
IDENTIFYING SOFTWARE VULNERABILITIES THROUGH

TEXTUAL INFORMATION IN BUG DATABASES

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Dumidu S. Wijayasekara

May 2014

Major Professor: Milos Manic, Ph.D.

ii

AUTHORIZATION TO SUBMIT THESIS

This thesis of Dumidu Wijayasekara, submitted for the degree of Master of Science with a

Major in Computer Science and titled “Identifying Software Vulnerabilities Through Textual

Information in Bug Databases,” has been reviewed in final form. Permission, as indicated by

the signatures and dates given below, is now granted to submit final copies to the College of

Graduate Studies for approval.

 Major Professor: ____________________________________Date______________

 Milos Manic, Ph.D.

 Committee

 Members: ____________________________________Date______________

 Miles McQueen, M.Sc.

 ____________________________________Date______________

 Raghunath Kanakala, Ph.D.

 Department

 Administrator: ____________________________________Date______________

 Gregory Donohoe, Ph.D.

 Discipline’s

 College Dean: ____________________________________Date______________

 Larry Stauffer, Ph.D.

Final Approval and Acceptance

 Dean of the College

 of Graduate Studies: ___________________________________Date______________

 Jie Chen, Ph.D.

iii

ABSTRACT

Software vulnerabilities are mistakes in software such that its execution can violate

the security policy. Software vulnerabilities are an increasing security focus as critical and

sensitive systems become dependent on complex software systems. Therefore, discovering

these vulnerabilities as early as possible is of extreme importance. Hidden Impact Bugs

(HIBs) are vulnerabilities identified as such, only after the related bug had been publically

disclosed. This thesis provides a framework for identifying software vulnerabilities via HIBs

using information extracted from publically available bug databases.

The contributions of this thesis are four fold: 1) the concept of HIBs is introduced and

the existence of HIBs in software is shown, 2) methodology for identifying software

vulnerabilities using textual information from bug databases is presented, 3) information

extraction and compression methodologies specific to extracting information from bug

databases is provided, 4) a novel methodology for determining the optimal set of dimensions

for classification is presented.

iv

ACKNOWLEDGEMENTS

First, I would like to acknowledge and thank my major professor and mentor Prof.

Milos Manic for his help, support and guidance. Second, I would like thank Mr. Miles

McQueen and Dr. Raghunath Kanakala for agreeing to join my thesis committee and for

providing valuable feedback on my work. I would also like to thank Jason Wright, Lawrence

R. Wellman, and Jason Larsen for their help and support. Finally, I would like to

acknowledge the Idaho National Laboratory for providing financial support for my work.

I also wish to thank Debbie McQueen, Alice Allen and Sara Moore for their

assistance and immense support during the academic process.

v

TABLE OF CONTENTS

Authorization To Submit Thesis ... ii

Abstract .. iii

Acknowledgements .. iv

List Of Figures ... viii

List Of Tables .. ix

Chapter 1 Introduction ... 1

1.1 Organization Of The Thesis ... 2

1.2 Contributions Of The Thesis .. 3

Chapter 2 Hidden Impact Bugs ... 5

2.1 Software Vulnerabilities ... 5

2.1.1 Methods For Identifying Software Vulnerabilities ... 6

2.2 Hidden Impact Bugs (HIBs) ... 7

2.2.1 Definition Of Hidden Impact Bugs (HIBs) ... 8

2.2.2 Hidden Impact Bugs And Misclassified Bugs In Bug Databases 9

2.3 Bug Databases .. 10

2.3.1 Bug Reports .. 12

2.3.2 Bug Life Cycle .. 13

2.4 Hidden Impact Bugs In Commonly Used Software ... 14

2.4.1 Selecting HIBs .. 15

2.4.2 HIBs In The Linux Kernel .. 16

2.4.3 HIBs In MySQL Server .. 18

2.5 Software Vulnerability Identification Using HIBs... 20

2.5.1 Necessity Of Identifying HIBs In Software .. 20

vi

2.5.2 Software Vulnerability Identification Using HIBs ... 22

2.6 Conclusions .. 23

Chapter 3 Text Mining Bug Databases For Identifying Vulnerabilities 24

3.1 Text Mining Bug Databases ... 24

3.2 Text Mining For Document Classification... 25

3.2.1 Extracting Textual Description ... 25

3.2.2 Extracting Syntactical Information ... 26

3.2.3 Compressing Extracted Information ... 27

3.2.4 Feature Vector Generation .. 30

3.3 Text Mining Bug Databases For Identifying Vulnerabilities 32

3.4 Conclusion .. 34

Chapter 4 Classification Of Hidden Impact Bugs ... 35

4.1 Classification Algorithms ... 35

4.1.1 Naïve Bayes (NB) And Naïve Bayes Multinomial (NBM) Classifiers 35

4.1.2 Decision Tree (DT) Classifiers ... 37

4.2 Classification Of HIBs In Bug Databases .. 40

4.2.1 Classification Subset ... 40

4.2.2 Construction Of The TDM.. 41

4.2.3 Test Metrics .. 42

4.2.4 Bayesian Detection Rate ... 43

4.2.5 Classification Results .. 47

4.3 Conclusion .. 49

Chapter 5 Information Gain Based Dimensionality Selection .. 51

5.1 Dimensionality Selection Problem In Text Mining ... 51

vii

5.1.1 Dimensionality Dependent Classification Accuracy .. 53

5.2 Background .. 55

5.2.1 Genetic Algorithms (GA) ... 55

5.2.2 Information Gain (IG) ... 57

5.3 IG Based Dimensionality Selection For Text Mining Applications 59

5.4 Experimental Results.. 61

5.5 Conclusion .. 64

Chapter 6 Conclusion And Future Work ... 65

6.1 Final Conclusion .. 65

6.2 Future Work ... 66

References ... 68

Appendix A – List Of Publications ... 75

Journal Publications ... 76

Peer-Reviewed Conference Publications ... 76

viii

LIST OF FIGURES

Figure 1. Timeline of Hidden Impact Bugs and impact delay .. 8

Figure 2. HIBs in bug databases ... 9

Figure 3. Number of bugs reported to the Redhat Bugzilla bug database 11

Figure 4. Number of bugs reported per day in the Redhat Bugzilla bug database 11

Figure 5. Typical bug report in the Redhat Bugzilla bug database ... 12

Figure 6. Typical bug life cycle of a Bugzilla bug report ... 14

Figure 7. Number of HIBs by impact delay for Linux Kernel .. 17

Figure 8. Number of HIBs that existed per day for the Linux Kernel 17

Figure 9. Number of HIBs by impact delay for MySQL Database Server 19

Figure 10. Number of HIBs that existed per day for the MySQL Database Server 19

Figure 11. Misclassified bug timeline ... 20

Figure 12. Percentage of bugs fixed against time ... 21

Figure 13. Proposed software vulnerability detection framework using HIBs 22

Figure 14. Text mining bug databases for HIBs architecture ... 31

Figure 15. Typical binary Decision Tree (DT) classifier .. 38

Figure 16. Pseudocode for C4.5 algorithm ... 39

Figure 17. Bayesian detection rate for the HIB classification problem 44

Figure 18. Yearly classification results for NB classifier ... 47

Figure 19. Yearly classification results for NBM classifier ... 47

Figure 20. Yearly classification results for DT classifier ... 48

Figure 21. Averaged true positive rate for different numbers of keywords 52

Figure 22. Averaged true negative rate for different numbers of keywords 53

Figure 23. Averaged classification rate for different numbers of keywords 54

Figure 24. Pseudocode for Genetic Algorithm (GA) .. 56

Figure 25. Block diagram of the presented IG based dimensionality selection method 59

Figure 26. Averaged true positive rate for each iteration for each method 62

Figure 27. Averaged true negative rate for each iteration for each method 62

Figure 28. Averaged Bayesian detection rate for each iteration for each method 63

ix

LIST OF TABLES

Table 1. Number of bugs reported to the Redhat Bugzilla bug database 10

Table 2. Hidden Impact Bugs (HIBs) in the Linux Kernel ... 16

Table 3. Hidden Impact Bugs (HIBs) in the MySQL Database Server 18

Table 4. Dimensionality of the bag-of-words after each text mining step 33

Table 5. Number of selected regular bugs and HIBs for classification 41

Table 6. Dimensionality of the bag-of-words after each text mining step 41

Table 7. Confusion matrix for classification of HIBs ... 42

Table 8. Overall classification results ... 46

Table 9. Number bugs classified as of potential vulnerabilities on a given day in 2011 46

Table 10. Averaged classification results for each method. ... 64

1

Chapter 1 INTRODUCTION

Software vulnerabilities can be defined as “an instance of a mistake in the software

such that its execution can violate the explicit or implicit security policy” [Krsul 98],

[Ozment 07], [Wright 13]. New software vulnerabilities are discovered in commercial, large

scale software every day [Ventor 04]. The actual number of vulnerabilities existing in a

software package at a given time is not known and the fact that whether a software package

gets more secure over time is still debated [Wright 13]. Furthermore, it has been shown that

the number of unidentified vulnerabilities in a given software package might be significantly

higher than previously estimated [Wright 13].

Recent trend towards automation and interconnection in infrastructure has lead to

critical and sensitive systems which operate critical infrastructure becoming increasingly

dependent on complex software systems. Thus, the possibility of software vulnerabilities that

threaten the security and integrity of critical infrastructure has sparked an increasing security

focus towards identifying software vulnerabilities [Wijayasekara 12]. Discovering these

software vulnerabilities as early as possible, at every stage of the software lifecycle, is

therefore of extreme importance.

Various methodologies for identifying software vulnerabilities during the software

development phase and during operation phases has been suggested [Wijayasekara 12].

However, it has been shown that these methods are not capable of identifying all existing

vulnerabilities in software and there is significant room for improvement [Wijayasekara 12],

[Austin 11], [Torri 10]. Furthermore, it has been shown that a significant portion of the

available tools and methods have a false-positive rate that may overwhelm the identified set

of vulnerabilities [Zitser 04].

Therefore, this thesis presents a novel methodology that utilizes textual information in

publically available bug databases, to identify software vulnerabilities that have not yet been

identified as such. The presented methodology utilizes information extracted from bug

reports that have been later identified to be vulnerabilities [Arnold 09]. This phenomenon,

where a vulnerability is reported to a bug database as a bug before the full severity of that

vulnerability is discovered, is known as Hidden Impact Bugs (HIBs) [Arnold 09],

2

[Wijayasekara 12]. Thus, relevant information extracted from HIBs can be used to classify

bugs as potential vulnerabilities as they are being reported to bug databses.

The remainder of this Chapter describes the organization of this thesis, and then

briefly outlines the contributions of this thesis.

1.1 ORGANIZATION OF THE THESIS

Chapter 2 provides an overview of HIBs and bug databases. The Chapter starts by

defining the HIBs and other relevant terms related to HIBs and the work presented in this

thesis. An overview of typical publically available bug databases in then provided. The

Chapter follows with an analysis of HIBs existing in commonly used commercially available

software packages. The analysis was performed on 2 commonly used software packages,

namely the Linux Kernel and MySQL Database Server. A novel framework for identifying

software vulnerabilities by leveraging information extracted from HIBs is then presented in

this Chapter. Finally, the Chapter is concluded by reviewing HIBs and the existence of HIBs

in commonly used software, and possible implications of HIBs in these software.

Chapter 3, first, introduces text mining for information extraction from textual

documents. Each step of the text mining process is then detailed along with their necessity

and importance. Text mining of bug databases for extracting various types of information

that have been previously done is reviewed next. Next, algorithms and tools used specifically

for text mining bug databases in order to identify software vulnerabilities are discussed. The

Chapter is concluded by identifying the importance of each text mining step and how it can

affect classification accuracy for the problem discussed in this thesis.

Chapter 4 details the classification and evaluation of the software vulnerability

identification method that was presented in the previous Chapter. First, details of the

different classification algorithms that were used are provided. Then, the specific

experimental setup along with evaluation metrics used to compare classifiers are discussed.

The problem associated with classification of differently proportioned classes, called the

base-rate fallacy is discussed next. The implications of the base-rate fallacy and the Bayesian

detection rate of the presented classifiers are also discussed in this Chapter. The experimental

results from classification are presented next. Finally, this Chapter is concluded by discussing

3

the classification results and possible improvements that can be made to further increase the

classification accuracy.

Chapter 5 presents a novel Information Gain (IG) based dimensionality selection

method for text mining applications. The presented method utilizes the relative Information

Gain, and Genetic Algorithms (GA) to extract the optimal set of dimensions for

classification. This Chapter first discusses the dimensionality selection problem in text

mining applications, and details problems associated to the vulnerability identification

problem discussed in this thesis. Then, background information about Genetic Algorithms

(GA) and Information Gain (IG) is presented. The novel, Information Gain based

dimensionality method is detailed next. The presented method was applied to the problem of

text mining bug database for identifying vulnerabilities, and the experimental setup and

results are detailed next. Finally, Chapter 5 is concluded by discussing the importance of

dimensionality selection and other possible improvements to the presented method.

Finally, Chapter 6 provides overall conclusions and suggests directions for future

work.

1.2 CONTRIBUTIONS OF THE THESIS

The primary contributions of this thesis are four fold.

First, the concept of Hidden Impact Bugs (HIBs) is introduced and an analysis of

HIBs in 2 commonly used software packages is performed exposing the existence of HIBs,

as well as a trend towards an increase of HIBs.

Second, a novel methodology for identifying software vulnerabilities that are yet to

be identified, using textual information extracted from publically available bug databases is

presented. The presented method utilizes information in bug reports that were later identified

to be vulnerabilities (HIBs).

Third, textual information extraction and compression methodologies specific to

extracting information from bug databases is provided. The presented methods identify and

extract syntactical information of bug reports in the form of words and compress the

extracted information with minimal loss of information and generate feature vectors that can

be read by classification algorithms.

4

Fourth, a novel methodology that utilizes information theory for determining the

optimal set of dimensions for text mining based classification is presented. The presented

method identifies the optimal set of words for classification using genetic algorithms driven

by information gain.

The presented framework and methodologies are tested using bug databases for two

commonly used, large scale software distributions, namely the Linux Kernel and the MySQL

Database Server.

5

Chapter 2 HIDDEN IMPACT BUGS

This Chapter first provides a background overview of software vulnerabilities and

current methods of detecting software vulnerabilities. Second, Hidden Impact Bugs (HIBs)

are introduced, followed by explanation misclassified bugs and impact delay. Next, bug

databases and details of bug reports along with the life cycle of bugs are discussed. HIBs in

commonly used software are analyzed next, showing the significant presence of HIBs, and a

trend towards increasing HIBs. Finally, a framework for identifying software vulnerabilities

using information extracted from HIBs is proposed.

2.1 SOFTWARE VULNERABILITIES

Software vulnerabilities can be defined as “an instance of a mistake in the

specification, development, or configuration of software such that its execution can violate

the explicit or implicit security policy” [Krsul 98], [Ozment 07], [Wright 13]. Thus, all

software defects are not vulnerabilities. Further, as per the definition, software vulnerabilities

are a subset of software defects also known as software bugs. However, the limiting factor

that differentiates software vulnerabilities from software bugs is the security impact of

vulnerabilities [Wright 13].

Since it is impossible to guarantee the absence of defects in any software, it is safe to

assume vulnerabilities can be present in software that are used in critical and sensitive

systems [Shahmehri 12]. Furthermore, many researchers believe that about 5% of all

software defects are vulnerabilities [Shahmehri 12], and it has been shown that the actual

number of vulnerabilities that exist in software may be 5 to 7 times the number of already

known vulnerabilities [Wright 13].

Thus, quick and correct identification of vulnerabilities lead to reducing the time that

critical systems are vulnerable to attack. Furthermore, vulnerability discovery enables

efficient resource allocation for patch creation as well as threat mitigation and can be used

for risk assessment and fault tolerance assessment of systems [Shahmehri 12].

6

2.1.1 METHODS FOR IDENTIFYING SOFTWARE VULNERABILITIES

Software vulnerability discovery is largely focused on source code analysis. The

source code based vulnerability discovery methodologies can be divided into two groups: 1)

text mining source code, and 2) static code analysis.

Yamaguchi et al. used text mining techniques to extract API symbols and discover

usage patterns in source code [Yamaguchi 11]. The extracted information was then converted

to a feature vector and supervised machine learning algorithms were used to identify

vulnerabilities. The method was tested on 420 functions in the Linux Kernel. However, the

classification results were shown to be below expectations [Yamaguchi 11].

Significant portion of previous studies on vulnerability discovery focus on static code

analysis and static code analysis tools. However, it has been shown that there are no

universal static analysis tools that can provide satisfactory results for vulnerability discovery

by itself [Kester 10], [Li 10], [Austin 11]. The existing tools are also very difficult to use

because of the large size of software distributions [Khoo 10].

In [Torri 10], Torri et al. evaluated 10 free and open source static code analysis tools

on embedded C programs. It was found that while the results were very poor, even the best

performing tool needed to be tweaked extensively to produce good results. Therefore, this

approach was impractical for use in vulnerability discovery in the software development

process [Torri 10]. Similarly, in [Li 10], Li and Cui compared 7 free and open source static

analysis tools and concluded that each by itself did not provide a satisfactory discovery of all

vulnerabilities. Thus, it was proposed that either a variety of tools be used to compensate for

the deficiencies of each tool, or a combination of dynamic and static analysis methods should

be used [Li 10]. Kratkiewicz and Lippmann tested 5 different static code analysis tools on

291 small C programs in [Kratkiewicz 05]. It was shown that while some tools were

accurate, others were not. Thus it was concluded that it is difficult to select a static analysis

tool that will provide good results and more complex test cases may be even difficult to

analyze [Kratkiewicz 05]. In [Kester 10] the authors tested 3 static code analysis tools on 12

example programs and showed that the tools does not provide good results and therefore

conclude that use of a combination multiple methods is more suited [Kester 10].

Zitser et al. tested five static analysis tools on three open source programs [Zitser 04].

The authors report low detection rates for most of the tools. Furthermore, it was shown that

7

the best performing tools reported very high false positive rates (false alarm for every 12 to

46 lines of source code) [Zitser 04]. Thus even with high rate of vulnerability identification,

the tested static code analysis tools may not provide useful information as the user will be

overwhelmed by the large number of false positives.

Li and Leung used machine learning techniques to identify software defects in source

code using static code metrics [Li 11].

Other features in the code such as imports, function calls, dependencies between

packages have been used for vulnerability prediction [Neuhaus 07], [Neuhaus 09],

[Shahmehri 12]. In [Neuhaus 07] the authors discovered that vulnerable components may

share similar sets of imports and function calls. Thus, the authors suggest the use of these

metrics along with machine learning based classifiers to predict vulnerable components. In

[Venter 04] the authors used historical data to predict where the next vulnerability might

occur. Various related metrics such as vulnerability density metrics, code-churn, code-

complexity and developer activity have been used for vulnerability and fault discovery aw

well [Alhazmi 09], [Bell 11]. Dynamic taint analysis has also been proposed to be used for

vulnerability discovery in recent years [Zhanga 12].

Austin and Williams showed that no single technique was able to discover every type

of vulnerability by itself and therefore, a combination of methods may be the optimal means

of vulnerability discovery [Austin 11].

Schumacher et al. showed the importance of gathering information from vulnerability

databases to aid the discovery of vulnerabilities in software [Schumacher 00].

Thus, existing methods fail to identify software vulnerabilities with satisfactory

accuracy. While researchers suggest various methods, none of them alone can identify all

vulnerabilities and there is room for improvement in vulnerability discovery methodologies.

2.2 HIDDEN IMPACT BUGS (HIBS)

This section first introduces the concept of Hidden Impact Bugs (HIBs) and impact

delay. Next, the implications of HIBs in bug databases are discussed.

8

2.2.1 DEFINITION OF HIDDEN IMPACT BUGS (HIBS)

Hidden Impact Bugs (HIBs) can be defined as those vulnerabilities identified as such

only after the related bug had been disclosed to the public [Arnold 09], [Wijayasekara 12].

Thus, these vulnerabilities are disclosed to the public before being identified as having a high

security impact and being labeled as vulnerabilities. The disclosure can be via bug reports

reported to bug databases or bug patches that are distributed by the software vendor

[Wijayasekara 12].

Therefore, in the case of HIBs, even though a software vulnerability is known to the

community in the form of a bug, it may not be as quickly fixed by developers, and if a patch

is available, it may not be applied in an appropriately timely fashion by end-users, because

the security implication of the bug has not been correctly identified [Arnold 09],

[Wijayasekara 12].

The time period from which the public disclosure occurs to the identification of the

true security impact of the HIB is called the impact delay [Arnold 09], [Wijayasekara 12].

The timeline of a HIB and the impact delay is depicted in Figure 1. This time period is

crucial since during this time systems that use the software package are vulnerable to outside

threats. Because the bug that causes the vulnerability has already been identified, this time

can be reduced if the security implications of the bug are identified as it is reported to the bug

database. Furthermore, intelligent adversaries may identify the security implications by

monitoring bug databases and use the information to attack critical and sensitive systems

during the impact delay.

Figure 1. Timeline of Hidden Impact Bugs and impact delay

9

2.2.2 HIDDEN IMPACT BUGS AND MISCLASSIFIED BUGS IN BUG DATABASES

As mentioned in the previous section, some vulnerabilities are reported as bugs to bug

databases, and are not identified vulnerabilities till later. Figure 2 shows a Venn diagram of

software bugs, in terms of vulnerabilities, bug reports, and HIBs. While the proportions of

the figure might not be accurate, it clearly depicts the problem domain discussed in this

thesis.

According to the definition of HIBs, HIBs were reported as bug and later identified as

vulnerabilities. Thus, HIBs reside in the intersection between identified vulnerabilities and

bug reports.

However, the intersection between all the vulnerabilities of the software and bug

reports is much larger. This is because some vulnerabilities that have not yet been identified

reside in the bug database as bug reports. These bugs have been misclassified as typical bugs

and their true security impact has not yet been identified. Furthermore, it has been shown that

the number of misclassified bugs has been significantly underestimated and is much larger

than previously thought [Wright 13].

Figure 2. HIBs in bug databases

10

Therefore, it might be possible to leverage the information that is stored in bug

databases as HIBs, to automatically identify the set of misclassified bugs. Furthermore, this

information can also be used to identify the true security impact of a bug while it is being

reported to the bug database, thus reducing the impact delay and the time period that critical

systems are vulnerable to attacks [Wijayasekara 12].

2.3 BUG DATABASES

Bug databases for software are kept in order to keep track of the bugs existing in the

software and identifying which bugs are patched. Publically available bug databases benefit

from information provided by typical software users with a diverse set of technical

backgrounds as well as programmers and developers [Noll 11]. These bug databases enable

developers to identify previously unidentified bugs in the software and at the same time users

can track the resolution process of each bug.

Table 1. Number of bugs reported to the Redhat Bugzilla bug database

Year
Number of bug

reports

Number of bug

reports per day

From Nov. 1998 336 5.5

1999 3,788 10.4

2000 5,846 16

2001 7,839 21.5

2002 9,200 25.3

2003 8,497 23.3

2004 11,951 32.7

2005 12,428 34

2006 15,249 41.8

2007 17,217 47.2

2008 20,817 57.0

2009 26,950 73.8

2010 43,120 118.1

To April 2011 17,616 146.8

Unknown 2108 -

Total 202,896 44.3

11

It has been shown that these bug databases are extremely useful in increasing the

quality and reliability of software as well as containing vital information that can be used for

various purposes such as improving future design requirements [Ko 06], gathering vital

feedback from users [Noll 11], and improving software reliability [Ahmed 08], [Ahmed 09].

In this section, bug reports from the Redhat Bugzilla bug database are analyzed

[Redhat 14]. The Redhat Bugzilla bug database was selected because: 1) it is one of the most

extensive bug databases available, 2) all other Bugzilla bug databases generally follow the

same format, and 3) most of the Linux vulnerabilities that is examined in this thesis are

related to bugs in the Redhat Bugzilla database. Although the Redhat Bugzilla database “is

not an avenue for technical assistance or support, but simply a bug tracking system” [Redhat

14], it has been shown that certain details in the bug reports can be used for various forms of

classification as mentioned in Section 3.1 [Lamkanfi 10], [Lamkanfi 11], [Ko 06].

Figure 3. Number of bugs reported to the Redhat Bugzilla bug database

Figure 4. Number of bugs reported per day in the Redhat Bugzilla bug database

12

As of April 2011, the Redhat Bugzilla bug database contained 202,896 entries. The

first bug, which is a test bug report, was added to the database on the 1
st
 of November 1998.

Table 1 shows the distribution of bugs per year and the mean number of bugs per day in the

Redhat Bugzilla bug database. As shown by Figure 3 and Figure 4, the number of bugs

reported as well as the number of bugs reported per day has been steadily increasing through

the years. This might be due to the fact that mature releases of the same software tend to have

more bugs reported [Ahmed 09]. A similar overview of the MySQL database server bug

reports can be found in [Wright 13].

2.3.1 BUG REPORTS

A bug may be reported to a bug database by a typical user of the software package, a

software developer, or an automated bug reporter. Before reporting, it is the responsibility of

the bug reporter to search whether the bug has occurred before and reported to a bug

database. Furthermore, the reporter has to provide a clear description of the bug, so that the

development team is able to patch it within an appropriate time frame.

Figure 5. Typical bug report in the Redhat Bugzilla bug database

13

Once a bug is reported to the bug database, it is first reviewed and the reported bug is

assigned a bug ID, which is a unique identifier. The bug is then entered in to the bug

resolution process (Section 2.3.2 details the typical life cycle of a bug).

Figure 5 shows a typical bug report that was reported to the Redhat Bugzilla bug

database. When a bug is reported, the reporter can assign different parameters to the bug

report as he or she sees fit. These parameters include terms such as severity, priority, product,

component and keywords. During the life cycle of the bug, these parameters may be changed

according to its nature and severity, and increased understanding of the impact of the bug.

Apart from these set parameters, the person who reports the bug must provide a title

for the bug which is known as the short description of the bug. As the name suggests it is a

short description of the bug that gives an overall understanding of the bug. A long description

of the bug is also provided by the user that should describe the bug in more detail. Depending

on expertise and the requirements of the bug reporter the long description may include code

snippets, how to recreate the bug, how often can the bug be recreated, the specifications of

the hardware setup etc., which are meant to enable the developer to more easily identify and

rectify the bug. Furthermore, in some cases, especially for automated bug reports, a memory

dump is also attached to the long description of the bug report.

Comments can also be added by users and administrators to convey the progress and

development of the bug fix or other relevant facts.

2.3.2 BUG LIFE CYCLE

A bug is assigned a status which describes the current position of the bug in the bug

resolution process. The status of the bug changes according to the position of the bug in the

life cycle, thus allowing users and the development team to be informed on the progress of

the bug fix.

Once a bug is reported, the development team needs to identify whether the bug is

actually a bug and it has not been reported before. Since some bug reports are actually

feature requests and some faults might not be bugs in the software [Wright 13], initially a

bug is assigned an “unconfirmed” tag.

14

If the reported bug is confirmed as a bug, then it is entered into the bug resolution

process. During this process the development team has to correctly identify the severity of

the bug in order to prioritize it among the set of bugs to be fixed. Although the bug reporter

initially assigns a severity and priority for a bug, this has been shown to be extremely

subjective and incorrect at times, and therefore, cannot be relied upon [Arnold 09],

[Lamkanfi 10].

Once the severity has been identified, the correct person that is responsible for the

bug is identified and assigned to the bug. That person then either resolves the bug or redirects

the bug to a different person if the assignment was incorrect.

The basic bug life cycle of a reported bug is shown in Figure 6.

Thus, each of the steps in the bug resolution process increases the time it takes to fix a

bug. Furthermore, if the true security impact of the bug is identified as the bug was reported

to the bug database, it is safe to assume that the time taken to resolve the bug will be

significantly reduced [Wijayasekara 12].

2.4 HIDDEN IMPACT BUGS IN COMMONLY USED SOFTWARE

HIBs in commonly used software packages are identified and analyzed in this section.

The software packages tested were Linux Kernel and MySQL Database Server. These

software were chosen for: 1) their wide spread usage, 2) public availability of bug databases,

Figure 6. Typical bug life cycle of a Bugzilla bug report

15

3) large number of reported bugs, 4) public availability of vulnerability databases, and 5)

large number of reported vulnerabilities.

Both Linux Kernel and MySQL server have been widely used as they are distributed

as free and open source software. Furthermore, many other software use these software

packages as their components or as their base, thus increasing the potential corpus of affected

software for a given vulnerability.

2.4.1 SELECTING HIBS

The MITRE Common Vulnerabilities and Exposures (CVE) vulnerability database

[MITRE 14] was chosen as the vulnerability database for both Linux Kernel and MySQL

Database Server. The MITRE CVE database was chosen for its: 1) ease of access, 2) the

larger number of vulnerabilities reported, and 3) clear information about the reported date

and bugs associated with a vulnerability.

For each software package analyzed, vulnerabilities were divided into two groups

depending on when they were first reported: 1) time period from the 1st of January 2006 to

the 31st of December 2008, which will be hereafter referred to as the first time period and 2)

the time period from the 1st of January 2009 to the 30th of April 2011 which will be

hereafter referred to as the second time period. The first time period corresponds to the time

period studied by Arnold et al. in [Arnold 09]. The second time period is the time from the

end of the first time period to the time the dataset was extracted from the bug and

vulnerability databases for this study.

For analyzing the number of HIBs existing in software, a conservative approach was

taken when selecting the vulnerabilities. Thus, specific rules were applied to the vulnerability

database selecting only the vulnerabilities that affected: 1) multiple processors, 2) multiple

distributions and 3) vulnerabilities that affected a certain version of the software package and

above, were selected from the vulnerability database for the two time periods. Vulnerabilities

that affected only a single processor were excluded because these vulnerabilities affect only a

small subset of users and it is difficult to clarify whether they were caused by necessarily a

software issue. Similarly, vulnerabilities that affected only one distribution were excluded

16

because of their low impact. A version cut-off was used to eliminate counting older

vulnerabilities that might not be relevant to current software version.

The public disclosure time for HIB identification was the time a patch was released

for the bug related to the vulnerability. Furthermore, only vulnerabilities with an impact

delay of at least 2 weeks were selected as HIBs.

2.4.2 HIBS IN THE LINUX KERNEL

Table 2 shows the HIBs and the vulnerabilities identified for the Linux Kernel using

the above mentioned metrics. A combined total of 403 vulnerabilities were identified for the

Linux Kernel in the two time periods. Out of these vulnerabilities, 129 (32%) were HIBs.

Furthermore, nearly 15% of the vulnerabilities were HIBs with at least 8 weeks impact delay,

meaning that the true impacts of these bugs were only identified 2 months after their public

disclosure.

The total number of vulnerabilities in the second time period was 185, which is a 15%

reduction from the first time period. However, the number of vulnerabilities with at least 2

weeks of impact delay increased from 56 (25%) to 73 (39%).

Thus, while nearly a third of the vulnerabilities reported from 2006 to 2011 were

HIBs, the number and the percentage of HIBs has increased from the first time period to the

second time period.

Table 2. Hidden Impact Bugs (HIBs) in the Linux Kernel

Type Impact Delay

2006-01-01. to

2008-12-31

(First Time

Period)

2009-01-01. to

2011-04-30

(Second Time

Period)

Total

Hidden Impact

Bugs

weeks2 56 (25.69%) 73 (39.46%) 129 (32.01%)

weeks4 38 (17.43%) 55 (29.73%) 93 (23.08%)

weeks8 31 (14.22%) 29 (15.68%) 60 (14.99%)

All Vulnerabilities - 218 185 403

17

Figure 7 shows the histogram of HIBs in the Linux Kernel in terms of impact delay in

weeks. It can be seen that most of the HIBs were correctly classified within 20-30 weeks

after their public disclosure. Furthermore, Figure 8 shows the number of HIBs that existed

for each day in the Linux Kernel for the given time period. Thus, on average there were

nearly 10 HIBs in the Linux Kernel for a given day. The trailing edge of Figure 8 at the end

is because new HIBs that are reported to the bug database is not known as of yet.

Figure 7. Number of HIBs by impact delay for Linux Kernel

Figure 8. Number of HIBs that existed per day for the Linux Kernel

18

2.4.3 HIBS IN MYSQL SERVER

Similar to Linux Kernel HIBs, Table 3 shows the HIBs and the vulnerabilities

identified for the MySQL Database Server. A combined total of 66 vulnerabilities were

identified for the MySQL Database Server using the above mentioned rules. Out of these

vulnerabilities, over 62% (41) were HIBs with an impact delay of at least 2 weeks.

Furthermore, while the number of HIBs in the second time period was reduced, due to the

smaller number of total vulnerabilities reported, the percentage of the HIBs was increased in

the second time period.

Similar to the Linux Kernel, a significant portion (over half) of all the vulnerabilities

reported from 2006 to 2011 were HIBs. The percentage of HIBs has increased from the first

time period to the second time period in MySQL Database Server as well.

Furthermore, half of the vulnerabilities were HIBs with more than 8 weeks impact

delay. Thus, a significant number of vulnerabilities were identified only after more than 2

months after their public disclosure. This is also reflected in Figure 9 which shows the

histogram of HIBs for the MySQL Database Server.

Table 3. Hidden Impact Bugs (HIBs) in the MySQL Database Server

Type Impact Delay

2006-01-01. to

2008-12-31

(First Time

Period)

2009-01-01. to

2011-04-30

(Second Time

Period)

Total

Hidden Impact

Bugs

weeks2 22 (59.46%) 19 (65.52%) 41 (62.12%)

weeks4 21 (56.76%) 19 (65.52%) 40 (60.62%)

weeks8 17 (45.95%) 16 (55.17%) 33 (50%)

All Vulnerabilities - 37 29 66

19

Finally, Figure 10 shows the number of HIBs that existed for each day in the MySQL

Database Server for the given time period. Thus, on average there were nearly 4 HIBs

existing in the MySQL Database Server for a given day.

Figure 9. Number of HIBs by impact delay for MySQL Database Server

Figure 10. Number of HIBs that existed per day for the MySQL Database Server

20

2.5 SOFTWARE VULNERABILITY IDENTIFICATION USING HIBS

As shown in the previous section, HIBs are a significant portion of all vulnerabilities.

Furthermore, the percentage of HIBs has increased in recent years. Thus, by identifying HIBs

as they are being reported to bug databases, and correctly identifying the set of misclassified

bugs, a significant portion of the software vulnerabilities can be identified.

This section first illustrates the necessity of identifying HIBs, and then proposes a

methodology for identifying software vulnerabilities by using HIBs.

2.5.1 NECESSITY OF IDENTIFYING HIBS IN SOFTWARE

The primary necessity of identifying HIBs is to reduce the time systems are

vulnerable to security attacks. Figure 11 shows the timeline of a misclassified bug, meaning

the bug is actually a vulnerability but has not yet been identified as one. If the true security

impact of the bug was known, the time taken for each step of the process might be reduced.

For the HIBs identified for the Linux kernel, it was calculated that the average time

taken to create patch was 575 days, while the average time to create a patch for a

vulnerability that was identified as such immediately was 387 days. Furthermore, Figure 12

shows the percentage of HIBs and vulnerabilities fixed against the time taken to create a

patch. It was identified that nearly 50% of vulnerabilities were fixed within the first 100 days

while only less than 30% of the HIBs are fixed.

Figure 11. Misclassified bug timeline

21

Software vendors tend to release software patches either when a certain number of

fixes accumulate or on a certain day of the week/month. This is primarily because, it is easier

for the developers and users to distribute or apply multiple patches simultaneously. However,

if the security implication of a bug is high and it is known, then it is likely that the patch will

be released as soon as it is created.

Furthermore, since patch application takes time and computing resources, many users

and systems administrators tend not to apply patches as they become available if the path

does not affect the security of the system [Arnold 09], [Wijayasekara 12]. Again, if the true

security impact of the high impact bug is known this time might be reduced.

Finally, because the bug is known to the public from the time of disclosure, if an

intelligent adversary identifies the true security impact of a misclassified bug, that

information might be leveraged to attack vulnerable systems [Arnold 09], [Wijayasekara 12].

Thus, vulnerabilities that are misclassified as bugs may be more dangerous than other

vulnerabilities, because the information about the vulnerability is already disclosed to the

public.

Figure 12. Percentage of bugs fixed against time

22

2.5.2 SOFTWARE VULNERABILITY IDENTIFICATION USING HIBS

Thus, because of the factors elaborated above, identifying the true security impact of

a bug while it is being reported to a bug database is important. This section proposes a

methodology that utilizes information in HIBs to not only correctly classify new bugs, but

also identify misclassified bugs that may be in the bug database.

Figure 13 depicts the proposed software vulnerability detection framework. The

proposed framework utilizes automatically extracted knowledge from already known HIBs to

train classification algorithms. These classification algorithms will then be able to correctly

classify newly reported bugs as potential vulnerabilities or normal bugs. Furthermore,

existing bugs can also be classified using the trained classifier to detect misclassified bugs

already in the bug database.

Finally, once a classified potential vulnerability is verified by the development team,

that information can be used to train the classifier to further increase the classification

accuracy.

Figure 13. Proposed software vulnerability detection framework using HIBs

23

2.6 CONCLUSIONS

This Chapter first detailed software vulnerabilities and current vulnerability detection

methods. The concept of HIBs was introduced next. An analysis of HIBs in the Linux Kernel

and the MySQL Database Server software packages showed the significant presence of HIBs

and their increase in recent years. Finally a framework was presented that utilizes

information in HIBs to correctly classify bugs as they are being reported to bug databases, as

well as correctly classifying misclassified bugs.

24

Chapter 3 TEXT MINING BUG DATABASES FOR IDENTIFYING

VULNERABILITIES

Advanced text mining techniques have been shown to be able to extract information

from textual description of bug reports for various classification and clustering purposes

[Runeson 07], [Lamkanfi 11], [Wijayasekara 12]. This Chapter first details some previous

work done on text mining bug databases for bug the triaging process. Advanced text mining

techniques that are capable of extracting relevant information and converting the extracted

information into machine readable format is then detailed. Then, a novel text mining

framework for extracting textual information from bug reports for software vulnerability

identification using information in Hidden Impact Bugs is presented before concluding the

chapter.

3.1 TEXT MINING BUG DATABASES

Previous studies have shown that the textual data contained in bug reports may carry

important information that can help developers in the bug triaging process. Previous work on

bug database mining focuses on three main problems: 1) assigning the correct person to fix a

bug, 2) finding duplicate bug reports and 3) assigning the correct severity to a reported bug.

In [Cubranic 04], [Anvik 06] and [Jeong 09], the authors used text mining to assign

the correct person to fix a bug. The correct person can be a developer whose expertise is in

that area, or a developer who is responsible for the affected code. In [Cubranic 04], Cubranic

and Murphy used Naive Bayes to classify bugs contained in the Eclipse bug database. Anvik

et al. used a number of classification techniques to classify bugs in the Eclipse and Firefox

databases [Anvik 06]. In [Jeong 09], Jeong et al. used a Markov model for the Eclipse and

Firefox databases and showed better classification accuracy.

Detection of duplicate bug reports is explored in [Runeson 07], [Wang 08], [Prifti 11]

and [Wu 11]. Runeson et al. used vector space and cosine similarity measures to find

redundant bugs in a Sony Ericsson mobile bug database [Runeson 07]. In [Wang 08], Wang

et al. used similarity measures to detect potential duplicate bugs for Eclipse and Firefox bug

25

databases. Wu et al. [Wu 11] also proposed a tool for detection of duplicate bugs in Apache,

Eclipse and Linux bug databases.

In [Lamkanfi 10] and [Lamkanfi 11] Lamkanfi et al. used the textual description of

bug reports to classify severity of bugs. Eclipse, GNOME and Mozilla bug reports were

classified into three classes of severity in [Lamkanfi 10] by using a Naïve Bayes classifier. In

[Lamkanfi 11] different classification algorithms such as Naïve Bayes and Naïve Bayes

Multinomial were compared for classifying Eclipse and GNOME bug reports.

Linux kernel and MySQL DBMS bug reports were used to generate complexity

metrics in [Cotroneo 12]. This information was then used to train classifiers such as Naïve

Bayes and Decision Trees to predict ageing related bugs in these software.

3.2 TEXT MINING FOR DOCUMENT CLASSIFICATION

The purpose of text mining is to extract relevant information and knowledge from

textual data in order to perform a task [Ingersoll 13]. One of the primary tasks in text mining

applications is automated classification and clustering of textual documents [Ingersoll 13]. In

order to extract knowledge and information from human written textual documents in a

machine understandable format, that is computationally efficient and can produce reasonable

classification results, several advanced text mining techniques are used. These text mining

techniques can be combined and used to extract only relevant information while removing

data that yields little to no information [Ingersoll 13].

The text mining process can be separated into 4 steps: 1) extracting textual

description, 2) extracting syntactical information, 3) compression of extracted information,

and 4) generating a machine readable feature vector [Wijayasekara 13].

3.2.1 EXTRACTING TEXTUAL DESCRIPTION

In this step, the relevant portion of the text that is required for the classification is

extracted from the document. This is important as information that may not be related to the

classification problem may reside in the document, and this information may lead to sub-

optimal classification [Ingersoll 13].

26

Furthermore, all the formatting within the document is removed in this step, as it

carries no relevant information [Ingersoll 13].

3.2.2 EXTRACTING SYNTACTICAL INFORMATION

In this step, syntactical information contained within the document is extracted.

While semantical information is ignored it has been shown that extracting and representing

semantical information is extremely difficult, highly domain specific, and highly biased

towards the writer of the document [Ingersoll 13]. Thus, utilizing semantical information for

many cases is difficult. Furthermore, using only syntactical information has been shown to

yield good results for text mining applications related bug databases [Lamkanfi 11].

In this step, first the all the unique words are extracted from the document and stored.

This is known as tokenizing the document.

Second, all characters are converted to lower case, and numbers and special

characters are removed. Since the case of the words carries very little information all words

are converted to lower case for easy manipulation [Ingersoll 13]. Furthermore, numbers and

special characters has no meaning once taken out of context, therefore, tokenized numbers

and special characters carry no relevant information and thus are removed [Ingersoll 13].

Finally, frequently occurring words in the English language, known as stop words,

are also removed from the tokenized set of words. These words include Pronouns such as: “I,

he, she”, Articles such as: “a, an, the”, Prepositions such as: “after, to, but”, Conjunctions

such as: “and, but, when”, and other frequently appearing words. Such words carry very little

to no information when taken out of context and occur too frequently to enable

distinguishability of documents, and are therefore disregarded. The remaining set of unique

words are known as keywords.

Thus, a set of documents D containing N documents:

 },....,,{ 21 NdddD  (3.1)

where, jd is a document, and for the set of documents, M unique keywords exists.

Therefore the set of documents can be represented as:

D

27

 },....,,{ 21 MWWWD  (3.2)

where, iW are unique keywords that has been extracted. This representation is known as the

“bag-of-words” representation. Each document in this representation can be viewed as a set

of unique keywords:

 },....,,{ 21 mj WWWd  (3.3)

where, iW are unique keywords that exists in document jd and Mm .

3.2.3 COMPRESSING EXTRACTED INFORMATION

The main problem faced when using the bag-of-words representation is, as the

number of documents N increase, the number of unique keywords M also increase. This

results in a large matrix which leads to increased resource usage and higher computational

times. Since many of the extracted keywords might not appear in most of the documents,

many keywords will not contribute information relevant for classification. Furthermore,

many of the keywords can be syntactically unique but semantically identical, meaning while

the word is unique, the meaning is the same.

Therefore, once the syntactical information is extracted, the information needs to be

compressed. In order to minimize information loss during the compression stage, several text

mining techniques can be used.

One such technique is identifying and combining synonyms. Synonyms are words

that have the same meaning or nearly the same meaning as another word, i.e. syntactically

different but semantically similar. Thus identifying and combining synonyms leads to a

reduced dimensionality with very little loss of information. This is typically, done by using

English word databases such as Wordnet [Fellbaum 98].

A keyword with r synonyms can be represented as a set of keywords that are its

synonyms:

28

 },....,,{ 21 iriii WWWW 


 (3.4)

where, iW


 is the set of synonyms for keyword iW and 0r . Once all possible synonyms

for each keyword are identified the bag-of-words representation can be extended so that each

keyword is now a set of synonyms:

 },....,,{ 21 MWWWD


 (3.5)

Using the identified synonyms the keywords can be combined. Thus, for two

keywords iW and jW , with A and B number of synonyms:

 },....,,{ 21 iAiii WWWW 


 (3.6)

 },....,,{ 21 jBjjj WWWW 


 (3.7)

 BbandAaWWanyifWW jbiaji  ,


 (3.8)

where, ijjiji WWWWW




 },....,,,,....,,{},{ 2121 jBjjiAiijiij WWWWWWWWW 


 (3.9)

then, iW


and jW


 are removed from the bag-of-words representation and ijW


 is added.

This process is repeated until equation (3.8) is no longer satisfied for all synonym sets in the

bag-of-words.

Once this step is completed, the number of keyword sets in the bag-of-words

representation is reduced to M  :

29

 synMM  (3.10)

where,

 



M

i
iRsyn

1

)1((3.11)

where, iR is the number of keyword sets in iW


, of the bag-of-words resulting after all

synonyms are combined.

Another technique for compressing information is deconstructing words into their

base forms and combining similar words. The deconstruction of words into their base form is

known as stemming. Stemming is capable of deconstructing words that have been

transformed, for example by pluralizing or by adding a gerund, into their basic form. This

enables identification of transformed words as similar to their base words.

The process of indentifying similar stemmed words and combining them is similar to

the process described above for synonyms. Therefore as with identifying and combining

synonyms, the dimensionality of the bag-of-words is reduced with minimal loss of

information.

Identifying the most frequently used keywords or keyword sets in the bag-of-word

representation leads to further compression of information. This is done by counting the

number of documents jd that each keyword or keyword set iW


appears in, and selecting

the most recurring keyword set. Typically keyword sets that appear in less than %T of the

documents are discarded. This type of threshold selection reduces the dimensionality

significantly and identifies words that are most general to the document set. While this

method removes many keywords that appear in only a small subset of documents, and

therefore cannot contribute to classification, it may also remove words that are important to

classification and retain words that may not contribute to, or adversely affect classification.

30

3.2.4 FEATURE VECTOR GENERATION

Once information compression is done, the textual information can be converted in to

a vector of real values, which can be used as an input to a classification algorithm. This is

done by representing each document using the number occurrences of each keyword set

within the bag-of-words resulting from the information compression step.

Therefore, a document jd can be represented as:

 },....,,{ ,2,1, Mjjjj wwwd  (3.12)

where, ijw , is the number of times the keyword set iW


 occurs in document jd . M  is the

number of keyword sets in the bag-of-words after information compression phase.

Thus a set of documents D containing N documents and M keyword sets can be

represented as a MN  matrix. This matrix is known as the Term-Document Matrix

(TDM):



























},....,,{

...

},....,,{

,2,1,

,12,11,11

MNNNN

M

wwwd

wwwd

TDM (3.13)

This TDM can now be used as an input to a classification algorithm. However, it has

been shown that further improvements can be made to classification accuracy by weighing

the keyword sets according to their importance [Ingersoll 13]. This is typically done by using

the Term Frequency-Inverse Document Frequency (TF-IDF) method [Ingersoll 13].

The TF-IDF method assumes that the importance of a keyword set in a document is

inversely proportional to the frequency that the keyword set occurs in all documents. The

weight for the keyword set i in bug report j (ij,), can be calculated as:

31

 









i
jiij

df

N
w log,, (3.14)

where, ijw , is the number of times the keyword set iW


 occurs in document jd , and idf is

the number of times the keyword set iW


 occurs in all N documents. Once, ij, is

calculated for all N documents and M keyword sets, each ijw , is multiplied by ij, to

produce the final TDM.

Figure 14. Text mining bug databases for HIBs architecture

32

3.3 TEXT MINING BUG DATABASES FOR IDENTIFYING VULNERABILITIES

This section presents a text mining framework for identifying vulnerabilities using bug

reports in publically available bug databases. The four step process described in Section 3.2

is utilized to extract the most relevant information from textual description of bugs in bug

reports and generate a feature vector that can be used as an input to classification algorithms.

The overall architecture of the presented text mining framework is shown in Figure 14. Each

step is discussed in detail below.

Step 1: In the first step of the framework, the textual description of the bug report is

extracted. It has been shown that both short and long descriptions of the bug report contain

important data that can yield information for various purposes [Lamkanfi 10], [Lamkanfi 11].

Furthermore, it has been shown that other field such as “severity” and “importance” may be

incorrect for many bugs [Lamkanfi 10], [Lamkanfi 11], [Wijayasekara 12]. Therefore, only

the short description and the long description of the bug report are used to extract

information. Furthermore, since the same word may carry different information when

appearing in the short description compared to the long description, two separate bags-of-

word are kept for short and long descriptions.

Step 2: In the second step, as described in Section 3.2.2, tokenizing, removal of special

characters, and removal of stop words is performed to both words from short and long

descriptions of the bug reports. Furthermore, since bug reports sometimes contain code

snippets, single characters may also be present in the tokenized set of words. These single

character words are also removed in this step. Furthermore, as an additional step the words

“vulnerability” and “CVE” are also removed. This is to alleviate any bias towards HIBs since

these words may have been included in the bug report of HIBs.

Step 3: The third step of the framework is compressing the extracted information. In

this step, first Wordnet [Fellbaum 98] is used as the English word database to generate

synonyms and keywords are combined as explained in Section 3.2.3 to reduce the number of

dimensions in the bag-of-words. Once the keywords are combined using synonyms each

dimension of the bag-of-words representation is a set of keywords. Next, Porter Stemming

[Porter 80] is used to stem the keywords sets into their basic form. After all keywords sets are

stemmed, they are again combined and the number of dimensions is further reduced. Similar

33

to the previous step, Wordnet and Porter stemming is applied to the keywords from short

description and long description separately. Finally, the most recurring keywords sets in the

complete set of bug reports is found and only the top %SDT of keywords sets are kept in

the short description and the top %LDT of keywords sets are kept in the long description.

Step 4: Finally, in the fourth step of the framework, a TDM is generated using the

extracted set of keywords sets. As before, keywords sets from the short and long descriptions

are treated separately. For each bug report, first each word in the short description is

extracted. Each extracted word is then converted to lower case and all formatting is removed.

Since the keyword sets in the bag-of-words are stemmed, the each extracted word is stemmed

as well. These stemmed words are then compared to the words in the keyword sets in the

bag-of-words for the short description. If the word is found, then the number of occurrences

for that keyword set is incremented by one in the TDM. This process is repeated for all the

words in the short description and long description separately to generate the complete TDM.

Once the TDM is generated, it is further enhanced by applying the TF-IDF method described

in Section 3.2.4.

The presented text mining framework for information extraction and compression of

textual information was applied to 1000 randomly selected Linux Kernel bugs from the

Redhat Bugzilla bug database that were reported in the time period from January 2004 to

April 2011. The number of keywords after each step of the text mining framework is shown

in Table 4.

Table 4. Dimensionality of the bag-of-words after each text mining step

Parameter
After

tokenization

After

removing

stop words

and other

characters

After

Wordnet

After

Porter

Stemming

After

removing

words that

occur in less

than 10% of

bugs

Long Description 6161 6039 4536 4349 90

Short Description 9981 9843 8067 7825 158

Total 16142 15882 12361 12174 248

34

3.4 CONCLUSION

In this chapter the details of a comprehensive framework for extracting textual

information was presented. The presented framework extracts relevant syntactical textual

information from the short and long description of the bug reports. Furthermore, the

extracted information is compressed with minimal loss of information and converted in to a

feature vector that can be read by classification algorithms.

The presented method was applied to a small randomly selected set of bugs from the

Redhat Bugzilla bug database, and the dimensionality reduction capability of each step in the

presented text mining framework was demonstrated.

35

Chapter 4 CLASSIFICATION OF HIDDEN IMPACT BUGS

This chapter investigates different classification algorithms for classification of HIBs

in bug databases. Three different classification algorithms will be investigated, namely: 1)

Naïve Bayes (NB) classifiers, 2) Naïve Bayes Multinomial (NBM) classifiers, and 3)

Decision Tree (DT) classifiers. The classification algorithms were applied to the HIB

classification problem for the Linux Kernel. The chapter first provides background details of

these algorithms. The details of the experiment as well as experimental results are provided

next. The chapter is concluded by discussing the importance and relevance of the

classification of HIBs.

4.1 CLASSIFICATION ALGORITHMS

This section details the machine learning based classifiers that were used for the

classification of HIBs. Three different classifiers were used for classification: 1) Naïve Bayes

(NB) classifiers, 2) Naïve Bayes Multinomial (NBM) classifiers, and 3) Decision Tree (DT)

classifiers.

4.1.1 NAÏVE BAYES (NB) AND NAÏVE BAYES MULTINOMIAL (NBM) CLASSIFIERS

Naïve Bayes (NB) and Naïve Bayes Multinomial (NBM) classifiers are semi-

interpretable probabilistic classifiers that have been shown to produce favorable results in

text classification applications [Wen 07], [Lamkanfi 11], [Barber 12]. Both NB and NBM

utilize the well known Bayes theorem for conditional probability [Barber 12]:

)(

)()|(
)|(

BP

APABP
BAP  (4.1)

Where A and B are dependent events and)|(BAP denotes the probability of

event A given event B .

36

The NB and NBM classifiers utilize the Bayes theorem while assuming naïve

independence of features in the input space [Barber 12]. Thus, for a given input vector d that

belongs to the class C :

 },....,,{ 21 mwwwd  (4.2)

which is analogous to equation (3.12) that represents the derived feature vector for a given

document, using the Bayes theorem, the probability that the input vector belongs to class C

can be written as:

)(

)()|(
)|(

dP

CPCdP
dCP  (4.3)

),....,,(

)()|,....,,(
),....,,|(

21

21
21

m

m
m

wwwP

CPCwwwP
wwwCP  (4.4)

However, the naïve conditional independence assumes that each feature iw is

conditionally independent from all other features jw for mj and ji  . Thus, the

numerator of equation (4.4) can be expressed as [Barber 12]:

)|()....|()|()()()|,....,,(2121 CwPCwPCwPCPCPCwwwP mm  (4.5)

 



m

i
im CwPCPCPCwwwP

1
21)|()()()|,....,,((4.6)

Therefore, in the NB classifier, for a given set of documents, the conditional

probabilities for each feature given each class)|(CwP i as well as the probability of each

class)(CP can be calculated. Thus, training data can be used to derive these probabilities in

37

a supervised manner. Once these probabilities have been derived, a given data pattern can be

classified as:

 



m

i
i

c

cCwPcCPdclass
1

)|()(maxarg)((4.7)

However, since the NB classifier calculates the conditional probabilities)|(CwP i

using the features of all documents, only binary cases of iw can be used, i.e. the actual

frequency of iw cannot be used. Thus, NBM classifier uses a multinomial representation

calculating the conditional probability)|(CwP i which enables the use of the frequencies of

each feature for classification [Wen 07], [Barber 12].

 





i

w
i

i i

i i
i

ip
w

w
CwP

)!(
)|((4.8)

where, ip is the probability that event iw occurs.

Furthermore, since the frequency of features are used in NBM, it has been shown that

for many text classification applications, the classification accuracy of NBM is higher

compared to NB [Wen 07], [Lamkanfi 11].

4.1.2 DECISION TREE (DT) CLASSIFIERS

Decision Tree (DT) classifiers are multistage hierarchical decision support tools that

are sequential in their approach and therefore highly interpretable [Safavian 91]. Thus DT

can be visualized as a layered, directed graph of decisions. At each node of the graph the

input space is divided into several crisp sub-spaces. This is done iteratively until a leaf node

is reached, where the decision is the output class for the given input pattern. A typical binary

decision tree, where at each node the input space is divided into 2 sub-spaces, is shown in

Figure 15 [Safavian 91], [Hartmann 82].

38

Various methodologies and algorithms have been proposed for generating the optimal

set of decisions, determining the number of decisions at each level, determining the depth of

the tree, etc. [Safavian 91]. In interest of space, details of these methods will not be discussed

in this thesis.

One of the most common methods of generating the set of decisions is using an

Information Theoretic approach [Hartmann 82]. Information theory is briefly discussed in

Chapter 5 of this thesis. In the Information Theoretic approach, the input space is sub-divided

at each decision node using the dimension that yields the highest gain in information

[Hartmann 82].

In order to reduce overtraining of DT as well as for computational complexity

reasons, the length of the DT needs to be contained [Safavian 91]. While some methods limit

the maximum depth, of the tree, several methods that prune a generated DT using various

algorithms have been shown to be successful as well [Safavian 91].

DT classifiers rely on heuristic algorithms such as Genetic Algorithms (GA) for

optimization of generated trees with respect to the number of nodes, the depth of the tree and

classification accuracy (see Chapter 5 for more details on GA).

Figure 15. Typical binary Decision Tree (DT) classifier

39

The DT known as C4.5 which was developed by Quinlan is used in this thesis for

classification [Quinlan 93]. The C4.5 DT is a simple yet proven methodology for deriving

decision trees using information entropy. Furthermore, it has the capability of handling

continuous values by means of using thresholds. For a given set of features, the C4.5

algorithm first calculates the normalized information gain for each feature. The algorithm

then creates a splitting node which splits the dataset into two subsets based on the feature

with highest information gain. This is recursively done until the subset contains only a single

class or no information can be gained from the remaining subset of data, at which point a leaf

node is inserted. The pseudocode for the C4.5 algorithms is shown in Figure 16 [Quinlan 93].

Figure 16. Pseudocode for C4.5 algorithm

40

4.2 CLASSIFICATION OF HIBS IN BUG DATABASES

The presented classification algorithms were tested on a subset of bug reports and

HIBs for the Linux Kernel that were reported in the time period from January 2006 to April

2011. This section explains in detail the experimental setup that was used to test the

presented HIB classification methodology as well as the test metrics used to evaluate the

presented classifiers.

4.2.1 CLASSIFICATION SUBSET

In order to evaluate the vulnerability identification methodology proposed in Section

2.5, a set of Redhat Bugzilla bugs for the Linux Kernel, containing two classes: regular bugs

and HIBs were constructed.

The MITRE CVE, vulnerability reports contain the bugs associated with each

vulnerability. This information was used to extract bug reports from the Redhat Bugzilla bug

database that were associated with the identified vulnerabilities. As shown in Section 2.4.2,

out of the 403 vulnerabilities that were examined, 129 were identified to be HIBs with at

least 2 weeks of impact delay. However, out of the 129 HIBs, only 73 had accessible bug

reports in the Redhat Bugzilla bug database attached with them. The remainder had either no

bug reports associated with them, or bug reports were inaccessible, or bug reports were in a

different bug database. Therefore, for the final classification and testing the set of 73

identified HIBs were used. These bugs constitute the HIB class.

The regular bug class contained 6000 randomly selected bugs reported from January

2006 to April 2011 that were not identified as vulnerabilities. Since the number of bugs

reported per year is different for each year (see Table 1), in order to avoid misrepresenting

any year, the random set was constructed to reflect the proportion of bugs reported for each

year. However, it is important to note that the regular bug class may contain bugs that are

misclassified and are still yet to be identified as vulnerabilities, and the classifiers may be

negatively affected by training on these examples [Jason 13].

Table 5 shows the number of HIBs that were identified for each year and the number

of regular bugs selected from each year for the classification process.

41

4.2.2 CONSTRUCTION OF THE TDM

The Term-Document Matrix (TDM) was constructed using the short and long

descriptions of the bug reports. As mentioned in Section 3.3, the short and long descriptions

of the bugs were treated separately, meaning the text mining process was applied to words

extracted from the short description and the long description separately.

The percentages T for selecting the keywords appearing most frequently in bug

reports were set at = 1% and = 3%. These numbers were selected somewhat

arbitrarily, so that a reasonable number of dimensions will be selected without overwhelming

the classifiers. The same thresholds were used to test each classifier. Although this type of

arbitrary dimensionality selection is sub-optimal for classification, it was deemed sufficient

for demonstrating the vulnerability identification methodology described.

The text mining process which was elaborated in Chapter 3 was applied to the

extracted long and short descriptions of bugs and the dimensionality of the TDM after each

step is shown in Table 6.

%SDT %LDT

Table 5. Number of selected regular bugs and HIBs for classification

Year
Number of regular

bugs
Number of HIBs

2006 642 3

2007 725 12

2008 876 21

2009 1,135 10

2010 1,819 25

2011 (to April) 803 2

Total 6,000 73

Table 6. Dimensionality of the bag-of-words after each text mining step

Parameter

After removing

stop words and

other characters

After

Wordnet

After Porter

Stemming

Selecting

Most

frequent

Long Description 7,279 4,451 4,005 66

Short Description 27,685 20,800 19,113 136

Total 34,964 25,251 23,118 202

42

4.2.3 TEST METRICS

The classification was performed using k-fold cross validation [Wijayasekara 11].

The k-fold cross validation method randomly separates the dataset into k equal sized folds.

The classifiers are then trained using k - 1 folds and tested on the remaining fold. This

process is repeated k times, each time selecting a different fold for testing and using the

remaining folds for training. The final classification result is an aggregation of the testing

folds. This enables the classifier to be tested on all the data points and is therefore devoid of

over fitting and biased classification [Wijayasekara 11]. 10-fold cross validation was used for

testing the chosen classifiers.

Classification results are shown in terms of True Positives (TP), True Negatives (TN),

False Positives (FP), and False Negatives (FN). These parameters can be interpreted using

the confusion matrix shown in Table 7. The following rates are calculated in order to present

the results more accurately:

)(FNTP

TP
RateTP


 (4.9)

)(FPTN

TN
RateTN


 (4.10)

)(FPTN

FP
RateFP


 (4.11)

)(FNTP

FN
RateFn


 (4.12)

Table 7. Confusion matrix for classification of HIBs

 Classified as

 HIB Regular

A
ct

u
al

C
la

ss
 HIB True Positives (TP) False Negatives (FN)

Regular False Positives (FP) True Negatives (TN)

43

4.2.4 BAYESIAN DETECTION RATE

Another important classification metric that was used to evaluate the classifiers was

the Bayesian detection rate [Axelsson 00]. The Bayesian detection rate is the probability that

an instance classified as true, is actually true [Axelsson 00].

The Bayesian detection rate is extremely important in this case due to the

disproportionate sizes of the two classes. In [Axelsson 00] Axelsson performed a base-rate

fallacy test for intrusion detection systems and illustrated the problems in classifying

intrusions. Axelsson pointed out the small ratio between the number of intrusions and normal

traffic affect the outcome in such a way that the user will be overwhelmed by the number of

false positives. Since the ratio between HIBs and normal bugs in bug databases is very low:

41071.7

390,167

129  (4.13)

where, 167,390 is the number of normal bugs reported for the time period between January

of 2004 and April of 2011, a similar base-rate fallacy problem may occur. Thus a base-rate

fallacy analysis was performed for the HIB classification problem. For explaining the base-

rate fallacy, the following nomenclature will be used:

YgivenXofyprobabilitYXP

XofyprobabilitXP

XnotX

HIBaasbugatectsdeclassifiertheeitectiondeD

nerabilityvulimpacthiddenV











)|(

)(

)..(

By using the above naming convention, true positive rate can be denoted as)|(VDP

and the false positive rate can be denoted as)|(VDP  .

For classification of HIBs the Bayesian detection rate is the probability that a bug is a

HIB given that the classifier detects the bug as a HIB, i.e.)|(DVP . In order to increase the

Bayesian detection rate, the number of false positives must be reduced. By means of Bayes’

theorem the Bayesian detection rate can be expressed as:

44

)|()()|()(

)|()(
)|(

VDPVPVDPVP

VDPVP
DVP




 (4.14)

The following probabilities are known:

 41071.7
167390

129
)(VP (4.15)

 99923.01071.71)(1)(4  VPVP (4.16)

By using equations (4.15) and (4.16), equation (4.14) can be rewritten as:

)|(99923.0)|(1071.7

)|(1071.7
)|(

4

4

VDPVDP

VDP
DVP










 (4.17)

Figure 17. Bayesian detection rate for the HIB classification problem

45

The Bayesian detection rate expressed in equation (4.14) is dominated by the factor

0.99954, i.e. the high probability that a bug is not a HIB. Thus in order to achieve a Bayesian

detection rate that is sufficient, the false positive rate must be very low. Figure 17 plots the

false positive rate against the Bayesian detection rate for different values of true positive

rates ()|(VDP). Figure 17 shows that as the false positive rate increases, the Bayesian

detection rate decreases (Note that the axis are in log scale).

The Bayesian detection rate is vital when dealing with human users such as a

software development team: if the Bayesian detection rate is too low, the users will be

overwhelmed by the number of false positives and thus reducing the effectiveness of the

classifier [Wijayasekara 12]. By using the upper bound in Figure 17, it is possible to gain an

understanding of the maximum false positive rate which is acceptable from the classifier. For

example, if a Bayesian detection rate of 0.01 can be tolerated by the development team,

which means that only one out of 100 bugs classified as potential vulnerabilities, is an actual

vulnerability, according to Figure 17, a maximum false positive rate of 0.076 is acceptable.

This means that on average for any given day in 2011, where 146 bugs were reported per day

(see Table 1), around 11 (146076.0 ) bugs will be falsely identified as a vulnerability by

the classifier. Similarly, if one out of 10 detections needs to be an actual vulnerability, which

means a Bayesian detection rate of 0.1, to achieve this, the maximum acceptable false

positive rate is 0.0069. This translates to falsely identifying around one bug per day

)1460069.0( for any given day in 2011. Thus, the lower boundary of false positive rate that

the proposed classifier must obtain can be determined using Figure 17.

Thus, a higher Bayesian detection rate means that a lower percentage of regular bugs

were improperly classified as HIBs and therefore a software development team will have to

sort through fewer regular bugs to find those which are actual vulnerabilities. Therefore, a

higher Bayesian detection rate is preferred. Given the classification results, the Bayesian

detection rate can be calculated using the following equation:

)(FPTP

TP
RateDetectionBayesian


 (4.18)

46

Furthermore, with increasing numbers of bugs being reported each day (see Table 1),

a low Bayesian detection rate will lead to an overwhelming number of bugs being classified

by the classifier as potential vulnerabilities each day. Using the average number of bugs

reported per day, the number of bugs that will be classified as potential vulnerabilities by the

classifier can be calculated as:

 Dayper Reported Bugs
FNTNFPTP

FPTP






)(
 (4.19)

Thus, the number of bugs that will be classified as potential vulnerabilities can also

be used at a metric for evaluating classifier performance.

Table 8. Overall classification results

Classifier

True positives True negatives False positives

Rate Number Rate Number Rate Number

Naïve Bayes (NB) 0.92 67 0.45 2,741 0.55 3259

Naïve Bayes Multinomial (NBM) 0.81 59 0.90 5,377 0.10 623

Decision Tree (DT) 0.29 21 0.99 5,969 0.01 31

Table 9. Number bugs classified as of potential vulnerabilities on a given day in 2011

Classifier

Number of bugs

classified as potential

vulnerabilities per day

Bayesian detection

rate

Naïve Bayes (NB) 80.4 0.02

Naïve Bayes Multinomial (NBM) 16.5 0.09

Decision Tree (DT) 1.3 0.40

47

4.2.5 CLASSIFICATION RESULTS

The overall classification results are shown in Table 8. NB classifier showed the

highest true positive rate (92%), however, the true negative rate was low. Similarly the DT

had a very low true positive rate (29%) but the highest true negative rate (99%). NBM

showed a higher true positive rate as well as higher true negative rate. Although these results

may seem relatively low, even the lowest true positive rate (29%) is more than 20 times

better than a random guess (1.2%).

Figure 18. Yearly classification results for NB classifier

Figure 19. Yearly classification results for NBM classifier

48

Table 9 shows the number of bugs that will be classified as potential vulnerabilities

on an average day in 2011 for each classifier along with the Bayesian detection rate. These

results show that although the DT had a low true positive rate, due to the higher Bayesian

detection rate nearly half of the bugs that are classified as potential vulnerabilities are actual

vulnerabilities. This also leads to less than 2 bugs being classified as potential vulnerabilities

each day in 2011 where over 145 bugs were reported to the bug database each day (see Table

1).

Similarly, NBM classifier reported a Bayesian detection rate of 0.09, which means

that just under one out of 10 bugs that are classified as a potential vulnerability is an actual

vulnerability. Using the NBM classifier, 16 bugs will be classified as potential vulnerabilities

each day in 2011.

Due to the very high false positive rate of the NB classifier, the Bayesian detection

rate was extremely low (0.02), which translates to only 1 out of 50 bugs that are classified as

potential vulnerabilities being actual vulnerabilities. This also means that 80 bugs would be

classified as potential vulnerabilities each day, in 2011, using the NB classifier.

Figure 20. Yearly classification results for DT classifier

49

According to Table 5, the number of reported bugs and the number of identified HIBs

have been increasing each year. Thus, in order to evaluate the usability of the classifiers in

this real world scenario, and to evaluate the online learning capability of the system

presented in Section 2.5.2, the performance of each classifier was measured across time,

based on the data available at a given moment in time. For this analysis, cumulative bugs

reported and HIBs found at the start of each year was selected.

Figure 18, Figure 19, and Figure 20 plot the yearly classification results for NB,

NBM and DT classifiers respectively. As expected, the true positive rate increases with time.

This is because the size of the HIB set is increasing and the classifiers are able to learn from

these. Therefore, as more HIBs are correctly classified as vulnerabilities, the classifiers

benefit from these newly discovered HIBs.

4.3 CONCLUSION

This chapter first detailed the classification algorithms used to classify HIBs using the

framework presented in Chapter 2 and Chapter 3.

The chapter then detailed the experimental setup used for evaluating the classifiers

and the presented HIB classification and text mining frameworks. General classification

metrics as well as classification metrics specific to the HIB classification problem was

discussed next. A Bayesian detection rate analysis was performed to identify the upper and

lower bounds of classification accuracy required by the classifiers.

Finally, the experimental results for each of the classifiers were elaborated. The tested

classifiers were able to correctly classify 29% to 92% of the HIBs in the Linux Kernel. The

lowest achieved classification rate was over 20 times better than a random guess. Further

analysis on the Bayesian detection rate of the classifiers showed that the number of bugs that

will be classified as potential vulnerabilities per day, given the results of each classifier. The

results ranged from classifying 16 bugs per day as potential vulnerabilities, where 1 in 10

were actual vulnerabilities, to classifying 80 bugs per day as potential vulnerabilities, where

only 1 in 50 were actual vulnerabilities. This information can be used by developers to select

the optimal classifier, given the number of bugs that can be handled by a software

maintenance team.

50

It has to be noted that the classification process was performed extremely

conservatively, using keywords from only the set of regular bugs. Furthermore, it is

important to identify that the set of regular bugs may contain HIBs that have not yet been

identified which may further reduce the classification accuracy. Simultaneously, this means

that the false positives of the classifiers may contain misclassified bugs that may turn out to

be vulnerabilities. In order to verify this, the false positives should be further analyzed.

51

Chapter 5 INFORMATION GAIN BASED DIMENSIONALITY

SELECTION

Classification is highly dependent on the dimensionality of the problem domain.

Thus, selecting the optimal subset of dimensions can lead to higher classification accuracy as

well as improved computational efficiency [Raymer 00], [Otero 03]. Text mining

applications, in particular, where the extracted dimensionality is high, are extremely

susceptible problems associated with sub-optimal dimensionality selection [Basiri 09].

Therefore, this Chapter presents a novel dimensionality selection method that is based n

information theory.

The Chapter first discusses the broader dimensionality selection problem and shows

the necessity of dimensionality selection in the HIB classification problem. Then,

background information about Genetic Algorithms (GA) and Information Gain (IG) are

presented. The novel, information gain based dimensionality method is detailed next. The

presented method was applied to the problem of text mining bug database for identifying

HIBs, and the experimental setup and results are detailed next. Finally, the Chapter is

concluded by discussing the importance of dimensionality selection and other possible

improvements to the presented methods.

5.1 DIMENSIONALITY SELECTION PROBLEM IN TEXT MINING

Dimensionality selection is used as an important step in knowledge extraction and

data mining applications for better understanding of data [Raymer 00], [Battiti 94]. Proper

usage of dimensionality selection methodologies can result in lower computation time and

achieve higher classification accuracy in classification applications [Raymer 00], [Otero 03].

These methodologies are especially useful highly multi dimensional datasets where the high

dimensionality increases computation time significantly.

Typical text mining applications investigate large number of documents and extract

syntactical information by means of unique words occurring in the documents [Wijayasekara

12]. As shown in Table 4, this type of information extraction results in highly multi

52

dimensional datasets with a sparse matrix. Thus, dimensionality selection methodologies are

employed in text mining applications to identify the optimal set of dimensions that yield the

best classification results possible [Basiri 09].

Dimensionality selection (or feature selection) is a form of transformation of

representation [Liu 98], where a set of dimensions M, is derived from the original set of

dimensions M0 that maximizes some criterion and is at least as good as M0 in that criterion

[Jain 97]. In classification applications, the maximization criterion is the classification

accuracy [Jain 97].

Dimensionality selection has been successfully performed using Genetic Algorithms

(GA) for text mining [Espejo 10], [Sebastiani 02], [Yang 97] and other applications [Otero

03], [Espejo 10], [Yang 97]. Information Gain (IG) [Shannon 48] has also been used

successfully in-conjunction with GA for dimensionality selection in classification and other

data mining problems [Sebastiani 02], [Yang 97]. However, these studies use IG as either a

data pre-processing step [Uguz 11] or as the fitness function of the Genetic Algorithm [Otero

03], [Basiri 09], [Neshatian 08], [Muharram 05].

Figure 21. Averaged true positive rate for different numbers of keywords

53

5.1.1 DIMENSIONALITY DEPENDENT CLASSIFICATION ACCURACY

As mentioned, classification accuracy highly depends on the selected set of

keywords. In order to illustrate this, several classifiers were used to classify 1000 randomly

selected bugs from the Redhat Bugzilla bug database and the 73 HIBs identified in Section

4.2.1, using different number of keywords.

The NBM and C4.5 classifiers described in Sections 4.1.1 and 4.1.2, respectively

were used to classify the above mentioned dataset. For training and classification, different

numbers of keywords from the short description and the long description were selected.

The averaged classification results of the NBM and C4.5 Classification algorithms

were measured. Figure 21, Figure 22 and Figure 23, respectively plot the averaged true

positive rate, true negative rate and the average of true positive and true negative rates as the

classification accuracy. The best result for each graph is emphasized using a white dot.

It can be observed from the figures that the optimal value for each classification

metric occurs at a different number of keywords used. Furthermore, contrary to intuition,

adding more dimensions sometimes reduces the classification accuracy. In Figure 21, it can

be seen that adding the 200
th

 dimension in the long description significantly reduced true

Figure 22. Averaged true negative rate for different numbers of keywords

54

positive rate. It has to be noted that this dimension was added while all the previous

dimensions that caused the higher true positive rate remained in the TDM. This is largely

because adding dimensions that does not contribute to classification or dimensions that affect

the classification negatively, lessen the ability of the classifier to focus on the attributes that

contribute to the classification more.

Furthermore, different combinations of keywords may yield different results. This

aspect is cannot be observed in the figures as different combinations of dimensions were not

tested. Thus, selecting the optimal dimensionality is a highly non-linear multiple criteria

optimization problem.

Figure 23. Averaged classification rate for different numbers of keywords

55

5.2 BACKGROUND

This section first details Genetic Algorithms (GA) and then presents background

information on information theory and Information Gain (IG).

5.2.1 GENETIC ALGORITHMS (GA)

Genetic Algorithms (GA) are a subset of the broader field of Evolutionary Algorithms

(EA). The major unifier of EA is the application of simulated biological evolution. Simulated

evolution is inspired by and analogous to the well known Darwin’s theory of evolution, and

has been translated into an effective tool for global optimization [Goldberg 89], [Simon 13],

[Linda 14].

The common underlying idea is that the algorithm maintains a set of unique candidate

solutions to the problem which are comparative to a set of individuals in a population. The

ability of each solution or individual to solve the problem can be evaluated based on an

objective fitness function, and is known as the fitness of an individual. This fitness is

subsequently used drive the evolution of the population based on the theories of natural

selection [Simon 13], [Linda 14]. Thus, at each iteration, the fitness of every individual is

calculated and based on the fitness, certain individuals are removed from the population and

new individuals are introduced.

In Genetic Algorithms (GA), biological genetics analogies are used to further advance

the evolutionary process of EA [Simon 13]. This is done by encoding the candidate solutions

are represented as chromosomes using a set of real numbers:

 },....,,{ 21 krrrv  (5.1)

where, v is an individual and ir is a real value. The candidate solution for the problem is a

combination of the real values and the fitness of the individual is calculated using:

56

),....,,(
~

21 kv rrrff  (5.2)

where, vf
~

 is the fitness of individual v and f is the fitness function

Thus, at each iteration, a certain set of individuals are selected based on their fitness

and using those individuals as parents, offspring are generated. The offspring are generated

from the selected parent individuals by applying recombination and mutation operators to the

chromosomes of the parent individuals [Simon 13], [Linda 14].

The recombination operator splits the chromosomes of two parents at a certain point

and combines each portion to generate two new individuals. The point at which the

recombination happens can be selected using various domain specific heuristic methods

[Simon 13].

Figure 24. Pseudocode for Genetic Algorithm (GA)

57

The mutation operator mutates a selected individual by randomly selecting one or

more values from },....,,{ 21 krrr and changing these values by a small random value. The

mutation point selection and the amount to which the mutation is performed can also be done

using domain specific knowledge [Simon 13].

This cycle is repeated for a specified number of iterations or until another

convergence criterion is met, such as the desired level of the best fitness value or the standard

deviation of the fitness value within the population. The general pseudocode of GA is

summarized in Figure 24 [Simon 13], [Linda 14].

5.2.2 INFORMATION GAIN (IG)

Information theory was founded by Claude Shannon in 1948 [Shannon 48] and has

since been used as the primary methodology of information quantization of datasets. One of

the basic foundations of information theory is the concept of information entropy. Using the

information entropy of a dataset and the information entropy of the same dataset given that a

dimension is known, can be used to derive how much information is gained by knowing that

dimension. This is known as the Information Gain (IG) of that dimension.

The information entropy of a dataset defines the distribution of the dataset in classes.

Higher information entropy describes a uniform class distribution meaning more information

is required to identify each class separately. Similarly lower information entropy describes a

variable class distribution and less information is required to identify each class [Wenke 01].

The information entropy of a dataset D can be calculated using:

 



c

j
jj ppDEntropy

1
2log)((5.3)

where, c is the number of distinct classes in D and jp is the proportion of instances in

D that belong to class j [Shannon 48]. Similarly the information entropy of a subset of the

dataset can be calculated as:

58

 



c

j
jj qqDEntropy

1
2log)

~
((5.4)

where, D
~

 is a subset of the dataset D and c is the total number of distinct classes in D

and jq is the proportion of cases in D
~

 that belong to class j .

Furthermore, the information entropy of the dataset D can be calculated given the

dimension w is known:

 



K

j
k

k DEntropy
N

n
wDEntropy

1

)
~

()|((5.5)

where, N is the total number of data points in the dataset D , and K is the number of

distinct partitions caused by dimension w . kn is the number of cases in D that belong to

the partition k and kD
~

 is the partition of data caused by k . The entropy of kD
~

 is

calculated using equation (5.4) [Shannon 48].

The entropy of the dataset given that a dimension is known calculated using equation

(5.5), shows the additional amount of information required to identify each class separately.

Thus)(DEntropy and)|(wDEntropy can be used to calculate the additional information

gained by knowing dimension w :

)|()()(wDEntropyDEntropywIG  (5.6)

where,)(wIG is the information that can be gained if dimension w is known [Wenke 01].

Thus, Information Gain (IG) of any one dimension of the dataset is independent from any

other dimension in the dataset.

59

5.3 IG BASED DIMENSIONALITY SELECTION FOR TEXT MINING

APPLICATIONS

Selecting the optimal set of dimensions, as pointed out in Section 5.1, is essential for

achieving improved classification rates and computational efficiency. Therefore, this section

presents a novel methodology dimensionality selection that utilizes the IG of each dimension

in the dataset to calculate dynamic mutation probabilities for chromosomes in a GA

[Wijayasekara 13]. Thus the probability of selecting or deselecting a given dimension at each

mutation step is dependent on the IG of that dimension. This dynamic selective mutation

favors dimensions with higher IG and enables the GA to converge to a more optimal solution

faster. Furthermore, since IG of each dimension is independent from any other dimension in

the dataset, IG can be calculated prior to the execution of the genetic algorithm. This leads to

the computation time of presented IG based method to be the same as conventional GA based

methods.

Typical genetic algorithm based dimensionality selection encodes the dimensions of

the dataset as bits in a chromosome:

 },....,,{ 21 kx rrrv  (5.7)

Figure 25. Block diagram of the presented IG based dimensionality selection method

60

where, xv is the chromosome of individual x , and D is the number of dimensions in the

dataset. ir is a bit that represents whether dimension i is selected or not. At each iteration of

the GA, the chromosome of an individual may change during recombination or mutation

phases. This enables the population to evolve, and eventually reach an optimum, where the

most optimum set of dimensions are selected by the individual with highest fitness.

Therefore, for classification problems the fitness of an individual is calculated by the

classification accuracy achieved by classifying the dataset using only the dimensions selected

by the chromosome of that individual.

The presented IG based dimensionality selection methodology utilizes IG of each

dimension to dynamically vary the mutation probability of chromosomes. The mutation

probabilities are dynamically varied such that it favors the dimension with a higher IG. Since

a dimension with higher IG means that more information about the class separation is gained

by using the said dimension, such a selective mutation enables the genetic algorithm to reach

the optimal value faster. A simple block diagram of the presented methodology is shown in

Figure 25 [Wijayasekara 13].

As shown in Section 5.2.2, the IG of a dimension is independent from any other

dimension in the dataset. Thus IG can be calculated for each dimension prior to the execution

of the GA. Once the IG is calculated, it is normalized between 0 and 1 using:

(min)(max)

(min))(
)(

IGIG

IGwIG
wIG i

i



 (5.8)

where, (min)IG and (max)IG are minimum and maximum information gain for all the

dimensions in the dataset D , respectively.

This calculated IG is then used to dynamically vary the mutation probability of each

dimension using:

   minminmax)()(),(pppwIGivp ix  (5.9)

Or,

61

   minminmax)())(1(),(pppwIGivp ix  (5.10)

where,),(ivp x is the probability that the i th
 bit of individual xv is mutated, and)(iwIG is

the normalized IG of dimension i calculated using equation (5.8). minp and maxp are preset

probabilities that define the maximum mutation probability and minimum mutation

probability respectively, and are set such that 0minmax  pp . If bit i of individual xv is

0, meaning the dimension is currently deselected, equation (5.9) is used to calculate the

mutation probability and equation (5.10) is used otherwise.

Therefore, a dimension with higher IG has a higher probability of being selected at

each mutation step. Similarly, such a dimension has a lower probability of being deselected

during mutation.

5.4 EXPERIMENTAL RESULTS

The presented IG based dimensionality selection method was applied to the HIB

classification problem in the Linux Kernel. A similar dataset of bug reports containing

known HIBs and bugs that were not identified as vulnerabilities, used in Section 4.2.1 was

used in this Section as well. The dataset consisted on 73 HIBs and 6000 randomly selected

normal bugs (See Table 5). The 6000 normal bugs were selected according to the respective

proportions of bugs reported in each year of the time period from January 2006 to April

2011.

The text mining process described in Section 3.3 was used to extract the set of key-

words that contain the most information and most relevant to the selected dataset. By

selecting the 500 most frequent key-words from the short description and the long

description of the bug report, a feature vector of the length 1000 was extracted (See Sections

2.3.1 and 3.2.4 for more details).

The presented methodology was compared to conventional GA based dimensionality

selection method by using a generational GA. This type of GA uses recombination as part of

the evolutionary process, along with mutation. In generational GA, a population consisting of

62

a certain number of individuals is kept, and at each iteration, parent individuals are selected

by means of a tournament within a subset of the individuals in the population.

Figure 26. Averaged true positive rate for each iteration for each method

Figure 27. Averaged true negative rate for each iteration for each method

63

Both the GAs were tested using 50 individuals, with a tournament size of 10. The

minimum and maximum mutation probabilities (minp , maxp) for the presented IG based

method were set at 5% and 10% respectively while the mutation probability of the

conventional GA was set at 10%. The true positive rate and the true negative rate using

Naïve Bayes Multinomial (NBM) classifier with 10-fold cross validation was used as the

fitness function of both GA:

2

~ vv
v

RateTNRateTP
f


 (5.11)

This fitness function was used to alleviate fitness bias towards either true positives or

true negatives.

The GA were run for 200 iterations. Each method was executed 10 times with a

different random starting population and the final results were averaged. The averaged true

positive rates, true negative rates and Bayesian detection rates for each method, at each

iteration, are shown in Figure 26, Figure 27, and Figure 28 respectively

Figure 28. Averaged Bayesian detection rate for each iteration for each method

64

Table 10 shows the averaged final classification results with no dimensionality

selection. Both dimensionality selection methods performed better than when the full 1000

dimensions are used. The presented IG based method shows more than 3% improvement

over the conventional dimensionality selection method for true positive rate and the Bayesian

detection rate and an improvement of 1.5% for true negative rate.

5.5 CONCLUSION

This Chapter presented a novel Information Gain (IG) based dimensionality selection

methodology for text mining applications using Genetic Algorithms (GA). The presented

methodology dynamically varies mutation probability of bits in the chromosome according to

the IG of each dimension. This dynamic selective mutation enables selection of dimensions

that contribute to classification more effectively.

The presented methodology was applied to the software vulnerability identification

method discussed in this thesis. The presented methodology was applied to this text mining

problem and compared with a conventional genetic algorithm with static mutation

probabilities. The results show an increase of 3% for the true positives and the Bayesian

detection rate and an increase of 1.5% for the true negatives in 200 iterations.

In addition to the presented application to the HIB classification problem, the novel

IG based dimensionality selection method can be applied to other dimensionality selection

problems as well.

Table 10. Averaged classification results for each method.

Parameter

No

dimensionality

selection

Conventional GA

based dimensionality

selection

Presented IG based

dimensionality

selection

True Positive Rate 0.671 0.881 0.912

True Negative Rate 0.908 0.915 0.931

Bayesian Detection Rate 0.085 0.116 0.143

65

Chapter 6 CONCLUSION AND FUTURE WORK

This Chapter provides the final conclusions of the presented work and proposes

several directions for future work.

6.1 FINAL CONCLUSION

This thesis addressed the problem of identifying software vulnerabilities. In summary,

a novel framework was developed, that extracts and utilizes textual information in publically

available bug databases for identifying vulnerabilities. Several advancements of algorithms

were developed for more efficient information extraction and classification of vulnerabilities.

First, Chapter 2 introduced the phenomenon known as Hidden Impact Bugs (HIBs)

where a vulnerability is reported to a bug database as a bug before the full severity of that

vulnerability is discovered. The Chapter then followed with an analysis of HIBs existing in 2

commonly used commercially available software packages, namely the Linux Kernel and

MySQL Database Server. Chapter 2 also presented a novel framework for identifying

software vulnerabilities, by leveraging information in bug databases. The presented

framework extracts textual information of HIBs to classify whether a bug is a potential

vulnerability or not, as it is being reported.

Chapter 3 presented a text mining architecture that is able to extract textual

information from bug reports and convert the information in to a feature vector that can be

utilized by classification algorithms. The presented architecture extracts syntactical

information from bug reports and compresses the extracted information with minimal loss of

knowledge.

Chapter 4 investigated several classification algorithms and applied these algorithms

the presented textual information based vulnerability identification framework. The

classification algorithms were used to classify HIBs in Linux Kernel. The classification

results were then evaluated and the implications of these classification results in terms of

real-world use of the framework by a software development team were discussed.

66

Finally, in Chapter 5 , a novel dimensionality selection methodology is presented for

text document classification problems. The presented methodology utilizes relative

information gain of keywords to drive the mutation probability of an evolutionary algorithm.

The presented methodology was applied to the HIB classification problem for optimal

dimension extraction.

6.2 FUTURE WORK

This section summarizes 7 primary directions for future work: 1) further validating

the presented framework, 2) testing the presented framework on other software packages, 3)

further increasing classification accuracy, 4) understanding what key-words contribute to the

classification, 5) applying and validation of the developed dimensionality selection method

on other problem domains, 6) developing classification framework that is less susceptible to

dimensionality, training data set, and classifier, and 7) using the information gathered from

identifying vulnerabilities to increase the security of future software releases.

In order to accurately validate the presented framework, the set of bugs that are

classified by the framework as potential vulnerabilities must be examined to identify whether

these bugs are actual vulnerabilities. This can be done by either domain experts who will

closely examine the for possible security impact of these bugs, or by observing whether these

bugs will later be identified as vulnerabilities within a given time period. However, since

some bugs may be exploitable even though experts are unable to find vulnerabilities and as

shown in Chapter 2 some HIBs may take over an year to be correctly identified as

vulnerabilities correctly validating the presented framework will be difficult.

The presented framework should be tested on other commonly used software

packages. Although, as mentioned in Chapter 2, Linux Kernel and MySQL Database Server

are commonly used software packages that represent common commercial software, the

presented framework should be tested on a diverse set of software packages to fully identify

the capabilities and shortcomings of the presented framework. However, as mentioned in

Chapter 2, public information about software vulnerabilities is scarce and some commercial

vendors are reluctant to divulge such information.

67

The classification accuracy of the presented framework can be improved in two

different ways. First, the text mining methodologies can be improved to include inter-

relationships between words and differentiate certain multiword terms. However, this may

lead to a significant increase of the possible permutations for generating the feature vector.

Second, additional sources of information can be used to complement the classification

obtained by the presented framework. Additional sources of information may include other

information in bug reports, expert domain knowledge, static code analysis, text mining of

source code, etc.

Identifying the set of key-words that contribute to a bug being classified as a potential

vulnerability is an important step in better understanding vulnerabilities and further

improving classification accuracy. The set of key-words and their relationship may reveal

key features of the software package that are more vulnerable. Furthermore, this information

can be used to further increase the classification accuracy.

The novel method for dimensionality selection presented in Chapter 5 can be applied

to other text mining and non-text mining problems where dimensionality selection is

required. The usability and advantages of applying the method to other dimensionality

selection problems will be explored in the future.

A classification methodology that attempts to alleviate classification biases of ML

based classifiers due to sample size, dimensionality and classifier type will be developed.

The methodology relies on data-driven aggregation of results from multiple classifiers

trained from multiple sources.

Finally, the knowledge gathered from identifying vulnerabilities can be used to

increase the robustness and security of future software releases. Identifying what types of

vulnerabilities are most common and where most vulnerabilities occur can lead to

development teams taking pre-emptive action against potential future vulnerabilities.

Similarly, such information may help future distributions of software to be less vulnerable.

Furthermore, by examining bugs that are later identified as vulnerabilities it may be possible

to identify packages and source code that may later yield more vulnerabilities. Thus, bugs

originating from these packages can be given a higher priority.

68

REFERENCES

[Ahmed 08] M. F. Ahmed, S. S. Gokhale, “Linux Bugs: Life Cycle and Resolution

Analysis,” in Proc of Int. Conf. on Quality Software (QSIC 08), pp. 396-

401, Aug. 2008.

[Ahmed 09] M. F. Ahmed, S. S. Gokhale, “Linux Bugs: Life Cycle, Resolution and

Architectural Analysis,” in Information Software Technology, vol. 5, no.

11, pp. 1618-1627, Nov. 2009.

[Alhazmi 07] O. H. Alhazmi, Y. K. Malaiya, I. Ray “Measuring, analyzing and

predicting security vulnerabilities in software systems,” in Computers &

Security, vol. 26, no. 3, pp. 219-228, May 2007.

[Anvik 06] J. Anvik, L. Hiew, G. C. Murphy, “Who Should Fix This Bug?” in Proc.

of Int. Conf. on Software Engineering (ICSE 06), pp. 361-370, May

2006.

[Arnold 09] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage, G. Thomas, A.

Kaseorg, “Security Impact Ratings Considered Harmful,” in Proc. of

Conf. on Hot Topics in Operating Systems, USENIX, May 2009.

[Austin 11] A. Austin, L. Williams “One Technique is Not Enough: A Comparison

of Vulnerability Discovery Techniques,” in Proc. of Int. Symp. on

Empirical Software Engineering and Measurement (ESEM 11), pp. 97-

106, Sep. 2011.

[Axelsson 00] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion

detection,” in ACM Transactions on Information and System Security

(TISSEC), vol. 3, no. 3, pp. 186–205, Aug. 2000.

[Barber 12] D. Barber, Bayesian Reasoning and Machine Learning, Cambridge

University Press, New York, 2012.

[Basiri 09] M. E. Basiri, S. Nemati, “A novel hybrid ACO-GA algorithm for text

feature selection,”" in Proc. of IEEE Congress on Evolutionary

Computation, pp. 2561-2568, May 2009.

[Battiti 94] R. Battiti, “Using mutual information for selecting features in supervised

neural net learning,” in IEEE Trans. on Neural Networks, vol. 5, no. 4,

pp. 537-550, Jul 1994.

69

[Bell 11] R. M. Bell, T. J. Ostrand, E. J. Weyuker, “Does Measuring Code Change

Improve Fault Prediction?,” in Proc of Promise, Int. Conf. on Predictive

Models in Software Engineering, 2011.

 [Cotroneo 12] D. Cotroneo, R. Natella, R. Pietrantuono, “Predicting aging-related bugs

using software complexity metrics,” in Performance Evaluation, vol. 70,

no. 3, pp. 163-176, 2012.

[Cubranic 04] D. Cubranic, G. C. Murphy, “Automatic bug triage using text

categorization,” in Proc. of Int. Conf. on Software Engineering and

Knowledge Engineering, pp. 92-97, Jun. 2004.

[Espejo 10] P. G. Espejo, S. Ventura, F. Herrera, “A Survey on the Application of

Genetic Programming to Classification,” in IEEE Trans. on Systems,

Man, and Cybernetics, vol. 40, no. 2, pp. 121-144, Mar 2010.

[Fellbaum 98] C. Fellbaum, WordNet: An Electronic Lexical Database, MIT Press,

Cambridge, MA, 1998.

[Goldberg 89] D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning, Addison-Wesley Professional, 1989.

[Hartmann 82] C. R. P. Hartmann, P. K. Varshney, K. G. Mehrotra, C. Gerberich,

“Application of information theory to the construction of efficient

decision trees,” in IEEE Trans. on Information Theory, vol. 28, no. 4,

pp. 565-577, Jul. 1982.

[Ingersoll 13] G. S. Ingersoll, T. S. Morton, A. L. Farris, Taming Text: How to Find,

Organize and Manipulate it, Manning Publications, New York, 2013.

[Jain 97] A. Jain, D. Zongker, “Feature selection: evaluation, application, and

small sample performance,” in IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 19, no. 2, pp. 153-158, Feb 1997.

[Jeong 09] G. Jeong, S. Kim, T. Zimmermann, “Improving bug triage with bug

tossing graphs,” in Proc. of Joint Meeting of the European Software

Engineering Conf. and the ACM SIGSOFT, pp. 111–120, Aug. 2009.

[Kester 10] D. Kester, M. Mwebesa, J. S. Bradbury, “How Good is Static Analysis

at Finding Concurrency Bugs?” in Proc of IEEE Int. Working Conf. on

Source Code Analysis and Manipulation (SCAM 10), pp. 115-124, Sep.

2010.

[Khoo 10] W. M. Khoo, S. Aloteibi, R. Anderson, M. Meeks, “Hunting for

vulnerabilities in large software: the OpenOffice suite,” Cambridge

University press, Jun. 2010.

70

[Ko 06] A. J. Ko, B. A. Myers, D. H. Chau, “A Linguistic Analysis of How

People Describe Software Problems,” in Proc. of IEEE Symp. on Visual

Languages and Human-Centric Computing (VL/HCC 06), pp. 127-134,

Sep. 2006.

[Kratkiewicz 05] K. Kratkiewicz, R. Lippmann, “Using a Diagnostic Corpus of C

Programs to Evaluate Buffer Overflow Detection by Static Analysis

Tools,” in Proc of Workshop on the Evaluation of Software Defect

Detection Tools, pp. 62-71, Jun. 2005.

[Krsul 98] I. V. Krsul, “Software vulnerability analysis,” Ph.D. dissertation,

Purdue, May 1998. [Online]. Available:

http://ftp.cerias.purdue.edu/pub/papers/ivan-krsul/krsul-phd-thesis.pdf

[Lamkanfi 10] A. Lamkanfi, S. Demeyer, E. Giger, B. Goethals, “Predicting the

severity of a reported bug,” in Proc. of IEEE Working Conf. on Mining

Software Repositories (MSR 10), pp. 1-10, May 2010.

[Lamkanfi 11] A. Lamkanfi, S. Demeyer, Q. D. Soetens, T. Verdonck, “Comparing

Mining Algorithms for Predicting the Severity of a Reported Bug,” in

Proc. of European Conf. on Software Maintenance and Reengineering

(CSMR), pp. 249-258, Mar. 2011.

[Lamkanfi 11] A. Lamkanfi, S. Demeyer, Q. D. Soetens, T. Verdonck, “Comparing

Mining Algorithms for Predicting the Severity of a Reported Bug,” in

Proc. of European Conf. on Software Maintenance and Reengineering

(CSMR), pp. 249-258, Mar. 2011.

[Li 10] P. Li, B. Cui, “A comparative study on software vulnerability static

analysis techniques and tools,” in Proc. of IEEE Int. Conf. on

Information Theory and Information Security (ICITIS), pp. 521-524,

Dec. 2010.

[Li 11] L. Li, H. Leung, “Mining Static Code Metrics for a Robust Prediction of

Software Defect-Proneness,” in Proc. of Int. Symp. on Empirical

Software Engineering and Measurement (ESEM 11), pp. 207-214, Sep.

2011.

[Liu 98] H. Liu, H. Motoda, “Feature Extraction, Construction and Selection: A

Data Mining Perspectiv,” in The Springer International Series in

Engineering and Computer Science Series, vol. 453, 1998.

[Linda 14] O. Linda, D. Wijayasekara, M. Manic, M. McQueen, “Optimal

Placement of Phasor Measurement Units in Power Grids Using Memetic

71

Algorithms,” in Proc. IEEE Int. Symp. on Industrial Electronics,

(Accepted for publication), Jun. 2014.

[MITRE 14] MITRE Corporation (Mar. 2014), Common Vulnerabilities and

Exposures (CVE) [Online]. Available: http://cve.mitre.org/.

[Muharram 05] M. Muharram, G. D. Smith, “Evolutionary constructive induction,” in

IEEE Trans. on Knowledge and Data Engineering, vol. 17, no. 11, pp.

1518–1528, Nov. 2005.

[MySQL 14] MySQL Bugs (Mar. 2014) [Online] http://bugs.mysql.com/

[Neshatian 08] K. Neshatian, M. Zhang, “Genetic programming and class-wise

orthogonal transformation for dimension reduction in classification

problems,” in Proc. of European Conference on Genetic Programming,

Mar. 2008.

[Neuhaus 07] S. Neuhaus, T. Zimmermann, C. Holler, A. Zeller, “Predicting

Vulnerable Software Components,” in Proc. of ACM conference on

Computer and communications security, pp. 529-540, 2007.

[Neuhaus 09] S. Neuhaus, T. Zimmermann, “The Beauty and the Beast:

Vulnerabilities in Red Hat’s Packages,” in Proc. of the 2009 USENIX

Annual Technical Conference (USENIX ATC), 2009.

[Noll 11] J. Noll, S. Beecham, D. Seichter, “A Qualitative Study of Open Source

Software Development: the OpenEMR Project,” in Proc. of Int. Symp.

on Empirical Software Engineering and Measurement (ESEM 11), pp.

30-39, Sep. 2011.

[Otero 03] F. E. B. Otero, M. M. S. Silva, A. A. Freitas, J. C. Nievola, “Genetic

Programming for Attribute Construction in Data Mining,” in Proc. of

European Conference on Genetic Programming, pp. 384-393, Apr 2003.

[Ozment 07] A. Ozment, “Vulnerability discovery and software security,” Ph.D.

dissertation, University of Cambridge Computer Laboratory, 2007.

[Porter 80] M. F. Porter, “An algorithm for suffix stripping,” in Program, vol. 14,

no. 3, pp. 130-137, 1980.

[Prifti 11] T. Prifti, S. Banerjee, B. Cukic, “Detecting Bug Duplicate Reports

through Local References,” in Proc of Int. Conf. on Predictive Models in

Software Engineering (PROMISE 11), pp. 8:1-8:9, Sep. 2011.

[Quinlan 93] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan

Kaufmann Publishers, 1993.

72

[Raymer 00] M. L. Raymer, W. L. Punch, E. D. Goodman, L. A. Kuhn, A. K. Jain,

“Dimensionality reduction using genetic algorithms,” in IEEE Trans. on

Evolutionary Computation, vol. 4, no. 2, pp. 164-171, Jul 2000.

[Redhat 14] Redhat, Inc. (Mar. 2014), Redhat Bugzilla Main Page [Online].

Available: https://bugzilla.redhat.com/.

[Runeson 07] P. Runeson, M. Alexandersson, O. Nyholm, “Detection of Duplicate

Defect Reports Using Natural Language Processing,” in Proc. of Int.

Conf. on Software Engineering (ICSE 2007), pp. 499-510, May 2007.

[Safavian 91] S. R. Safavian, D. Landgrebe, “A survey of decision tree classifier

methodology,” in IEEE Trans. on Systems, Man and Cybernetics, vol.

21, no. 3, pp. 660-674, May/Jun. 1991.

[Schumacher 00] M. Schumacher, C. Haul, M. Hurler, A. Buchmann, “Data Mining in

Vulnerability Databases,” in Proc of 7th Workshop Sicherheit in

vernetzten Systemen, Mar. 2000.

[Sebastiani 02] F. Sebastiani, C. N. D. Ricerche, “Machine learning in automated text

categorization,” in ACM Computing Surveys, vol. 34, pp. 1-47, 2002.

[Simon 13] D. Simon, Evolutionary Optimization Algorithms - Biologically Inspired

and Population-Based Approaches to Computer Intelligence, Wiley,

New Jersey, 2013.

[Shahmehri 12] N. Shahmehri, A. Mammar, E. Montes de Oca, D. Byers, A. Cavalli, S.

Ardi, W. Jimenez, “An advanced approach for modeling and detecting

software vulnerabilities,” in Information and Software Technology, vol.

54, pp. 997-1013, 2012.

[Shannon 48] C. E. Shannon, “A Mathematical Theory of Communication,” in Bell

System Technical Journal, vol. 27, pp. 379-423 & 623-656, Jul./Oct.

1948.

[Torri 10] L. Torri, G. Fachini, L. Steinfeld, V. Camara, L. Carro, É. Cota, “An

Evaluation of Free/Open Source Static Analysis Tools Applied to

Embedded Software,” in Proc of Latin American Test Workshop (LATW

10), pp. 1-6, Mar. 2010.

[Uguz 11] H. Uguz, “A two-stage feature selection method for text categorization

by using information gain, principal component analysis and genetic

algorithm,” in Knowledge-Based Systems, vol. 24, no. 7, pp. 1024-1032,

Oct. 2011.

73

[Venter 04] H. S. Venter, J. H. P. Eloff, “Vulnerability forecasting a conceptual

model,” in Computers & Security, vol. 23, no. 6, pp 489-497, Sep. 2004.

[Wang 08] X. Wang, L. Zhang, T. Xie, J. Anvik, J. Sun, “An Approach to Detecting

Duplicate Bug Reports using Natural Language and Execution

Information,” in Proc. of Int. Conf. on Software Engineering (ICSE 08),

pp. 461-470, May 2008.

[Wen 07] J. Wen; Z. Li, “Semantic Smoothing the Multinomial Naive Bayes for

Biomedical Literature Classification,” in Proc. IEEE Int. Conf. on

Granular Computing, pp. 648-648, Nov. 2007.

[Wenke 01] L. Wenke X. Dong, “Information-theoretic measures for anomaly

detection,” in Proc. of IEEE Symp. on Security and Privacy, pp. 130-

143, 2001.

[Wijayasekara 11] D. Wijayasekara, M. Manic, P. Sabharwall, V. Utgikar, “Optimal

artificial neural network architecture selection for performance

prediction of compact heat exchanger with the EBaLM-OTR technique,”

in Nuclear Engineering and Design, vol. 241, no. 7, pp. 2549–2557, July

2011.

[Wijayasekara 12] D. Wijayasekara, M. Manic, J. L. Wright, M. McQueen “Mining Bug

Databases for Unidentified Software Vulnerabilities,” in Proc. of Intl.

IEEE Intl. Conference on Human System Interaction (HSI), Jun. 2012.

[Wijayasekara 13] D. Wijayasekara, M. Manic, M. McQueen, “Information Gain Based

Dimensionality Selection for Classifying Text Documents,” in Proc. of

IEEE Congress on Evolutionary Computation (IEEE CEC), Jun. 2013.

[Wright 13] J. L. Wright, J. W. Larsen, M. McQueen, “Estimating Software

Vulnerabilities: A Case Study Based on the Misclassification of Bugs in

MySQL Server,” in Proc. of Int. Conf. on Availability, Reliability and

Security (ARES), pp. 72-81, Sep. 2013.

[Wu 11] L. Wu, B. Xie, G. Kaiser, R. Passonneau, “BugMiner: Software

Reliability Analysis Via Data Mining of Bug Reports,” in Proc. of Int.

Conf. on Software Engineering and Knowledge Engineering (SEKE), pp.

95-100, Jul. 2011.

[Yamaguchi 11] F. Yamaguchi, F. 'FX' Lindner, K. Rieck, “Vulnerability Extrapolation:

Assisted Discovery of Vulnerabilities using Machine Learning,” in Proc.

of USENIX Workshop on Offensive Technologies (WOOT), Aug. 2011.

74

[Yang 97] Y. Yang, J. O. Pedersen, “A comparative study on feature selection in

text categorization,” in Proc. of Int. Conf. on Machine Learning, pp.

412–420, 1997.

[Zhanga 12] R. Zhanga, S. Huanga, Z. Qi, H. Guan, “Static program analysis assisted

dynamic taint tracking for software vulnerability discovery,” in

Computers and Mathematics with Applications, vol. 63, pp. 469-480,

2012.

[Zitser 04] M. Zitser, R. Lippmann, T. Leek “Testing Static Analysis Tools Using

Exploitable Buffer Overflows From Open Source Code,” in Proc. of Int.

Symp. on Foundations of Software Engineering (FSE 04), ACM

SIGSOFT, pp. 97–106, Nov. 2004.

75

APPENDIX A – LIST OF PUBLICATIONS

This appendix presents an overview of the author’s published or submitted journal

and peer-reviewed conference publications.

76

JOURNAL PUBLICATIONS

[1] D. Wijayasekara, M. Manic, P. Sabharwall, V. Utgikar, “Optimal artificial neural

network architecture selection for performance prediction of compact heat exchanger

with the EBaLM-OTR technique,” in Nuclear Engineering and Design, vol. 241, no. 7,

pp. 2549–2557, July 2011.

 Abstract: Artificial Neural Networks (ANN) have been used in the past to predict the performance of

printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has

focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate

it. Although this may produce outputs that agree with experimental results, there is a risk of over-training

or overlearning the network rather than generalizing it, which should be the ultimate goal. An over-trained

network is able to produce good results with the training dataset but fails when new datasets with subtle

changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-

Marquardt algorithms for over training resilience) technique, which is based on a previously discussed

method of selecting neural network architecture that uses a separate validation set to evaluate different

network architectures based on mean square error (MSE), and standard deviation of MSE. The method

uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the

dataset is divided into three parts which are used to train, validate and test each network architecture. Then

each architecture is evaluated according to their generalization capability and capability to conform to

original data. The method proved to be a comprehensive tool in identifying the weaknesses and

advantages of different network architectures. The method also highlighted the fact that the architecture

with the lowest training error is not always the most generalized and therefore not the optimal. Using the

method the testing error achieved was in the order of magnitude of within 10−5–10−3. It was also show

that the absolute error achieved by EBaLM-OTR was an order of magnitude better than the lowest error

achieved by EBaLM-THP.

PEER-REVIEWED CONFERENCE PUBLICATIONS

[2] D. Wijayasekara, M. Manic, J. L. Wright, M. McQueen “Mining Bug Databases for

Unidentified Software Vulnerabilities,” in Proc. of Intl. IEEE Intl. Conference on

Human System Interaction (HSI), Jun. 2012.

 Abstract: Identifying software vulnerabilities is becoming more important as critical and sensitive

systems increasingly rely on complex software systems. It has been suggested in previous work that some

bugs are only identified as vulnerabilities long after the bug has been made public. These vulnerabilities

are known as hidden impact vulnerabilities. This paper discusses existing bug data mining classifiers and

present an analysis of vulnerability databases showing the necessity to mine common publicly available

bug databases for hidden impact vulnerabilities. We present a vulnerability analysis from January 2006 to

April 2011 for two well known software packages: Linux kernel and MySQL. We show that 32% (Linux)

and 62% (MySQL) of vulnerabilities discovered in this time period were hidden impact vulnerabilities.

We also show that the percentage of hidden impact vulnerabilities in the last two years has increased by

53% for Linux and 10% for MySQL. We then propose a hidden impact vulnerability identification

methodology based on text mining classifier for bug databases. Finally, we discuss potential challenges

faced by a development team when using such a classifier.

77

[3] D. Wijayasekara, M. Manic, M. McQueen, “Information Gain Based Dimensionality

Selection for Classifying Text Documents,” in Proc. of IEEE Congress on Evolutionary

Computation (IEEE CEC), Jun. 2013.

 Abstract: Selecting the optimal dimensions for various knowledge extraction applications is an essential

component of data mining. Dimensionality selection techniques are utilized in classification applications

to increase the classification accuracy and reduce the computational complexity. In text classification,

where the dimensionality of the dataset is extremely high, dimensionality selection is even more

important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection

in text mining applications that utilizes information gain. The presented methodology uses information

gain of each dimension to change the mutation probability of chromosomes dynamically. Since the

information gain is calculated a priori, the computational complexity is not affected. The presented

method was tested on a specific text classification problem and compared with conventional genetic

algorithm based dimensionality selection. The results show an improvement of 3% in the true positives

and 1.6% in the true negatives over conventional dimensionality selection methods.

