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Abstract 

 

Line source radiation problems have been previously characterized by numerical 

integration of the antenna pattern to determine the radiated power and corresponding antenna 

performance parameters.  A new methodology based on autocorrelation principles is 

presented.  The new methodology enables determination of the radiated power without a 

priori knowledge of the antenna pattern.  The new methodology is applied to canonical line 

source radiation problems.  Closed form expressions for the radiated power are then 

determined for a problem that heretofore has not been derived.  The expressions are then 

used to validate the veracity of the method by performing comparisons with canonical 

results.  Additionally, absolute limits on the performance of line source radiators are 

presented.  The limits are developed in conjunction with Heisenberg’s uncertainty principle 

and the Chu limit.  The limits facilitate a deeper understanding of the factors effecting 

antenna performance and serve as the foundation for the development of the new 

methodology. 
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1.   Introduction 

 

 The problem of characterizing line source radiation has been thoroughly examined 

and documented in the annals of antenna theory.  It is well known that the radiated power and 

corresponding performance parameters for a line source radiator can be determined from the 

generated pattern.  The antenna pattern is obviously determined from the current distribution 

that is present on the radiator.  However, there are an abundance of antenna problems that do 

not yield a closed form solution for the radiated power.  As such, the radiated power must be 

determined by numerically integrating the antenna pattern.  Ancillary antenna performance 

parameters can then be calculated once the radiated power has been determined.  This thesis 

presents a new methodology based on autocorrelation principles that eliminates the need to 

have a priori knowledge of the antenna pattern to determine the radiated power.  The new 

methodology also enables the generation of closed-form solutions for the radiated power for 

problems that heretofore were numerically integrated.  Additionally, this thesis presents 

absolute bounds on line source radiator design that have been developed using Heisenberg’s 

uncertainty principle.  The development of these bounds served as a foundation for the 

ultimate development of the new autocorrelation principle methodology. 

 

 The thesis first presents a review of the conventional method for determining the 

antenna pattern, radiated power, and corresponding antenna performance parameters.  

Heisenberg’s uncertainty principle and the Chu limit are then applied to establish a complete 

set of design limitations for line source radiators.  The development of the new methodology 

based on autocorrelation principles is then presented in detail.  The new methodology is then 
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applied to two canonical line source radiation problems – the half wave dipole and the cosine 

distribution.  The results obtained for both of these problems are then compared to the results 

obtained using the conventional method.  The comparison demonstrates that the new 

methodology accurately replicates the results obtained using the conventional approach.  

Most notably, a closed form expression for the radiated power from a line source radiator 

with a cosine current distribution is presented.  A closed form solution for this problem has 

not been previously presented in the open literature.  Finally, conclusions based upon the 

work presented in this thesis are made and recommendations for future work are presented.   

 



    3 

2.   Theory Development 

 

 This Chapter presents the development of a new methodology for evaluating antenna 

performance using autocorrelation principles.  First, the conventional method for evaluating 

the performance of a line source radiator is presented.  Second, the application of 

Heisenberg’s uncertainty principle to the theory of antenna radiation is discussed.  Third, the 

detailed application of autocorrelation principles as a new method for evaluating line source 

radiation is presented.  The application of the new method will be presented in detail in 

Chapter 3. 

 

2.1. Antenna Theory 

 

 The conventional method for evaluating the far-field performance of a line source 

radiator begins by recalling the free space, integral definition of the magnetic vector potential 

(Harrington 2001, 81), 

 

    VderJ
r

e
A rrjk

V

jkr

 





ˆ

4


, (2.1) 

 

where J

  is the electric current density, k   is the wave number (i.e. k ),    is the 

permeability, and r  is the radial distance scalar.   
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The source position vector, r  , for a line source radiator that is collinear with the z-axis can 

be defined as 

 

  zazr ˆ . (2.2) 

 

The line source radiator is centered at the origin and the total length is defined as L.  As such, 

the electric current density can be defined as 

 

           




 

otherwise0
22

ˆˆ
L

z
L

azIyxazJrJ z
z


. (2.3) 

 

Additionally, the dot product between the field position unit vector, r̂ , in spherical 

coordinates and the source position vector given in Equation 2.2 can be written as 

 

      cosˆˆ cosˆ sinsinˆ cossinˆ zazaaarr zzyx   . (2.4) 

 

Equations 2.3 and 2.4 can be substituted into Equation 2.1 to yield the z-component of the 

magnetic vector potential for a line source radiator centered at the origin and collinear with 

the z-axis, 

 

    zdezI
r

e
A

L

L

zjk
jkr

z  



 2

2

cos

4





. (2.5) 
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In anticipation of the ensuing formulation, the current distribution,  zI  , can then be 

transformed into p-space using the relationship 

 

     




2
2 pL

z

zLI
pg




 . (2.6) 

 

Equation 2.6 can be applied to Equation 2.5 to yield 

 

    dpepg
r

e
A

pL
jkjkr

z 













 cos

2

4
. (2.7) 

 

The transformation between u-space and -space is defined as  

 

  


 LkL
uuu 

2
wherecos 00 . (2.8) 

 

Substituting Equation 2.8 into Equation 2.7 yields the final expression for the z-component 

of the magnetic vector potential expressed in term of p-space and u-space, 

 

    dpepg
r

e
A jpu

jkr

z 










4
. (2.9) 

 

Examining Equation 2.9 enables the conclusion that Fourier transform principles can be used 

to relate the current distribution in p-space to the radiation pattern in u-space.  The 
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relationship between the current distribution and the radiation pattern function is then given 

by 

 

     




 dpepguG jpu . (2.10) 

 

Therefore, the z-component of the magnetic vector potential can be written in terms of the 

radiation pattern function, 

 

   uG
r

e
A

jkr

z







4
. (2.11) 

 

 

 The power density for a z-directed magnetic vector potential is defined by  

 

  

 22

2

sin
2 zr AS  . (2.12) 

 

Substituting Equation 2.11 into Equation 2.12 and cancelling terms yields the expression for 

the power density expressed in terms of  uG  and sin , 

  

  
 
 2

222

42

sin

r

uGk
Sr 


 . (2.13) 
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The result shown in Equation 2.13 demonstrates the implicit assumption of -symmetry for 

the antenna pattern since the power density is not a function of the -direction.  The radiated 

power can be determined by integrating the power density over 4 steradians, 

 

   



2

0 0

2   sin ddrSP rrad . (2.14) 

 

Substituting Equation 2.13 into Equation 2.14 and performing the integration yields the 

expression for the radiated power in terms of  uG , 

 

  
 

 






0

32

2
  sin

2
duGPrad . (2.15) 

 

Obviously, Equation 2.8 can be applied to the radiation pattern function in u-space,  uG , to 

obtain the radiation pattern in -space,  cos0uG .  Equation 2.8 can be substituted into 

Equation 2.15 to yield  

 

  
 

 






0

32

02  sincos
2

duGPrad . (2.16) 

 

For most current distributions, a closed-form result is not attainable using standard 

integration techniques.  Instead, the integral of Equation 2.16 is numerically evaluated to 

determine the total radiated power.  Once known, the total radiated power can be used to 
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determine other antenna performance parameters (e.g. directivity, radiation resistance, and 

radiation efficiency).   

 

 

 Equation 2.13 can be used to determine the directivity (Stutzman and Thiele 2013, 

52), 

 

  
 

radrad

r

P

uGk
r

P

S
D





8

sin
4

222
2  . (2.17) 

 

The current distribution for the line source radiator is assumed to be symmetric about the 

feed point (i.e. z = 0).  Therefore, the maximum directivity can be determined by 

transforming Equation 2.17 into -space using Equation 2.8 and then evaluating the result at 

broadside (i.e.  = 90°), 

 

  
   

radrad P

Gk

P

uGk
D

222

900
2

max

0

8

cos

8 
















 





  

. (2.18) 

 

Equation 2.8 is then evaluated at  = 90° (i.e. u = 0) and applied to Equation 2.10.  The result 

can be substituted into Equation 2.18 to yield 

 

   
2

2

max

1

8 











 dppg

P

k
D

rad


. (2.19) 
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The radiation resistance, Rrad, is simply defined in terms of the total radiated power and the 

current at the feed point to the antenna (i.e. z = 0).  Substituting Equation 2.6 evaluated at z = 

p = 0 yields 

 

     














0

2

20

2
2

2

2 g

PL

I

P
R radrad

rad 
. (2.20) 

 

The radiation efficiency, rad, is determined from the radiated power and the power dissipated 

from the Ohmic resistance of the antenna, Pohm.  The formulation for the radiation efficiency 

is given by (Stutzman and Thiele 2013, 60), 

 

  
ohmrad

rad
rad PP

P


 . (2.21) 

 

The power dissipated from the Ohmic resistance of the antenna is determined from the 

current distribution on the wire and the uniform wire resistance per unit length, Rw.  The 

equation to determine the dissipated power is given by (Stutzman and Thiele 2013, 59), 

 

   



2

2

2

2

L

L

w
ohm dzzI

R
P . (2.22) 

 

The results obtained using Equations 2.16 and 2.22 can then be substituted into Equation 

2.20 to determine the radiation efficiency. 
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2.2. Heisenberg’s Uncertainty Principle 

 

 Heisenberg’s Uncertainty Principle is most often invoked in the field of quantum 

mechanics.  However, the Principle is simply a property of Fourier transforms and the 

extension of this Principle to other disciplines can result in an increased and more complete 

understanding of the physics of certain phenomena.  In this case, Heisenberg’s Uncertainty 

Principle is applied to the theory of antenna radiation.  Three relationships are evaluated in 

the context of Heisenberg’s Uncertainty Principle.  Included are the relationship between 

current distribution and antenna pattern, signal duration and bandwidth, and quality factor 

and antenna size.  Each of these relationships is discussed in detail in the following 

subsections.   

 

2.2.1. Current Distribution and Pattern.  Two important relationships that will be used in 

the derivations presented in this subsection, and the following subsections, are Parseval’s 

Identity and Schwarz’s Inequality.  These relationships, as applied to the current distribution 

and antenna pattern, are presented as (Young and Wilson 2015), 

 

     








 duuGdppg
22

2

1


   (2.23) 

 

and 

 

         





























dp

dp

pdg
dppgpdp

dp

pdg
pgp

2

22

2

. (2.24) 
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The normalized average power content, 2
avgI , of the current distribution is defined as 

 

     








dppg

L
dzzI

L
I

L

L

avg
2

2

2

2

22

2

1
. (2.25) 

 

As shown in Equation 2.25, Equation 2.6 can be substituted to yield an equivalent 

formulation presented in terms of the current distribution in p-space,  pg .  Equation 2.25 

can then be rearranged and substituted into Equation 2.23 to yield the relationship between 

Parseval’s Identity and the normalized average power content, 

 

     


22
22

2

1 avgIL
duuGdppg  









. (2.26) 

 

The variances of the square of the current distribution and the square of the antenna pattern 

are respectively defined as 

 

   




 dppgpp
222  (2.27) 

 

and 

 

   




 duuGuu
222 . (2.28) 
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These variances provide a quantification of the spread of  pg  and  uG .  The first term on 

the right hand side of the inequality in Equation 2.24 is the variance of the current 

distribution, 2
p .  The second term of Equation 2.24 can be evaluated by first identifying the 

Fourier transform pair for the derivative, 

 

    
   ujuG

dp

pdg
 . (2.29) 

 

Parseval’s identity and Equation 2.29 can be applied to the second term of Equation 2.24, 

   

  
   




 22

1 2
22

2

uduuGudp
dp

pdg


















. (2.30) 

 

Substituting Equations 2.27 and 2.30 into Equation 2.24 yields 

 

     



2

222

updp
dp

pdg
pgp 













. (2.31) 

 

Integrating the left hand side of Equation 2.31 by parts and substituting Equation 2.26 

produces the result: 

 

         
2222

2

2
2

2

22

1

2

1
















































 
avgIL

dppgdp
dp

pdg
pdp

dp

pdg
pgp . (2.32) 
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Equation 2.32 can be substituted into Equation 2.31 to yield the relationship between the 

variances associated with the current distribution and the antenna pattern, 

 

  



2

22
avg

up

IL
 . (2.33) 

 

The consequences of the result shown in Equation 2.33 are that a short antenna must produce 

a wide beam and a narrow beam must be produced by a long antenna. 

 

2.2.2. Signal Duration and Bandwidth.  The Fourier transform and inverse Fourier 

transform relationships between a time domain signal and the corresponding frequency 

domain response are respectively given by (Couch 2013, 48),  

 

         dtetwtwfW ftj 2



  (2.34) 

 

and 

 

         dfefWfWtw ftj 21 




  . (2.35) 
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Parseval’s theorem can be applied to the time and frequency domain responses of the signal 

to produce  

 

      EdffWdttw  








22
, (2.36) 

 

where E is the total normalized energy of  tw .  The variances of the square of the time 

domain signal and frequency domain response are respectively defined as 

 

   dttwtt  222 




  (2.37) 

 

and 

 

   dffWff  222 




 . (2.38) 

 

In this case, 2
t   is a measure of the signal duration and 2

f   is a measure of the signal 

bandwidth.  As previously presented for the antenna current distribution, Schwarz’s 

Inequality can likewise be applied to the time domain signal,  

 

  



























dt

dt

dw
dtwtdt

dt

dw
tw

2
22

2

. (2.39) 
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The first term on the right hand side of the inequality in Equation 2.39 is the variance of the 

time domain signal, 2
t .  Parseval’s identity and the Fourier transform of the derivative can 

be applied to the second term of Equation 2.39, 

 

  222
2

fdfWfdt
dt

dw 
















. (2.40) 

 

Substituting Equations 2.37 and 2.40 into Equation 2.39 yields 

 

  22

2

ftdt
dt

dw
tw 













. (2.41) 

 

Integrating the left hand side of Equation 2.41 by parts and substituting Equation 2.36 

produces the result: 

 

  2

2

2

2
2

2

2

1
Edtwdt

dt

dw
tdt

dt

dw
tw 







































. (2.42) 

 

Equation 2.42 can be substituted into Equation 2.41 to yield the relationship between the 

signal duration and the bandwidth, 

 

  Eft  . (2.43) 
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The consequences of the result shown in Equation 2.43 are that short signal durations must 

be wideband and narrow band signals must be produced by long signal durations. 

 

2.2.3. Quality Factor and Antenna Size.  The Uncertainty Principle theory is completed 

by considering the relationship between the minimum quality factor that can be obtained for 

a lossless resonant antenna and for a given antenna size.  The quality factor is determined 

from the ratio of the energy stored in the nearfield of an antenna to the energy actually 

radiated by the antenna (McLean 1996).  The Chu limit specifies that the minimum quality 

factor for an antenna can be determined by enclosing the antenna with a sphere of radius, a.  

The radius of the sphere should be just large enough to encapsulate the antenna.  The lower 

bound quality factor, lbQ , for an electrically short linearly polarized antenna is given by 

 

  
 3

11

kaka
Qlb  . (2.44) 

 

The lower bound quality factor for an electrically small circularly polarized antenna is given 

by 

 

  
  








3

21

2

1

kaka
Qlb . (2.45) 
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Therefore, the antenna size can be used to determine the minimum quality factor of the 

antenna using Equations 2.44 or 2.45 as appropriate.  Based on the assumption of a second-

order response, the minimum quality factor can then be used to determine the upper bound on 

the bandwidth of the signal (Couch 2013, 255), 

      

  
12 ff

f

BW

f
Q cc


 , (2.46) 

 

where fc is the center frequency and f1 and f2 are the 3 dB frequency limits that define the 

bandwidth.  Once the required bandwidth is known, the limit on signal duration can be 

determined using the relationship defined in Subsection 2.2.2.  Additionally, the size of the 

antenna determines the beamwidth and the corresponding spatial resolution of the antenna 

pattern, as described in Subsection 2.2.1.  Therefore, the uncertainty principle relationships 

along with the Chu limit enable the conclusion that a small antenna will result in a large 

quality factor, a small bandwidth, long signal duration, a broad beam, and low spatial 

resolution.  The application of Heisenberg’s uncertainty principle has enabled the 

development of a set of performance limitations that are finite and absolute.    

   

2.3. Autocorrelation Principles 

 

 Autocorrelation principles can be applied to the problem of line source radiation to 

develop a new method for calculating radiated power.  The application of autocorrelation 

principles results in an approach that does not depend on the radiation pattern to determine 

the antenna performance parameters.  The first subsection will present the derivation of the 
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method for determining the radiated power.  The second subsection will present the 

derivations of additional antenna performance parameters (e.g. directivity, radiation 

resistance, and radiation efficiency).  This formulation is based on the theory presented in the 

submitted (and accepted as of November 2015) paper to the IEEE Transactions on Antennas 

and Propagation (Young and Wilson 2015).  To the best of the author’s knowledge, this 

formulation has not been presented in the open literature. 

 

2.3.1. Radiated Power.  The derivation of the new method for determining the radiated 

power begins by converting the radiated power equation (Equation 2.16) into u-space by 

applying the relationship given in Equation 2.8, 

 

    



0

0

 
16

22
0

2
3
0

2 u

u

rad duuuuG
u

k
P




. (2.47) 

 

The following relationship can be defined: 

 

      22
0

22 uuuGuF  . (2.48) 

 

Substituting Equation 2.48 into Equation 2.47 yields 

 

   



0

0

2
3
0

2

16

u

u

rad duuF
u

k
P




. (2.49) 
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The pulse function of unity height and unity width can be defined as 

 

  


 





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




otherwise0

u1

2
0

0

u

u

u
. (2.50) 

 

Substituting Equation 2.50 into Equation 2.49 and changing the limits of integration results 

in the following expression for the radiated power, 

 

   











 du

u

u
uF

u

k
Prad

0

22
3
0

2

216


. (2.51) 

 

The following relationship can be defined: 

 

      









0

222

2u

u
uFuH . (2.52) 

 

The relationship defined in Equation 2.52 can be substituted into Equation 2.51 to produce: 

   

   




 duuH
u

k
Prad

2
3
0

2

16


. (2.53) 
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Then from Parseval’s Identity, 

 

   




 dpph
u

k
Prad

2
3
0

2

8


, (2.54) 

 

where  uH  and  ph  are Fourier Transform pairs.  The autocorrelation function for the 

continuous real-valued function  ph  is defined as 

 

         dphhpRh  




 . (2.55) 

 

The autocorrelation function for a stationary process can be determined by evaluating 

Equation 2.55 at p = 0, 

 

       dhRh  0 2




 . (2.56) 

 

Substituting Equation 2.56 into Equation 2.54 yields 

 

  
 

3
0

2

8

0

u

Rk
P h

rad


 . (2.57) 
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The inverse Fourier transform of Equation 2.52 is shown as 

 

      
















 

0

22121

2u

u
uFuH . (2.58) 

 

A Fourier transform relationship exists between multiplication and convolution, 

 

   FGgf 1 . (2.59) 

 

The relationship between the autocorrelation function and the inverse Fourier transform is 

defined by the Wiener-Khinchin theorem, 

 

      uFpR f
21 . (2.60) 

 

Applying Equations 2.59 and 2.60 to Equation 2.58 yields 

 

       pRpRpR sfh  . (2.61) 

 

The autocorrelation function,  pRs , is defined as  

 

         dpsspRs  




 , (2.62) 
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where  ps  is the inverse Fourier transform of the pulse function.  It can be shown that the 

inverse Fourier transform of the pulse function presented in Equation 2.50 is written in terms 

of the sinc function, 

 

     
pu

puu
ps

0

00 sin


 . (2.63) 

 

It can also be shown that the autocorrelation function,   pRs , can be determined by  

substituting Equation 2.63 into Equation 2.62 and subsequently evaluating the integral to 

yield 

 

     
pu

puu
pRs

0

00 sin


 . (2.64) 

 

Equation 2.64 can be substituted into Equation 2.61,  

 

       
pu

puu
pRpR fh

0

00 sin


 . (2.65) 

 

Equation 2.65 can be expressed in terms of the convolution integral and evaluated at p = 0, 

 

        
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u
R

u
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
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
0

00 sin
0 . (2.66) 
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Substituting Equation 2.48 into Equation 2.60 yields 

 

       22
0

21 uuuGpR f   . (2.67) 

 

Distributing terms and applying inverse Fourier transform identities to Equation 2.67 yields 

 

         uGuuGupR f
221212

0
  . (2.68) 

 

The Wiener-Khinchin theorem given in Equation 2.60 and the inverse Fourier transform 

identity for the second derivative can be applied to Equation 2.68.  The result is the 

relationship between the autocorrelation function of the current distribution and the 

autocorrelation function,  pR f , as defined by the Helmholtz operator, 

 

     pRu
dp

d
pR gf 








 2

02

2

. (2.69) 

 

For completeness, the autocorrelation function for the current distribution can be calculated 

by applying the definition given in Equation 2.55, 

 

         dpggpRg  




 . (2.70) 
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Therefore, the radiated power can be calculated by first determining the autocorrelation of 

the current distribution using Equation 2.70.  Second, calculation of the autocorrelation 

function,  pR f , is accomplished by applying the Helmholtz operator to the autocorrelation 

of the current distribution as defined in Equation 2.69.  Third, the stationary autocorrelation 

function,  0hR , is determined by performing the integral given in Equation 2.66.  Finally, 

the radiated power can be determined by substituting the result obtained using Equation 2.66 

into Equation 2.57.  The four equations necessary for determining the radiated power are 

summarized in order of application:  

 

         dpggpRg  




 ; (2.71) 

 

     pRu
dp

d
pR gf 








 2

02

2

; (2.72) 

 

        




d

u

u
R

u
R fh 






0

00 sin
0 ; (2.73) 

 

and 
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3
0

2
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u
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
 . (2.74) 
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Per the preceding equations, it is clearly seen that radP  is calculated directly from  pg  

without the corresponding calculation of  uG .  This comment speaks to the robustness of 

the theory.  Furthermore, the preceding four equations constitute a new theory for radiated 

power calculations as first presented by Young and Wilson (Young and Wilson 2015).  

 

2.3.2. Performance Parameters.  Expressions for the directivity, maximum directivity, 

radiation resistance, and radiation efficiency can be cast in terms of the autocorrelation 

functions presented in the preceding subsection.  As presented in Section 2.1, the directivity 

is given by Equation 2.17.  Substituting the expression for the radiated power given by 

Equation 2.74 into Equation 2.17 yields 

 

  
 

 0

sin223
0

hR

uGu
D




 . (2.75) 

 

Evaluating Equation 2.75 at broadside (i.e.  = 90°) yields the expression for the maximum 

directivity, 

 

     
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max 0 
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u
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The radiation resistance was previously defined in Equation 2.20.  Substituting Equation 2.74 

into Equation 2.20 and cancelling terms yields   

 

  
 
 04

0
2

0gu

R
R h

rad


 . (2.77) 

 

Rearranging Equation 2.6, substituting the result into Equation 2.22, and changing the limits 

of integration yields 

 

   







 dppg
L

R
P w

ohm
2 . (2.78) 

 

Evaluating Equation 2.71 at p = 0 yields 

 

       dgRg  0 2




 . (2.79) 

  

Since the current distribution is zero beyond the extents of the wire, Equation 2.79 can be 

substituted into Equation 2.78, 

 

  
 

L
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P gw
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0
 . (2.80) 
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Substituting Equations 2.74 and 2.80 into Equation 2.21 yields the following expression for 

the radiation efficiency:  

 

  

 
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3
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 . (2.81) 

 

Equation 2.8 can be rearranged and the result substituted into Equation 2.81.  Cancelling 

terms after the substitution yields and rearranging the result yields two equivalent 

expressions for the radiation efficiency, 
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Equation 2.82 clearly demonstrates that the radiation efficiency is maximized when 

   020 0 gwh LRRuR  . 
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3. Theory Application and Validation 

 

 This Chapter presents the application of the theory presented in Section 2.3 to two 

well known current distributions (i.e. the half-wave dipole distribution and the cosine 

distribution).  The radiated power, radiation resistance, radiation efficiency, and directivity 

are determined for each case.  Additionally, the electrically short and electrically long 

approximations for the cosine distribution are presented.  The results of the applied theory 

are compared with the results determined from the conventional method presented in Section 

2.1, which will serve to validate the theory.   

 

3.1. Half-Wave Dipole Distribution 

 

 The theory presented in Section 2.3 is applied to the half-wave dipole current 

distribution and is subsequently validated using the conventional method.  Application of the 

theory is demonstrated through a presentation of the detailed derivations.  The conventional 

method, previously presented in Section 2.1, is then used to validate the results.  

 

3.1.1. Theory Application.  The half-wave dipole distribution includes the explicit 

assumption that the length of the antenna is exactly one half wavelength of the radiated field,  

 

 
2


L . (3.1) 
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Additionally, the electrical length of the antenna is defined by Equation 2.8, which can be 

applied to Equation 3.1, 

 

 
2

1
0 


L

u . (3.2) 

 

The current distribution for the half-wave dipole can be defined by  

 

  















otherwise0

22
cos

L
z

L
z

L
I

zI m


. (3.3) 

 

Applying the conversion from z-space to p-space, given by Equation 2.6, to Equation 3.3 

yields the current distribution in p-space, 
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The leading coefficient in Equation 3.4 can be defined as 
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Equation 3.5 can then be applied to Equation 3.4 to yield 
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The autocorrelation of  pg  can be determined using Equation 2.71.  Substituting 

Equation 3.6 into Equation 2.71 and applying the appropriate limits of integration yields 
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The autocorrelation function is determined using the piecewise definition of the current 

distribution.  Therefore, Equation 3.7 can be written as 
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The integrals contained in Equation 3.8 can be performed once for a general set of integration 

limits,  ba, , 
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The product-to-sum trigonometric identity can be recalled: 
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Equation 3.10 can be applied to Equation 3.9,  
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Performing the integration in Equation 3.11 yields 
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Applying Equation 3.12 to Equation 3.8 yields 
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Evaluating Equation 3.13 at the limits of integration yields the autocorrelation function of 

 pg ,  
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The autocorrelation function can be validated by numerically integrating Equation 3.7 and 

comparing the results to the closed form solution presented in Equation 3.14.  The 

comparison between the two methods for determining the autocorrelation function is shown 

in Figure 3.1.  The current distribution for the half-wave dipole is also shown in Figure 3.1 

for reference.  Clearly, Figure 3.1 substantiates the validity of Equation 3.14. 
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Figure 3.1.  Half-Wave Dipole Current Distribution and Autocorrelation Function 

 

 

The autocorrelation function,  pR f , is determined by applying the Helmholtz 

operator to the autocorrelation of  pg , as previously shown in Equation 2.72.  Equation 3.2 

can be substituted into Equation 2.72, 
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Substituting Equation 3.14 for 02  p  into Equation 3.15 yields 

 

    

































2
sin

2
cos

2

2

4

1
2

2
2 ppp

dp

d
ApR mf


. (3.16) 

 

Performing the derivatives in Equation 3.16, and cancelling and combining terms yields 
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

 p

pA
pR m

f  . (3.17) 

 

Similarly, substituting Equation 3.14 for 20  p  into Equation 3.15 yields 

 

    

































2
sin

2
cos

2

2

4

1
2

2
2 ppp

dp

d
ApR mf


. (3.18) 

 

Performing the derivatives in Equation 3.18 and cancelling and combining terms yields 

 

   20for
2

sin
2

2







 p

pA
pR m

f . (3.19) 
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Equations 3.17 and 3.19 can be combined since  2sin p  is an odd function, 

 

  

















otherwise0

22
2

sin
2

2

 p
pA

pR
m

f . (3.20) 

 

 

The stationary autocorrelation function,  0hR , is defined by Equation 2.73.  Equation 

3.20 can be substituted into Equation 2.73 and the appropriate limits of integration applied,  

 

    























2

2 0

00
2 sin

2
sin

2
0 d

u

uuA
R m

h . (3.21) 

 

Additionally, substituting Equation 3.2 into Equation 3.21 and simplifying yields 

 

   
































2

2

2 2
sin

2
sin

2
0 d

A
R m

h . (3.22) 

 

It can be shown that the integrand of Equation 3.22 is an even function.  Therefore, Equation 

3.22 can be alternatively written as 

 

   


















2

0

2
2 2

sin
0 d

A
R m

h . (3.23) 
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The power-reduction trigonometric identity can be recalled: 

 

    
2

2cos1
sin2  

 . (3.24) 

 

Applying Equation 3.24 to Equation 3.23 yields 

 

    













2

0

2 cos1

2
0 d

A
R m

h . (3.25) 

 

The modified cosine integral is defined as (Abramowitz and Stegun 1972, 231), 

 

    





x

dx
0

cos1
Cin 




. (3.26) 

 

Applying Equation 3.26 to Equation 3.25 yields 

 

    









2

2Cin
0 2

mh AR  (3.27) 
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The radiated power can be determined using Equation 2.74.  Substituting Equation 

3.27 into Equation 2.74 yields 

 

 
 










2

2Cin

8 3
0

22

u

Ak
P m

rad . (3.28) 

 

Equation 3.5 can be rearranged and combined with the result of Equation 2.8, 

 

 22
0

22
mm IuAk  . (3.29) 

 

Substituting Equation 3.29 into Equation 3.28 yields 

 

 
 










2

2Cin

8 0

2

u

I
P m

rad . (3.30) 

 

The electric length of the antenna, given in Equation 3.2, can be substituted into Equation 

3.30, 

 

 
 










2

2Cin

4

2
m

rad

I
P . (3.31) 

 

The intrinsic impedance of free space can be approximated as 

 

   120 . (3.32) 
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Additionally, the modified cosine integral evaluated at 2 can be shown to equal 

(Abramowitz and Stegun 1972, 242), 

 

   4377.22Cin  . (3.33) 

 

Substituting Equations 3.32 and 3.33 into Equation 3.31 yields the following result: 

 

 26.36 mrad IP  . (3.34) 

 

This is the well-known result found in common literature (Stutzman and Thiele 2013, 156).  

Even so, it was derived using a completely different method using autocorrelation concepts.   

 

 

The maximum directivity can be determined using Equation 2.76.  Substituting 

Equations 3.2, 3.6, and 3.27 into Equation 2.76 and cancelling terms yields  

 

  

2

max 2
cos

2Cin4

1














dp

p
D . (3.35) 

 

Performing the integration in Equation 3.35 yields 

 

  2Cin

4
max D . (3.36) 
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Substituting Equation 3.33 into Equation 3.36 yields the following result for the maximum 

directivity: 

 

 64.1max D . (3.37) 

 

 

Again, this is the well-known result of the half-wave dipole (Stutzman and Thiele 

2013, 75).  The radiation resistance is determined by Equation 2.77.  Substituting Equations 

3.2, 3.6, 3.27, and 3.32 into Equation 2.77 and cancelling terms yields 

 

  2Cin30radR . (3.38) 

 

Substituting Equation 3.33 into Equation 3.38 yields the following results for the radiation 

resistance: 

 

   13.73radR , (3.39) 

 

as it should be (Stutzman and Thiele 2013, 156).  The radiation efficiency is determined by 

Equation 2.82.  Substituting Equations 3.2, 3.8, and 3.27 into Equation 2.82 and cancelling 

terms yields 

 

 
 

  LRw
rad 


22Cin

2Cin


 . (3.40) 
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Since   LRw 22Cin   for most metal antennas operating in the X-band or below, 

1rad . 

 

3.1.2. Radiated Power Comparison.  The result for the radiated power given in Equation 

3.34 can be verified using the conventional method for calculating the radiated power 

presented in Section 2.1.  The pattern function can be determined by substituting Equation 

3.6 into Equation 2.10, 

 

   














dpe
p

AuG jpu
m 2

cos . (3.41) 

 

Euler’s formula can be applied to Equation 3.41, 

 

   








 






 


















dpee
A

uG
ujpujp

m 2

1

2

1

2
. (3.42) 

 

Performing the integration in Equation 3.42 yields 

 

  











 






 

























 








 



2

1

2

12

2

1

2

1

uj

e

uj

eA
uG

ujpujp

m . (3.43) 
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Evaluating Equation 3.43 at the limits of integration, factoring terms, and simplifying is 

demonstrated by 

 

  
























 








 








 








 




2

1

2

1

2

1

2

12

2222

uj

ee

uj

ee

uj

ee

uj

eeA
uG

uj
j

uj
j

uj
j

uj
j

m













, (3.44) 

 

  






























2

1

2

1

2

1

2

12 u

e

u

e

u

e

u

eA
uG

ujujujuj
m



, (3.45) 

 

and 

 

    






































 

2

1
1

2

1
1

2 uu
ee

A
uG ujujm  . (3.46) 

 

Euler’s formula can be applied to Equation 3.46, 

 

     









241

4
cos

u
uAuG m  . (3.47) 

 

 

 



42 
 

The transformation between u and  can be recalled:  

 

  cos0uu  . (3.48) 

 

For a half-wave dipole, Equation 3.48 simplifies to 

 

  cos
2

1
u . (3.49) 

 

Substituting Equation 3.49 into Equation 3.47 yields 

 

  
 

 



2sin

cos
2

cos4 








mA

uG . (3.50) 

 

The radiated power can be determined by substituting Equation 3.50 into Equation 2.16, 

 

 
 

 

 



















0

22

2 sin

cos
2

cos16

2
d

A
P

m

rad . (3.51) 
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Factoring terms in Equation 3.51 yields 

 

 

 

 



















0

2

2

2

sin

cos
2

cos
4

d
A

P m
rad . (3.52) 

 

Equations 3.2 and 3.5 can be substituted into Equation 3.52 and the result simplified, 

 

 

 

 



















0

2

2

sin

cos
2

cos

4
dIP mrad . (3.53) 

 

Substituting Equation 3.32 into Equation 3.53 yields 

 

 

 

 
















0

2

2

sin

cos
2

cos
30 dIP mrad . (3.54) 

 

Equation 3.54 can be numerically integrated to yield the radiated power, 

 

  219.130 2
mrad IP  . (3.55) 

 

The radiated power using the conventional method is then determined to be 

 

 26.36 mrad IP  . (3.56) 
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The radiated power determined using the applied theory and the conventional method agree, 

as demonstrated by comparing the results shown in Equations 3.32 and 3.56.  Additionally, 

the results for the maximum directivity and radiation resistance, respectively shown in 

Equations 3.37 and 3.39, agree with the results presented in canonical antenna theory texts 

(Stutzman and Thiele 2013, 156).  Therefore, the theory developed in Chapter 2 applied to 

the half-wave dipole distribution accurately produces the expected results.  

 

3.2. Cosine Distribution 

 

 The theory presented in Section 2.3 is applied to the cosine current distribution and is 

subsequently validated using the conventional method.  Application of the theory is 

demonstrated through a presentation of the detailed derivations.  The conventional method, 

previously presented in Section 2.1, is then used to validate the results.  Further validation of 

the results is achieved by determining the electrically long and electrically short 

approximations from the newly derived equations. 

 

3.2.1. Theory Application.  The cosine distribution removes the restriction, used for the 

half-wave dipole distribution, that the electrical length of the antenna is identically one-half.  

As a result, changes in the applied theory derivations are not manifested until the application 

of the Helmholtz operator to determine the autocorrelation function,  pR f .  It can easily be 

shown that the autocorrelation function of  pg  for the cosine distribution is the same as that 

obtained for the half-wave dipole distribution.  Therefore, the autocorrelation function of 

 pg  previously presented in Equation 3.14 can simply be restated: 
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  

 

 































































otherwise0

20
2

sin
2

cos
2

2

02
2

sin
2

cos
2

2

2

2





p
ppp

A

p
ppp

A

pR m

m

g . (3.57) 

 

  

The autocorrelation function,  pR f , is determined by applying the Helmholtz 

operator to the autocorrelation of  pg , as previously shown in Equation 2.71.  Substituting 

Equation 3.57 for 02  p  into Equation 2.71 yields 

 

    

































2
sin

2
cos

2

22
02

2
2 ppp

u
dp

d
ApR mf


. (3.58) 

 

Performing the derivatives in Equation 3.58, and cancelling and combining terms yields 

 

   02for  
2

cos
2

2

4

1

2
sin

4

1 2
0

2
0

2 





















 






 














  p

pp
u

p
uApR mf 

. (3.59) 

 

Similarly, substituting Equation 3.57 for 20  p  into Equation 2.72 yields 

 

    

































2
sin

2
cos

2

22
02

2
2 ppp

u
dp

d
ApR mf


. (3.60) 
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Performing the derivatives in Equation 3.60 and cancelling and combining terms yields 

 

   02for  
2

cos
2

2

4

1

2
sin

4

1 2
0

2
0

2 





















 






 














  p

pp
u

p
uApR mf 

. (3.61) 

 

Since  2sin p  is an odd function and  2cos p  is an even function, Equations 3.59 and 3.61 

can be combined to yield 

 

  

















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
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






 
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












 

otherwise0

22
2

cos
2

2

4

1

2
sin

4

1 2
0

2
0

2 


p
pp

u
p

uA
pR m

f . (3.62) 

 

 

The stationary autocorrelation function,  0hR , is defined by Equation 2.73.  

Substituting Equation 3.62 into Equation 2.73 and applying the appropriate limits of 

integration yields 

 

    


 
















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



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
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

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
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












 











2

2 0

02
0

2
0

0
2 sin

2
cos

2

2

4

1

2
sin

4

1
0 d

u

u
uu

uA
R m

h . (3.63) 
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Distributing terms in Equation 3.63 yields 
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0
2

sin

2
cos
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1
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2
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4

1
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2
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4

1

0 d

u

u
u

u

u
u

u

u
u

uA
R m

h . (3.64) 

 

The terms in the integrand are all even functions.  Therefore, Equation 3.64 can be 

equivalently written as 
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Cancelling terms in Equation 3.66 yields 
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The following product-to-sum trigonometric identities can be recalled: 
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Substituting Equations 3.67 and 3.68 into Equation 3.66 and cancelling terms yields 
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The portion of the integrand with the cosine terms in Equation 3.69 can be manipulated, 
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The modified cosine integral was previously defined in Equation 3.26.  The sine integral is 

defined as (Abramowitz and Stegun 1972, 231), 
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Applying Equations 3.26 and 3.71 to Equation 3.70 yields 
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Performing the remaining integral in Equation 3.72 yields 
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The result of the integral in Equation 3.73 can be evaluated at the limits of integration and the 

result simplified, 
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Equation 3.74 can be evaluated at 210 u  and the half-wave dipole result, previously 

presented in Equation 3.27, is achieved:  

 

    









2

2Cin
0 2

mh AR . (3.75) 

 



51 
 

The radiated power can be determined using Equation 2.74.  Substituting Equation 

3.74 into Equation 2.74 yields 
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Finally, Equation 3.29 can be substituted into Equation 3.76 to produce: 

 

 

  
























































 














 






 























 














 






 



00

00
2
0

00
2
0

0

2

2cos1

2

1
2Si

2

1
2Si

4

1

2

1
2Cin

2

1
2Cin

4

1

8

uu

uuu

uuu

u

I
P m

rad










. (3.77) 

 

 

To the best of the author’s knowledge this result has not been reported in the open 

literature.  The maximum directivity can be determined using Equation 2.76.  Substituting 

Equation 3.6 into Equation 2.76 yields  
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where  0hR  is given in closed-form by Equation 3.74.  Performing the integration in 

Equation 3.78 yields the expression for the maximum directivity, 

 

  0

16 23
0

max
h

m

R

Au
D


 . (3.79) 

 

For completeness, the radiation resistance is determined by Equation 2.77.  Substituting 

Equation 3.6 into Equation 2.77 yields 
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The ability to calculate radP , maxD , and radR  in closed-form using the developed 

autocorrelation approach clearly demonstrate the robustness of the theory presented in 

Chapter 2. 

 

3.2.2. Radiated Power Comparison.  The result for the radiated power given in Equation 

3.77 can be verified using the conventional method for calculating the radiated power 

presented in Section 2.1.  The pattern function for the cosine distribution is the same as that 

obtained for the half-wave dipole distribution, previously given in Equation 3.47, 
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Substituting Equation 3.48 into Equation 3.81 yields the pattern function in -space,  
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The radiated power can be determined by substituting Equation 3.82 into Equation 2.16, 
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Substituting Equation 3.5 into Equation 3.83 and simplifying yields 
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Equation 3.84 can be integrated numerically for various values of the electric length, 

0u .  The results of the numerical integration can be compared to the analytical results 

obtained using Equation 3.77, which is shown in Figure 3.2.  The comparison between the 

two methods is exact, which demonstrates successful validation of the theory and the specific 

result given in Equation 3.78.  Figures 3.3 and 3.4 also show the electrically short and 

electrically long approximations for the radiated power.  These approximations are presented 

in detail in the following subsections. 
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Figure 3.2.  Radiated Power Comparison for the Cosine Current Distribution 

 

3.2.3. Electrically Long Approximation.  The electrically long approximation for the 

directivity can be determined by first evaluating Equation 3.74 when 10 u .  The modified 

cosine integral approaches zero for both negative and positive large arguments.  The sine 

integral approaches 2  for a positive large argument and 2  for a negative large 

argument.  Applying these approximations to Equation 3.74 yields 

 

      














  00

2
0

2
2

2cos1
4

1
0 uuu

A
R m

h 


. (3.85) 
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Additionally, neglecting the constant compared to 2
0u  yields 

 

       00
2
0

2
2

2cos10 uuu
A

R m
h 


 . (3.86) 

 

Finally, applying the approximation the 0
2
0 uu   to Equation 3.86 yields 

 

    1for0 0
2
0

2  uuAR mh  . (3.87) 

 

Equation 3.87 can be substituted into Equation 3.79 and terms cancelled,  

 

  1for
16

002max  uuD


. (3.88) 

 

Substituting the definition for the electrical length into Equation 3.88 and simplifying yields 

 

  1for621.1max 

LL

D . (3.89) 

 

The result shown in Equation 3.89 agrees with published results (Stutzman and Thiele 2013, 

138), which further validates the veracity of the analytical result.   
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 The electrically long approximation for the radiated power can be determined by 

substituting Equation 3.87 into Equation 2.74, which yields 

 

   2
0

2
3
0

2

8
uA

u

k
P mrad 

 . (3.90) 

 

Substituting Equation 3.29 into Equation 3.90 yields 

 

  0

2

8
u

I
P m

rad


 . (3.91) 

 

Substituting the intrinsic impedance of free space,   120 , into Equation 3.91 yields 

 

  0
2215 uIP mrad  . (3.92) 

 

The result of Equation 3.92 can be compared to the exact solution for the radiated power, 

which is shown in Figure 3.3.  The comparison shown in Figure 3.3 demonstrates that the 

electrically long approximation derived using the new theory accurately predicts the 

asymptotic behavior of the exact solution. 
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 Figure 3.3.  Electrically Long Comparison for the Cosine Current Distribution  

 

3.2.4. Electrically Short Approximation.  The electrically short approximation for the 

directivity and radiation resistance can be determined by evaluating Equation 3.74 when 

10 u .  Rearranging Equation 3.74 yields 
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. (3.93) 
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Examining Equation 3.93 reveals that the evaluation requires an approximation for the 

modified cosine and sine integrals for small variations centered on the point, .  The 

approximation can be obtained by developing the Taylor series expansion approximations for 

both integrals.  The Taylor series expansion is defined as 

 

                    





 32

62
ax

af
ax

af
axafafxf . (3.94) 

 

The definition of the sine integral previously presented in Equation 3.71 can be recalled:  

 

     

x

dx
0

sin
Si 




. (3.95) 

 

The derivatives of the sine integral are straightforward to calculate: 

 

     
x

x
xf

sin
 ; (3.96) 
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sincossincos
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x

x

x

x
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xf 


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and 

 

         
32

sin2cos2sin

x

x

x

x

x

x
xf  . (3.98) 
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Evaluating Equations 3.96, 3.97, and 3.98 at x  yields 

 

    0 f , (3.99) 

 

   


 1
f , (3.100) 

 

and 

 

   
2

2


 f . (3.101) 

 

Substituting Equations 3.99, 3.100, and 3.101 into Equation 3.94, and expanding and 

collecting terms yields the approximation for the sine integral, 

 

     
6

5
2

2

3

3

1
SiSi 23

2




  xxxx . (3.102) 

 

The definition of the modified cosine integral was previously presented in Equation 3.26:  

 

     





x

dx
0

cos1
Cin 




. (3.103) 
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The derivatives of the modified cosine integral are 

 

       
x

x

xx

x
xf

cos1cos1



 , (3.104) 
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x
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and 

 

         
323

cos2sin2cos2

x

x

x

x

x

x

x
xf  . (3.106) 

 

Evaluating Equations 3.104, 3.105, and 3.106 at x  yields 

 

   


 2
f , (3.107) 

 

   
2

2


 f , (3.108) 

 

and 
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 14
3
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Substituting Equations 3.107, 3.108, and 3.109 into Equation 3.94 and expanding and 

collecting terms yields the approximation for the modified cosine integral, 

 

     
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The following relationships can be developed for use in the Taylor series expansions: 

 

      000 422 uuu   ; (3.111) 

 

      0
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0
2

0 822 uuu   ; (3.112) 

 

and 

 

      0
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0
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0
3

0 121622 uuuu   . (3.113) 

 

Also, the small argument approximation for the cosine function is given by 

 

   
2

1cos
2x
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Substituting Equations 3.102 and 3.110 through 3.114 into Equation 3.93 and distributing 

and cancelling terms yields 
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Distributing terms in Equation 3.115 and ignoring terms higher than the 3rd order yields 
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Cancelling terms in Equation 3.116 yields 
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Equation 3.117 can be substituted into Equation 3.79 to yield 
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Cancelling terms in Equation 3.118 yields 

 

  1for
2

3
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Substituting Equation 3.117 into Equation 3.80 yields 
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Cancelling terms in Equation 3.120 yields 

 

  1for
3

8
0

2
0  uuRrad 


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Substituting the intrinsic impedance of free space,   120 , into Equation 3.121 yields 

 

 1for320 0
2
0  uuRrad . (3.122) 

 

The results shown in Equations 3.119 and 3.122 agree with published results (Stutzman and 

Thiele 2013, 90), which again validates the accuracy of the analytical result.   
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The electrically short approximation for the radiated power can be determined by substituting 

Equation 3.117 into Equation 2.74, which yields 
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Substituting Equation 3.29 into Equation 3.123 yields 

 

  2
03

4
uPrad 


 . (3.124) 

 

Substituting the intrinsic impedance of free space,   120 , into Equation 3.124 yields 

 

  2
0160uPrad  . (3.125) 

 

The result of Equation 3.125 can be compared to the exact solution for the radiated power, 

which is shown in Figure 3.4.  The comparison shown in Figure 3.4 demonstrates that the 

new theory accurately predicts the electrically short behavior of the exact solution. 
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 Figure 3.4.  Electrically Short Comparison for the Cosine Current Distribution 
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4.   Conclusions and Recommendations 

 

 This thesis first reviewed the conventional method for evaluating antenna 

performance by integrating the antenna pattern to determine the radiated power.  

Heisenberg’s uncertainty principle and the Chu limit were applied to establish a complete set 

of limitations for line source radiator design and performance.  The approach used to develop 

this set of limitations was then used to develop a new methodology for evaluating antenna 

performance.  Specifically, autocorrelation principles were applied to develop a 

straightforward method for determining the radiated power of a line source radiator.  The 

new methodology enables calculating the radiated power without a priori knowledge of the 

radiated pattern and without the necessity to perform numerical integration.  The new 

methodology was then applied to two canonical current distributions – the half wave dipole 

and the cosine distribution.  The results obtained by applying the methodology to both 

current distributions demonstrated exact agreement with the results obtained using the 

conventional method.  Additionally, electrically short and electrically long approximations 

for the cosine distribution were calculated based on the result of the new methodology.  

Again, these results exhibited exact agreement with the results presented in canonical 

antenna theory texts.  Most importantly, a heretofore underived closed form expression for 

the radiated power for the cosine distribution was derived and presented.  Obtaining this new 

result demonstrates the potential power of the autocorrelation-based approach. 
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 The results obtained using this new methodology present significant opportunities for 

reevaluating existing antenna radiation problems and for examining new unexplored 

problems.  Recommendations for future work include applying the new methodology to other 

canonical line source radiation problems (i.e. cosine-squared, triangular, uniform, generalized 

dipole, and cosine-on-a-pedestal distributions).  The results obtained from these applications 

will serve to further verify the new methodology.  Additionally, co-lineal arrays can be 

evaluated using the same approach by incorporating discrete summations to the new 

methodology.  The same approach can then be extended to antenna arrays with other array 

weights (e.g. Chebyshev, Taylor, etc.).  Additionally, the methodology could be extended to 

planar apertures (e.g. circular apertures, rectangular apertures, etc.).  Finally, the analysis 

presented in this thesis assumed boresight radiation.  Extensions to off-boresight radiation 

and scanning beam problems will hopefully demonstrate the robustness of the new 

methodology. 
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