOMPILATION OR DISASSEMBLY PROHIBITED

Copyright (C) 2808-2011 Intel Corp. All Rights Reserved.
02468:<@BDFHILPRTVXZ\
LFP_PanelNameLFP_PanelNameLFP_PanelNameLFP_PanelName

Figure 6-4:Strings from file @1C0069 references difference builds.

50

{Intel(R) HSW Mobile/Desktop Graphics Chipset Accelerated VGA BIOS
Intel Corporation
Intel(R) HSW Mobile/Desktop Graphics Controller
Hardware Version 0.0
Q@
Copyright (C) 1997-2000 Intel Corporation
Intel Corporation
Intel UNDI, PXE-2.1 (build 083)
This Product is covered by one or more of the following patents:
Us6,570,884, US6,115,776 and US6,327,625
Realtek RTL8153 USB Ethernet Controller (EHCI) vi1.01 (12/12/13)
Realtek PXE BOO DOO

Figure 6-5: Strings references peripherals are likely to be found in a BIOS indicating this file has BIOS information in it.

These strings are relevant in that they indicate the correct file is being investigated however
do not indicate CompuTrace is in the file. Towards the end of the list of strings retrieved from
file “@1C0069” are strings hypothesized to be relevant to CompuTrace based on prior
research. Figure 6-6 shows three snippets of strings discovered relevant to CompuTrace. Not
only do strings explicitly match “Computrace V90.937” and the two artifacts
“AUTOCHK.BAK” and “rpcnetp.exe” but also have windows file paths that are part of the
kill chain CompuTrace uses to drop the artifacts.

AUTOCHK.BAK

wA_m omgay_ gL

rpcnetp.exe Computrace V90.937
.text .text

“.reloc ‘.data

ntdll .reloc

\7?\C:

\SystemRoot\System32\rpcnetp.exe
\SystemRoot\System32\AUTOCHK. EXE:BAK
Start

Type

ErrorControl

\Registry\Machine\System\CurrentControlSet\Services\rpcnetp Q;g;:e?zi
SystemRoot ; .

LocalSystem WinBootDir
ObjectName \MSDOS. SYS

AUTOCHK.EXE
\hiberfil.sys
\Start Menu\PrograNs\Stbrtup

T

\SystemRoot\SysWOW64\rpcnetp.exe
%¥SystemRoot%\System32\rpcnetp.exe
\SystemRoot\System32\AUTOCHK.BAK

Figure 6-6: Three snippets of strings discovered in file "@1C0069"

Other strings that may be of interest are “.text”, “.reloc”, and “.data”. These are strings that
are commonly associated with sections of a PE (.exe) file. Based on this grouping of strings,
analysts should have a strong indication that this is the target file, or at least a file of

importance, in the investigation of CompuTrace.

For the sake of brevity some details are omitted but based off the raw data, strings, and format
of windows executable files it is believed multiple executable files are embedded in this one
file “@1C0069”. Out of the multiple executables, two are believed to be a part of
CompuTrace and are targets for further analyzing. To analyze these executables further, such

as in a disassembler or debugger, they will require further extraction.

o1

The author is not aware of any tool to automatically extract the executables and Binwalk also
came up short for extracting them from the file. The executables are suspected to be of file
format “Microsoft PE” which is well documented [49]. Because the file format is so well
documented (see Figure 6-7) it may be possible to simply copy and paste the data of the file
inside a hex viewer/editor. When copying and pasting raw data the author found it easy to
identify the start of the file as it begins with the string “MZ” but finding the end of the file
was a bit trickier. Since the files were ‘stacked’ and appeared as one continuous data stream,
copying and pasting from the start of one file to the start of the next file (“MZ” to “MZ” flag)

was done.

l Dos MZ Header J

o

DOS Stub

PE File Header
l PE Signature

Image_Optional_Header

Section Table
Array of Image_Section_Headers

Data Directories

3

T
[
[
|
|

N §
J

A\

Sections
idata

TSrc

.data

text

PRy G
b’ B By (e B

SIC

(

Figure 6-7: PE file format [50]

The resulting file that was copied from the start of the target file and ended at the start of the
subsequent file was extracted and ready for analysis. All analysis attempts using debuggers
and disassemblers available to the author (Binary Ninja, Ghydra, OllyDbg) failed and the file
was not recognized or recognized with errors. At this point it is clear the file needs more
refinement, or the file has been captured with faults. With no desire to dig deeper and write
custom extraction software other tools were investigated. A tool called PE bear [51] was
found to be useful in providing details concerning PE files. Some of that information includes

52

start and end address for the various sections (.text, .data, .cdata, .reloc). Figure 6-8 is a
screenshot of PE-bear with the target file loaded and the end address identified.

7 PE-bear v0.3.8 [C:/Users/IEUser/Desktop/rpcnetExtracted.exe]

File Settings Compare Info

=-[@ rpcnetextracted.exe | X & & o 9 ¢

----- DOS Header =

..... & Dos stub Ul1|2|3|4|5|6|7|8|9|A|B|C|D|I o1|2|3|a|5|6|7|8|9|a|B| =

-/ NT Headers 43E9 [00 00 00 00 00 00 00 00 00 00 00 00 0C 00 O
Signature 43F9_ |00 00 00 00 00
File Header 2200 00 00 00 00 G
Optional Header

----- Section Headers

- Sections

HEE

B 86 text iy
| L= EP = 1EES 4449
»offy .data 4459
: ﬁ .cdata 4469 |00 © 00 0
.reloc 4479 00 00 00 O 00 00 00 00 00 00 00 0 00 00 O
d | B

Disasm: [.reloc] | General DOS Hdr | File Hdr | Optional Hdr Section Hdrs |

Hex Disasm H

rpenetExtracted exe

[Check for updates

Figure 6-8: PE-bear being used to identify start and end addresses of various locations on the extracted PE file

Using PE-bear the author was able to identify the true ‘end’ to the executable and use that
information to correctly extract the target PE file. A point of interest is that when the file was
correctly extracted and saved locally on the author’s PC the anti-virus running on the host
machine identified the file as malicious and quarantined the file. This anti-virus report from

Cylance can be seen in Figure 6-9.

® PROTECT

Threats Exploits Scripts Extemal Devices

When Category Event Details

4/1/2019 1:33:07 PM Threat Quarantined C:\Users\WHIPBA\Desktop \rpcnet Extracted2 exe

Figure 6-9: Cylance detected the extracted file as malicious and quarantined it.

53

Once Cylance was prevented from quarantining the target file post extraction, the file was
able to be loaded into a disassembler and deemed ready for analysis. The actual analysis on
this file was brief and mostly consisted of confirming other researchers reports artifacts were
present. Reasons for the limited analysis conducted are discussed in the next section.

6.1.3. Analysis Conclusions

From capture, to extraction, to analysis proved to be an arduous endeavor. Readers
questioning why more analysis was not done or to what effect the author hoped to achieve are
not misplaced in their questioning. Further analysis was cut short due to the fact the author
could not get artifacts to manifest on the host machine. The original goal of the author was to
modify the CompuTrace RAT so that those changes would manifest themselves on the host
machine. Without the ability to get the original and untouched version of CompuTrace to
persist on the host, there was no way to prove functionally that it could be done and the author
didn’t want to troubleshoot why CompuTrace was not working as it allegedly was supposed

to.

54

CHAPTER 7: SUMMARY & THE PITFALLS OF ANALYSIS
TOOLKITS & FRAMEWORKS

In this thesis the author covered some common tools used in analysis and demonstrated some
of the diversity of scenarios encountered when obtaining and performing analysis of
firmware. It should be clear at this point the magnitude of leeway and agility researchers must
use to accomplish their task. Given that so many different design paradigms, processor
architects, and operating systems can be encountered on embedded devices it will remain
difficult to substitute researcher’s intuition and creativity with a formulated process of

analysis.

7.1. Tool Shortcomings

All analysis frameworks and toolkits investigated by the author [43], [44], [52], [53], [54]
would not assist in capturing firmware and would have not significantly aided in the analysis
of firmware. It was found some tools investigated simply combined tools and/or argument
flags in a single step which arguably doesn’t quite qualify as a toolkit on its own. In other

instances, the only real value being provided was a better GUI to other tools that already exist.

Given the broad field of firmware analysis it is unlikely to have a single tool to cover all
aspects of the process. Even when the scope is narrowed to smaller goals such as full
extraction or file identification it is unlikely one tool can cover every scenario. While
hypothetically a toolkit may be able to extract firmware files for 88% of those encountered it
begs the question “is it useful?” when using other tools in varying steps can accomplish the

same and more.

55

CHAPTER 8: FUTURE WORK: MACHINE LEARNING APPLIED TO
FIRMWARE ANALYSIS

Various aspects regarding analysis of embedded devices have been covered in this thesis. One
of those areas, and one of the most difficult, provenance discovery may be improved using
machine learning. Various methodologies and techniques have been tried or proposed [55],
[56], [57], [58], [59], [60], [61] such as binary to binary comparison, code to binary
comparison, and binary to code comparison to try and solve the question of what
subcomponents make up an embedded firmware file. While the other methods claim to
achieve decent results, the author believes many of these techniques will not scale well. This
belief is further hardened based on professional experience dealing with commercial software
companies claiming to achieve high levels of accuracy in provenance discovery only to have

performances fall short of promises.

8.1. Handling Large Data

One of the major difficulties in provenance discovery is the diversity of binaries that can be
encountered. Even when the original code is the exact same the binaries can be different
depending on processor architecture, optimization flags, compilers used, and other compiler
flags used. Below in Figure 8-1 an example of this is observed in the disassembly of two
binaries the author compiled from the same FreeRTOS code for an ARM architecture with the
only change an optimization flag to the compiler. Not only is the number of instructions

drastically different but the control flow blocks look completely different.

56

Figure 8-1: Different results seen in disassembly from the same source code obtained by compiling with different
optimization flags

An area of research that may be able to conquer the amount of different binaries that would
result from a large number of libraries being compiled for a multitude of targets and compiler
flags is machine learning. Some work has already been done in this area of machine learning
for provenance discovery [62] and shows promising results however the author has not been
able obtain source code or sufficient details to reproduce the results. Based on professional
and academic experience in this area machine learning is able to categorize data sets with a
high magnitude of raw data. The author believe the challenge in leveraging this technology to
library identification will be in how to convert a binary into a set of features that can be
consumed by a machine learning algorithm while still maintaining information about code
flow as well as accommodating multiple processor architectures which may have different

instruction sets.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

57

CHAPTER 9: REFERENCES

"Interactive: The Top Programming Languages 2016," IEEE Spectrum, 2016. [Online].
Available: https://spectrum.ieee.org/static/interactive-the-top-programming-languages-
2016#index/2016/1/1/1/0/1/50/1/50/1/50/1/30/1/30/1/30/1/20/1/20/1/5/1/5/1/20/1/100/.

M. Hill, J. Masters, P. Ranganathan, P. Turner and J. Hennessy, "On the Spectre and
Meltdown Processor Security Vulnerabiliteis,” IEEE Micro, vol. 39, no. 2, pp. 9-19,
20109.

"Is it Necessary for a software engineer to learn about CPU architecture?," Quora,
2016. [Online]. Available: https://www.quora.com/Is-it-necessary-for-a-software-

engineer-to-learn-about-CPU-architecture.

Balajee, "What are skilks needed to be a successful firmware engineer,” Quora, 23 Nov
2015. [Online]. Available: https://www.quora.com/What-are-skills-needed-to-be-a-

successful-firmware-engineer.

P. Nallari, "What to Look for When Hiring an Embedded Systems Software Engineer,"
EASI, 15 Sep 2016. [Online]. Available:
https://www.easi.com/en/insights/articles/what-to-look-for-when-hiring-an-embedded-

systems-software-engineer.

STM, "ARM Cortex-M4 STM32F405xx datasheet,” September 2016. [Online].
Available: https://www.st.com/resource/en/datasheet/stm32f407ig.pdf.

STM, "Application Note DMA controller,” June 2016. [Online]. Available:
https://www.st.com/content/ccc/resource/technical/document/application_note/27/46/7c
/ea/2d/91/40/a9/DM00046011.pdf/filessDM00046011.pdf/jcr:content/translations/en.D
M00046011.pdf.

J. Ganssle, Embedded Systems; World Class Designs, Newnes, 2007.

M. Barr, Programming Embedded Systtems in C and C++, O'Reilly Media, 2009.

58

[10] STM, "STM32CubeMX," [Online]. Available: https://www.st.com/en/development-

tools/stm32cubemx.html.
[11] C. Hosmer, "Forensic Searching and Indexing Using Python," Python Forensics, 2014.

[12] N. A. Hassan and R. Hijazi, "Data Hiding Under Windows OS File Structure," Data
Hiding Teghniques in Windows OS, 2017.

[13] "TWI Bus," i2c-bus.org, [Online]. Available: https://www.i2c-bus.org/twi-bus/.

[14] 12C Info, "12C Info - 12C Bus, Interface and Protocol,”" [Online]. Available:
https://i2c.info/.

[15] M. Grusin, "Serial Peripheral Interface (SPI)," SparkFun, [Online]. Available:

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all.

[16] G. Kessler, "CK's File Signatures Table," GaryKessler, December 2019. [Online].
Available: https://www.garykessler.net/library/file_sigs.html.

[17] A. Frantzis, "Bless- GitHub - README," 2018. [Online]. Available:
https://github.com/bwrsandman/Bless.

[18] "HexWorkshop," BreakPoint Software, [Online]. Available:

http://www.hexworkshop.com/.

[19] Hex-Rays, "IDA PRO," Hex-Rays, [Online]. Available: https://www.hex-
rays.com/products/ida/.

[20] Hex-Rays, "Hex-Rays Online Store,” [Online]. Available: https://www.hex-
rays.com/cgi-bin/quote.cqi.

[21] Binary Ninja, "Binary Ninja Purchase Page,” [Online]. Available:
https://binary.ninja/purchase/.

[22] Binary Ninja, "Download Binary Ninja Demo," [Online]. Available:
https://binary.ninja/demo/.

59

[23] Ghidra, "Ghidra,” NSA, [Online]. Available:

https://www.nsa.gov/resources/everyone/ghidra/.

[24] N. L. H., "The NSA Makes Ghidra, a Powerful Cybersecurity Tool, Open Source,"
WIRED, 2019.

[25] c3n3k, "IDA Educational vs Ghidra for learning malware analysis," Reddit, 6 2019.
[Online]. Available:
https://www.reddit.com/r/Malware/comments/bal8v2/ida_educational_vs_ghidra_for_le

arning_malware/.

[26] A. Das, "NSA has Open Sourced its Reverse Engineerint Tool Ghidra," itsfoss, 6 March
2019. [Online]. Available: https://itsfoss.com/nsa-ghidra-open-source/.

[27] STMicroelectronics, "Home," STM, [Online]. Available:

https://www.st.com/content/st_com/en.html.

[28] IAR Systems, "Debugging and trace proves,” [Online]. Available:
https://www.iar.com/iar-embedded-workbench/add-ons-and-integrations/in-circuit-

debugging-probes/.

[29] STM, "ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32," [Online].
Available: https://www.st.com/en/development-tools/st-link-v2.html.

[30] Lauterbach, "Lauterbach Development Tools,” [Online]. Available:

https://www.lauterbach.com/frames.html?home.html.

[31] IEEE, "1149.1-2013 IEEE Standard for Test Access Port and Boundary-Scan
Architecture," IEEE Standards Association, [Online]. Available:
https://standards.ieee.org/standard/1149 1-2013.html.

[32] D. McClellan, "JTAG Explained (finally!): Why "10T", Software Security Engineers,
and Manufacturers Should Care,” Senrio, 28 9 2016. [Online]. Available:
https://blog.senr.io/blog/jtag-explained.

60

[33] M. Ding, "Swerial Wire Debug (SWD)," Silicon Labs, 21 10 2014. [Online]. Available:
https://www.silabs.com/community/mcu/32-bit/knowledge-
base.entry.html/2014/10/21/serial_wire_debugs-gKCT.

[34] N. Oberli, "SWD - ARM's Alternative to JTAG," Kudelski Security Research, 16 May
2019. [Online]. Available: https://research.kudelskisecurity.com/2019/05/16/swd-arms-

alternative-to-jtag/.

[35] STMicroelectronics UMO0470 User Manual, "STM8 WIM communication protocol and
debug module,™ August 2016.

[36] NXP, "BDM_ICE," [Online]. Available: https://www.nxp.com/files-
static/training_pdf/27642_HCS08_BDM_ICE_WBT .pdf.

[37] C. Heffner, "Binwalk Package Description,” Kali Tools, [Online]. Available:

https://tools.kali.org/forensics/binwalk.

[38] "CyberChef - The Cyber Swiss Army Kbnife," [Online]. Available:
https://gchg.github.io/CyberChef/.

[39] P. Miller, "SRecord 1.64," [Online]. Available: http://srecord.sourceforge.net/.

[40] W. Denk, "u-boot,” DENX Software Engineering, [Online]. Available:
https://github.com/u-boot/u-boot.

[41] CVE Deails, "BusyBox Vulnerability Statistics”.

[42] P. D. Kit, "Truck Diagnostic Solutions," SpecDiag, [Online]. Available:
http://specdiag.com/paccar.html.

[43] rkornmeyer, "Firmware Analysis Framework (FAF)," GitHub, Aril 2014. [Online].
Available: https://github.com/rkornmeyer/FAF.

[44] weidenba, "Firmware Analysis and Comparison Tool (FACT)," GitHub, March 2020.
[Online]. Available: https://github.com/fkie-cad/FACT _core.

61

[45] "Absolute Software - Computrace Agent,” UCLA Software Central, [Online].

Available: https://softwarecentral.ucla.edu/absolute.

[46] M. Hao, "Tracking and Analysis of the LoJack/CompuTrace Incident,” NSFocus, 9
December 2019. [Online]. Available: https://nsfocusglobal.com/tracking-and-analysis-

of-the-lojackcomputrace-incident/.

[47] V. Kamluk, "Absolute Computrace Revisited,” Secure List, 12 February 2014.
[Online]. Available: https://securelist.com/absolute-computrace-revisited/58278/.

[48] M. Archambault, "‘LoJax’ rootkit malware can infect UEFI, a core computer interface,"
Digital Trends, 27 September 2018. [Online]. Available:
https://www.digitaltrends.com/computing/lojax-uefi-rootkit-infect-machines/.

[49] WikiBooks, "x86 Disassembly/Windows Executable Files," 8 Janurary 2020. [Online].
Available:

https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files.

[50] Revers3r, "Malware Researcher's Handbook (Demystifying PE File)," [Online].
Available: https://resources.infosecinstitute.com/2-malware-researchers-handbook-

demystifying-pe-file/#article.

[51] Hasherezade, "PE-bear," Github, 25 Jan 2019. [Online]. Available:
https://github.com/hasherezade/pe-bear-releases/releases/tag/0.3.9.5.

[52] T.S. G. Solutions, "BianryAnalysisTool (BAT)," NLnet, [Online]. Available:

http://www.binaryanalysis.org/old/home.

[53] armijnhemel, "binaryanalysis-ng,” github, [Online]. Available:
https://github.com/armijnhemel/binaryanalysis-ng.

[54] Linux Security Expert, "Manticore,” [Online]. Available:

https://linuxsecurity.expert/tools/manticore/.

62

[55] C. Ragkhitwetsagul, J. Krinke and D. Clark, "A comparison of code similarity
analysers,” Empir Software Eng, 2018.

[56] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo, "Comparison and
Evaluation of Clone Detection Tools," IEEE Transactions on Software Engineering,
vol. 33, no. 9, p. 577, 2007.

[57] C. K. Roy and J. R. Cordy, "A Mutation/Injection-based Automatic Framework for
Evaluating Code Clone Detection Tools,™ 2009.

[58] J. Hage, P. Rademaker and N. v. Vugt, "A comparison of plagiarism detection tools,"”
Technical Report UU-CS-2010-015, 2010.

[59] E. Burd and J. Bailey, "Evaluating Clone Detection Tools for Use during Preventative
Maintenance," The Research Institute in Software Evolution, University of Durham,
2010.

[60] B. Biegel, Q. D. Soetens, W. Hornig, S. Diehl and S. Demeyer, "Comparison of
Similarity Metrics for Refactoring Detection,” 2011.

[61] J. Svajlenko and C. K. Roy, "BigCloneEval: A Clone Detection Tool Evaluation
Framework with BigCloneBench,"” IEEE International Conference on Software

Maintenance and Evolution, 2016.

[62] D. Miyani, Z. Huang and D. Lie, "BinPro: A Tool for Binary Source Code

Provenance," University of Toronto, 2017.

[63] L. Teschler, "Teardown: Inside Amazon's Echo Dot," MicroControllerTips, 5 January
2018. [Online]. Available: https://www.microcontrollertips.com/teardown-inside-

amazons-echo-dot/.

