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ABSTRACT 

 

Software vulnerabilities are mistakes in software such that its execution can violate 

the security policy. Software vulnerabilities are an increasing security focus as critical and 

sensitive systems become dependent on complex software systems. Therefore, discovering 

these vulnerabilities as early as possible is of extreme importance. Hidden Impact Bugs 

(HIBs) are vulnerabilities identified as such, only after the related bug had been publically 

disclosed. This thesis provides a framework for identifying software vulnerabilities via HIBs 

using information extracted from publically available bug databases. 

The contributions of this thesis are four fold: 1) the concept of HIBs is introduced and 

the existence of HIBs in software is shown, 2) methodology for identifying software 

vulnerabilities using textual information from bug databases is presented, 3) information 

extraction and compression methodologies specific to extracting information from bug 

databases is provided, 4) a novel methodology for determining the optimal set of dimensions 

for classification is presented. 
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Chapter 1 INTRODUCTION 

 

Software vulnerabilities can be defined as “an instance of a mistake in the software 

such that its execution can violate the explicit or implicit security policy” [Krsul 98], 

[Ozment 07], [Wright 13]. New software vulnerabilities are discovered in commercial, large 

scale software every day [Ventor 04]. The actual number of vulnerabilities existing in a 

software package at a given time is not known and the fact that whether a software package 

gets more secure over time is still debated [Wright 13]. Furthermore, it has been shown that 

the number of unidentified vulnerabilities in a given software package might be significantly 

higher than previously estimated [Wright 13]. 

Recent trend towards automation and interconnection in infrastructure has lead to 

critical and sensitive systems which operate critical infrastructure becoming increasingly 

dependent on complex software systems. Thus, the possibility of software vulnerabilities that 

threaten the security and integrity of critical infrastructure has sparked an increasing security 

focus towards identifying software vulnerabilities [Wijayasekara 12]. Discovering these 

software vulnerabilities as early as possible, at every stage of the software lifecycle, is 

therefore of extreme importance. 

Various methodologies for identifying software vulnerabilities during the software 

development phase and during operation phases has been suggested [Wijayasekara 12]. 

However, it has been shown that these methods are not capable of identifying all existing 

vulnerabilities in software and there is significant room for improvement [Wijayasekara 12], 

[Austin 11], [Torri 10]. Furthermore, it has been shown that a significant portion of the 

available tools and methods have a false-positive rate that may overwhelm the identified set 

of vulnerabilities [Zitser 04]. 

Therefore, this thesis presents a novel methodology that utilizes textual information in 

publically available bug databases, to identify software vulnerabilities that have not yet been 

identified as such. The presented methodology utilizes information extracted from bug 

reports that have been later identified to be vulnerabilities [Arnold 09]. This phenomenon, 

where a vulnerability is reported to a bug database as a bug before the full severity of that 

vulnerability is discovered, is known as Hidden Impact Bugs (HIBs) [Arnold 09], 
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[Wijayasekara 12]. Thus, relevant information extracted from HIBs can be used to classify 

bugs as potential vulnerabilities as they are being reported to bug databses.  

The remainder of this Chapter describes the organization of this thesis, and then 

briefly outlines the contributions of this thesis. 

 

1.1 ORGANIZATION OF THE THESIS 

Chapter 2 provides an overview of HIBs and bug databases. The Chapter starts by 

defining the HIBs and other relevant terms related to HIBs and the work presented in this 

thesis. An overview of typical publically available bug databases in then provided. The 

Chapter follows with an analysis of HIBs existing in commonly used commercially available 

software packages. The analysis was performed on 2 commonly used software packages, 

namely the Linux Kernel and MySQL Database Server. A novel framework for identifying 

software vulnerabilities by leveraging information extracted from HIBs is then presented in 

this Chapter. Finally, the Chapter is concluded by reviewing HIBs and the existence of HIBs 

in commonly used software, and possible implications of HIBs in these software.  

Chapter 3, first, introduces text mining for information extraction from textual 

documents. Each step of the text mining process is then detailed along with their necessity 

and importance. Text mining of bug databases for extracting various types of information 

that have been previously done is reviewed next. Next, algorithms and tools used specifically 

for text mining bug databases in order to identify software vulnerabilities are discussed. The 

Chapter is concluded by identifying the importance of each text mining step and how it can 

affect classification accuracy for the problem discussed in this thesis. 

Chapter 4 details the classification and evaluation of the software vulnerability 

identification method that was presented in the previous Chapter. First, details of the 

different classification algorithms that were used are provided. Then, the specific 

experimental setup along with evaluation metrics used to compare classifiers are discussed. 

The problem associated with classification of differently proportioned classes, called the 

base-rate fallacy is discussed next. The implications of the base-rate fallacy and the Bayesian 

detection rate of the presented classifiers are also discussed in this Chapter. The experimental 

results from classification are presented next. Finally, this Chapter is concluded by discussing 
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the classification results and possible improvements that can be made to further increase the 

classification accuracy. 

Chapter 5 presents a novel Information Gain (IG) based dimensionality selection 

method for text mining applications. The presented method utilizes the relative Information 

Gain, and Genetic Algorithms (GA) to extract the optimal set of dimensions for 

classification. This Chapter first discusses the dimensionality selection problem in text 

mining applications, and details problems associated to the vulnerability identification 

problem discussed in this thesis. Then, background information about Genetic Algorithms 

(GA) and Information Gain (IG) is presented. The novel, Information Gain based 

dimensionality method is detailed next. The presented method was applied to the problem of 

text mining bug database for identifying vulnerabilities, and the experimental setup and 

results are detailed next. Finally, Chapter 5 is concluded by discussing the importance of 

dimensionality selection and other possible improvements to the presented method. 

Finally, Chapter 6 provides overall conclusions and suggests directions for future 

work. 

 

1.2 CONTRIBUTIONS OF THE THESIS 

The primary contributions of this thesis are four fold.  

First, the concept of Hidden Impact Bugs (HIBs) is introduced and an analysis of 

HIBs in 2 commonly used software packages is performed exposing the existence of HIBs, 

as well as a trend towards an increase of HIBs. 

Second, a novel methodology for identifying software vulnerabilities that are yet to 

be identified, using textual information extracted from publically available bug databases is 

presented. The presented method utilizes information in bug reports that were later identified 

to be vulnerabilities (HIBs). 

Third, textual information extraction and compression methodologies specific to 

extracting information from bug databases is provided. The presented methods identify and 

extract syntactical information of bug reports in the form of words and compress the 

extracted information with minimal loss of information and generate feature vectors that can 

be read by classification algorithms. 
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Fourth, a novel methodology that utilizes information theory for determining the 

optimal set of dimensions for text mining based classification is presented. The presented 

method identifies the optimal set of words for classification using genetic algorithms driven 

by information gain. 

The presented framework and methodologies are tested using bug databases for two 

commonly used, large scale software distributions, namely the Linux Kernel and the MySQL 

Database Server. 

 



5 

 

 

Chapter 2 HIDDEN IMPACT BUGS 

 

This Chapter first provides a background overview of software vulnerabilities and 

current methods of detecting software vulnerabilities. Second, Hidden Impact Bugs (HIBs) 

are introduced, followed by explanation misclassified bugs and impact delay. Next, bug 

databases and details of bug reports along with the life cycle of bugs are discussed. HIBs in 

commonly used software are analyzed next, showing the significant presence of HIBs, and a 

trend towards increasing HIBs. Finally, a framework for identifying software vulnerabilities 

using information extracted from HIBs is proposed. 

 

2.1 SOFTWARE VULNERABILITIES 

Software vulnerabilities can be defined as “an instance of a mistake in the 

specification, development, or configuration of software such that its execution can violate 

the explicit or implicit security policy” [Krsul 98], [Ozment 07], [Wright 13]. Thus, all 

software defects are not vulnerabilities. Further, as per the definition, software vulnerabilities 

are a subset of software defects also known as software bugs. However, the limiting factor 

that differentiates software vulnerabilities from software bugs is the security impact of 

vulnerabilities [Wright 13]. 

Since it is impossible to guarantee the absence of defects in any software, it is safe to 

assume vulnerabilities can be present in software that are used in critical and sensitive 

systems [Shahmehri 12]. Furthermore, many researchers believe that about 5% of all 

software defects are vulnerabilities [Shahmehri 12], and it has been shown that the actual 

number of vulnerabilities that exist in software may be 5 to 7 times the number of already 

known vulnerabilities [Wright 13]. 

Thus, quick and correct identification of vulnerabilities lead to reducing the time that 

critical systems are vulnerable to attack. Furthermore, vulnerability discovery enables 

efficient resource allocation for patch creation as well as threat mitigation and can be used 

for risk assessment and fault tolerance assessment of systems [Shahmehri 12]. 
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2.1.1 METHODS FOR IDENTIFYING SOFTWARE VULNERABILITIES 

Software vulnerability discovery is largely focused on source code analysis. The 

source code based vulnerability discovery methodologies can be divided into two groups: 1) 

text mining source code, and 2) static code analysis. 

Yamaguchi et al. used text mining techniques to extract API symbols and discover 

usage patterns in source code [Yamaguchi 11]. The extracted information was then converted 

to a feature vector and supervised machine learning algorithms were used to identify 

vulnerabilities. The method was tested on 420 functions in the Linux Kernel. However, the 

classification results were shown to be below expectations [Yamaguchi 11].  

Significant portion of previous studies on vulnerability discovery focus on static code 

analysis and static code analysis tools. However, it has been shown that there are no 

universal static analysis tools that can provide satisfactory results for vulnerability discovery 

by itself [Kester 10], [Li 10], [Austin 11]. The existing tools are also very difficult to use 

because of the large size of software distributions [Khoo 10].  

In [Torri 10], Torri et al. evaluated 10 free and open source static code analysis tools 

on embedded C programs. It was found that while the results were very poor, even the best 

performing tool needed to be tweaked extensively to produce good results. Therefore, this 

approach was impractical for use in vulnerability discovery in the software development 

process [Torri 10]. Similarly, in [Li 10], Li and Cui compared 7 free and open source static 

analysis tools and concluded that each by itself did not provide a satisfactory discovery of all 

vulnerabilities. Thus, it was proposed that either a variety of tools be used to compensate for 

the deficiencies of each tool, or a combination of dynamic and static analysis methods should 

be used [Li 10]. Kratkiewicz and Lippmann tested 5 different static code analysis tools on 

291 small C programs in [Kratkiewicz 05]. It was shown that while some tools were 

accurate, others were not. Thus it was concluded that it is difficult to select a static analysis 

tool that will provide good results and more complex test cases may be even difficult to 

analyze [Kratkiewicz 05]. In [Kester 10] the authors tested 3 static code analysis tools on 12 

example programs and showed that the tools does not provide good results and therefore 

conclude that use of a combination multiple methods is more suited [Kester 10]. 

Zitser et al. tested five static analysis tools on three open source programs [Zitser 04]. 

The authors report low detection rates for most of the tools. Furthermore, it was shown that 
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the best performing tools reported very high false positive rates (false alarm for every 12 to 

46 lines of source code) [Zitser 04]. Thus even with high rate of vulnerability identification, 

the tested static code analysis tools may not provide useful information as the user will be 

overwhelmed by the large number of false positives. 

Li and Leung used machine learning techniques to identify software defects in source 

code using static code metrics [Li 11]. 

Other features in the code such as imports, function calls, dependencies between 

packages have been used for vulnerability prediction [Neuhaus 07], [Neuhaus 09], 

[Shahmehri 12]. In [Neuhaus 07] the authors discovered that vulnerable components may 

share similar sets of imports and function calls. Thus, the authors suggest the use of these 

metrics along with machine learning based classifiers to predict vulnerable components. In 

[Venter 04] the authors used historical data to predict where the next vulnerability might 

occur. Various related metrics such as vulnerability density metrics, code-churn, code-

complexity and developer activity have been used for vulnerability and fault discovery aw 

well [Alhazmi 09], [Bell 11]. Dynamic taint analysis has also been proposed to be used for 

vulnerability discovery in recent years [Zhanga 12]. 

Austin and Williams showed that no single technique was able to discover every type 

of vulnerability by itself and therefore, a combination of methods may be the optimal means 

of vulnerability discovery [Austin 11]. 

Schumacher et al. showed the importance of gathering information from vulnerability 

databases to aid the discovery of vulnerabilities in software [Schumacher 00].  

Thus, existing methods fail to identify software vulnerabilities with satisfactory 

accuracy. While researchers suggest various methods, none of them alone can identify all 

vulnerabilities and there is room for improvement in vulnerability discovery methodologies. 

 

2.2 HIDDEN IMPACT BUGS (HIBS) 

This section first introduces the concept of Hidden Impact Bugs (HIBs) and impact 

delay. Next, the implications of HIBs in bug databases are discussed. 
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2.2.1 DEFINITION OF HIDDEN IMPACT BUGS (HIBS) 

Hidden Impact Bugs (HIBs) can be defined as those vulnerabilities identified as such 

only after the related bug had been disclosed to the public [Arnold 09], [Wijayasekara 12]. 

Thus, these vulnerabilities are disclosed to the public before being identified as having a high 

security impact and being labeled as vulnerabilities. The disclosure can be via bug reports 

reported to bug databases or bug patches that are distributed by the software vendor 

[Wijayasekara 12]. 

Therefore, in the case of HIBs, even though a software vulnerability is known to the 

community in the form of a bug, it may not be as quickly fixed by developers, and if a patch 

is available, it may not be applied in an appropriately timely fashion by end-users, because 

the security implication of the bug has not been correctly identified [Arnold 09], 

[Wijayasekara 12]. 

The time period from which the public disclosure occurs to the identification of the 

true security impact of the HIB is called the impact delay [Arnold 09], [Wijayasekara 12]. 

The timeline of a HIB and the impact delay is depicted in Figure 1. This time period is 

crucial since during this time systems that use the software package are vulnerable to outside 

threats. Because the bug that causes the vulnerability has already been identified, this time 

can be reduced if the security implications of the bug are identified as it is reported to the bug 

database. Furthermore, intelligent adversaries may identify the security implications by 

monitoring bug databases and use the information to attack critical and sensitive systems 

during the impact delay. 

 

 

 

Figure 1. Timeline of Hidden Impact Bugs and impact delay 
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2.2.2 HIDDEN IMPACT BUGS AND MISCLASSIFIED BUGS IN BUG DATABASES 

As mentioned in the previous section, some vulnerabilities are reported as bugs to bug 

databases, and are not identified vulnerabilities till later. Figure 2 shows a Venn diagram of 

software bugs, in terms of vulnerabilities, bug reports, and HIBs. While the proportions of 

the figure might not be accurate, it clearly depicts the problem domain discussed in this 

thesis. 

According to the definition of HIBs, HIBs were reported as bug and later identified as 

vulnerabilities. Thus, HIBs reside in the intersection between identified vulnerabilities and 

bug reports. 

However, the intersection between all the vulnerabilities of the software and bug 

reports is much larger. This is because some vulnerabilities that have not yet been identified 

reside in the bug database as bug reports. These bugs have been misclassified as typical bugs 

and their true security impact has not yet been identified. Furthermore, it has been shown that 

the number of misclassified bugs has been significantly underestimated and is much larger 

than previously thought [Wright 13].  

 

Figure 2. HIBs in bug databases 
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Therefore, it might be possible to leverage the information that is stored in bug 

databases as HIBs, to automatically identify the set of misclassified bugs. Furthermore, this 

information can also be used to identify the true security impact of a bug while it is being 

reported to the bug database, thus reducing the impact delay and the time period that critical 

systems are vulnerable to attacks [Wijayasekara 12]. 

 

2.3 BUG DATABASES 

Bug databases for software are kept in order to keep track of the bugs existing in the 

software and identifying which bugs are patched. Publically available bug databases benefit 

from information provided by typical software users with a diverse set of technical 

backgrounds as well as programmers and developers [Noll 11]. These bug databases enable 

developers to identify previously unidentified bugs in the software and at the same time users 

can track the resolution process of each bug.  

Table 1. Number of bugs reported to the Redhat Bugzilla bug database 

Year 
Number of bug 

reports 

Number of bug 

reports per day 

From Nov. 1998 336 5.5 

1999 3,788 10.4 

2000 5,846 16 

2001 7,839 21.5 

2002 9,200 25.3 

2003 8,497 23.3 

2004 11,951 32.7 

2005 12,428 34 

2006 15,249 41.8 

2007 17,217 47.2 

2008 20,817 57.0 

2009 26,950 73.8 

2010 43,120 118.1 

To April 2011 17,616 146.8 

Unknown 2108 - 

Total 202,896 44.3 
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It has been shown that these bug databases are extremely useful in increasing the 

quality and reliability of software as well as containing vital information that can be used for 

various purposes such as improving future design requirements [Ko 06], gathering vital 

feedback from users [Noll 11], and improving software reliability [Ahmed 08], [Ahmed 09]. 

In this section, bug reports from the Redhat Bugzilla bug database are analyzed 

[Redhat 14]. The Redhat Bugzilla bug database was selected because: 1) it is one of the most 

extensive bug databases available, 2) all other Bugzilla bug databases generally follow the 

same format, and 3) most of the Linux vulnerabilities that is examined in this thesis are 

related to bugs in the Redhat Bugzilla database. Although the Redhat Bugzilla database “is 

not an avenue for technical assistance or support, but simply a bug tracking system” [Redhat 

14], it has been shown that certain details in the bug reports can be used for various forms of 

classification as mentioned in Section 3.1 [Lamkanfi 10], [Lamkanfi 11], [Ko 06]. 

 

Figure 3. Number of bugs reported to the Redhat Bugzilla bug database 

 

Figure 4. Number of bugs reported per day in the Redhat Bugzilla bug database 
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As of April 2011, the Redhat Bugzilla bug database contained 202,896 entries. The 

first bug, which is a test bug report, was added to the database on the 1
st
 of November 1998. 

Table 1 shows the distribution of bugs per year and the mean number of bugs per day in the 

Redhat Bugzilla bug database. As shown by Figure 3 and Figure 4, the number of bugs 

reported as well as the number of bugs reported per day has been steadily increasing through 

the years. This might be due to the fact that mature releases of the same software tend to have 

more bugs reported [Ahmed 09]. A similar overview of the MySQL database server bug 

reports can be found in [Wright 13]. 

 

2.3.1 BUG REPORTS 

A bug may be reported to a bug database by a typical user of the software package, a 

software developer, or an automated bug reporter. Before reporting, it is the responsibility of 

the bug reporter to search whether the bug has occurred before and reported to a bug 

database. Furthermore, the reporter has to provide a clear description of the bug, so that the 

development team is able to patch it within an appropriate time frame. 

 

Figure 5. Typical bug report in the Redhat Bugzilla bug database 
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Once a bug is reported to the bug database, it is first reviewed and the reported bug is 

assigned a bug ID, which is a unique identifier. The bug is then entered in to the bug 

resolution process (Section 2.3.2 details the typical life cycle of a bug).  

Figure 5 shows a typical bug report that was reported to the Redhat Bugzilla bug 

database. When a bug is reported, the reporter can assign different parameters to the bug 

report as he or she sees fit. These parameters include terms such as severity, priority, product, 

component and keywords. During the life cycle of the bug, these parameters may be changed 

according to its nature and severity, and increased understanding of the impact of the bug.  

Apart from these set parameters, the person who reports the bug must provide a title 

for the bug which is known as the short description of the bug. As the name suggests it is a 

short description of the bug that gives an overall understanding of the bug. A long description 

of the bug is also provided by the user that should describe the bug in more detail. Depending 

on expertise and the requirements of the bug reporter the long description may include code 

snippets, how to recreate the bug, how often can the bug be recreated, the specifications of 

the hardware setup etc., which are meant to enable the developer to more easily identify and 

rectify the bug. Furthermore, in some cases, especially for automated bug reports, a memory 

dump is also attached to the long description of the bug report. 

Comments can also be added by users and administrators to convey the progress and 

development of the bug fix or other relevant facts. 

 

2.3.2 BUG LIFE CYCLE 

A bug is assigned a status which describes the current position of the bug in the bug 

resolution process. The status of the bug changes according to the position of the bug in the 

life cycle, thus allowing users and the development team to be informed on the progress of 

the bug fix.  

Once a bug is reported, the development team needs to identify whether the bug is 

actually a bug and it has not been reported before. Since some bug reports are actually 

feature requests and some faults might not be bugs in the software [Wright 13], initially a 

bug is assigned an “unconfirmed” tag. 
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If the reported bug is confirmed as a bug, then it is entered into the bug resolution 

process. During this process the development team has to correctly identify the severity of 

the bug in order to prioritize it among the set of bugs to be fixed. Although the bug reporter 

initially assigns a severity and priority for a bug, this has been shown to be extremely 

subjective and incorrect at times, and therefore, cannot be relied upon [Arnold 09], 

[Lamkanfi 10].  

Once the severity has been identified, the correct person that is responsible for the 

bug is identified and assigned to the bug. That person then either resolves the bug or redirects 

the bug to a different person if the assignment was incorrect. 

The basic bug life cycle of a reported bug is shown in Figure 6. 

Thus, each of the steps in the bug resolution process increases the time it takes to fix a 

bug. Furthermore, if the true security impact of the bug is identified as the bug was reported 

to the bug database, it is safe to assume that the time taken to resolve the bug will be 

significantly reduced [Wijayasekara 12]. 

 

2.4 HIDDEN IMPACT BUGS IN COMMONLY USED SOFTWARE 

HIBs in commonly used software packages are identified and analyzed in this section. 

The software packages tested were Linux Kernel and MySQL Database Server. These 

software were chosen for: 1) their wide spread usage, 2) public availability of bug databases, 

 

Figure 6. Typical bug life cycle of a Bugzilla bug report 
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3) large number of reported bugs, 4) public availability of vulnerability databases, and 5) 

large number of reported vulnerabilities. 

Both Linux Kernel and MySQL server have been widely used as they are distributed 

as free and open source software. Furthermore, many other software use these software 

packages as their components or as their base, thus increasing the potential corpus of affected 

software for a given vulnerability. 

 

2.4.1 SELECTING HIBS 

The MITRE Common Vulnerabilities and Exposures (CVE) vulnerability database 

[MITRE 14] was chosen as the vulnerability database for both Linux Kernel and MySQL 

Database Server. The MITRE CVE database was chosen for its: 1) ease of access, 2) the 

larger number of vulnerabilities reported, and 3) clear information about the reported date 

and bugs associated with a vulnerability. 

For each software package analyzed, vulnerabilities were divided into two groups 

depending on when they were first reported: 1) time period from the 1st of January 2006 to 

the 31st of December 2008, which will be hereafter referred to as the first time period and 2) 

the time period from the 1st of January 2009 to the 30th of April 2011 which will be 

hereafter referred to as the second time period. The first time period corresponds to the time 

period studied by Arnold et al. in [Arnold 09]. The second time period is the time from the 

end of the first time period to the time the dataset was extracted from the bug and 

vulnerability databases for this study. 

For analyzing the number of HIBs existing in software, a conservative approach was 

taken when selecting the vulnerabilities. Thus, specific rules were applied to the vulnerability 

database selecting only the vulnerabilities that affected: 1) multiple processors, 2) multiple 

distributions and 3) vulnerabilities that affected a certain version of the software package and 

above, were selected from the vulnerability database for the two time periods. Vulnerabilities 

that affected only a single processor were excluded because these vulnerabilities affect only a 

small subset of users and it is difficult to clarify whether they were caused by necessarily a 

software issue. Similarly, vulnerabilities that affected only one distribution were excluded 
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because of their low impact. A version cut-off was used to eliminate counting older 

vulnerabilities that might not be relevant to current software version. 

The public disclosure time for HIB identification was the time a patch was released 

for the bug related to the vulnerability. Furthermore, only vulnerabilities with an impact 

delay of at least 2 weeks were selected as HIBs. 

 

2.4.2 HIBS IN THE LINUX KERNEL 

Table 2 shows the HIBs and the vulnerabilities identified for the Linux Kernel using 

the above mentioned metrics. A combined total of 403 vulnerabilities were identified for the 

Linux Kernel in the two time periods. Out of these vulnerabilities, 129 (32%) were HIBs. 

Furthermore, nearly 15% of the vulnerabilities were HIBs with at least 8 weeks impact delay, 

meaning that the true impacts of these bugs were only identified 2 months after their public 

disclosure. 

The total number of vulnerabilities in the second time period was 185, which is a 15% 

reduction from the first time period. However, the number of vulnerabilities with at least 2 

weeks of impact delay increased from 56 (25%) to 73 (39%). 

Thus, while nearly a third of the vulnerabilities reported from 2006 to 2011 were 

HIBs, the number and the percentage of HIBs has increased from the first time period to the 

second time period. 

Table 2. Hidden Impact Bugs (HIBs) in the Linux Kernel 

Type Impact Delay 

2006-01-01. to 

2008-12-31 

(First Time 

Period) 

2009-01-01. to 

2011-04-30 

(Second Time 

Period) 

Total 

Hidden Impact 

Bugs 

weeks2  56 (25.69%) 73 (39.46%) 129 (32.01%) 

weeks4  38 (17.43%) 55 (29.73%) 93 (23.08%) 

weeks8  31 (14.22%) 29 (15.68%) 60 (14.99%) 

All Vulnerabilities - 218 185 403 
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Figure 7 shows the histogram of HIBs in the Linux Kernel in terms of impact delay in 

weeks. It can be seen that most of the HIBs were correctly classified within 20-30 weeks 

after their public disclosure. Furthermore, Figure 8 shows the number of HIBs that existed 

for each day in the Linux Kernel for the given time period. Thus, on average there were 

nearly 10 HIBs in the Linux Kernel for a given day. The trailing edge of Figure 8 at the end 

is because new HIBs that are reported to the bug database is not known as of yet.  

 

Figure 7. Number of HIBs by impact delay for Linux Kernel  

 

 

Figure 8. Number of HIBs that existed per day for the Linux Kernel  
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2.4.3 HIBS IN MYSQL SERVER 

Similar to Linux Kernel HIBs, Table 3 shows the HIBs and the vulnerabilities 

identified for the MySQL Database Server. A combined total of 66 vulnerabilities were 

identified for the MySQL Database Server using the above mentioned rules. Out of these 

vulnerabilities, over 62% (41) were HIBs with an impact delay of at least 2 weeks. 

Furthermore, while the number of HIBs in the second time period was reduced, due to the 

smaller number of total vulnerabilities reported, the percentage of the HIBs was increased in 

the second time period. 

Similar to the Linux Kernel, a significant portion (over half) of all the vulnerabilities 

reported from 2006 to 2011 were HIBs. The percentage of HIBs has increased from the first 

time period to the second time period in MySQL Database Server as well. 

Furthermore, half of the vulnerabilities were HIBs with more than 8 weeks impact 

delay. Thus, a significant number of vulnerabilities were identified only after more than 2 

months after their public disclosure. This is also reflected in Figure 9 which shows the 

histogram of HIBs for the MySQL Database Server. 

Table 3. Hidden Impact Bugs (HIBs) in the MySQL Database Server 

Type Impact Delay 

2006-01-01. to 

2008-12-31 

(First Time 

Period) 

2009-01-01. to 

2011-04-30 

(Second Time 

Period) 

Total 

Hidden Impact 

Bugs 

weeks2  22 (59.46%) 19 (65.52%) 41 (62.12%) 

weeks4  21 (56.76%) 19 (65.52%) 40 (60.62%) 

weeks8  17 (45.95%) 16 (55.17%) 33 (50%) 

All Vulnerabilities - 37 29 66 
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Finally, Figure 10 shows the number of HIBs that existed for each day in the MySQL 

Database Server for the given time period. Thus, on average there were nearly 4 HIBs 

existing in the MySQL Database Server for a given day. 

 

Figure 9. Number of HIBs by impact delay for MySQL Database Server 

 

 

Figure 10. Number of HIBs that existed per day for the MySQL Database Server 
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2.5 SOFTWARE VULNERABILITY IDENTIFICATION USING HIBS 

As shown in the previous section, HIBs are a significant portion of all vulnerabilities. 

Furthermore, the percentage of HIBs has increased in recent years. Thus, by identifying HIBs 

as they are being reported to bug databases, and correctly identifying the set of misclassified 

bugs, a significant portion of the software vulnerabilities can be identified. 

This section first illustrates the necessity of identifying HIBs, and then proposes a 

methodology for identifying software vulnerabilities by using HIBs. 

 

 

2.5.1 NECESSITY OF IDENTIFYING HIBS IN SOFTWARE 

The primary necessity of identifying HIBs is to reduce the time systems are 

vulnerable to security attacks. Figure 11 shows the timeline of a misclassified bug, meaning 

the bug is actually a vulnerability but has not yet been identified as one. If the true security 

impact of the bug was known, the time taken for each step of the process might be reduced. 

For the HIBs identified for the Linux kernel, it was calculated that the average time 

taken to create patch was 575 days, while the average time to create a patch for a 

vulnerability that was identified as such immediately was 387 days. Furthermore, Figure 12 

shows the percentage of HIBs and vulnerabilities fixed against the time taken to create a 

patch. It was identified that nearly 50% of vulnerabilities were fixed within the first 100 days 

while only less than 30% of the HIBs are fixed. 

 

Figure 11. Misclassified bug timeline 
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Software vendors tend to release software patches either when a certain number of 

fixes accumulate or on a certain day of the week/month. This is primarily because, it is easier 

for the developers and users to distribute or apply multiple patches simultaneously. However, 

if the security implication of a bug is high and it is known, then it is likely that the patch will 

be released as soon as it is created. 

Furthermore, since patch application takes time and computing resources, many users 

and systems administrators tend not to apply patches as they become available if the path 

does not affect the security of the system [Arnold 09], [Wijayasekara 12]. Again, if the true 

security impact of the high impact bug is known this time might be reduced. 

Finally, because the bug is known to the public from the time of disclosure, if an 

intelligent adversary identifies the true security impact of a misclassified bug, that 

information might be leveraged to attack vulnerable systems [Arnold 09], [Wijayasekara 12]. 

Thus, vulnerabilities that are misclassified as bugs may be more dangerous than other 

vulnerabilities, because the information about the vulnerability is already disclosed to the 

public. 

 

 

 

 

 

 

 

Figure 12. Percentage of bugs fixed against time 
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2.5.2 SOFTWARE VULNERABILITY IDENTIFICATION USING HIBS 

Thus, because of the factors elaborated above, identifying the true security impact of 

a bug while it is being reported to a bug database is important. This section proposes a 

methodology that utilizes information in HIBs to not only correctly classify new bugs, but 

also identify misclassified bugs that may be in the bug database. 

Figure 13 depicts the proposed software vulnerability detection framework. The 

proposed framework utilizes automatically extracted knowledge from already known HIBs to 

train classification algorithms. These classification algorithms will then be able to correctly 

classify newly reported bugs as potential vulnerabilities or normal bugs. Furthermore, 

existing bugs can also be classified using the trained classifier to detect misclassified bugs 

already in the bug database.  

Finally, once a classified potential vulnerability is verified by the development team, 

that information can be used to train the classifier to further increase the classification 

accuracy. 

 

 

 

 

 

Figure 13. Proposed software vulnerability detection framework using HIBs 
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2.6 CONCLUSIONS 

This Chapter first detailed software vulnerabilities and current vulnerability detection 

methods. The concept of HIBs was introduced next. An analysis of HIBs in the Linux Kernel 

and the MySQL Database Server software packages showed the significant presence of HIBs 

and their increase in recent years. Finally a framework was presented that utilizes 

information in HIBs to correctly classify bugs as they are being reported to bug databases, as 

well as correctly classifying misclassified bugs. 
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Chapter 3 TEXT MINING BUG DATABASES FOR IDENTIFYING 

VULNERABILITIES 

 

Advanced text mining techniques have been shown to be able to extract information 

from textual description of bug reports for various classification and clustering purposes 

[Runeson 07], [Lamkanfi 11], [Wijayasekara 12]. This Chapter first details some previous 

work done on text mining bug databases for bug the triaging process. Advanced text mining 

techniques that are capable of extracting relevant information and converting the extracted 

information into machine readable format is then detailed. Then, a novel text mining 

framework for extracting textual information from bug reports for software vulnerability 

identification using information in Hidden Impact Bugs is presented before concluding the 

chapter. 

 

3.1 TEXT MINING BUG DATABASES 

Previous studies have shown that the textual data contained in bug reports may carry 

important information that can help developers in the bug triaging process. Previous work on 

bug database mining focuses on three main problems: 1) assigning the correct person to fix a 

bug, 2) finding duplicate bug reports and 3) assigning the correct severity to a reported bug. 

In [Cubranic 04], [Anvik 06] and [Jeong 09], the authors used text mining to assign 

the correct person to fix a bug. The correct person can be a developer whose expertise is in 

that area, or a developer who is responsible for the affected code. In [Cubranic 04], Cubranic 

and Murphy used Naive Bayes to classify bugs contained in the Eclipse bug database. Anvik 

et al. used a number of classification techniques to classify bugs in the Eclipse and Firefox 

databases [Anvik 06]. In [Jeong 09], Jeong et al. used a Markov model for the Eclipse and 

Firefox databases and showed better classification accuracy. 

Detection of duplicate bug reports is explored in [Runeson 07], [Wang 08], [Prifti 11] 

and [Wu 11]. Runeson et al. used vector space and cosine similarity measures to find 

redundant bugs in a Sony Ericsson mobile bug database [Runeson 07]. In [Wang 08], Wang 

et al. used similarity measures to detect potential duplicate bugs for Eclipse and Firefox bug 
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databases. Wu et al. [Wu 11] also proposed a tool for detection of duplicate bugs in Apache, 

Eclipse and Linux bug databases. 

In [Lamkanfi 10] and [Lamkanfi 11] Lamkanfi et al. used the textual description of 

bug reports to classify severity of bugs. Eclipse, GNOME and Mozilla bug reports were 

classified into three classes of severity in [Lamkanfi 10] by using a Naïve Bayes classifier. In 

[Lamkanfi 11] different classification algorithms such as Naïve Bayes and Naïve Bayes 

Multinomial were compared for classifying Eclipse and GNOME bug reports. 

Linux kernel and MySQL DBMS bug reports were used to generate complexity 

metrics in [Cotroneo 12]. This information was then used to train classifiers such as Naïve 

Bayes and Decision Trees to predict ageing related bugs in these software. 

 

3.2 TEXT MINING FOR DOCUMENT CLASSIFICATION 

The purpose of text mining is to extract relevant information and knowledge from 

textual data in order to perform a task [Ingersoll 13]. One of the primary tasks in text mining 

applications is automated classification and clustering of textual documents [Ingersoll 13]. In 

order to extract knowledge and information from human written textual documents in a 

machine understandable format, that is computationally efficient and can produce reasonable 

classification results, several advanced text mining techniques are used. These text mining 

techniques can be combined and used to extract only relevant information while removing 

data that yields little to no information [Ingersoll 13].  

The text mining process can be separated into 4 steps: 1) extracting textual 

description, 2) extracting syntactical information, 3) compression of extracted information, 

and 4) generating a machine readable feature vector [Wijayasekara 13]. 

 

3.2.1 EXTRACTING TEXTUAL DESCRIPTION 

In this step, the relevant portion of the text that is required for the classification is 

extracted from the document. This is important as information that may not be related to the 

classification problem may reside in the document, and this information may lead to sub-

optimal classification [Ingersoll 13]. 
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Furthermore, all the formatting within the document is removed in this step, as it 

carries no relevant information [Ingersoll 13]. 

 

3.2.2 EXTRACTING SYNTACTICAL INFORMATION 

In this step, syntactical information contained within the document is extracted. 

While semantical information is ignored it has been shown that extracting and representing 

semantical information is extremely difficult, highly domain specific, and highly biased 

towards the writer of the document [Ingersoll 13]. Thus, utilizing semantical information for 

many cases is difficult. Furthermore, using only syntactical information has been shown to 

yield good results for text mining applications related bug databases [Lamkanfi 11]. 

In this step, first the all the unique words are extracted from the document and stored. 

This is known as tokenizing the document. 

Second, all characters are converted to lower case, and numbers and special 

characters are removed. Since the case of the words carries very little information all words 

are converted to lower case for easy manipulation [Ingersoll 13]. Furthermore, numbers and 

special characters has no meaning once taken out of context, therefore, tokenized numbers 

and special characters carry no relevant information and thus are removed [Ingersoll 13]. 

Finally, frequently occurring words in the English language, known as stop words, 

are also removed from the tokenized set of words. These words include Pronouns such as: “I, 

he, she”, Articles such as: “a, an, the”, Prepositions such as: “after, to, but”, Conjunctions 

such as: “and, but, when”, and other frequently appearing words. Such words carry very little 

to no information when taken out of context and occur too frequently to enable 

distinguishability of documents, and are therefore disregarded. The remaining set of unique 

words are known as keywords. 

Thus, a set of documents D containing N documents: 

 

 },....,,{ 21 NdddD   (3.1) 

 

where, jd is a document, and for the set of  documents, M  unique keywords exists. 

Therefore the set of documents can be represented as: 

D
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 },....,,{ 21 MWWWD   (3.2) 

 

where, iW are unique keywords that has been extracted. This representation is known as the 

“bag-of-words” representation. Each document in this representation can be viewed as a set 

of unique keywords: 

 

 },....,,{ 21 mj WWWd   (3.3) 

 

where, iW are unique keywords that exists in document jd and Mm . 

 

3.2.3 COMPRESSING EXTRACTED INFORMATION 

The main problem faced when using the bag-of-words representation is, as the 

number of documents N  increase, the number of unique keywords M  also increase. This 

results in a large matrix which leads to increased resource usage and higher computational 

times. Since many of the extracted keywords might not appear in most of the documents, 

many keywords will not contribute information relevant for classification. Furthermore, 

many of the keywords can be syntactically unique but semantically identical, meaning while 

the word is unique, the meaning is the same.  

Therefore, once the syntactical information is extracted, the information needs to be 

compressed. In order to minimize information loss during the compression stage, several text 

mining techniques can be used. 

One such technique is identifying and combining synonyms. Synonyms are words 

that have the same meaning or nearly the same meaning as another word, i.e. syntactically 

different but semantically similar. Thus identifying and combining synonyms leads to a 

reduced dimensionality with very little loss of information. This is typically, done by using 

English word databases such as Wordnet [Fellbaum 98]. 

A keyword with r synonyms can be represented as a set of keywords that are its 

synonyms: 
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 },....,,{ 21 iriii WWWW 


 (3.4) 

 

where, iW


 is the set of synonyms for keyword iW and 0r . Once all possible synonyms 

for each keyword are identified the bag-of-words representation can be extended so that each 

keyword is now a set of synonyms: 

 

 },....,,{ 21 MWWWD


  (3.5) 

 

Using the identified synonyms the keywords can be combined. Thus, for two 

keywords iW and jW , with A and B number of synonyms: 

 

 },....,,{ 21 iAiii WWWW 


 (3.6) 

 },....,,{ 21 jBjjj WWWW 


 (3.7) 

 

 BbandAaWWanyifWW jbiaji  ,


 (3.8) 

 

where, ijjiji WWWWW


  

 

 },....,,,,....,,{},{ 2121 jBjjiAiijiij WWWWWWWWW 


 (3.9) 

 

then, iW


and jW


 are removed from the bag-of-words representation and ijW


 is added. 

This process is repeated until equation (3.8) is no longer satisfied for all synonym sets in the 

bag-of-words. 

Once this step is completed, the number of keyword sets in the bag-of-words 

representation is reduced to M  : 
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 synMM   (3.10) 

where,  

 

 



M

i
iRsyn

1

)1(  (3.11) 

 

where, iR is the number of keyword sets in iW


, of the bag-of-words resulting after all 

synonyms are combined. 

Another technique for compressing information is deconstructing words into their 

base forms and combining similar words. The deconstruction of words into their base form is 

known as stemming. Stemming is capable of deconstructing words that have been 

transformed, for example by pluralizing or by adding a gerund, into their basic form. This 

enables identification of transformed words as similar to their base words. 

The process of indentifying similar stemmed words and combining them is similar to 

the process described above for synonyms. Therefore as with identifying and combining 

synonyms, the dimensionality of the bag-of-words is reduced with minimal loss of 

information. 

Identifying the most frequently used keywords or keyword sets in the bag-of-word 

representation leads to further compression of information. This is done by counting the 

number of documents jd  that each keyword or keyword set iW


appears in, and selecting 

the most recurring keyword set. Typically keyword sets that appear in less than %T  of the 

documents are discarded. This type of threshold selection reduces the dimensionality 

significantly and identifies words that are most general to the document set. While this 

method removes many keywords that appear in only a small subset of documents, and 

therefore cannot contribute to classification, it may also remove words that are important to 

classification and retain words that may not contribute to, or adversely affect classification. 
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3.2.4 FEATURE VECTOR GENERATION 

Once information compression is done, the textual information can be converted in to 

a vector of real values, which can be used as an input to a classification algorithm. This is 

done by representing each document using the number occurrences of each keyword set 

within the bag-of-words resulting from the information compression step. 

Therefore, a document jd  can be represented as: 

 

 },....,,{ ,2,1, Mjjjj wwwd   (3.12) 

 

where, ijw , is the number of times the keyword set iW


 occurs in document jd . M  is the 

number of keyword sets in the bag-of-words after information compression phase. 

Thus a set of documents D containing N documents and M keyword sets can be 

represented as a MN  matrix. This matrix is known as the Term-Document Matrix 

(TDM): 

 

 



























},....,,{

...

},....,,{

,2,1,

,12,11,11

MNNNN

M

wwwd

wwwd

TDM  (3.13) 

 

This TDM can now be used as an input to a classification algorithm. However, it has 

been shown that further improvements can be made to classification accuracy by weighing 

the keyword sets according to their importance [Ingersoll 13]. This is typically done by using 

the Term Frequency-Inverse Document Frequency (TF-IDF) method [Ingersoll 13]. 

The TF-IDF method assumes that the importance of a keyword set in a document is 

inversely proportional to the frequency that the keyword set occurs in all documents. The 

weight for the keyword set i  in bug report j  ( ij, ), can be calculated as: 
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 









i
jiij

df

N
w log,,  (3.14) 

 

where, ijw , is the number of times the keyword set iW


 occurs in document jd , and idf  is 

the number of times the keyword set iW


 occurs in all N documents. Once, ij, is 

calculated for all N documents and M keyword sets, each ijw , is multiplied by ij, to 

produce the final TDM. 

 

Figure 14. Text mining bug databases for HIBs architecture 
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3.3 TEXT MINING BUG DATABASES FOR IDENTIFYING VULNERABILITIES 

This section presents a text mining framework for identifying vulnerabilities using bug 

reports in publically available bug databases. The four step process described in Section 3.2 

is utilized to extract the most relevant information from textual description of bugs in bug 

reports and generate a feature vector that can be used as an input to classification algorithms. 

The overall architecture of the presented text mining framework is shown in Figure 14. Each 

step is discussed in detail below. 

Step 1: In the first step of the framework, the textual description of the bug report is 

extracted. It has been shown that both short and long descriptions of the bug report contain 

important data that can yield information for various purposes [Lamkanfi 10], [Lamkanfi 11]. 

Furthermore, it has been shown that other field such as “severity” and “importance” may be 

incorrect for many bugs [Lamkanfi 10], [Lamkanfi 11], [Wijayasekara 12]. Therefore, only 

the short description and the long description of the bug report are used to extract 

information. Furthermore, since the same word may carry different information when 

appearing in the short description compared to the long description, two separate bags-of-

word are kept for short and long descriptions. 

Step 2: In the second step, as described in Section 3.2.2, tokenizing, removal of special 

characters, and removal of stop words is performed to both words from short and long 

descriptions of the bug reports. Furthermore, since bug reports sometimes contain code 

snippets, single characters may also be present in the tokenized set of words. These single 

character words are also removed in this step. Furthermore, as an additional step the words 

“vulnerability” and “CVE” are also removed. This is to alleviate any bias towards HIBs since 

these words may have been included in the bug report of HIBs. 

Step 3: The third step of the framework is compressing the extracted information. In 

this step, first Wordnet [Fellbaum 98] is used as the English word database to generate 

synonyms and keywords are combined as explained in Section 3.2.3 to reduce the number of 

dimensions in the bag-of-words. Once the keywords are combined using synonyms each 

dimension of the bag-of-words representation is a set of keywords. Next, Porter Stemming 

[Porter 80] is used to stem the keywords sets into their basic form. After all keywords sets are 

stemmed, they are again combined and the number of dimensions is further reduced. Similar 
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to the previous step, Wordnet and Porter stemming is applied to the keywords from short 

description and long description separately. Finally, the most recurring keywords sets in the 

complete set of bug reports is found and only the top %SDT of keywords sets are kept in 

the short description and the top %LDT of keywords sets are kept in the long description. 

Step 4: Finally, in the fourth step of the framework, a TDM is generated using the 

extracted set of keywords sets. As before, keywords sets from the short and long descriptions 

are treated separately. For each bug report, first each word in the short description is 

extracted. Each extracted word is then converted to lower case and all formatting is removed. 

Since the keyword sets in the bag-of-words are stemmed, the each extracted word is stemmed 

as well. These stemmed words are then compared to the words in the keyword sets in the 

bag-of-words for the short description. If the word is found, then the number of occurrences 

for that keyword set is incremented by one in the TDM. This process is repeated for all the 

words in the short description and long description separately to generate the complete TDM. 

Once the TDM is generated, it is further enhanced by applying the TF-IDF method described 

in Section 3.2.4. 

 

The presented text mining framework for information extraction and compression of 

textual information was applied to 1000 randomly selected Linux Kernel bugs from the 

Redhat Bugzilla bug database that were reported in the time period from January 2004 to 

April 2011. The number of keywords after each step of the text mining framework is shown 

in Table 4. 

Table 4. Dimensionality of the bag-of-words after each text mining step 

Parameter 
After 

tokenization 

After 

removing 

stop words 

and other 

characters 

After 

Wordnet 

After 

Porter 

Stemming 

After 

removing 

words that 

occur in less 

than 10% of 

bugs 

Long Description 6161 6039 4536 4349 90 

Short Description 9981 9843 8067 7825 158 

Total 16142 15882 12361 12174 248 
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3.4 CONCLUSION 

In this chapter the details of a comprehensive framework for extracting textual 

information was presented. The presented framework extracts relevant syntactical textual 

information from the short and long description of the bug reports. Furthermore, the 

extracted information is compressed with minimal loss of information and converted in to a 

feature vector that can be read by classification algorithms. 

The presented method was applied to a small randomly selected set of bugs from the 

Redhat Bugzilla bug database, and the dimensionality reduction capability of each step in the 

presented text mining framework was demonstrated. 
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Chapter 4 CLASSIFICATION OF HIDDEN IMPACT BUGS 

 

This chapter investigates different classification algorithms for classification of HIBs 

in bug databases. Three different classification algorithms will be investigated, namely: 1) 

Naïve Bayes (NB) classifiers, 2) Naïve Bayes Multinomial (NBM) classifiers, and 3) 

Decision Tree (DT) classifiers. The classification algorithms were applied to the HIB 

classification problem for the Linux Kernel. The chapter first provides background details of 

these algorithms. The details of the experiment as well as experimental results are provided 

next. The chapter is concluded by discussing the importance and relevance of the 

classification of HIBs. 

 

4.1 CLASSIFICATION ALGORITHMS 

This section details the machine learning based classifiers that were used for the 

classification of HIBs. Three different classifiers were used for classification: 1) Naïve Bayes 

(NB) classifiers, 2) Naïve Bayes Multinomial (NBM) classifiers, and 3) Decision Tree (DT) 

classifiers.  

 

4.1.1 NAÏVE BAYES (NB) AND NAÏVE BAYES MULTINOMIAL (NBM) CLASSIFIERS 

Naïve Bayes (NB) and Naïve Bayes Multinomial (NBM) classifiers are semi-

interpretable probabilistic classifiers that have been shown to produce favorable results in 

text classification applications [Wen 07], [Lamkanfi 11], [Barber 12]. Both NB and NBM 

utilize the well known Bayes theorem for conditional probability [Barber 12]: 
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APABP
BAP   (4.1) 

 

Where A  and B  are dependent events and )|( BAP  denotes the probability of 

event A  given event B . 
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The NB and NBM classifiers utilize the Bayes theorem while assuming naïve 

independence of features in the input space [Barber 12]. Thus, for a given input vector d  that 

belongs to the class C : 

 

 },....,,{ 21 mwwwd   (4.2) 

 

which is analogous to equation (3.12) that represents the derived feature vector for a given 

document, using the Bayes theorem, the probability that the input vector belongs to class C  

can be written as: 
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However, the naïve conditional independence assumes that each feature iw  is 

conditionally independent from all other features jw  for mj  and ji  . Thus, the 

numerator of equation (4.4) can be expressed as [Barber 12]: 
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Therefore, in the NB classifier, for a given set of documents, the conditional 

probabilities for each feature given each class )|( CwP i  as well as the probability of each 

class )(CP can be calculated. Thus, training data can be used to derive these probabilities in 
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a supervised manner. Once these probabilities have been derived, a given data pattern can be 

classified as: 
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However, since the NB classifier calculates the conditional probabilities )|( CwP i

using the features of all documents, only binary cases of iw can be used, i.e. the actual 

frequency of iw cannot be used. Thus, NBM classifier uses a multinomial representation 

calculating the conditional probability )|( CwP i which enables the use of the frequencies of 

each feature for classification [Wen 07], [Barber 12].  
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where, ip is the probability that event iw  occurs.  

Furthermore, since the frequency of features are used in NBM, it has been shown that 

for many text classification applications, the classification accuracy of NBM is higher 

compared to NB [Wen 07], [Lamkanfi 11]. 

 

4.1.2 DECISION TREE (DT) CLASSIFIERS 

Decision Tree (DT) classifiers are multistage hierarchical decision support tools that 

are sequential in their approach and therefore highly interpretable [Safavian 91]. Thus DT 

can be visualized as a layered, directed graph of decisions. At each node of the graph the 

input space is divided into several crisp sub-spaces. This is done iteratively until a leaf node 

is reached, where the decision is the output class for the given input pattern. A typical binary 

decision tree, where at each node the input space is divided into 2 sub-spaces, is shown in 

Figure 15 [Safavian 91], [Hartmann 82]. 
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Various methodologies and algorithms have been proposed for generating the optimal 

set of decisions, determining the number of decisions at each level, determining the depth of 

the tree, etc. [Safavian 91]. In interest of space, details of these methods will not be discussed 

in this thesis. 

One of the most common methods of generating the set of decisions is using an 

Information Theoretic approach [Hartmann 82]. Information theory is briefly discussed in 

Chapter 5 of this thesis. In the Information Theoretic approach, the input space is sub-divided 

at each decision node using the dimension that yields the highest gain in information 

[Hartmann 82]. 

In order to reduce overtraining of DT as well as for computational complexity 

reasons, the length of the DT needs to be contained [Safavian 91]. While some methods limit 

the maximum depth, of the tree, several methods that prune a generated DT using various 

algorithms have been shown to be successful as well [Safavian 91].  

DT classifiers rely on heuristic algorithms such as Genetic Algorithms (GA) for 

optimization of generated trees with respect to the number of nodes, the depth of the tree and 

classification accuracy (see Chapter 5 for more details on GA).  

 

 

Figure 15. Typical binary Decision Tree (DT) classifier  



39 

 

 

The DT known as C4.5 which was developed by Quinlan is used in this thesis for 

classification [Quinlan 93]. The C4.5 DT is a simple yet proven methodology for deriving 

decision trees using information entropy. Furthermore, it has the capability of handling 

continuous values by means of using thresholds. For a given set of features, the C4.5 

algorithm first calculates the normalized information gain for each feature. The algorithm 

then creates a splitting node which splits the dataset into two subsets based on the feature 

with highest information gain. This is recursively done until the subset contains only a single 

class or no information can be gained from the remaining subset of data, at which point a leaf 

node is inserted. The pseudocode for the C4.5 algorithms is shown in Figure 16 [Quinlan 93]. 

 

Figure 16. Pseudocode for C4.5 algorithm 
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4.2 CLASSIFICATION OF HIBS IN BUG DATABASES 

The presented classification algorithms were tested on a subset of bug reports and 

HIBs for the Linux Kernel that were reported in the time period from January 2006 to April 

2011. This section explains in detail the experimental setup that was used to test the 

presented HIB classification methodology as well as the test metrics used to evaluate the 

presented classifiers. 

 

4.2.1 CLASSIFICATION SUBSET 

In order to evaluate the vulnerability identification methodology proposed in Section 

2.5, a set of Redhat Bugzilla bugs for the Linux Kernel, containing two classes: regular bugs 

and HIBs were constructed. 

The MITRE CVE, vulnerability reports contain the bugs associated with each 

vulnerability. This information was used to extract bug reports from the Redhat Bugzilla bug 

database that were associated with the identified vulnerabilities. As shown in Section 2.4.2, 

out of the 403 vulnerabilities that were examined, 129 were identified to be HIBs with at 

least 2 weeks of impact delay. However, out of the 129 HIBs, only 73 had accessible bug 

reports in the Redhat Bugzilla bug database attached with them. The remainder had either no 

bug reports associated with them, or bug reports were inaccessible, or bug reports were in a 

different bug database. Therefore, for the final classification and testing the set of 73 

identified HIBs were used. These bugs constitute the HIB class. 

The regular bug class contained 6000 randomly selected bugs reported from January 

2006 to April 2011 that were not identified as vulnerabilities. Since the number of bugs 

reported per year is different for each year (see Table 1), in order to avoid misrepresenting 

any year, the random set was constructed to reflect the proportion of bugs reported for each 

year. However, it is important to note that the regular bug class may contain bugs that are 

misclassified and are still yet to be identified as vulnerabilities, and the classifiers may be 

negatively affected by training on these examples [Jason 13]. 

Table 5 shows the number of HIBs that were identified for each year and the number 

of regular bugs selected from each year for the classification process. 
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4.2.2 CONSTRUCTION OF THE TDM 

The Term-Document Matrix (TDM) was constructed using the short and long 

descriptions of the bug reports. As mentioned in Section 3.3, the short and long descriptions 

of the bugs were treated separately, meaning the text mining process was applied to words 

extracted from the short description and the long description separately.  

The percentages T for selecting the keywords appearing most frequently in bug 

reports were set at  = 1% and  = 3%. These numbers were selected somewhat 

arbitrarily, so that a reasonable number of dimensions will be selected without overwhelming 

the classifiers. The same thresholds were used to test each classifier. Although this type of 

arbitrary dimensionality selection is sub-optimal for classification, it was deemed sufficient 

for demonstrating the vulnerability identification methodology described. 

The text mining process which was elaborated in Chapter 3 was applied to the 

extracted long and short descriptions of bugs and the dimensionality of the TDM after each 

step is shown in Table 6. 

%SDT %LDT

Table 5. Number of selected regular bugs and HIBs for classification 

Year 
Number of regular 

bugs 
Number of HIBs 

2006 642 3 

2007 725 12 

2008 876 21 

2009 1,135 10 

2010 1,819 25 

2011 (to April) 803 2 

Total 6,000 73 

 

Table 6. Dimensionality of the bag-of-words after each text mining step 

Parameter 

After removing 

stop words and 

other characters 

After 

Wordnet 

After Porter 

Stemming 

Selecting 

Most 

frequent 

Long Description 7,279 4,451 4,005 66 

Short Description 27,685 20,800 19,113 136 

Total 34,964 25,251 23,118 202 
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4.2.3 TEST METRICS 

The classification was performed using k-fold cross validation [Wijayasekara 11]. 

The k-fold cross validation method randomly separates the dataset into k equal sized folds. 

The classifiers are then trained using k - 1 folds and tested on the remaining fold. This 

process is repeated k times, each time selecting a different fold for testing and using the 

remaining folds for training. The final classification result is an aggregation of the testing 

folds. This enables the classifier to be tested on all the data points and is therefore devoid of 

over fitting and biased classification [Wijayasekara 11]. 10-fold cross validation was used for 

testing the chosen classifiers. 

Classification results are shown in terms of True Positives (TP), True Negatives (TN), 

False Positives (FP), and False Negatives (FN). These parameters can be interpreted using 

the confusion matrix shown in Table 7. The following rates are calculated in order to present 

the results more accurately: 
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Table 7. Confusion matrix for classification of HIBs 

  Classified as 

  HIB Regular 

A
ct

u
al

 

C
la

ss
 HIB True Positives (TP) False Negatives (FN) 

Regular False Positives (FP) True Negatives (TN) 
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4.2.4 BAYESIAN DETECTION RATE 

Another important classification metric that was used to evaluate the classifiers was 

the Bayesian detection rate [Axelsson 00]. The Bayesian detection rate is the probability that 

an instance classified as true, is actually true [Axelsson 00].  

The Bayesian detection rate is extremely important in this case due to the 

disproportionate sizes of the two classes. In [Axelsson 00] Axelsson performed a base-rate 

fallacy test for intrusion detection systems and illustrated the problems in classifying 

intrusions. Axelsson pointed out the small ratio between the number of intrusions and normal 

traffic affect the outcome in such a way that the user will be overwhelmed by the number of 

false positives. Since the ratio between HIBs and normal bugs in bug databases is very low: 

 

 
41071.7

390,167

129   (4.13) 

 

where, 167,390 is the number of normal bugs reported for the time period between January 

of 2004 and April of 2011, a similar base-rate fallacy problem may occur. Thus a base-rate 

fallacy analysis was performed for the HIB classification problem. For explaining the base-

rate fallacy, the following nomenclature will be used: 
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By using the above naming convention, true positive rate can be denoted as )|( VDP  

and the false positive rate can be denoted as )|( VDP  .  

For classification of HIBs the Bayesian detection rate is the probability that a bug is a 

HIB given that the classifier detects the bug as a HIB, i.e. )|( DVP . In order to increase the 

Bayesian detection rate, the number of false positives must be reduced. By means of Bayes’ 

theorem the Bayesian detection rate can be expressed as: 
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The following probabilities are known: 

 

 41071.7
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 99923.01071.71)(1)( 4  VPVP  (4.16) 

 

By using equations (4.15) and (4.16), equation (4.14) can be rewritten as: 
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Figure 17. Bayesian detection rate for the HIB classification problem  



45 

 

 

The Bayesian detection rate expressed in equation (4.14) is dominated by the factor 

0.99954, i.e. the high probability that a bug is not a HIB. Thus in order to achieve a Bayesian 

detection rate that is sufficient, the false positive rate must be very low. Figure 17 plots the 

false positive rate against the Bayesian detection rate for different values of true positive 

rates ( )|( VDP ). Figure 17 shows that as the false positive rate increases, the Bayesian 

detection rate decreases (Note that the axis are in log scale). 

The Bayesian detection rate is vital when dealing with human users such as a 

software development team: if the Bayesian detection rate is too low, the users will be 

overwhelmed by the number of false positives and thus reducing the effectiveness of the 

classifier [Wijayasekara 12]. By using the upper bound in Figure 17, it is possible to gain an 

understanding of the maximum false positive rate which is acceptable from the classifier. For 

example, if a Bayesian detection rate of 0.01 can be tolerated by the development team, 

which means that only one out of 100 bugs classified as potential vulnerabilities, is an actual 

vulnerability, according to Figure 17, a maximum false positive rate of 0.076 is acceptable. 

This means that on average for any given day in 2011, where 146 bugs were reported per day 

(see Table 1), around 11 ( 146076.0  ) bugs will be falsely identified as a vulnerability by 

the classifier. Similarly, if one out of 10 detections needs to be an actual vulnerability, which 

means a Bayesian detection rate of 0.1, to achieve this, the maximum acceptable false 

positive rate is 0.0069. This translates to falsely identifying around one bug per day 

)1460069.0(   for any given day in 2011. Thus, the lower boundary of false positive rate that 

the proposed classifier must obtain can be determined using Figure 17. 

Thus, a higher Bayesian detection rate means that a lower percentage of regular bugs 

were improperly classified as HIBs and therefore a software development team will have to 

sort through fewer regular bugs to find those which are actual vulnerabilities. Therefore, a 

higher Bayesian detection rate is preferred. Given the classification results, the Bayesian 

detection rate can be calculated using the following equation: 
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Furthermore, with increasing numbers of bugs being reported each day (see Table 1), 

a low Bayesian detection rate will lead to an overwhelming number of bugs being classified 

by the classifier as potential vulnerabilities each day. Using the average number of bugs 

reported per day, the number of bugs that will be classified as potential vulnerabilities by the 

classifier can be calculated as: 

 

 Dayper  Reported Bugs
FNTNFPTP

FPTP






)(
 (4.19) 

 

Thus, the number of bugs that will be classified as potential vulnerabilities can also 

be used at a metric for evaluating classifier performance. 

 

 

 

Table 8. Overall classification results 

Classifier 

True positives True negatives False positives 

Rate Number Rate Number Rate Number 

Naïve Bayes (NB) 0.92 67 0.45 2,741 0.55 3259 

Naïve Bayes Multinomial (NBM) 0.81 59 0.90 5,377 0.10 623 

Decision Tree (DT) 0.29 21 0.99 5,969 0.01 31 

 

Table 9. Number bugs classified as of potential vulnerabilities on a given day in 2011 

Classifier 

Number of bugs 

classified as potential 

vulnerabilities per day 

Bayesian detection 

rate 

Naïve Bayes (NB) 80.4 0.02 

Naïve Bayes Multinomial (NBM) 16.5 0.09 

Decision Tree (DT) 1.3 0.40 
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4.2.5 CLASSIFICATION RESULTS 

The overall classification results are shown in Table 8. NB classifier showed the 

highest true positive rate (92%), however, the true negative rate was low. Similarly the DT 

had a very low true positive rate (29%) but the highest true negative rate (99%). NBM 

showed a higher true positive rate as well as higher true negative rate. Although these results 

may seem relatively low, even the lowest true positive rate (29%) is more than 20 times 

better than a random guess (1.2%). 

 

Figure 18. Yearly classification results for NB classifier 

 

Figure 19. Yearly classification results for NBM classifier 
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Table 9 shows the number of bugs that will be classified as potential vulnerabilities 

on an average day in 2011 for each classifier along with the Bayesian detection rate. These 

results show that although the DT had a low true positive rate, due to the higher Bayesian 

detection rate nearly half of the bugs that are classified as potential vulnerabilities are actual 

vulnerabilities. This also leads to less than 2 bugs being classified as potential vulnerabilities 

each day in 2011 where over 145 bugs were reported to the bug database each day (see Table 

1). 

Similarly, NBM classifier reported a Bayesian detection rate of 0.09, which means 

that just under one out of 10 bugs that are classified as a potential vulnerability is an actual 

vulnerability. Using the NBM classifier, 16 bugs will be classified as potential vulnerabilities 

each day in 2011. 

Due to the very high false positive rate of the NB classifier, the Bayesian detection 

rate was extremely low (0.02), which translates to only 1 out of 50 bugs that are classified as 

potential vulnerabilities being actual vulnerabilities. This also means that 80 bugs would be 

classified as potential vulnerabilities each day, in 2011, using the NB classifier. 

 

Figure 20. Yearly classification results for DT classifier 
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According to Table 5, the number of reported bugs and the number of identified HIBs 

have been increasing each year. Thus, in order to evaluate the usability of the classifiers in 

this real world scenario, and to evaluate the online learning capability of the system 

presented in Section 2.5.2, the performance of each classifier was measured across time, 

based on the data available at a given moment in time. For this analysis, cumulative bugs 

reported and HIBs found at the start of each year was selected. 

Figure 18, Figure 19, and Figure 20 plot the yearly classification results for NB, 

NBM and DT classifiers respectively. As expected, the true positive rate increases with time. 

This is because the size of the HIB set is increasing and the classifiers are able to learn from 

these. Therefore, as more HIBs are correctly classified as vulnerabilities, the classifiers 

benefit from these newly discovered HIBs. 

 

4.3 CONCLUSION 

This chapter first detailed the classification algorithms used to classify HIBs using the 

framework presented in Chapter 2 and Chapter 3. 

The chapter then detailed the experimental setup used for evaluating the classifiers 

and the presented HIB classification and text mining frameworks. General classification 

metrics as well as classification metrics specific to the HIB classification problem was 

discussed next. A Bayesian detection rate analysis was performed to identify the upper and 

lower bounds of classification accuracy required by the classifiers. 

Finally, the experimental results for each of the classifiers were elaborated. The tested 

classifiers were able to correctly classify 29% to 92% of the HIBs in the Linux Kernel. The 

lowest achieved classification rate was over 20 times better than a random guess. Further 

analysis on the Bayesian detection rate of the classifiers showed that the number of bugs that 

will be classified as potential vulnerabilities per day, given the results of each classifier. The 

results ranged from classifying 16 bugs per day as potential vulnerabilities, where 1 in 10 

were actual vulnerabilities, to classifying 80 bugs per day as potential vulnerabilities, where 

only 1 in 50 were actual vulnerabilities. This information can be used by developers to select 

the optimal classifier, given the number of bugs that can be handled by a software 

maintenance team. 
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It has to be noted that the classification process was performed extremely 

conservatively, using keywords from only the set of regular bugs. Furthermore, it is 

important to identify that the set of regular bugs may contain HIBs that have not yet been 

identified which may further reduce the classification accuracy. Simultaneously, this means 

that the false positives of the classifiers may contain misclassified bugs that may turn out to 

be vulnerabilities. In order to verify this, the false positives should be further analyzed.  
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Chapter 5 INFORMATION GAIN BASED DIMENSIONALITY 

SELECTION 

 

Classification is highly dependent on the dimensionality of the problem domain. 

Thus, selecting the optimal subset of dimensions can lead to higher classification accuracy as 

well as improved computational efficiency [Raymer 00], [Otero 03]. Text mining 

applications, in particular, where the extracted dimensionality is high, are extremely 

susceptible problems associated with sub-optimal dimensionality selection [Basiri 09]. 

Therefore, this Chapter presents a novel dimensionality selection method that is based n 

information theory. 

The Chapter first discusses the broader dimensionality selection problem and shows 

the necessity of dimensionality selection in the HIB classification problem. Then, 

background information about Genetic Algorithms (GA) and Information Gain (IG) are 

presented. The novel, information gain based dimensionality method is detailed next. The 

presented method was applied to the problem of text mining bug database for identifying 

HIBs, and the experimental setup and results are detailed next. Finally, the Chapter is 

concluded by discussing the importance of dimensionality selection and other possible 

improvements to the presented methods. 

 

5.1 DIMENSIONALITY SELECTION PROBLEM IN TEXT MINING 

Dimensionality selection is used as an important step in knowledge extraction and 

data mining applications for better understanding of data [Raymer 00], [Battiti 94]. Proper 

usage of dimensionality selection methodologies can result in lower computation time and 

achieve higher classification accuracy in classification applications [Raymer 00], [Otero 03]. 

These methodologies are especially useful highly multi dimensional datasets where the high 

dimensionality increases computation time significantly. 

Typical text mining applications investigate large number of documents and extract 

syntactical information by means of unique words occurring in the documents [Wijayasekara 

12]. As shown in Table 4, this type of information extraction results in highly multi 
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dimensional datasets with a sparse matrix. Thus, dimensionality selection methodologies are 

employed in text mining applications to identify the optimal set of dimensions that yield the 

best classification results possible [Basiri 09]. 

Dimensionality selection (or feature selection) is a form of transformation of 

representation [Liu 98], where a set of dimensions M, is derived from the original set of 

dimensions M0 that maximizes some criterion and is at least as good as M0 in that criterion 

[Jain 97]. In classification applications, the maximization criterion is the classification 

accuracy [Jain 97].  

Dimensionality selection has been successfully performed using Genetic Algorithms 

(GA) for text mining [Espejo 10], [Sebastiani 02], [Yang 97] and other applications [Otero 

03], [Espejo 10], [Yang 97]. Information Gain (IG) [Shannon 48] has also been used 

successfully in-conjunction with GA for dimensionality selection in classification and other 

data mining problems [Sebastiani 02], [Yang 97]. However, these studies use IG as either a 

data pre-processing step [Uguz 11] or as the fitness function of the Genetic Algorithm [Otero 

03], [Basiri 09], [Neshatian 08], [Muharram 05]. 

 

 

Figure 21. Averaged true positive rate for different numbers of keywords 
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5.1.1 DIMENSIONALITY DEPENDENT CLASSIFICATION ACCURACY 

As mentioned, classification accuracy highly depends on the selected set of 

keywords. In order to illustrate this, several classifiers were used to classify 1000 randomly 

selected bugs from the Redhat Bugzilla bug database and the 73 HIBs identified in Section 

4.2.1, using different number of keywords. 

The NBM and C4.5 classifiers described in Sections 4.1.1 and 4.1.2, respectively 

were used to classify the above mentioned dataset. For training and classification, different 

numbers of keywords from the short description and the long description were selected. 

The averaged classification results of the NBM and C4.5 Classification algorithms 

were measured. Figure 21, Figure 22 and Figure 23, respectively plot the averaged true 

positive rate, true negative rate and the average of true positive and true negative rates as the 

classification accuracy. The best result for each graph is emphasized using a white dot. 

It can be observed from the figures that the optimal value for each classification 

metric occurs at a different number of keywords used. Furthermore, contrary to intuition, 

adding more dimensions sometimes reduces the classification accuracy. In Figure 21, it can 

be seen that adding the 200
th

 dimension in the long description significantly reduced true 

 

Figure 22. Averaged true negative rate for different numbers of keywords 
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positive rate. It has to be noted that this dimension was added while all the previous 

dimensions that caused the higher true positive rate remained in the TDM. This is largely 

because adding dimensions that does not contribute to classification or dimensions that affect 

the classification negatively, lessen the ability of the classifier to focus on the attributes that 

contribute to the classification more. 

Furthermore, different combinations of keywords may yield different results. This 

aspect is cannot be observed in the figures as different combinations of dimensions were not 

tested. Thus, selecting the optimal dimensionality is a highly non-linear multiple criteria 

optimization problem.  

 

 

 

 

 

 

 

Figure 23. Averaged classification rate for different numbers of keywords 
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5.2 BACKGROUND 

This section first details Genetic Algorithms (GA) and then presents background 

information on information theory and Information Gain (IG). 

 

5.2.1 GENETIC ALGORITHMS (GA) 

Genetic Algorithms (GA) are a subset of the broader field of Evolutionary Algorithms 

(EA). The major unifier of EA is the application of simulated biological evolution. Simulated 

evolution is inspired by and analogous to the well known Darwin’s theory of evolution, and 

has been translated into an effective tool for global optimization [Goldberg 89], [Simon 13], 

[Linda 14].  

The common underlying idea is that the algorithm maintains a set of unique candidate 

solutions to the problem which are comparative to a set of individuals in a population. The 

ability of each solution or individual to solve the problem can be evaluated based on an 

objective fitness function, and is known as the fitness of an individual. This fitness is 

subsequently used drive the evolution of the population based on the theories of natural 

selection [Simon 13], [Linda 14]. Thus, at each iteration, the fitness of every individual is 

calculated and based on the fitness, certain individuals are removed from the population and 

new individuals are introduced.  

In Genetic Algorithms (GA), biological genetics analogies are used to further advance 

the evolutionary process of EA [Simon 13]. This is done by encoding the candidate solutions 

are represented as chromosomes using a set of real numbers:  

 

 },....,,{ 21 krrrv   (5.1) 

 

where, v  is an individual and ir  is a real value. The candidate solution for the problem is a 

combination of the real values and the fitness of the individual is calculated using: 
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21 kv rrrff   (5.2) 

 

where, vf
~

 is the fitness of individual v and f  is the fitness function 

Thus, at each iteration, a certain set of individuals are selected based on their fitness 

and using those individuals as parents, offspring are generated. The offspring are generated 

from the selected parent individuals by applying recombination and mutation operators to the 

chromosomes of the parent individuals [Simon 13], [Linda 14].  

The recombination operator splits the chromosomes of two parents at a certain point 

and combines each portion to generate two new individuals. The point at which the 

recombination happens can be selected using various domain specific heuristic methods 

[Simon 13]. 

 

Figure 24. Pseudocode for Genetic Algorithm (GA) 
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The mutation operator mutates a selected individual by randomly selecting one or 

more values from },....,,{ 21 krrr  and changing these values by a small random value. The 

mutation point selection and the amount to which the mutation is performed can also be done 

using domain specific knowledge [Simon 13].  

This cycle is repeated for a specified number of iterations or until another 

convergence criterion is met, such as the desired level of the best fitness value or the standard 

deviation of the fitness value within the population. The general pseudocode of GA is 

summarized in Figure 24 [Simon 13], [Linda 14]. 

 

5.2.2 INFORMATION GAIN (IG) 

Information theory was founded by Claude Shannon in 1948 [Shannon 48] and has 

since been used as the primary methodology of information quantization of datasets. One of 

the basic foundations of information theory is the concept of information entropy. Using the 

information entropy of a dataset and the information entropy of the same dataset given that a 

dimension is known, can be used to derive how much information is gained by knowing that 

dimension. This is known as the Information Gain (IG) of that dimension. 

The information entropy of a dataset defines the distribution of the dataset in classes. 

Higher information entropy describes a uniform class distribution meaning more information 

is required to identify each class separately. Similarly lower information entropy describes a 

variable class distribution and less information is required to identify each class [Wenke 01]. 

The information entropy of a dataset D  can be calculated using:  

 

 



c

j
jj ppDEntropy

1
2log)(  (5.3) 

 

where, c  is the number of distinct classes in D  and jp  is the proportion of instances in 

D  that belong to class j  [Shannon 48]. Similarly the information entropy of a subset of the 

dataset can be calculated as: 
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where, D
~

 is a subset of the dataset D  and c  is the total number of distinct classes in D  

and jq  is the proportion of cases in D
~

 that belong to class j . 

Furthermore, the information entropy of the dataset D  can be calculated given the 

dimension w  is known: 
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where, N  is the total number of data points in the dataset D , and K  is the number of 

distinct partitions caused by dimension w . kn  is the number of cases in D  that belong to 

the partition k and kD
~

 is the partition of data caused by k . The entropy of kD
~

 is 

calculated using equation (5.4) [Shannon 48]. 

The entropy of the dataset given that a dimension is known calculated using equation 

(5.5), shows the additional amount of information required to identify each class separately. 

Thus )(DEntropy  and )|( wDEntropy  can be used to calculate the additional information 

gained by knowing dimension w : 

 

 )|()()( wDEntropyDEntropywIG   (5.6) 

 

where, )(wIG  is the information that can be gained if dimension w  is known [Wenke 01]. 

Thus, Information Gain (IG) of any one dimension of the dataset is independent from any 

other dimension in the dataset. 
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5.3 IG BASED DIMENSIONALITY SELECTION FOR TEXT MINING 

APPLICATIONS 

Selecting the optimal set of dimensions, as pointed out in Section 5.1, is essential for 

achieving improved classification rates and computational efficiency. Therefore, this section 

presents a novel methodology dimensionality selection that utilizes the IG of each dimension 

in the dataset to calculate dynamic mutation probabilities for chromosomes in a GA 

[Wijayasekara 13]. Thus the probability of selecting or deselecting a given dimension at each 

mutation step is dependent on the IG of that dimension. This dynamic selective mutation 

favors dimensions with higher IG and enables the GA to converge to a more optimal solution 

faster. Furthermore, since IG of each dimension is independent from any other dimension in 

the dataset, IG can be calculated prior to the execution of the genetic algorithm. This leads to 

the computation time of presented IG based method to be the same as conventional GA based 

methods.  

Typical genetic algorithm based dimensionality selection encodes the dimensions of 

the dataset as bits in a chromosome: 

 

 },....,,{ 21 kx rrrv   (5.7) 

 

 

Figure 25. Block diagram of the presented IG based dimensionality selection method  
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where, xv  is the chromosome of individual x , and D  is the number of dimensions in the 

dataset. ir  is a bit that represents whether dimension i  is selected or not. At each iteration of 

the GA, the chromosome of an individual may change during recombination or mutation 

phases. This enables the population to evolve, and eventually reach an optimum, where the 

most optimum set of dimensions are selected by the individual with highest fitness. 

Therefore, for classification problems the fitness of an individual is calculated by the 

classification accuracy achieved by classifying the dataset using only the dimensions selected 

by the chromosome of that individual. 

The presented IG based dimensionality selection methodology utilizes IG of each 

dimension to dynamically vary the mutation probability of chromosomes. The mutation 

probabilities are dynamically varied such that it favors the dimension with a higher IG. Since 

a dimension with higher IG means that more information about the class separation is gained 

by using the said dimension, such a selective mutation enables the genetic algorithm to reach 

the optimal value faster. A simple block diagram of the presented methodology is shown in 

Figure 25 [Wijayasekara 13]. 

As shown in Section 5.2.2, the IG of a dimension is independent from any other 

dimension in the dataset. Thus IG can be calculated for each dimension prior to the execution 

of the GA. Once the IG is calculated, it is normalized between 0 and 1 using: 

 

 
(min)(max)

(min))(
)(

IGIG

IGwIG
wIG i

i



  (5.8) 

 

where, (min)IG  and (max)IG  are minimum and maximum information gain for all the 

dimensions in the dataset D , respectively. 

This calculated IG is then used to dynamically vary the mutation probability of each 

dimension using: 

 

   minminmax )()(),( pppwIGivp ix   (5.9) 

Or, 
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   minminmax )())(1(),( pppwIGivp ix   (5.10) 

 

where, ),( ivp x  is the probability that the i th
 bit of individual xv is mutated, and )( iwIG  is 

the normalized IG of dimension i  calculated using equation (5.8). minp and maxp  are preset 

probabilities that define the maximum mutation probability and minimum mutation 

probability respectively, and are set such that 0minmax  pp . If bit i  of individual xv  is 

0, meaning the dimension is currently deselected, equation (5.9) is used to calculate the 

mutation probability and equation (5.10) is used otherwise.  

Therefore, a dimension with higher IG has a higher probability of being selected at 

each mutation step. Similarly, such a dimension has a lower probability of being deselected 

during mutation. 

 

5.4 EXPERIMENTAL RESULTS 

The presented IG based dimensionality selection method was applied to the HIB 

classification problem in the Linux Kernel. A similar dataset of bug reports containing 

known HIBs and bugs that were not identified as vulnerabilities, used in Section 4.2.1 was 

used in this Section as well. The dataset consisted on 73 HIBs and 6000 randomly selected 

normal bugs (See Table 5). The 6000 normal bugs were selected according to the respective 

proportions of bugs reported in each year of the time period from January 2006 to April 

2011. 

The text mining process described in Section 3.3 was used to extract the set of key-

words that contain the most information and most relevant to the selected dataset. By 

selecting the 500 most frequent key-words from the short description and the long 

description of the bug report, a feature vector of the length 1000 was extracted (See Sections 

2.3.1 and 3.2.4 for more details). 

The presented methodology was compared to conventional GA based dimensionality 

selection method by using a generational GA. This type of GA uses recombination as part of 

the evolutionary process, along with mutation. In generational GA, a population consisting of 
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a certain number of individuals is kept, and at each iteration, parent individuals are selected 

by means of a tournament within a subset of the individuals in the population. 

 

Figure 26. Averaged true positive rate for each iteration for each method 

 

 

Figure 27. Averaged true negative rate for each iteration for each method 
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Both the GAs were tested using 50 individuals, with a tournament size of 10. The 

minimum and maximum mutation probabilities ( minp , maxp ) for the presented IG based 

method were set at 5% and 10% respectively while the mutation probability of the 

conventional GA was set at 10%. The true positive rate and the true negative rate using 

Naïve Bayes Multinomial (NBM) classifier with 10-fold cross validation was used as the 

fitness function of both GA: 

 

 
2

~ vv
v

RateTNRateTP
f


  (5.11) 

 

This fitness function was used to alleviate fitness bias towards either true positives or 

true negatives. 

The GA were run for 200 iterations. Each method was executed 10 times with a 

different random starting population and the final results were averaged. The averaged true 

positive rates, true negative rates and Bayesian detection rates for each method, at each 

iteration, are shown in Figure 26, Figure 27, and Figure 28 respectively 

 

Figure 28. Averaged Bayesian detection rate for each iteration for each method 



64 

 

 

Table 10 shows the averaged final classification results with no dimensionality 

selection. Both dimensionality selection methods performed better than when the full 1000 

dimensions are used. The presented IG based method shows more than 3% improvement 

over the conventional dimensionality selection method for true positive rate and the Bayesian 

detection rate and an improvement of 1.5% for true negative rate. 

 

5.5 CONCLUSION 

This Chapter presented a novel Information Gain (IG) based dimensionality selection 

methodology for text mining applications using Genetic Algorithms (GA). The presented 

methodology dynamically varies mutation probability of bits in the chromosome according to 

the IG of each dimension. This dynamic selective mutation enables selection of dimensions 

that contribute to classification more effectively. 

The presented methodology was applied to the software vulnerability identification 

method discussed in this thesis. The presented methodology was applied to this text mining 

problem and compared with a conventional genetic algorithm with static mutation 

probabilities. The results show an increase of 3% for the true positives and the Bayesian 

detection rate and an increase of 1.5% for the true negatives in 200 iterations. 

In addition to the presented application to the HIB classification problem, the novel 

IG based dimensionality selection method can be applied to other dimensionality selection 

problems as well. 

Table 10. Averaged classification results for each method. 

Parameter 

No 

dimensionality 

selection 

Conventional GA 

based dimensionality 

selection 

Presented IG based 

dimensionality 

selection 

True Positive Rate 0.671 0.881 0.912 

True Negative Rate 0.908 0.915 0.931 

Bayesian Detection Rate 0.085 0.116 0.143 
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Chapter 6 CONCLUSION AND FUTURE WORK 

 

This Chapter provides the final conclusions of the presented work and proposes 

several directions for future work. 

 

6.1 FINAL CONCLUSION 

This thesis addressed the problem of identifying software vulnerabilities. In summary, 

a novel framework was developed, that extracts and utilizes textual information in publically 

available bug databases for identifying vulnerabilities. Several advancements of algorithms 

were developed for more efficient information extraction and classification of vulnerabilities.  

First, Chapter 2 introduced the phenomenon known as Hidden Impact Bugs (HIBs) 

where a vulnerability is reported to a bug database as a bug before the full severity of that 

vulnerability is discovered. The Chapter then followed with an analysis of HIBs existing in 2 

commonly used commercially available software packages, namely the Linux Kernel and 

MySQL Database Server. Chapter 2 also presented a novel framework for identifying 

software vulnerabilities, by leveraging information in bug databases. The presented 

framework extracts textual information of HIBs to classify whether a bug is a potential 

vulnerability or not, as it is being reported. 

Chapter 3 presented a text mining architecture that is able to extract textual 

information from bug reports and convert the information in to a feature vector that can be 

utilized by classification algorithms. The presented architecture extracts syntactical 

information from bug reports and compresses the extracted information with minimal loss of 

knowledge.  

Chapter 4 investigated several classification algorithms and applied these algorithms 

the presented textual information based vulnerability identification framework. The 

classification algorithms were used to classify HIBs in Linux Kernel. The classification 

results were then evaluated and the implications of these classification results in terms of 

real-world use of the framework by a software development team were discussed. 
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Finally, in Chapter 5 , a novel dimensionality selection methodology is presented for 

text document classification problems. The presented methodology utilizes relative 

information gain of keywords to drive the mutation probability of an evolutionary algorithm. 

The presented methodology was applied to the HIB classification problem for optimal 

dimension extraction. 

 

6.2 FUTURE WORK 

This section summarizes 7 primary directions for future work: 1) further validating 

the presented framework, 2) testing the presented framework on other software packages, 3) 

further increasing classification accuracy, 4) understanding what key-words contribute to the 

classification, 5) applying and validation of the developed dimensionality selection method 

on other problem domains, 6) developing classification framework that is less susceptible to 

dimensionality, training data set, and classifier, and 7) using the information gathered from 

identifying vulnerabilities to increase the security of future software releases. 

In order to accurately validate the presented framework, the set of bugs that are 

classified by the framework as potential vulnerabilities must be examined to identify whether 

these bugs are actual vulnerabilities. This can be done by either domain experts who will 

closely examine the for possible security impact of these bugs, or by observing whether these 

bugs will later be identified as vulnerabilities within a given time period. However, since 

some bugs may be exploitable even though experts are unable to find vulnerabilities and as 

shown in Chapter 2 some HIBs may take over an year to be correctly identified as 

vulnerabilities correctly validating the presented framework will be difficult. 

The presented framework should be tested on other commonly used software 

packages. Although, as mentioned in Chapter 2, Linux Kernel and MySQL Database Server 

are commonly used software packages that represent common commercial software, the 

presented framework should be tested on a diverse set of software packages to fully identify 

the capabilities and shortcomings of the presented framework. However, as mentioned in 

Chapter 2, public information about software vulnerabilities is scarce and some commercial 

vendors are reluctant to divulge such information. 
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The classification accuracy of the presented framework can be improved in two 

different ways. First, the text mining methodologies can be improved to include inter-

relationships between words and differentiate certain multiword terms. However, this may 

lead to a significant increase of the possible permutations for generating the feature vector. 

Second, additional sources of information can be used to complement the classification 

obtained by the presented framework. Additional sources of information may include other 

information in bug reports, expert domain knowledge, static code analysis, text mining of 

source code, etc. 

Identifying the set of key-words that contribute to a bug being classified as a potential 

vulnerability is an important step in better understanding vulnerabilities and further 

improving classification accuracy. The set of key-words and their relationship may reveal 

key features of the software package that are more vulnerable. Furthermore, this information 

can be used to further increase the classification accuracy. 

The novel method for dimensionality selection presented in Chapter 5 can be applied 

to other text mining and non-text mining problems where dimensionality selection is 

required. The usability and advantages of applying the method to other dimensionality 

selection problems will be explored in the future. 

A classification methodology that attempts to alleviate classification biases of ML 

based classifiers due to sample size, dimensionality and classifier type will be developed. 

The methodology relies on data-driven aggregation of results from multiple classifiers 

trained from multiple sources. 

Finally, the knowledge gathered from identifying vulnerabilities can be used to 

increase the robustness and security of future software releases. Identifying what types of 

vulnerabilities are most common and where most vulnerabilities occur can lead to 

development teams taking pre-emptive action against potential future vulnerabilities. 

Similarly, such information may help future distributions of software to be less vulnerable. 

Furthermore, by examining bugs that are later identified as vulnerabilities it may be possible 

to identify packages and source code that may later yield more vulnerabilities. Thus, bugs 

originating from these packages can be given a higher priority. 
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network architecture selection for performance prediction of compact heat exchanger 

with the EBaLM-OTR technique,” in Nuclear Engineering and Design, vol. 241, no. 7, 
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 Abstract: Artificial Neural Networks (ANN) have been used in the past to predict the performance of 

printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has 

focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate 

it. Although this may produce outputs that agree with experimental results, there is a risk of over-training 

or overlearning the network rather than generalizing it, which should be the ultimate goal. An over-trained 

network is able to produce good results with the training dataset but fails when new datasets with subtle 

changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-

Marquardt algorithms for over training resilience) technique, which is based on a previously discussed 

method of selecting neural network architecture that uses a separate validation set to evaluate different 

network architectures based on mean square error (MSE), and standard deviation of MSE. The method 

uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the 

dataset is divided into three parts which are used to train, validate and test each network architecture. Then 

each architecture is evaluated according to their generalization capability and capability to conform to 

original data. The method proved to be a comprehensive tool in identifying the weaknesses and 

advantages of different network architectures. The method also highlighted the fact that the architecture 

with the lowest training error is not always the most generalized and therefore not the optimal. Using the 

method the testing error achieved was in the order of magnitude of within 10−5–10−3. It was also show 

that the absolute error achieved by EBaLM-OTR was an order of magnitude better than the lowest error 

achieved by EBaLM-THP. 
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 Abstract: Identifying software vulnerabilities is becoming more important as critical and sensitive 

systems increasingly rely on complex software systems. It has been suggested in previous work that some 

bugs are only identified as vulnerabilities long after the bug has been made public. These vulnerabilities 

are known as hidden impact vulnerabilities. This paper discusses existing bug data mining classifiers and 

present an analysis of vulnerability databases showing the necessity to mine common publicly available 

bug databases for hidden impact vulnerabilities. We present a vulnerability analysis from January 2006 to 

April 2011 for two well known software packages: Linux kernel and MySQL. We show that 32% (Linux) 

and 62% (MySQL) of vulnerabilities discovered in this time period were hidden impact vulnerabilities. 

We also show that the percentage of hidden impact vulnerabilities in the last two years has increased by 

53% for Linux and 10% for MySQL. We then propose a hidden impact vulnerability identification 

methodology based on text mining classifier for bug databases. Finally, we discuss potential challenges 

faced by a development team when using such a classifier. 
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Selection for Classifying Text Documents,” in Proc. of IEEE Congress on Evolutionary 

Computation (IEEE CEC), Jun. 2013. 

 

 Abstract: Selecting the optimal dimensions for various knowledge extraction applications is an essential 

component of data mining. Dimensionality selection techniques are utilized in classification applications 

to increase the classification accuracy and reduce the computational complexity. In text classification, 

where the dimensionality of the dataset is extremely high, dimensionality selection is even more 

important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection 

in text mining applications that utilizes information gain. The presented methodology uses information 

gain of each dimension to change the mutation probability of chromosomes dynamically. Since the 

information gain is calculated a priori, the computational complexity is not affected. The presented 

method was tested on a specific text classification problem and compared with conventional genetic 

algorithm based dimensionality selection. The results show an improvement of 3% in the true positives 

and 1.6% in the true negatives over conventional dimensionality selection methods. 

 

 


