

A Survey of Firmware Analysis Techniques and Tools

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

 Bradley A. Whipple

Major Professor: Michael Haney, Ph.D.

Committee Members: Konstantinos Kolias, Ph.D.; Robert Hiromoto, Ph.D.

Department Administrator: Terence Soule, Ph.D.

May 2020

ii

AUTHORIZATION TO SUBMIT THESIS

This thesis of Bradley A. Whipple, submitted for the degree of Master of Science with a

Major in Computer Science and titled "A Survey of Firmware Analysis Techniques and

Tools," has been reviewed in final form. Permission, as indicated by the signatures and dates

below, is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor: ___________________________________ Date: ___________

 Michael Haney, Ph.D.

Committee Members: ___________________________________ Date: ___________

 Konstantinos Kolias, Ph.D.

___________________________________ Date: ___________

Robert Hiromoto, Ph.D.

Department

Administrator: ___________________________________ Date: ___________

 Terence Soule, Ph.D.

iii

ABSTRACT

This thesis attempts to cover many aspects concerning analysis, reverse engineering, and

provenance attribution of firmware from embedded devices. The intended reader of this thesis

is someone familiar with, or at least aware of, the software build process, the analysis of

software, and reverse engineering of software. This thesis discusses some of the differences

between firmware and traditional software and may serve as a bridge for those readers that

may be more familiar working in a software environment and are interested in analyzing

embedded devices. The thesis will include strategies for retrieving firmware binaries from a

target device, reverse engineering with the intent to provide provenance information about the

firmware, and briefly cover future work of using machine learning to analyze firmware.

iv

ACKNOWLEDGMENTS

Thank you to the professors at the University of Idaho for their efforts in advanced education

and research. Thank you to Alice Allen for her uncanny ability to cut through red tape and

guide students through bureaucracy. Thank you to Idaho National Laboratory for enabling

me to pursue further education by allowing me to work part time professionally while taking

classes full time.

v

DEDICATION

This thesis is dedicated to my lovely wife who supported me during my pursuit of a higher

education. She endured my late nights studying, working, and running a business with

patience and love.

vi

TABLE OF CONTENTS

AUTHORIZATION TO SUBMIT THESIS ... ii

ABSTRACT .. iii

ACKNOWLEDGMENTS ... iv

DEDICATION .. v

TABLE OF CONTENTS .. vi

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: COMPARISON OF SOFTWARE TO FIRMWARE 3

2.1. Background/Intro ... 3

2.2. Hardware differences ... 3

2.2.1. Processor .. 3

2.2.2. Storage ... 6

2.3. Lifecycle/Software Differences .. 8

2.3.1. Executable File Format (PE, ELF) ... 8

2.3.2. Bootloader .. 9

2.3.3. Operating Systems .. 9

2.3.4. Libraries ... 10

2.4. Communication Similarities/Differences... 10

2.4.1. Ethernet .. 10

2.4.2. Serial .. 11

2.4.3. I2C .. 11

2.4.4. Serial Peripheral Interface (SPI) .. 12

2.4.5. Communication Similarities/Dissimilarities Summary 13

CHAPTER 3: TOOLS AND PRACTICES ... 14

3.1. Tool introduction ... 14

vii

3.2. Hex Editors.. 14

3.2.1. Bless Hex Editor ... 14

3.2.2. Hex Workshop .. 15

3.3. Disassemblers .. 16

3.3.1. IDA Pro .. 17

3.3.2. Binary Ninja ... 17

3.3.3. Ghidra .. 18

3.3.4. Radare2 .. 18

3.4. Debugging Hardware & Software ... 19

3.4.1. JTAG.. 20

3.4.2. SWD .. 22

3.4.3. SWIM... 23

3.4.4. BDM .. 23

3.4.5. Debugging Hardware & Software Summary .. 23

3.5. Decompressing/Extracting.. 23

3.5.1. Binwalk .. 24

3.5.2. CyberChef .. 24

3.5.3. SRecord .. 24

3.5.4. U-Boot tools ... 25

3.6. Communication Snooping .. 26

3.6.1. Wireshark ... 26

3.6.2. Saleae Logic Analyzer... 26

3.6.3. Bus Pirate ... 27

3.6.4. FTDI FT232 ... 27

3.6.5. neoVI ... 28

viii

3.6.6. Communication Snooping Summary .. 28

CHAPTER 4: PROVINANCE DISCOVERY IN ANALYSIS 29

4.1. Motivation for Provenance attribution... 29

4.2. Vulnerable Library Identification.. 29

4.3. License Enforcement and Intellectual Property Protection 30

4.4. Attribution Classification ... 30

CHAPTER 5: ACQUISITION OF FIRMWARE FOR ANALYSIS 31

5.1. Acquiring Firmware ... 31

5.1.1. Non-Invasive Means of Capturing Firmware .. 31

5.1.2. Invasive Means of Capturing Firmware ... 36

5.1.3. Capturing Firmware Conclusion .. 44

CHAPTER 6: ANALYSIS OF CAPTURED FIRMWARE.. 45

6.1. Analysis showcase: Investigating a Computer BIOS ... 45

6.1.1. Background .. 46

6.1.2. Analysis .. 46

6.1.3. Analysis Conclusions .. 53

CHAPTER 7: SUMMARY & THE PITFALLS OF ANALYSIS TOOLKITS &

FRAMEWORKS 54

7.1. Tool Shortcomings ... 54

CHAPTER 8: FUTURE WORK: MACHINE LEARNING APPLIED TO FIRMWARE

ANALYSIS 55

8.1. Handling Large Data .. 55

CHAPTER 9: REFERENCES .. 57

ix

TABLE OF FIGURES

Figure 2-1: Memory map taken from the STM32F4 ARM processor manual [6] 5

Figure 2-2: Memory locations associated with various hardware peripherals taken from the

datasheet [6] .. 6

Figure 2-3: Wire diagram for I2C [14] .. 12

Figure 2-4: Wire diagram of SPI communication protocol [15] ... 13

Figure 3-1: Bless Hex Editor with a zip file loaded. The file header is outlined in orange 15

Figure 3-2: Screenshot from Hex Workshop comparing two different files. Similarities are

highlighted in green with dissimilarities highlighted in yellow. ... 16

Figure 3-3: Screenshot of IDA in use .. 17

Figure 3-4: The author hooked up the Jlink to debug an ARM development board from STM

 ... 20

Figure 3-5: Some standard JTAG connectors [32] ... 21

Figure 3-6: Unpopulated JTAG connector on a DD WRT router [32] 22

Figure 3-7: Screenshot from Binwalk using the -B flag ... 24

Figure 3-8: A snippet from an SREC file the author has come across 25

Figure 3-9: Rendering of the Bus Pirate device. It acts as an interface between a computer and

electronic communication protocols. .. 27

Figure 5-1: Amazon echo dot teardown. Image taken from microcontrollertips.com [63] 32

Figure 5-2: Screen shot of Paccar Davie tool taken from http://specdiag.com [42] 34

Figure 5-3: Connecting leads to the pins of a on board flash chip. The BIOS boots from this

chip ... 37

Figure 5-4: Saleae Logic being used to 'snoop' data to/from the flash chip. 38

Figure 5-5: Using a soldering iron to de-solder the flash chip. ... 40

Figure 5-6: Xeltec device with the socket plugged in and the target flash chip laying on top. 41

Figure 5-7: The Bus Pirate ... 41

Figure 5-8: Flash chip connected to the Bus Pirate .. 42

Figure 5-9: Flashrom in use .. 42

Figure 5-10: Flashrom reading the chip .. 43

Figure 5-11: Flash chip re-soldered onto the board. The solder joints are a bit rough looking

but they aren't shorted and appear to make good contact.. 43

file:///C:/Users/b/Documents/!Academic/Thesis/BradWhippleThesis_Formated_Rev3.docx%23_Toc37875692

x

Figure 5-12: After de-soldering the flash chip, reading it, and re-soldering the flash chip the

target still works. ... 44

Figure 6-1: Analysis of the BIOS update utility executable using Binwalk with the -B flag .. 47

Figure 6-2: Analysis of the binary retrieved from the flash chip using binwalk with the -B flag

 ... 48

Figure 6-3: Artifact of interest extracted from the BIOS image. ... 49

Figure 6-4:Strings from file @1C0069 references difference builds. 49

Figure 6-5: Strings references peripherals are likely to be found in a BIOS indicating this file

has BIOS information in it. .. 50

Figure 6-6: Three snippets of strings discovered in file "@1C0069" 50

Figure 6-7: PE file format [50] ... 51

Figure 6-8: PE-bear being used to identify start and end addresses of various locations on the

extracted PE file .. 52

Figure 6-9: Cylance detected the extracted file as malicious and quarantined it. 52

Figure 8-1: Different results seen in disassembly from the same source code obtained by

compiling with different optimization flags .. 56

1

CHAPTER 1: INTRODUCTION

Note: In this thesis software refers to the personal computer (PC)/desktop environment and

the terms are used interchangeably. This thesis also uses embedded and firmware

interchangeably to refer to code or devices often removed or abstracted from the end user

such as smart thermostats or IOT security cameras. The author recognizes the term embedded

is used loosely and there is a lot of gray area between a PC system and a typical embedded

system.

Software and firmware analysis in the context of this thesis is the process of acquiring,

reverse engineering, and otherwise figuring out what makes a device ‘tick’. In other words, its

cracking open the hood of a device and figuring out what’s inside either by targeting specific

information suspected to be within, or by a sweeping drag-net approach; the method being

situation dependent. Software and firmware analysis are conducted for a myriad of reasons

but the top three are identifying vulnerable libraries, enforcement of licenses and/or

intellectual property protection, and attribution classification.

By its nature, software is inherently difficult to analyze. Information available to the

researcher performing analysis is often absent or obscured. The process of going from code to

device/executable strips information out and given that analysis is performed almost

exclusively without code it leaves the researcher with a reduced set of data/information. It is

then up to the researcher to piece together a larger picture from small snippets of information.

To add to the arduous task the data available to the researcher may have been obfuscated

intentionally by the original coder making the analysis even more difficult.

In comparison to software analysis, the analysis of firmware is even more difficult due to the

extra layers of obscurity involved. While PC based environments are often limited to a few

different processor architecture’s and operating systems with code being restricted to running

within those environments; embedded systems are more diverse. The number of different

processor architectures and design paradigms found within embedded systems is far greater

than that of PC environments. Due to the lack of a common design schemas, processor

architectures, or operating systems the process of analysis on an embedded system is more

complex.

2

Frameworks have been attempted to structure and organize the firmware analysis process but

the problem is often too complex and diverse to solve with a series of regimented steps and

tools. Analysis frameworks the author has investigated target a very specific scenario and

often combine a series of tools in an attempt to streamline the process. Attempts at creating

toolkits or frameworks for analysis overlook a key component to an analysis campaign which

is intuition and researcher creativity.

This thesis covers attempts to cover some of the tools used in firmware analysis. This thesis

then offers a demonstration of the tools listed as a brief expose’ into what is involved during a

firmware analysis campaign as well as the diversity of what can be encountered. This thesis

will discuss some potential areas of future research and why attempts of developing an

analysis framework fail.

3

CHAPTER 2: COMPARISON OF SOFTWARE TO FIRMWARE

2.1. Background/Intro

This chapter covers some core differences between embedded systems and traditional PC

systems that readers may be familiar with. Much of this thesis focuses on the C environment

for the sake of comparison. Most firmware, albeit not all, is written in C [1] and while there

may be some analysis techniques unique to the output of other programing languages on a PC

those will not be discussed as they are out of scope.

2.2. Hardware differences

This chapter and subsequent subchapters discuss some of the hardware differences between a

traditional software environment and an embedded environment. While this has somewhat

changed in the past ~5-10 years, typically engineers working with a PC platform could remain

unaware of the hardware they were working with and conversely an engineer working in an

embedded environment had to be intimately aware of all aspects of the hardware. As

technology advances and systems become more complex there is a push to further abstract

hardware and other layers of complexity so even some dedicated firmware engineers may be

unaware of hardware specific details of the device they are supporting or working on. Recent

cyber-attacks and vulnerabilities such as Spectre and Meltdown show the importance of being

‘hardware aware’ [2] even when the scope is restricted to PC systems.

Software engineers often write processor agnostic code and are more concerned with the

operating system that will host their application. The reason for the abstraction of hardware is

there are many software layers between the hardware and the application. When engineers are

working on an embedded device, they often don’t have the luxury of having all the inner

workings of the CPU, peripherals, memory, etc. abstracted from them through layering of

code (although this is changing).

2.2.1. Processor

There are some significant differences between traditional PC based processors and embedded

specific processors that extend beyond performance and power consumption. Anecdotally

software engineers traditionally do not need to concern themselves with processor architecture

[3]; the concern lies within what runtime environment and operating system they intend to

4

design to. When reverse engineering a piece of code that was intended to run on a PC

platform the approach is often agnostic to what processor the code is running on.

The above points are not true when it comes to embedded systems. Engineers must not only

be capable of understanding code but have an in depth understanding of the memory interface,

memory map, user manuals describing registers, and more [4], [5]. Often on an embedded

platform memory, storage, peripherals, etc. are all internal to the processor itself with details

about specifications to the processor embedded in the part number that is laser etched on top.

Referencing the datasheet for the specific processor an engineer/researcher is working on is

commonplace when dealing with an embedded target in both development and reverse

engineering. Take for example the memory map below in Figure 2-1. This memory map

describes the how memory is allocated internally in the processor.

5

Figure 2-1: Memory map taken from the STM32F4 ARM processor manual [6]

This may seem mundane to the uninitiated but on an embedded processor every functionality

is controlled through memory or more specifically the Direct Memory Access (DMA)

controller [7]. Many communication protocols and other functionalities are supported by

designing hardware in the silicon to work with the CPU core. Take for example the Controller

Area Network (CAN) interface, or sometimes called “CAN bus”. On a PC platform the

protocol is not supported natively on the processor itself, must make use of additional

6

hardware, and often programs will import libraries such as a Dynamic Link Library (DLL) to

interact with said hardware. On an embedded system this design paradigm is completely

different. Settings for the CAN bus, data out, data in, and many other aspects of this protocol

are accessed by writing or reading to/from memory locations. Figure 2-2 was taken from a

microprocessor datasheet and shows some communication protocols, including CAN, and

their address ranges for that protocol or interface. Navigating to the associated section in the

datasheet for each interface would show in greater detail as well as describe functionality for

individual bytes and bits of the space in memory. This information can be useful during the

design process but also when it comes to analyzing firmware. For example, if there was

known functionality about an embedded system, such as a vehicle ECU, memory locations

could be pulled from the datasheet and searched for in the firmware file to identify functions

that write, read, or initialize the CAN bus.

Figure 2-2: Memory locations associated with various hardware peripherals taken from the datasheet [6]

Much more could be described concerning microprocessor architecture and design paradigms,

and in fact many books and university courses do just that [8], [9]. For this thesis however,

the topic is far too expansive to try and do any more than scratch the surface of the topic. It is

also worth noting that the lines are beginning to blur as many embedded processor

manufactures have increased support for their products by releasing advanced toolsets for

their products. Toolsets that auto generate clock settings, HALs, peripheral configurations,

etc. for the engineer allowing him/her to remain unaware of the chip’s inner workings [10].

2.2.2. Storage

Software environments typically can be oblivious to what sort of storage is being used.

Software executables rely heavily on the operating system to take care of reading and writing

data and the protocols associated with that. Engineers and researchers working with

7

embedded systems must often be more aware of how this happens. Viable targets for storage

can take more than one form and are not nearly as standardized.

2.2.2.1. Hard Disk

Hard disks often come in one of two forms, spinning disks and Solid State Drives (SSD).

While older spinning disks are still commonly found in computer systems due to the lower

cost in terms of storage density, SSD drives are becoming more common. Spinning disks get

their name from stacks of spinning platters housed internally that are used for storing data.

SSDs employ flash storage and are significantly faster. These storage technologies are almost

always present in PC environments but rare in embedded devices. The interface to these

storage devices is standardized between manufacturers of the devices and interchangeable

between brands. While hard drives can often be the target of forensic investigations [11] [12],

they are not typically relevant when analyzing a binary or executable.

2.2.2.2. Flash memory

Even though flash memory is utilized in SSDs it is being introduced as a separate sub chapter.

Flash memory by itself is nonvolatile memory usually sold and utilized as an Integrated

Circuit (IC) but also incorporated internally as on-chip flash in microprocessors. When seen

in a PC environment it usually takes the form of an SSD but by itself is not uncommon in

embedded systems. Even though many embedded processors have internal flash it is not

uncommon to see a separate flash chip utilized in the design of an embedded system. In terms

of performing a forensics analysis or reverse engineering operation reading a flash chip

directly may be out of the question for a PC environment but for an embedded device it is

commonplace as will be discussed in greater detail in later chapters.

2.2.2.3. EEPROM

EEPROM (electrically erasable programmable read-only memory) is nonvolatile memory like

flash but has smaller page size than flash. EEPROM can be a common place to find user or

device data. Because of its small page size, sometimes as small as a byte, it is often used for

storing times, dates, configurations, password hashes, names, serial numbers, etc. While it

may be possible to find a stand-alone EEPROM chip in a PC environment it is heavily

abstracted.

8

2.3. Lifecycle/Software Differences

This chapter attempts to cover some basic differences in how code is developed and run

between embedded and PC systems. This topic can be quite extensive and complex and will

rely on reader’s implied prior knowledge on some subjects.

2.3.1. Executable File Format (PE, ELF)

Researchers working in a PC environment will likely be familiar with the PE file format if

working in a Windows environment and the ELF format if working in a UNIX environment.

These files have everything needed for the operating system to load the program and run it.

Users may find these files rare when working with embedded systems from an analysis or

reverse engineering standpoint. The ELF format is common in firmware development as it is

commonly output from the compiler/linker but these files are usually not distributed. The files

captured from a device or firmware update will usually be a binary with all the extra

information an executable file has stripped out. This is because as part of an embedded

system’s build process the firmware gets put through a relocation process. During the

relocation process physical memory addresses are assigned to offsets given by the ELF file to

align with valid memory addresses in the processor to form a single executable binary ready

to be run on the target processor.

This section leaves a lot of information about the build chain out intentionally for the sake of

brevity. The key takeaway readers should have is the difficulty of analysis from a file that is

not in an executable format. There is a high probability that the file encountered by users for

analysis will be a simple binary. This file will not have associated addresses associated with it

and figuring out a start address will be critical. Take for example a jump to address

0x80001B00; if the start address was 0x00 this would represent a jump to nearly ~2GB into

memory. This is usually unrealistic for embedded devices. However, if the start address is

defined as 0x80000000 then the jump becomes 0x1B00 (~7Kb) into memory which is more

realistic.

Figuring out the base address will be essential for rebasing the binary in analysis tools. If

reading directly from the processor using debugging tools these addresses will be explicitly

discovered by nature of the tool. Without knowledge of where the binary resides in the

9

address space the user and disassembly tools won’t be able to make sense of the functions and

control flow.

2.3.2. Bootloader

Bootloaders are a mainstay in embedded systems, without them it would not be possible to

push firmware updates to the device. The most common analogy to the PC environment is the

BIOS/UEFI. The purpose of a bootloader is to enable an embedded system to update its

firmware. Bootloaders are typically very simple pieces of code that either jumps to

application code or replaces existing application binary with new a new binary. It is not

entirely uncommon for a bootloader to unencrypt a binary during the update process.

Bootloaders are needed due to the nature of how embedded processors work. Upon powering

up or triggering a reset an embedded processor’s Program Counter (PC), commonly called

Instruction Pointer (IP), will start at a predefined memory location. On a design without a

bootloader (like a prototype) this will start executing application code. In order to self-

program and update the firmware this flow will need to be interrupted to execute a bootloader

first. The bootloader can either be placed at the predefined start location or the first instruction

of application code can jump to the bootloader memory location. Some embedded processors

support other bootloader mechanisms such as enabling bootloader fuses. With the bootloader

running the application can now be swapped. If no update is required, the bootloader will

simply return process flow back to the start of application code.

Bootloaders can be implemented in different ways. Sometimes guidelines will be published

from the chip manufacture but ultimately it is up to the designer to implement a bootloader as

he/she determines is necessary. Accounting for the bootloader is important to any user

analyzing or reverse engineering an embedded system.

2.3.3. Operating Systems

Operating systems on embedded devices are not at all similar to what is running on a PC.

Usually the operating systems on an embedded device is called a Real Time Operating

System (RTOS) due to the necessity of processing data coming in from peripherals and

executing tasks in real time and on a pre-defined schedule. These RTOS’s are lightweight,

minimalistic, and are part of the same code base as the project itself. Usually firmware

10

engineers import the code for the entire RTOS into their project and then write application

code in files alongside the RTOS. Researchers should keep this in mind when investigating a

firmware image as the OS will likely reside alongside application code in a binary.

2.3.4. Libraries

The use of libraries in embedded systems is common although likely not to the extent of PC

based software. The big difference between embedded systems and PC based systems and

how libraries are used is that in an embedded binary the library has been statically compiled

and included alongside the application code. Embedded systems rarely have the ability to

dynamically load a library and execute code from it so all functionalities borrowed from a

library must be included and fit within the systems useable memory. In a PC system, libraries

can be compiled statically but for the sake of keeping executables small libraries are kept

dynamic and the executable relies on the operating system to import libraries.

2.4. Communication Similarities/Differences

When comparing typical communication protocols found in PC environments vs embedded

environments there are some significant differences. It is assumed the reader is familiar with

communication protocols used in PC systems such as Ethernet, serial, USB, etc. This thesis

does not cover low level communication mechanisms such as SATA, pipelines, ram-processor

interface etc. as those are often out of scope and far from the prerogative of PC engineers/

researchers. Below are some of the most common communication protocols found in

embedded systems.

2.4.1. Ethernet

Ethernet has been prevalent in PC systems for some time and is becoming more common in

embedded systems. The low level workings of Ethernet will not be discussed in this section.

Although the Ethernet used in PC systems is identical to the usage in embedded systems

monitoring the traffic over Ethernet is often different. PCs are conducive to host-based

monitoring as the resources required for simultaneous monitoring are present and software

has been written to capture and analyze the traffic. In an embedded system this capture, and

analysis must usually be done off-host on a different machine. A common way to accomplish

this is to configure a network in a manner that allows capture from a mirror port and analyze

on a PC; although a network Test Access Point (TAP) could also be used.

11

2.4.2. Serial

Some readers may be familiar with the DB9 serial port commonly found on PCs in the 90’s

and early 2000’s. This form of communication is still very prevalent in embedded systems but

with some major caveats. Before elaborating some terms need to be defined:

• Universal Asynchronous Receiver Transmitter (UART): This is a communication

interface. It consists of a transmit (TX) and a receive (RX).

• RS-232: This is a communication standard that defines voltages, physical connections,

timing, etc. The DB9 connector PC users may be familiar with are a part of RS-232,

which is an implementation of UART.

• Serial: This term is part of common speak that encompasses both above and not really

a part of a defined standard. It is used colloquially and can mean many things.

The biggest difference between the UART on embedded systems and the UART behind RS-

232 is voltage levels. Connecting an embedded system directly to a DB9 would likely damage

it as the voltage of RS-232 is +/-12V whereas common voltages for embedded devices will be

3.3V or 5V.

Some embedded processors will have more than one UART interface and the pinout diagram

of the chip will usually list the pins associated with the UART interfaces in pairs as (TX0,

RX0), (TX1, RX1), etc. When investigating these interfaces hardware will need to be used

such as offerings from FTDI described in section 4.6.4. When connecting hardware to the

processor the TX is connected to RX and vis-versa. Because UART does not implement a

separate clock signal the baud rate will need to be known or guessed. Since only a small

number of baud rates are standard and only a few of those are commonplace it is usually not

that difficult. Choosing the incorrect baud rate will usually still result in data which further

limits the need to try every common baud rate before knowing whether data is present on the

communication interface.

2.4.3. I2C

I2C (pronounced “I-squared-C”) is a communication bus that is address based, uses a master

device with multiple slave devices, and is a common communication mechanism for sub-

components of a circuit board. I2C is sometimes referred to as TWI (two wired interface) due

12

to trademark concerns [13] but the two are synonymous. Each slave device on the bus must

have its own unique address, otherwise multiple slaves may try to respond to data

transmissions. Because I2C is a relatively slow protocol it is usually reserved for devices that

do not inherently demand high speed rates of data transfer. Low speed devices such as

humidity sensors, light sensors, analog to digital converters, etc. are ideal candidates for I2C.

I2C relies on two signal wires (SDA-data, and SCL-clock) that multiple devices can connect

to. Both signal wires have a pullup resistor to positive voltage as seen in Figure 3. The low

level bitstreams that are part of the I2C protocol are not being presented due to the existence

of tools to adequately abstract them from the user.

Figure 2-3: Wire diagram for I2C [14]

2.4.4. Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is often found in embedded systems, and like I2C, is used as a

component to component communication protocol such as microprocessor to flash, display, or

other component. The protocol relies on a minimum of three signals; Master Out Slave In

(MOSI), Master In Slave Out (MISO), and a clock signal (SCK). More signals are required if

multiple devices are connected to the same SPI bus which are usually designated Slave Select

(SS) which simply enables or disables a device. If only one slave is connected to the SPI bus

it is common practice to hardwire the SS signal to its enabled condition.

13

Figure 2-4: Wire diagram of SPI communication protocol [15]

2.4.5. Communication Similarities/Dissimilarities Summary

These protocols have been listed because it may be necessary to listen in on or otherwise

investigate the protocols. Investigation methods will be briefly discussed in later chapters. A

part of analysis on embedded devices usually involves going to the circuit board level and

taking into consideration the entire design of a device and what is communicating to what.

Using the information provided readers may be more aware of what they are investigating at a

component level.

14

CHAPTER 3: TOOLS AND PRACTICES

3.1. Tool introduction

This section covers some tools used to inspect and analyze firmware. The scope of this topic

is quite large. There are many tools that are as universally applicable to firmware as they are

to software.

3.2. Hex Editors

Hex editors are used to view and edit the contents of a file in the raw byte format. They are

not specific to working with embedded systems and are just as applicable in a PC

environment. Often bytes are displayed in hexadecimal format by default, but decimal, binary,

and octal representations are supported on most hex editors. Hex editors are somewhat

interchangeable with minor variations in capability or layout. The number hex editors

available is far too great to include all of them in the report but the two most used by the

author are presented below. Hex editors can be especially useful when comparing two files,

looking for artifacts in files such as strings, or editing data at a very low level. Another

technique is to use a hex editor to view the first bytes in a file. These first bytes are often

referred to as a file signature and identify the type of file [16]. The file extension cannot be

relied on to identify the type of file and the author has found numerous times where files with

odd manufacture specific extensions end up being a common compressed file type such as

zip.

3.2.1. Bless Hex Editor

Bless is an open source hex editor for Linux that comes with a Graphical User Interface

(GUI). It is free to use as it is licensed under the terms of the GNU General Public License

(GPL) [17]. While it is not the author’s favorite hex editor it is the one most often used by the

author in a Linux environment due to the ease of installation and zero cost. The file signature

0x50 4B 03 04 is boxed in orange in Figure 3-1 which indicates a zip file even though the file

extension was not zip. This information was useful during the analysis of a PLC’s firmware.

15

Figure 3-1: Bless Hex Editor with a zip file loaded. The file header is outlined in orange

3.2.2. Hex Workshop

Hex Workshop from BreakPoint Software [18] is the author’s preferred hex editor and what

he cut his teeth on. This particular hex editor also has one of the best implementations of

comparing files than any other hex editor tried. Comparing files at the binary level may not be

useful for most analysis applications but it was especially useful when comparing tuning files

from vehicle ECMs. Figure 3-2 below shows a screenshot from Hex Workshop comparing

two files.

16

Figure 3-2: Screenshot from Hex Workshop comparing two different files. Similarities are highlighted in green with

dissimilarities highlighted in yellow.

3.3. Disassemblers

Disassemblers are a family of software that takes binary files and translates them into

assembly. These programs are as useful when reverse engineering firmware as they are

software. Many disassemblers also work to identify functions and control flow as well as

breaking assembly up into functional blocks. The important aspect of a disassembler as it

applies to embedded systems is the software must support the target architecture (processor)

in order to be useful. There are more disassemblers out there than the four listed, but these are

the 4 the author is most familiar with and in the author’s opinion the most well-known.

One of the biggest differences when reverse engineering firmware, aside from processor

architecture, is that having access to an Executable Linkable Format (ELF) file is often rare.

The file type and format of the firmware retrieved will vary but it will almost exclusively

always be static, stripped, and not have address information affiliated with the firmware.

What this means to the researcher will be discussed in greater detail in a later chapter but in

short having a static file means all code and functionality are included in one binary as

opposed to importing some dynamic library. Having a stripped binary means variable names,

function names, and other useful bits of information will be absent. Part of having access to

17

an executable, such as the case when working in a PC environment, is that addresses are

included, which libraries are imported are included, and the file isn’t always stripped so

sometimes function names can be retrieved. Having a disassembler that can handle these

restrictions is important if it is to be used with a firmware file.

3.3.1. IDA Pro

IDA Pro (or sometimes just called IDA) from Hex-Rays [19] , seen in Figure 3-3, has a long

history of being the De facto standard when it comes to disassemblers. The software has been

able to outshine its competition and it demands a hefty price tag for the privilege. Hex-rays

takes a tiered or Downloadable Content (DLC) approach to its licensing [20] with each

additional functionality or architecture support costing extra. With each license module cost in

the thousands it’s easy to achieve a $10k+ price tag for a fully supported software package

which is well out of reach for the casual reverse engineer. Hex Rays offers a freeware version

of IDA with reduced functionality and reduced processor architecture support.

Figure 3-3: Screenshot of IDA in use

3.3.2. Binary Ninja

Binary Ninja is another commercial offering for a disassembler. While not as full featured as

IDA Pro it is significantly cheaper. At the time of writing the Personal/Student license cost

18

$149 USD and the Commercial License costs $599 [21]. There is also a demo version of

Binary Ninja although compared to the freeware version of IDA it seems a bit more restrictive

by prohibiting users to load or save databases, only allowing 25 minute sessions, and not

allowing access to the API [22]. Of the four disassemblers listed the author has the most

experience with Binary Ninja in a professional setting. Binary Ninja was chosen within the

author’s professional setting at the time due to its lower cost and excellent API which is

relatively easy to use provided the user is familiar with Python. One of the frustrating aspects

of Binary Ninja is it currently lacks the capability to rebase a file. While it is possible to do

this with a script the lack of native capability is inconvenient.

3.3.3. Ghidra

Ghidra is an open source reverse engineering tool (disassembler) developed by the National

Security Agency (NSA). Ghidra was initially released at a the RSA conference in March of

2019 and soon followed by the release of the source code in April of the same year [23].

Ghidra comes with a gambit of capabilities, and as a piece of software with a sense of

completeness, not often seen with open source tools. A tool of this caliber being released as

open source caused a stir among the reverse engineering community [24], [25], [26] with

many forum users pointing out that IDA Pro may soon have stiff competition as users expand

the functionality through software updates and plugins. This hype may be partially credited to

the nature of the organization that developed it as the NSA has long been the cyber weapons

shop for the US government. Given this tool was so new at the time of writing this thesis (< 1

year) the author has had limited experience with the software.

3.3.4. Radare2

Radare2 is an open source command line decompiler. There is a front end for Radare2 called

Cutter which must be installed separately. Because it is open source it is often a great option

for academic work although some users may find the command line interface difficult to use.

The author has the least amount of time on this debugger but anecdotally from reading

reviews and exchanges among professionals in the reverse engineering space it remains a

viable option.

19

3.4. Debugging Hardware & Software

Readers may already be familiar with debuggers such as OllyDbg or the debugger built into

their programming development environment. For the readers who are not familiar; a

debugger enables a user to step through code or a binary and see the effects each line of code

or instruction has on registers and memory. Software engineers may often do this with code to

analyze what their code is doing but in the reverse engineering and binary analytics field this

is rare due to only having access to the binary being typical.

Debugging with embedded devices is similar in concept to debugging with a PC. The major

difference is usually extra hardware is involved. On a PC platform the processor architecture

on the machine is often compatible with the binary. In an embedded system the processor

architecture will be different as well as having different registers, memory locations, and

peripherals. In order to debug the target system, it will need to interface with the PC through

extra hardware. Below in Figure 3-4 the author has connected an ARM development board

from STMicroelectronics (STM) [27] to a debugger from IAR systems called the J-Link [28].

It’s worth noting that the development board pictured comes with built in debugging hardware

(left side of board) called ST-LINK/V2 [29]. The IAR J-Link was used to demonstrate

debugging a target device that does not have built in debugging hardware as is the case with

nearly 100% of production devices.

20

Figure 3-4: The author hooked up the Jlink to debug an ARM development board from STM

As opposed to following previous sections pattern and listing off some debuggers, some

debugging hardware interfaces will be listed instead. The hardware that is available is usually

distributed by the manufacture of the chipset in question; Texas Instruments, Microchip,

Atmel, STM, etc. all have different debuggers that are not compatible with each other. There

are third party vendors of debuggers, such as Laterbach [30], that make debuggers but even

their products are only compatible with different architectures if the appropriate hardware

module/add-on is used. The following interfaces are listed because these are what the

debugger will need to physically connect to. Understanding them and how to find them will

make it possible to start debugging an embedded system.

3.4.1. JTAG

JTAG (pronounced “J-tag”) stands for Joint Test Action Group which is the group that came

up with the standard. JTAG is an IEEE standard for “Test Access Port and Boundary-Scan

Architecture” [31] and has been adopted by most microprocessor companies. JTAG has long

been the De facto standard for debugging interfaces; while other companies have come up

with their own debugging mechanisms industry parlance often uses JTAG as the go-to

vernacular.

21

The pins/signals required for interfacing with JTAG on a chip are listed and described below.

There are 4 required, 1 optional, and ground needs to be connected for voltage reference but is

usually not explicitly mentioned in instructions or manuals.

• TDI: Test Data In; serial data from debugger to target

• TDO: Test Data Out; serial data from target to debugger

• TCK: Test Clock

• TMS: Test Mode Select; controls the Test Access Port (TAP) controller state

transitions

• TRST: Test Reset; optional, resets the TAP controller

The important part for users is to not understand the inter-workings and low-level

implementations of JTAG but how to connect and use it. While there are standards for

connectors as seen in Figure 3-5 these are not always present on the board. In the author’s

experience if the connector is present on the board it will rarely be populated (footprint is

there but physical connector is not soldered) such as the case in Figure 3-6. If a user desires to

connect to a production device (not prototype status) there is a strong possibility a soldering

iron will be involved. If a JTAG standard header is not present the first step should be

consulting the datasheet for the target CPU. This datasheet should have a pinout describing

what each pin on the chip does. Use this to identify which pins relate to JTAG; these will be

the pins that need connections to, either directly or follow a PCB trace to a suitable

solder/connection point.

Figure 3-5: Some standard JTAG connectors [32]

22

Figure 3-6: Unpopulated JTAG connector on a DD WRT router [32]

Unfortunately, successful connection to the JTAG interface does not guarantee the ability to

read from memory and start debugging the code that is currently present on the chip. Many

processors come with options to lock down the read capabilities of debugging through a

mechanism called fuses. The term ‘fuse’ is a carry-on term to an era when literal fuses were

used inside the chip and would be permanently set by running current through specific pins to

disable functionality. Most current processors do not use this, and configurations can be set

and re-set.

3.4.2. SWD

Serial Wire Debug (SWD) is an alternative to JTAG for ARM processors [33]. One of the

drawbacks of JTAG is that it uses a lot of signals (relatively). As some chips push to reach a

smaller form factor, spare pins become a premium. 8 pin microprocessors are not out of the

question and dedicating 4 to JTAG leaves only 2 General Purpose I/O (GPIO) once ground

and Vcc are accounted for. The SWD protocol cuts this in half and only uses two pins; they

are listed below along with their descriptions [34].

• SWDCLK: Serial Wire Clock

• SWDIO: Serial Wire Debug Input/Output; bi-directional signal carrying data.

The guidelines for connecting to SWD are identical to those for connecting to JTAG. It is a

high likelihood that if a production device is the target, wires will need to be soldered on the

23

circuit board in order to interface with SWD. Consult the chip manual for identifying pins

designated for SWD functionality.

3.4.3. SWIM

Single Wire Interface Module (SWIM) is a proprietary protocol to STMicroelectronics [35]. It

is another progression in lowering the number of pins required for debugging, in this case

only 1 is needed. Going through SWIM would be superfluous and is presented to highlight the

broad spectrum of debugging interfaces a user might encounter.

3.4.4. BDM

Background Debug Mode (BDM) is a debug interface proprietary to Freescale (formerly

Motorola). It is similar to SWIM in that it needs only 1 pin for data [36]. Going through

BDM would be superfluous and is presented to highlight the broad spectrum of debugging

interfaces a user might encounter.

3.4.5. Debugging Hardware & Software Summary

In summary every embedded processor will have some form of debugging interface. The best

way to identify the interface is through the chip’s manual. JTAG is a well published standard

set forth by IEEE and can be found on nearly any processor. SWD is something ARM came

up with and can be found on a variety of manufactures that license the ARM core. Various

other debug interfaces exist that are exclusive to the chip designer/manufacturer. It is up to the

discretion of the chip designer which debug interface or interfaces to implement. Production

devices will rarely, if ever, have a debug port or connector populated on the circuit board.

Many times, a debug connection will not be made available on the circuit board and pins must

be traced in order to find viable connection points.

3.5. Decompressing/Extracting

When analyzing embedded systems, it often becomes necessary to extract the contents of a

file. This is similar to working in a PC environment with the exception of sometimes being

more specialized or specific.

24

3.5.1. Binwalk

Binwalk [37] is a command line tool for performing various analysis related tasks on a binary

file. The author has extended experience using the open source version but recently Binwalk

Pro has been released and is a cloud-based version. The author highly recommends this tool

as a first step in analyzing a piece of firmware, especially if the firmware was acquired from a

vendor and physical access to the target device is not possible or greatly restricted. Binwalk

can be used as a quick way to determine what is in a file, what sections of the file may be

empty data, what sections of the file may be encrypted or compressed, recognizing processor

architectures, as well as extracting known file types. Some of the flags the author uses the

most are as follows;

-B Scan a target file for common file signatures
-A Scan a target file for common opcode

signatures
-E Calculate a file’s entropy and generate an

entropy graph
-e Automatically extract known types

In Figure 3-7 is a screenshot of Binwalk running with the –B flag and recognizing various

characteristics and file signatures from a piece of firmware that runs on a PowerPC platform.

Figure 3-7: Screenshot from Binwalk using the -B flag

3.5.2. CyberChef

CyberChef is touted as being “The Cyber Swiss Army Knife - a web app for encryption,

encoding, compression, and data analysis” [38]. The list of capabilities is long, but it provides

an easy method of uploading a file and performing a list of operations on the file in sequence.

Bitwise manipulation, data massaging, and encryption can all be performed with one run

using an easy-to-use, drag-n-drop GUI.

3.5.3. SRecord

SRecord [39] is part of a large group of tools the author lumps together which are incredibly

useful when needed but are rarely needed. The tool SRecord is a Unix command line tool that

25

was created to manipulate Motorola S-Record files (often called SREC files). SREC files

follow a standard format, they store data as plain text so are human readable, and part of each

line of the file is a header, data, and checksum. In Figure 3-8 is a snippet of a SREC the

author has come across. The manufacturer distributed this firmware file as part of a zipped

package and once extracted it could be opened in a text editor. The data in red was not sent to

the target device but rather was used by the PC based application and not technically part of

the SREC file.

Figure 3-8: A snippet from an SREC file the author has come across

SRecord was used to then extract and manipulate data contained in the file. Data was

extracted from plain text and stored as a raw binary. This binary could then be loaded into a

disassembler, rebased to the appropriate address, and analyzed. Alternatively, if modifications

were added to the file, it could then be repackaged using SRecord with all checksums and

metadata fixed.

3.5.4. U-Boot tools

U-boot tools is a subset of the project U-Boot [40] and distributed on their Github page as a

part of U-boot. This toolset falls into the same broad category as SRecord in section 4.5.3 as a

tool that is rarely needed but when it is, users will find it incredibly useful. U-Boot is a

bootloader for embedded systems and U-boot-tools is a set suite of command line tools for

editing extracting, packaging, and otherwise editing u-boot utilities and images. The U-Boot

bootloader uses U-Boot images; think of them like executables or ROMs which can be loaded

to an embedded device. A user may not have a need to examine the bootloader itself, however

as the author has encountered real world scenarios from experience, the need to build a U-

boot image. In one such scenario the author experienced; there was a need to alter a firmware

image for a piece of equipment from the OEM without access to the source code, in other

26

terms popularized by the news, “hack” the device. A tool already discussed in section 4.5.1

called Binwalk was able to extract the U-Boot image but once the alterations were made the

only way the author was able to repackage the image was using U-Boot-tools.

3.6. Communication Snooping

When analyzing embedded systems, it may become necessary to snoop (eavesdrop) a

communication protocol. Users already familiar with software like Wireshark will already be

familiar with the concept. In fact, Wireshark itself is a very relevant tool when dealing with

embedded devices due to the widespread adoption of network connected embedded systems.

Many other snooping tools will be similar to Wireshark but will rely on some extra hardware

and may not have as robust of a user interface.

3.6.1. Wireshark

Since Wireshark has been mentioned already it would be prudent to cover it. Without getting

into too much detail about how network packets are routed to various devices, Wireshark

allows a user to capture network packets, analyze them, and even save them for later use. The

software is used heavily whenever development or analysis is taking place and ethernet

connections are involved.

3.6.2. Saleae Logic Analyzer

Saleae is a company that makes and sells a line of logic analyzers popular among engineers

and hobbyists. A logic analyzer is a tool used to measure/read digital signals. The

functionality sometimes crosses with an oscilloscope, a tool to measure voltage with respect

to time. The differentiating factor between the two is usually a logic analyzer will represent

voltages as digital values (0 or 1) where an oscilloscope will have very high resolution with

respect to voltage (microvolts).

The real value of a logic analyzer comes from its accompanying software. The software can

often decode and display common protocols (I2C, SPI, Serial) as opposed to just signal

values. This of course requires the user to appropriately identify signals on the target device

and designate signal lines on the logic analyzer appropriately. Eavesdropping signals on a

circuit board may sound out of scope for most scenarios but armed with the right plug-in, the

27

Saleae logic analyzer can passively listen and stitch together sections of a flash chip. Given a

scenario in which an embedded processor has an accompanying flash chip it may be prove

fruitful to use a logic analyzer to see what the processor reads/writes at boot vs normal

operation.

3.6.3. Bus Pirate

The Bus Pirate is an open source device that interfaces with a computer and can ‘speak’

electronics. The device supports many protocols that electronic chips rely on to communicate

over copper traces on a circuit board; a graphic representing the Bus Pirate can be seen in

Figure 3-9. Some open source tools such as FlashRom support the Bus Pirate which makes it

easy to read the contents of flash chips. The Bus Pirate in a way is the antonym of a logic

analyzer; instead of passively listening to the device it can be used to actively interrogate the

device.

Figure 3-9: Rendering of the Bus Pirate device. It acts as an interface between a computer and electronic communication

protocols.

3.6.4. FTDI FT232

The FTDI FT232 is a USB to serial adapter; technically USB to Universal Asynchronous

Receiver/Transmitter (UART). FTDI (Future Technology Devices International) is the

company behind the device and has been known for its line of FT232 products since the 90’s.

Really this shouldn’t be thought of as a single device but a family of devices as there are

several knock offs and other devices that do the same thing. A serial interface used to be

common on PCs but this is no longer the case which makes this device, or one like it,

necessary to communicate to devices using UART. It’s not just exposed serial interfaces on

the front or back panel that users should investigate with a USB-Serial adapter, but non-

connected pins assigned to a serial peripheral on the processor as well. The author has

28

discovered a telnet like menu operating on a serial interface not exposed externally of the

device.

3.6.5. neoVI

The neoVI is a device made by Intrepid Control Systems that allows a computer to

communicate or snoop vehicle communication protocols such as CAN or J1939. This tool

would likely only be useful if a vehicle based embedded device was being investigated as the

use of CAN on production devices outside of vehicles is rare. The author has extensive

knowledge of tools from Intrepid Control Systems, like neoVI and valueCAN, during his

tenure at a company which reverse engineered vehicle ECMs.

3.6.6. Communication Snooping Summary

The devices listed in this section were primarily listed to highlight the diversity of tools that

may be needed to thoroughly investigate an embedded device. The selection of tools a user

chooses to employ will ultimately reflect the goals and purpose of research or analysis.

29

CHAPTER 4: PROVINANCE DISCOVERY IN ANALYSIS

4.1. Motivation for Provenance attribution

Analysis on embedded systems is motivated by many factors but a major goal is provenance

attribution; or in other words where the binary came from and what sub-components (such as

3rd party libraries) make up the binary. There are three main reasons to discover the origin and

hereditary of a binary file: potentially vulnerable library identification, license enforcement

and intellectual property protection, and attribution classification.

4.2. Vulnerable Library Identification

Discovering which libraries are used in a binary is incredibly useful for vulnerability

detection. Libraries present a major pathway for vulnerabilities to persist and propagate. A

common practice for software developers is to recycle code, grabbing third party libraries that

provide desired functionality and incorporating it into their project. This design paradigm is

done for efficiency sake as the cost of implementing every little capability in-house (TCP

stack, HTTP server, drivers, etc..) into a device would be very costly. The result is that nearly

every product is comprised of multiple libraries, each with their own patch cycle. Hand the

product off to a junior engineer, as is common industry practice, and the problem is

exacerbated as the maintenance engineer may not have clarity or insight as to which libraries

were used and how. Such was the case with Busy Box version 1.21.1 and a vulnerability in its

NTP implementation. Busy box used openNTPd, a separate library, for its NTP

implementation. From the time openNTPd was patched until the time Busy Box incorporated

the patch was 7 years [41]. This significant vulnerability remained in production code for a

significant time after a patch was available due to a lack of situational awareness to

incorporated libraries and their respective patch cycles.

The scenario of an engineer not knowing what code is in the device is far more common than

people think. The author can speak from personal experience when he was working as an

embedded engineer. Anecdotally, roughly 80 percent of the code base was reused with the

remaining 20 percent changing depending on the application. The majority of the code used in

the device was untouched and unseen by the author. As an engineer working for the company,

there wasn’t a reason to know what libraries were used as only the code that needed to be

fixed, or to support new applications, was seen. It wasn’t until efforts were made towards

30

supporting a new application that it was discovered the code that was handling the

reading/writing to the SD card was an unlicensed library. This isn’t necessarily a vulnerability

but highlights the widespread problem of unseen libraries being used.

4.3. License Enforcement and Intellectual Property Protection

Enforcing license agreements or protecting intellectual property rights requires proof that it is

being used. Unless an insider is involved, access to code is usually impossible with only

access to the binary available. Identifying code use with only access to a binary is desirable.

Another related example drawn from the authors previous work experience, albeit anecdotal,

was a case where the company he was working for (Call it company ‘A’) sued another

company (company ‘B’) claiming they had stolen intellectual property. Company A had also

sued a previous employee claiming he was working for company B and handing over trade

secrets. All the intellectual property company A had was in their source code for the product

they sold. This company sued on the ground that company B had stolen the code and were

then using it in their product. The claim ultimately fell apart in court because Company A had

zero way of proving their code was being used. The nature of what company A did would

make a binary easily retrievable by one of their employees and if nothing else, through a

request of discovery. Since they had the binary the utility of a tool to perform some sort of

analysis as to what functions were in it would have been huge.

4.4. Attribution Classification

At the tail end of incident response or discovering a new piece of malware that hasn’t been

seen before is the attempt to provide attribution to who designed it. This is mostly done

through analysis of common patterns in the kill chain and methods utilized by attackers.

Understanding what is in malware, how it works, and the goals of a piece of malware help

attribute the origination of the malware.

31

CHAPTER 5: ACQUISITION OF FIRMWARE FOR ANALYSIS

5.1. Acquiring Firmware

Before any analysis can be performed, firmware must first be acquired or captured.

Technology moves quickly and as such many techniques must also adapt. There is no one

technique or tool to work in every situation which often demands creativity when attempting

to get a copy of firmware.

5.1.1. Non-Invasive Means of Capturing Firmware

There are two over-arching categories of capturing firmware: non-invasive and invasive. This

section and subsequent sections cover methods to capture firmware without opening the target

device (non-invasive).

5.1.1.1. Open sources

The first step users should take when investigating a device is to simply search around online

and find out as much as possible regarding a device. It may so happen to be that every version

of firmware for a device is hosted on the manufacture’s website available for download.

Sometimes the firmware can be freely available, sometimes it requires an account to be setup

(most likely for marketing purposes), other times firmware may be restricted but with a little

social engineering can be acquired support representative. The author has had decent luck

with playing slightly dumb, maybe an intern or new hire, saying something along the lines of

“I need this version of firmware because it’s what my boss wants to deploy the device with”.

Every company has their own policy about distributing firmware, some keep it closely

guarded in the proverbial fort Knox and others give it out openly. Once firmware has been

obtained then analysis can start. Analysis is covered in the next chapter.

The other part of device reconnaissance not strictly affiliated with firmware is to learn what’s

on the device in both hardware and software terms. Users may stumble across a blog where

someone else has done most of the work for them, hopefully even describing techniques they

used and what they learned. They may share not only pictures but a list of hardware and

software libraries they found. An example of this can be seen from an image in Figure 5-1.

This image is from an Amazon Dot teardown. The author has never owned an Amazon dot

but within a few minutes of online searching found some information on the hardware which

32

was relevant to the analysis taking place. Based on this picture, information on the hardware

architecture can be discovered such as discovering they are using on board, external from the

processor, flash. Based on past experiences it is suspected there may be some worthwhile

information on this chip, potentially even personal information that could be extracted like

Amazon user accounts, settings, and history. It can also be seen what processor they’re using.

Knowing what processor they’re using can help analysts strategize and tailor their toolset for

that particular chip and architecture.

If a copy of the firmware cannot be obtained by searching open sources online it is likely a

physical device will be needed. The sections following this require a physical device.

5.1.1.2. Acquiring from OEM software

If a copy of firmware was not able to be acquired from online sources analysts will need to

elevate efforts to a physical device. The first step is to understand how a firmware update

happens in the first place and there are a lot of ways this can happen. If it’s an Internet of

Things (IoT) device, the device may pull firmware automatically from the cloud or it may

require a physical media device like a USB Flash drive. If it updates from some computer

application, users may have an opportunity to extract firmware from the application in some

form of another.

Figure 5-1: Amazon echo dot teardown. Image taken from

microcontrollertips.com [63]

33

An example of this is when the author was working on reverse engineering heavy duty trucks

(Think 18-wheeler semi-trucks). A legitimate firmware update looked something like as

follows. A truck rolls into the dealership for regular maintenance or warranty work. The

dealership technician will almost certainly have a special diagnostic laptop running software

unique to the make of vehicle and as part of the maintenance will plug the laptop, through an

adapter, to the diagnostic port of the truck to check for diagnostic codes or to simply capture

data from the truck for logging purposes. As part of the maintenance process the truck may

receive a firmware update for its Engine Control Module (ECM). The modern car/truck is a

highly computerized machine and the ECM can be considered the ‘brain’ of the vehicle. It

runs code that controls the truck; everything from tuning to speed limiting and will often get

patches released for it.

That process was investigated and monitored for a particular make of heavy-duty engine

called Paccar. Paccar engines aren’t used in small vehicles like passenger cars and pickups but

are used in long haul trucks, RVs, and marine applications. Paccar uses a software application

called Davie to run diagnostics on its ECMs, a screen shot of this software can be seen in

Figure 5-2. While modern versions of Davie have gone through a major facelift and operate

completely differently, at the time the author was able to capture a copy of the firmware

because over the course of a firmware update to the ECM, Davie would drop copies of it in a

folder under the installation directory and later delete those files. All that had to be done to

capture those firmware files was run a firmware update and copy the files before the firmware

update finished.

34

Figure 5-2: Screen shot of Paccar Davie tool taken from http://specdiag.com [42]

Another potential avenue for extracting a firmware image from the updating software is to

reverse engineer the software itself and/or possibly modify the software. This method isn’t

one of the authors strong points as an engineer, so is usually avoided by the author if possible.

5.1.1.3. Capture by snooping the communication protocols

If grabbing a copy of firmware directly from the computer application fails, then other

methods should be attempted. Another method of grabbing firmware is over the wire. To

attempt this, analysts will most likely need a way to initiate a firmware update which is often

done using the software. Generally speaking the method will follow the process of monitoring

whatever bus/communication the device is using to update the firmware (CAN bus, IP

network, Serial, etc.), send the firmware update to the device, save the captured bus traffic,

analyze and try to extract the firmware image from the bus traffic. The process is rarely

exactly the same and the author has done this in the following scenarios:

Scenario 1: It may be found that a firmware update is simply being sent by FTP to the target

device. An example of this is when the author was working with a PLC and looking to capture

the firmware over the network. The setup was as follows: A network switch with a SPAN port

was set up, the target device and the computer with the PLC software were set up running on

the network, network traffic was captured from the SPAN port, the firmware update was sent.

At this point a pcap file containing all of the communications the computer and target device

35

had exchanged was captured. Since a firmware update was just sent over the network, a copy

of the firmware in some form or another within that network traffic should have been

captured. Upon analyzing the network traffic in Wireshark it was discovered the files were

simply being transferred via File Transfer Protocol (FTP) and was unencrypted. The files

were able to be extracted using Wireshark since the software supports this functionality. One

of those files transferred ended up being the firmware and at this point was successfully

extracted from the network traffic. This process was able to be scripted in python to extract it

the firmware although at the time of writing has not been released. It’s worth noting that even

though users may see that the target device is being updated via FTP that doesn’t mean there

are going to be firmware files ready for reverse engineering. It’s possible the manufacturer of

the device is sending files that are encrypted via FTP.

Scenario 2: It may be observed that a firmware update is being sent over the network but

using some unknown proprietary protocol. It may be possible to reverse engineer this and

capture the firmware file. For example, the author was once working with a smart 3-phase

power meter; similar to the power meter one may find on a residential building but with more

features. A network was set up similar to the one in Scenario 1, a firmware update was sent,

network traffic was captured, and then analysis was performed on the pcap file. It was

discovered that a large amount of data was being sent to the meter which indicated to the

author that there was a firmware file being sent but in a protocol that the author nor any tools

recognized. It was possible, albeit with considerable effort, to write a script to extract the data

and stitch it together to re-create the firmware file that was sent. It is worth noting doing this

without a copy of firmware to start with would be exceedingly difficult. Because a copy of the

firmware being sent was already on hand it was possible to identify 1:1 Byte matches in the

network traffic to the firmware file.

Scenario 3: If the firmware update is being sent over an alternate means other than ethernet it

may still be possible to capture it. An example of this builds off a scenario given earlier with

the Paccar Davie software. It was mentioned that the software dropped the firmware files on

the hard drive of the computer during a firmware update and then deleted them post update

making them briefly available for copy. More recent versions of the Davie software don’t

work in the same way which forced another method to extract the files. During a firmware

36

update the software sends the firmware files across the CAN bus and due to the nature of

CAN, any device on the bus can listen in. Given previous understanding of how the ECM

worked and how the software talked to the ECM the author was able to use CAN interface

hardware and write a program to capture that file. It’s acknowledged though that this would

be incredibly difficult without prior understanding of both CAN bus but also how the

firmware was sent in the first place.

While it’s possible to capture network data from a firmware update over the network without

initiating it this would be exceedingly difficult as you would likely end up with a massive

amount of data to sift through and likely only have one shot at capturing it.

5.1.2. Invasive Means of Capturing Firmware

If non-invasive methods fail or are impractical then an escalation of the reverse engineering

process is necessary. The next steps will involve invasive means of extracting firmware from

the target.

5.1.2.1. External On-Board Flash

Some devices are designed with a separate flash chip on board such as the Amazon Echo

previously seen in Figure 5-1. Devices can store various amounts of data and often times even

firmware can be found on those chips which makes it a lucrative target to investigate. There

are a couple overarching methods that data can be exfiltrated with. One method passively

snoops the communications to/from the chip and the other involves actively writing/reading to

the chip.

5.1.2.1.1. Passive Capture of On-Board Flash

This method involves trying to listen in on the communication between the flash chip and

whatever device is attempting to read/write to the flash chip. Most flash chips communicate

over a protocol called Serial Peripheral Interface (SPI). Some flash chips will communicate

over I2C (sometimes called two-wire interface or TWI) but it’s rare due to speed constraints.

Both protocols can be snooped but for this section only SPI will be covered. When passively

capturing data from a flash chip an analyst will need some preliminary information.

Information primarily needed is the pinout since users will be connecting probes to the

communication lines. Unique implementations of SPI can be found with some flash chips that

37

manufactures implement to increase the speed. At a minimum information on which pins

correspond to MOSI (Master Out Slave In), MISO (Master In Slave Out) and the clock pin for

SPI communications is needed. Once pins have been identified users will need to find a way

to connect leads or probes to the pins either directly or by tracing out the circuit board and

finding suitable landing pads. For this section the flash BIOS chip from a laptop as seen in

Figure 5-3 is used as an example. A BIOS is not quite firmware but it’s somewhat simple and

makes for a good example.

Figure 5-3: Connecting leads to the pins of a on board flash chip. The BIOS boots from this chip

To listen in on the data transfer happening between a flash chip and another chip, analysts will

need some extra hardware like a logic analyzer. A logic analyzer is a tool similar to a

multimeter or an oscilloscope but used for digital signals. Often, they are used to help

engineers debug or figure out what is going on with their hardware. Think of them like

Wireshark for digital circuits for users more familiar with that software. Often times

accompanying software will be necessary to use a logic analyzer. If it is required to establish

some sort of data file from what was on the flash chip, the software being used will need to

natively, or through a plugin, assist in capturing data to/from flash chips. This is needed

because the software in stock form only makes the data used in the protocols human readable

38

in byte form. Stitching together 1MB (~1 million bytes) would not be feasible by hand,

especially since there are other bytes in the protocol.

In Figure 5-3 above the SPI pins for the flash chip have been identified by looking in the

datasheet acquired online. Those target SPI pins were then connected to a Saleae logic

analyzer. Saleae is the brand the author is most familiar with and they make a logic analyzer

at a price point lucrative to hobbyists, it has been covered in another section. The process for

capture is as follows:

1. Start capturing data through the logic analyzer

2. Boot up PC (or device)

3. End capture

4. Analyze data

What should be happening is that during boot the PC reads data from the flash chip. Based on

prior experience it is known that this is where the BIOS is located. The goal is to capture

everything the PC reads from this flash chip. In Figure 5-4 below are some screen shots from

an attempt to use Saleae to discover data being read from the flash chip. In the end data was

not able to be read successfully. It is believed this was due to inadequate speed capabilities.

Figure 5-4: Saleae Logic being used to 'snoop' data to/from the flash chip.

Even if passive capture works there is a glaring shortcoming. The only data discoverable will

be what the master device is reading/writing to the flash chip. This can force users to try and

39

manipulate the device through whatever interface is available to try and get the most

reads/writes to the flash chip available for discovery. In the case of a firmware image being on

the flash chip its possible this is stored for the sole purpose of recovery or updates. If the

design architecture of the target device is as follows: download a firmware update into the

flash chip, run a CRC or other security check on the firmware while it’s on the flash chip,

then update the processor’s internal flash chip with the firmware; it won’t be possible to

access the firmware image with passive techniques with the exception of getting extremely

lucky and snooping during a firmware update. Developing an understanding of the design

architecture is difficult without prior knowledge or moving past passive capture.

5.1.2.1.2. Active Capture from On-Board Flash

Another method of establishing what is on the flash chip is to read it by introducing hardware

that acts as a master. Since the flash chip is mostly a dumb chip that simply responds to

commands and those commands are readily available in datasheets, this is often possible

without much reverse engineering. The hardware required for this needs to be something that

can actively write commands out across a SPI bus. An Arduino would likely work but for the

BIOS chip example, a device called a Bus Pirate which was used. The Bus Pirate is a small

single-board device used for programming, debugging, and analyzing microcontrollers and is

covered in a different section. Since it is an open source project many hobbyists, tinkers, and

engineers have written plugins to extend its functionality. One of those extended

functionalities is to read entire flash chips.

While it may be possible to connect to the chip while its on the board it is HIGHLY

DISCOURAGED. There are two reasons for this:

1. Power: The flash chip needs to be powered in order to read from it. If the chip is

powered while still on the circuit board it will be likely that everything else on the

board will be powered as well, or at least everything on the same voltage bus.

Depending on the target this can be an enormous strain for hardware which will likely

result in damage.

2. Race Conditions: Provided that the entire device is successfully powered with no

damage to equipment, a race condition is likely to occur. Both the introduced

40

hardware and the targets hardware will be trying to behave as a SPI master and end up

stepping all over each other while trying to access the flash.

Because of the risk of reading the chip while still on the board it is recommended to de-solder

the chip. Depending on the form factor this can be incredibly difficult without damaging

surrounding components or the circuit board. Since the BIOS flash chip on the laptop was

relatively large a pair of soldering iron tweezers with wide blades as seen in Figure 5-5 was

used to remove the chip.

Figure 5-5: Using a soldering iron to de-solder the flash chip.

Once de-soldered the chip is ready to be read. The first tool selected is called a Xeltec. The

Xeltec device uses various sockets to accommodate different form factors chips come in. The

required socket was not on hand for this particular chip but a similar one was available seen in

Figure 5-6. A read was attempted using the hardware available, but it ended up failing. It is

not recommended using anything other than the correct socket at the risk of damaging the

component but in the famous words “do as I say, not as I do”.

41

Figure 5-6: Xeltec device with the socket plugged in and the target flash chip laying on top.

This read attempt failed so new methods and tools would need to be attempted. The next

suitable tool on hand was the Bus Pirate. The Bus Pirate, seen in Figure 5-7, has already been

mentioned but as a refresher; it’s an open source tool at a much lower price point that serves

as a great entry tool for hobbyists and tinkerers.

Figure 5-7: The Bus Pirate

42

Leads were connected between the Bus Pirate and the flash chip as seen in Figure 5-8. The

Bus Pirate is then connected to a computer via USB and is able to power the flash chip

natively.

Figure 5-8: Flash chip connected to the Bus Pirate

The Bus Pirate is just a hardware interface and unable to read the flash chip by itself.

Consider it like a Network Interface Card (NIC); by itself unable to communicate but

software interacts through it to communicate with devices. A tool called flashrom is able to

leverage bus pirate in order to read the flash chip. Screenshots from using flashrom have been

captured and displayed in Figure 5-9 and 5-10.

Figure 5-9: Flashrom in use

43

Figure 5-10: Flashrom reading the chip

Flashrom worked as intended and a complete capture of the contents of the flash chip was

acquired for further analysis. The flash chip is also preserved in form and function so that the

original target can be put back together. The flash chip is re-soldered onto the mother board as

seen in Figure 5-11.

Figure 5-11: Flash chip re-soldered onto the board. The solder joints are a bit rough looking but they aren't

shorted and appear to make good contact.

It’s important to ensure that the solder joints make good contact and that they don’t jump or

short any pins to anything. With that in mind everything looks good and its time to power on

the target to make sure it still works. The laptop is powered up and it looks like it boots up

without issue as seen in Figure 5-12.

44

Figure 5-12: After de-soldering the flash chip, reading it, and re-soldering the flash chip the target still works.

5.1.3. Capturing Firmware Conclusion

Now that the contents have successfully ben pulled off the flash chip analysis can be

performed. Analysis will be covered in the next section. The information provided in this

chapter is not all inclusive and if steps fail to provide a copy of firmware other methods will

need to be attempted before analysis can be performed.

45

CHAPTER 6: ANALYSIS OF CAPTURED FIRMWARE

Analysis of firmware is a broad term and what form analysis takes is dependent on what the

user/researcher hopes to achieve. In the opinion of the author the majority of firmware

analysis is motivated by the following:

• Vulnerability Discovery: The researchers wants to identify vulnerabilities within the

firmware.

• What’s in the Box?: The researcher wants to know what subcomponents make up the

firmware image or what the intent of a suspect piece of firmware is.

• Modification: The researcher would like to modify the existing firmware for benign or

malicious purposes.

Because of the breadth of firmware analysis it is difficult to develop a solid framework to

cover everything. The author presents the following as starting points for any analysis to be

performed:

• Firmware file type: Is it an elf, zip, Motorola S-record?

• Processor type/architecture: Is the processor an ARM, PowerPC, Intel architecture?

• Is there an OS within the firmware: Unix based, FreeRTOS, VxWorks?

Other frameworks have been attempted [43] but appear to be combinations of other existing

tools stacked together and only go after low hanging fruit in the analysis process. Other tools

attempt to cover the analysis process [44] but still rely on the user’s creativity and are limited

by their capabilities.

6.1. Analysis showcase: Investigating a Computer BIOS

For the sake of continuity, analysis will be performed on firmware extracted in section 5.1.2.

This analysis is presented as an exhibition of the creativity demanded in firmware analysis.

The binaries retrieved from the flash chip in section 5.1.2 are a bit of a grey area on whether

they count as firmware or software since the target device is a PC. Regardless of the intended

target device, the obfuscation of binaries make it a suitable example.

46

6.1.1. Background

In this example the author examines the contents of a flash chip from the motherboard of a

PC. Based on prior experience it is known within a high level of confidence this chip contains

the BIOS (Basic Input/Output System) of the computer. Many readers may be familiar with a

BIOS but for those who aren’t; a BIOS provides a computer with bare minimum

functionalities such as display and hardware drivers like USB, hard drive, keyboard, etc.

needed by a computer upon boot up and is read in from the flash chip upon power on.

More specifically the author intends to investigate the CompuTrace agent (also known as

“Absolute Home & Office” or “LoJack for Laptops”) that resides within the BIOS [45]. The

tool is a Remote Access Tool (RAT) used for theft prevention and recovery of laptops.

CompuTrace is installed into the BIOS from the manufacture and if activated with a paid

subscription, can assist owners and law enforcement of disabling, tracking, and managing data

from the laptop. Because CompuTrace resides in the BIOS it can persist even with a hard

drive replacement and bypass traditional security tools.

Based on prior research [46], [47] CompuTrace works as follows:

Step 1: CompuTrace code is loaded from the BIOS and scans available hard drives. It

searches for a windows installation path and then for the application called autochk.exe. Once

found CompuTrace injects code into autochk.exe

Step 2: On boot autochk.exe runs and drops rpcnetp.exe and registers it as a windows service.

Motivations for investigating CompuTrace is for better understanding of how it works and

potentially to leverage it to drop an alternative payload for proof of concept work. This work

is not novel, and malware exists in the wild that leverages CompuTrace called LoJax [48] (a

play on words to LoJack).

6.1.2. Analysis

This analysis picks up at the end of section 5.1.2 where the contents of the flash chip was read

off. At this point a 8192KB binary file that is a 1:1 copy of the contents of the flash chip is

obtained. Concurrently a BIOS update was retrieved from the manufacturer of the laptop to

create a larger surface area for analysis. Upon review of BIOS version A04 update from the

OEM it was discovered the file was a 18MB PE file (executable) that contained a lot more

47

than just the BIOS. Initial analysis of the BIOS updater was brief and shelved to a later date

due to being twice the size of the BIOS flash chip and the author’s preference to not delve

into PE file analysis. As a quick sanity check the contents of both files were analyzed with

Binwalk using the -B flag. The results of this can be seen in Figure 25 and Figure 26 for the

BIOS updater executable and the BIOS binary file respectively.

Figure 6-1: Analysis of the BIOS update utility executable using Binwalk with the -B flag

48

Figure 6-2: Analysis of the binary retrieved from the flash chip using binwalk with the -B flag

The value the author obtained from this comparison was a peace of mind that the flash chip

did indeed contain the BIOS. This conclusion was reached by the files being similar in that

they both included the same or similar copyright strings, file paths, and number of JPEGs

found.

A core principle of most reverse engineering or analysis approaches is to take the “lowest

hanging fruit”; in other words, learn as much as can be learned using the easiest methods first.

Using this approach, the strings command piped into a text file is a good starting point.

Various strings are found but no references to CompuTrace or other potential artifacts are

identified. Strings that are found are references to Hewlett-Packard which is interesting given

the computer is a Dell. References to and emails from Quanta are found; upon researching

Quanta it is discovered that they are a Taiwan based computer manufacturer. Other unique

strings are also identified such as XXXXX- XXXXX- XXXXX- XXXXX- XXXXX

(obfuscated for security purposes) which reminds the author of a Windows key although this

was not confirmed. There was also a reference to OpenSSL 0.9.8l which has vulnerabilities

49

but upon further investigation the vulnerabilities appear to be of medium consequence and its

not clear how this system would be impacted by the vulnerability as this was not the goal of

the analysis.

Initial analysis of the file by observing strings of interest did not prove fruitful for the author.

Further analysis is now required, and the next step is also an easy one which is to attempt to

extract data using Binwalk with the -e flag. Using this flag Binwalk will attempt to extract any

file systems or types that can be identified. The result of this automated extraction were

dozens of files. Again, strings was run on each file and the output was investigated. This

results in many more strings of interest; some the author chooses to store the string and file

away for later analysis if it proves to be relevant. At this stage of analysis, it is difficult to

know what is useful and what is not. An example of an artifact worthy of a mental note is in

Figure 6-3. These strings hint at some security functionality of the BIOS that may worth

further investigation once other techniques of analysis are exhausted.

Figure 6-3: Artifact of interest extracted from the BIOS image.

Of the dozens of files generated from first extraction using Binwalk, the most interesting file

and primary candidate for analysis is a file called “@1C0069”. This file is named after the

hexadecimal start address Binwalk discovered the file from the original image. This file is the

primary candidate of interest due to the number of strings found that are hypothesized to be

relevant. Strings that the author identifies as strings of interest and indicate this is the file of

the actual BIOS are as follows: Figure 6-4 references various build versions which indicate

there may be multiple versions of the BIOS available. Figure 6-5 has strings referencing

peripherals which makes sense if this file is the BIOS.

Figure 6-4:Strings from file @1C0069 references difference builds.

50

Figure 6-5: Strings references peripherals are likely to be found in a BIOS indicating this file has BIOS information in it.

These strings are relevant in that they indicate the correct file is being investigated however

do not indicate CompuTrace is in the file. Towards the end of the list of strings retrieved from

file “@1C0069” are strings hypothesized to be relevant to CompuTrace based on prior

research. Figure 6-6 shows three snippets of strings discovered relevant to CompuTrace. Not

only do strings explicitly match “Computrace V90.937” and the two artifacts

“AUTOCHK.BAK” and “rpcnetp.exe” but also have windows file paths that are part of the

kill chain CompuTrace uses to drop the artifacts.

Figure 6-6: Three snippets of strings discovered in file "@1C0069"

Other strings that may be of interest are “.text”, “.reloc”, and “.data”. These are strings that

are commonly associated with sections of a PE (.exe) file. Based on this grouping of strings,

analysts should have a strong indication that this is the target file, or at least a file of

importance, in the investigation of CompuTrace.

For the sake of brevity some details are omitted but based off the raw data, strings, and format

of windows executable files it is believed multiple executable files are embedded in this one

file “@1C0069”. Out of the multiple executables, two are believed to be a part of

CompuTrace and are targets for further analyzing. To analyze these executables further, such

as in a disassembler or debugger, they will require further extraction.

51

The author is not aware of any tool to automatically extract the executables and Binwalk also

came up short for extracting them from the file. The executables are suspected to be of file

format “Microsoft PE” which is well documented [49]. Because the file format is so well

documented (see Figure 6-7) it may be possible to simply copy and paste the data of the file

inside a hex viewer/editor. When copying and pasting raw data the author found it easy to

identify the start of the file as it begins with the string “MZ” but finding the end of the file

was a bit trickier. Since the files were ‘stacked’ and appeared as one continuous data stream,

copying and pasting from the start of one file to the start of the next file (“MZ” to “MZ” flag)

was done.

Figure 6-7: PE file format [50]

The resulting file that was copied from the start of the target file and ended at the start of the

subsequent file was extracted and ready for analysis. All analysis attempts using debuggers

and disassemblers available to the author (Binary Ninja, Ghydra, OllyDbg) failed and the file

was not recognized or recognized with errors. At this point it is clear the file needs more

refinement, or the file has been captured with faults. With no desire to dig deeper and write

custom extraction software other tools were investigated. A tool called PE bear [51] was

found to be useful in providing details concerning PE files. Some of that information includes

52

start and end address for the various sections (.text, .data, .cdata, .reloc). Figure 6-8 is a

screenshot of PE-bear with the target file loaded and the end address identified.

Figure 6-8: PE-bear being used to identify start and end addresses of various locations on the extracted PE file

Using PE-bear the author was able to identify the true ‘end’ to the executable and use that

information to correctly extract the target PE file. A point of interest is that when the file was

correctly extracted and saved locally on the author’s PC the anti-virus running on the host

machine identified the file as malicious and quarantined the file. This anti-virus report from

Cylance can be seen in Figure 6-9.

Figure 6-9: Cylance detected the extracted file as malicious and quarantined it.

53

Once Cylance was prevented from quarantining the target file post extraction, the file was

able to be loaded into a disassembler and deemed ready for analysis. The actual analysis on

this file was brief and mostly consisted of confirming other researchers reports artifacts were

present. Reasons for the limited analysis conducted are discussed in the next section.

6.1.3. Analysis Conclusions

From capture, to extraction, to analysis proved to be an arduous endeavor. Readers

questioning why more analysis was not done or to what effect the author hoped to achieve are

not misplaced in their questioning. Further analysis was cut short due to the fact the author

could not get artifacts to manifest on the host machine. The original goal of the author was to

modify the CompuTrace RAT so that those changes would manifest themselves on the host

machine. Without the ability to get the original and untouched version of CompuTrace to

persist on the host, there was no way to prove functionally that it could be done and the author

didn’t want to troubleshoot why CompuTrace was not working as it allegedly was supposed

to.

54

CHAPTER 7: SUMMARY & THE PITFALLS OF ANALYSIS

TOOLKITS & FRAMEWORKS

In this thesis the author covered some common tools used in analysis and demonstrated some

of the diversity of scenarios encountered when obtaining and performing analysis of

firmware. It should be clear at this point the magnitude of leeway and agility researchers must

use to accomplish their task. Given that so many different design paradigms, processor

architects, and operating systems can be encountered on embedded devices it will remain

difficult to substitute researcher’s intuition and creativity with a formulated process of

analysis.

7.1. Tool Shortcomings

All analysis frameworks and toolkits investigated by the author [43], [44], [52], [53], [54]

would not assist in capturing firmware and would have not significantly aided in the analysis

of firmware. It was found some tools investigated simply combined tools and/or argument

flags in a single step which arguably doesn’t quite qualify as a toolkit on its own. In other

instances, the only real value being provided was a better GUI to other tools that already exist.

Given the broad field of firmware analysis it is unlikely to have a single tool to cover all

aspects of the process. Even when the scope is narrowed to smaller goals such as full

extraction or file identification it is unlikely one tool can cover every scenario. While

hypothetically a toolkit may be able to extract firmware files for 88% of those encountered it

begs the question “is it useful?” when using other tools in varying steps can accomplish the

same and more.

55

CHAPTER 8: FUTURE WORK: MACHINE LEARNING APPLIED TO

FIRMWARE ANALYSIS

Various aspects regarding analysis of embedded devices have been covered in this thesis. One

of those areas, and one of the most difficult, provenance discovery may be improved using

machine learning. Various methodologies and techniques have been tried or proposed [55],

[56], [57], [58], [59], [60], [61] such as binary to binary comparison, code to binary

comparison, and binary to code comparison to try and solve the question of what

subcomponents make up an embedded firmware file. While the other methods claim to

achieve decent results, the author believes many of these techniques will not scale well. This

belief is further hardened based on professional experience dealing with commercial software

companies claiming to achieve high levels of accuracy in provenance discovery only to have

performances fall short of promises.

8.1. Handling Large Data

One of the major difficulties in provenance discovery is the diversity of binaries that can be

encountered. Even when the original code is the exact same the binaries can be different

depending on processor architecture, optimization flags, compilers used, and other compiler

flags used. Below in Figure 8-1 an example of this is observed in the disassembly of two

binaries the author compiled from the same FreeRTOS code for an ARM architecture with the

only change an optimization flag to the compiler. Not only is the number of instructions

drastically different but the control flow blocks look completely different.

56

Figure 8-1: Different results seen in disassembly from the same source code obtained by compiling with different

optimization flags

An area of research that may be able to conquer the amount of different binaries that would

result from a large number of libraries being compiled for a multitude of targets and compiler

flags is machine learning. Some work has already been done in this area of machine learning

for provenance discovery [62] and shows promising results however the author has not been

able obtain source code or sufficient details to reproduce the results. Based on professional

and academic experience in this area machine learning is able to categorize data sets with a

high magnitude of raw data. The author believe the challenge in leveraging this technology to

library identification will be in how to convert a binary into a set of features that can be

consumed by a machine learning algorithm while still maintaining information about code

flow as well as accommodating multiple processor architectures which may have different

instruction sets.

57

CHAPTER 9: REFERENCES

[1] "Interactive: The Top Programming Languages 2016," IEEE Spectrum, 2016. [Online].

Available: https://spectrum.ieee.org/static/interactive-the-top-programming-languages-

2016#index/2016/1/1/1/0/1/50/1/50/1/50/1/30/1/30/1/30/1/20/1/20/1/5/1/5/1/20/1/100/.

[2] M. Hill, J. Masters, P. Ranganathan, P. Turner and J. Hennessy, "On the Spectre and

Meltdown Processor Security Vulnerabiliteis," IEEE Micro, vol. 39, no. 2, pp. 9-19,

2019.

[3] "Is it Necessary for a software engineer to learn about CPU architecture?," Quora,

2016. [Online]. Available: https://www.quora.com/Is-it-necessary-for-a-software-

engineer-to-learn-about-CPU-architecture.

[4] Balajee, "What are skilks needed to be a successful firmware engineer," Quora, 23 Nov

2015. [Online]. Available: https://www.quora.com/What-are-skills-needed-to-be-a-

successful-firmware-engineer.

[5] P. Nallari, "What to Look for When Hiring an Embedded Systems Software Engineer,"

EASi, 15 Sep 2016. [Online]. Available:

https://www.easi.com/en/insights/articles/what-to-look-for-when-hiring-an-embedded-

systems-software-engineer.

[6] STM, "ARM Cortex-M4 STM32F405xx datasheet," September 2016. [Online].

Available: https://www.st.com/resource/en/datasheet/stm32f407ig.pdf.

[7] STM, "Application Note DMA controller," June 2016. [Online]. Available:

https://www.st.com/content/ccc/resource/technical/document/application_note/27/46/7c

/ea/2d/91/40/a9/DM00046011.pdf/files/DM00046011.pdf/jcr:content/translations/en.D

M00046011.pdf.

[8] J. Ganssle, Embedded Systems; World Class Designs, Newnes, 2007.

[9] M. Barr, Programming Embedded Systtems in C and C++, O'Reilly Media, 2009.

58

[10] STM, "STM32CubeMX," [Online]. Available: https://www.st.com/en/development-

tools/stm32cubemx.html.

[11] C. Hosmer, "Forensic Searching and Indexing Using Python," Python Forensics, 2014.

[12] N. A. Hassan and R. Hijazi, "Data Hiding Under Windows OS File Structure," Data

Hiding Teqhniques in Windows OS, 2017.

[13] "TWI Bus," i2c-bus.org, [Online]. Available: https://www.i2c-bus.org/twi-bus/.

[14] I2C Info, "I2C Info - I2C Bus, Interface and Protocol," [Online]. Available:

https://i2c.info/.

[15] M. Grusin, "Serial Peripheral Interface (SPI)," SparkFun, [Online]. Available:

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all.

[16] G. Kessler, "CK's File Signatures Table," GaryKessler, December 2019. [Online].

Available: https://www.garykessler.net/library/file_sigs.html.

[17] A. Frantzis, "Bless- GitHub - README," 2018. [Online]. Available:

https://github.com/bwrsandman/Bless.

[18] "HexWorkshop," BreakPoint Software, [Online]. Available:

http://www.hexworkshop.com/.

[19] Hex-Rays, "IDA PRO," Hex-Rays, [Online]. Available: https://www.hex-

rays.com/products/ida/.

[20] Hex-Rays, "Hex-Rays Online Store," [Online]. Available: https://www.hex-

rays.com/cgi-bin/quote.cgi.

[21] Binary Ninja, "Binary Ninja Purchase Page," [Online]. Available:

https://binary.ninja/purchase/.

[22] Binary Ninja, "Download Binary Ninja Demo," [Online]. Available:

https://binary.ninja/demo/.

59

[23] Ghidra, "Ghidra," NSA, [Online]. Available:

https://www.nsa.gov/resources/everyone/ghidra/.

[24] N. L. H., "The NSA Makes Ghidra, a Powerful Cybersecurity Tool, Open Source,"

WIRED, 2019.

[25] c3n3k, "IDA Educational vs Ghidra for learning malware analysis," Reddit, 6 2019.

[Online]. Available:

https://www.reddit.com/r/Malware/comments/bal8v2/ida_educational_vs_ghidra_for_le

arning_malware/.

[26] A. Das, "NSA has Open Sourced its Reverse Engineerint Tool Ghidra," itsfoss, 6 March

2019. [Online]. Available: https://itsfoss.com/nsa-ghidra-open-source/.

[27] STMicroelectronics, "Home," STM, [Online]. Available:

https://www.st.com/content/st_com/en.html.

[28] IAR Systems, "Debugging and trace proves," [Online]. Available:

https://www.iar.com/iar-embedded-workbench/add-ons-and-integrations/in-circuit-

debugging-probes/.

[29] STM, "ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32," [Online].

Available: https://www.st.com/en/development-tools/st-link-v2.html.

[30] Lauterbach, "Lauterbach Development Tools," [Online]. Available:

https://www.lauterbach.com/frames.html?home.html.

[31] IEEE, "1149.1-2013 IEEE Standard for Test Access Port and Boundary-Scan

Architecture," IEEE Standards Association, [Online]. Available:

https://standards.ieee.org/standard/1149_1-2013.html.

[32] D. McClellan, "JTAG Explained (finally!): Why "IOT", Software Security Engineers,

and Manufacturers Should Care," Senrio, 28 9 2016. [Online]. Available:

https://blog.senr.io/blog/jtag-explained.

60

[33] M. Ding, "Swerial Wire Debug (SWD)," Silicon Labs, 21 10 2014. [Online]. Available:

https://www.silabs.com/community/mcu/32-bit/knowledge-

base.entry.html/2014/10/21/serial_wire_debugs-qKCT.

[34] N. Oberli, "SWD - ARM's Alternative to JTAG," Kudelski Security Research, 16 May

2019. [Online]. Available: https://research.kudelskisecurity.com/2019/05/16/swd-arms-

alternative-to-jtag/.

[35] STMicroelectronics UM0470 User Manual, "STM8 WIM communication protocol and

debug module," August 2016.

[36] NXP, "BDM_ICE," [Online]. Available: https://www.nxp.com/files-

static/training_pdf/27642_HCS08_BDM_ICE_WBT.pdf.

[37] C. Heffner, "Binwalk Package Description," Kali Tools, [Online]. Available:

https://tools.kali.org/forensics/binwalk.

[38] "CyberChef - The Cyber Swiss Army Knife," [Online]. Available:

https://gchq.github.io/CyberChef/.

[39] P. Miller, "SRecord 1.64," [Online]. Available: http://srecord.sourceforge.net/.

[40] W. Denk, "u-boot," DENX Software Engineering, [Online]. Available:

https://github.com/u-boot/u-boot.

[41] CVE Deails, "BusyBox Vulnerability Statistics".

[42] P. D. Kit, "Truck Diagnostic Solutions," SpecDiag, [Online]. Available:

http://specdiag.com/paccar.html.

[43] rkornmeyer, "Firmware Analysis Framework (FAF)," GitHub, Aril 2014. [Online].

Available: https://github.com/rkornmeyer/FAF.

[44] weidenba, "Firmware Analysis and Comparison Tool (FACT)," GitHub, March 2020.

[Online]. Available: https://github.com/fkie-cad/FACT_core.

61

[45] "Absolute Software - Computrace Agent," UCLA Software Central, [Online].

Available: https://softwarecentral.ucla.edu/absolute.

[46] M. Hao, "Tracking and Analysis of the LoJack/CompuTrace Incident," NSFocus, 9

December 2019. [Online]. Available: https://nsfocusglobal.com/tracking-and-analysis-

of-the-lojackcomputrace-incident/.

[47] V. Kamluk, "Absolute Computrace Revisited," Secure List, 12 February 2014.

[Online]. Available: https://securelist.com/absolute-computrace-revisited/58278/.

[48] M. Archambault, "‘LoJax’ rootkit malware can infect UEFI, a core computer interface,"

Digital Trends, 27 September 2018. [Online]. Available:

https://www.digitaltrends.com/computing/lojax-uefi-rootkit-infect-machines/.

[49] WikiBooks, "x86 Disassembly/Windows Executable Files," 8 Janurary 2020. [Online].

Available:

https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files.

[50] Revers3r, "Malware Researcher's Handbook (Demystifying PE File)," [Online].

Available: https://resources.infosecinstitute.com/2-malware-researchers-handbook-

demystifying-pe-file/#article.

[51] Hasherezade, "PE-bear," Github, 25 Jan 2019. [Online]. Available:

https://github.com/hasherezade/pe-bear-releases/releases/tag/0.3.9.5.

[52] T. S. G. Solutions, "BianryAnalysisTool (BAT)," NLnet, [Online]. Available:

http://www.binaryanalysis.org/old/home.

[53] armijnhemel, "binaryanalysis-ng," github, [Online]. Available:

https://github.com/armijnhemel/binaryanalysis-ng.

[54] Linux Security Expert, "Manticore," [Online]. Available:

https://linuxsecurity.expert/tools/manticore/.

62

[55] C. Ragkhitwetsagul, J. Krinke and D. Clark, "A comparison of code similarity

analysers," Empir Software Eng, 2018.

[56] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo, "Comparison and

Evaluation of Clone Detection Tools," IEEE Transactions on Software Engineering,

vol. 33, no. 9, p. 577, 2007.

[57] C. K. Roy and J. R. Cordy, "A Mutation/Injection-based Automatic Framework for

Evaluating Code Clone Detection Tools," 2009.

[58] J. Hage, P. Rademaker and N. v. Vugt, "A comparison of plagiarism detection tools,"

Technical Report UU-CS-2010-015, 2010.

[59] E. Burd and J. Bailey, "Evaluating Clone Detection Tools for Use during Preventative

Maintenance," The Research Institute in Software Evolution, University of Durham,

2010.

[60] B. Biegel, Q. D. Soetens, W. Hornig, S. Diehl and S. Demeyer, "Comparison of

Similarity Metrics for Refactoring Detection," 2011.

[61] J. Svajlenko and C. K. Roy, "BigCloneEval: A Clone Detection Tool Evaluation

Framework with BigCloneBench," IEEE International Conference on Software

Maintenance and Evolution, 2016.

[62] D. Miyani, Z. Huang and D. Lie, "BinPro: A Tool for Binary Source Code

Provenance," University of Toronto, 2017.

[63] L. Teschler, "Teardown: Inside Amazon's Echo Dot," MicroControllerTips, 5 January

2018. [Online]. Available: https://www.microcontrollertips.com/teardown-inside-

amazons-echo-dot/.

