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Abstract 

Accurately quantifying forest productivity is a vital endeavor for modern forest 

managers. In north central California, one-point site index equations created from stem 

analysis data currently serve as the most reliable means to estimate forest productivity. 

Although generally sufficient, current models may inherently introduce error by failing to 

acknowledge how site conditions differentially impact growth rates and that growth rates 

fluctuate as trees mature. Therefore, alternative approaches that implicitly incorporate site 

growth factors may be necessary to quantify the true productive potential of forested 

landscapes in this region. 

We selected 162 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) 

trees for destructive sampling via segmented stem analysis from a replicated orthogonal 

sampling matrix of known environmental growth factors. Predicted growth rates for stem 

segments were calculated using a locally established traditional one-point Douglas-fir site 

index equation that utilizes breast-height age and total height. These predicted growth rates 

were then compared to observed growth rates obtained using a two-point site index approach 

(i.e., age by log segment length). Results indicated no significant differences between 

observed and predicted growth rates for breast-height to 20 and breast-height to 30 m 

segments. However, significant underpredictions were identified for a majority of segments 

between breast-height and 30 m. Results suggest the effectiveness and utility of one and two-

point site index approaches is highly dependent on past management practices (available site 

trees), future silvicultural objectives (short vs long-term rotation lengths), and a need to 

accurately predict temporal growth rates (carbon accumulation). 

To meet the demand for more reliable one and multi-point productivity estimates, 

extreme gradient boosting (XGBoost) machine learning models using climatic, edaphic, and 

topographic predictors were tested to evaluate prediction accuracies of Krumland and Eng 

(2005) site index and 10-meter site index (10MSI) – two site index approaches commonly 

used to calibrate regional growth and yield models. Multiple XGBoost models were created 

and compared for each site index method. The lowest 10-fold cross-validated RMSE value 

was used to select final models for each site index method. Final machine learning models 

were used to generate 0.4-hectare resolution raster layers of productivity for the study area.  
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Chapter 1: Introduction  

 

Although a common and well-researched topic, forest productivity remains an 

important concept in the minds and actions of modern forest managers (Carmean 1954; Grier 

et al. 1989; Bontemps and Bouriaud 2014). In basic terms, forest productivity can be defined 

as a forest’s potential to produce aboveground wood volume (Skovsgaard and Vanclay 

2008). Estimates of forest productivity as a function of influential site growth factors (i.e., 

temperature, moisture, nutrition) allow us to predict the rate at which trees can grow at a 

given spatial location (DeYoung 2016).  

Accurate and reliable estimates of productivity are vital for predicting economic 

returns and maintaining sustainable multi-use or intensively managed forest ecosystems 

(Dolph 1988; Skovsgaard and Vanclay 2008; Weiskittel et al. 2011). Landowners, managers, 

and investors are strongly interested in determining future growth and value of timberlands 

for real estate, atmospheric carbon sequestration, taxation, and resource sustainability 

purposes, and they realize the consequences of inaccurate productivity estimates (Huston and 

Marland 2003; Seagle 2008; Newell and Eves 2009). Because productivity strongly impacts 

projected biomass estimates and future value of timberlands, it is a dictating factor in modern 

carbon markets and the acquisition and sale of property (Seagle 2008; Newell and Eves 

2009). This plays a large role in today’s forestry community where timber investment 

management organizations (TIMOs) and real estate investment trusts (REITs) are responsible 

for a large portion of industrial timberlands in the United States (Fernholz 2007; Newell and 

Eves 2009). Industrial landowners are also particularly interested in productivity estimates 

because they are used in some state systems to adjust property tax rates (Klemperer 1976). 

Additionally, a forest’s productive potential is significant in terms of exploring management 

options and alternative silvicultural practices (Vanclay 1994; Devaranavadgi et al. 2013). In 

many cases, certain wood products can only be extracted from a forest when timber reaches a 

specified size. With accurate productivity estimates, managers can predict when volume will 

be ready for harvest and build both harvest and planting schedules accordingly (Latta et al. 

2010; Devaranavadgi et al. 2013; Bontemps and Bouriaud 2014). If managers know the 

productivity of a desired species for a range of site conditions, they also have the luxury of 
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strategically planting sites that will yield the greatest returns (Woolery et al. 2002; Aertsen et 

al. 2012).  

Numerous studies have shown that correlations between productivity and 

environmental factors may provide the most suitable approach to estimate forest productivity 

(Brown and Loewenstein 1978; Grier et al. 1989; Kimsey et al. 2008; Aertsen et al. 2012; 

Bontemps and Bouriaud 2014; Parresol et al. 2017; Hemingway 2020). Environmental 

factors that are proven to influence site quality and therefore drive forest productivity include 

climate, edaphic properties, topography, and light (Corona et al. 1998; Skovsgaard and 

Vanclay 2008; DeYoung 2016). Measurable variables such as temperature, precipitation, soil 

depth, available water supply, parent material, elevation, slope, aspect, and length of growing 

season all interact to determine the rates at which trees grow (Grier et al. 1989; DeYoung 

2016).  

Some early approaches to estimate productivity attempted to quantify these site 

factors in order to create a balanced sampling design (Skovsgaard and Vanclay 2008). 

However, the absence of widespread, reliable site condition data and modern geographic 

information systems (GIS) made it difficult to properly stratify expansive landscapes 

(Monserud 1984; Hemingway 2020).  Proper stratification of the landscape is essential when 

generating accurate productivity estimates to ensure all micro-site conditions are represented 

in models.  

Early predictions of forest productivity were primarily obtained from site-specific 

experience tables, which were soon replaced by yield tables and growth models (Skovsgaard 

and Vanclay 2008). Since then, many variations of growth models have been generated and 

implemented. Beginning in the early twentieth century, estimates of stand height at a given 

age, commonly known as site index, has been the standard means of quantifying and 

forecasting forest productivity (Powers 1972; Hägglund and Lundmark 1977; Brown and 

Loewenstein 1978; Batho and Garcia 2006; Parresol et al. 2017). Height over age curves now 

exist for most commercial timber species in the United States (Powers 1972). Site index 

approaches, where only one height-age pair is needed, are amongst the most widely used 

methods to quantify site productivity (Batho and Garcia 2006b; Monserud et al. 2006; 
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Kimsey et al. 2008; Hemingway 2020), and are used within many variants of the Forest 

Vegetation Simulation (FVS) growth and yield software ecosystem. 

Growth of dominant and codominant trees is best represented by a sigmoidal curve 

because growth rates vary as trees progress through different stages of maturity (Weiner and 

Thomas 2001). Rates are gradual in early-life stages, increase in middle stages, and plateau 

in late stages (Weiner and Thomas 2001; Hemingway 2020). Because growth rates are slow 

and gradual in early and late stages, and trees in early stages are prone to impacts of non-

productivity related factors, it makes practical sense to determine site productivity based on 

the middle stage of a tree’s life (Arney et al. 2009; Hemingway 2020). It is in this stage 

where growth rates are the highest and recruitment of wood fiber is most reflective of the 

site’s potential (Arney et al. 2009; Hemingway 2020).  

Thus, to generate more accurate and unbiased productivity estimates, a two-point site 

index approach may provide the best solution (Arney et al. 2009; Hemingway 2020; Zeide, 

1978). The two-point method, first introduced by Zeide (1978), explains how multiple 

height-age measurement pairs for a selected dominant or codominant site tree can be used to 

provide more accurate estimates of site productivity (Arney et al. 2009; Hemingway 2020; 

Zeide, 1978). This method essentially eliminates the need for traditional site index equations 

(Arney et al. 2009; Hemingway 2020; Zeide, 1978). The 10m Site Index (10MSI) method is 

an approach that encompasses Zeide’s two-point concept and eliminates biases from both 

early and late stage tree growth (Arney et al. 2009; Hemingway 2020). Two height-age 

measurements are used; one at 10 meters, and the other at 20 meters (Arney et al. 2009; 

Hemingway 2020). A growth rate expressed in meters per decade can be extracted from these 

measurements and used to define site productivity (Arney et al. 2009; Hemingway 2020; 

Zeide, 1978), and is the backbone of growth and yield modeling in the widely used Forest 

Projection and Planning System (FPS) software package (Forest Biometrics Research 

Institute, 2020). 

Numerous site index equations and models for Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco var. menziesii) are currently in use across the western united states (Cochran 

1979; Monserud 1984; Hann and Scrivani 1987). However, the incentive for refined 

productivity estimates has created a demand for method evaluation and improved accuracies. 
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This demand is especially prevalent in portions of California. Throughout the last one 

hundred years, more than twenty site index models have been implemented for use in the 

State of California, many of which were adopted from neighboring regions (Krumland and 

Eng 2005). Many of these models were created by traditional anamorphic guide curve 

techniques using only one height-age pair from selected sample trees (Bruce 1926; Krumland 

and Eng 2005). Although simplistic, error and lack of consistency resulting from these 

approaches suggest that stem analysis methods may serve as a superior alternative (Curtis 

1964; Krumland and Eng 2005). 

Douglas-fir site index curves created from stem analysis data by Krumland and Eng 

(2005) appear to be more reliable than predecessors for forested regions of northern 

California. These base age invariant curves were built specifically for unique and 

homogenous portions of the state, including our area of interest in north central California 

(Krumland and Eng 2005). Although typically dependable, these curves utilize the one point 

method, which by default can confound productivity estimates if site trees are not screened 

for early growth impacts due to silvicultural treatments, suppression, disturbance, and other 

early-life environmental impacts (Arney et al. 2009; Hemingway 2020). Due to the 

importance of site index to regional growth and yield models (FVS, FPS) and for sustainable 

land use planning, our study was designed to evaluate regional one vs multi-point site index 

equations for accuracy and bias across ranges of climatic, edaphic, and topographic growth 

factors using tree stem height-age pairs. Proper stratification of the study area was especially 

important because these growth factors vary greatly from stand to stand in north central 

California (Dunning and Reineke 1933; Baker 1944). Our research objectives were to 1) 

determine if significant differences in segmented tree growth rates existed between the one-

point Krumland and Eng (2005) site index approach and the two-point 10MSI site index 

approach, 2) determine where along the stem significant differences in growth rates occur, 3) 

quantify significant differences in growth rates, and 4) model Krumland and Eng (2005) site 

index and 10MSI across the study area using measurable site-specific predictors.  
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Chapter 2: Evaluation of One and Multi-Point Douglas-fir Site Indices 

 

Abstract 

Accurately quantifying forest productivity is a vital endeavor for modern forest 

managers. In north central California, one-point site index equations created from stem 

analysis data currently serve as the most reliable means to estimate forest productivity. 

Although generally sufficient, current equations may inherently introduce error by failing to 

acknowledge differences in growth rates as trees mature. Therefore, alternative approaches 

may be necessary to quantify the true productive potential of forested landscapes in this 

region. We selected 162 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) 

trees for destructive sampling via segmented stem analysis from a replicated orthogonal 

sampling matrix across a range of known environmental growth factors. Sample trees were 

segmented and age was recorded at breast-height (1.37 m), 10, 20, and 30 m positions. We 

compared growth rates predicted from a locally established one-point Douglas-fir site index 

equation to observed growth rates for 1.37 to 10 m, 1.37 to 20 m, 1.37 to 30 m, 10 to 20 m, 

10 to 30 m, and 20 to 30 m stem segments. Results indicated no significant differences 

between observed and predicted growth rates for breast-height to 20 and breast-height to 30 

m segments, indicating Krumland and Eng (2005) site index adequately quantifies tree-length 

growth and may remain informative for various management practices in this region. 

However, significant underpredictions were identified for a majority of other log segments, 

including the 10 to 20 m segment often used in the 10MSI method. On average, Krumland 

and Eng (2005) site index overpredicted growth rates for breast-height to 10 m segments by 

0.28 meters per decade and underpredicted for 10 to 20, 10 to 30, and 20 to 30 m segments 

by 0.57, 0.47, 0.46 meters per decade respectively. Predicted growth rates for breast-height to 

20 and breast height to 30 m segments were consistent with observed growth rates. 

These findings suggest a two-point approach may be superior when there is an 

economic or ecological need to quantify site-specific, temporal growth rates other than at 

total tree age. It is concluded that practicality and effectiveness of one and multi-point site 

index approaches in this region is heavily reliant on past silviculture, current and future 

management objectives, and user standard operating procedures. 
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Introduction 

Although a common and well-researched topic, forest productivity remains an 

important concept in the minds and actions of modern forest managers (Carmean 1954; Grier 

et al. 1989; Bontemps and Bouriaud 2014). In basic terms, forest productivity can be defined 

as a forest’s potential to produce aboveground wood volume (Skovsgaard and Vanclay 

2008).  

Accurate and reliable estimates of productivity are vital for predicting economic 

returns and maintaining sustainable multi-use or intensively managed forest ecosystems 

(Dolph 1988; Skovsgaard and Vanclay 2008; Weiskittel et al. 2011). Landowners, managers, 

and investors are strongly interested in determining future growth and value of timberlands 

for real estate, atmospheric carbon sequestration, taxation, and resource sustainability 

purposes, and they realize the consequences of inaccurate productivity estimates (Huston and 

Marland 2003; Seagle 2008; Newell and Eves 2009). A forest’s productive potential is also a 

significant factor of consideration when exploring management options and prescribing 

silvicultural treatments (Vanclay 1994; Devaranavadgi et al. 2013). Additionally, 

productivity estimates are commonly used to predict economical rotation ages, therefore 

laying the foundation for harvest and planting schedules (Latta et al. 2010; Devaranavadgi et 

al. 2013; Bontemps and Bouriaud 2014).  

Numerous studies have shown that correlations between productivity and 

environmental factors may provide the most suitable approach to estimate forest productivity 

(Brown and Loewenstein 1978; Grier et al. 1989; Kimsey et al. 2008; Aertsen et al. 2012; 

Bontemps and Bouriaud 2014; Parresol et al. 2017; Hemingway 2020). Climate, edaphic 

properties, topography, and light have all been proven to influence site quality and therefore 

drive forest productivity (Corona et al. 1998; Skovsgaard and Vanclay 2008; DeYoung 

2016). Measurable variables such as temperature, precipitation, soil depth, available water 

supply, soil parent material, elevation, slope, aspect, and length of growing season all interact 

to determine the rates at which trees grow (Grier et al. 1989; DeYoung 2016).  

Some early approaches to estimate productivity attempted to quantify these site 

factors in order to create a balanced sampling design (Skovsgaard and Vanclay 2008). 

However, the absence of widespread, reliable site condition data and modern geographic 
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information systems (GIS) made the effective stratification of expansive landscapes dubious 

(Monserud 1984; Hemingway 2020).  Proper stratification methods are imperative when 

trying to capture effects of micro-site conditions and generate accurate productivity 

estimates.  

Early predictions of forest productivity were primarily obtained from site-specific 

experience tables, which were superseded by yield tables and the implementation of growth 

models (Skovsgaard and Vanclay 2008). Since then, many variations of growth models have 

been generated and rooted in forest operations. Beginning in the early twentieth century, 

estimates of stand height at a given age, commonly known as site index, has been the 

standard means of quantifying and forecasting forest productivity (Powers 1972; Hägglund 

and Lundmark 1977; Brown and Loewenstein 1978; Batho and Garcia 2006; Parresol et al. 

2017). Height over age curves currently exist for most commercial timber species in the 

United States (Powers 1972). One point site index approaches, where only one height-age 

pair is needed to quantify site productivity, are amongst the most widely used methods 

(Batho and Garcia 2006b; Monserud et al. 2006; Kimsey et al. 2008; Hemingway 2020). One 

point approaches are favored for their simplicity, and they are heavily used within many 

variants of the Forest Vegetation Simulation (FVS) growth and yield software ecosystem.  

Growth of dominant and codominant tree growth is best represented by a sigmoidal 

curve because growth rates fluctuate as trees mature (Weiner and Thomas 2001). Rates are 

gradual in early-life stages, increase in middle stages, and plateau in late stages (Weiner and 

Thomas 2001; Hemingway 2020). Because growth rates are slow and gradual in early and 

late stages, and trees in early stages are prone to impacts of non-productivity related factors, 

determining site productivity according to the middle stage of a tree’s life makes practical 

sense (Arney et al. 2009; Hemingway 2020). It is in this stage where growth rates are most 

reflective of the site’s potential (Arney et al. 2009; Hemingway 2020).  

Thus, to generate more accurate and unbiased productivity estimates, a two-point site 

index approach may provide the best solution (Arney et al. 2009; Hemingway 2020; Zeide, 

1978). The two-point method, first introduced by Zeide (1978), explains how multiple 

height-age measurement pairs for a selected dominant or codominant site tree can be used to 

calculate true growth rates and provide more accurate productivity estimates (Arney et al. 
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2009; Hemingway 2020; Zeide, 1978). Two ring count measurements and the length of stem 

between measurements can be used to express growth rates in meters per decade (Arney et al. 

2009; Hemingway 2020; Zeide, 1978). This essentially eliminates the need for traditional site 

index equations (Arney et al. 2009; Hemingway 2020; Zeide, 1978), which is why some 

growth and yield modeling applications, like the Forest Projection and Planning System 

(FPS), favor this approach.   

Numerous site index equations and models for Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco var. menziesii) are currently used across the western United States (Cochran 

1979; Monserud 1984; Hann and Scrivani 1987). However, the incentive for refined 

productivity estimates has created a demand for method evaluation and improved accuracies. 

This demand is especially prevalent in portions of California. More than twenty site index 

models have been implemented for use in the State, many of which were adopted from 

neighboring regions (Krumland and Eng 2005). Many of these models were created by 

traditional anamorphic guide curve techniques using only one height-age pair from selected 

sample trees (Bruce 1926; Krumland and Eng 2005). Although simplistic, error and 

inconsistencies suggest that stem analysis methods serve as a superior alternative (Curtis 

1964; Krumland and Eng 2005). 

Douglas-fir site index curves created from stem analysis data by Krumland and Eng 

(2005) appear to be more reliable than predecessors for forested regions of northern 

California. These base age invariant curves were built specifically for unique and 

homogenous portions of the state, including our area of interest in north central California 

(Krumland and Eng 2005). Although typically dependable, these curves utilize the one point 

method, which by default can confound productivity estimates if site trees are not screened 

for early growth impacts due to silvicultural treatments, suppression, disturbance, and other 

early-life environmental impacts (Arney et al. 2009; Hemingway 2020).  

Due to the importance of site index to regional growth and yield models (FVS, FPS, 

etc.) and for sustainable land use planning, our study was designed to evaluate regional one 

vs multi-point site index equations for accuracy and bias across ranges of climatic, edaphic, 

and topographic growth factors using tree stem height-age pairs. Proper stratification of the 

study area was especially important as these growth factors vary greatly from stand to stand 
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in north central California (Dunning and Reineke 1933; Baker 1944). The objectives of this 

study were to 1) determine if significant differences in segmented tree growth rates existed 

between the one-point Krumland and Eng (2005) site index approach and the two-point site 

index approach, 2) determine where along the stem significant differences in growth rates 

occur, and 3) quantify significant differences in growth rates where they do occur. 

  

Methods and Materials 

Study Area 

The study area was a 66,283-hectare land ownership that covered parts of Shasta, 

Trinity, and Siskiyou counties in north central California, USA (Fig. 2.1). Site conditions 

varied greatly across the study area which resulted in wide ranges of values for measurable 

variables. Elevations ranged from 435 m up to 2198 m with an average of 1237 m. Mean 

annual precipitation ranged from 586 mm to 1939 mm with an average of 1409 mm. 

Regional geologic soil parent materials included ultramafic rocks and serpentine soils in the 

west, to volcanics located around Mt Shasta. Depths to restrictive layers ranged from 0 cm 

(bedrock) to 251 cm with an average of 137 cm. Although Douglas-fir was a large 

component of most forested stands, other common species present on the landscape included 

white fir (Abies concolor (Gord.) Lemm var. lowiana ), ponderosa pine (Pinus ponderosa 

Dougl. ex Laws. var. ponderosa), sugar pine (Pinus lambertiana), and California incense 

cedar (Calocendrus decurrens). 
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Figure 2.1. Study Area. 

 

Stratification and Sample Selection 

 The study area was stratified by known tree growth factors (temperature, moisture, 

soil environments) to ensure samples were collected across the range of varying site 

conditions (Hemingway 2020). A 0.4-hectare point grid was laid across the entire landscape 

and attributes of mean annual precipitation (MAP), degree days above 5°C (DD5), solar 

radiation (RAD), depth to restrictive layer (DEP2RESLYR), available water supply from 0 to 

100 cm (AWS100), geologic soil parent material – a proxy for soil nutrition and development 

(SPM), and elevation (EL) were obtained for each point. The interaction of DD5 and scaled 

RAD values were used to derive a surface heat load (HL) value. DEP2RESLYR, AWS100, 

and SPM values were used to generate a single soil metric termed soil quality index (SQI).  
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MAP and DD5 values were obtained from ClimateNA 1961-1990 30-yr normals 

(Wang et al. 2016). RAD values were computed using ESRI’s ArcMap 10.7.1 Points Solar 

Radiation tool. Soil data used to generate SQI values were obtained from Gridded National 

Soil Survey Geographic Database (gNATSGO) soil maps (Natural Resources Conservation 

Service, 2020). EL values were obtained from a 30-m United States Geological Survey 

(USGS) digital elevation model (DEM). All soil and elevation data were extracted to point 

locations using GIS extraction tools in ArcMap 10.7.1. Recent timber cruise data for the 

study area was used to remove points where species other than Douglas-fir were the 

dominant stand component. 

 An orthogonal sampling matrix using MAP, HL, and SQI was used to create 27 strata 

(Fig. 2.2; Arney et al. 2009; Hemingway and Kimsey 2020). Three strata bins for the 

continuous variables MAP and HL were defined as three equally proportionate bins by 

setting breaks at the mean of each variable ± ½ standard deviation. Potential sampling points 

in the lowest bin (<½ standard deviation) were given a value of 1, points with values in the 

middle bin (± ½ standard deviation) were given a value of 2, and points in the highest bin 

(>½ standard deviation) were given a value of 3.  

Previously measured Douglas-fir site index values from regional stand inventories 

were used as proxies for SPM quality (i.e., a means to develop a continuous proxy variable 

for SPM strata). Average site index values across each SPM were then used to rank SPMs 

from 1 to 15 with 1 being the least productive and 15 being the most productive. SPM strata 

breaks were created using the mean ± ½ standard deviation of averaged site index values. 

Potential sampling points with SPMs in the lowest site index bin were assigned a value of 1, 

those with parent materials in the middle bin were assigned a value of 2, and those in the 

highest bin were assigned a value of 3.  

For DEP2RESLYR and AWS100, point values were similarly divided into three 

proportionate bins by setting breaks at the mean ± ½ standard deviation. Points with values in 

lowest bin for each variable were assigned a 1, points with values in the middle bin for each 

variable were assigned a 2, and points with values in the highest bin for each variable were 

assigned a 3. Bin numbers for DEP2RESLYR, AWS100, and SPM were then added together 

and divided by three to obtain an average for each point. Averaged values for points were 
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then placed into three equally proportionate bins by setting breaks at the mean ± ½ standard 

deviation. Points that fell into the lowest bin were given a SQI value of 1, points that fell into 

the middle bin were given a SQI value of 2, and points that fell into the highest bin were 

given a SQI value of 3. The workflow for obtaining SQI values is shown in Figure 2.3.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Orthogonal sampling matrix. 
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Figure 2.3. Workflow for obtaining soil quality index values. 

 

The 27 unique strata defined by MAP, HL, and SQI were then replicated for both low 

elevation regions (<1200 m) and high elevation regions (≥1200 m) for a total of 54 strata. 

This stratification approach provided us the ability to sample across the range of MAP, HL, 

SQI, and EL values of the study area in order to capture variation in regional and stand-level 

growing conditions.   

 Sample locations from the 0.4 hectare study area grid were randomly selected across 

the 54 strata. Visual inspections of each selected sample location were conducted in the 

summer of 2020 to verify 1) the presence of suitable Douglas-fir site trees and 2) 

accessibility. To be considered a suitable site tree, a tree needed to be consistent with the 

following: 1) dominant or codominant canopy position, 2) at least 20 m tall, 3) evidence of 

consistent growth from an early age – indicated by evenly spaced branch whorls along the 
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tree bole, 4) no evident defect or sign of illness, 5) not growing in an advantageous location 

relative to other trees in the stand, and 6) safely accessible to a tree feller. If a sample 

location was deemed insufficient in regard to suitable site trees or accessibility to such trees, 

a new location from the same strata was randomly selected for inspection. The number of 

selected sites per strata ranged from 0 to 3. Several strata were not represented due to a 

limited areal presence within the study area and/or a lack of sufficient site trees. Additionally, 

several strata were represented more than once due to an extensive areal presence within the 

study area. In total, 81 sample locations were selected across the 54 strata, representing the 

diverse landscape of the region (Fig. 2.4, Tables 2.1 and 2.2). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Spatial distribution of selected sample locations. 
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Table 2.1. Summary of site conditions for selected sample locations. 

 Range Mean SD 

EL1 (m) 553 - 1596 1173 229 

MAP2 (mm) 637 - 1906 1396.4 359.9 

DD53  1878 - 3414 2583.2 356.6 

RAD4 (WH/m2) 644035 - 1547840 1279950 209694 

AWS1005 (cm) 3.5 - 38.21 13.1 8.3 

DEP2RESLYR6 (cm) 23 - 201 129.8 50.8 

1Elevation 

2Mean annual precipitation 

3Degree days greater than or equal to 5 °C 

4Solar radiation 

5Available water supply from ground surface to 100 cm 

6Depth to restrictive layer 

 

 

Table 2.2. Representation of geologic soil parent material types (SPM) amongst selected 

sample locations. 

SPM % of Sample Locations 

Alluvium 1.2  

Colluvium 2.5  

Serpentine 4.9  

Ash over volcanics 3.7  

Volcanics 30.9  

Tephra 11.1  

Ultramafic 9.9  

Igneous (unknown) 1.2  

Igneous (extrusive) 3.7  

Igneous (intrusive) 1.2  

Metamorphic 28.4  

Glacial 1.2  
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Sampling 

 Stem analysis sampling of Douglas-fir was completed during the summer of 2021. 

Felled tree measurements for two trees with similar 10 to 20 m growth rates were collected at 

each sample location. A third tree was selected and felled if one of the first two trees 

expressed a 10 to 20 m growth rate that fell beyond plus or minus 15 percent of the mean 10 

to 20 m growth rate of the first two trees. Only data from the two most similar trees at each 

location were retained. This ensured that collected samples were consistent in representing 

each site. Once felled, cross sections were obtained at 0.3 m (stump), 1.37 m (breast-height), 

10 m, 20 m, and if possible 30 m. Ring count (age) was recorded for each cross section. In 

total, data from 162 trees were retained (Table 2.3). 

 

Table 2.3. Summary of sample tree measurements and ages. 

 Range Mean SD 

Total Height (m) 21.2 – 40.3 30.8 14.2 

DBH (cm) 35.6 – 88.9 54.9 9.2 

Age at 0.3 m 33 - 168 84 22 

Age at 1.37 m 31 - 151 77 21 

Age at 10 m 21 - 111 53 17 

Age at 20 m 5 - 83 32 13 

Age at 30 m 1 - 33 13 8 

 

Calculation of observed growth rates 

 Cross section age data was used to calculate observed growth rates for segments 

within each sample tree. 

BH (breast-height) to 10 m growth rates were calculated with  

m/d = 
86

𝑎𝑔𝑒𝐵𝐻−𝑎𝑔𝑒10
  [Eq. 2.1] 
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where m/d is the observed meters per decade growth rate, 86 is the product of multiplying the 

length from BH to 10 m (8.6 m) by 10 to convert into meters per decade, 𝑎𝑔𝑒𝐵𝐻 is the 

observed age at breast height, and 𝑎𝑔𝑒10 is the observed age at 10 m.  

BH to 20 m growth rates were calculated with  

m/d = 
186

𝑎𝑔𝑒𝐵𝐻−𝑎𝑔𝑒20
  [Eq. 2.2] 

where m/d is the observed meters per decade growth rate, 186 is the product of multiplying 

the length from BH to 20 m (18.6 m) by 10 to convert into meters per decade, 𝑎𝑔𝑒𝐵𝐻 is the 

observed age at breast height, and 𝑎𝑔𝑒20 is the observed age at 20 m.  

BH to 30 m growth rates were calculated with  

m/d = 
286

𝑎𝑔𝑒𝐵𝐻−𝑎𝑔𝑒30
  [Eq. 2.3] 

where m/d is the observed meters per decade growth rate, 286 is the product of multiplying 

the length from BH to 30 m (28.6 m) by 10 to convert into meters per decade, 𝑎𝑔𝑒𝐵𝐻 is the 

observed age at breast height, and 𝑎𝑔𝑒30 is the observed age at 30 m.  

10 to 30 m growth rates were calculated with  

m/d = 
200

𝑎𝑔𝑒10−𝑎𝑔𝑒30
  [Eq. 2.4] 

where m/d is the observed meters per decade growth rate, 200 is the product of multiplying 

the length from 10 to 30 m (20 m) by 10 to convert into meters per decade, 𝑎𝑔𝑒10 is the 

observed age at 10 m, and 𝑎𝑔𝑒30 is the observed age at 30 m.  

10 to 20 and 20 to 30 m growth rates were calculated with  

m/d = 
100

𝑎𝑔𝑒𝑘−𝑎𝑔𝑒𝑘+10
  [Eq. 2.5] 

where m/d is the observed meters per decade growth rate, 100 is the product of multiplying 

the length from k to k+10 m (10 m) by 10 to convert into meters per decade, 𝑎𝑔𝑒𝑘 is the 

observed age at k m, and 𝑎𝑔𝑒𝑘+10 is the observed age at k+10 m.  
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Krumland and Eng site index for sampled trees 

 Krumland and Eng site index was calculated for each sample tree using the 

DFI_CR2_MMC model and a base age of 50 (Krumland and Eng 2005). This model was 

built for interior Douglas-fir in the main mixed-conifer zone of California. The 

DFI_CR2_MMC model equation is written as 

𝐻 = 4.5 + (𝐻0 − 4.5) {
[1−𝑒𝑥𝑝(−0.01564∗𝐴)]

[1−𝑒𝑥𝑝(−0.01564∗𝐴0)]
}
(−6.260+38.98/𝑅0)

 [Eq. 2.6] 

 where 𝐻 is site index,  𝐻0 is observed total tree height, 𝐴 is a specified base age, 𝐴0 is 

observed age at BH, and 𝑅0 is an unobservable site productivity or growth intensity variable. 

𝑅0 can be calculated using 

𝑅0 =
(𝐿0−(−6.260∗𝑌0))+√(𝐿0−(−6.260∗𝑌0))

2
−4(38.98)𝑌0

2
 [Eq. 2.7] 

 letting 

𝐿0 = 𝑙𝑛(𝐻0 − 4.5)         [Eq. 2.8] 

𝑌0 = 𝑙𝑛(1 − 𝑒𝑥𝑝(−0.01564 ∗ 𝐴0))       [Eq. 2.9] 

where 𝐻0 is observed total tree height and 𝐴0 is observed age at BH. 

 

Krumland and Eng site index predicted BH ages and growth rates 

We used the CR2 model form, observed Krumland and Eng (2005) base age 50 site 

index values, and set heights of 10 m, 20 m, and 30 m to calculate predicted BH ages. We 

substituted site index values for H and values of 10 m, 20 m, and 30 m for 𝐻0 to solve for 

corresponding BH ages (𝐴0). 

 Height values of BH, 10, 20, and 30 m along with corresponding predicted BH ages 

were used to calculate predicted growth rates for segments within each sample tree.  

Predicted BH to 10 m growth rates were calculated with 

m/d = 
86

𝐵𝐻𝐴10
  [Eq. 2.10] 
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where m/d is the observed meters per decade growth rate, 86 is the product of multiplying the 

length from BH to 10 m (8.6 m) by 10 to convert into meters per decade, and 𝐵𝐻𝐴10 is the 

predicted BH age when total tree height is 10 m.  

Predicted BH to 20 m growth rates were calculated with 

m/d = 
186

𝐵𝐻𝐴20
  [Eq. 2.11] 

where m/d is the observed meters per decade growth rate, 186 is the product of multiplying 

the length from BH to 20 m (18.6 m) by 10 to convert into meters per decade, and 𝐵𝐻𝐴20 is 

the predicted BH age when total tree height is 20 m.  

Predicted BH to 30 m growth rates were calculated with 

m/d = 
286

𝐵𝐻𝐴30
  [Eq. 2.12] 

where m/d is the observed meters per decade growth rate, 286 is the product of multiplying 

the length from BH to 30 m (28.6 m) by 10 to convert into meters per decade, and 𝐵𝐻𝐴30 is 

the predicted BH age when total tree height is 30 m. 

Predicted 10 to 30 m growth rates were calculated with 

m/d = 
200

𝐵𝐻𝐴30−𝐵𝐻𝐴10
  [Eq. 2.13] 

where m/d is the observed meters per decade growth rate, 200 is the product of multiplying 

the length from 10 to 30 m (20 m) by 10 to convert into meters per decade, 𝐵𝐻𝐴30 is the 

predicted BH age when total tree height is 30 m, and 𝐵𝐻𝐴10 is the predicted BH age when 

total tree height is 10 m. 

Predicted 10 to 20 and 20 to 30 m growth rates were calculated with 

m/d = 
100

𝐵𝐻𝐴𝑘+10−𝐵𝐻𝐴𝑘
  [Eq. 2.14] 

where m/d is the observed meters per decade growth rate, 100 is the product of multiplying 

the length from k to k+10 m (10 m) by 10 to convert into meters per decade, 𝐵𝐻𝐴𝑘+10 is the 

predicted BH age when total tree height is k+10 m, and 𝐵𝐻𝐴𝑘 is the predicted BH age when 

total tree height is k m. 
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Comparison of observed and predicted growth rates 

 Analysis of covariance (ANCOVA) was used to test for significant differences 

between observed and predicted growth rates at a 95% confidence level in R (R Core Team, 

2021). The aov() function was used to fit a relationship between segment growth rates and 

Krumland and Eng (2005) site index with a covariate identifying growth rates as either 

observed or predicted. Significance of covariate P-values were determined by comparing 

them to an alpha value of 0.05. For significant p-values, the TukeyHSD() function in R was 

used to quantify differences (R Core Team, 2021). Additionally, standard linear regression 

was used to observe the relationship between observed and predicted growth rates for tree 

segments. A 1:1 line was used to visualize the direction and severity of deviance, if any, 

between growth rates. 

 

 Results 

 Observed BH to 10 m growth rates varied from 1.7 to 10.8 meters per decade with a 

mean value of 4.1 and a standard deviation of 1.6. Krumland and Eng (2005) predicted BH to 

10 m growth rates varied from 1.8 to 12.3 meters per decade with a mean value of 4.4 and a 

standard deviation of 1.7. Predicted BH to 10 m growth rates averaged 0.28 ± 0.006 meters 

per decade greater than observed BH to 10 m growth rates. This difference was significant at 

alpha=0.05 (p<0.01) (Fig. 2.5a). 

Observed BH to 20 m growth rates varied from 2.2 to 9.8 meters per decade with a 

mean value of 4.5 and a standard deviation of 1.4. Krumland and Eng (2005) predicted BH to 

20 m growth rates varied from 2.1 to 10.6 meters per decade with a mean value of 4.5 and a 

standard deviation of 1.4. A significant difference between observed BH to 20 m and 

Krumland and Eng (2005) BH to 20 m growth rates was not detected (Fig. 2.5b). 

Observed BH to 30 m growth rates varied from 2.2 to 7.7 meters per decade with a 

mean value of 4.8 and a standard deviation of 1.1. Krumland and Eng (2005) predicted BH to 

30 m growth rates varied from 2.4 to 7.8 meters per decade with a mean value of 4.7 and a 
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standard deviation of 1.0. A significant difference between observed BH to 30 m and 

Krumland and Eng (2005) BH to 30 m growth rates was not detected (Fig 2.5c). 

Observed 10 to 20 m growth rates varied from 1.7 to 9.1 meters per decade with a 

mean value of 5.2 and a standard deviation of 1.5. Krumland and Eng (2005) predicted 10 to 

20 m growth rates varied from 2.3 to 9.5 meters per decade with a mean value of 4.7 and a 

standard deviation of 1.3. Predicted 10 to 20 m growth rates averaged 0.57 ± 0.004 meters 

per decade less than observed 10 to 20 m growth rates. This difference was significant at 

alpha=0.05 (p<0.001) (Fig 2.5d). 

Observed 10 to 30 m growth rates varied from 2.8 to 8.7 meters per decade with a 

mean value of 5.1 and a standard deviation of 1.3. Krumland and Eng (2005) predicted 10 to 

30 m growth rates varied from 2.4 to 7.2 meters per decade with a mean value of 4.6 and a 

standard deviation of 0.9. Predicted 10 to 30 m growth rates averaged 0.47 ± 0.004 meters 

per decade less than observed 10 to 30 m growth rates. This difference was significant at 

alpha=0.05 (p<0.001) (Fig. 2.5e). 

Observed 20 to 30 m growth rates varied from 1.7 to 10 meters per decade with a 

mean value of 4.6 and a standard deviation of 1.4. Krumland and Eng (2005) predicted 20 to 

30 m growth rates varied from 2.1 to 6.5 meters per decade with a mean value of 4.2 and a 

standard deviation of 0.9. Predicted 20 to 30 m growth rates averaged 0.46 ± 0.005 meters 

per decade less than observed 20 to 30 m growth rates. This difference was significant at 

alpha=0.05 (p<0.001) (Fig. 2.5f). 
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Comparison with a 1:1 line indicated that Krumland and Eng (2005) BH to 20 m and 

BH to 30 m growth rate predictions were generally consistent with observed values. 

However, clear inaccuracies existed for all other tree segments (Fig. 2.6). The majority of 

Krumland and Eng (2005) predicted BH to 10 m growth rates were overpredicted, especially 

Figure 2.5. Observed and Krumland and Eng (2005) predicted meters per decade growth 

rates across Krumland and Eng (2005) site index values. 
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for slower growing trees (Fig. 2.6a). Additionally, the majority of Krumland and Eng (2005) 

predicted 10 to 20 m, 10 to 30 m, and 20 to 30 m growth rates were underpredicted, 

especially for faster growing trees (Fig. 2.6d-f).  

 

Figure 2.6. Relationship between Krumland and Eng (2005) predicted growth rates 

and observed growth rates. 



24 

 

Discussion 

 Proper landscape stratification via the use of an orthogonal sampling matrix provided 

an efficient way to ensure samples were collected across wide ranges of growth factors and 

site conditions in an unbiased manner (Forest Biometrics Research Institute, 2020; 

Hemingway and Kimsey 2020). Although site conditions varied greatly between sample 

locations, consistent patterns regarding accuracy of Krumland and Eng (2005) predicted 

growth rates for all stem segments across our study area allowed us to make a confident 

assessment of these site index approaches for this region.  

The Krumland and Eng (2005) site index curve for interior Douglas-fir performed 

well when predicting BH to 20 and BH to 30 m growth rates. This is not overly surprising as 

tree length segments in essence reflects the one-point approach used in breast-height and 

total tree height models (i.e., Krumland and Eng, 2005). Thus, use of the DFI_CR2_MMC 

equation in this region remains informative, particularly when interested in growth rates 

relative to stands managed for longer-term ecosystem services or when user standard 

operating procedures incorporate growth and yield modeling applications that prefer one-

point site index information. 

For most tree segments, Krumland and Eng (2005) growth rate predictions 

overestimated growth of slower growing trees (<4 m/d), especially for BH to 10 m segments. 

Predicted values typically fell below observed values for middle and upper tree segments 

growing at 4 meters per decade or faster. This information and accurate tree-length (BH to 20 

and BH to 30 m) growth rate predictions may serve as indication that compensation or front-

loading of growth rates is likely taking place within the Krumland and Eng (2005) curves due 

to equation form. Alternatively, although we selected the most suitable site trees for our 

study, the quality of our site trees was reflective of the integrity of trees left on the landscape 

from previous management practices conducted by numerous landowners over time. 

Consequently, our sample trees may have differed in growth compared to those used to 

create the DFI_CR2_MMC equation. 

Although predictions for BH to 20 and BH to 30 m segments were not significantly 

different than observed values, significant underpredictions were evident for 10 to 20, 10 to 

30, and 20 to 30 m log segments. Limitations of one-point approaches are likely responsible 
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for these underpredictions. One-point approaches, including Krumland and Eng (2005) site 

index, are built to quantify tree-length growth. The inherent nature of these approaches poses 

challenges when differentiating growth rates of smaller, position-specific stem segments as 

they cannot capture the nuance of site induced temporal effects on growth rates across these 

log segments.   

On average, growth rates of 10 to 20 m segments, where trees reach merchantability, 

were underpredicted by 0.57 meters per decade. This underprediction can lead to significant 

misconceptions of a site’s productive potential, particularly if site growth potential needs to 

be modeled by segment or over shorter time intervals. We observed in this study that trees 

are reaching desirable merchandizing heights in the second log significantly faster than 

predicted by Krumland and Eng (2005) curves, which in turn can lead to severe negative 

impacts on growth and yield, harvest scheduling, planting regimes, and timberland appraisals 

(Newell and Eves 2009; Latta et al. 2010; Devaranavadgi et al. 2013; Bontemps and 

Bouriaud 2014). We observed that only through a general overprediction of first log growth 

rates do Krumland and Eng (2005) full tree growth rates to 20 or 30 m achieve an overall 

similar growth rate to the two-point method. Consequently, tree segment growth differentials 

observed in this study between the one-point method (Krumland and Eng) and the two-point 

method coincide with other studies that support the two-point approach as a superior 

alternative to one-point approaches when assessing effects of site on log growth rates (Zeide 

1978; Arney et al. 2009; Hemingway 2020).  

 

Conclusion 

 Significant differences in segmented tree growth rates existed between one-point 

(Krumland and Eng (2005)) and two-point site index approaches. On average, Krumland and 

Eng (2005) site index overpredicted growth rates for breast-height to 10 m segments by 0.28 

meters per decade and underpredicted for 10 to 20, 10 to 30, and 20 to 30 m segments by 

0.57, 0.47, 0.46 meters per decade respectively. Predicted growth rates for breast-height to 20 

and breast height to 30 m segments were consistent with observed growth rates, indicating 

that Krumland and Eng (2005) site index may remain informative when interested in tree-

length growth rates or when considering long-term forest management practices consistent 
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with ecosystem services other than intensive, short-term rotations. Because the two-point site 

index approach more accurately captured second log (10 to 20 m) growth rates, it may serve 

as a superior approach to quantify growth for intensively-managed stands with shorter 

rotation ages or where there is a need to more accurately define log segment growth rates as a 

function of site. Therefore, the overall applicability and effectiveness of both approaches for 

our study area is highly dependent on management practices and objectives. 
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Chapter 3: Modeling One and Multi-Point Douglas-fir Site Indices Using 

Machine Learning and Biological Growth Factors  

 

Abstract 

Incentive-driven demand for more accurate and reliable forest productivity estimates 

is endlessly increasing as carbon markets flourish and global need for forest products remains 

unabated. Forest productivity is widely used as a calibration parameter in growth and yield 

modeling applications, but not all applications are compatible with the same site indices. 

Additionally, methods previously used to spatially predict site indices, such as multi-linear 

regression (MLR) and geographically-weighted regression (GWR), are susceptible to 

problems regarding multicollinearity and small datasets. To address these issues, we explored 

the use of an extreme gradient boosting (XGBoost) machine learning algorithm to model one 

and multi-point site index approaches. Climatic, edaphic, and topographic predictors were 

used to predict Krumland and Eng (2005) site index (a one-point model) and 10-meter site 

index (10MSI) (a two-point model) across our study area. A landscape-wide stratification of 

known growth factors was essential to generating accurate and realistic estimates of 

productivity. Multiple statistical models were created and compared for each site index 

method. The lowest 10-fold cross-validated RMSE value was used to select final models for 

each method. Final models were used to generate 0.4 – hectare resolution raster layers of 

productivity for the entire study area.  

 

Introduction 

Forest productivity is an essential element in the operations and workflows of modern 

forest managers. Productivity estimates are highly impactful on all aspects of the forest 

industry, including growth and yield projections, real estate transactions, carbon markets, and 

property tax rates (Huston and Marland 2003; Seagle 2008; Newell and Eves 2009). The 

importance of productivity has created a steady increase in demand for evaluation of methods 

in which productivity estimates are derived, as well as improved levels of accuracy.  
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For decades, the estimated height of a forest stand at a given age, universally known 

as site index, has served as the dominant indicator of forest productive potential (Powers 

1972; Hägglund and Lundmark 1977; Brown and Loewenstein 1978; Batho and Garcia 2006; 

Parresol et al. 2017). Amongst the most widely used site index methods are one-point 

approaches, which only require one height-age pair. Because one-point methods are heavily 

relied on by forest managers, they are widely used within growth and yield modeling 

applications, including many variants of the Forest Vegetation Simulation (FVS) growth and 

yield software platform (Batho and Garcia 2006b; Monserud et al. 2006; Kimsey et al. 2008; 

Hemingway 2020).  

The most appropriate one-point inland Douglas-fir (Pseudotsuga menziesii (Mirb.) 

Franco var. menziesii) site index equation for our study area was built by Krumland and Eng 

(2005) using stem analysis data. This equation is currently implemented operationally and is 

considered a reliable option when generating productivity estimates. Unfortunately, not all 

growth and yield models are compatible with one-point approaches. The 10m Site Index 

(10MSI) method is a two-point approach that is known to provide accurate site productivity 

estimates by eliminating biases from both early and late stage tree growth (Arney et al. 2009; 

Hemingway 2020). Two height-age measurements are used; one at 10 meters, and the other 

at 20 meters (Arney et al. 2009; Hemingway 2020). A growth rate expressed in meters per 

decade can be extracted from these measurements and used to define forest productivity 

(Arney et al. 2009; Hemingway 2020; Zeide, 1978), and is the backbone of growth and yield 

modeling in the widely used Forest Projection and Planning System (FPS) software package 

(Forest Biometrics Research Institute, 2020). Because standard operating procedures differ 

between landowners and managers in regard to growth and yield modeling, generating 

productivity estimates for both one and two-point site index approaches would likely prove 

beneficial.   

Numerous studies suggest relationships between productivity and environmental 

factors may provide the most appropriate approach to obtain accurate predictions of forest 

productivity (Brown and Loewenstein 1978; Grier et al. 1989; Kimsey et al. 2008; Aertsen et 

al. 2012; Bontemps and Bouriaud 2014; Parresol et al. 2017; Hemingway 2020). Climate, 

edaphic properties, topography, and incoming solar radiation are amongst leading factors 
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documented to influence tree growth (Corona et al. 1998; Skovsgaard and Vanclay 2008; 

DeYoung 2016). These growth factors and their interactions are likely responsible for a 

significant proportion of variance in productivity, making them suitable predictors when 

constructing models (Grier et al. 1989; DeYoung 2016).  

Many modeling approaches, including multiple linear regression (MLR) and 

geographically-weighted regression (GWR), have been used to spatially estimate forest 

productivity with environmental growth factors over widespread landscapes (Monserud and 

Rehfeldt 1990; Kimsey et al. 2008). Although these parametric or semi-parametric 

approaches have proven themselves as generally effective, weaknesses arise when working 

with numerous autocorrelated predictor variables and small datasets (Woolery et al. 2002). 

Machine learning may provide a solution to these traditional problems.   

Machine learning is a concept that has stepped to the center of attention for many 

statisticians and researchers. Gradient tree boosting (GTB) is perhaps one of the most 

powerful machine learning algorithms in use today, especially in terms of predictive 

capability (Nielsen 2016; Santhanam et al. 2016; Truong et al. 2020). Because GTB models 

can often be sufficiently trained with small datasets or with datasets containing missing 

values (Santhanam et al. 2016; Truong et al. 2020), they serve as a highly viable option when 

imposed with funding or time constraints. Additionally, the ensemble tree-based nature of 

GTB models result in reduced risk of overfitting and issues related to variable 

multicollinearity when used for prediction purposes (Dong et al. 2020).  

Extreme Gradient Boosting (XGBoost) is a machine learning algorithm built on a 

boosted tree foundation that contains all the benefits of standard GTB models and more. 

Unlike the GTB algorithm, XGBoost takes a multi-threaded approach which optimizes the 

use of the machine’s CPU core, resulting in improved efficiency, processing speed, and 

performance (Santhanam et al. 2016). Over the past several years, XGBoost models have 

declared superiority over other algorithms by winning numerous machine learning 

competitions (Nielsen 2016). Perhaps more importantly, XGBoost has become a powerful 

tool for real-world problem solving (Dong et al. 2020) and may serve as a reliable modeling 

approach for predicting forest productivity.  
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To meet the increased demand for accurate and readily available site productivity 

estimates to be used in various growth modeling applications, we sought to model both 

regional one and multi-point site index equations across our study area. We explored the use 

and performance of an XGBoost machine learning algorithm with climatic, edaphic, and 

topographic growth factors as predictors. Our research objectives were to 1) utilize machine 

learning and environmental growth factor predictors to construct Krumland and Eng (2005) 

site index and 10MSI Douglas-fir prediction models, 2) evaluate accuracy of constructed 

prediction models, and 3) use final prediction models to geospatially map Douglas-fir site 

indices across the study area of interest.  

 

Methods and Materials 

Study Area 

A 66,283-hectare land ownership that covered parts of Shasta, Trinity, and Siskiyou 

counties of north central California, USA served as the study area (Fig. 3.1). Site conditions 

throughout the study area varied significantly. The range of elevations was 435 m to 2198 m 

above sea level with an average of 1237 m. The range of mean annual precipitation (MAP) 

was 586 mm to 1939 mm with an average of 1409 mm. Geologic soil parent materials ranged 

from ultramafic rocks and serpentine soils in the west, to volcanics located around Mt Shasta. 

The range of depths to restrictive layer was 0 cm to 251 cm with an average of 137 cm. 

Although Douglas-fir was a large species component, other species including white fir (Abies 

concolor (Gord.) Lemm var. lowiana ), ponderosa pine (Pinus ponderosa Dougl. ex Laws. 

var. ponderosa), sugar pine (Pinus lambertiana), and California incense cedar (Calocendrus 

decurrens) were common within the study area. 
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Figure 3.1. Study Area. 

 

Stratification and Sample Selection 

 The study area was stratified by known growth factors related to temperature, 

moisture, and soil characteristics to ensure the vast range of present site conditions were 

represented by collected samples (Hemingway 2020). A 0.4-hectare point grid with attributes 

of mean annual precipitation (MAP), degree days above 5°C (DD5), solar radiation (RAD), 

depth to restrictive layer (DEP2RESLYR), available water supply from 0 to 100 cm 

(AWS100), geologic soil parent material type – a proxy for soil nutrient availability and 

development (SPM), and elevation (EL) was laid across the study area. The interaction of 
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DD5 and scaled RAD values served as surface Heat Load (HL) values. A single soil metric 

termed soil quality index (SQI) was generated using DEP2RESLYR, AWS100, and SPM 

values.  

ClimateNA 1961-1990 30-yr normals were used to obtain MAP and DD5 values 

(Wang et al. 2016). ESRI’s ArcMap 10.7.1 Points Solar Radiation tool was used to generate 

RAD values. Gridded National Soil Survey Geographic Database (gNATSGO) soil maps 

(Natural Resources Conservation Service, 2020) were used to obtain data for generating SQI 

values. A 30-m United States Geological Survey (USGS) digital elevation model (DEM) was 

used to obtain EL values. GIS extraction tools in ArcMap 10.7.1 were used to extract all soil 

and elevation data to gridded points. Point locations where Douglas-fir was not the dominant 

stand component, indicated by recent timber cruise data, were eliminated as potential sample 

locations. 

27 unique strata were created with the use of an orthogonal sampling matrix and 

variables of MAP, HL, and SQI (Fig. 3.2; Arney et al. 2009; Hemingway and Kimsey 2020). 

Three strata bins of equal size for continuous variables of MAP and HL were defined by 

establishing breaks at the mean of each variable ± ½ standard deviation. A value of 1 was 

given to potential sampling points in the lowest bin (< ½ standard deviation), a value of 2 

was given to points with values in the middle bin (± ½ standard deviation), and a value of 3 

was given to points in the highest bin (> ½ standard deviation). 

Douglas-fir site index values previously obtained from regional stand inventories 

were used as proxies for SPM quality (i.e., a means to develop a continuous proxy variable 

for SPM strata). Average site index values were calculated for each SPM and were then used 

to rank SPMs from least to most productive. The mean ± ½ standard deviation of averaged 

site index values was used to establish SPM strata breaks. A value of 1 was given to potential 

sampling points with SPMs in the lowest site index bin, a value of 2 was given to those with 

SPMs in the middle bin, and a value of 3 was given to those in the highest bin. Binning of 

DEP2RESLYR and AWS100 was conducted similar to MAP and HL by using the mean ± ½ 

standard deviation to establish breaks. DEP2RESLYR, AWS100, and SPM bin values were 

then summed and divided by three to obtain an average value for each point location. 
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Averaged values were then divided into three proportionate bins by establishing breaks at the 

mean ± ½ standard deviation. A SQI value of 1 was given to points that fell into the lowest 

bin, A SQI value of 2 was given to points that fell into the middle bin, and a SQI value of 3 

was given to points that fell into the highest bin. Figure 3.3 displays the workflow for 

obtaining SQI values.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Orthogonal sampling matrix. 
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Figure 3.3. Workflow for obtaining soil quality index values. 

The orthogonal sampling design using MAP, HL, and SQI was then replicated for 

low (<1200 m) and high (≥1200 m) elevations, resulting in a total of  54 strata.  Stratifying in 

this manner allowed us to collect samples across the ranges of MAP, HL, SQI, and EL within 

the study area to unbiasedly represent variation in site conditions found on the landscape. 

Sample locations were chosen at random across the 54 strata. Ocular inspections of 

selected sample locations were conducted during the summer of 2020. Inspections were 

important prior to sampling to verify if suitable Douglas-fir site trees existed at selected 

locations and whether or not such trees, if present, were accessible. To be considered a 

suitable site tree, a tree needed the following characteristics: 1) dominant or codominant 

position in the canopy, 2) greater than or equal to 20 m tall, 3) consistent growth from an 

early age – indicated by uniform spacing of branch whorls up the tree bole, 4) absent of 
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defect or indication of illness, 5) growing in a non-advantageous location relative to 

surrounding trees, and 6) accessible for safe felling. If a sample location was determined to 

be insufficient, a new location for the same strata was chosen at random for inspection. In 

total, 81 locations representing diverse regional growing conditions were selected for 

sampling across the 54 strata (Fig. 3.4, Tables 3.1 and 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Spatial distribution of selected sample locations. 
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Table 3.1. Summary of site conditions for selected sample locations. 

 

 
Range Mean SD 

EL1 (m) 553 - 1596 1173 229 

MAP2 (mm) 637 - 1906 1396.4 359.9 

DD53  1878 - 3414 2583.2 356.6 

RAD4 (WH/m2) 644035 - 1547840 1279950 209694 

AWS1005 (cm) 3.5 - 38.21 13.1 8.3 

DEP2RESLYR6 (cm) 23 - 201 129.8 50.8 

1Elevation 

2Mean annual precipitation 

3Degree days greater than or equal to 5 °C 

4Solar radiation 

5Available water supply from ground surface to 100 cm 

6Depth to restrictive layer 

 

Table 3.2. Representation of geologic soil parent material types (SPM) amongst selected 

sample locations. 

SPM % of Sample Locations 

Alluvium 1.2  

Colluvium 2.5  

Serpentine 4.9  

Ash over volcanics 3.7  

Volcanics 30.9  

Tephra 11.1  

Ultramafic 9.9  

Igneous (unknown) 1.2  

Igneous (extrusive) 3.7  

Igneous (intrusive) 1.2  

Metamorphic 28.4  

Glacial 1.2  
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Sampling 

 Sampling of Douglas-fir trees was completed in the summer of 2021. In total, data 

was collected from 162 sample trees. Selected sample trees were felled and ages for cross 

sections at 10 and 20 m height positions were recorded. Ages were then used to calculate 10-

meter site index (10MSI) using   

10MSI = 
10𝑚∗10𝑦𝑟𝑠

𝑎𝑔𝑒10−𝑎𝑔𝑒20
  [Eq. 3.1] 

where 10MSI  is the observed meters per decade growth rate, 10𝑚 is the difference in 

length between 10 and 20 m height positions, 10𝑦𝑟𝑠 is the number of years in a decade, 

𝑎𝑔𝑒10 is the age of the tree at 10 m, and 𝑎𝑔𝑒20 is the age of the tree at 20 m. If one of the two 

trees at each sample location did not have 10MSI value that fell within plus or minus 15 

percent of the mean 10MSI value for the two trees, a third tree was selected and felled. Only 

data from the two most similar trees at each location were retained. 10MSI values for the two 

trees were then averaged to provide a 10MSI value for each sample location.  

In addition to 10MSI, one-point site index values using the DFI_CR2_MMC 

(Krumland and Eng 2005) equation with a base age of 50 were calculated for each sample 

tree. The equation is written as  

𝐻 = 4.5 + (𝐻0 − 4.5) {
[1−𝑒𝑥𝑝(−0.01564∗𝐴)]

[1−𝑒𝑥𝑝(−0.01564∗𝐴0)]
}
(−6.260+38.98/𝑅0)

 [Eq. 3.2] 

 where 𝐻 is site index, 𝐻0 is observed total tree height, 𝐴 is a specified base age, 𝐴0 is 

observed age at BH (breast-height), and 𝑅0 is an unobservable site productivity or growth 

intensity variable. 𝑅0 can be calculated using 

𝑅0 =
(𝐿0−(−6.260∗𝑌0))+√(𝐿0−(−6.260∗𝑌0))

2
−4(38.98)𝑌0

2
 [Eq. 3.3] 

 letting 

𝐿0 = 𝑙𝑛(𝐻0 − 4.5)         [Eq. 3.4] 

𝑌0 = 𝑙𝑛(1 − 𝑒𝑥𝑝(−0.01564 ∗ 𝐴0))       [Eq. 3.5] 
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where 𝐻0 is observed total tree height and 𝐴0 is observed age at BH. Similar to 

10MSI values, Krumland and Eng (2005) site index values for each site were averaged to 

provide a sample location value. 

 

Creating Krumland and Eng (2005) and 10MSI Site Index Prediction Models 

In a similar manner, we created two extreme gradient boosting models (XGBoost) in 

R (R Core Team, 2021) to predict Krumland and Eng (2005) and 10MSI site index values. 

The first (KRUM/10MSI_1) used a random 80% of the sample data to train the model and 

the remaining 20% for validation. The second (KRUM/10MSI_2) used all sample data to 

train the model. Over 250 climatic, topographic, and edaphic predictor variables were used as 

inputs. Hyperparameters nrounds, eta, max_depth, colsample_bytree, subsample, gamma, 

and min_child_weight were adjusted via a tune grid to create optimal model fits. 10-fold 

cross validation error rate was used to select the final model. Probability density function 

(PDF) curves and absolute error (AE) quantiles were used to further assess model 

performance.  

 

Generating Prediction Raster Layers 

 Krumland and Eng (2005) and 10MSI site index raster layers were generated for the 

entire study area using the best performing model for each method. The predict() function in 

R (R Core Team, 2021) was used to apply final models to a 0.4-hectare point grid with 

attributes of all model predictor variables. Point predictions were then rasterized in ArcMap 

10.7.1 at 0.4-hectare resolution using the Point to Raster tool. 
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Results 

 Observed Krumland and Eng (2005) site index values varied from 11.14 to 39.35 m 

with a mean value of 22.94 m and a standard deviation of 5.82 m (Table 3.3). Observed 

10MSI values for sample locations varied from 1.75 to 9.1 meters per decade with a mean 

value of 5.26 meters per decade and a standard deviation of 1.5 meters per decade (Table 

3.3).  

 

Table 3.3. Summary of observed Krumland and Eng (2005) site index and 10MSI values. 

 

The KRUM_1 model yielded a 10-fold cross-validated RMSE of 5.86 m and a testing 

RMSE of 3.59 m on the withheld 20% of sample data (Table 3.4). The KRUM_2 model 

yielded a 10-fold cross-validated RMSE of 5.26 m (Table 3.4). Because all sample data were 

used to create the KRUM_2 model, an independent validation was not possible. Optimally- 

tuned hyperparameter values for Krumland and Eng (2005) site index models are shown in 

Table 3.5. 

The 10MSI_1 model yielded a 10-fold cross-validated RMSE of 1.56 meters per 

decade and a testing RMSE of 1.18 meters per decade on the withheld 20% of sample data 

(Table 3.4). The 10MSI_2 model yielded a 10-fold cross-validated RMSE of 1.41 meters per 

decade (Table 3.4). Similar to KRUM_2, all sample data were used to create the 10MSI_2 

model; therefore, an independent validation was not possible. Optimally tuned 

hyperparameter values for 10MSI models are shown in Table 3.5. 

 

 

 Min Max Mean SD Unit 

Krumland and Eng SI 11.14 39.35 22.94 5.82 m 

10MSI 1.75 9.10 5.26 1.50 m/d 
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Table 3.4. RMSE values for prediction models. 

Model 

RMSE 

10-Fold CV Ind. Validation Unit 

KRUM_1 5.86 3.59 m 

KRUM_2 5.26 NA m 

    

10MSI_1 1.57 1.18 m/d 

10MSI_2 1.41 NA m/d 

 

 

Table 3.5. Tuned hyperparameter values for XGBoost prediction models. 

 

 

  

 

 

 

 

 

 Model 

Hyperparameter KRUM_1 KRUM_2 10MSI_1 10MSI_2 

nrounds 500 500 200 500 

eta 0.01 0.01 0.3 0.1 

max_depth 10 5 10 5 

colsample_bytree 0.5 0.5 0.7 0.7 

subsample 0.5 0.5 1 0.7 

gamma 10 0 10 10 

min_child_weight 5 3 5 5 
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Although KRUM_1 and 10MSI_1 yielded low independent validation RMSE values, 

KRUM_2 and 10MSI_2 models were selected as final models based on 10-fold cross 

validated RMSE values. PDF curves showing distributions of KRUM_2 and 10MSI_2 

predictions compared to observed values for the 81 sampled locations are shown in Figure 

3.5.   

 

 

 

 

 

 

 

 

 

Figure 3.5. PDF curves for predicted and observed values for sampled locations by site index 

model. 

 

Analysis of absolute error (AE) quantiles for the KRUM_2 model indicates that 50% 

or less of the observations were predicted to an accuracy of ± 0.87 m, 75% or less of the 

observations were predicted to an accuracy of ± 1.70 m, and 90% or less of the observations 

were predicted to an accuracy of ± 2.52 m (Table 3.6). Analysis of AE quantiles for the 

10MSI_2 model indicates that 50% or less of the observations were predicted to an accuracy 

of ± 0.47 m/d, 75% or less of the observations were predicted to an accuracy of ± 1.17 m/d, 

and 90% or less of the observations were predicted to an accuracy of ± 1.61 m/d (Table 3.6).  
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Table 3.6. AE quantiles for final prediction models. 

Model Unit 

AE Quantile 

50% 75% 90% 

KRUM_2 m 0.87 1.70 2.52 

10MSI_2 m/d 0.47 1.17 1.61 

     

 

When extrapolated to the entire study area, KRUM_2 predictions ranged from 12.6 to 

30.5 m with a mean of 22.2 m and a standard deviation of 3.2 m. 10MSI_2 predictions for the 

entire study area ranged from 3.2 to 6.5 m/d with a mean of 5.3 m/d and a standard deviation 

of 0.7 m/d. Mapped Krumland and Eng (2005) and 10MSI site index predictions for the 

study area are shown in Figures 3.6 and 3.7.  
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Figure 3.6. Map of Krumland and Eng (2005) site index predictions. 
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Figure 3.7. Map of 10MSI predictions. 
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Discussion 

 XGBoost prediction models constructed with climatic, edaphic, and topographic 

independent variables were successful in modeling Krumland and Eng (2005) and 10MSI site 

index across our study area with acceptable levels of error, often less than those reported 

using more traditional parametric or semi-parametric approaches (Kimsey et al, 2008). 

Proper landscape stratification via the use of an orthogonal sampling matrix was vital to 

ensure samples were collected across ranges of growth factors and site conditions in an 

unbiased manner as suggested by Hemingway (2020). This assured models were built to 

capture impacts on height growth resulting from various landscape conditions throughout our 

study area and provide the most accurate and realistic productivity estimates.  

 The implementation of a tune grid during model construction proved to be beneficial 

when determining optimal hyperparameter values. In addition to identifying the combination 

of hyperparameters that yielded the lowest 10-fold cross-validated RMSE, use of a tune grid 

provided the luxury of trying various combinations of hyperparameter values simultaneously. 

This resulted in significant time savings during the model construction process.  

 10-fold cross-validated models built with all observations were selected over models 

built with a random 80% of observations for several critical reasons. Even though 

independent test RMSE values for models built with 80% of the observations were 

acceptably low, those values can be misleading with relatively small datasets similar to our 

study. Independent test RMSE values are highly dependent on how data is randomly split 

into training (e.g., 80%) and testing (20%) portions, which needed to be considered in our 

“small” dataset of 81 observations. Random partitioning of the data can significantly change 

optimal hyperparameter values when working with small datasets. Inevitably, this leads to 

fluctuation in error values. This becomes especially problematic when extreme or unique 

values exist in the dataset. Issues arise when a model attempts to make a prediction on an 

extreme value using non-extreme training data, or when making a prediction on a non-

extreme value using extreme training data. 10-fold cross-validated models built with all 

observations mitigated risks associated with extreme or unique observations because error 

statistics were averaged across 10 testing folds. Additionally, this allowed us to utilize all 
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observations in model training, which we found beneficial when working with smaller 

datasets.  

 PDF curves shown in Figure 3.5 indicate that final models, especially KRUM_2, are 

performing acceptably statistically for a majority of locations. Table 3.5 indicates up to 75% 

of locations predicted by KRUM_2 and 10MSI_2 yield productivity estimates with residuals 

of less than ±1.7 m and 1.17 m/d respectively. In terms of the study area, that translates to 

approximately 49,712 hectares (or 75% of the land base) with productivity estimates to those 

levels of accuracy. Model performance was reduced for sites with very low or very high 

productivity, especially for the 10MSI_2 model. This could be the result of low sampling 

intensity in very low and very high productivity regions of the study area (i.e., an artifact of 

using ± ½ standard deviation for strata bins) and/or overlapping site variables across a range 

of site productivities. Because very few sites used to build models expressed extreme 

productivity (low or high) in the second log (10 to 20 m segment), the models likely had 

difficulty making confident predictions for such locations. Therefore, models default to 

predicted values that are supported by a majority of the dataset. This is supported by higher 

90% AE quantile values for both models in Table 3.5. Reduced performance of 10MSI_2 

when compared to KRUM_2 in regard to extreme sites may suggest additional sources of 

variation impacting second log growth exist beyond the specific predictors used in this study. 

Additionally, the use of ± 1 standard deviation for defining strata bins may have better 

captured these extreme values and improved predictive performance.  

 Accurate predictions for a majority of our study area support other studies that 

suggest the use of climatic, edaphic, and topographic factors to estimate forest productivity 

across widespread geographic regions (Brown and Loewenstein 1978; Grier et al. 1989; 

Kimsey et al. 2008; Aertsen et al. 2012; Bontemps and Bouriaud 2014; Parresol et al. 2017; 

Hemingway 2020). In total, 251 site variables were used as predictors when constructing 

models in attempt to explain as much variance as possible in Krumland and Eng (2005) and 

10MSI site index. For many traditional modeling approaches that prefer reduced variable 

datasets, this would be overwhelming and likely penalize results. However, the nature of 

XGBoost allowed us to use more than 250 predictors, many of which were autocorrelated, 

with minimal associated risks (Dong et al. 2020). Although interpretability of specific cause 
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and effect relationships may have decreased, predictive performance remained unaffected. 

Collectively, cross validation, the use of a tune grid, and the mechanisms behind the 

XGBoost algorithm mitigated risks of overfitting models.  

 Because productivity estimates are required for nearly all growth and yield modeling 

applications like FVS and FPS, but not all applications prefer the same productivity indices, 

it was important to build models and generate predictions for both Krumland and Eng (2005) 

site index and 10MSI. This allows local users to select between one and two-point site index 

methods according to their preference in growth and yield modeling software. Having 

predictions for both site index approaches may also prove advantageous if users find that one 

approach more accurately reflects productivity in certain management scenarios when 

compared to the other approach.  

 

Conclusion 

 Correctly tuned XGBoost models using climatic, edaphic, and topographic predictors 

proved to be a successful approach to accurately predict site productivity across our study 

area. Up to 75% of the study area was predicted to ±1.7 m and ±1.17 m/d for Krumland and 

Eng (2005) site index and 10MSI respectively. Proper landscape stratification and sample 

selection were imperative to ensure samples were collected in an unbiased manner across a 

wide range of growth factors to yield the most accurate and realistic estimates. 

Implementation of a tune grid provided significant time savings when optimizing model 

hyperparameters. Including all observations in model training reduced 10-fold cross-

validated RMSE values. Although, models built with 80% of observations yielded low 

independent testing RMSE values, error statistics were highly dependent on how the data was 

randomly partitioned into training and testing datasets.  

Because regional growth and yield modeling applications prefer one-point site index 

and others prefer two-point site index, it was advantageous to generate predictions for both 

Krumland and Eng (2005) site index and 10MSI. Rasterized predictions at 0.4-hectare 

resolution were beneficial when visualizing changes in productivity across the study area, 
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and they serve as informative data layers for local forest managers. Potential improvements 

to models and estimates are possible in the future with collection of additional Krumland and 

Eng (2005) site index and 10MSI data. 
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Chapter 4: Conclusion 

 

Significant differences existed in segmented tree growth rates between one and two-

point site index approaches. Krumland and Eng (2005) site index overpredicted growth rates 

for breast-height to 10 m segments and significantly underpredicted growth rates for 10 to 

20, 10 to 30, and 20 to 30 m segments. However, significant differences in growth rates 

between approaches did not exist for breast-height to 20 and breast height to 30 m segments. 

This may suggest Krumland and Eng (2005) site index remains sufficient when interested in 

tree-length or long-term growth rates. The two-point site index approach more accurately 

captured second log (10 to 20 m) growth rates, suggesting it may serve as a superior 

approach when quantifying growth for intensively-managed stands with shorter rotation ages. 

Therefore, it can be concluded that overall applicability and effectiveness of both approaches 

for our study area is highly dependent on management practices and objectives. 

 XGBoost models using climatic, edaphic, and topographic predictors proved to be 

successful in accurately predicting site productivity across our study area. A widespread 

landscape stratification of known growth factors was essential to the study design and 

ensured models created statistically valid and accurate predictions. The use of a tune grid 

proved to be effective and time efficient when optimizing model hyperparameters. Models 

trained with all observations (KRUM_2 and 10MSI_2) yielded reduced 10-fold cross-

validated RMSE values when compared to models built with 80% of observations (KRUM_1 

and 10MSI_1). Although KRUM_1 and 10MSI_1 yielded attractive independent testing 

RMSE values, error statistics were highly dependent on the random partitioning of 

observations.  

 Predictive performance of both final models, assessed by PDF curves and AE 

quantiles, was sufficiently accurate for a majority of sampling locations. However, reduced 

accuracies were prevalent for sites with extremely low or high productivity. This may be the 

effect of low sampling intensity for locations of this nature (i.e., a product of using ± ½ 

standard deviation for defining strata bins). Additionally, this could be the effect of shared 

site conditions across a range of observed site productivities. Because the presence of 
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extreme productivity values (low or high) was very minimal in training datasets, models 

likely struggled to make confident predictions for such locations. Consequently, the models 

defaulted to predictions that were supported by a majority of the dataset.  

It was advantageous to generate both one-point (Krumland and Eng (2005) site index) 

and two-point (10MSI) prediction models for our study area because many growth and yield 

modeling applications that use site index data as a calibration parameter, such as FVS and 

FPS, have preferences to either one or two-point values. Rasterized predictions made with 

final models at 0.4-hectare resolution were beneficial when visualizing changes in 

productivity across the study area, and they serve as informative data layers for local forest 

managers. Potential improvements to prediction models and estimates are possible in the 

future with collection of additional Krumland and Eng (2005) site index and 10MSI data. 
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