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Abstract

Analysis of covariance (ANCOVA) is a common statistical model. An implicit assumption of AN-

COVA is that the covariate is measured without error. However, in many applications, there is covariate

measurement error. In this case, the estimates produced by classic ANCOVA methods can include bias,

causing predictions and inferences to be inaccurate. This thesis uses monte carlo simulation to examine

the effectiveness of an alternative model in estimating the parameters associated with ANCOVA. This

model is shown to be effective in accounting for covariate measurement error in the case where there are

two treatment groups.
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Chapter 1: Introduction

Analysis of covariance (ANCOVA) is a commonly used statistical model. ANCOVA is used in cases where

researchers are interested in modeling group differences while accounting for a continuous covariate. One

of the assumptions of ANCOVA is that the covariate is measured without error. When the covariate is

measured with error, the parameter estimates produced by ANCOVA may be biased [8]. The bias in the

parameter estimates causes incorrect predictions and incorrect test statistics that may cause incorrect

inferences [5].

Consider the CrabShip data in the Stat2Data package in R [2] [9]. This data set came from an

experiment where researchers sought to investigate how stress affects the rate of oxygen intake of crabs.

The researchers randomly assigned the crabs to either listen to ambient noise or noise produced by

ships. They then measured the mass of the crabs and the rate of oxygen intake of each crab. In a

design such as this one, if the mass is measured without error, then ANCOVA will produce unbiased

estimates that are useful for prediction and inference. However, if the mass of the crabs was estimated

with error, the parameter estimates produced by ANCOVA will likely produce incorrect predictions and

may cause inaccurate inferences. In this case, researchers are forced to choose between using classic

ANCOVA methods knowing that their parameter estimates are biased, using some method to correct for

the problem, or to not use ANCOVA.

Many methods have been developed to account for covariate measurement error in the context of

regression [4] [1]. One limitation of these approaches is that they often rely on knowing or assuming

information about the variance associated with the covariate measurement error in order to correct for

the bias. Culpepper and Aguinis applied many of these methods in the context of ANCOVA and compared

their relative effectiveness in accounting for covariate measurement error [3]. Lockwood and McCaffrey

performed a similar comparison in the context of pre and post test data in an educational context [7].

Both studies conclude that these methods are generally effective for accounting for covariate measurement

error. The authors also remark that some of these methods are difficult or impossible to implement in

practice.

The goal of this thesis is to present a method for accounting for covariate measurement error that does

not require any knowledge or assumptions about the variance associated with the covariate measurement

error. We will explain the model and its assumptions as well as the parameter estimation. We will

then use Monte Carlo methods to demonstrate the effectiveness of the model in accounting for covariate

measurement error. We will then demonstrate the model on the CrabShip data and compare it to a

classic ANCOVA approach. We will also discuss some of the limitations of the proposed model.
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1.1 The Model

Consider a randomized experiment with g treatment groups. Observed data include a continuous

response variable and a continuous covariate. Let Yig denote the i-th response in the g-th group and Xig

be the covariate measurement of the i-th unit in the g-th group. Then we can assume the following model

Yig = αg + βgXig + ϵig.

Now, suppose that the covariate Xig is measured with error and we observe Zig where Zig = Xig + ζig.

In this case, we only observe Zig, and not Xig. Additionally, we will assume that Xig, ϵig, and ζig are

all mutually independent random variables and σ2
x, σ

2
ϵ , and σ2

ζ are the variances of Xig, ϵig, and ζig,

respectively. We also assume that E(Xig) = δ, E(ϵig) = 0, and E(ζig) = 0 for all i and g. Finally,

we assume that the distribution of the covariate does not depend on the group. This can be achieved

if there is random assignment of treatment groups and the treatment does not affect the covariate. In

this model, if Xig is measured without error, then σ2
ζ = 0, Xig = Zig, and the model corresponds to the

classic ANCOVA model. Though, in ANCOVA, we typically include the additional assumption that all

βg are equal.

In the case where we assume the covariate Xig is measured with error, σζ > 0. We will also allow the

βg to differ. We will call this the Covariate Error Model (CEM).

1.1 Parameterization

The parameters of primary interest are the αg and βg parameters for each group g and functions

thereof. These parameters allow us to make inferences about expected differences between groups. For

example, researchers are often interested in the difference in the expected response between two treatment

groups, g and g′. We can estimate this difference either for a specific Xig = x or in the case where we do

not condition on the covariate. In the first case, it can be shown that

E(Yig|Xig = x)− E(Yig′ |Xig = x) = αg − αg′ + (βg − βg′)x.

In the case where we do not condition on the covariate, we have

E(Yig)− E(Yig′) = αg − αg′ + (βg − βg′)δ.
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In order to estimate these expected differences and have meaningful inferences, we need to be able to

accurately estimate αg, βg, and δ for all g.

In order to estimate these parameters, we can use maximum likelihood estimation. First, we consider

a model for the joint distribution of (Yig, Zig)
′. Then for the g-th group, we have

 Yig

Zig

 =

 αg

0

+

 βg 1 0

1 0 1




Xig

ϵig

ζig

 .

It can be shown that

E

 Yig

Zig

 =

 αg + βgδ

δ


and

Cov

 Yig

Zig

 = LPL′,

where

L =

 βg 1 0

1 0 1


and

P =


σ2
x 0 0

0 σ2
ϵ 0

0 0 σ2
ζ

 .

So, we can write the covariance matrix as

Cov

 Yig

Zig

 =

 β2
gσ

2
x + σ2

ϵ βgσ
2
x

βgσ
2
x σ2

x + σ2
ζ

 .

We will assume that the joint distribution of Xig, ϵig, and ζig is multivariate normal. Then, the joint

distribution of Yig and Zig is also multivariate normal with the mean vector and covariance matrix given

above. If we have G groups and the g-th group has ng observations, then the likelihood function can be

written as
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L(θ) =

G∏
g=1

ng∏
i=1

f(yig, zig|θ),

where θ = (α1, α2, ..., αG, β1, β2, ..., βG, δ, σ
2
x, σ

2
ϵ , σ

2
ζ ) is the vector of all parameters, and f is the proba-

bility density function for a multivariate normal distribution. (Yig, Zig)
′ is independent and identically

distributed within each group g. Thus, we can write the log-likelihood

logL(θ) =

G∑
g=1

logLg(θ)

where

logLg(θ) = (ȳg − µg)
′ng

2
(ȳg − µg)−

ng

2
log |Σ−1

g |+ ng

2
tr(SgΣ

−1
g ),

omitting a constant that does not rely on θ [6]. Here we define ȳg to be the mean vector for the sample

of ng observations of (Yig, Zig)
′ and similarly, Sg is the covariance matrix for the sample. Additionally,

µg =

 αg + βgδ

δ


and

Σg =

 β2
gσ

2
x + σ2

ϵ βgσ
2
x

βgσ
2
x σ2

x + σ2
ζ

 .

By maximizing the log-likelihood function, we will be able to obtain estimates for the parameters. In

particular, we will obtain estimates for our parameters of interest, αg and βg.

1.1 Model Identification

When we say a model is identified, we mean that there is a unique set of parameters that produce

the mean vector and variance-covariance matrix which maximize the likelihood function. If we look at

the case where G = 2 and β1 = β2 = β, it can be shown that the model is not identified. In this case, we

have

µg =

 αg + βδ

δ


and
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Σg =

 β2σ2
x + σ2

ϵ βσ2
x

βσ2
x σ2

x + σ2
ζ

 .

We can define the following set of parameters

β̃ = β/c,

σ̃2
x = cσ2

x,

σ̃2
ζ = σ2

x + σ2
ζ − cσ2

x,

σ̃2
ϵ = β2σ2

x + σ2
ϵ − β2σ2

x/c,

α̃g = αg + βδ(1− 1/c),

where c > 0 is any constant such that σ̃2
x > 0, σ̃2

ζ > 0, and σ̃2
ϵ > 0. Substituting these values into µg and

Σg, give the same mean vector and variance-covariance matrix. Thus, the model is not identified in this

case.

In general, it is difficult to prove that a model is identified. In the case that G = 2 and β1 ̸= β2, the

CEM seems to be identified. For there to not be any other constraints on model identification in this

case is surprising. The lack of required constraints on the model help provide a versatile model to help

account for covariate measurement error in the context of ANCOVA.

1.2 Method

To investigate the effectiveness of the CEM, we used simulated data for the case where G = 2. Data

were simulated based on the assumptions of the model for chosen parameter values. Then, we estimated

the parameters of the model two ways. First, using the CEM method described above and assuming

covariate measurement error. Second, we used classic ANCOVA methods where no measurement error

was assumed and allowing the slopes for the groups to differ. The ANCOVA estimates were obtained

using the lm() function in R. The CEM estimates were obtained using maximum likelihood estimation

with the optim() function in R.

To see how different parameters affected the estimates, we varied some parameters. For each set of

parameters, we simulated 1000 samples and estimated the model parameters for each sample. In the case

that optim() failed, the estimates were recorded as NA. The parameters we varied were the sample size n,

the covariate measurement error variance σ2
ζ , and β2. We have discussed that when β1 = β2, the model

is not identified, so we wanted to investigate how the model performed as the difference between β1 and
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β2 approached 0. Additionally, in the case where σ2
ζ = 0, we have Xig = Zig and there is no covariate

measurement error. So we were interested to see how the CEM performed in this case and how the two

models compared as σ2
ζ increased.

Table 1.1 gives all the parameter values used in simulations. In the first set of simulations, all values

of β2 were used with all values of n while σ2
ζ was kept constant at

√
2. In the second set of simulations,

all values of β2 were used with all values of σ2
ζ while n was kept constant at 500.

Table 1.1: Parameter values used for simulations

Parameter Values
α1 0
α2 1
β1 1
β2 2, 1.5, 1.1, 1.08, 1.06, 1.04, 1.02, 1
δ 10
σ2
x 2

σ2
ϵ 1

σ2
ζ 2,

√
2, 1, 0.5, 0

n 30, 100, 500, 1000

1.2 Maximization Failure

While obtaining the CEM estimates, we used maximum likelihood estimation which relies on being

able to maximize the likelihood function. Since the CEM assumes a normal distribution for the data, that

means the variance-covariance matrix, Σ, must have an inverse. In some cases, the simulated data caused

the variance-covariance matrix to become singular or nearly singular during the optimization algorithm

and the optimization failed. Table 1.2 shows the how many times the optimization algorithm failed for

each set of parameters. For each set of parameters, the total number of iterations is 1000.

Table 1.2: CEM maximization failures

β2 n=30 n=100 n=500 n=1000 σ2
ζ = 0 σ2

ζ = 0.5 σ2
ζ = 1 σ2

ζ = 2

2 4 0 0 1 48 3 0 0
1.50 1 1 0 0 58 0 0 1
1.10 8 1 0 0 152 7 0 0
1.08 3 0 0 0 136 7 0 0
1.06 2 2 0 0 140 13 4 0
1.04 8 0 0 0 91 5 1 1
1.02 4 1 0 0 97 3 0 0
1 9 0 0 0 83 0 0 0

We can see from this table that we failed to obtain estimates commonly for a sample size of 30,

especially as β2 gets closer to 1. The failures were most common in the case where σ2
ζ = 0, when there is
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no measurement error. In this case, the classic ANCOVA approach and the CEM approach are equivalent,

so either model can be used.
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Chapter 2: Comparing Models

2.1 Parameter Estimates and Bias

For each simulation, we computed the bias for the parameter estimates for both the CEM and AN-

COVA. Table 2.1 gives the bias for the parameter estimates for different sample sizes and different values

of β2. The bias for the estimates using the CEM are presented along side the bias for estimates calculated

using ANCOVA. For all of these simulations, the values of the other parameters are α1 = 0, α2 = 1,

β1 = 1, δ = 10, σ2
ϵ = 1, σ2

x = 2, and σ2
ζ =

√
2. Note that while the CEM produces estimates for all

parameters, only the bias for the estimates of α1, α2, β1, and β2 are included in these tables.

Looking at table 2.1, it is evident that the CEM provides estimates with less bias than the classic

ANCOVA approach when the covariate is measured with error. For every set of parameters, the CEM

estimates have lower bias than the ANCOVA estimates by at least a factor of 10. This shows that the

CEM does help account for covariate measurement error and provide less biased estimates.

When we consider how the estimates and bias are affected by the changing parameters, there are

some interesting patterns that emerge. For the CEM, when β1 and β2 are farther apart, the parameter

estimates are less biased as the sample size increases. Interestingly, when β1 and β2 are equal or very

close to equal, this pattern reverses and the parameter estimates tend to become less biased with smaller

sample sizes. Meanwhile, the bias in the ANCOVA estimates is mostly unchanged by the sample size.

The bias in mainly affected by the change in the value of β2, with the lowest bias when β1 = β2.

Table 2.2 gives the bias for both the CEM and ANCOVA estimates for simulations where we changed

the parameter values for β2 and σ2
ζ . For all of these simulations, the values of the other parameters are

α1 = 0, α2 = 1, β1 = 1, δ = 10, σ2
ϵ = 1, σ2

x = 2, and n = 500. The sample size n = 500 was chosen

because it had the fewest number of failed optimization attempts among the various sample sizes.

For the CEM we see two emerging patterns as we change β2 and σ2
ζ together. First, we see that

when as β2 gets closer to β1, the estimates for all parameters become more biased. In the case where

σ2
ζ = 0, the estimates become significantly more biased quite quickly, with the bias increasing sharply

when β2 = 1.1. For other values of σ2
ζ , the increase is more gradual. The other interesting pattern we

see is that as σ2
ζ increases, the parameter estimates first become less biased, then start to become more

biased. In general, an increase in the amount of variance in the data can often result in less accurate

parameter estimation. Of most interest here is the sharp decrease in bias between estimates when σ2
ζ = 0

and when σ2
ζ = 0.5. This suggests that the CEM does not perform as well estimating parameters in the

case where there is no covariate measurement error in the model.
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Table 2.1: Bias in parameter estimates using CEM and ANCOVA for different sample sizes with σ2
ζ =

√
2

CEM Bias ANCOVA Bias
β2 Parameter n=30 n=100 n=500 n=1000 n=30 n=100 n=500 n=1000
2 α1 -0.137 -0.109 -0.043 -0.068 4.162 4.134 4.140 4.136

α2 -0.504 -0.134 -0.049 -0.049 8.234 8.229 8.272 8.311
β1 0.013 0.010 0.004 0.007 -0.416 -0.414 -0.414 -0.414
β2 0.049 0.012 0.005 0.005 -0.824 -0.824 -0.827 -0.831

1.50 α1 -0.075 -0.426 -0.099 -0.101 4.096 4.121 4.151 4.130
α2 -0.349 -0.463 -0.107 -0.086 6.146 6.244 6.216 6.214
β1 0.009 0.043 0.010 0.010 -0.409 -0.412 -0.415 -0.413
β2 0.034 0.046 0.011 0.009 -0.616 -0.625 -0.621 -0.621

1.10 α1 -0.118 0.009 0.049 0.269 4.100 4.149 4.145 4.149
α2 -0.172 -0.132 0.025 0.252 4.545 4.551 4.568 4.550
β1 0.012 -0.002 -0.005 -0.027 -0.411 -0.416 -0.414 -0.415
β2 0.019 0.012 -0.002 -0.025 -0.453 -0.456 -0.457 -0.455

1.08 α1 -0.217 0.169 0.225 0.327 4.175 4.110 4.142 4.136
α2 -0.451 0.060 0.187 0.331 4.461 4.442 4.471 4.481
β1 0.022 -0.017 -0.023 -0.033 -0.417 -0.411 -0.414 -0.413
β2 0.045 -0.006 -0.019 -0.033 -0.446 -0.444 -0.447 -0.448

1.06 α1 -0.128 0.110 0.444 0.393 4.164 4.145 4.150 4.139
α2 -0.326 0.005 0.393 0.365 4.439 4.359 4.373 4.378
β1 0.014 -0.011 -0.044 -0.039 -0.416 -0.414 -0.415 -0.414
β2 0.034 -0.001 -0.039 -0.036 -0.444 -0.436 -0.438 -0.438

1.04 α1 -0.021 0.056 0.465 0.564 4.023 4.136 4.149 4.133
α2 -0.160 0.016 0.430 0.569 4.215 4.316 4.301 4.307
β1 0.000 -0.005 -0.046 -0.057 -0.404 -0.413 -0.415 -0.413
β2 0.016 -0.001 -0.043 -0.057 -0.422 -0.431 -0.430 -0.431

1.02 α1 -0.220 -0.120 0.557 0.712 4.190 4.099 4.150 4.140
α2 -0.391 -0.110 0.532 0.725 4.260 4.191 4.220 4.230
β1 0.022 0.012 -0.056 -0.071 -0.420 -0.410 -0.415 -0.414
β2 0.041 0.011 -0.053 -0.072 -0.425 -0.419 -0.422 -0.423

1 α1 0.085 0.018 0.331 0.597 4.277 4.156 4.132 4.139
α2 -0.014 -0.062 0.318 0.597 4.141 4.107 4.140 4.151
β1 -0.007 -0.002 -0.033 -0.060 -0.427 -0.416 -0.413 -0.414
β2 0.003 0.007 -0.032 -0.060 -0.413 -0.410 -0.414 -0.415
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Table 2.2: Bias in parameter estimates using CEM and ANCOVA different covariate error variance with
n = 500

CEM Bias ANCOVA Bias
β2 Parameter σ2

ζ = 0 σ2
ζ = 0.5 σ2

ζ = 1 σ2
ζ = 2 σ2

ζ = 0 σ2
ζ = 0.5 σ2

ζ = 1 σ2
ζ = 2

2 α1 -0.057 -0.012 -0.015 -0.099 -0.003 1.995 3.337 4.995
α2 -0.114 -0.006 -0.024 -0.127 -0.001 3.996 6.659 9.986
β1 0.006 0.001 0.001 0.010 0.000 -0.200 -0.334 -0.500
β2 0.011 0.001 0.002 0.013 0.000 -0.399 -0.666 -0.999

1.50 α1 -0.135 -0.018 -0.085 -0.145 0.009 2.013 3.333 5.015
α2 -0.193 -0.029 -0.104 -0.153 0.021 3.002 4.986 7.510
β1 0.014 0.002 0.009 0.015 -0.001 -0.201 -0.333 -0.501
β2 0.019 0.003 0.010 0.015 -0.002 -0.300 -0.499 -0.751

1.10 α1 -0.727 -0.067 0.021 0.283 0.015 1.996 3.334 5.008
α2 -0.816 -0.130 -0.005 0.245 -0.001 2.172 3.676 5.504
β1 0.073 0.007 -0.002 -0.028 -0.002 -0.199 -0.333 -0.501
β2 0.081 0.013 0.000 -0.025 0.000 -0.217 -0.368 -0.551

1.08 α1 -0.716 0.168 0.298 0.505 0.008 1.995 3.348 4.993
α2 -0.780 0.148 0.272 0.492 0.008 2.152 3.609 5.382
β1 0.071 -0.017 -0.029 -0.050 -0.001 -0.200 -0.335 -0.499
β2 0.078 -0.015 -0.027 -0.049 -0.001 -0.215 -0.361 -0.538

1.06 α1 -0.806 0.073 0.355 0.616 0.004 1.994 3.325 5.008
α2 -0.870 0.071 0.347 0.570 0.000 2.151 3.533 5.272
β1 0.081 -0.007 -0.036 -0.062 0.000 -0.200 -0.333 -0.501
β2 0.087 -0.007 -0.035 -0.057 0.000 -0.215 -0.353 -0.527

1.04 α1 -0.743 0.280 0.313 0.601 -0.002 2.007 3.338 4.981
α2 -0.790 0.258 0.306 0.609 -0.003 2.087 3.487 5.191
β1 0.074 -0.028 -0.031 -0.060 0.000 -0.201 -0.334 -0.498
β2 0.079 -0.026 -0.030 -0.061 0.000 -0.209 -0.348 -0.519

1.02 α1 -0.766 0.318 0.422 0.636 -0.003 1.994 3.346 5.006
α2 -0.789 0.308 0.413 0.643 -0.011 2.034 3.417 5.101
β1 0.077 -0.032 -0.042 -0.063 0.000 -0.199 -0.335 -0.500
β2 0.079 -0.031 -0.041 -0.064 0.001 -0.204 -0.341 -0.510

1 α1 -0.649 0.323 0.318 0.722 0.023 2.006 3.338 5.002
α2 -0.682 0.314 0.305 0.724 -0.011 1.997 3.342 5.009
β1 0.065 -0.032 -0.032 -0.072 -0.002 -0.201 -0.334 -0.500
β2 0.068 -0.031 -0.031 -0.072 0.001 -0.200 -0.334 -0.501
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Comparing the CEM estimates to the ANCOVA estimates, we can see that if there is covariate

measurement error in the data, then the CEM produces less biased parameter estimates. In the case

where σ2
ζ = 0, ANCOVA produces estimates are are essentially unbiased. This suggests that in a situation

where the covariate is measured without error, classic ANCOVA estimates have an advantage over the

CEM.

For all estimates in all cases, the estimates are better for β1 and β2 than for α1 and α2. This is due

in part to the fact that a small change in the slope of a line can have a large affect on the intercept of

the line. Which means that the bias of the β parameters has an effect on the bias of the α parameters.

2.2 Parameter Estimate Error

Unbiasedness is a desirable property for parameter estimates, but it is not the only property to be

considered. It is also important to consider the variation in the parameter estimates as well. There are a

few ways to look at this. In this context, we calculated the root mean squared error (RMSE), the square

root of the mean squared distance of each estimate from the true parameter value.

Table 2.3 shows the RMSE for the parameter estimates while changing the sample size and the value

of β2. The RMSE for the estimates obtained using the CEM are presented next to the RMSE for the

estimates obtained using ANCOVA. In general, we can see that the RMSE for the CEM estimates is less

than or equal to the RMSE for the ANCOVA estimates. For n=30, at values of β2 close to 1, the RMSE

for both estimation methods is similar. We can also see that the RMSE for the CEM shows some similar

patterns to the bias for the CEM estimats. In general, the RMSE decreases as the sample size increases.

For sample sizes larger than n=30, the RMSE for the CEM increases and then decreases as β2 gets closer

to 1. For all sample sizes, the CEM performs best when β2 = 2. This is likely due to the issue of model

identification when β1 = β2. For the ANCOVA estimates, the RMSE decreases slightly between n=30

and n=100 and then stays mostly constant as the sample size continues to increase. So while increasing

the sample size seems to greatly improve the CEM estimates, it does not have as strong an effect on the

ANCOVA estimates.

Table 2.4 shows the RMSE for the parameter estimates for different values of σ2
ζ . The RMSE for

the CEM estimates is presented alongside the RMSE for the ANCOVA estimates. We can see that for

nearly every case, the RMSE for the parameter estimates is lower for the CEM estimates than for the

ANCOVA estimates. The only exceptions are for α1 and α2 when σ2
ζ is low and β2 < 1.1. Recall that

when σ2
ζ = 0, the ANCOVA estimates for β1 and β2 were unbiased while the CEM estimates showed

some bias, particularly for values of β2 that were close to 1. This suggests that in this case, there is a

trade-off between unbiasedness and the variation in the estimates.
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Table 2.3: Parameter RMSE for different sample sizes with σ2
ζ =

√
2 using CEM and ANCOVA

CEM RMSE ANCOVA RMSE
β2 Parameter n=30 n=100 n=500 n=1000 n=30 n=100 n=500 n=1000
2 α1 3.554 2.088 1.012 0.723 3.545 3.293 3.238 3.224

α2 4.417 2.503 1.120 0.795 8.550 8.340 8.317 8.349
β1 0.354 0.209 0.101 0.072 0.831 0.823 0.820 0.820
β2 0.441 0.249 0.112 0.079 0.758 0.737 0.731 0.728

1.50 α1 4.189 2.906 1.430 1.057 3.552 3.377 3.338 3.308
α2 4.817 3.077 1.509 1.085 6.528 6.458 6.378 6.369
β1 0.418 0.290 0.143 0.106 0.631 0.620 0.618 0.617
β2 0.479 0.307 0.151 0.108 0.575 0.553 0.547 0.546

1.10 α1 4.381 3.390 2.493 1.986 3.630 3.481 3.417 3.412
α2 4.551 3.612 2.633 2.095 5.023 4.858 4.826 4.803
β1 0.437 0.339 0.249 0.199 0.512 0.494 0.487 0.489
β2 0.455 0.361 0.263 0.210 0.498 0.476 0.469 0.469

1.08 α1 4.474 3.180 2.304 1.855 3.710 3.451 3.419 3.402
α2 4.746 3.449 2.454 1.964 4.945 4.764 4.736 4.739
β1 0.446 0.317 0.230 0.185 0.513 0.486 0.482 0.484
β2 0.474 0.345 0.245 0.196 0.496 0.468 0.467 0.467

1.06 α1 4.358 3.300 2.039 1.724 3.726 3.487 3.429 3.412
α2 4.682 3.395 2.157 1.846 4.913 4.678 4.641 4.640
β1 0.437 0.330 0.204 0.172 0.494 0.486 0.480 0.477
β2 0.470 0.339 0.216 0.184 0.493 0.471 0.466 0.466

1.04 α1 4.143 3.359 1.901 1.280 3.589 3.491 3.433 3.411
α2 4.476 3.444 2.026 1.375 4.716 4.638 4.573 4.575
β1 0.413 0.336 0.190 0.128 0.486 0.476 0.474 0.471
β2 0.446 0.344 0.203 0.137 0.479 0.473 0.467 0.464

1.02 α1 4.354 3.372 1.713 1.088 3.741 3.458 3.439 3.422
α2 4.523 3.372 1.773 1.134 4.739 4.523 4.500 4.503
β1 0.434 0.338 0.171 0.109 0.490 0.472 0.469 0.468
β2 0.452 0.338 0.177 0.114 0.481 0.468 0.464 0.464

1 α1 4.569 3.500 1.857 1.105 3.833 3.519 3.426 3.426
α2 4.477 3.496 1.911 1.150 4.653 4.445 4.424 4.428
β1 0.458 0.350 0.186 0.110 0.496 0.467 0.463 0.463
β2 0.446 0.350 0.191 0.115 0.482 0.468 0.464 0.464
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Table 2.4: Parameter RMSE for different covariate error variance with n = 500 using CEM and ANCOVA

CEM RMSE ANCOVA RMSE
β2 Parameter σ2

ζ = 0 σ2
ζ = 0.5 σ2

ζ = 1 σ2
ζ = 2 σ2

ζ = 0 σ2
ζ = 0.5 σ2

ζ = 1 σ2
ζ = 2

2 α1 0.326 0.596 0.797 1.202 1.269 1.263 2.464 4.072
α2 0.386 0.705 0.927 1.379 0.782 4.088 6.712 10.023
β1 0.033 0.059 0.080 0.120 0.708 0.736 0.783 0.866
β2 0.038 0.070 0.092 0.137 1.225 0.928 0.786 0.709

1.50 α1 0.413 0.885 1.148 1.745 1.077 1.309 2.540 4.190
α2 0.489 0.961 1.227 1.829 0.645 3.196 5.155 7.667
β1 0.041 0.088 0.115 0.175 0.559 0.551 0.583 0.662
β2 0.048 0.096 0.122 0.183 0.828 0.637 0.561 0.560

1.10 α1 1.479 2.170 2.410 2.639 0.937 1.340 2.619 4.271
α2 1.603 2.348 2.581 2.784 0.598 2.465 3.944 5.756
β1 0.148 0.217 0.241 0.264 0.503 0.453 0.463 0.527
β2 0.160 0.234 0.258 0.278 0.555 0.463 0.453 0.503

1.08 α1 1.563 1.973 2.241 2.383 0.946 1.348 2.636 4.258
α2 1.702 2.165 2.406 2.522 0.591 2.446 3.881 5.640
β1 0.156 0.197 0.224 0.238 0.501 0.448 0.460 0.524
β2 0.170 0.217 0.240 0.252 0.544 0.459 0.450 0.502

1.06 α1 1.703 1.968 2.091 2.290 0.936 1.344 2.620 4.280
α2 1.868 2.215 2.243 2.392 0.588 2.453 3.808 5.534
β1 0.170 0.197 0.209 0.229 0.502 0.446 0.455 0.516
β2 0.187 0.221 0.224 0.239 0.533 0.450 0.449 0.501

1.04 α1 1.730 1.840 1.881 2.039 0.937 1.366 2.638 4.256
α2 1.887 2.010 1.999 2.174 0.602 2.396 3.769 5.458
β1 0.173 0.184 0.188 0.204 0.501 0.441 0.449 0.511
β2 0.189 0.201 0.200 0.217 0.521 0.445 0.445 0.502

1.02 α1 1.821 1.634 1.665 1.817 0.941 1.357 2.644 4.286
α2 1.878 1.729 1.769 1.850 0.569 2.346 3.702 5.376
β1 0.182 0.163 0.167 0.181 0.500 0.439 0.449 0.506
β2 0.188 0.173 0.177 0.185 0.513 0.441 0.446 0.500

1 α1 1.733 1.617 1.780 1.786 0.907 1.380 2.645 4.285
α2 1.747 1.616 1.829 1.794 0.580 2.316 3.634 5.287
β1 0.173 0.162 0.178 0.179 0.500 0.435 0.443 0.502
β2 0.175 0.162 0.183 0.180 0.502 0.437 0.442 0.501

The case where σ2
ζ = 0 is also the case where the CEM was most likely to fail. In the case where

we are able to attain CEM estimates for a model without covariate measurement error, it may be worth

comparing the model estimated by the CEM and the model estimated with ANCOVA to determine which

is a better fit for the data.
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Chapter 3: Using CEM and ANCOVA on the

CrabShip Data

Now, we will demonstrate the use of the CEM and classic ANCOVA methods on a real data set.

When using the ANCOVA approach, we will allow β1 and β2 to differ. We will use the CrabShip data in

the Stat2Data package in R. Recall this data comes from an experiment to examine the rate of oxygen

intake of crabs when exposed to different types of noise. In this experiment, the covariate measurement

is the mass of the crabs. Crabs are randomly assigned to listen to ambient noise or noise from ships.

Then both the mass of the crabs and the rate of oxygen intake are measured for each crab.

Figure 3.1: Plot of CrabShip data from the Stat2Data package in R

Using the CEM to estimate the parameters we obtain the following model:
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E(Yi) =


−23.254 + 3.548mi, if the i-th crab is exposed to ambient noise

−49.822 + 5.456mi, if the i-th crab is exposed to ship noises

where Yi is the rate of oxygen intake of the i-th crab and mi is the mass of the i-th crab. The CEM also

provides estimates for the three variance parameters, σ2
x = 100.25, σ2

ϵ = 52.19, and σ2
ζ = 124.97.

Similarly, we can obtain the model using ANCOVA:

E(Yi) =


103.27 + 1.187mi, if the i-th crab is exposed to ambient noise

68.88 + 3.257mi, if the i-th crab is exposed to ship noises

We can also visualize the models by plotting the lines over the raw data.

Figure 3.2: Plot of CrabShip data with the model estimated using CEM

We can see that the two procedures give very different estimates for the model parameters. Since in this
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Figure 3.3: Plot of CrabShip data with the model estimated using ANCOVA

case we do not know the true value of the parameters, we cannot use that as a way to compare the models.

Instead, we will use the AIC to compare the models. We can calculate the AIC = −2∗ log-likelihood+2k

where k is the number of parameters being estimated.

In order to accomplish this, we will reframe the classical ANCOVA model. Typically, we think of it

modeling Yig given a value for Zig under the assumption that Zig = Xig. Equivalently, we can think of

ANCOVA as the joint distribution of Yig and Zig as defined in the CEM but with σ2
ζ = 0. So, we can

use the same likelihood function that we used for the CEM, but instead of estimating σ2
ζ , we set σ2

ζ = 0.

We can then optimize the log-likelihood function. This produces estimates for α1, α2, β1, and β2 which

are nearly identical to those produced by lm().

Since the optim() function returns the value of the log-likelihood function, it then becomes easy to

calculate the AIC. Note that for the CEM, k = 8, since in addition to the α and β parameters, we are
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also estimating the covariate mean and the three variance parameters. For ANCOVA, we are estimating

one fewer parameter, so k = 7. The AIC for the CEM is 507.32 and the AIC for the ANCOVA model

is 502.06. The ANCOVA model has a lower AIC than the CEM which would suggest that the model

estimated by ANCOVA is a better fit for the data. However, the difference in AIC’s is 5.26 which is small

enough for there to be some ambiguity.

We know that in the case that there is no covariate error, ANCOVA produces unbiased estimates

and would be the better option for estimating the model. However, if there is covariate error, the CEM

produces less biased estimates. In this case, if the researchers feel confident that the measurement of

crab mass has little to no error, then they might decide to use the ANCOVA estimates. However, if they

think that there is likely some measurement error, then they should choose the CEM estimates.
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Chapter 4: Summary and Conclusions

4.1 Limitations

There are a few limitations to the work done with the CEM in this thesis. When estimating the CEM

estimates, the optimization of the log-likelihood function was not always successful. It is unclear what

causes this issue to occur. Due to the error messages in R, it is clear that the problem is the variance-

covariance matrix becomes singular at some point in the optimization algorithm. One likely cause,

particularly in the case where σ2
ζ = 0, is that the estimate for one or more of the variance parameters

approaches 0.

We showed that the CEM is not identified in the case that β1 = β2. Though the estimates obtained

in the case where β1 = β2 were generally less biased than the ANCOVA estimates except when σ2
ζ = 0,

accurate parameter estimates are not guaranteed in this case.

4.2 Future Research

There are several opportunities for future research related to the CEM. One area for possible future

research is expanding the CEM to situations where G > 2. Similarly, there is potential for investigating

the case where there are two or more covariates measured with error. These types of questions occur

frequently and being able to apply the CEM in these cases could be beneficial.

Additionally, we saw that when σ2
ζ = 0, the classic ANCOVA estimates were unbiased, while the

CEM estimates had some bias. By the time σ2
ζ = 0.5, however, classic ANCOVA was already showing

more bias than the CEM. Investigating more values of σ2
ζ could show just how sensitive to covariate error

classic ANCOVA is and where the CEM estimates become less biased than classic ANCOVA estimates.

This could help give some guidance in the case where there is very little covariate error but the error is

likely still present.

4.3 Conclusion

Overall, the CEM seems to be a good way to account for covariate measurement error in ANCOVA.

In most cases, when error is present the CEM shows less bias and lower RMSE. However, the method

has some significant drawbacks in that the optimization algorithm sometimes fails and the CEM is not

identified when β1 = β2. Interestingly, when the algorithm works, it still produces parameter estimates

with less bias than classic ANCOVA estimates in the case the β1 = β2 so long as there is covariate

measurement error. When there is no covariate measurement error, the CEM produces slightly biased
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estimates while the ANCOVA estimates are unbiased, as we would expect. In the case that there is little

or no covariate error, we should continue to use classic ANCOVA.
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Appendix A: R Code

#The l o g o f the mu l t i v a r i a t e normal pdf f o r use in the

#log= l i k e l i h o o d func t i on

nlogpdf <= function (n , y , S ,m,C){

R<= solve (C)

n/2* ( t (y=m) %*% R %*% (y=m) = log ( det (R) ) + sum(diag (S %*%R) ) )

}

#The nega t i v e log= l i k e l i h o o d func t i on

n l o g l i k <= function ( theta ){

alph1 <= theta [ 1 ]

alph2 <= theta [ 2 ]

beta1 <= theta [ 3 ]

beta2 <= theta [ 4 ]

d e l t a <= theta [ 5 ]

sigmx <= theta [ 6 ]

sigme <= theta [ 7 ]

sigmz <= theta [ 8 ]

m1 <= c ( alph1 + beta1*de l ta , d e l t a )

m2 <= c ( alph2 + beta2*de l ta , d e l t a )

C1 <= matrix (NA, 2 , 2 )

C1 [ 1 , 1 ] <= beta1 ˆ2*sigmx + sigme

C1 [ 1 , 2 ] <= beta1*sigmx

C1 [ 2 , 1 ] <= beta1*sigmx

C1 [ 2 , 2 ] <= sigmx+sigmz

C2 <= matrix (NA, 2 , 2 )

C2 [ 1 , 1 ] <= beta2 ˆ2*sigmx + sigme

C2 [ 1 , 2 ] <= beta2*sigmx
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C2 [ 2 , 1 ] <= beta2*sigmx

C2 [ 2 , 2 ] <= sigmx+sigmz

return ( n logpdf (n1 , y1 , S1 ,m1,C1)+nlogpdf (n2 , y2 , S2 ,m2,C2) )

}

#Simulate data , e s t imate parameters , and s t o r e the e s t ima t e s

for ( i in 1 : i t e r ){

mydata <= expand . grid ( x=rnorm(n , de l ta , sqrt ( sigmax ) ) , group=c ( ”a” , ”b” ) ) %>%

mutate ( e p s i l o n=rnorm(n ( ) , 0 , sqrt ( sigmae ) ) ) %>%

mutate (y=case when(

group==”a”˜alpha1+beta1*x+eps i l on ,

group==”b”˜alpha2+beta2*x+ep s i l o n

) ) %>%

mutate ( z=x+rnorm(n ( ) , 0 , sqrt ( sigmaz ) ) ) %>% s e l e c t (= ep s i l o n )

y1 <= with (mydata , cbind ( y [ group==”a” ] , z [ group==”a” ] ) )

n1 <= nrow( y1 )

S1 <= cov ( y1 ) * ( n1=1)/n1

y1 <= apply ( y1 , 2 ,mean)

y2 <= with (mydata , cbind ( y [ group==”b” ] , z [ group==”b” ] ) )

n2 <= nrow( y2 )

S2 <= cov ( y2 ) * ( n2=1)/n2

y2 <= apply ( y2 , 2 ,mean)

theta . hat <= rep ( 1 , 8 )

names( theta . hat ) <= c ( ” alpha1 ” , ” alpha2 ” , ” beta1 ” , ” beta2 ” ,

” de l t a ” , ” sigmax” , ” sigmae” , ” sigmaz” )

tmp <= try (optim( theta . hat , n l o g l i k , method=”L=BFGS=B” ,

lower= c ( rep(= In f , 5 ) , rep ( 0 , 3 ) ) ,
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control = l i s t ( maxit = 10000) ) )

i f ( class (tmp) !=” try=e r r o r ” ){

x <= as . vector (tmp$par )

} else {x<=c (NA,NA,NA,NA,NA,NA,NA,NA)}

par . e s t [ i , ] = x

mz <= lm( y ˜ =1+group+group : z , data=mydata )

lmz . e s t [ i , ]=mz$coef f ic ients

par . d i f f [ i , ] = x=theta

}
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