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Abstract 

The purpose of this research was to verify, using finite element analysis, a proposed closed-

form solution which solved for the reaction forces on a patient’s teeth during orthodontic 

treatment.  

The results were verified by constructing a progressive series of models in Abaqus and 

comparing the calculated displacements to their closed-form solutions. The final orthodontic 

model featured a nickel-titanium archwire subjected to the fourteen reaction forces obtained 

from the proposed closed-form solution. Elastic and plastic behavior was considered through 

use of a bilinear model. The displacements obtained from the FEA model were compared to the 

actual displacements measured between the start and end positions of the patient’s teeth. 

The difference between the closed-form and FEA in the elastic regime was negligible. The 

values at the location of the largest discrepancy still matched to the fourth decimal place. The 

graphs of displacement obtained from the closed-form and FEA solutions overlapped each 

other. Additionally, the deformed shape of the archwire produced analytically and numerically 

was very similar in the plastic regime. 

The results of this research are the validation of the closed-form solution using a modified form 

of Castigliano’s Theorem, as well as the establishment and visual representation of the 

relationship between applied force and orthodontic displacement. 
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Chapter 1: Introduction  

 

This research was built on the goal to model and solve for reaction forces in an 

orthodontic force system. Simply, the question to be answered was: how much force does the 

orthodontic archwire apply to a patient’s teeth during orthodontic treatment? All that is known 

to help answer this question is information regarding the positions of a patient’s teeth and the 

hardware used to correct dental alignment. 

There are two components in an orthodontic force system which will be discussed. There are 

the brackets, which are the metal components glued to the patient’s teeth, and the archwire. 

Both are shown in Figure 1-1.  

 

Figure 1-1 Orthodontic Hardware 

Source: Adapted from [1] 

The brackets are stationary relative to the teeth. The archwire slides through the brackets. The 

archwire is composed of a memory shape alloy and is manufactured in an elliptical shape as 

shown in Figure 1-2.  
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Figure 1-2 Orthodontic Archwires  

Source: Adapted from [2] 

The archwire is bent and trimmed as needed to roughly fit the crooked arrangement of the 

patient’s teeth. It is then guided through each of the brackets. Over time, the memory shape 

alloy of the archwire returns to its original form, taking the teeth with it. However, there is no 

information on the force it takes to move each of those teeth to a more desirable position. There 

has been no study conducted to provide insight as to what is the force on each of a patient’s 

teeth during orthodontic treatment. 

A closed-form solution to solve for the reaction forces as a system was developed by Dr. Edwin 

Odom. The solution utilized the original and final positions of the patient’s teeth to determine 

the displacement of each tooth. These displacement values were used in a modified form of 

Castigliano’s theorem along with the Crotti-Engesser method to solve a system of 14 equations 

for the unknowns: 14 reaction forces.  

Castigliano’s theorem is most commonly applied to linear-elastic beams in bending. The 

theorem relates a force magnitude to the deflection at point of force application through the 

partial derivative of the strain energy. 

The Crotti-Engesser theory extends from Castigliano’s theorem to include inelastic deformation 

through the use of complimentary energy. This theory uses a relationship between curvature 

and bending moment. The literature on the applications of the Crotti-Engesser theory to a 

complex model is sparse. There is a need to verify the theory and to verify that the orthodontic 

math model was accurate.  
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The work done for graduate research consisted of developing secondary means of validating 

the proposed closed-form solution. The chosen method was finite element analysis. Before 

proceeding to create a finite element model of the final orthodontic model, a series of base cases 

were developed. The purpose of the base cases was to be able to verify that the FEA models and 

mathematical methods were accurate. For the some of the base cases, a published solution 

already exists. This was used as a tool for comparison against the FEA and closed-form 

solutions. The base cases started with elastic beams featuring various end conditions which 

were analyzed using Castigliano’s theorem and FEA. The base cases progressed to include 

inelastic material behavior by utilizing the complimentary energy with the Crotti-Engesser 

theory and FEA. The analysis did not include unloading for these problems. The base cases 

concluded with beams featuring curved geometry. From there, the final orthodontic model was 

developed. 

For the finite element analysis, the orthodontic system was modeled as an elliptical archwire 

with 14 forces applied at the locations where the patient’s teeth would be located. After the 

finite element analysis was completed, the mathematical model developed using the modified 

form of Castigliano’s theorem and the Crotti-Engesser theory was verified. This was 

accomplished by comparing the displacements at point of force application obtained from the 

finite element program to the actual displacements of the patient’s teeth.  
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Literature Search 

Castigliano’s theorem relates a point load to the displacement at that load through the 

partial derivative of the strain energy. It is often used to compute deflections in structures. The 

theorem was developed Carlo Alberto Castigliano and published in 1879 [3]. It has been 

successfully applied to multiple mechanics problems to solve for deflection in components. For 

examples, see the fifth chapter of Advanced Mechanics of Materials [4]. There are two theorems 

encompassed in Castigliano’s principle of minimum strain energy. The first theorem states that 

a force magnitude can be solved for by taking the partial derivative of the strain energy with 

respect to the displacement caused by that force. The second theorem states that a 

displacement can be solved for by taking the partial derivative of the strain energy with respect 

to the point load causing that displacement. The general form of Castigliano’s theorem in terms 

of the strain energy of bending is: 

𝛿𝑖 =
𝜕𝑈

𝜕𝐹𝑖
= ∫

𝑀

𝐸𝐼

𝜕𝑀𝑖

𝜕𝐹𝑖
𝑑𝑥

𝐿

𝑜

 

The strain energy is designated by U. The terms Fi and δi are the applied force and displacement 

at some location i. M is the moment, E is the elastic modulus, and I is the moment of inertia. The 

theorem is commonly applied to statically determinate structures. The application of 

Castigliano’s theorem to statically indeterminate structures with other types of supports, 

including pin or roller connections is more complex.  

Dr. Frederick Ju [5], a professor of Mechanical Engineering at the University of New Mexico, 

proposed a modified form of Castigliano’s theorem which could be applied to a broader scope of 

problems. This modified form is presented below. 

𝛿𝑖 = ∫
𝑀

𝐸𝐼

𝜕𝑀𝑖

𝜕𝐹𝑖
𝑑𝑥

𝐿

𝑜

+ 𝜆𝑖

𝜕𝑔𝑛

𝜕𝐹𝑖
 

Dr. Ju’s method of using Castigliano’s theorem involved the addition of some constant(s), 𝜆𝑖
𝜕𝑔𝑛

𝜕𝐹𝑖
,  

where λi is a Lagrange multiplier and 
𝜕𝑔𝑛

𝜕𝐹𝑖
 is the partial derivative of an equation of equilibrium. 

These components act as constraints that account for various supports of the system. By using 

Castigliano’s theorem with Lagrange multipliers, one can relate forces and displacements on 

components that do not have a fixed end condition or are statically indeterminate. Utilizing this 

form of Castigliano’s theorem will allow the solution of more complex problems. Dr. Ju 

published his methods in his paper, On the Constraints of Castigliano’s Theorem. [5] This paper 
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has been referenced four times. The most recent of these references utilized Dr. Ju’s method to 

solve for reaction forces caused by friction in a statically indeterminate curved beam. [6] The 

next two sources were published by Dr. Edwin Odom, the major professor on this presented 

thesis and research and his colleague, Dr. Carla Egelhoff. The papers reported on using Dr. Ju’s 

method to solve for deflections in statically determinate stepped shafts and solving for 

deflection in stepped shafts using energy methods and numerical integration at an 

undergraduate level. [7] [8] The last of the four citations proposed using Castigliano’s Theorem 

to model the flexibility of robotic manipulator arms. [9] Dr. Ju’s initial article is the only known 

proposal on altering Castigliano’s theorem such that in can be applied to a broader scope of 

problems. The application of this method to something as complex as an orthodontic force 

system has not been published.  
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Chapter 2: Castigliano’s Theorem and its Limitations 

 

Introduction 

This chapter will introduce the mathematics, principles and theory in detail that 

support this research. Castigliano’s theorem and its limitations will be discussed. Additionally, 

this chapter presents methods to modify the theorem such that it can be applied to the 

problems presented in this thesis. The chapter will conclude by describing the finite element 

analysis. It will discuss the material properties, the type of finite element model, and the other 

necessary aspects of finite element analysis. 

Methods and Materials 

Math Model 

The mathematical model for the orthodontic force system was developed on the concept 

of Castigliano’s theorem. Castigliano’s theorem relates a deflection to a load through the partial 

derivative of the strain energy. 

 
𝛿𝑖 =

𝜕𝑈

𝜕𝐹𝑖
  (2-1) 

Here, U is the internal strain energy, δi is the deflection at location i in the direction of the load, 

Fi. This equation in terms of bending strain energy is shown below.  

 
𝛿𝑖 = ∫

𝑀

𝐸𝐼

𝜕𝑀𝑖

𝜕𝐹𝑖
𝑑𝑥

𝐿

𝑜

 (2-2) 

In Equation (2-2), M is the moment as a function of x, E is the elastic modulus, I is the moment of 

inertia and 
𝜕𝑀𝑖

𝜕𝐹𝑖
 is the partial derivative of the moment equation with respect to the point load 

applied where the deflection, δi, is of interest. This method is commonly applied to cantilevered 

beams, as demonstrated in Figure 2-1.  

The right end of the beam features an unyielding support. The variable x is taken toward the 

fixed end, such that integration can be performed over the length of the beam and the deflection 

at the application of load P can be determined. 
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Figure 2-1 Standard Energy Method Problem 

However, a typical orthodontic force system does not involve unyielding supports. The 

orthodontic archwire is threaded through the brackets (the components glued to the patient’s 

teeth), and is permitted to slide axially, more like a roller support. For the orthodontic model, 

there were fourteen of these supports. Refer to Figure 2-2 for clarity. 

 

Figure 2-2 Archwire (A) and Bracket (B) 

Equation (2-2) applies to instances with unyielding supports or instances involving statically 

determinate beams. For the orthodontic force system, a modified version of Castigliano’s 

theorem had to be utilized. Dr. Frederick Ju proposed the use of Lagrange multipliers in 

addition to Equation (2-2) in order to account for the other end conditions when integration is 

not performed away from a free end toward an unyielding support. When including Lagrange 

multipliers, the equation becomes: 

 
𝛿𝑖 = ∫

𝑀

𝐸𝐼

𝜕𝑀𝑖

𝜕𝐹𝑖
𝑑𝑥

𝐿

𝑜

+ 𝜆𝑖

𝜕𝑔𝑛

𝜕𝐹𝑖
 (2-3) 
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Here, λi is the Lagrange multiplier associated with gn, an equation of equilibrium. The example 

below shows how Castigliano’s theorem represented by Equation (2-2) has limitations when 

the equations of equilibrium are not considered. The example then shows how this can be 

accounted for using the modified form of Castigliano’s theorem represented by Equation (2-3). 

For example, consider the simply supported beam with a uniformly distributed load shown in 

Figure 2-3. 

 

Figure 2-3Simply Supported Beam with Distributed Load 

The free body diagram for the beam is shown in Figure 2-4. 

 

Figure 2-4 Free Body Diagram 

Note that the reaction force Rx arises from the pinned connection at the left end. However, as 

the only load acting in the x-direction, the value of Rx is zero.  

The moment equation is formed and shown below. 

𝑀(𝑥) = 𝑅𝐿𝑥 −
𝑤𝑥2

2
 

Now, the goal will be to use the zero-displacement conditions at the ends of the beam and 

Castigliano’s theorem without the constraints of the equations of equilibrium to determine the 

values for RL and RR. Essentially, Equation (2-2) will be used to back-solve for the reaction 

forces since the deflection at the end of the beam is already known to be zero. The partial 

derivative of the moment with respect to the load RL is: 

𝜕𝑀

𝜕𝑅𝐿
= 𝑥 
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The moment equation and the partial derivative are used in Equation (2-2) as shown below. 

𝛿𝐿 = ∫
𝑅𝐿𝑥 −

𝑤𝑥2

2
𝐸𝐼

𝑥 𝑑𝑥
𝐿

𝑜

 

Using the zero-displacement condition at the left end of the beam, the equation simplifies as 

shown below. The EI term is constant and can be pulled outside the integral. 

0 =
1

𝐸𝐼
∫ 𝑅𝐿𝑥2 −

𝑤𝑥3

2
𝑑𝑥

𝐿

𝑜

 

By multiplying both sides by EI and integrating with respect to x, the equation becomes: 

0 =
𝑅𝐿𝑥3

3
−

𝑤𝑥4

8
|

0

𝐿

 

After evaluating the equation between the bounds of integration, RL is solved for. 

𝑅𝐿 =
3𝑤𝐿

8
 

This is incorrect. One can look at the free body diagram above and understand that the correct 

value for RL is: 

𝑅𝐿 =
𝑤𝐿

2
 

The reason that applying Castigliano’s theorem to this case was unsuccessful is because the 

problem involves a roller and a pin instead of a completely fixed end and a free end.  

Now this problem will be solved for the displacement along the length of the beam using the 

modified version of Castigliano’s theorem represented by Equation (2-3) to produce a closed-

form solution. The closed-form solution obtained using this method will be compared to the 

published closed-form solution found in most mechanics textbooks. The true support 

conditions of this problem are taken into account in the form of Lagrange multipliers.  

In Figures 2-5 and 2-6, it must be noted that Q is a fictitious or imaginary load with a true value 

of zero. The force, Q, is present so the deflection can be determined at every point along the 

beam as the location of Q moves along the length of the beam. By definition, Castigliano’s 

theorem solves for deflection at the point of load application. There must be a load present 

where deflection is to be determined, even if the actual value of that load is zero. 
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Figure 2-5 Simply Supported Beam with Fictitious Load 

 

Figure 2-6 Free Body Diagram Including Fictitious Load 

To start the process of solving the previous problem using this modified method, the equations 

of equilibrium must be determined. The sum of the forces is taken in the y-direction, and is 

denoted as g1. 

𝑔1 = ∑ 𝐹𝑦 = 0 = 𝑅𝐿 + 𝑅𝑅 − 𝑄 − 𝑤𝐿 

Next, the sum of the moments is taken about the right end of the beam. This will be denoted g2. 

𝑔2 = ∑ 𝑀𝑅 = 0 = 𝑅𝐿(𝐿) − 𝑄(𝑥 − 𝜉) −
1

2
𝑤𝐿2 

Moving in the direction of x, the moment equation is formed and is shown below. Note the 

Heaviside step function included. This simply means that for H(a,b), if b>a then the Heaviside 

function evaluates to the value of 1, and the function f(a,b) will be present in the equation. 

However, if b<a, then the Heaviside function evaluates to zero, and the function f(a,b) will not 

be present in the equation, as it is multiplied by zero. 

𝑀(𝑥) = 𝑅𝐿𝑥 − 𝑄(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉) −
𝑤𝑥2

2
 

Following Professor Ju’s approach for g1, it is seen that the force RR is implicit in the moment 

equation, meaning it does not appear in the moment equation. Additionally, the displacement 
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caused by RR is zero, meaning the force RR is also non-working. Therefore, g1 is ignorable, and 

there will not be a Lagrange multiplier associated with it. But looking at g2, it is seen that RL, Q, 

and w all appear in the moment equation, M(x), making them explicit variables in the moment 

equation. This means g2 is an explicit constraint and cannot be ignored and there will be a 

Lagrange multiplier associated. This Lagrange multiplier must first be determined in order to 

solve for displacement along the length of the beam. The left end of the beam has a zero-

displacement condition. Equation (2-3) will be used as shown below. 

𝛿𝐿 = ∫
𝑀

𝐸𝐼

𝜕𝑀

𝜕𝑅𝐿
𝑑𝑥 + 𝜆2

𝜕𝑔2

𝜕𝑅𝐿
 

The moment equation and partial derivatives are shown in the equation: 

0 = ∫
𝑅𝐿𝑥 −

𝑤𝑥2

2
𝐸𝐼

∗ 𝑥𝑑𝑥 + 𝜆2𝐿
𝐿

0

 

After integrating and multiplying out the EI term, the equation becomes: 

0 =
𝑅𝐿𝐿3

3
−

𝑤𝐿4

8
+ 𝜆2𝐸𝐼𝐿 

Recall from equation g1 that RL is equal to 
𝑤𝐿

2
. This will be used to simplify the equation further. 

0 =
𝑤𝐿4

6
−

𝑤𝐿4

8
+ 𝜆2𝐸𝐼𝐿 

The Lagrange multiplier, λ2, can now be determined. 

𝜆2 = −
𝑤𝐿3

24𝐸𝐼
 

Next, the integral to solve for deflection along the entire length of the beam can be constructed. 

Note that the equation takes the form of Equation (2-3). The partial derivatives in the equation 

are now with respect to the load Q. 

𝜕𝑈

𝜕𝑄
= 𝛿𝑄 = ∫

𝑅𝐿𝑥 −
𝑤𝑥2

2
𝐸𝐼

∗ −(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉)𝑑𝑥 + 𝜆2 ∗ (−(𝐿 − 𝜉))
𝐿

0

 

The bounds of integration can be adjusted to account for the Heaviside step function. When the 

value of x is between zero and ξ, the Heaviside step function will evaluate to zero. For x values 

between ξ and L, the Heaviside function evaluates to one. Therefore, the lower bound of 
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integration can be replaced by ξ and the Heaviside function dropped. The EI term can be 

multiplied out to form the following equation. 

𝛿𝑄𝐸𝐼 = ∫ (𝑅𝐿𝑥 −
𝑤𝑥2

2
) ∗ (−(𝑥 − 𝜉))𝑑𝑥 − 𝜆2𝐸𝐼(𝐿 − 𝜉)

𝐿

𝜉

 

After integration and evaluation between the bounds, the equation becomes: 

𝐸𝐼𝛿𝑄 = (
𝐿4𝑤

8
−

𝑅𝐿𝐿3

3
−

𝐿3𝑤𝜉

6
+

𝑅𝐿𝐿2𝜉

2
+

𝑤𝜉4

24
−

𝑅𝐿𝜉3

6
) − 𝜆2𝐸𝐼(𝐿 − 𝜉) 

After combining like terms, and including the value for λ2, the displacement at any point Q on 

the beam is represented by Equation (2-4). 

 
𝛿𝑄 =

𝑤𝜉

24𝐸𝐼
(𝐿3 − 2𝐿𝜉2 − 𝜉3) (2-4) 

This is the closed-form solution for the displacement along the length of the beam. This can be 

validated using the closed-form solution of the moment-curvature relationship is presented in 

Mechanical Engineering Design. [10] 

 𝑦 =
𝑤𝑥

24𝐸𝐼
(2𝐿𝑥2 − 𝑥3 − 𝐿3) (2-5) 

The only difference that can be seen between the published solution represented by Equation 

(2-5), and Equation (2-4) is a negative sign that has been distributed to all the terms in the 

parentheses in Equation (2-5). This is because the published solution was developed on the 

assumption that the distributed load is acting in the negative y-direction. But Castigliano’s 

theorem relates a displacement to a point load in the direction of the point load. Therefore, the 

sign is dictated by the force. 

It was shown that the correct solution to this problem was not produced using the general form 

of Castigliano’s theorem alone. It was shown that the value for the Lagrange multiplier needed 

to be included in order to produce the correct solution. 

Nonlinear Behavior 

The geometry of the orthodontic force system was not the only problem presented 

when applying Castigliano’s theorem to this problem. Aside from dealing with the types of 

supports present in the orthodontic system, the other issue addressed was the inelastic 

deformation experienced by the archwire during orthodontic treatment. Castigliano’s second 
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theorem is only applicable when stresses and displacements occur in the linear elastic region. 

The generalized form of Castigliano’s theorem represented by Equation (2-2) no longer applies 

to the non-linear bending of the archwire. This is because the relationship between strain 

energy, applied force and displacement changes to complementary energy, applied force and 

displacement. In Figure 2-7, the strain energy is represented as U, and the complementary 

energy is denoted Uc. In the linear region, U=Uc. However, once the curve moves past the yield 

point and into the non-linear regime, U≠Uc. When non-linear stress is experienced, the 

complementary energy, Uc must be used in place of U. The general equation becomes: 

 
𝛿𝑖 =

𝜕𝑈𝑐

𝜕𝐹𝑖
 (2-6) 

 

Figure 2-7 Strain and Complementary Energy 

Assuming Euler-Bernoulli behavior, planes before bending remain plane after bending as 

shown in Figure 2-8.  
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Figure 2-8 Eulerian Beam Theory 

After the material exceeds the yield strain, the stress profile is no longer linear as shown in 

Figure 2-10 (a). However, the strain distribution is linear as shown in Figure 2-10 (b). 

 

Figure 2-9 Cross Section in Inelastic Bending 

The cross section near the wall in Figure 2-9 is experiencing inelastic bending. Looking closer at 

the cross section, the stress and strain profiles are depicted in Figure 2-10. 

  

Figure 2-10 Stress Profile (a) and Strain Profile (b) 

The stress profile on the left is clearly non-linear. However, the strain profile does remain linear 

despite the inelastic stress.  

This concept is the basis for the Crotti-Engesser method, which replaces the 
𝑀

𝐸𝐼
 term with the 

variable κ, the inverse of the radius of curvature, to form Equation (2-7). It should be noted that 
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the Crotti-Engesser approach is appropriate for situations involving non-linear elastic behavior, 

or plastic behavior that does not include un-loading. 

 
𝛿𝑖 = ∫ 𝜅

𝜕𝑀𝑖

𝜕𝐹𝑖
𝑑𝑥

𝐿

𝑜

 (2-7) 

One can solve for radius of curvature using the following relation: 

 𝜀 =
𝑦

𝑅
 (2-8) 

Where ε is the strain at a point, y is the distance from the neutral axis of bending, and R is the 

radius of curvature. The value κ, the beam curvature, is the inverse of R. 

Utilizing this method can be tricky, if all that is known are the material properties such as a 

stress strain curve, the loading conditions, and the beam geometry. This is because the moment 

can be computed, but cannot be related to the stress or strain values resulting at each point in 

the component using standard equations. Using the strain values given for material properties, 

the radius of curvature is computed for that strain value, and then the moment for that radius of 

curvature is computed using Equation (2-9) [11]. 

 
𝑀𝑧 = ∫(𝜎)(𝑑𝐴)(𝑦) (2-9) 

In the equation above, dA refers to an infinitesimal piece of the cross-sectional area of the beam, 

y refers to the distance from the neutral axis of bending, and σ refers to the stress in terms of 

strain. For example, a circular cross section will be considered. Refer to Figure 2-11.  
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Figure 2-11 Cross Section and Strain Profile 

For the cross section above, the equation for the circle must be considered. 

𝑦2 + 𝑧2 = (
𝑑

2
)

2

 

The first objective would be to determine the dA term in Equation (2-9). The equation for the 

circle is solved for z in terms of y. 

𝑧 = ((
𝑑

2
)

2

− 𝑦2)

1
2

 

Then the infinitesimal area, dA, becomes the following expression. 

𝑑𝐴 = 2𝑧𝑑𝑦 = 2 ((
𝑑

2
)

2

− 𝑦2)

1
2

𝑑𝑦 

Next, the stress term, σ, must be written in terms of strain. This can be done if the material 

properties are known and a stress-strain curve can be developed such as the one shown in 

Figure 2-12.  
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Figure 2-12 Bilinear Stress-Strain Curve 

Using the material behavior from Figure 2-12, the stress, σ, can be written as shown below. 

 
𝜎 = 𝐸𝜀 [1 + (

1 − 𝐶

𝐶
) 𝐻(𝜀, 𝜀𝑦)] + 𝐸𝜀𝑦 (

𝐶 − 1

𝐶
) 𝐻(𝜀, 𝜀𝑦) (2-10) 

Because the example features a bilinear stress strain curve, C is a constant used to adjust the 

modulus of elasticity for the second portion of the curve. The relationship below can be used for 

clarity. 

𝐸1 =
1

𝐶
𝐸2 

Additionally, the strain value, ε, can be written in terms of y, the distance from the neutral axis 

of bending. 

𝜀 =
2𝑦𝜀𝑚𝑎𝑥

𝑑
 

All other terms in the stress equation are constant across the beam cross section. Every term in 

Equation (2-9) can be written in terms of y. Equation (2-9) can be written as shown below.  
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𝑀𝑧 = 4 ∫ 𝑦

𝑑
2

0

((
𝑑

2
)

2

− 𝑦2)

1
2

𝐸
2𝑦𝜀𝑚𝑎𝑥

𝑑
[1 + (

1 − 𝐶

𝐶
) 𝐻(𝜀, 𝜀𝑦)] + 𝐸𝜀𝑦 (

𝐶 − 1

𝐶
) 𝐻(𝜀, 𝜀𝑦)𝑑𝑦 

This can be numerically integrated and evaluated between the bounds to determine the 

moment associated with a radius of curvature value obtained using Equation (2-8). From this 

set of data, a moment-curvature relationship can be established, most often in the form of a plot 

as shown in Figure 2-13.  

 

Figure 2-13 Moment-Curvature Plot 

Then, the moment along the length of a beam can be computed and curvature values can be 

determined by interpolating the moment-curvature plot. The radius of curvature values can be 

used to determine the values for κ in Equation (2-7), and the displacement of the beam can be 

computed when inelastic bending occurs. 
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Finite Element Analysis 

The way this research was conducted involved three main steps for the base cases as well as the 

final orthodontic model. 

1. Develop a closed-form and numerical solution using the methods previously described 

in this chapter. 

2. Compose a finite element model of the same problem. 

3. Compare the results of the closed-form/numerical solution with the results of the finite 

element analysis. 

Finite Element Models 

The finite element models used were all created in the 2016 or 2017 student version of 

Abaqus. All were 2D, deformable wire models. They featured beam sections and elements only. 

The steps of FEA models were general static, as the loads and displacements were applied over 

a long period of time. The beam section orientation was established for all models with tangent 

vectors acting in the axial direction and direction vectors n1 and n2 defined along the cross-

sectional plane. An example is shown in Figure 2-14, where vector t shown in red is the tangent 

vector. The beam elements for all models were selected from the standard library and featured 

a cubic formulation (Euler-Bernoulli) type element with 2 nodes per element. The Abaqus 

standard library name of the element is B23. Because Euler-Bernoulli type elements were used, 

transverse shear deformation is not included. Plane sections initially normal to the beam’s axis 

remain plane. This type of element is good for slender beams and suited these models due to 

the Eulerian Beam theory that was utilized to develop the closed-form solutions. 

 

Figure 2-14 Beam Orientation Abaqus 

Material Properties 

The material used for most of the base cases and one of the final orthodontic models 

was a nickel-titanium alloy featuring a stress-strain relationship that is best estimated as a 

bilinear model. The stress-strain behavior is depicted in the graph of Figure 2-12. The value of 

E1, or the elastic modulus for the elastic regime, is 9,100,000 psi, and E2 is approximately 
1

12
 the 

value of E1. The value of σy is approximately 41,300 psi and the value of εy is .00454. Material 
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data was pulled from Comparison of NiTi Orthodontic Archwires and a Determination of the 

Characteristic Properties. [12]  

When applying the material properties in Abaqus, only the elastic modulus, E1 was needed for 

the elastic behavior. For the plastic behavior, a set of data including yield stresses and the 

corresponding values for plastic strain was needed.  

 

Figure 2-15 Plasticity Model Abaqus 

The data was provided by extracting stress and corresponding strain values from Equation (2-

10). Using the stress-strain values for the inelastic regime, or the values for which E2 applies, 

the elastic portion of the strain was subtracted out, leaving yield stress values and the 

corresponding values for plastic strain which were used to populate the table shown in Figure 

2-15. 

A few of the base cases and the elastic final orthodontic model featured a material of stainless 

steel. The other base cases featured aluminum with an elastic modulus of 1E7 psi and the final 

orthodontic model that featured 316 stainless steel had an elastic modulus of 2.8E7 psi. 

Summary 

This chapter introduced the analytical methods of this research as well as the approach 

taken toward the finite element analysis. The following chapters will introduce multiple simple 

base cases developed to validate the accuracy of both the analytical methods and the finite 
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element models. Simple base cases were developed first, and accuracy of the methods 

established early such that when a more complex final model was created, trouble-shooting 

would be reduced should a discrepancy arise. 
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Chapter 3: Closed-form Solutions 

 

Introduction 

This chapter introduces simple cases of linear elastic bending in straight beams. The 

problems presented here have published closed-form solutions. They are presented as 

validation that the finite element models are accurate and verification of the modified form of 

Castigliano’s theorem.  

Case 1 

Case 1 was a straight beam of rectangular cross section and a length of 5 inches. The 

base, b, was .057 inches and the height, h, of the beam was 0.113 inches. Refer to the cross 

section in Figure 3-1. The cross-sectional dimensions were chosen to represent realistic 

geometry of an orthodontic arch wire. The right end of the beam was clamped and a point load, 

P, was applied to the left end. The magnitude of the point load was 1 lb. The beam experienced 

only elastic bending. The diagram of case 1 is shown in Figure 3-1. 

 

Figure 3-1 Case 1 

Analytical Methods 

 The analytical solution was developed using Castigliano’s theorem. Moving toward the 

fixed end, the moment equation becomes: 

𝑀(𝑥) = −𝑃𝑥 

The partial derivative of the moment equation with respect to load P is shown below. 

𝜕𝑀

𝜕𝑃
= −𝑥 
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Now, using the moment and its partial derivative to evaluate Equation (2-2), the integral 

becomes: 

𝛿𝑃 = ∫
𝑃𝑥2

𝐸𝐼
𝑑𝑥,

𝐿

𝑜

 

The equation is solved and shown below. 

𝛿𝑃 =
𝑃𝐿3

3𝐸𝐼
 

This is the closed-form solution for the deflection at the end of the beam. In order to solve for 

the deflection along the length of the beam, a dummy load, Q must be introduced. Q is a fictitious 

or imaginary load that must be applied at the point where the deflection is to be determined. 

This is because by definition, Castigliano’s Theorem relates a force to a deflection at the point of 

load application. Q is later set to its true value of zero. When using the dummy load, Q, to solve 

for deflection along the length of the beam, the scenario becomes: 

 

Figure 3-2 Case 1 featuring fictitious load Q 

The moment equation becomes: 

𝑀(𝑥) = −𝑃𝑥 − 𝑄(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉). 

The partial derivative of the moment is taken with respect to Q. 

𝜕𝑀

𝜕𝑄
= −(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉) 

Using the moment equation and its partial derivative in Equation (2-2), the integral becomes: 

𝛿𝑄 = ∫
−𝑃𝑥 − 𝑄(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉)

𝐸𝐼
∗ −(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉) 𝑑𝑥

𝐿

𝑜
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The Heaviside step function present in the integral will evaluate to zero when x<ξ. In this case, 

the bounds of integration can be changed, the Heaviside step function evaluated to one, and 

therefore dropped. The value of Q is set to its true value of zero and the integral becomes: 

𝛿𝑄 = ∫
−𝑃𝑥

𝐸𝐼
∗ −(𝑥 − 𝜉) 𝑑𝑥

𝐿

𝜉

 

The integral is solved and the equation becomes: 

𝛿𝑄 =
𝑃𝑥3

3𝐸𝐼
−

𝑃𝑥2𝜉

2𝐸𝐼
|

𝐿

𝜉
 

After evaluation using the upper and lower bounds, the deflection at any location along the 

beam can be determined. Below is the closed-form solution for deflection along the length of the 

beam. 

𝛿𝑄 =
𝑃

6𝐸𝐼
(2𝐿3 − 3𝐿2𝜉 + 𝜉3) 

After formulating the closed-form solution, the focus was shifted to developing the finite 

element model. The finite element model was created in Abaqus. The boundary conditions and 

loading are shown in Figure 3-3. The right end was fixed from translation and rotation about all 

3 axes, in order to produce the cantilevered end condition. The load was introduced as a point 

load at the left end of the beam, as shown below. The cross section created for the model used 

the same dimensions presented in Figure 3-1. The model featured 981 nodes and 980 elements.  

 

Figure 3-3 Case 1 Abaqus 

The vertical displacement was simulated for the length of the beam.  

Aside from the closed-form solution and the finite element model, a numerical solution was 

developed. The numerical solution was created in TK solver by Dr. Edwin Odom. It employed 

the same methods described in the analytical methods section, but utilized numerical 

integration instead of symbolic integration as shown above. 
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A comparison was made between the FEA results the results obtained both numerically and 

analytically. The comparison between the three is presented in the results section below. Refer 

to Figure 3-8.  

Results 

Figure 3-4 shows the vertical displacement from the finite element analysis. Note that 

the y-direction is denoted U2 and the units are inches. The deflection is scaled 1:1 for viewing 

purposes.  

 

Figure 3-4 Case 1 Abaqus Vertical Displacement 

The deflection along the length of the beam was compared between the FEA model, the 

analytical solution, and the numerical solution. The results comparing the FEA and analytical 

solution are plotted below in Figure 3-5. The difference is miniscule and cannot be 

distinguished when plotted using standard methods. 

 

Figure 3-5 Case 1 Vertical Displacement of Cantilevered Beam 

 



26 
 

Case 2 

Case 2 was a simply supported beam with a point load applied mid-span. The setup is 

shown in Figure 3-6 and the free body diagram is shown in Figure 3-7. 

 

Figure 3-6 Case 2 

 

Figure 3-7 Case 2 Free Body Diagram 

Analytical Methods 

It can be seen that the value of Rx is zero, as it is the only force in the x-direction caused 

by the pinned connection at the left end. Note again that Q arises as a fictitious load with a value 

of zero. It is introduced so the deflection at each point where Q is applied can be determined. 

This way the deflection along the entire length of the beam can be determined. 

The problem solution begins by taking the moment equation. 

𝑀(𝑥) = 𝑅𝐿𝑥 − 𝑄(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉) − 𝑃 (𝑥 −
𝐿

2
) ∗ 𝐻(𝑥,

𝐿

2
) 

Because this beam does not have a completely fixed end condition, Lagrange multipliers will be 

involved. Refer to chapter two for the reasoning and theory behind this. 

The sum of the forces in the y-direction is taken. This equation is denoted as g1. 

𝑔1 = ∑ 𝑦 = 0 = 𝑅𝐿 − 𝑃 − 𝑄 + 𝑅𝑅 
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And the sum of the moments, denoted g2 is taken about the right end of the beam. 

𝑔2 = ∑ 𝑀𝑅 = 0 = 𝑅𝐿𝐿 − 𝑄(𝐿 − 𝜉) −
𝑃𝐿

2
 

It can be seen by looking at g1 and the moment equation, M(x), that RR does not occur in the 

moment equation, therefore RR is implicit. Additionally, RR is non-working because the 

displacement caused by RR is zero. Because the force RR appearing in g1 is implicit and non-

working, g1 can be ignored. There will not be a Lagrange multiplier associated with g1. 

By examining g2 it can be seen that all the forces that appear in g2 also appear in the moment 

equation. Therefore, g2 cannot be ignored and there will be a Lagrange multiplier, λ2, associated 

with g2.  

The value for this Lagrange multiplier, λ2, must be determined in order to solve the rest of the 

problem and determine the deflection along the length of the beam. The displacement equation 

for the left end of the beam will be utilized to solve for λ2, since the deflection at the left end is 

known to be zero. The following form of Equation (2-3) will be used: 

𝛿𝐿 = ∫
𝑀𝑄=0

𝐸𝐼

𝜕𝑀

𝜕𝑅𝐿
𝑑𝑥 + 𝜆2

𝜕𝑔2

𝜕𝑅𝐿

𝐿

0

 

The two partial derivatives are computed as follows. 

𝜕𝑀

𝜕𝑅𝐿
= 𝑥 

𝜕𝑔2

𝜕𝑅𝐿
= 𝐿 

The partial derivatives and the moment equation will be used to evaluate the integral. Note that 

the value of Q is zero. The terms including Q are dropped in the integral to account for the fact 

that Q is a fictitious load. Additionally, the value of δL is known to be zero. The equation 

becomes: 

0 = ∫
𝑅𝐿𝑥 − 𝑃 (𝑥 −

𝐿
2) ∗ 𝐻(𝑥,

𝐿
2)

𝐸𝐼
∗ 𝑥𝑑𝑥 + 𝜆2𝐿

𝐿

0

 

For values of x less than 
𝐿

2
, the term including the force P is zero since the Heaviside step 

function is zero in this region. Therefore, the integral only includes the value with P for values 
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of x between L and 
𝐿

2
, and the equation above can be broken down into parts to take the 

following form. 

0 = ∫ 𝑅𝐿𝑥2𝑑𝑥 − ∫ 𝑃𝑥(𝑥 −
𝐿

2

𝐿

𝐿
2

)𝑑𝑥 + 𝜆2𝐿𝐸𝐼
𝐿

0

 

After evaluating both integrals, the equation becomes: 

0 =
𝑅𝐿𝐿3

3
−

5𝑃𝐿3

48
+ 𝜆2𝐿𝐸𝐼 

From equation g1, it is seen that RL can be replaced with 
𝑃

2
. After combining like terms, the 

equation simplifies significantly as shown below. 

0 =
𝑃𝐿3

6
−

5𝑃𝐿3

48
+ 𝜆2𝐿𝐸𝐼 

This equation is important because the Lagrange multiplier, λ2 can be solved for in terms of P. 

Using the equation above, the Lagrange multiplier is determined. 

𝜆2 = −
3𝑃𝐿2

48𝐸𝐼
 

Now λ2 can be used in Equation (2-3) to solve for the deflection at every point Q, along the 

beam. 

𝛿𝑄 = ∫
𝑀𝑄=0

𝐸𝐼

𝜕𝑀

𝜕𝑄
𝑑𝑥 + 𝜆2

𝜕𝑔2

𝜕𝑄

𝐿

0

 

The first partial derivative is: 

𝜕𝑀

𝜕𝑄
= −(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉) 

And the second partial derivative is: 

𝜕𝑔2

𝜕𝑄
= −(𝐿 − 𝜉) 

Using the partial derivatives and the moment equation with Q set to zero, the equation for 

displacement becomes: 
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𝛿𝑄 = ∫
𝑅𝐿𝑥 − 𝑃 (𝑥 −

𝐿
2

) ∗ 𝐻(𝑥,
𝐿
2

)

𝐸𝐼
∗ −(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉)𝑑𝑥 − 𝜆2(𝐿 − 𝜉)

𝐿

0

 

There are two Heaviside step functions in the integral. To simplify operations, the integral will 

be broken down into two simpler integrals. For the first integral, there was only one Heaviside 

step function associated, and the bounds of integration have been adjusted to account for it. 

However, in the second integral, there are two Heaviside step functions. See the identity below 

for this situation. 

𝐸𝐼𝛿𝑄 = ∫ −𝑅𝐿𝑥(𝑥 − 𝜉)𝑑𝑥 + ∫ 𝑃 (𝑥 −
𝐿

2
) 𝐻 (𝑥,

𝐿

2
) (𝑥 − 𝜉)𝐻(𝑥, 𝜉)𝑑𝑥 − 𝜆2𝐸𝐼(𝐿 − 𝜉)

𝐿

0

𝐿

𝜉

 

The following identity must be used. 

𝐻 (𝑥,
𝐿

2
) 𝐻(𝑥, 𝜉) = 𝐻 (𝑥,

𝐿

2
) 𝑖𝑓 

𝐿

2
> 𝜉. 𝐸𝑙𝑠𝑒 𝐻 (𝑥,

𝐿

2
) 𝐻(𝑥, 𝜉) = 𝐻(𝑥, 𝜉) 

Using this identity, the focus is shifted to just the second integral, which can be re-written: 

∫ 𝑃 (𝑥 −
𝐿

2
) (𝑥 − 𝜉)𝑑𝑥 + 𝐻(𝜉,

𝐿

2
) ∫ 𝑃 (𝑥 −

𝐿

2
) (𝑥 − 𝜉)𝑑𝑥

𝐿
2

𝜉

𝐿

𝐿
2

 

Now that the identity has been utilized, there are more integrals; however, they are simpler and 

can be evaluated using standard methods. Putting the integrals above back into the entire 

equation, the displacement is written as shown below. 

𝐸𝐼𝛿𝑄 = ∫ −𝑅𝐿𝑥(𝑥 − 𝜉)𝑑𝑥
𝐿

𝜉

+ ∫ 𝑃 (𝑥 −
𝐿

2
) (𝑥 − 𝜉)𝑑𝑥 + 𝐻 (𝜉,

𝐿

2
) ∫ 𝑃 (𝑥 −

𝐿

2
) (𝑥 − 𝜉)𝑑𝑥

𝐿
2

𝜉

− 𝜆2𝐸𝐼(𝐿 − 𝜉)
𝐿

𝐿
2

 

After the integrals are evaluated between the specified bounds, the closed-form solution 

becomes: 

𝐸𝐼𝛿𝑄 = −
𝑃(𝐿 − 𝜉)2(2𝐿 + 𝜉)

12
+

𝐿2𝑃(5𝐿 − 6𝜉)

48
− 𝐻 (𝜉,

𝐿

2
)

𝑃(𝐿 − 2𝜉)3

48
− 𝜆2𝐸𝐼(𝐿 − 𝜉) 

The value for λ2 was determined in the previous steps. It is substituted into the equation above 

to produce the closed-form solution for the displacement along the length of the beam. 
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𝛿𝑄 = -
𝑃

12𝐸𝐼
((𝐿 − 𝜉)2(2𝐿 + 𝜉)) +

𝑃

48𝐸𝐼
(𝐿2(5𝐿 − 6𝜉)) − 𝐻 (𝜉,

𝐿

2
)

𝑃

48𝐸𝐼
((𝐿 − 2𝜉)3)

+
𝑃

48𝐸𝐼
(3𝐿2(𝐿 − 𝜉)) 

The equation above is the closed-form solution for the displacement along the length of the 

beam. 

This problem was constructed in Abaqus to validate the analytical results. For the example, the 

beam was made of aluminum with an elastic modulus of 1E7 psi and a circular cross section 

with a diameter of .6718 inches. This was such that the EI term came out to an even magnitude 

of 10,000. The length of the beam was 20 inches and a point load of 30 pounds applied at 10 

inches from the left end, or mid-span. The boundary conditions and loading are shown below. 

The left end is fixed in the x and y-direction, and the right end is fixed in only the y-direction. 

The model included 801 nodes and 800 elements.

 

Figure 3-8 Case 2 Abaqus 

The vertical displacement of the beam simulated using Abaqus is presented in the following 

results section. See Figure 3-9. Additionally, a comparison is made between the FEA solution, 

the closed-form solution derived above, and the numerical solution. The numerical solution 

employed the same concepts shown in the analytical methods section above. However, 

numerical integration was used in TK solver, instead of symbolic integration. Refer to Figure 3-

10.  

Results 

 Figure 3-9 shows the vertical displacement of the beam obtained from the finite element 

analysis. The color scale on the left hand side gives the displacement in units of inches. 
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Figure 3-9 Case 2 Abaqus Vertical Displacement 

Figure 3-10 shows the vertical displacement of the beam obtained using FEA, numerical 

integration, and the closed-form solution. 

 

Figure 3-10 Case 2 Vertical Displacement 

Discussion 

For the cases presented in this chapter, FEA, numerical methods, and the closed-form 

solution produce almost identical results. This is a good indicator that the modified form of 

Castigliano’s theorem can accurately be applied to non-traditional problems, and that the finite 

element model is constructed appropriately and accurately. The FEA can be trusted to validate 

more complicated problems when a closed-form solution may not exist or be available.  
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Chapter 4: Statically Indeterminate Beams 

 

Introduction 

After the success demonstrated with cantilevered and simply supported beams 

subjected to elastic bending in the previous chapter, the studies progressed to applying the 

mathematical methods to a statically indeterminate beam problem. The closed-form solution 

and the finite element solution are presented below. 

Case 3 

First, the statically indeterminate problem will be introduced in Figure 4-1 below. This 

problem is from the class notes of one of Professor Jus’ students. 

 

Figure 4-1 Case 3 

The beam featured a pinned connection at the left end, a roller support one third of the length 

from the left end, a point load two thirds length from the left end, and a roller support at the 

right end. The free body diagram is shown in Figure 4-2. 
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Figure 4-2 Case 3 Free Body Diagram 

Analytical Methods 

First, it should be noted that R4 arises from the pinned connection at the left end. 

Because this is the only force in the x-direction, its value is zero. Additionally, the load Q is a 

fictitious load with a true value of zero which is used to calculate the displacement at a point of 

interest located at a distance ξ from the left end of the beam. Starting from the left end, the 

moment equation is constructed below. 

𝑀(𝑥) = 𝑅1𝑥 − 𝑄(𝑥 − 𝜉) ∗ 𝐻(𝑥, 𝜉) + 𝑅2(𝑥 − 𝑎) ∗ 𝐻(𝑥, 𝑎) − 𝑃(𝑥 − 2𝑎) ∗ 𝐻(𝑥, 2𝑎) 

The equations of equilibrium are needed in order to determine the Lagrange multipliers. First, 

the sum of the forces is taken in the y-direction and denoted g1. 

 𝑔1 = ∑ 𝐹𝑦 = 0 = 𝑅1 + 𝑅2 + 𝑅3 − 𝑃 − 𝑄 (1) 

Next, the sum of the moments is taken about the right end of the beam and denoted as g2. 

 𝑔2 = ∑ 𝑀𝑅 = 0 = 𝑅1𝐿 − 𝑄(𝐿 − 𝜉) + 𝑅2(2𝑎) − 𝑃𝑎 (2) 

Looking at g1, the R3 term does not appear in the moment equation, making it implicit. 

Additionally, the displacement at R3 is zero, and it is therefore non-working. Because a force 

present in g1 is implicit and non-working, g1 can be ignored. Now, looking at g2, it can be seen 

that all the force terms: R1, R2, Q, and P also appear in the moment equation, making them 

explicit. This means that g2 cannot be ignored and there will be a Lagrange multiplier associated 

with it. 
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Next, the displacement at the left end of the beam is known to be zero. The following form of 

Equation (2-3) can be used. 

0 = ∫
𝑀𝑄=0

𝐸𝐼

𝜕𝑀

𝜕𝑅1
𝑑𝑥

𝐿

𝑜

+ 𝜆2

𝜕𝑔2

𝜕𝑅1
 

First, the partial derivatives featured in the equation above must be determined. 

𝜕𝑀

𝜕𝑅1
= 𝑥 

𝜕𝑔2

𝜕𝑅1
= 𝐿 

Next, the moment equation, with Q set to its true value of zero, and the two partial derivatives 

above can be implemented. 

0 = ∫
𝑅1𝑥 + 𝑅2(𝑥 − 𝑎)𝐻(𝑥, 𝑎) − 𝑃(𝑥 − 2𝑎)𝐻(𝑥, 2𝑎)

𝐸𝐼
∗ 𝑥 + 𝜆2𝐿

𝐿

0

 

This can be broken down as shown below to make evaluation of the integrals simpler. 

0 = 𝑅1 ∫ 𝑥2𝑑𝑥 + 𝑅2 ∫ 𝑥(𝑥 − 𝑎)𝑑𝑥 − 𝑃 ∫ 𝑥(𝑥 − 2𝑎)𝑑𝑥 + 𝜆2𝐿𝐸𝐼
𝐿

2𝑎

𝐿

𝑎

𝐿

0

 

The Heaviside step functions are no longer included, as the bounds of integration have been 

adjusted to account for only the cases where the function evaluates to one, as opposed to zero. 

Additionally, the forces are constant and have been pulled outside the integral for 

simplification. After evaluating the integrals, the equation becomes: 

0 =
𝑅1𝐿3

3
+ 𝑅2 [

𝐿

2
(𝐿 − 𝑎)2 −

(𝐿 − 𝑎)3

6
] − 𝑃 [

𝐿

2
(𝐿 − 2𝑎)2 −

(𝐿 − 2𝑎)3

6
] + 𝜆2𝐿𝐸𝐼 

 

Since a=
𝐿

3
, the equation can be simplified: 

0 =
𝑅1𝐿3

3
+

14𝑅2𝐿3

81
−

4𝑃𝐿3

81
+ 𝜆2𝐿𝐸𝐼 

By dividing out the 
𝐿3

3
 term, once more the equation can be further simplified. 
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0 = 𝑅1 +

14

27
𝑅2 −

4

27
𝑃 +

3𝜆2𝐸𝐼

𝐿2
 (3) 

Additionally, the vertical displacement at the location of R2 is zero. This zero-displacement 

condition must be used to create a second equation to assist in reaching the goal of determining 

values for R1, R2, R3 and λ2. First, the partial derivatives of the moment and g2 must be taken 

with respect to R2. 

𝜕𝑀

𝜕𝑅2
= (𝑥 − 𝑎) ∗ 𝐻(𝑥, 𝑎) 

𝜕𝑔2

𝜕𝑅2
= 2𝑎 

These partial derivatives will be used in Equation (2-3) shown below. 

0 = ∫
𝑀𝑄=0

𝐸𝐼

𝜕𝑀

𝜕𝑅2
𝑑𝑥

𝐿

𝑜

+ 𝜆2

𝜕𝑔2

𝜕𝑅2
 

Using the partial derivatives and the moment equation with Q set to its true value of zero, the 

equation becomes: 

0 = ∫
𝑅1𝑥 + 𝑅2(𝑥 − 𝑎)𝐻(𝑥, 𝑎) − 𝑃(𝑥 − 2𝑎)𝐻(𝑥, 2𝑎)

𝐸𝐼

𝐿

0

∗ (𝑥 − 𝑎)𝐻(𝑥, 𝑎)𝑑𝑥 + 𝜆22𝑎 

This integral can be broken up into segments, and the bounds of integration adjusted to account 

for the cases where the Heaviside step functions are one, and eliminating the cases where they 

cause the integral to evaluate to zero.  

0 = 𝑅1 ∫ 𝑥(𝑥 − 𝑎)𝑑𝑥 + 𝑅2 ∫ (𝑥 − 𝑎)2𝑑𝑥 − 𝑃 ∫ (𝑥 − 𝑎)(𝑥 − 2𝑎)𝑑𝑥 + 𝜆22𝑎𝐸𝐼
𝐿

2𝑎

𝐿

𝑎

𝐿

𝑎

 

After evaluating the integrals, the equation is now: 

0 =
14𝑅1𝐿3

81
+

𝑅2

3
(𝐿 − 𝑎)3 −

𝑃

2
[(𝐿 − 𝑎)(𝐿 − 2𝑎)2 −

(𝐿 − 2𝑎)3

6
] + 𝜆22𝑎𝐸𝐼 

This equation can be further simplified by substituting a=
𝐿

3
. 

0 =
14𝑅1𝐿3

81
+

8𝑅2𝐿3

81
−

5𝑃𝐿3

162
+

2

3
𝜆2𝐿𝐸𝐼 
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This equation further reduces to: 

 

 
0 = 𝑅1 +

4𝑅2

7
−

5

28
𝑃 +

27𝜆2𝐸𝐼

7𝐿2
 (4) 

Now, there are four equations and four unknowns. After solving the system of equations, the 

values for the three reaction forces and the value for λ2 were determined.  

𝑅1 = −
1

4
𝑃 

𝑅2 =
7

8
𝑃 

𝑅3 =
3

8
𝑃 

𝜆2 = −
𝑃𝐿3

54𝐸𝐼
 

With these four variables, the equation for displacement along the length of the beam is 

constructed. 

𝛿𝑄 = ∫
𝑀𝑄=0

𝐸𝐼

𝜕𝑀

𝜕𝑄
𝑑𝑥 + 𝜆2

𝜕𝑔2

𝜕𝑄

𝐿

0

 

Using the moment equation with Q set to zero and the partial derivatives with respect to the 

fictitious load Q at the point of interest, the equation becomes: 

𝛿𝑄 = ∫
𝑅1𝑥 + 𝑅2(𝑥 − 𝑎)𝐻(𝑥, 𝑎) − 𝑃(𝑥 − 2𝑎)𝐻(𝑥, 2𝑎)

𝐸𝐼
∗ −(

𝐿

0

𝑥 − 𝜉)𝐻(𝑥, 𝜉)𝑑𝑥 − 𝜆(𝐿 − 𝜉) 

Breaking this up into simpler integrals, and adjusting the bounds of integration to account for 

the Heaviside step functions, the equation becomes: 

𝛿𝑄 = −
𝑅1

𝐸𝐼
∫ 𝑥(𝑥 − 𝜉)𝑑𝑥

𝐿

𝜉

−
𝑅2

𝐸𝐼
[∫ −𝐻(𝜉 − 𝑎)

𝐿

𝑎

∫ (𝑥 − 𝑎)(𝑥 − 𝜉)𝑑𝑥
𝜉

𝑎

]

+
𝑃

𝐸𝐼
[∫ −𝐻(𝜉 − 2𝑎) ∫ (𝑥 − 2𝑎)(𝑥 − 𝜉)𝑑𝑥

𝜉

2𝑎

𝐿

2𝑎

] +
𝑃𝐿2(𝐿 − 𝜉)

54𝐸𝐼
 

After evaluating the integrals, the equation takes the form below. 
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𝛿𝑄 =
1

𝐸𝐼
{−

𝑅1

2
[𝐿(𝐿 − 𝜉)2 −

(𝐿 − 𝜉)3

3
] −

𝑅2

2
[(𝐿 − 𝜉)(𝐿 − 𝑎)2 −

(𝐿 − 𝑎)3

3
]

+
𝑅2

3
𝐻(𝑥, 0) [−

(𝜉 − 𝑎)3

3
]

+
𝑃

2
[(𝐿 − 𝜉)(𝑙 − 2𝑎)2 −

(𝐿 − 2𝑎)3

3
+

(𝜉 − 2𝑎)3

3
𝐻(𝑥, 2𝑎)]} +

𝑃𝐿2(𝐿 − 𝜉)

54𝐸𝐼
 

Because all the values for the forces and the value for λ2 were solved for previously, they can be 

used to simplify the equation. 

𝐸𝐼𝛿𝑄 = 𝑃 [
𝜉

216
(9𝜉2 − 𝐿2) −

7

48
(𝜉 −

𝐿

3
)

3

𝐻(𝑥, 𝑎) +
1

6
(𝜉 −

2𝐿

3
)

3

𝐻(𝑥, 2𝑎)] 

The equation above is the closed-form solution for the deflection along the length of the beam 

where a load Q is applied at a distance ξ from the left end of the beam. 

A finite element model of this case was constructed in Abaqus. For the example, the value of P 

was 30 pounds, the value of a was 10 inches, the elastic modulus, E, was 107 psi, and the 

moment of inertia, I, was .01 in4. The left end of the beam was fixed in the x and y-direction. The 

point where R2 is applied and the right end of the beam are constrained in the y-direction. The 

loading and constraints are shown in Figure 4-3. The model included 301 nodes and 300 

elements. 

 

Figure 4-3 Case 3 Abaqus 

The results of the finite element analysis are presented at the end of this chapter. Refer to 

Figure 4-4. 

Additionally, a numerical solution to this same problem was developed by Dr. Edwin Odom. The 

numerical solution was programmed in TK Solver. It utilized the mathematical concepts 

presented in the closed-form solution above, which was developed by Dr. Frederick D. Ju. The 

vertical displacement values from the TK code, and the vertical displacement values from the 
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FEA were plotted and compared to the closed-form solution. The results are presented in the 

following section. See Figure 4-5. 

Results 

The results from the finite element analysis are shown in the figure below. The color 

scale shows the vertical displacement in units of inches. The displacement has been visually 

magnified 100x for viewing purposes. 

 

 

Figure 4-4 Case 3 Abaqus Vertical Displacement 

The vertical displacement is compared for the numerical, FEA, and closed-form solutions. The 

results can be seen in Figure 4-5. 

 

Figure 4-5 Case 3 Vertical Displacement 
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Discussion 

The error between the solutions cannot be perceived using standard graphing methods. 

Because the modified version of Castigliano’s theorem including the use of the Lagrange 

multiplier, λ2, was utilized to develop the numerical solution, the fact that the displacement 

values from both sources match so closely is a good indicator that the modified theorem is 

accurate, and that the finite element model was constructed correctly. 
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Chapter 5: Beams and Inelastic Bending 

 

Introduction 

This chapter introduces a problem involving inelastic bending. Different formulas and 

methods must be used to solve these problems.  A closed-form solution will not be presented 

due to their complexity. This chapter will only feature a background on the mathematic 

principles utilized, and then make a comparison between the FEA model and numerical model 

only. 

Case 4 

Case 4 featured a cantilevered beam with a single point load applied at the left end, as shown 

in Case 1.  See Figure 5-1 below. 

 

Figure 5-1 Case 4 

However, for Case 4, the load, P, was increased such that the beam exceeded its yield point and 

experienced inelastic bending. 

Analytical Methods 

As discussed in chapter two, Eulerian beam behavior was assumed for the problems 

presented in this thesis. As the beam experiences inelastic bending, the stress profile becomes 

non-linear, but the strain profile remains linear. Refer to Figure 2-6.  The original form of 

Castigliano’s theorem represented in Equation (2-2) cannot be applied. 

The strain values must be used to determine the radius of curvature, R, shown in Equation (2-

8). Recall that y is the distance from the neutral axis of bending. Equation (2-8) is presented 

again for easy reference. 

𝜀 =
𝑦

𝑅
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Once R is determined, it can be used to determine its inverse, κ, which can be used to replace 

the 
𝑀

𝐸𝐼
  term in the equation for Castigliano’s theorem. The variable κ is commonly referred to as 

the beam curvature. Values of curvature can be obtained through interpolation of data 

presented in a moment-curvature plot such as the one presented in Figure 2-13. The equation 

will then take the form of Equation (2-7), introduced again for convenience.  

𝛿𝑖 = ∫ 𝜅
𝜕𝑀𝑖

𝜕𝐹𝑖
𝑑𝑥

𝐿

𝑜

 

This equation can be used to solve for the deflection of a beam even if it experiences inelastic 

bending. This approach is referred to as the Crotti-Engesser method.  

The finite element model was created in Abaqus. It began with the same model used for Case 1. 

However, the material data includes inelastic behavior, and the load, P, was increased to 1.5 

pounds. This caused inelastic bending to occur near the wall. As shown in Figure 5-2, the right 

end was fixed from translation and rotation about all 3 axes. The load was introduced as a point 

load at the left end of the beam, as shown below. The cross section created for the model used 

the same dimensions presented in Figure 3-1. Refer back to the figure if needed. The model 

featured 981 nodes and 980 elements.  

 

Figure 5-2 Case 4 Abaqus 

The vertical displacement was calculated for the length of the beam. The results for are 

presented in the results section below. Case 4 was also solved using numerical integration in TK 

Solver. The comparison between the numerical solution and the finite element model are 

presented in the results section. Refer to Figure 5-4. 

Results 

The results of the finite element analysis are presented in Figure 5-3. It shows the 

vertical displacement of the beam when subjected to the 1.5-pound load. The color scale on the 

left-hand side has units of inches. The displacement is scaled 1:1 for visual purposes.  
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Figure 5-3 Case 4 Abaqus Vertical Displacement 

Below is a comparison of the results of obtained using finite element analysis and numerical 

integration using TK Solver. The graphs are very close.  

 

Figure 5-4 Case 4 Vertical Displacement 

Discussion 

The numerical model featured the same methods which would be used to develop a 

closed-form solution to this problem, apart from numerical integration. The closeness of the 

two solutions implies the finite element model created for non-linearity is accurate and can be 

applied to a more complex problem involving non-linear behavior. 
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Chapter 6: Curved Beams 

 

Introduction 

Until this point, the base cases featured only straight beams. The set of base cases introduced 

in this chapter are of a semi-circular geometry.  

Case 5 

Case 5 was a curved beam featuring a rectangular cross section with a width, b, of .0562 

inches and a height, h, of .113 inches. The radius of the beam, R, was 5 inches. A point load of 1 

pound was applied to the right end in the x-direction. The left end was completely fixed. Refer 

to Figures 6-1 and 6-2. The entire closed-form solution to these problems will not be derived 

due to its complexity. The chapter will conclude with a comparison between a finite element 

models and the numerically integrated models. 

 

Figure 6-1 Case 5 
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Figure 6-2 Case 5 Beam Cross-Section 

Analytical Methods 

The moment equation for this problem is shown below. 

𝑀 = 𝑃 ∗ 𝑅𝑠𝑖𝑛𝜃 

The partial derivative of the moment equation with respect to the force P is: 

𝜕𝑀

𝜕𝑃
= 𝑅𝑠𝑖𝑛𝜃 

The moment equation and its partial derivative can be used in Equation (2-2) to produce the 

following result.  

𝛿𝑃 =
1

𝐸𝐼
∫ 𝑃𝑅𝑠𝑖𝑛𝜃 ∗ 𝑅𝑠𝑖𝑛𝜃 ∗ 𝑅 𝑑𝜃

𝜋

𝑜

 

Note that the 3rd case of R appears inside the integral next to dθ. This is to change an 

infinitesimal angle dθ into an infinitesimal arc length Rdθ, which is integrated over the length of 

the curved beam. The integral can be simplified to: 

𝛿𝑃 =
1

𝐸𝐼
∫ 𝑃𝑅3𝑠𝑖𝑛2𝜃 𝑑𝜃

𝜋

𝑜

 

After evaluating the integral with respecct to ϴ between the bounds of integration, the equation 

for δP becomes: 

𝛿𝑃 =
𝜋𝑃𝑅3

2𝐸𝐼
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Using this equation, the deflection in the direction of the load P was calculated at the end of the 

beam where P is applied. The deflection over the entire range of θ would involve a fictitious 

load Q.  

The finite element model was created in Abaqus. The curved beam with 5” radius was 

constructed and constrained as shown in Figure 6-3. Rotation and translation about all three 

axes was restricted on the left end of the beam. The cross-sectional dimensions matched those 

of Figure 6-2. The load, P, of 1 lb was applied at the right end as shown. The model included 787 

nodes and 786 elements. The material used for the curved beam models was the nickel-

titanium alloy featuring an elastic modulus of 9.1E6 psi. 

 

Figure 6-3 Case 5 Abaqus 

The results of the finite element analysis are presented in the results section of this chapter. Dr. 

Odom also developed a numerical model in TK Solver. The comparisons between the two 

solutions are presented in the results section.  

Results 

Figure 6-4 shows the results of the finite element anslysis for case 5. The color scale on 

the left hand side gives the values for the horizontal deflection in inches. The deformation of the 

beam model is scaled 1:1 for viewing purposes.  
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Figure 6-4 Case 5 Abaqus Horizontal Displacement 

Below is a graph comparing displacements obtained numerically using TK Solver and by finite 

element analysis. The graph is a plot of the deformed coordinates of each analyzed point along 

the beam. 

 

Figure 6-5 Case 5 Deformed Coordinates 

Case 6 

 Case 6 featured a beam of the same geometry and loading as case 5. However, instead of 

the right end of the beam being free, there was a roller support present where the horizontal 

load was applied. The geometry and constraints are shown in Figure 6-6. 
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The moment equation for this case is the same as Case 5. However, due to the roller support at 

the right end, a Lagrange multiplier will be needed. A free body diagram of case 6 is shown in 

Figure 6-7. 

 

 

Figure 6-6 Case 6 

 

Figure 6-7 Case 6 Free Body Diagram 
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Analytical Methods 

The form of Equation (2-3) will be used to account for the right end condition by 

including the Lagrange multiplier.  

This problem was solved using finite element analysis and numerical integration in TK Solver. 

The finite element model is shown in Figure 6-8 below. The left end is fixed from rotation and 

translation about all three axes and the right end where the load is applied has been fixed in the 

y-direction in order to account for the roller support. The model included 787 nodes and 786 

elements. 

 

Figure 6-8 Case 6 Abaqus 

The comparison between the FEA and the numerical integration are shown in the results 

section. 

Results 

The results of the FEA presented in Case 6 are shown in Figure 6-9. The color scale on 

the left hand side shows the values for horizontal displacement in inches. The deformed model 

is scaled 1:1 for viewing purposes. 
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Figure 6-9 Case 6 Horizontal Displacement Abaqus 

The graph presented in Figure 6-10 shows the deformed coordinates of the points analyzed on 

the beam for case 6. 

 

Figure 6-10 Case 6 Deformed Coordinates 

Case 7 

 Case 7 featured the same geometry as Case 5 and Case 6. However, both ends of the 

beam were pinned, and a point load was applied at 45 degrees from the right end of the beam. 

The setup is shown in Figure 6-11. 
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Figure 6-11 Case 7 

The problem was solved using a finite element model created in Abaqus and numerically 

integrated using TK Solver. The model created in Abaqus is shown in Figure 6-12. 

 

Figure 6-12 Case 7 Abaqus 

In Figure 6-12, the dashed yellow lines are construction and datum planes used to partition the 

beam at 45 degrees so the force, P, could be applied at that location. The force P has been 

resolved into its x and y-components as shown in the figure. The model included 787 nodes and 

786 elements. The comparison between the FEA and numerical solution are presented in the 

results section. 
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Results 

Figures 6-13 and 6-14 show the results of the Abaqus model for case 7. Because the 

force was applied at 45 degrees for case 7, both the horizontal and vertical components of 

displacement are presented. The horizontal displacement, U1, is shown in Figure 6-13 and the 

vertical displacement, U2, is shown in Figure 6-14. The deformation in the Abaqus models have 

been magnified 5x for visual purposes. The colored scale in the upper left hand corner shows 

the value of displacement in units of inches. 

 

Figure 6-13 Case 7 Abaqus Horizontal Deflection 

 

Figure 6-14 Case 7 Abaqus Vertical Deflection 

Figure 6-15 presents the deformed coordinates of the curved beam for case 7.  
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Figure 6-15 Case 7 Deformed Coordinates 

Discussion 

Even for cases of a more complicated geometry, the numerical and finite element 

solutions are very close and cannot be distinguished using standard graphing methods. Because 

the solutions agree so closely, confidence was built to proceed with the final orthodontic model. 

In the following chapter, the linear and non-linear models of the orthodontic force systems will 

be presented. 
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Chapter 7: Orthodontic Radial Model 

 

Introduction 

This chapter presents the final orthodontic model in detail. This problem was developed 

on the basis of a simple question: how much force does the orthodontic archwire apply to a 

patient’s teeth during orthodontic treatment?  The analytical solution to this problem was 

developed by Dr. Edwin Odom. It utilized Equation (2-3), and the theory introduced in Chapter 

2 of this thesis. Recall that Castigliano’s theorem, and the modified form of Equation (2-2) as 

well as the Crotti-Engesser method relate a point load to the displacement at that load. The goal 

was to solve the orthodontic force system for the unknowns: the fourteen reaction forces on the 

patient’s teeth. This was done by using the displacements of each of the patient’s teeth as the 

inputs and solving for the forces. The positions of the patient’s teeth before and after treatment 

were used to obtain the displacements.  

Two models were analyzed. The first featured a 316 stainless steel orthodontic archwire, and 

displacements of smaller magnitude. The stresses and strains involved with this model were in 

the linear regime. The second model featured a nickel-titanium archwire. The displacements 

were much larger in magnitude. There were some stresses and strains in the non-linear regime.  

This chapter will introduce the geometry of the orthodontic models and explain the finite 

element models in detail. The results of the finite element analysis will be presented and 

compared to the numerical solution, which was developed using the closed-form solution aside 

from utilizing numerical integration. 

Radial Orthodontic Model 

The locations where the fourteen reaction forces occurred were designated as F1-F14, 

as demonstrated in Figure 7-1. It should be noted that some of the figures presented in this 

chapter do not follow the same format as the rest of the figures in this thesis. These figures 

were from a paper submitted for publication in the American Journal of Orthodontics and 

Dentofacial Orthopedics.  
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Figure 7-1 Orthodontic Force System 

Analytical Methods 

The basics of the closed-form solution will be presented. Further derivation of the 

closed-form solution is beyond the scope of this thesis. The closed-form solution and numerical 

integration program were developed by Dr. Edwin Odom. 

The moment equation was established by calculating the vector r between an applied load and 

the point of interest. Refer to Figure 7-2 on the following page. The other depicted vectors, ri 

and rϴ, are used to calculate the length of r as shown below.  

𝒓 = 𝒓𝒊 − 𝒓𝜽 

Consider the vector r as the moment arm and the force Fi as the applied load. The moment at 

the point of interest is calculated using a cross product between r and Fi. The moment equation 

is a function of 𝜃 and is shown below.  
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𝑀(𝜃) = ∑(𝒓 ⨯ 𝐹𝑖)𝐻(𝜃, 𝜃𝑖)

14

1

 

 

Figure 7-2 Free Body Diagram Orthodontic Model 

The partial derivative of the moment with respect to the force at the point of interest is shown 

below. It is needed for one of the governing equations.  

𝜕𝑀(𝜃)

𝜕𝐹𝑘
= (𝑟𝑘 − 𝑟𝜃) ∗ 𝐻(𝜃, 𝜃𝑘) 

The partial derivative and the moment equation were used in the modified form of Castigliano’s 

theorem below. The complementary energy was used due to the inelastic behavior of the model.  

 
𝛿𝑘 = ∫

𝜕𝑈∗

𝜕𝑀

𝜕𝑀

𝜕𝐹𝑘
𝑑𝑠 + 𝜆1

𝜕𝑔1

𝜕𝐹𝑘
+ 𝜆2

𝜕𝑔2

𝜕𝐹𝑘
+ 𝜆3

𝜕𝑔3

𝜕𝐹𝑘
 (1) 

The Lagrange multipliers associated with the modified form of Castigliano’s theorem, Eq. (2-3), 

must be determined. The equations of equilibrium will be used and are presented below. 
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 𝑔1 = ∑ 𝐹𝑥 = 0 (2) 

 𝑔2 = ∑ 𝐹𝑦 = 0 (3) 

 𝑔3 = ∑ 𝑀𝑧 = 0 (4) 

After the governing equations were established, the problem featured 17 equations and 17 

unknowns. The system of equations was solved numerically in a TK Solver program. 

Finite Element Analysis 

The finite element analysis capabilities of Abaqus were used to verify the analytical 

solutions for the orthodontic force system. Locations F1–F14 were established by creating 

datum planes at angles θ1–θ14 and partitioning the wire model at the plane-model intersections. 

There were boundary conditions at locations F1, F5, and F14. F1 and F14 were fixed only in the 

y-direction, to allow for sliding in the x-direction. F5 was fixed in both the x and y-direction. 

The finite element model setup was slightly different than the numerical setup. Instead of the 

displacements being inputs to the finite element model, the inputs were the reaction forces 

from the numerical model. Figure 7-3 shows a visual result of the numerical solution. The 

magnitude and direction of the calculated reaction forces are shown. These reaction forces were 

the inputs to the finite element models. The displacements produced from the FEA were 

compared to the actual displacements of the patient’s teeth. 

 

Figure 7-3 Nonlinear Solution (Left) and Linear Solution (Right) 
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Linear Model 

The linear model was constructed first. The linear model was used to represent the later 

part of orthodontic treatment. Toward the end of treatment, the teeth are close to their desired 

position. The later movements of the teeth are rather small. Stiffer, steel archwires are used. 

Additionally, because the distance the teeth move is small, the wire remains in elastic 

deformation and bending. For the linear model, the Young’s modulus was 2.8E7 psi. The profile 

was rectangular: 0.019 inches parallel and 0.025 inches perpendicular to the neutral axis. The 

model was globally seeded using an approximate global size of 0.005. The element type was a 2-

node linear, planar beam. The model included 941 nodes and 940 elements. The setup is shown 

in Figure 7-4. 

 

Figure 7-4 Abaqus Linear Final Model 

In Figure 7-4, it can be seen that locations F1 and F14 are fixed in the y-direction as stated, and 

F5 is fixed in both the x and y-direction. The dashed yellow lines are datum planes used to 

partition the wire at locations θ1–θ14. The analysis was run to solve for displacement. The 

results of the analysis and a comparison between the FEA and numerical model are presented 

in the results section of this chapter. 
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Nonlinear Model 

For the non-linear nickel-titanium material, stress-strain data [12] was input for the 

plastic analysis in Abaqus. The elastic modulus for the NiTi material was 9.1×106 psi for the 

linear portion of the stress-strain curve. The NLGEOM option for the non-linear model step was 

activated. The geometrical setup was the same as the linear model and is represented by Figure 

7-4. 

The predicted shape of the wire obtained from the FEA model was compared to the analytical 

solution. The results of the FEA and the comparison are presented in the results section. 

Results 

The results of the finite element analysis are presented below. Both the displacement in 

the horizontal, U1, and vertical, U2 directions are presented. The colored scales in the upper 

left-hand corner of the following images have units of inches. The deformation in the models 

themselves has been magnified 100x for visual purposes. 

 

Figure 7-5 Abaqus Horizontal Deflection Linear Case 
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Figure 7-6 Abaqus Vertical Displacement Linear Case 

The deformed coordinates of the archwire were taken from the numerical solution and FEA 

model. When plotted on the same chart, the graphs overlapped and distinguishing between the 

two was very difficult considering the extremely small magnitude of the displacements. The 

original and deformed shape of the wire can be seen in Figure 7-7. 

 

Figure 7-7 Original and Deformed Shape Linear Case 

At the location of largest displacement, the numerical solution produced a radial displacement 

of .00018 inches, and the FEA produced a radial displacement of .00023 inches.  
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The results of the non-linear case are shown in Figures 7-8 and 7-9. The deformation in the 

models was not magnified. The displacements can easily be distinguished using a 1:1 scale. 

 

 

Figure 7-8 Abaqus Horizontal Displacement Non-Linear Case 

 

Figure 7-9 Abaqus Vertical Displacement Non-Linear Case 

The deformed coordinates of the archwire from both the numerical solution and FEA model 

were graphed for comparison. The graph is shown in Figure 7-7. 
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Figure 7-10 Non-Linear Final Orthodontic Model 

Discussion 

The results for the linear model will be discussed first. The linear model is for 

circumstances when the patient is toward the end of treatment. The wire is much stiffer, and 

the displacements are smaller. Because the displacements are small, the wire remains in the 

linear regime. At the point of largest deflection, the answers differed by over 25%. This may 

seem like a lot, however, the displacements had five significant digits. If one were to round to 

the fourth decimal place, then the calculated displacements are identical. 

The non-linear model featured the NiTi wire. This model was to represent the beginning of 

treatment when the teeth may need to significantly change position, and the displacements are 

much larger, on the order of 0.1 inches compared to .0001 for the linear model. Considering the 

complicated analysis which features methods that have not been proven, the fact that the 

displaced curves of Figure 7-7 match so closely indicate the proposed solution to the 

orthodontic force system is accurate. 
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Chapter 8: Discussion and Conclusion 

 

The base cases which were developed to test the accuracy of the finite element models 

and the closed-form solution were very successful. The methods used to develop the closed-

form solutions for the base cases were extensive. There are less extensive approaches to solving 

these problems such as the double integration method and even published closed-form 

solutions for some of the early base cases. However, using the modified form of Castigliano’s 

theorem on the simple base cases with published solutions allowed the validation of the 

approach. Then the modified form of Castigliano’s theorem and the Crotti-Engesser method 

could be applied with confidence to a much more complex model like the orthodontic force 

system. In the case of the orthodontics, using another approach to solve the problem would not 

be quicker or more efficient. The simple base cases were needed to validate the analytical 

approach such that it could be applied to a case where it was needed.  

In addition to the base cases, the final model proved to be a success. The results presented in all 

previous chapters of this thesis support the idea that the modified version of Castigliano’s 

theorem including the use of Lagrange multipliers is accurate when applied to simple cases, 

complex cases, and even cases including inelastic stresses and strains. Because of the closeness 

in results of the final model, it can be said that the modified form of Castigliano’s theorem and 

the Crotti-Engesser method can be successfully applied to statically indeterminate problems 

and problems involving non-linear material behavior. 

The ideas and methods presented in this thesis may be of interest to the orthodontic industry. 

Forces on a single tooth have been determined based on experimentation. But relating the 

movement of each tooth to a system of forces has not been done.  

The real benefit of this research is the new way to solve mechanics problems, particularly those 

that are statically-indeterminate or involve non-linear material behavior. This method has 

already been applied to find the deflections in tractor trailer beds and large stepped shafts 

under complicated loading conditions.  
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