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Abstract 

Snow is a vital component of available freshwater world-wide. Remote sensing of snow offers daily 

world-wide imagery at moderate resolutions; however, the data availability is reduced due to cloud 

coverage. The spatial and temporal availability of remote sensing allows us to extract the recurrent 

pattern of snowmelt. Patterns are exceptionally useful for snowmelt runoff modeling. In this work, we 

expand, apply, and determine sensitivities of these patterns to better understand and utilize them. The 

recurrent spatial pattern of snowmelt can be extracted with multiple years of remotely sensed data 

with a Principal Component Analysis (PCA), which we term the PCA Model. The qualities of the 

PCA model allow us to represent snowmelt linearly in time over 16 years (r-squared 0.946 - 0.992). 

With a linear and repeatable relationship, we can normalize snowmelt and compare of multiple years 

and adjust snow depletion for secondary snowfall events. We also use another multivariate technique 

to extract the recurrent pattern of snowmelt. The K-means Cluster method produces a model of the 

recurrent pattern of melt which can be used to remove cloud cover with spatial accuracies of 84.6 – 

96.0% when compared against independent data. Sensitivities of the PCA model to user decisions 

were investigated. By varying the user decision of what is considered snow or no snow we increased 

average spatial accuracies of the PCA model versus cloud free (<10% cloud cover) images from the 

previously published 92.61% to 95.46%. Spatial and temporal scaling sensitivities of the model were 

also presented. The model performs with excellent average spatial accuracy (>90%) when compared 

against four years of independent data for large Hydrologic Unit Code (HUC) 6 boundary sizes. An 

analysis of the number of years required to develop a robust pattern demonstrated with only three 

years the pattern captured by the model is exceptionally similar with minimum correlations greater 

than 0.97. The intrinsic attributes of PCA model are a significant step forward in understanding and 

spatially representing snowmelt.  
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Chapter 1: Introduction 

Literature Review 

The Current State of Snow Monitoring 

Snow is a vital source of water storage with metered delivery through the melting period. 

75% of the annual runoff in the Western United States comes from snowmelt (Balk & Elder, 2000). 

Worldwide, well over half of the potable water supply is extracted from rivers, and with a changing 

climate, there will be a shift in the timing and availability of water in snowmelt driven watersheds 

(Barnett et al., 2005). Managing this finite resource requires accurate modeling of snowmelt runoff, 

which relies on the availability and quality of data. Snow monitoring through snow course and snow 

pillow (SNOTEL) sites has been foundational to understanding snowmelt. These monitoring practices 

capture snow water equivalent (SWE), snow depth, and sometimes atmospheric conditions. The 

setback to this highly accurate method is spatial coverage. Spatial availability often limits the whole 

picture of snowmelt. Satellite based remote sensing has complete spatial coverage, but it lacks the 

finer accuracy. Both ground-based and remotely sensed data can collect SWE, but both are hindered 

by spatial and temporal availability. Remote sensing captures snow covered area (SCA) as well, and 

in this research that is what we use remotely sensed SCA. This is data is valuable and chosen because 

snow location helps to accurately model the energy fluxes that drive snowmelt. 

The most relevant question to ask about this research is why are we focusing on SCA instead 

of SWE? SWE measurements are recorded in two ways. As stated above, remote sensing and ground-

based methods are available, but both methods have limitations. SWE measured by satellite remote 

sensing is hindered by the spatial resolution. AMSR-E is the best spatial resolution at 25 km (Gao et 

al., 2010). The value retrieved at this spatial resolution is not meaningful in complex terrain. To fill in 

the spatial gaps between ground-based measurements researchers interpolate. Interpolation can only 

represent the measured variability. SNOTEL sites are located where snow persists to maximize the 

period of data acquisition. A SNOTEL station on a north facing slope may not be a good indicator of 

the snow on the adjacent south facing slope. In an interpolation scheme this is a problem that can lead 

to significant errors in spatial representation. In a hierarchal linear spatial mixing model Kasurak et al. 

(2011) found only about 50% of the spatial variability of snow depth, and consequently SWE, was 

explained. This was found using two years of SWE measurements and a total of 215 sites and 3924 

measurements. The spatial variability of SWE makes any acquisition of this data difficult. My work 

uses SCA because it captures the spatial variability and extracts a far more important characteristic of 

the snow: a repeatable pattern. 
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The use of SCA from remote sensing has proved valuable in models such as the snowmelt 

runoff model (SRM) developed by Martinec & Rango (1986). Martinec (1982) stated simply 

snowmelt runoff is a function of SCA and melt rate, which highlights the importance of this data. 

SCA data from remote sensing describes snow extent and many sensors collect this data on a daily 

time-step. The Moderate Resolution Imaging Spectroradiometer (MODIS) is a sensor which records 

daily SCA worldwide at a spatial resolution of 500 meters. This temporal resolution is ideal for 

monitoring snow extent because snow changes rapidly during the melting season. Other sensors, such 

as Landsat, may have a finer spatial resolution (60 meters), but images are only captured once every 

16 days. To get a clear picture of snow melt through remote sensing the temporal and spatial 

resolution are equally important. Even though the spatial resolution of MODIS is a compromise, we 

can gain significant information about snow in complex terrain because daily images are recorded. 

MODIS has setbacks and this will be discussed in depth. 

The year-to-year variability of snow makes modeling snowmelt runoff difficult. The 

monitoring methods discussed above all can help to clarify the drivers of snowmelt. The more we 

know about snowmelt now the better we can manage and prepare for a changing climate. Climate 

simulations highlight the difficulty of snowmelt runoff modeling. Many simulations state there is 

higher confidence in modeling snow accumulation than snowmelt (Poulin et al., 2011; Thrasher et al., 

2012; Poyck et al., 2011). Many reasons for this difficulty exist, but one step we can take towards 

addressing this is finding repeatable spatial information about snow. A variable that does not change 

would help stabilize the otherwise highly variable system. My proposed work identifies and tests a 

repeatable spatial variable that has the potential to change the way we approach snowmelt runoff 

modeling. 

Remote Sensing of Snow Setbacks: Cloud Removal 

There are two MODIS sensors onboard the Terra and Aqua satellites. They have daily 

worldwide coverage from 2000 to present, and both collect snow covered area data. The more 

recently available Visible Infrared Imaging Radiometer Suite (VIIRS) sensor produces the same snow 

cover dataset as MODIS at a finer 375-meter spatial resolution. The VIIRS data is available from 

2012 to present. We use MODIS because it has a longer data record. Snow cover is calculated by the 

Normalized Difference Snow Index (NDSI). NDSI combines bands four and six from the MODIS 

sensor to detect snow (wavelengths of 0.545-0.565 and 1.628-1.652 µm respectively). Band four is 

within the visible wavelengths and cloud cover disrupts the collection of snow extent and location. 

The NDSI calculation is necessary to decipher the difference between cloud and snow. On clear 
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(cloud free) days, the MODIS sensor has a spatial accuracy of 93% (Hall & Riggs 2007). Cloud cover 

is detrimental to this data because it reduces the amount of usable data. Many methods have been 

developed to remove cloud cover, and they can be separated into three categories: temporal, spatial, 

and spatio-temporal interpolations. The spatio-temporal methods are often complex multi-step 

methods. 

Temporal interpolation, sometimes referred to as temporal filtering, has reduced cloud cover 

in many studies. These methods use time as the basis for interpolation. The simplest temporal 

interpolation combines the imagery from the Terra and Aqua satellites, which have different overpass 

times. Combining these two images has achieved a cloud cover reduction of 39.9% over Europe 

(Dietz et al., 2012). A more complex method uses a temporal window (range of days prior to and after 

the day of a cloudy image) to remove cloud cover. Parajka & Blöschl (2008) pioneered this approach 

and reduced the average cloud cover over Austria from 63% to 4% using a window of 7 days prior to 

the cloudy image date. These methods are effective at removing cloud cover, but they assume pixels 

do not change from snow to land during the temporal window. This may only be applicable in regions 

where minor change occurs for the snowpack; however, where spatial changes occur rapidly this 

assumption is problematic.   

Spatial interpolation relies on visible pixels and their proximity to interpolate cloud covered 

pixels. Gafurov & Bardossy (2009) used visible nearby pixels within a single image to interpolate 

cloud covered pixels. Another method, which has been widely used, is the regional snow line 

elevation (RSLE) developed by Parajka et al. (2010). The elevation of a pixel is used to interpolate its 

cloud removed pixel value. Elevations of the visible, or non-cloud covered, pixels are used to define 

three elevation zones. In one zone all cloud covered pixels are assigned as snow, in another snow-

free, and in the final zone partially snow covered. The partially snow-covered zone is most likely the 

region of active snowmelt and contains the snow-land interface. This partially covered zone records 

the lowest certainty (Krajki et al., 2014; Parajka et al., 2012). This zone may be the most critical area 

to correctly represent snow location for snowmelt runoff modeling. 

Spatio-temporal methods are often multi-step methods for cloud removal. The MODSNOW-

tool developed by Gafurov et al. (2016) removes daily cloud cover with spatial accuracy ranging from 

77.3-99.8% with the lowest accuracy recorded during the melting period. The MODSNOW-tool can 

remove cloud cover on days where cloud coverage is 100%. The Adaptive Weighted Spatio-

Temporal Model (AWSTM) also removes 100% cloud cover using a multi-step approach, including a 

5-day temporal window, with accuracies of 93.11-98.92% (Li et al., 2017). The AWSTM accuracy 
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was calculated for a watershed which only records a maximum of 25% SCA. Recalculation of this 

error based only on the snow-covered portion of the watershed reduces the accuracy. Dong & Menzel 

(2016) improved on the MODSNOW-tool to decrease misclassification errors and found accuracies 

of 87-92%. They used ground-based stations to calculate their accuracy instead of the MODIS 

imagery. Li et al., (2017) noted that using the in-situ measurements for accuracy assessment is 

unreasonable because there is a spatial resolution mismatch of 4 square meters (SNOTEL 

measurement) to 250,000 square meters (MODIS pixel). The innovative methods use the conditional 

probability of snow cover to remove cloud cover. The probability of a pixel being snow covered is 

calculated based on the average time period in which each pixel is covered and/or the snow coverage 

of other pixels or ground-based stations. Probabilities functions capture averages well but do not 

describe the extremes. In snowmelt runoff modeling extremes are the most important to accurately 

represent i.e., droughts and floods. 

Effectively these spatio-temporal methods produce cloud free imagery retrospectively at their 

stated accuracies. For monitoring long term snow cover, this is ideal. The complex process of 

snowmelt can be monitored by remote sensing; however, cloud cover is detrimental to the raw data 

and the assumptions necessary to remove it make this data set unappealing in extreme snow years and 

for real-time water management. We gain only retrospective insight into snowmelt without gaining 

any knowledge that can be applied to help us manage water today. 

A new method pioneered by Woodruff and Qualls (2019) uses the recurrent pattern of SCA to 

remove cloud cover. This idea has been noted in the literature for many years and over many 

locations (Adams, 1976; König & Sturm, 1998; Luce & Tarboton, 2004; Sturm & Wagner, 2010; Parr 

et al., 2020). Patterns were even note by Wang & Xie (2009) when developing a cloud removal 

method over the Tianshan Mountains on the Tibetan Plateau. The repeatability is derived from 

multiple years does can be applied to any melt period. Unlike the temporal conditional probability, 

the method derived by Woodruff & Qualls (2019) uses only the spatial information allowing for the 

shift in melt timing. This ability to shift in time is essential for modeling extreme snow years. A 

cloudy day is made clear by identifying when in the melting process the watershed is based on the 

visible pixels. Each daily image cloud removal is an independent measurement from the previous or 

subsequent days. The method is operational on a daily time-step with minimal processing. 

Applications of Remote Sensing in Snowmelt Runoff Modeling 

The repeatable pattern of SCA has numerous applications. The pattern is independent of year-

to-year snow variability and provides a usable dataset for snowmelt runoff modeling. We first must 



5 

 

 

discuss where SCA is already applied in snowmelt runoff modeling, where and why it is not applied 

elsewhere, and finally the potential impact of my proposed work. 

Remotely sensed SCA is a valuable input to the Snowmelt Runoff Model (SRM) Martinec & 

Rango (1986). Snow depletion curves, which describe the increment of spatial change in snow cover 

for an increment change in time over a given area, are found using SCA data from remote sensing. 

The watershed is divided into elevation bands and a depletion curve is derived for each band to 

describe how SCA changes with time. Often, only days with less than 10% cloud cover are used to 

develop the depletion curves and the rest of the days are filled in using cloud removal interpolations 

(Steele et al., 2017). MODIS has been used as input for SRM and has demonstrated increased 

accuracy of snowmelt runoff modeling over ungauged watersheds (Qiu et al., 2014; Safari Shad et al., 

2014; Steele et al., 2017). 

Many research groups have adapted SRM to incorporate physical characteristics of the 

watershed to better represent the landscape. One research group added slope and aspect to SRM and 

found an increase in the runoff coefficient of determination from 0.73, 0.69, and 0.79 to 0.76, 0.76, 

and 0.81 for three respective years over a mountainous watershed in the Urumqi River Basin in 

Northern China (Abudu et al., 2016). Nagler et al. (2007) used the SRM model and a data 

assimilation approach to produce short term runoff predictions for the years 2005 and 2006 over the 

Austrian Alps. They found a coefficient of determination of 0.88 for every forecasting step for the 

snowmelt runoff modeling portion of the exercise. SRM accuracy is increased when spatial 

characteristics such as slope and aspect are incorporated and has demonstrated the ability to forecast 

snowmelt runoff. 

The SRM model makes use of SCA, but it is rarely used as a consistent input in other models. 

Cloud cover, misclassification of pixels, and the difficulty of snow detection under vegetation are 

cited as reasons to exclude remotely sensed SCA from models (Andreadis & Lettenmaier, 2005). The 

Variable Infiltration Capacity (VIC) model is a widely used physically based and fully spatially 

distributed model developed by Cherkauer & Lettenmaier (2003). There has been resistance to 

incorporating remotely sensed SCA into the VIC model. Andreadis & Lettenmaier (2005) found 

when they compared MODIS with ground-based data, the two data sources only agreed between 75.2 

and 84.8% of the time over the entire Snake Basin. Based on this result, they indicated VIC more 

accurately represented SCA than MODIS when compared to the ground-based stations. Two issues 

are present in their findings. One, the spatial disparity between a SNOTEL station and a MODIS pixel 

introduces a large amount of uncertainty in snow representation. Two, they fit the VIC model over a 
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20-year period to the same SNOTEL sites that were used to verify accuracy. If we are to calibrate 

models with ground-based data and use the disagreement of remote sensing as a reason to not use 

remote sensing, we should also calibrate to remote sensing data. As demonstrated with SRM, spatial 

information has the potential to increase accuracy. 

Remotely sensed SCA has existed as a source of data that many models do not incorporate. 

Snow location is vital information in SRM as well as physically based models like VIC. Schlogl et 

al., (2018) found the advection from snow free surfaces adjacent to snow increased ablation by rates 

of 25-30% in the Dischma valley in the Swiss Alps. Without accurate representation of snow location 

this melting process may be underrepresented in physically based models. 

Derivation of the Spatio-Temporal Recurrent Pattern of Snowmelt 

The work in presented in this dissertation builds off the work by Woodruff & Qualls (2019). 

An overview of their methods is presented. The spatio-temporal recurrent pattern of snowmelt can be 

extracted with multiple years of remote sensing and a statistical combination of the data known as a 

Principal Component Analysis (PCA). We use the MODIS daily snow cover data which is 

contaminated by cloud cover. If cloud cover were not present, the repeatable pattern could be found 

using a single year. Using multiple years allows us to discard the contamination of cloud and find the 

true repeatable pattern. This model derivation can be split into two steps: data preparation and 

application of a PCA. 

In the data preparation step, we condense the immense amount of imagery into two images 

per year. These images describe the melt timing of each pixel. Condensing this down allow us to 

utilize all the available imagery with the redundance removed. For example, if we are using 17 years 

to develop our PCA model we would take all the available imagery for each year and condense that 

information down into two images per year. Effectively we describe melt with 34 images instead of 

6205 images (365 per year). For a given year, we iterate through all the available imagery and record 

two days of year (DOY) for each pixel. For a given pixel we record the DOY it was last recorded as 

snow (LDS image) and the first DOY it is recorded as land (FDL image). If cloud did not exist, the 

difference between the FDL and LDS would be 1 day. Because cloud exists the difference between 

these images is often greater than 1 day. These images are equal in size and geolocation to the 

original MODIS imagery. The MODIS product gives a range of NDSI snow cover values. The LDS 

and FDL both are a function of what we consider to be snow free. Woodruff & Qualls (2019) selected 

a cutoff of 40 where values below 40 are considered snow free. 
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Once the LDS and FDL are found for each year, we place the information into a matrix. One 

matrix contains the FDL values and one the LDS. The matrix is shown in equation 1.1, where *D* is 

a place holder for either FDL or LDS. The matrix is of size N by M. The number of columns (M) is 

equivalent to the number of years. The length of N is equivalent to the number of pixels in the 

watershed. All the values in row Ni are for the same pixel. The matrix is therefore organized by pixel 

and year. Two additional columns exist containing each pixel’s centroid x and y coordinates; 

however, this is excluded from the PCA. To calculate the PCA model we can use either the LDS 

matrix or the FDL matrix. 

Equation 1.1 

∗ 𝐷 ∗ =  [
1,1 ⋯ 1, 𝑀

⋮ ⋱ ⋮
𝑁, 1 ⋯ 𝑁, 𝑀

] 

The output of a principal component analysis is Eigen vectors and Eigen values. There are M 

Eigen vectors and M Eigen values equivalent to the M columns in the *D* matrix. Eigen Vectors, 

often referred to as principal components (PC), are calculated for the *D* matrix and each one 

describes a portion of the total dataset variance. Cumulatively, the total dataset variance is described 

by all the Eigen Vectors. An important definition of Eigen Vectors is each one is orthogonal and 

independent from all others. PC1, the first Eigen vector, describes the most variance of the dataset, 

PC2 the second most, and PC(M) the least. Where PC(M) is the last PC of a N by M matrix. We found 

PC1 captures the recurrent pattern of snowmelt and nearly all (>80%) of the total variance. In 

comparison, PC2 describes less than 3%. Mathematically this means the values of all the pixels in a 

single year vary more than a single pixel does across multiple years. The variance of this data is 

contained in the repeatable pattern not in the year-to-year variability. 

To find the model of the recurrent pattern of melt, we multiply the input matrix (*D*) by the 

Eigen Vector or PC1. The result is a vector of length N. We attach the vector to the x, y coordinates. 

The values of the vector can then be re-projected into a raster (grid of values), equal in size and 

location to the MODIS daily data. This is the final PCA model. A mathematical representation of the 

transformation is shown in equation 1.2. The contents of the final PCA model describe each pixel’s 

relative melt timing. Relative means the pixel’s value represents when it melts in relationship to all 

other pixels in the watershed. 
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Equation 1.2 

[
1,1 ⋯ 1, 𝑀

⋮ ⋱ ⋮
𝑁, 1 ⋯ 𝑁, 𝑀

] ∗ [
1
⋮

𝑀
] =  [

1
⋮
𝑁

] 

The PCA model is continuous but can be changed to a binary snow or no snow image by 

selecting a threshold value which we refer to as t*. The t* value splits the unique pixel values of the 

model into either snow free (less than the threshold) or snow (greater than the threshold). The values 

contained in the PCA model describe each pixel’s relative timing of melt. The unique values are 

ordered from first to last to melt.  

The existence of cloud cover between the LDS and FDL introduces potential uncertainty to 

the melt pattern. PCA is often difficult to interpret because the output is not always related 

specifically to one physical process. In remote sensing, metrics such as the Tasseled Cap Analysis 

have been developed to deal with the interpretability of PCA. The Tasseled Cap Analysis is a 

standardized transformation of the data (Jensen, 2016). Woodruff & Qualls (2019) provided a 

comparison of the PCA model developed using the FDL and the PCA model developed using the 

LDS and found the two models were 99.8% correlated. The difference between the LDS and FDL is 

cloud persistence or uncertainty. The correlation of the resulting PCA demonstrates that the pattern 

found is nearly equal. The influence of cloud is therefor discarded in the remaining principal 

components. While the cloud influence has been discarded, we might wonder if individual years are 

more heavily weighted in the first principal component. Woodruff & Qualls (2019) demonstrated the 

weights in the first principal component are all nearly equal at between 0.194 to 0.310. They also 

calculated the factor loadings for the FDL versus the resulting principal component for the first two 

principal components. Factor loadings for the first principal component ranged from 0.88 to 0.94 or 

highly correlated while the second principal component, which only described 2% of the total 

variance, ranged from -0.33 to 0.27. The recurrent pattern is the signal we want to use which is 

captured in the first principal component. 

  



9 

 

 

References 

Abudu, S., Sheng, Z.-P., Cui, C.-L., Saydi, M., Sabzi, H.-Z., & King, J. P. (2016). Integration of 

aspect and slope in snowmelt runoff modeling in a mountain watershed. Water Science and 

Engineering, 9(4), 265–273. https://doi.org/10.1016/j.wse.2016.07.002  

Adams, W. P. (1976). Areal differentiation of snow cover in east central Ontario, Water Resources 

Research, 12(6), 1226– 1234, doi:10.1029/WR012i006p01226.   

Andreadis, K. M., & Lettenmaier, D. P. (2006). Assimilating remotely sensed snow observations into 

a macroscale hydrology model. Advances In Water Resources, 29(6), 872–886. 

https://doi.org/10.1016/j.advwatres.2005.08.004  

Balk, B., & Elder, K. (2000). Combining binary decision tree and geostatistical methods to estimate 

snow distribution in a mountain watershed. Water Resources Research, 36(1), 13–26.  

Barnett, T.P., Adams, J.C., & Lettenmaier, D.P. (2005). Potential impacts of a warming climate on 

water availability in snow-dominated regions. Nature, 438, 303–309.  

Cherkauer, K. A., & Lettenmaier, D. P. (2003). Simulation of spatial variability in snow and frozen 

soil. Journal of Geophysical Research: Atmospheres, 108(D22).  

Dickerson‐Lange, S.E. & Mitchell, R., (2014). Modeling the effects of climate change projections on 

streamflow in the Nooksack River basin, Northwest Washington. Hydrological Processes, 

28(20), pp.5236–5250.  

Dietz, A., Wohner, C., & Kuenzer, C. (2012). European Snow Cover Characteristics between 2000 

and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sensing, 

4(8), 2432-2454. doi:10.3390/rs4082432.  

Dong, C., & Menzel, L. (2016). Producing cloud-free MODIS snow cover products with conditional 

probability interpolation and meteorological data. Remote Sensing of Environment, 186, 439.  

Gafurov, A., & Bárdossy, A. (2009). Cloud removal methodology from MODIS snow cover product. 

Hydrology and Earth System Sciences, 13(7), 1361-1373.   

Gafurov, A., Lüdtke, S., Unger-Shayesteh, K., Vorogushyn, S., Schöne, T., Schmidt, S., 

Kalashnikova, O., & Merz, B. (2016). MODSNOW-Tool: An operational tool for daily snow 

cover monitoring using MODIS data. Environmental Earth Sciences, 75(14), 1-15. 

doi:10.1007/s12665-016-5869-x.  



10 

 

 

Gao, Y., Xie, H., Lu, N., Yao, T., & Liang, T. (2010). Toward advanced daily cloud‐free snow cover 

and snow water equivalent products from Terra–Aqua MODIS and Aqua AMSR‐E 

measurements. Journal of Hydrology, 385(1‐4), 23–35. 

https://doi.org/10.1016/j.jhydrol.2010.01.022  

Hall, D. K., & Riggs, G. A. (2007). Accuracy assessment of the MODIS snow products. Hydrological 

Processes, 21(12), 1534-1547. doi:10.1002/hyp.6715.  

Jensen, J. (2016). Introductory Digital Image Processing: A Remote Sensing Perspective (4th ed.). 

Kasurak, A., Kelly, R., Brenning, A., & Pelto, Mauri S. (2011). Linear mixed modelling of snow 

distribution in the central Yukon. Hydrological Processes, 25(21), 3332–3346. 

https://doi.org/10.1002/hyp.8168  

König, M. & Sturm, M. (1998). Mapping snow distribution in the Alaskan Arctic using aerial 

photography and topographic relationships, Water Resour. Res., 34(12), 3471–3483, 

doi:10.1029/98WR02514.  

Krajčí, P., Holko, L., Perdigão, R. A. P., & Parajka, J. (2014). Estimation of regional snowline 

elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. Journal 

of Hydrology, 519(PB), 1769-1778. doi:10.1016/j.jhydrol.2014.08.064.  

Li, X., Fu, W., Shen, H., Huang, C., & Zhang, L. (2017). Monitoring snow cover variability (2000–

2014) in the Hengduan Mountains based on cloud-removed MODIS products with an 

adaptive spatio-temporal weighted method. Journal of Hydrology, 551, 314-327. 

doi:10.1016/j.jhydrol.2017.05.049.  

Luce, C. H., & Tarboton, D. G. (2004). The application of depletion curves for parameterization of 

subgrid variability of snow. Hydrological Processes, 18(8), 1409-1422. 

doi:10.1002/hyp.1420.  

Martinec, J. (1982). Runoff Modeling from Snow Covered Area. Geoscience and Remote Sensing, 

IEEE Transactions on, GE-20(3), 259-262. doi: 10.1109/TGRS.1982.350440  

Martinec J. & Rango, A. (1986). Parameter values for snowmelt runoff modelling. Journal of 

Hydrology, 84(3), pp.197–219.  

Maurer, E., Hidalgo, H. G., Das, T., Dettinger, M. D., & Cayan, D. R. (2010). The utility of daily 

large-scale climate data in the assessment of climate change impacts on daily streamflow in 



11 

 

 

California. Hydrology and Earth System Sciences, 14(6), 1125–1138. 

https://doi.org/10.5194/hess-14-1125-2010 

Nagler, T., Rott, H., Malcher, P., & Müller, F. (2008). Assimilation of meteorological and remote 

sensing data for snowmelt runoff forecasting. Remote Sensing of Environment, 112(4), 1408–

1420. https://doi.org/10.1016/j.rse.2007.07.006  

Parajka, J., & Blöschl, G. (2008). Spatio‐temporal combination of MODIS images – potential for 

snow cover mapping. Water Resources Research, 44(3), N/a. doi:10.1029/2007WR006204.   

Parajka, J., Pepe, M., Rampini, A., Rossi, S., & Blöschl, G. (2010). A regional snow-line method for 

estimating snow cover from MODIS during cloud cover. Journal of Hydrology, 381(3), 203-

212. doi:10.1016/j.jhydrol.2009.11.042.  

Parajka, J., & Bloschl, G. (2012). MODIS-based snow cover products. validation and hydrologic 

applications. In: Chang, Y., Ni-Bin, H. (Eds.), Multiscale Hydrologic Remote Sensing 

Perspectives and Applications. Springer, 185–212.  

Parr, C., Sturm, M., & Larsen, C. (2020). Snowdrift landscape patterns: An Arctic investigation. 

Water Resources Research, 56, e2020WR027823. https://doi.org/10.1029/2020WR027823  

Poulin, A., Brissette, F., Leconte, R., Arsenault, R., & Malo, J.-S. (2011). Uncertainty of hydrological 

modelling in climate change impact studies in a Canadian, snow-dominated river 

basin. Journal of Hydrology (Amsterdam), 409(3), 626–636. 

https://doi.org/10.1016/j.jhydrol.2011.08.057  

Poyck, S., Hendrikx, J., McMillan, H., Hreinsson, E. O., & Woods, R. (2011). Combined snow and 

streamflow modelling to estimate impacts of climate change on water resources in the Clutha 

River, New Zealand. Journal of Hydrology, New Zealand, 50(2), 293–311. 

Qiu, L., You, J., Qiao, F., & Peng, D. (2014). Simulation of snowmelt runoff in ungauged basins 

based on MODIS: A case study in the Lhasa River basin. Stochastic Environmental Research 

and Risk Assessment, 28(6), 1577–1585. https://doi.org/10.1007/s00477‐013‐0837‐4  

Safari Shad, M., Habibnejad Roshan, M., & Ildoromi, A. (2014). Integration of the MODIS snow 

cover produced into snowmelt runoff modeling. Journal of the Indian Society of Remote 

Sensing, 42(1), 107–117. https://doi.org/10.1007/s12524‐013‐0279‐y  



12 

 

 

Schlogl, S., Lehning, M., Fierz, C., & Mott, R. (2018). Representation of Horizontal Transport 

Processes in Snowmelt Modeling by Applying a Footprint Approach. Frontiers in Earth 

Science, 6, Frontiers in Earth Science, Oct 8, 2018. doi: 10.3389/feart.2018.00120.  

Steele, C., Dialesandro, J., James, D., Elias, E., Rango, A., & Bleiweiss, M. (2017). Evaluating 

MODIS snow products for modelling snowmelt runoff: Case study of the Rio Grande 

headwaters. International Journal of Applied Earth Observations and Geoinformation, 63, 

234–243. https://doi.org/10.1016/j.jag.2017.08.007  

Sturm, M., & Wagner, A. (2010). Using repeated patterns in snow distribution modeling: An Arctic 

example. Water Resources Research, 46(12), N/a. doi:10.1029/2010WR009434.  

Thrasher, B., Maurer, E. P., McKellar, C., & Duffy, P. B. (2012). Technical Note: Bias correcting 

climate model simulated daily temperature extremes with quantile mapping. Hydrology and 

Earth System Sciences, 16(9), 3309–3314. https://doi.org/10.5194/hess-16-3309-2012 

Wang, X., & Xie, H. (2009). New methods for studying the spatiotemporal variation of snow cover 

based on combination products of MODIS Terra and Aqua. Journal of Hydrology, 371(1), 

192-200. doi:10.1016/j.jhydrol.2009.03.028.  

Woodruff, C. D., & Qualls, R. J. (2019). Recurrent snowmelt pattern synthesis using principal 

component analysis of multiyear remotely sensed snow cover. Water Resources Research, 55. 

https://doi.org/10.1029/2018WR024546 



13 

 

 

Chapter 2: Time Repeatability of the Spatio-Temporal Recurrent Pattern 

of Snowmelt Over the Upper Snake River Basin 

Introduction 

Snow is a vital source of the world’s freshwater supply. It has been estimated that 50% of the 

world’s potable supply and 75% Western United States’ supply comes from snowmelt (Barnett et al., 

2005; Balk & Elder, 2000). With a changing climate the already variable timing of maximum 

instream flow rates is projected to move earlier (Barnett et al., 2005). Water management relies on 

correctly simulating snowmelt runoff timing. Preparing for floods, droughts, and the impacts of 

climate change are all benefitted through identifying the drivers of snowmelt. Modeling efforts have 

developed over the years, but two widely used methods identify a divide in what data is used. 

Currently, spatially distributed models are regarded as the most accurate method to simulate 

snowmelt. Many models use point-based ground measurements as data input to simulate snowmelt 

runoff in retrospect, real-time, and climate scenarios. The Variable Infiltration Capacity (VIC) model 

is one such model, which is a widely used spatially distributed energy balance approach to modeling 

snowmelt. Cherkauer & Lettenmaier (2003) adapted the VIC model to add in a distributed snow 

algorithm. Spatial grids of snow cover were produced from point measurements of snow, and the 

distributed grid is then melted by the energy budget. In their adaptation Cherkauer & Lettenmaier 

(2003) found the modeled snow showed divergence from the snow observations. The observed snow 

depth was found to be larger than the simulated depth during the melting period. This corresponded 

with overestimation of temperature. They also found flow estimation accuracy was increased when 

the model was calibrated. 

An alternative approach in snowmelt runoff modeling is to use remote sensing rather than 

point based measurements. The Snowmelt Runoff Model (SRM) uses remotely sensed snow-covered 

area (SCA) as a model input Martinec & Rango (1986). SRM employs a temperature index approach 

which relies on snow location. Remotely sensed SCA often has missing data due to cloud coverage, 

so a set of snow depletion curves (SDC) are developed to mitigate this issue and model SCA with 

time. The watershed is divided into elevation bands and each band has its own SDC. This approach 

simulates runoff as a function of snow location and melt rate (Martinec, 1982). 

Both methods, VIC and SRM, require spatial data whether it is a direct measurement or an 

interpolated grid. The ideal variable for modeling snowmelt is spatially distributed snow water 

equivalent (SWE) at a fine spatial resolution. Ground based point measurements of SWE are available 
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through a network of SNOw TELemetry (SNOTEL) sites. SWE can also be obtained through remote 

sensing. Techniques for retrieving SWE from remote sensing include gravity-based methods 

(GRACE satellite), gamma radiation retrieved through low flying aircraft, passive microwave 

(AMSR-E), and combinations of active (QuickSCAT) and passive microwave (Tedesco et al., 2015). 

These methods range in spatial resolution (25m-10s of km) and in temporal resolution (infrequent by 

aircraft to daily). The higher resolution methods have infrequent collection making continuous 

monitoring difficult. The high spatial variability of SWE over complex terrain limits the ability of any 

of these data sources to provide spatially gridded SWE. (Dingman, 2008). In a hierarchal linear 

spatial mixing model Kasurak et al. (2011) found only about 50% of the spatial variability of snow 

depth, and consequently SWE, was explained. This study used two years of SWE measurements 

collected at 215 sites, for a total of 3924 measurements. This large measurement and modeling 

exercise by Kasurak et al. (2011) communicates the difficulty spatial modeling and interpolation of 

SWE presents. Remote sensing of SWE offers spatially distributed data but suffers significant 

interpretation issues. The large spatial resolution of 25 kilometers is far too great for representing 

complex terrain (Gao et al., 2010). For example, a watershed with complex topography may have no 

snow at the valley floor and significant snow depth at elevation, but the large spatial resolution of 

remotely sensed SWE would assign a single value. This value is not representative of the snow 

distribution. Worldwide remotely sensed SWE at fine spatial and temporal resolutions presently has 

significant limitations especially for mountainous terrain. Considering this, there are strong 

advantages to using remotely sensed SCA. 

Remotely sensed SCA is available daily at spatial resolutions between 375 and 500 meters. 

Over the years SCA records have been collected at increasingly finer spatial resolutions. The 

Advanced Very High-Resolution Radiometer (AVHRR) recorded SCA at a spatial resolution of 1.1 

kilometer at nadir beginning in the 1970’s (Jensen, 2016). At the 500-meter spatial resolution, 

imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor flown aboard the 

Terra and Aqua satellites have been available since 2000 and 2002, respectively (Hall & Riggs, 

2015). Most recently the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument has collected 

SCA at 375-meter spatial resolution beginning in 2012 (Riggs et al., 2019). Snow is detected using 

the Normalized Difference Snow Index (NDSI) algorithm. The NDSI combines a portion of the 

visible and mid infrared wavelengths. Since visible wavelengths are used, cloud obstruction poses a 

significant challenge for snow observation. Terra’s MODIS sensor has shown 93% agreement with 

ground-based observations under clear sky conditions (Hall & Riggs, 2007). Other factors impact the 

MODIS NDSI detection algorithm such as scan angle, topography, illumination, and vegetation 



15 

 

 

(Riggs et al., 2017). Cloud cover presents the most consistent and detrimental loss of data for these 

sensors.  

Extensive research has gone into development of methods to remove clouds from SCA 

imagery. Methods developed include temporal interpolation, spatial interpolation, and a combination 

of the two referred to as spatio-temporal interpolation. Temporal interpolation uses imagery collected 

at separate times. Terra and Aqua fly over a given location at separate times. Parajka & Blöschl 

(2008) and Dietz et al., (2012) combined the imagery from the two satellite overpass times to remove 

cloud cover. Parajka & Blöschl (2008) further reduced cloud obstruction to 4% over Austria by 

extending the temporal interpolation window to include images observed within the 7-day period 

preceding the cloudy day.  

Spatial interpolation uses the proximity of cloud free pixels to remove cloud cover. Garfurov 

& Bardossy (2009) implemented a cloud removal protocol to use adjacent cloud free pixels to assign 

values to cloud covered pixels. The Regional Snow Line Elevation (RSLE) procedure developed by 

Parajka et al. (2010) uses elevation bands to remove cloud cover. The RSLE splits a watershed into 

three zones: snow, partial snow cover, and snow free. The two elevation lines demarcating the three 

zones are determined by the elevation of the lowest observed snow pixel and the highest snow-free 

pixel. A cloud obscured pixel is assigned a value in accordance with the elevation band it lies within.  

Spatio-temporal methods combine both interpolation methods in multiple steps to remove 

cloud cover. Gafurov et al. (2016) developed the MODSNOW-tool to infill all the cloud covered 

pixels in an image with a multi-step approach, which can salvage even 100% cloud covered images. 

A conditional probability of snow cover has been used in many of the spatio-temporal methods with 

exceptional results (Gafurov et al., 2016; Li et al., 2017; Dong & Menzel 2016). These complex 

methods all produce cloud free images even for images with 100% cloud cover; however, all suffer 

their lowest spatial accuracies of snow location during melt period.  

The scientific value and demand for cloud free imagery has led to the publication of multiple 

cloud free datasets (Mauti et al., 2019; Tran et al., 2019). NASA’s daily cloud-free MODIS dataset is 

produced by infilling each cloud covered pixel with its value the last time it was visible (Hall et al., 

2019). The day each pixel’s cloud free value was observed is also documented. This infill method 

induces a time-lag in the appearance of snow-free conditions for many pixels and reduces real-time 

accuracy. Published cloud free data are extremely useful for retrospective analysis of snow cover, but 

water managers need greater accuracy for real-time analysis. 
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A SDC represents a time series of spatially aggregated SCA for a watershed or elevation zone 

within a basin, reported as a percent of watershed or zone area. An advantage of a SDC is that it 

simplifies temporal interpolation since this only requires propagating a single curve forward in time, 

without concern for specific details of which pixels are changing; it infills missing pixels in aggregate 

incurring a loss of spatial information. The sacrifice is made to achieve a complete time series (Nagler 

et al., 2006). Routine availability of remotely sensed SCA images in near-real time would maintain 

the spatial nature of the data and allow a major shift in the way we model snowmelt runoff. The 

interannually recurring pattern of snowmelt may provide the key to integrating the spatial information 

of remote sensing and the temporal information of an SDC, without a tradeoff. Patterns in snow 

covered area have been noted in the literature for many years (Adams, 1976; König & Sturm, 1998; 

Luce & Tarboton, 2004; Sturm & Wagner, 2010; Wang & Xei, 2009). Capitalizing on these 

observations, Woodruff & Qualls (2019) developed a spatial model of the recurrent pattern of SCA 

depletion using a multi-year remote sensing approach. This model could open the door to a spatial 

model with a temporal application. 

Our hypothesis is that in addition to a spatially recurrent pattern, a recurring temporal trend 

exists that allows linking the spatial and temporal patterns together. The temporal trend can be 

synthesized into a dimensionless time series of SCA. In this paper we use the Principal Component 

Analysis (PCA) spatial model developed by Woodruff & Qualls (2019) to develop and analyze a 

dimensionless SDC, which we term the “PCA SDC”. We also propose a linear representation of snow 

depletion. Both methods are a direct output from the spatial SCA model. Our method provides a 

spatial representation of SCA at every time step because we use a dedicated spatial model and a 

related SDC. The linear relationship simplifies the complexity of normalizing snowmelt timing and 

allows simple adjustments for secondary snowfall. We approach the problem of spatially describing 

melt in time from the perspective of space driving time. 

The spatial pattern can be used to describe and scale any melt period. If we can normalize the 

time component of SCA depletion with a single curve or a line, meaning it represents an interannually 

recurring temporal pattern, then forecasting of SCA depletion may be achievable. Real-time and 

climate simulations of snowmelt runoff both could benefit from this information because the spatial 

pattern is unchanging. The way in which snowmelt runoff modeling is approached, and the usefulness 

of remote sensing could potentially change if space offers a repeatable relationship with time. 
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Study Area and Data 

Study Area 

The Upper Snake Basin located in Wyoming, United States, serves as an important source of 

usable freshwater for downstream users. The watershed (Figure 2.1) drains an area of 8,894 square 

kilometers with elevation ranging from 1,737 to 4,194 meters. The climactic regime is consistent with 

that of the inland northwest, where in-stream flows are dependent on snowmelt. The snowmelt from 

this study area provides freshwater for many downstream uses including agriculture, municipal uses, 

and in-stream fish requirements. Snow seasonally covers the watershed. Snow coverage ranges from 

100 to 0% percent in most years. The enormous size, importance of water to downstream users, and 

annual snow coverage makes this watershed ideal for remote sensing applications. Land cover, as 

calculated by the National Land Cover Database (Homer et al., 2015), ranges from sagebrush steppe 

(45.4% coverage by area) to evergreen and mixed forest (47.9% total forest coverage). 

 

Figure 2.1: Location and topography of the Upper Snake Basin Study Site. 
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Data Sources 

The SCA data was acquired from the National Snow and Ice Data Center (NSIDC). The 

MODIS daily imagery from the Terra satellite which has a morning equatorial pass over time was 

downloaded for the years 2000 – 2017. The Aqua satellite MODIS sensor had a failure in band 6, 

which is used in the NDSI calculation for snow detection. The NDSI calculation has been restored for 

the Aqua satellite by substituting in band 7 into the calculation, but the data product often produces 

more snow commission errors than the Terra satellite MODIS sensor (Hall et al., 2019). Therefore, 

we have excluded the Aqua data from our research. Two tiles h09v04 and h10v04 were necessary to 

capture the full watershed extent. The version 6 MODIS data product includes several data layers 

including a NDSI snow cover, QA/QC layer, NDSI basic, albedo and others. NDSI snow cover data 

was used in this analysis.  

SNOw TELemetery (SNOTEL) sites were minimally used in the study. The watershed 

contains eleven of these ground-based sites, which record SWE. One site (Base Camp) was used to 

calculate a starting day of year, a step in the PCA spatial model. See Woodruff & Qualls (2019) for an 

in-depth discussion. 

Methods 

The overall purpose of this article is to assess the repeatability of the time component of a 

spatial pattern of snow-covered area. To analyze this, we present the following steps. First, we use the 

PCA spatial model to remove cloud cover from daily MODIS imagery. The PCA SDC curve is 

developed by transforming the PCA spatial model. Next, a metric of cloud removal confidence is 

derived to identify high confidence cloud removed images. With these established, the PCA SDC is 

fit to the cloud removed data by fitting the curve in time with a single year. We then account for 

secondary snowfall by shifting the PCA values plotted against time. This approach allows us to 

implement a simple linear regression rather than dealing with the more complex PCA SDC. The data 

is shifted one day at a time until a maximum R-squared value is recorded. We also calculate the AIC 

for model fits before and after shifting. Finally, we normalize all the cloud free data with the PCA 

SDC values. The normalized data is plotted together to analyze temporal repeatability. 

The PCA Spatial Model 

The PCA spatial model presented in Figure 2.2 was developed and discussed in depth in 

Woodruff & Qualls (2019). For clarity we present a brief description here. The PCA model is a static 

image of the study watershed in which the pixel values represent the relative melt timing of pixels 

throughout a melt season. Selection of a threshold melt timing value bifurcates the PCA image into a 
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snow-covered region whose pixel values exceed the threshold, and a snow-free area whose pixel 

values are smaller than the threshold. The snowline lying along the interface of the two regions 

corresponds to the selected threshold, as illustrated by the red, blue, and green example snowlines in 

Figure 2.2.  

The spatial model was created using daily imagery over the study site from 17 years. The 

daily imagery is condensed into two images per year. The two condensed images record the last day 

snow is seen (one image) and the first day land is seen (one image) for each pixel. PCA is applied to 

one of the sets of images (last day of snow or first day of land) from all the years. The first principal 

component results are plotted with x, y coordinate information to create the spatial PCA model. 

Woodruff & Qualls (2019) argue the PCA extracts 92% of the recurrent pattern of snowmelt while 

also discarding any cloud contamination.  

Once the PCA spatial model is generated, we can use it to remove daily cloud cover, 

producing cloud-free images. Cloud cover is removed through a simple fitting procedure in which the 

PCA threshold value is identified that minimizes the Visible Pixel Error (VPE in equation 2.1). To 

calculate the VPE, a trial threshold value is selected to convert the continuous PCA spatial model into 

a binary snow/no-snow representation. The VPE for the trial threshold is then calculated by 

comparing the visible pixels of the cloudy image with the corresponding pixels of the binary PCA 

model. In equation 2.1, IL and IS are the number of pixels where the model and the image disagree, 

where the subscripts refer to the pixels wrongly represented by the model as snow or land, and TP is 

the total number of visible pixels in the cloudy image. 

Equation 2.1 

𝑉𝑃𝐸 =  √
𝐼𝐿

2 +  𝐼𝑆
2

𝑇𝑃
2  

A range of trial thresholds are evaluated and the value which minimizes VPE is selected to 

generate the cloud-free image for that day. If only snow or land pixels are visible in an image, this 

algorithm identifies the snowline as corresponding to the lowest or highest threshold value associated 

with the visible area, respectively. This represents the upper/lower limit of the snowline for the two 

respective cases rather than the actual location of the snowline. Daily MODIS imagery was 

downloaded, and cloud cover was removed for 2001-2017 using equation 2.1.  

For every cloud removed image another metric was recorded to quantify daily cloud removal 

confidence. Cloud removal confidence is related to the length (Ii) of snow/land interface visible in the 
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ith cloud-obscured image compared to the corresponding length (Mi) of the interface in the cloud-free 

PCA spatial model image. An interface exists if a pixel is adjacent to a pixel of a different value, e.g., 

snow adjacent to land. Adjacency is defined using a queen’s case neighborhood (Brunsdon & 

Comber, 2019). Ii and Mi are calculated by summing the number of interfaces in their respective 

images for a given day. The ratio of these two, the visible interface fraction (Vi, Eqn. 2.2), quantifies 

the fraction of the modeled snowline that was visible in the cloud-obscured image. 

Equation 2.2 

𝑉𝑖 =  
𝐼𝑖

𝑀𝑖
 

Two considerations exist for the visible interface calculation. The first is that an edge effect 

exists. Secondly, if only one pixel type is visible the Vi calculation may be falsely high. Given a day 

where only snow or only land is visible, we calculate Ii and Mi based on the watershed perimeter. 

Without this perimeter-based approach the Ii and Mi values would be zero at the beginning and end of 

the melt period, even if the entire watershed is visible. This results in an issue during the melt period 

where only one pixel type is visible. Given the case where only snow is visible during the middle of 

the melt period, the Vi is calculated based on the perimeter which may result in a large Vi. This large 

Vi indicates a high confidence in cloud removal even though this is extremely unlikely. We are certain 

the SCA is not as large as what was selected by the PCA model. During the middle of the melting 

period, a falsely high confidence value occurs for cloud removal results of either 100% snow or 100% 

land coverage. We handle this false high issue by excluding these images from our analysis according 

to a rule. The rule is cloud removal values are excluded if the previous and subsequent days are 

within 80-20% SCA. 

PCA Snow Depletion Curve 

The PCA spatial model can be converted to a temporal PCA SDC. The temporal component 

is normalized by equation 2.3. Where Nt is the normalized time, Pt is a given PCA model pixel value 

at time t, and P is simply a PCA model pixel value. This normalization creates a pseudo time 

component ranging from 0 to 1. SCA depletion in the SDC is represented by the conversion of pixels 

from snow to land. At a given Nt, there exist several pixels greater than the value of Pt. This quantity 

of pixels can be described as a percentage of the total pixels in the watershed, and this percentage 

represents the SCA at time Nt. 
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Equation 2.3 

𝑁𝑡 =  
𝑃𝑡 − 𝑀𝐼𝑁(𝑃)

𝑀𝐴𝑋(𝑃) − 𝑀𝐼𝑁(𝑃)
 

We can then scale Nt values to fit any given year by altering two parameters. This scalable 

aspect can transform the normalized SDC to represent SCA in time. The parameters and formulation 

are shown in equation 2.4. The slope, or duration of melt (Dm), and the initiation of melt (Im) are 

altered to transform the SDC. The normalized Nt is scaled by these parameters to represent the DOY 

an SCA is measured (TSCA). It is important to note, each TSCA has a distinct, fixed SCA related to it 

within a given year. Therefore, we alter the timing of the melt period to fit the measured timing of 

SCA depletion in a given year. 

Equation 2.4 

𝑇𝑆𝐶𝐴 =  𝑁𝑡 ∗  𝐷𝑚 + 𝐼𝑚 

Accuracy Assessment 

We numerically solve for the best fit of Dm and Im for a given year, which minimizes the sum 

of squared error given by Eqn. 2.5. The error for each point is calculated by the difference SCAt - 

SCAa, where SCAt is the SCA at time TSCA and SCAa is the actual measured SCA at time t derived 

from remote sensing. Accuracy of the PCA SDC is quantified using the root mean squared error 

(RMSE). 

Equation 2.5 

𝑆𝑆𝐸 =  ∑ (𝑆𝐶𝐴𝑡 −  𝑆𝐶𝐴𝑎)2
𝑡

𝑖=1
 

Secondary Snowfall 

PCA is a linear transformation of a higher dimension dataset into a lower dimension. This 

characteristic of PCA linearizes the average of the 17 years used to develop the model. A given year 

(PCA values) when plotted with time that follows a linear trajectory would suggest that the PCA not 

only on average is linear but in individuals years is linear. PCA produces a linear transformation 

independent of whether each individual year is linear with time. We would expect the average to be 

linear. A year may not be linear with time if melt began rapidly and slowed as the season progressed. 

A combination of many of these years would still produce a linear output, but individual years would 

systematically deviate from the line. We will first establish whether individual years are linear with 

time. 
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With an individual year linear relationship established, a secondary snowfall event still 

presents a problem. If secondary snowfall events disrupt the timing of the progression of melt this can 

be identified by a step change in the linearity of the snowmelt season. We normalize the time 

component of the snowmelt season to a scale of 0 to 1. The beginning of melt, or zero, is determined 

as the first day of the melt period that the PCA values are continuously greater than 400, and the end 

is set as the first day a value of 750 is recorded. This normalization and range allow us to focus our 

analysis on the melting period. We fit a linear regression to the PCA values versus time and calculate 

the R-squared as well as the AIC. 

Our hypothesis is that a secondary snowfall event postpones melt, as reflected by a lateral 

translation of the PCA t* melt curve, but when melt resumes it continues along the same linear 

trajectory as before the secondary snowfall event. To test this hypothesis, we first use observations 

from the eleven ground-based SNOTEL stations within the watershed to identify the occurrence of 

secondary snowfall events. We define a secondary snowfall event as any increase in SWE at a 

SNOTEL station which occurs after the date of maximum SWE. Of the 17 years of data used in this 

analysis we identified and recorded secondary snowfall events in every year. We also recorded the 

date ranges for any delay in timing of melt from the PCA values. If these two time periods, secondary 

snowfall from SNOTEL and delays in PCA values versus time, coincide then we shift the data. 

Adjusting a single year is done by simply shifting the day of year associated with the PCA values 

forward one day at a time and fitting a new linear regression model for each shift. Only data after a 

verified secondary snowfall event was shifted. The R-squared value is calculated for each model and 

the optimal number of days to shift the data was selected by the largest R-squared. We then calculate 

the AIC for the linear regression fit to the optimal shifted data for comparison with the original un-

shifted data. 

Normalization of Snow Seasons 

The final component of the analysis is the normalization of all the melt periods. We 

normalize each cloud removed SCA measurement for a given year according to the fitted parameters 

(Dm and Im). Equation 2.6 describes how this is accomplished for a single image. In equation 2.6, Ni is 

the normalized time of an image, and TSCA is the DOY associated with SCA value of the cloud 

removed image. This transformation assigns a normalized (0 to 1) value to each cloud removed 

image, which allows us to plot all cloud removed data points on a single plot. 
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Equation 2.6 

𝑁𝑖 =  
𝑇𝑆𝐶𝐴 − 𝐼𝑚

𝐷𝑚
 

Results 

The results are presented in the following order. The PCA spatial model and PCA SDC are 

presented first, followed by the visible interface cloud removal confidence metric and optimization of 

this value. We then fit the PCA SDC to the daily cloud removed data. The systematic deviation 

analysis follows, and finally the culmination of this work is presented. The year-to-year temporal 

repeatability of snow depletion is shown. 

PCA Spatial Model and Depletion Curve 

The spatial PCA model describes the repeatable pattern of SCA depletion across multiple 

years and is a demonstrated cloud removal method (Woodruff & Qualls, 2019). Figure 2.2 is the PCA 

spatial model. Pixel values in the spatial PCA model represent the relative timing of melt of each 

pixel in relation to all other pixels in the watershed. In figure 2.2 the lower values (darker areas) melt 

earlier, and higher values (lighter areas) melt later. 
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Figure 2.2: PCA spatial model where each pixel value represents the relative melt timing. Darker (lower) pixel values melt 

earlier, and lighter (higher) values melt later. Three snow-land interface lines are shown in red, blue, and green to depict the 

snow coverage at 75, 50, and 25% SCA, respectively.  

The PCA SDC, shown as the non-linear solid black curve in Figure 2.3 is the transformed 

PCA spatial model. At a given Nt, shown on the x axis, there is a distinct corresponding SCA value. 

The red, blue, and green circles along the curve represent values of corresponding 75, 50, and 25% 
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SCA snowlines in Figure 2.2. All the area contained within a given snowline in Figure 2.2 would be 

deemed as snow free and all the area between the watershed boundary and the snowline would be 

snow covered. The relationship between these two figures is the advantage of this method for 

representing SCA depletion with time. Unlike any other depletion curve, the spatial data is easily 

represented using the PCA SDC (Figure 2.3). Also shown in Figure 2.3 is the PCA values (range of 

308-778) normalized to a 0-1 scale along the secondary y-axis. The relationship between Nt and 

normalized PCA values is linear shown as the dashed black line. The corresponding 75, 50, and 25% 

SCA points are shown as squares along the line and the colored arrows indicate the relationship 

between the PCA SDC and the linear PCA values. The non-linear description of snow depletion given 

by the PCA SDC can also be described linearly if we use the PCA values rather than SCA to describe 

snowmelt. As discussed in the methods PCA is a linear transformation of higher dimension data into 

lower dimensions. It captures the non-linear description of the relative timing of melt and describes it 

linearly. We present the PCA SDC because it is a familiar curve, but the linear description is a novel 

and powerful approach to analyzing the temporal repeatability of snowmelt. 
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Figure 2.3: Normalized PCA SDC. The curve describes how SCA percentage changes with normalized time (Nt). Three 

points along the curve identify SCA values of 75, 50, and 25% corresponding to like-colored spatial snowlines shown in 

Figure 2.2. Normalized PCA values are plotted along the secondary y-axis against normalized time. Colored arrows indicate 

the relationship between SCA and PCA values along a normalized time axis.  

Cloud Removal and Deriving Confidence Metrics 

Cloud removal was completed for all the available daily imagery from 2001-2017 excluding 

the days with 100% cloud cover. The visible interface fraction (equation 2.2) is calculated for each 

cloud removed image. The cloud removal process does not use information from prior or subsequent 

days. The cloud removal only makes use of the visible pixels in a single image; therefore, the daily 

cloud removal is independent data. Independent measurements are necessary for the creation and 

fitting of the PCA SDC. If temporal interpolation of any kind were used during the cloud removal 

process model inbreeding would exist. 

For each cloud removed image we record the VPE (equation 2.1) as well as the Vi (equation 

2.2). The Vi metric was designed to put higher confidence in imagery where a greater fraction of the 

interface between snow and land is visible. The Vi helps to avoid- over and underestimation of snow 

cover, especially in cases where only one pixel type is visible, such as at the beginning and end of the 
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melt period. If only one pixel type is visible, the VPE does not offer any information. A large Vi puts 

high confidence in images where cloud cover may be significant, but the length of interface is also 

large. An important consideration in developing this metric is defining the lower limit of the Vi value 

which represent high cloud removal confidence. 

We optimized the Vi lower limit by fitting the PCA SDC to cloud removed imagery and 

calculating the Sum of Squares Error (SSE). The parameters Im and Dm (eqn. 2.4) were calculated for 

Vi values ranging from 0-0.1 with a step of 0.01 for each year. To select the optimal Vi value, we 

analyzed the product of the change in number of images retained and the change in SSE calculated for 

a given Vi. This multiplication produces a local maximum at the Vi where error is lowest, and the 

number of images retained is highest. Figure 2.4 plots the results of this analysis for 2009. The black 

line represents the product of the step changes in the SSE and the number of images retained at each 

Vi. The increase of Vi from 0 to 0.01 is the largest, which is driven by the high error rate and 

substantial change in images retained. We do not select this maximum because the error is still large. 

The black line has a local maximum of 6.10 at a Vi of 0.05. The red line shows the decline in images 

retained ranging from 237 to 136. The number of images retained declines at a relatively stable slope 

after a sharp decline between the Vi range of 0 and 0.02. The steady slope in the number of images 

retained communicates the error SSE dropped significantly at a Vi of 0.05. A similar local maximum 

was found for each year. The optimal value of Vi selected by each year varied between 0.02 to 0.08 

with only four of the years selecting a Vi. of greater than 0.05. An average of the selected Vi is 0.046, 

which we round up to 0.05. This value was used for the remaining analyses. 
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Figure 2.4: Optimization of Vi for 2009. Vi is shown along the x-axis. The product of the step change for a give Vi in the 

SSE and the number of images retained is plotted along the primary y-axis (black with circles). Shown in red with squares is 

the count of images retained plotted with respect to the secondary y-axis. 

A comparison of the number of available images using a cloud coverage cutoff and the Vi 5% 

cutoff are shown in Table 2.1. Across all the years, daily available images range between 226 and 

246. Discarding all the imagery with greater than 10% cloud coverage leaves 42 to 64 images. 

Applying our Vi 5% threshold a significant increase is seen with 134 to 160 images available. 

  



29 

 

 

Table 2.1: The comparison of availability of images from MODIS for each year is shown. The total number of images 

available starting at January 1 of each year is shown; followed by the count of images with <10% cloud coverage, and the 

number of images available using the visible interface of 5%. 

Year 
Available 

Images 

Images with 

< 10 % 

Cloud 

Coverage 

Images 

with > 5 % 

Visible 

Interface 

2001 226 57 146 

2002 235 46 151 

2003 237 55 143 

2004 239 51 151 

2005 243 63 156 

2006 244 55 160 

2007 245 63 157 

2008 239 56 154 

2009 237 43 148 

2010 246 47 134 

2011 243 42 138 

2012 241 64 153 

2013 244 59 158 

2014 238 57 139 

2015 244 57 152 

2016 223 52 156 

2017 236 64 146 

 

Fitting the SDC Curve 

The PCA SDC is fit to the daily cloud removed data with greater than 5% visible interface. 

The curve is fit by optimizing the sum of squares error (equation 2.5). Two parameters are optimized 

to fit the curve. The PCA SDC fit for 2006 is shown in Figure 2.5. Initially, we can note the PCA 

SDC (black line) has a varied slope throughout the melt period that accurately tracks the daily cloud 

removed data From Table 2.2, discussed below, the RMSE for the PCA SDC is 0.018. The cloud 

removed data suggests there was early melt around DOY 75 that is not described by the curve. Based 

on the prior and subsequent days, it is clear to see that if this melt was occurring it was not the main 

trajectory of melt. We may attribute this to errors in the data, although even if it is correct this 

potential error is acceptable because it is a false start to the melt period. The PCA SDC accurately 

describes the beginning of melt following the decline in SCA extremely well. The non-linear PCA 

SDC accurately describes melt with time. This plot demonstrates for 2006 that the recurrent pattern 

which captures average behavior also describes time repeatability in individual years. 
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Figure 2.5: PCA SDC curve (black line) and daily cloud removed data with Vi values of > 5% (black points) are plotted for 

the melt period of 2006. The SCA percentage is plotted against day of year. 

The RMSE is calculated to determine the accuracy of the PCA SDC fit for each year. The 

number of images varies each year because we use the 5% visible interface condition as seen in Table 

2.1. The RMSE standardizes the error. Error for the PCA SDC for all 17 years is shown in Table 2.2. 

The PCA SDC accurately follows the progression of melt for all 17 years. The average RMSE is 

0.030 and the maximum and minimum values of 0.043 and 0.017 were recorded. The maximum 

RMSE was recorded in 2010 and the minimum in 2008. Discussed later the variation in RMSE may 

be due to secondary snowfall events; however, the fit is exceptional in all 17 years which includes 

2017, an independent year. 
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Table 2.2: Fitted parameters of Im and Dm are shown for each melt period as well as the RMSE using the PCA SDC. 

Year 

Melt 

Initiation 

in Days 

(Im) 

Melt 

Duration 

in Days 

(Dm) 

PCA 

SDC 

RMSE 

2001 85.6 76.7 0.036 

2002 75.2 118.1 0.025 

2003 67.8 128.4 0.034 

2004 52.2 146.9 0.031 

2005 66.7 130.7 0.034 

2006 86.3 100.7 0.018 

2007 56.4 125.1 0.036 

2008 96.2 113.9 0.017 

2009 87.7 109.0 0.022 

2010 67.2 141.7 0.043 

2011 108.1 112.8 0.022 

2012 58.5 136.7 0.033 

2013 87.2 90.6 0.036 

2014 91.7 101.8 0.029 

2015 57.6 127.2 0.032 

2016 72.8 112.4 0.026 

2017 79.7 129.4 0.032 

 

Large variations in the PCA SDC fitted values (Im and Dm) are shown in Table 2.2. The Im 

varied from 52.2 to 108.1 in 2004 and 2011, respectively. This is a 56-day (nearly two month) 

difference in when melt began in those years. The Dm value recorded a range of 70.3 days, with 

shortest and longest melt durations of 76.7 days and 146.9 days for 2001 and 2004, respectively. The 

average Im value was 76.3 and average Dm was 117.8. One might suggest this is due to more or less 

snow. This is not what we observed. For instance, the year 2004 was a low snowpack year; however, 

it recorded the longest duration. On the other hand, 2011 was the largest snowpack and recorded late 

snow accumulation. In 2011 there was a late initiation of melt (large Im), but a short duration (Dm). 

Another large snowpack year, 2017, recorded above average initiation and duration. Variations in 

these fitted parameters describe the highly variable snow conditions in the study site. 

Secondary Snowfall 

In every year besides 2006, we recorded a delay in the timing of melt which was attributed to 

a secondary snowfall event. The impact of these events is illustrated in Figure 2.6. SNOTEL SWE 
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data for Two Oceans Plateau (solid line), Togwotee Pass (dot-dashed line), and Thumb Divide (dotted 

line) are all plotted against normalized time. We can see three distinct secondary snowfall events 

occurring at normalized time values of 0.4 (Thumb Divide), 0.55 (Togwotee Pass and Two Oceans 

Plateau), and 0.75 (Togwotee Pass and Two Oceans Plateau). The PCA t* Threshold Values (circles 

plotted on secondary y-axis) reflect the first two events. One can see a distinct change in the slope 

from point to point at normalized time values of 0.4-0.45 and 0.55 to 0.67. The final secondary 

snowfall event occurring at normalized time 0.75 may have had a slight effect on the slope of the 

PCA values, but it is hard to distinguish with the naked eye. 

 

Figure 2.6: The 2004 melt period SNOTEL SWE for Two Oceans Plateau (solid line), Togwotee Pass (dot dash line), and 

Thumb Divide (dotted line) are plotted on the primary y-axis against normalized time. Also shown is the PCA t* Threshold 

Values on plotted on the secondary y-axis against normalized time. 

We adjust the PCA t* Threshold Values for the secondary snowfall events to determine if 

these events had an impact on the progression of melt after the event occurred. To accomplish this, 

we fit a linear regression to the PCA t* Values versus DOY for each year. Adjusting a single year is 

done by simply shifting the day of year associated with the PCA t* Values forward one day at a time 

and fitting a new linear regression model for each shift. Only data that was recorded after the 

secondary snowfall event was shifted. The R-squared value is calculated for each model and the 

optimal number of days to shift the data was selected by the largest R-squared. We also employ the 
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Akaike Information Criterion (AIC) for shifted and un-shifted model fits. The AIC is used to 

determine model fit and a smaller value indicates a better fit based on the maximum log likelihood 

(Akaike, 1974). The optimal number of days selected to shift the data, the R-squared values, and the 

difference in AIC (shifted minus un-shifted) are given in Table 2.3.  

The R-squared values calculated for the un-shifted data are exceptional with an average of 

0.977, a maximum of 0.992, and minimum of 0.946 (column 2). This demonstrates the individual 

year linear relationship with time. By adjusting the data for secondary snowfall, we found increases in 

the R-squared values for every year. We recorded an average R-squared of 0.983, a maximum of 

0.996, and a minimum of 0.961 (column 3). We also see the AIC for the shifted data was lower than 

all the un-shifted models. AIC is generally used to compare models fit to the same data. We are fitting 

the same model structure to the data and a decrease in the AIC means the data is getting closer to 

perfectly linear. We see exceptional improvements by shifting the data in 2008, 2010, 2011 and 2014 

which all recorded decreases in the AIC of greater than 20. Any decrease in AIC of 2 or more 

indicates a significantly better fit. All the shifted models recorded a decrease in AIC of more than 

two. Given these high R-squared values and the results of the AIC, the PCA t* Threshold Values do 

move linearly with time even if a secondary snowfall event occurs; however, adjusting for the 

secondary snowfall events shows improvement in all cases. The watershed characteristics captured by 

the recurrent pattern of melt allows us to linearize snowmelt timing, a powerful tool for water 

management. 
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Table 2.3: Optimal days selected to shift the data, R-squared values, and difference in AIC for 2001-2017 are shown. The 

optimal days of shift for 2007 and 2013 are given as the first shift/second shift to distinguish between the first secondary 

snowfall adjustment and the second.  

Year 
Optimal Days 

Shifted 

R-Squared 

Un-shifted 

R-Squared 

Shifted 

Difference in AIC 

(Shifted – Un-

shifted) 

2001 16 0.946 0.961 -11.60 

2002 10 0.976 0.983 -12.08 

2003 9 0.973 0.980 -16.69 

2004 9 0.978 0.982 -9.05 

2005 9 0.979 0.985 -13.87 

2006 No Shift 0.989 No Shift N/A 

2007 7/5 0.977 0.980 -5.99 

2008 7 0.992 0.996 -29.37 

2009 6 0.983 0.986 -7.25 

2010 15 0.965 0.984 -24.82 

2011 8 0.987 0.993 -28.50 

2012 4 0.972 0.973 -2.14 

2013 10/7 0.973 0.985 -19.25 

2014 9 0.970 0.984 -27.00 

2015 5 0.983 0.984 -2.27 

2016 6 0.987 0.991 -12.73 

2017 8 0.980 0.984 -13.55 

 

In two of the years there were two secondary snowfall events large enough to impact the 

progression of melt. These years, 2007 and 2013, required two shifts. In many cases such as 2004, 

2009, and 2014 there were two secondary snowfall events; however, shifting the later event increased 

the R-squared and no further steps were taken. In 2007 and 2013 shifting the later secondary snowfall 

event alone had a negative effect on the R-squared, therefore we applied a shift to the first secondary 

snowfall event. The R-squared was optimized excluding the data which occurred after the second 

snowfall event. After this fit was complete, a second shift was applied which included all the data. 

The process is depicted for 2007 in Figure 2.7. The blue circles are the original, unshifted data points. 

The red dotted line marks the starting date of the first shift, and the red diamonds are the shifted 

points (7 days). The second shift, marked by the black dashed line, is shown as the black triangles (5 

days). With each shift we can note the points appear to follow a more linear progression. Shifting 

these data provides a description of the duration of melt as it would have occurred had there been no 

secondary snowfall, a normalization of melt. The shifts also demonstrate that in all seventeen years 
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the progression of melt is linear, and the presence of a secondary snowfall events acts as a piecewise 

shift in the data. This is demonstrated by the increase in R-squared and decrease in the AIC for all 

shifted data. 

 

Figure 2.7: Shifted PCA t* Threshold Values are shown against the day of year for the melt period of 2007. The original un-

shifted data is depicted as blue circles. The DOY of the first shift is identified by the red dotted line. Shifted data is given by 

the red diamonds (7 days). The start of the second shift marked by the black dashed line and is given by the black triangles 

(5 days). 

Normalization of Melt Seasons 

The PCA SDC accurately depicts each melt period individually. To verify whether the melt 

period follows the same curve year after year we can normalize all the cloud removed data on a single 

plot. We normalize all the cloud removed data used to fit the PCA SDC using equation 2.6. The DOY 

associated with an SCA measurement is scaled by the fitted parameters Im and Dm. The DOY values 
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transformed into Nt values. Figure 2.8 shows all the normalized cloud removed data plotted together 

from all 17 years. The PCA SDC is plotted as the red line. 

Across all 17 years, there appears to be higher variability during the beginning of the melt 

period compared to the end. This was noted in the systematic deviation analysis as well. The cloud 

removed data plot behaves similarly to an envelope, or a fuzzy line, about the PCA SDC. As the melt 

progresses, the envelope becomes tighter. Nearly all the points fall within a close perpendicular 

distance from the PCA SDC and are equally represented about the curve. From this comparison, we 

can see this normalization method accurately captures any melt period. If temporal repeatability did 

not exist, we would expect a far less organized plot. Much like the spatial repeatability of snow-

covered area the time component can also be normalized simply and represented by a single curve. 
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Figure 2.8: Normalization of melt initiation and duration for all 17 years on a single plot. Points refer to actual cloud 

removed measurements (with > 5% visible interface). The PCA SDC is shown in red. 

Discussion 

We have presented a simple two parameter transformation of a SDC to describe the melt 

period of 17 years. The idea of a depletion curve, and even a single curve to represent SCA depletion, 

is not new; however, a spatial model to a linear description of melt and a SDC relationship is novel. 

This spatial to temporal method for describing melt provides daily snow location data whether 

imagery is available or not. The implication of the temporal repeatability of any given melt period is a 

significant advancement. Snow melt is highly variable, and a difficult phenomenon to represent. 

Repeatable information may help understand and prepare for the water demands of a changing world. 

As stated in the methods, the PCA is linear transformation of data. The importance of each 

individual year progressing linearly with time is a powerful statement. We addressed the impact 
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secondary snowfall events had on the linear progression, demonstrating each individual year is 

described well before and after secondary snowfall adjustment. If a year was not linear with time, we 

would expect to produce a different plot. If snowmelt began slow and sped up, we would expect the 

plot to follow a concave upward trajectory departing from the line early in melt and returning to it at 

the end. If the melt began quickly and slowed, we would expect a concave downward trajectory. The 

simple translation and stretching of the normalized time value produces a linear plot in every year. 

This suggests the spatial description of snow is intrinsically tied to the temporal trajectory and it is 

captured by the PCA model of the recurrent pattern of snowmelt.  

An area of particular interest for the findings is retrospective snowmelt runoff modeling. Two 

impacts of the spatial model to SDC relationship are easily identified. First, temperature lapse rate can 

be more accurately represented with snow location data. Secondly, the advection of sensible heat 

from a warming land surface over snow adjacent to the snow to land interface can also be modeled 

with more certainty. Both areas of interest rely on daily cloud free imagery with temporal 

independence. While the SDC provides a temporal description the spatial PCA fluctuates daily with 

the snow coverage. Understanding the applications of our finding in retrospective analysis may help 

modeling in real-time. 

Temperature lapse rate is an important variable in snowmelt runoff modeling. The widely 

used VIC model assumes a linear temperature lapse rate. Lower elevation temperature data are used 

to extrapolate temperature to higher elevations using a linear multiplier. An example of the 

importance of the temperature lapse rate is shown by Wang et al. (2016). They demonstrated near 

surface air temperature lapse rate influences streamflow, finding a 24% range in streamflow by 

calculating lapse rate under different assumptions. In their study, a linear lapse rate had the lowest 

yearly simulated discharge accuracy (Nash coefficient of 0.414), and the MODIS derived lapse rate 

had the highest (Nash coefficient of 0.696). The linear lapse rate assumption disregards the impact 

snow has on the surface temperature. This is physically wrong, because the surface of a melting 

snowpack is 0 degrees Celsius during the phase change from solid to liquid (Dingman, 2008). 

Temperature lapse rate has lacked a simple solution to a complex representation and has relied on the 

linear method due to its simplicity. Snow location has a substantial impact on surface temperature, 

and the PCA spatial model to PCA SDC provides this information. 

The energy exchange at the snow to land interface also requires accurate snow location data. 

Advection from a snow free area adjacent to a snow-covered area has been demonstrated to increase 

the melt rate from 25-30% Schlogl et al. (2018). This enhanced energy exchange near the snow to 
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land interface not only increases the melt rate, but our results suggest the temporal progression of 

snowmelt is related to the spatial distribution of snow. This pattern may be influenced significantly by 

the snow to land interface. By misrepresenting snow location or simply modeling it, two extremely 

important variables could be influenced leading to significant accuracy reductions. This may be 

handled through calibration in average years; however, those are not the years that impact water 

management. Floods and droughts represent extremes, and calibrated models may not simulate these 

years well, whereas a physical spatial approach might. 

The benefits of accurately representing snow location are known, but integration of remote 

sensing into models like VIC is not standard practice. Cloud removal has made snow cover data far 

more accessible for retrospective analysis; however, many times these cloud removal methods create 

highly temporally and/or spatially dependent data. The PCA spatial model to PCA SDC produces 

independent daily cloud removal data easily describing SCA with time. Another significant hurdle to 

overcome is MODIS data has often been deemed less reliable than the point-based SNOTEL data 

(Andreadis & Lettenmaeir, 2006). While this may or may not be true, a large advantage of remote 

sensing is overlooked. The spatial pattern, derived from remote sensing data, provides a standardized 

model for comparing the highly variable process of snowmelt. 

This simple approach to representing snow depletion addresses a long-standing question 

about the repeatable pattern of snow melt, how do we use it? Modeling snowmelt ranges in 

complexity and at each level of model complexity the approach presented here is applicable. In the 

snowmelt runoff model (SRM) an issue with forecasting melt is the SDC is not known a priori 

(Martinec et al., 1983). We showed the SDC is a function of the recurrent spatial pattern and is 

scalable to any snow melt season. In complex models such as the VIC model, representation of snow-

covered area could help model temperature lapse rate and sensible heat flux. The two components of 

our approach address both model issues by combining a simple spatial based approach with a time 

representation. The repeatability of the spatial and time components together illustrates the robust 

nature of this approach. 

Conclusions 

The time repeatability of snowmelt has significant implications for managing water in real-

time and under climate change. We have demonstrated the recurrent pattern of melt, which offers a 

snapshot of how melt occurs spatially, also describes temporal repeatability. Not only does snowmelt 

on average follow the PCA SDC as well as the linear PCA values versus time, but individual years 

follow the curve. We have applied the PCA spatial model to remove cloud cover, developed a 
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dimensionless PCA SDC, a dimensionless linear relationship of PCA values versus normalized time, 

adjusted for secondary snowfall events, and normalized 17 melt periods. We applied a cloud removal 

confidence metric prior to SDC fitting and found the SDC fit with an average RMSE of 0.030. 

Through these steps we have demonstrated the PCA model of the recurrent pattern of melt accurately 

describes the spatial component of snowmelt but equally important it also describes the temporal 

repeatability of snowmelt. This novel approach and finding provide the framework for normalizing 

and comparing melt periods. 

Throughout the study period a broad range in melt timing occurred and was easily 

accommodated by the PCA SDC. The parameters used to fit the PCA SDC to a melt period, Im and 

Dm, ranged from 52.2-108.1 and 76.7-146.9 days, respectively. The model handled the observed 

variable snowpack conditions and demonstrated that a single normalized curve can be used to 

represent melt in any year. The PCA SDC is also a simple transformation of the linear relationship of 

PCA values against normalized time. We also demonstrated individual years follow the linear 

description with R-squared values ranging from 0.946 to 0.992. The linear relationship also allowed 

us to address secondary snowfall events. By shifting the PCA values one day at a time we recorded 

increases in R-squared (0.961-0.996) as well as a better model fit as described by the AIC. This is a 

systematic and simple method for adjusting snow covered area depletion for secondary snowfall 

events. The spatial and temporal repeatability captured by the PCA model has the potential to change 

the way snowmelt runoff modeling is approached in retrospective, real-time, and climate simulations. 

The PCA method extracts a linear transformation of average behavior; however, the novelty 

of our work is every individual year is linear with time. The recurrent pattern of snow is spatially 

recurrent and when paired with time it is temporally recurrent. Simply put this method allows us to 

normalize the often-erratic behavior of snowmelt making every year comparable. Extreme variability 

in snow accumulation and timing has been difficult to model. For real-time modeling, the spatial and 

temporal information captured in the PCA SDC collectively provide guiding stationary variables, or 

boundary conditions. The prospect of forecasting melt, given the repeatable spatial data and ability to 

normalize the temporal component along with the simple linear relationship, has significant potential 

and important implications for water management. 

Water management relies on information about the rate, timing, and amount of melt occurring 

daily. This requires significant data acquisition and ground-based networks to interpolate spatial data. 

The method presented in this article only requires remote sensing to describe the rate and timing of 

snow depletion. Ungauged watersheds are of great interest because remotely sensed data is available 
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and the repeatable spatial and temporal pattern of SCA depletion exists and can be implemented to 

model snowmelt. Applications of the repeatable pattern of snowmelt may be an emerging field of 

research. Woodruff & Qualls (2019) applied the pattern for cloud removal, and we demonstrated the 

novelty of this method beyond simple cloud removal. Normalizing snowmelt with the recurrent 

pattern could be the initial step towards a paradigm shift in our understanding of snowmelt. The 

highly variable system of snowmelt modeling is simplified using a simple watershed characteristic: 

spatial patterns. 
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Chapter 3: K-Means Cluster Derivation of Multi-Year Recurrent Snow 

Cover Pattern over a Mountainous Watershed 

Introduction 

The importance of water cannot be overstated. One underexploited variable to monitor, 

model, and manage the finite resource of water is spatial patterns of snowmelt. The existence of 

interannually recurring spatial patterns of snowmelt has long been acknowledged in the literature 

across multiple climactic and topographic regions (Adams, 1976; König & Sturm, 1998; Luce & 

Tarboton, 2004; Sturm & Wagner, 2010; Wang & Xei, 2009; Parr et al., 2020; Woodruff & Qualls, 

2019). The difficulty in using this variable is no one has been able to extract it until Woodruff & 

Qualls (2019). They developed a way to extract the recurrent pattern of snowmelt through remotely 

sensed snow-covered area (SCA) data. The inaugural application of this type of model was cloud 

cover removal; however, applications extend beyond simple cloud removal. We propose and test 

another method for extracting the recurrent pattern of snowmelt from remotely sensed imagery. 

Remotely sensed imagery offers worldwide coverage, and these patterns may exist across many 

landscapes. 

Spatial patterns of snowmelt are a function of the landscape and the climate. Parr et al. (2020) 

demonstrated that redistribution of snow due to wind in the arctic tundra is a function of the 

topography. The depth of a snow deposit was defined by the topography and the prevailing winds. 

These snow deposits led to repeatable spatial patterns in snowmelt even if the timing of when they 

melted changed. This demonstration of repeatable patterns in the arctic, a flat rolling landscape 

further expresses the widespread existence of patterns. In complex and non-complex terrain, it has 

been shown snowmelt is driven by elevation, aspect, slope, vegetation, and many other environmental 

factors (Hock, 2003). Many of these drivers are stable or unchanging from year to year. For example, 

extraterrestrial shortwave radiation at a given location and time of year does not change and the 

aspect of a slope is also fixed. North of the Tropic of Cancer, for example, the combination of 

watershed characteristics and the diurnal/seasonal cycle of the earth-sun orientation leads to increased 

shortwave radiation loading on southern facing slopes compared with northern aspects (Dingman, 

2008). These characteristics define the spatial pattern of snowmelt across multiple landscapes. 

Spatial patterns have inherent properties useful to snowmelt runoff modeling. Spatial 

information at the right scale is a critical tool for monitoring and modeling snowmelt. Spatial patterns 

offer a framework for investigating many important questions about snowmelt. The location of the 
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snow to land interface, that is, the snowline, plays a vital role in modeling energy fluxes. Schlogl et 

al. (2018) demonstrated snowmelt rate near the snowline increased by 25-30% due to advection from 

the snow free surface in the Dischma Valley in the Swiss Alps. The near surface temperature lapse 

rate has also been shown to influence streamflow. Wang et al. (2016) demonstrated that different 

temperature lapse rate scenarios produced streamflow differences as large as 24%. The linear lapse 

rate which is often applied produced the lowest yearly simulated discharge accuracy (Nash coefficient 

of 0.414) while remotely sensed data acquired by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) produced the highest streamflow accuracy with a Nash coefficient of 

0.696. The lapse rate is dependent on snow location. The spatial pattern may also be helpful in 

determining snow water equivalent (SWE). Luce et al. (2004) observed spatial patterns in a study 

where modified depletion curves (MDC) were developed relating Snow Water Equivalent (SWE) to 

SCA. A main issue they noted is these curves could not be found “a priori”. Determination of the 

spatial melt pattern would supply half the information needed to quantify SWE by providing a 

repeatable description of SCA over space and time. 

Woodruff & Qualls (2019) processed multiple years of remotely sensed MODIS SCA data 

using Principal Component Analysis (PCA) to develop the recurrent spatial snowmelt pattern “PCA 

model”. They achieved spatial accuracies of 84.9-97.5% when comparing the modeled SCA versus 

actual measured SCA. MODIS collects daily worldwide imagery at a spatial resolution of 500 meters 

by 500 meters (Hall & Riggs, 2015). The sensor is flown aboard two NASA satellites, Terra and 

Aqua, which collect SCA data at separate times each day. The Terra Satellite MODIS was used in 

their study. An average spatial accuracy of 93% has been demonstrated for MODIS with ground-

based data on cloud free days (Hall & Riggs, 2007). No uncertainty has been more detrimental to 

widespread adoption of the MODIS dataset for snowmelt modeling than cloud cover. A significant 

amount of research has been dedicated to removing cloud cover. In 2020 NASA began producing 

their own daily cloud free snow cover image dataset (Hall et al., 2019), however pixel values during 

cloudy periods in this dataset simply propagate the previous non-cloud obscured pixel value 

throughout the duration of the cloudy period. 

It is particularly enticing to perform cloud removal on MODIS imagery because it has a daily 

temporal resolution, which is extremely useful for snowmelt modeling. Methods for cloud removal 

can be categorized as either spatial or temporal interpolation, or some combination of the two. Spatial 

interpolation takes advantage of nearby pixels. For example, a simplified version might say if a pixel 

is cloud covered, but adjacent to a snow-covered pixel the cloud-covered pixel would be interpolated 
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as a snow-covered pixel. More advanced methodologies use a regional snow line approach, proposed 

first by Parajka et al. (2010). This approach calculates the mean elevation of all snow pixels and the 

mean elevation of all land pixels. The elevation of a cloud covered pixel is compared to the mean 

snow and land elevations and if the elevation is greater than the mean snow elevation it is classified 

as snow. Conversely, if it is less than the mean land elevation it is classified as land. A cloud covered 

pixel between these mean elevations is considered to lie in a transition zone and is classified as 

partially snow covered. They obtained annual accuracies ranging between 48.7 and 81.5%. This 

method was extended by Krajčí et al. (2014) who obtained accuracies of 73-92%. Both methods 

experience higher uncertainty in the elevation transition zone, during the melting time-period, and 

when cloud cover is extensive. 

Temporal interpolation aims to classify a cloud covered pixel based on imagery at separate 

times. Many research groups have used a combination of the MODIS sensors on the Terra and Aqua 

satellites because they have different pass over times. This combination has been shown to reduce 

cloud cover from an average cloud coverage of 63% to 52% (Parajka & Blöschl, 2008). Other 

methods use imagery from either preceding or succeeding days. Parajka & Blöschl (2008) achieved 

reductions from 63% average cloud cover to 34% using one previous day to infill. They further 

reduced average cloud coverage to 4% by using the seven previous days. While annually averaged 

accuracies were high (92.1 - 94.4%) using this method, the largest errors persisted during the 

accumulation and ablation periods. This large uncertainty occurs during the most valuable time 

because cloud coverage is high and spatial changes in SCA occur rapidly. The main issue with these 

methods is a multiple day window for infilling cloud covered pixels assumes the pixel does not 

change from snow to snow free during the period. This may not be true and could explain the 

uncertainty during accumulation and melt. 

Several cloud removal models combine spatial and temporal interpolation. The MODSNOW-

tool uses an eight-step method to remove all cloud cover for even 100% cloud covered imagery 

(Gafurov et al., 2016). The first step is the combination of Terra and Aqua satellites, followed by 

application of a conditional probability, a monthly snow probability, a virtual station to pixel 

relationship, a temporal combination, maximum and minimum snow lines, adjacent pixel 

combination, and finally multiple snow onset and melt dates (Gafurov et al., 2016). The conditional 

probability through the virtual station to pixel relationship steps are of particular interest. This step 

represents the probability of a pixel being snow covered based on the presence of snow at a ground 

station. The monthly probability states certain pixels are snow covered with high probability within 
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certain months. The virtual station to pixel relationship is like the conditional probability except that 

it uses an observed image pixel value as a virtual station in place of a ground measurement station 

observation. The probability of a pixel being snow covered is related to whether snow is observed at a 

different pixel, or the virtual station. It is important to note these probabilities are derived on an 

annual basis. During snow free months there will be a high conditional probability that some pixel 

will be snow free given snow free conditions at a virtual station, however during transitional months a 

reduction in accuracy should be expected. This is reflected in the accuracy range of 77.3-99.8% 

where 77.3% is measured during the melting season (Gafurov et al., 2016). The last step of the 

MODSNOW-tool uses snow onset and melt dates from multiple years of data to derive a threshold 

date for a pixel to be snow covered.  

The conditional probability has gained traction as an attractive method for removing cloud 

cover. Dong & Menzel (2016) expanded the MODSNOW-tool to include meteorological data, 

achieving an accuracy of 92% during the snow season. The Adaptive Spatio-Temporal Weighted 

Model (ASTWM) developed by Li et al. (2017) obtained 93.11% to 98.92% accuracy employing a 

two-step method which uses a conditional probability of the spatial and temporal coverage of snow. 

The ASTWM model uses a 15-day window for temporal interpolation, which includes previous and 

future images for a cloudy pixel on a given day. The 15-day window is too large to capture the 

rapidly changing SCA (Dong & Menzel, 2016).  

Spatial patterns of snowmelt offer predictive power that all other cloud removal methods 

lack. Models of spatial patterns rely on the repeatable nature of snowmelt across a landscape to 

remove cloud cover (Woodruff & Qualls, 2019). They simply determine when in the melt cycle the 

watershed is. Each pixel in the watershed has a relative timing of melt that describes when it melts in 

relation to all other pixels in the watershed. A collection of pixels whose relative melt timing values 

all fall within a narrow range would all melt concurrently, and the locations of those pixels 

throughout a watershed would define the snowline at the time of occurrence of that relative melt 

timing. Therefore, given a partially cloud-obscured image if even a small segment of the snowline is 

visible in the image, the spatial pattern model provides the information necessary to infill the 

remainder of the snowline and the value of all other pixels across the watershed with high spatial 

accuracy. The model indicates which pixels must melt next as well. If for example a clear day is 

followed by seven cloudy days, the model would indicate which pixels are likely melting beneath the 

cloud cover. This predictive power is unlike any other cloud removal method.  
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The purpose of this work is to derive the recurrent pattern of snowmelt using a K-means 

clustering analysis for the Upper Snake River Basin. This is a different statistical approach from that 

employed by Woodruff & Qualls (2019) who used the PCA. We will quantify the accuracy of this 

approach when compared against cloud-free independent data, directly compare the model with the 

model derived by Woodruff & Qualls (2019) and compare the cloud removal accuracies of both 

approaches. K-means clustering and PCA are mathematically different in how they approach and 

produce the spatial model. This direct comparison will highlight the implications of two different 

methods arriving at a similar, or different, spatial model of the recurrent pattern of snowmelt. There is 

significant scientific merit and potential for this new class of models in spatially modeling snowmelt. 

Study Site and Data 

Study Site 

The study area for this research covers 3,465 mi2 (8,894 km2) and elevations range between 

5,799 - 13,760 feet (1,737 – 4,194 meters). It is formally known as the Upper Snake Basin (Figure 

3.1) bordered to the West by the Teton Mountains and includes the hydrologic units of Snake 

Headwaters, Gros Ventre, and Greys-Hobock. The watershed experiences complete seasonal snow 

coverage. It serves as an important basin for Idaho agriculture, power generation, in-stream fish 

requirements, municipal and industrial applications (Qualls et al., 2013). This watershed is 

representative of the many watersheds around the world which serve as important locations of snow 

water storage. Land cover in the watershed is variable with 46.6% evergreen forest, 1.3% deciduous 

and mixed forest, 45.4% shrub and grass land, and the remaining 6.7% agriculture, developed land, 

and wetlands according the 2011 National Land Cover Database (Homer et al., 2015). 
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Figure 3.1: Upper Snake Basin with associated SNOTEL stations. 

The catchment also has 11 SNOw TELemetry sites (SNOTEL) operated and maintained by 

the Natural Resource Conservation Service (NRCS). Each site measures a 2 by 2 meter snow pillow 

which gives hourly Snow Water Equivalent (SWE) measurements. The 19-year study period recorded 

a wide range in snow conditions. Table 3.1 summarizes the snow seasons for 2000-2018. We see in 

the years 2000-2016 the maximum SWE recorded at each station is nearly three times larger in the 

biggest snowpack year compared to the smallest. The years 2017 and 2018 also represent a variety of 

snow conditions and were used as a validation dataset, discussed later. The melt duration in days 

varied greatly between 2017 and 2018. The bolded SNOTEL stations recorded a difference in melt 

duration (the time period from maximum SWE to zero SWE in days) from 23 days to 49 days at Base 
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Camp even though the difference in SWE is minimal 1-11 inches. The study region recorded a wide 

range in SWE and melt duration during the study period. 

Table 3.1: Variation in SWE and melt timing for study period and verification period of 2000-2016 and 2017-2018 

respectively. 

SNOTEL Station ID 
Elevation 

(ft) 

Largest 

Max 

SWE 

2000-

2016 

(in) 

Smallest 

Max 

SWE 

2000-

2016 

(in) 

Melt 

Period 

2017 

(days) 

Melt 

Period 

2018 

(days) 

Melt 

Period 

Difference 

2017-

2018 

(days) 

Max SWE 

Difference 

2017 - 

2018 (in) 

Base Camp 7060 27.1 8.7 81 32 49 7.3 

Thumb Divide 7980 29.5 8.9 56 33 23 1.2 

Lewis Lake Divide 7850 56.9 19.1 48 51 -3 3.1 

Snake River Station 6920 23.2 9.3 64 37 27 2.4 

Two Ocean Plateau 9240 55.1 22.8 66 62 4 11.5 

Togwotee Pass 9580 42.7 19.2 58 67 -9 0.9 

Phillips Bench 8200 44 18.8 48 50 -2 8.8 

Gros Ventre Summit 8750 21.7 9.1 38 45 -7 4.2 

Gunsight Pass 9820 27.3 10.5 49 52 -3 7 

Granite Creek 6770 30.1 10 75 40 35 11.3 

East Rim Divide 7930 18.8 6.7 58 28 30 5.8 

 

Data Sources 

The model was developed using remotely sensed data. The MODerate Resolution Imaging 

Spectoradiometer (MODIS) sensor on board the Terra satellite was selected. Daily imagery from the 

version six data product, MOD10A1, distributed by the National Snow and Ice Data Center (NSIDC) 

was downloaded for processing. The NDSI snow cover product was selected for this study. The NDSI 

or normalized difference snow index is a combination of bands four and six. Band four (0.545-0.565 

µm) is within the visible spectrum and band six (1.628-1.652 µm) is in the mid infrared. The equation 

subtracts band six from four and divides this value by their sum. To convert the NDSI snow cover to 

fractional SCA a threshold of 0.4 was applied, as documented in the version six user guide (Hall & 

Riggs, 2015). No temporal interpolation with sensor combinations was used and therefore the Terra 

satellite was selected. Although the band seven of the Aqua Satellite has been restored, Hall et al., 

(2019) demonstrated the Aqua sensor produces more commission errors than the Terra sensor.  The 

Upper Snake Basin is captured by the MODIS swaths h09v04 and h10v04. Images from 2000 through 

2016 were used to develop the model and accuracy was calculated with data from 2017 and 2018. 



53 

 

 

SNOTEL data distributed by the Natural Resource Conservation Service (NRCS) was used 

during the initial steps of the model derivation. There are eleven sites in the watershed. Base Camp 

station ID 314 daily SWE measurements were downloaded for 2000-2016. This station is located at 

an elevation of 7060 feet, and over the 19-year study period often was the first station to melt 

completely, as identified by the first date SWE equals 0.0 inches after the date of peak SWE. 

Methods 

Data Preparation 

Remote sensing was used to capture the recurrent pattern of melt. We capture the single year 

melt information by identifying when each pixel melts. The last day snow (LDS) is seen and the first 

day land (FDL) is seen on a pixel-by-pixel basis describes the timing of melt. LDS and FDL dates are 

intentionally chosen to correspond to the first date of melt-out for each pixel and ignore subsequent or 

secondary snowfall events. We extract the FDL and LDS one year at a time by iterating through all 

the available imagery. The values of FDL and LDS are saved to two output files containing the day of 

year (DOY) values for each pixel. The two output files are identical in spatial resolution and 

geolocation to MODIS imagery. The timing of peak SWE based on SNOTEL records was used to 

guide when during the snow season to begin the image search process to capture a pixel’s initial melt 

out date rather than those of secondary snowfall events. Although it was expedient to use SNOTEL 

for this purpose, the starting DOY to initiate the search could also be determined by inspection of a 

given year’s MODIS imagery. In the data preparation stage only images from the years 2000 through 

2016 were used, a total of 34 output files (17 FDL and 17 LDS). The difference between the FDL and 

LDS images for each year is the number of days each pixel was cloud covered during the period melt 

occurred for each pixel in each year. This initial step was first proposed by Woodruff & Qualls (2019) 

and should be referred to for an in-depth explanation. 

Cluster Model 

Each FDL describes the day of year a pixel melts, or changes from snow to snow free, and we 

hypothesize a single model developed using multiple years (FDLs) will describe the recurrent melt 

pattern. The FDLs are aggregated into a matrix where a given column contains all the FDL values 

recorded for all the pixels in the watershed for a single year, and a given row contains all the FDL 

values for every year for a single pixel. For example, in row n the FDL value for column m is 

contained, and the FDL value for column m+1 in row n describes the DOY the same pixel melted in a 

different year. The matrix dimensions are therefore N by M, where N is 41,503 (the number of pixels 

occupying the watershed in an image), and M is 17 (the number of years for which FDL was 
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calculated). Once organized a K-means clustering analysis was applied to the dataset. K-means 

clustering analysis partitions a dataset into groups where each group is made up of values of similar 

nature. 

A K-means clustering analysis partitions a dataset into Kc clusters, where Kc is a user defined 

parameter. Each cluster is defined by a mean vector referred to as a centroid (R). K-means clustering 

is an iterative process which assigns all the points in a dataset to a cluster defined by R. The number 

of centroids is equal to the number of clusters. These clusters are chosen by minimizing the Within 

Group Sum of Squares Error (WGSS). In the first iteration the centroids for each cluster are guessed, 

and each data point is assigned to a cluster based on its Euclidean distance from the cluster centroid, 

R. All the points assigned to a cluster can be used to calculate the sum of squares error for each 

cluster, and WGSS is the cumulative sum of all the error terms for each cluster. In the second 

iteration the centroids are moved, the data points are reassigned to clusters, and the WGSS is 

calculated. The partitioning which produces the minimum WGSS is selected as the optimal grouping 

of the data. The number of iterations in theory should be as many as are required to achieve the 

minimum WGSS, however it is impossible to check all possibilities with the current computing 

capabilities. The user therefore must specify the number of iterations. 

The WGSS can be described by equation 3.1. This is true for K clusters, with centroids R, 

applied to a matrix of size N by M where a matrix element is identified by n, m. The Euclidean 

distance error term is defined by d(). At each iteration, equation 3.1 is applied and the WGSS is 

saved. The best fit of the cluster model is found by the partitioning that minimizes the WGSS (Everitt 

& Hothorn, 2011). 

Equation 3.1 

𝑊𝐺𝑆𝑆 =  ∑ ∑ ∑ 𝑑(𝑥𝑛𝑚 −  𝑅𝑘𝑚)2
𝑀

𝑚=1𝑖∈𝑅𝑘

𝐾

𝑘=1
 

We hypothesize the K-means clustering analysis will group pixels together based on their 

relative melt timing. Our hypothesis suggests the relative melt timing of a cluster is described by its 

centroid, Rt. In the FDL matrix each pixel (row) has 17 values which describe actual melt timing for 

that pixel for each year. A row within this matrix describes the pixel’s overall relative melt timing, rt. 

The rt of each pixel does not assume the pixel melts on the same day each year, but melts at the same 

time in relation to all other pixels. The K-means clustering analysis uses the rt to partition the data 

into clusters with centroids Rt. Each cluster Rt should group pixels of similar rt. The WGSS is 
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therefore calculated based on the Euclidean distance of the rt which only describes a time value. 

Spatial information is not used to partition the data, only each pixel’s melt timing. 

We applied the K-means clustering analysis to the FDL dataset with Kc equal to 20 and 25 

optimization iterations. The Rt is used to order the clusters for the final model. The cluster with the 

smallest Rt will melt first, the next larger Rt melts second, and so on. We can spatially model SCA 

selecting r* to group the clusters by Rt. Let us assume Rt1 which is the smallest Rt contains 5% of the 

total pixels, and Rt2 is the second smallest Rt and it contains 2% of the total pixels. To produce a 

representation of 95% snow covered area we select r* as one. By this selection Rt1 is considered snow 

free (5% area) and any Rt greater than r* is snow covered or the remain 95% of the pixels. If we 

select r* as two, then Rt1 and Rt2 are snow free (7% area) and Rt3 through Rt20 are snow covered (93% 

area). Because the number of clusters is finite, the percentage of area changes in finite increments 

rather than continuously with this model. 

The ordering of Rt provides the temporal component which governs how the snow cover 

changes spatially across the watershed from 100% coverage to 0% coverage. If this is true and our 

hypothesis is correct, then the cluster model will extract the multi-year recurrent pattern. The K-

means clustering analysis is only run one time to produce the final model. After it is developed the 

spatial accuracy can be quantified. 

Accuracy Assessment 

The final model is validated for accuracy using cloud free days (≤5% cloud cover by area) in 

2017 and 2018. Using the same methods as Woodruff and Qualls (2019) the VPE, or visible pixel 

error, is used to choose the model best fit to a clear day image. VPE is shown in equation 3.2, where 

TP is the total visible pixels, IL is the number of pixels incorrectly modeled as land but measured as 

snow and IS is the number of pixels incorrectly modeled as snow but measured as land. 

Equation 3.2 

𝑉𝑃𝐸 =  √
𝐼𝑙

2  +  𝐼𝑠
2

𝑇𝑝
2  

The VPE is calculated for the model possibilities, or each combination of Rt. The Rt 

combination which produces the smallest VPE is chosen. Spatial accuracy is calculated after the Rt 

combination is chosen. The spatial accuracy is calculated by equation 3.3. 
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Equation 3.3 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   (1 −  
𝐼𝑙 + 𝐼𝑠

𝑇𝑝
) ∗ 100% 

For cloud removal purposes the VPE is applied to choose the best model fit based only on the 

visible pixels. The comparison between the PCA and Cluster models discussed later also uses 

equation 3.2 to choose the best fit and equation 3.3 to calculate accuracy. 

Results 

In this research we sought to develop a single model which describes the spatial and temporal 

pattern of snow-covered area. Imagery data from 17 years was processed and statistically combined 

using K-means clustering, which we will refer to as the “Cluster model”. The Cluster model results 

are presented in the following order. The model descriptive results, an assessment of the model’s 

spatial accuracy when compared with two independent years (2017 and 2018), and a direct 

comparison between the Cluster model and the PCA model developed by Woodruff and Qualls 

(2019) including a cloud removal comparison. 

Cluster Model 

The FDL imagery was used as input for the model derivation as it represents the first day 

there is confidence a pixel has melted (Figure 3.2). Figure 3.2 presents the FDL images for 2001 

through 2010. The spatio-temporal patterns of melt are quite similar, even though the actual melt 

dates by area and total duration of melt vary widely among the years. For example, 2005 recorded the 

earliest FDL value as DOY 22 and the latest as DOY 197, while 2008 recorded a range of DOY 93 to 

DOY 212. Melt timing varies significantly across the years. 
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Figure 3.2: Comparison of the First Day of Land images for 2001-2010. 

These FDL images, along with the seven not pictured, were processed using a K-means 

clustering analysis. The distribution of each cluster is shown in Figure 3.2. Each bar’s height shows 

how much of the total area is assigned to each cluster, and the “X” shows the Rt value for each 

cluster. The amount of area described by each cluster varies from 0.66% (cluster 5) to 10.57% (cluster 

6). Each Rt represents the centroid of melt timing for the cluster. As shown in Figure 3.3, the values 

of Rt are ordered from first to melt to last. In some cases, the delta between Rt is large meaning the 

melt timing is further apart for the clusters, while in others it is small meaning the clusters melt closer 

together in time. 

Each cluster’s melt timing is identified by Rt which is sequential. This sequence describes 

SCA from 100% to 0% through the aggregation of clusters. Once one cluster has melted it represents 

a percentage of snow free area. The values of Rt can be used to convert the Cluster model to a binary 

snow and snow free image. Once a threshold, r*, has been selected all clusters with Rt less than r* can 

be converted to snow free and all above r* as snow covered. 
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Figure 3.3: Cluster order by Rt (shown as “X”), and percentage of area each cluster describes shown by bars. 

The Cluster model is shown in Figure 3.4. The light blue melts first given as Rt1, and the dark 

melts last given as Rt20. If we compare the spatial model to Figure 3.3, the lightest blue in Figure 3.4 

is associated with the first bar or smallest Rt in Figure 3.3. Rt1 represents 3% of the total area. Our r* 

value for representing 97% SCA is therefore equal to 1, or Rt1 is snow free and Rt2-Rt20 is snow 

covered. To represent the next step in SCA depletion we set r* to two. Referring to Figure 3.3 we see 

that Rt1 plus Rt2 equals 6.4%. At this r* our SCA is 93.6%. In Figure 3.4 the complementary areas are 

the lightest blue and the second lightest blue or 6.4% snow free and 93.6% SCA. Simply by selecting 

r* we represent a stepwise addition of cumulative SCA. 
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Figure 3.4: Cluster model of snow-covered area. Cluster melt timing is given by Rt ranging from 1-20. Rt1 melts first and is 

given as the lightest blue, and Rt20 melts last given as the darkest blue. To represent SCA r* is applied to categorize the Rt 

values into the binary snow or snow free. For an r* of 2 Rt1 and Rt2 both would be considered snow free and Rt3 through Rt20 

would be considered snow covered. 

Accuracy Assessment 

Woodruff & Qualls (2019) demonstrated the recurrent pattern accurately models SCA 

independent of the timing of melt. We hypothesize the K-means clustering method can also capture 

the recurrent pattern and accurately describe SCA, and that the K-means clustering model will closely 

approximate the Woodruff & Qualls (2019) PCA model. To validate this hypothesis, we used clear 

day imagery (≤ 5% by area cloud cover) from 2017 and 2018 to calculate the spatial accuracy. 

Equation 3.2 is used to calculate the VPE for each selection of r* against the clear day image. The r* 

which produces the minimum VPE is the best fit SCA. With r* optimized we calculate the spatial 

accuracy with respect to the observed image by equation 3.3. Because the cluster model is a discrete 

representation of SCA we also directly compare the numerical values of the cluster model SCA and 

the observed SCA. 
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Table 3.2 describes the model performance for all the cloud free images during the melt 

seasons of 2017 and 2018. Throughout the melting seasons we see an average spatial accuracy of 92.5 

and 92.2% for 2017 and 2018, respectively. Spatial accuracy in 2017 ranged from 84.5-97.1%. In 

2018 the range was 85.6-96.6%. Overall, spatial accuracy of greater than 90% was recorded for SCA 

ranges from 0-50% SCA and 79-100%. The SCA range of 51-78% SCA recorded accuracies between 

84.5-90%. The lowest VPE was not always found at the closest discrete cluster model SCA when 

compared with the observed SCA. For example, on day 103 in 2017 (Table 3.2 bold) the cluster 

model chose 86.3% SCA, but the actual SCA was 79.3% SCA. The closest cluster model 

representation is 80.2% SCA. The minimum VPE did not select the closest SCA representation as the 

best fit r*. The cluster model only chose the closest SCA 66.6% of the time. This mismatch occurred 

more regularly at higher SCA. This is an important distinction between the Cluster model and the 

PCA model produced by Woodruff & Qualls (2019). The spatial accuracy of the cluster model 

(92.2% and 92.5%) is like the PCA model (91.3% and 92.5%) for 2017 and 2018, respectively. The 

PCA model produces these high accuracies while also choosing the correct SCA (within +/- 2%) 89% 

of the time.  
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Table 3.2: Cluster Model clear day spatial accuracy 2017-2018. Day of year of the image, observed SCA, Cluster model 

SCA chosen, and spatial accuracy are given. 

2017 2018 

DOY SCA 

Cluster 

model 

SCA 

Spatial 

accuracy 
DOY SCA 

Cluster 

model 

SCA 

Spatial 

accuracy 

83 96 93.6 94.9% 111 85.9 86.3 90.6% 

103 79.3 86.3 92.2% 116 78 86.3 85.6% 

124 73.1 69.6 86.1% 117 66.8 69.6 88.0% 

125 70.9 69.6 86.6% 145 28.3 30.2 93.4% 

130 55.6 56.9 88.8% 153 23 19.4 93.2% 

131 60.8 56.9 84.5% 154 18 19.4 94.3% 

151 34.9 38 91.0% 163 9.2 10.1 96.6% 

156 28.9 30.2 92.0% 164 10.9 10.1 96.2% 

158 24.4 23.5 91.9%     

170 14.5 19.4 93.1%     

173 12.5 10.1 95.7%     

174 10.1 10.1 96.6%     

176 8.8 10.1 96.5%     

177 10.2 10.1 96.3%     

181 5.7 4 97.1%     

182 6.5 4 96.3%         

Average   92.5%    92.2% 

 

The spatial accuracy of the Cluster model varies with SCA but maintains high accuracy when 

applied to independent data. The model was not compared with any data from 2000-2016 as it was 

used to calculate the model. The high clear day spatial accuracy shows a recurrent pattern can be 

extracted using K-means clustering and is robust when compared to independent data. 

Comparison of Cluster and PCA Models 

The Cluster model can be used to model snow covered area as it changes throughout any 

snow year. The PCA method proposed by Woodruff & Qualls (2019) also achieves this. A significant 

difference between the Cluster and PCA approaches warrants comparison. The PCA approach 

discards PC2-17, about 15% of the total variance which was argued to contain cloud influence. Even 

with the discarded information the PCA model was accurate against independent data. The Cluster 

approach does not discard information. If our hypothesis that the Cluster model extracts the recurrent 

pattern is correct, then the PCA and Cluster models should be identical even though the PCA discards 

information. We compare the models by treating each Cluster model SCA as a clear day image and 
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using equation 3.2 to fit the PCA model to it. The grouping of Rt in the cluster model and selection of 

r* should coincide with the t* threshold, or the relative timing of melt, used in the PCA model 

discussed in Woodruff & Qualls (2019). 

We calculate two measures of similarity between the models. The spatial accuracy of the 

comparison of the PCA and Cluster models, and the accuracy of the SCA chosen by the PCA model 

when it is fit to the Cluster model. Table 3.3 presents the Cluster model SCA, the fitted PCA model 

SCA, the calculated VPE, and the spatial accuracy of the fit. The PCA model chose a nearly perfect 

SCA representation every time apart from one which differed by more than 1% SCA (Cluster model 

SCA of 80.79%). The PCA model and Cluster model therefore represent similar spatial coverages of 

snow throughout the melting season. 

Table 3.3: Comparison of the Cluster and PCA models. Spatial accuracy, VPE, and SCA chosen are all shown. 

Cluster 

model 

SCA 

percent 

PCA model 

SCA percent 

chosen 

VPE 
Spatial 

accuracy 

96.96 97 0.012 98.27 

93.60 94 0.019 97.37 

86.30 86 0.022 96.92 

80.79 82 0.037 94.91 

80.13 81 0.038 94.65 

69.54 70 0.026 96.37 

66.38 67 0.038 94.65 

56.90 57 0.019 97.34 

50.06 49 0.033 95.39 

47.28 47 0.022 96.90 

46.19 47 0.025 96.51 

39.51 39 0.025 96.51 

37.95 38 0.021 97.00 

30.23 30 0.026 96.38 

28.80 29 0.025 96.50 

23.52 23 0.034 95.28 

19.39 19 0.016 97.78 

10.18 10 0.008 98.88 

4.21 4 0.005 99.30 

 

The VPE of the PCA model fitted to the Cluster model at all SCA values is exceptionally 

low. The lowest VPE, or best fit, is achieved at the Cluster model’s 4.21 SCA with a value of 0.005. 
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None of the VPE values exceed 0.038. This is also reflected in the spatial accuracy which is 

uniformly high. The highest spatial accuracy of 99.3% is achieved at the Cluster SCA of 4.21. 

Average spatial accuracy is 96.7% across all SCA values. The lowest reported accuracy is 94.6% at 

the Cluster model’s SCA of 69.54%. The recurrent pattern is captured by both methods even though 

the PCA discards 15% of the variance in the dataset. The same dataset was used however the methods 

for calculating the models are mathematically different, as discussed later. 

The spatial distribution of the disagreement between the PCA and Cluster models is shown. If 

the areas of disagreement are constrained to a single area there may be a significant difference 

between the two models. The ideal distribution of errors would be randomly dispersed about the snow 

to no snow line. Figure 3.5 presents where the models differed between the PCA 70% SCA 

representation and the Cluster model 69.54% SCA. The left image shows all the pixels that were not 

equal. The blue indicates where the Cluster model indicated snow, but the PCA model indicated land, 

and red shows the opposite scenario. On the left these errors look randomly distributed throughout the 

watershed, however when we impose the PCA 70% SCA snowline the errors follow the snowline. 

The difference between the two models is a slight shift in the snow to no snow interface. This 

distribution of errors was noted at other SCA comparisons as well, which are not shown. The 

differences between the models are minimal and are distributed in close proximity to the snow to no 

snow interface demonstrating the robust nature of the recurrent pattern of snowmelt. 
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Figure 3.5: Spatial differences between PCA and Cluster model at 70% SCA. Blue indicates locations the Cluster model 

models snow but the PCA modeled land. Red shows where the Cluster model models land but the PCA modeled snow. For 

reference the PCA snowline is imposed over the right image. 

Cloud Removal Comparison of the Cluster and PCA Models 

Cloud removal was completed for the melt period of 2018 to compare the PCA and Cluster 

models. The VPE (equation 3.2) is calculated based on the visible pixels which allows us to select the 

cloud removed SCA for both models. This method replicates the cloud removal completed in 

Woodruff & Qualls (2019) for the PCA model. Clouds were removed from all the 2018 imagery 

between DOY 100-165. This is the period where bulk of melt occurs. Cloud cover was removed for 

any day where at least some portion of the watershed was visible. Figure 3.6 presents the results from 

the cloud removal. 
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Figure 3.6: Cloud removal of daily imagery through 2018 melt period. 100% cloud cover days were omitted, and cloud free 

days were used as verification. Cloud cover is shown as a bar graph on the secondary y axis and SCA on the primary y axis. 

PCA cloud removal results (green “X” with dotted line) and Cluster cloud removal (hollow circle with dashed line) and 

cloud free days are indicated by the hollow red squares. 

For this direct model comparison cloud cover was removed one day at a time. No information 

about snow coverage from either the previous or subsequent days was used to inform the cloud 

removal process. SCA was selected purely by the minimization of equation 3.2. In Figure 3.6, two 

sets of points and lines are shown. The PCA model cloud removed values are shown by the dotted 

line and “X”, while the Cluster model cloud removed values are shown by the dashed line and hollow 

circles. The cloud free days where no cloud removal was necessary (red squares) are also shown. In 

both cases the models accurately represent the reduction in SCA with time and closely follow the 

time series of cloud free days. Both models chose the same or nearly the same SCA. Since the PCA 

model can represent SCA changes at 1% intervals we see a more linear decline especially between 

DOY 133-137 and 156-162. Some of the cloud removed days estimated unrealistic SCAs by both 

models, such as DOY 131 and 143. If we refer to the cloud cover percentage in Figure 3.6, both days 

had cloud coverage of nearly 100%. Despite the few erroneous SCA estimates, both models produced 

cloud removed image time series that resemble a cumulative snow depletion curve. This type of curve 
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is often used as input for snowmelt models such as the Snowmelt Runoff Model (SRM) developed by 

Martinec & Rango (1986). 

In the 65-day period of melt only six days stand out as potential errors, days 120, 121, 131, 

143, 148, and 151. Cloud coverage on these days was 99.9, 97.6, 99.9, 99.8, 99.5, and 97.2, 

respectively. A quick look at the SNOTEL site Base Camp also shows an increase in SWE between 

DOY 120 to 121. Due to this, we can say the measurement on DOY 121 may be correct. This shows 

that the models performed well except when cloud cover exceeded 99% of the image. In the cases of 

DOY 131 and 148 only land pixels were visible and for DOY 143 only snow pixels. No portion of the 

interface between land and snow was visible. Both models perform best when some portion of the 

interface is visible. 

The recurrent pattern of melt produces a signal strong enough that multiple methods can 

extract it. A multi-year combination of remote sensing data is required to effectively handle the issue 

of cloud interference and develop the models. The single application of cloud removal is secondary to 

the potential of a spatial model of this kind. Both methods, PCA and Cluster, represent the spatial 

information of snow independent of the highly variable timing, depth, and duration of melt. Unlike 

other methodologies of cloud removal, which have a main purpose of infilling missing data, the 

recurrent pattern approach derives a characteristic variable of snowmelt that has applications in cloud 

removal. We are scratching the surface of potential applications of this new type of model. 

Discussion 

Implications of Similarity Between Cluster and PCA Models 

The cluster model accurately models snow covered area when compared to independent data 

(2017 and 2018). Spatial accuracy when compared to cloud free imagery ranges from 84.5-97.1%. 

One other model exists which uses a multi-year method to create a model of the recurrent pattern of 

snow-covered area, the PCA method by Woodruff & Qualls (2019). When these models are 

compared directly, they exhibit remarkably similar representations of SCA throughout the melting 

season as shown by the high degree of accuracy (average 96.7%) from one model to the other. Both 

models also remove cloud cover by utilizing the recurrent pattern with comparable results (Figure 

3.6). Two significant points about these models are, they are mathematically different methods and 

produce nearly equal results, and they both propose a different approach to cloud removal than 

current methods. 
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Both methods, PCA and K-means Clustering, were applied to the same dataset for the same 

period 2000-2016. If these methods conceptually and mathematically derived the output in the same 

way, there would be no need for comparison. The Cluster analysis is conceptually different than PCA 

as it is the only multivariate technique which does not estimate the variate (Grimm & Yarnold, 2000). 

A cluster analysis is exploratory in nature and lacks the statistical basis on which to draw statistical 

inferences. It determines the partitioning of a dataset or the natural grouping. PCA estimates the 

variate seeking to identify a direction that exhibits the greatest amount of variance of the dataset. 

These directions are orthogonal vectors known as eigenvectors. Because PCA estimates the variate, 

Woodruff & Qualls (2019) used a threshold method for determining SCA. In the cluster analysis only 

the discrete clusters were used. The natural groupings were compared against cloud free imagery.  

The mathematical difference between PCA and K-means Clustering is in how variance is 

used and treated. Principal Component Analysis uses the covariance matrix of a dataset to derive the 

eigenvectors and values. Eigen values decrease in size, and one exists for each column in a matrix (17 

in this case, corresponding to the number of years included in the dataset used in the analysis). Each 

Eigenvalue has an associated Eigenvector which describes a direction, and each pair is referred to as a 

principal component (PC). Each eigenvector is orthogonal to all others. The first Eigenvector 

direction (principal component one or PC1) describes the greatest amount of variance in the dataset, 

the second the second most and the last the least most. When combined all the eigenvectors describe 

100% of the dataset’s variance. Woodruff & Qualls (2019) use this concept on the dataset describing 

85% of the variance in PC1. They then multiply the original dataset, a matrix of dimensions 41503 X 

17, by the eigenvector describing PC1, a vector of dimensions 17 X 1. The result is a single vector 

which they then plot with x, y information to produce the final model. A matrix multiplication is used 

to produce the model which is linear in nature. Cluster analysis seeks only to partition the dataset into 

groups. Referring to equation 3.1 we see how this is done. Centroids Rt are chosen, and each point is 

assigned to a centroid based on their Euclidean distance. The WGSS measures which cluster grouping 

is best. This term is a sum of the error, or squared distance from each point to its cluster’s centroid for 

each cluster. Variance within a cluster is the fundamental idea behind the WGSS. Unlike the PCA 

which estimates or tries to describe the variance with vectors and linear transformations, the cluster 

analysis uses the variance within a cluster to partition the data which is a nonlinear description. One 

method seeks to model variance while the other uses variance as a means for dividing the dataset. 

How each method arrives at its result differs, but a more significant point about the methods 

remains. Woodruff & Qualls (2019) argue only PC1 is needed, and the subsequent PCs (2-17) contain 
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cloud contamination. This is shown by the correlation between the PC1 values produced using the 

FDL and LDS datasets, which allows them to discard 15% of the variance in the dataset. It is 

impossible to discard information using a K-means Cluster Analysis. If any portion of the recurrent 

pattern were described by the 15% of variance discarded by Woodruff & Qualls (2019) then the 

spatial accuracy of the Cluster model would exceed the PCA. Spatial accuracy of the Cluster model 

ranged from 84.5-97.1%, which is slightly lower than the 84.9-97.5% spatial accuracy for the PCA 

model. The PCA model selects the nearest correct SCA (within +/- 2%) 89% of the time, while the 

Cluster model does so only 66.6% of the time. This demonstrates the “loss of data” due to discarding 

PC2-PC17 with the PCA method increases the spatial accuracy of the recurrent pattern of melt. The 

increase is directly a result of excluding cloud contamination held in the FDL and LDS images. 

Distinction Between Recurrent Pattern Cloud Removal and Current Methods 

The value of these models is their ability to spatially represent snow covered area 

independent of snow depth, melt duration, and melt initiation. Cloud removal is a single application 

of the repeatable pattern. The current cloud removal technologies face three issues. One, the cloud 

removal methods record their lowest accuracies during the transitional melt period. Two, the current 

technologies which achieve 100% cloud removal rely heavily on multiple data sources including 

ground-based data. Three, current methods use intricate interpolation schemes which produce highly 

dependent cloud free images that may not be suited to extreme drought or flood years. 

The Cluster and PCA model both are designed specifically to remove cloud cover during the 

melting period. For operational snowmelt modeling this is the period of greatest importance. The 

MODSNOW-tool developed by Gafurov et al. (2016) boasts cloud removal on days with 100% cloud 

cover. They found accuracies between 77.3-99.8% when removing imposed cloud cover over cloud 

free days (≤10% cloud cover) in the Karadarya basin for an 84-day period. The lowest accuracy of 

77.3% was recorded during the melting season. In contrast both the PCA and Cluster model found a 

minimum spatial accuracy of nearly 85%. We should also note our method for calculating accuracy is 

far more stringent as we count incorrectly modeled “snow covered” pixel as an error rather than just 

infilling the cloud covered pixels. Our model is built with operational snowmelt modeling in mind 

while other methods are more suited to long term monitoring of snow extent. 

Current cloud removal methods rely on multiple data sources while the Cluster and PCA 

methods require only remote sensing from one sensor to remove cloud cover. Dong & Menzel (2016) 

expanded on the MODSNOW-tool to increase the accuracy of rejecting misclassified pixels using 

meteorological data and interpolations of ground-based data, a total of three types of ground-based 
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measurements were required. Using ground –based data to quantify their accuracy they achieved 

spatial accuracies of 87-92% where 87% was recorded during the melt period. Even the Adaptive 

Spatio-Temporal Weighted Model (ASTWM) developed by Li et al. (2017), requires precipitation 

and temperature data to employ their step-by-step cloud removal protocol. Li et al. (2017) recorded 

remarkably high spatial accuracies of 93.11-98.92% accuracy when removing 100% imposed cloud 

cover. Relying on multiple data sources requires high quality data that is routinely available. It is very 

unlikely these approaches would record the same high accuracy in an ungauged watershed, where 

using the recurrent pattern approach either through the Cluster model or PCA model would not falter. 

Each of these cloud removal methods uses at least one step that infills cloud covered pixels 

from previous or subsequent day imagery. Given a scenario where a pixel is viewed as snow covered 

and is covered by cloud for 15 days and seen as snow free on the 16th day the above infilling method 

would produce a “best guess” as to when the pixel melted. Referring to Figure 3.6, between days 120 

and 135 there is a 25% reduction in snow covered area. Equally important is this data once infilled is 

dependent on the quality of data used to infill. Cloud cover removed using the Cluster model uses 

only the pixels in the cloudy image, meaning each cloud removed image is independent of influence 

from data on other days. This issue has been addressed in current methods with a conditional 

probability of snow cover. One conditional probability built into the MODSNOW-tool is the monthly 

probability of snow cover for a pixel. This works fine for average snow years; however, the drought 

and flood years which have the highest stakes for water management do not behave like average snow 

years. In contrast the Cluster model and PCA models shift effortlessly with varied timing in melt 

because they are related to the spatial progression of melt. In fact, the test period used to develop the 

Cluster model contained a wide variety of snow conditions. As shown in Table 3.1, the melt timing 

and snow depth was extremely variable for the years used to develop the model, and during the 

validation period of 2017 and 2018. Where other cloud removal technologies may struggle during 

extreme snow years, both large and small snowpacks, our method records no loss in accuracy. 

While reduced accuracy during the melting season is a significant issue, the reliance of cloud 

removal methods on multiple data sources makes these methods error prone in ungauged watersheds. 

The multi-step methods such as MODSNOW-tool and the probability approach by Dong & Menzel 

(2016) incorporate ground-based data to remove cloud cover and increase the accuracy of the cloud 

removal by rejecting misclassified pixels. The quality of cloud removal is thus hindered by the 

availability of data. The same is true for the ASTWM model by Li et al. (2017). The ASTWM model 

uses spatial and temporal probability of snow. The temporal probability is based on a 15-day time 
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series of images so if any images are missing from the period confidence may be reduced. The 

fundamental difference between these methods and the Cluster and PCA models is they seek to infill 

a cloudy pixel based on information from temporal and spatial combinations. The Cluster and PCA 

methods model snow covered area and cloud removal is a product of identifying where in the spatial 

progression of melt the watershed is. 

Limitations 

The Cluster model is developed using raw MODIS imagery and cloud removal is achieved 

with only the visible pixels in a cloudy image. Applications of this model are limited by data quality 

and the user identified parameters used to derive the FDL imagery. We applied a constant threshold to 

classify pixels as snow versus snow free. During the FDL data preparation stage the NDSI snow 

cover threshold becomes important as it determines the DOY of melt to be used to combine the data. 

As seen in Figure 3.2 early detection of melt shows up as dark areas surrounded by light areas. It is 

unlikely this representation of melt is correct and is the general location of persistent errors. Viewing 

angle, illumination, land cover and other factors all influence the NDSI (Rittger et al., 2013). 

Misclassified pixels may also be a source of error during the data preparation step leading to 

misrepresentative information in the FDL. In cloud removal application misclassified pixels may 

cause the model to select an incorrect SCA. For this to happen there must be a considerable number 

of misclassified pixels along the interface which would shift the model to choosing an incorrect 

interface, however this is unlikely. 

The second limitation of this model is some pixels must be visible to remove cloud cover. An 

image with 100% cloud cover offers no spatial information for determining the SCA. The model 

accuracy is also related to the interface which is visible. If no portion of the snow-to-snow free 

interface is visible confidence in the model’s ability to select the correct SCA is decreased. This can 

be seen in Figure 3.6 on DOY 131, 143, 148, and 151. In these cases, little to none of the interface 

was visible. The Cluster model also has a non-uniform representation of SCA which can cause it to 

choose an incorrect SCA as shown by the comparison of the PCA and cluster method (Comparison of 

Cluster and PCA section). 

Conclusions 

Hydrologic modeling of snow can be aided by watershed characteristics such as the recurrent 

pattern of melt. We propose a method to derive the recurrent pattern of melt and verify it against a 

different statistical approach. The Cluster model accurately represents snow covered area changes 

throughout two melting season 2017 and 2018 acquiring spatial accuracies of 84.6-96.0% when 
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compared against cloud free days. The model also showed the ability to remove cloud cover for each 

day during the melt period of 2018 tracking closely the timing of melt, Figure 3.6. Cloud removal is a 

single application of this model and is used here as a method for comparing the PCA and Cluster 

models. The benefits of using a recurrent pattern approach to cloud removal is it does not rely on 

ground-based data, temporal interpolations, and it readily handles the variable timing of snowmelt. 

These issues are persistent setbacks to the current cloud removal methods. The recurrent pattern of 

snowmelt has been noted in the literature for over 40 years (Adams, 1976), but has been an elusive 

component of snowmelt to capture. 

Comparison of the Cluster method and the PCA method has demonstrated there is ease of use 

with the PCA method, but the pattern is unchanged independent of how it is calculated. We also 

verified the discarding of data using the PCA method, which was argued to be attributed to cloud 

influence by Woodruff & Qualls (2019), increases the spatial accuracy of the captured recurrent 

pattern of melt. Further research is necessary into applications of the recurrent pattern of snowmelt; 

however, spatial information of snow-covered area can lead to increased accuracies in modeling 

streamflow, a benefit of using the model proposed here (Safari Shad et al. 2014; Qui et al. 2014). 

Potential applications could include boundary conditions for snow location, snowmelt timing 

information in ungauged watersheds, and potential relationships with snow covered area and 

streamflow in ungauged watersheds. The recurrent pattern of snowmelt identifies a watershed 

characteristic unique to each watershed which has never been captured. This information opens a new 

avenue for research questions. 
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Chapter 4: Sensitivity of the Pattern Based Approach to Snowmelt 

Modeling using the Inter-Annual Recurrent Pattern of Snowmelt to User 

Decisions 

Introduction 

Snowmelt is a vital source of fresh water in the around the world. It has been estimated that 

50-80% of streamflow in the Western United States is attributed to snowmelt (Stewart et al., 2004). 

The changing climate affects this finite resource of snowmelt driven streamflow, which is projected to 

produce earlier and earlier peak streamflow (Barnett et al., 2005). Mote (2003) demonstrated the 

already changing snow characteristics as they relate to time across the Western United States for the 

period of 1950-2000. The more interpretable and data driven approaches we can develop the better 

we can manage water when it matters most such as in droughts. The spatio-temporal model of snow-

covered area (SCA) depletion is an interpretable and data driven approach to snowmelt modelling. 

We investigate methods for increasing the spatial accuracy of the spatio-temporal model of SCA in 

this research. 

The complex system of snowmelt requires accurate physical and/or empirical representation 

of the drivers of melt. In many model frameworks parameters are calibrated to simulate streamflow 

and tested against independent data. Regionalization is a method used to transfer parameters from one 

watershed to another based on watershed similarity (Bloschl & Sivapalan, 1995). The idea of 

watershed hydrologic similarity was first proposed by Wood & Hebson (1986) and has expanded into 

an area of significant research. Regionalization is a technique which allows us to classify watersheds 

based on their hydrologic similarity to better simulate streamflow in watersheds ungauged 

watersheds. Kanishka & Eldho (2020) used a similarity index and simulated streamflow to test a 

variety of regionalization or classification techniques for the transfer of fitted parameters for the 

SWAT model. They found that Isomaps and regionalization based on physical similarity were the 

best methods to classify watersheds as similar. We have gone to great lengths to find unifying 

characteristics that link watersheds. Effectively these techniques seek to adapt the parameters of a 

process so they are applicable in a new area. An important question remains about what parameters 

need to be fit. Newman et al. (2014) developed two approaches to represent subgrid variability in land 

surface models to transfer these subgrid values into the larger gridded models. The assumption here is 

the snowmelt model representativeness is a function of the physical characteristics which we are 

targeting through these models, a bottom up approach. Given this assumption we could suppose that 

the snowmelt should follow a spatial pattern determined by these parameters, because the model does 
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not have to change, a top down approach. This is a valuable point because the process of snowmelt 

can be represented spatially by a spatio-temporal model which captures the pattern (Woodruff & 

Qualls, 2019). The spatio-temporal model is an automatic parameterization of the snowmelt that is 

distinct and characteristic for the area in which it is developed. It is a data driven approach that is top 

down. These types of approaches have been implemented for other pattern analyses (example: Rice et 

al., 2016). This approach is cost saving because we do not have to parameterize the multitude of 

physical characteristics that are necessary to run these snowmelt models. 

The spatio-temporal model of snowmelt does not negate the need for a snowmelt runoff 

model, but it does simplify accurately describing the spatial and temporal components of melt with 

only remote sensing. In comparison, the Snowmelt Runoff Model (Martinec & Rango, 1986) 

aggregates the spatial information into a snow depletion curve. This curve describes the rate of melt 

but not where it occurs. The Variable Infiltration Capacity model on the other hand represents the rate 

and location of snowmelt but verifies only against the depth of Snow Water Equivalent (SWE) as 

measured by point locations (Cherkauer & Lettenmaier, 2003). The data needed to run the VIC model 

is extensive. The spatial and temporal component captured and described by the (Principal 

Component Analysis) “PCA model” developed by Woodruff & Qualls (2019) are extremely valuable 

because it describes the 2-dimensional location and the timing of snowmelt. This information is 

exceptionally valuable to accurately modeling snowmelt runoff. 

We live in a data rich world with the advent of Remote Sensing and interpolating data we can 

measure is in some cases redundant, unnecessary, and potentially biased. Shen (2018) overviewed the 

current state of hydrologic modelling and called for implementation of more Deep Learning and 

Artificial Neural Networks (ANN) for simulating streamflow because of the large amount of available 

data. Thapa et al., (2020) fit and tested four machine learning models to predict streamflow given 

hydrometeorological data and MODIS 8-day composites with less than 10% cloud cover over the 

Langtang Basin in the Central Himalayas. They compared a deep learning model known as the Long 

Short-Term Memory (LSTM) to a nonlinear autoregressive exogenous model, Gaussian process 

regression model, and a support vector regression model. The LSTM model outperformed all others 

with a Nash-Sutcliffe model efficiency of 99.5% and a RMSE of 0.201. A secondary interesting 

finding by Thapa et al. (2020) was that when the MODIS data was removed the model RMSE 

increased to 0.287 and when precipitation was not included as a predictor variable the RMSE dropped 

to 0.173 for the testing set of two independent years. This finding demonstrates the importance of 

snow location data to snowmelt runoff accuracy. It is clear machine learning, which includes ANN 
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and Deep Learning, is a useful model when accuracy is the only concern because they are data driven 

and less computationally expensive (Pham et al., 2021; Tolson & Shoemaker, 2007). 

Deep Learning and ANN access patterns or characteristics that we fail to implement or 

accurately represent in our snowmelt runoff models. In comparison, a snowmelt runoff model 

requires data input interpreted and implemented according to an expert’s knowledge to fit and 

calibrate the model. Conversely, an ANN takes the input data and develops high level learned features 

buried deep within weights of and hidden layers of the model (Flores, 2011) to simulate snowmelt 

runoff. Extracting and understanding this information is difficult. The benefit of the snowmelt runoff 

model is the ease of interpretation. Resistance within the hydrologic community to Deep learning and 

ANN methods is present because of interpretability (Shen 2018). A pattern of behavior is the most 

useful piece of information because it simplifies the problem, but these are difficult to identify with 

these higher order models. We propose the spatio-temporal PCA model of the recurrent pattern of 

snowmelt is a higher order pattern which Deep learning and ANN access that can be interpreted and 

extracted for use in a snowmelt runoff model such as VIC or SRM. 

In this work we focus on the recurrent pattern of snowmelt. This pattern is robust and can be 

derived into a spatio-temporal model of snowmelt that is spatially recurrent (Woodruff & Qualls, 

2019) as well as temporally recurrent (Woodruff & Qualls 2021?). Snow covered area (SCA) 

measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) is used to derive the 

PCA model over a given watershed. As discussed above, we desire patterns because they simplify the 

modeling of seemingly stochastic processes. Remotely sensed SCA from MODIS is available 

worldwide and as stated above the PCA model is a watershed characteristic intrinsic to each 

watershed, a form of parameterization of the snowmelt process. Because of the wide availability of 

these data this can be accomplished for any snowmelt driven watershed. 

Spatial patterns of snowmelt have been identified and accepted in the literature for many 

years across a number of landscapes (Adams, 1976; König & Sturm, 1998; Luce & Tarboton, 2004; 

Sturm & Wagner, 2010; Wang & Xei, 2009; Parr et al., 2020). Spatial patterns in snow depth (Pflug 

& Lundquist, 2020), SCA, and snow redistribution (Parr et al., 2020) have all been identified. We 

focus specifically on SCA in this research because it is widely available and has been demonstrated to 

be spatially accurate against independent data. The purpose of this work is to extract the best 

recurrent pattern of snowmelt using the methods outlined in Woodruff & Qualls (2019). In their work 

they applied the pattern for cloud gap filling, but they commented on areas within their model which 

were error prone. We hypothesize altering a user decision in the PCA model derivation may eliminate 
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these spurious errors. These errors are likely a function of scan angle, topography, illumination, and 

vegetation of the MODIS pixel (Riggs et al., 2017). The MODIS sensor has demonstrated 93% spatial 

accuracy by ground truth on clear days (Hall & Riggs, 2007); however, many of the observations of 

SCA occur on cloudy days. This uncertainty propagates through into the PCA model leading to 

decreased spatial accuracy of their model on clear days specifically at larger SCA percentages. 

Addressing these issues will increase the published spatial accuracies of 84.9-97.5% by producing a 

model that is closer to the true recurrent pattern of snowmelt and free of spurious errors. 

The implications of an accurate and recurrent spatio-temporal model of snowmelt cannot be 

overstated. A model of this type provides what watershed similarity seeks to accomplish. The spatial 

information can be derived for any watershed because remote sensing is available, and the model is 

scalable with time. It contains spatial and temporal predictive qualities making it applicable in any 

melt period. The pattern allows us to simplify the stochastic across years and complex system of 

snowmelt. This model is a watershed characteristic and should be viewed in the same way we view 

topography. No calibration is necessary as it is a data driven approach. 

Study Site and Data 

Study Site 

The Upper Snake River Basin is a large watershed covering 8,894 square kilometers and is 

the headwaters for many stakeholders downstream (Figure 4.1). It is an important water resource for 

agriculture, power generation, municipal water demands, and in-stream fish requirements (Qualls et 

al., 2013). A wide variety of land cover types are present in the watershed including sage steppe 

(45.4% of the total area) and forested (47.9% of the total area) according to the 2015 National Land 

Cover Database (Homer et al., 2015). The watershed has a large range in elevation from 1,737 to 

4,194 meters above mean sea level. In every year during the study period (2000-2020) the watershed 

recorded seasonal coverage of snow from 100% covered to completely snow free. In-stream flow 

rates are dependent on snowmelt making this study site ideal for seasonal snow monitoring. 

Data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) records a number of snow 

characteristics on board two satellites (terra and aqua) on a daily time-step at a spatial resolution of 

500 meters. The daily acquisition and data record extending from 2000 to the present make this 

dataset ideal for developing spatio-temporal models of snowmelt. The product we use is the version 6 

MOD10A1 NDSI snow cover product. This is the daily Normalized Difference Snow Index (NDSI) 

dataset. Recently, a cloud gap filled dataset has been produced by NASA and is distributed by the 
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NSIDC DAAC (Hall et al., 2019). Our process extracts information from the daily data so there is no 

need to use the cloud gap filled dataset. The recurrent pattern can be captured by a single satellite as 

shown by Woodruff & Qualls (2019). The Terra satellite MODIS product is preferred because the 

Aqua satellite sensor had a failure in band 6, a crucial band for the NDSI calculation, and even though 

the algorithm has been adapted, the Aqua satellite still records more snow commission errors than the 

Terra satellite (Hall et al., 2019). All available daily MODIS images were downloaded for the period 

of 2000-2020. The data record is split into a model development subset (2000-2016) and a validation 

subset (2017-2020). 

 

Figure 4.1: Elevation and location of the Upper Snake River Basin. 

Methods 

Data Preparation 

Remote sensing offers spatially distributed daily data. The MODIS data is unfortunately 

contaminated with cloud cover. This reduces the available amount of data and makes working with it 

difficult. The recurrent pattern of snowmelt is contained in this dataset; however, to extract it data 
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preparation is required. The data preparation helps to address two problems. One, cloud 

contamination and two, a substantial amount of redundant information exists. A pixel that is snow 

covered for 100 continuous days contains 99 redundant days if we are interested only in the date it 

melts. To reduce the amount of redundancy, we iterate through all the available data and record two 

dates for each pixel. The last day snow is recorded (LDS) and the first day land is recorded (FDL) 

together describe the timing of melt. If cloud cover did not contaminate the data, the FDL would be 

exactly 1 day larger than the LDS. 

An important consideration in extracting the FDL and LDS is ephemeral snowfall. If a pixel 

melts and subsequently recovered by snow it is difficult to determine whether the first melt or the 

second melt is captured by the FDL and LDS. If the ephemeral snowfall events are captured in the 

FDL and LDS then this could potentially propagate into the final model. In the model these errors 

would be incorrect early detection of melt. These types of events are stochastic, and in terms of model 

development they are generally discarded by using multiple years. 

Deriving the PCAc Models 

The NDSI snow cover product gives a percentage of a pixel’s snow coverage between 0 and 

100%, we denote the snow coverage percent as “c”. On clear days, this information may be valuable 

in determining the presence of snow across the whole area of interest; however, under low light 

conditions we may not record an accurate representation of snow coverage. Woodruff & Qualls 

(2019) used a single value of “c” to develop their PCA model and to convert the NDSI snow cover to 

a binary snow, or no snow image. They noted areas in their study site which were prone to snow 

detection errors. We propose altering the NDSI snow cover threshold, or “c”, as a potential solution to 

these snow detection errors propagating into the PCA model. We hypothesize that a lower value of 

“c” could produce a higher quality model of the true recurrent pattern of melt. 

Choosing a value of “c” to convert the NDSI snow cover to a binary snow and snow free 

image impacts the Last Day of Snow (LDS) and First Day of Land (FDL) images. We calculate the 

FDL and LDS for all the given imagery for 2000-2016 for a given value of “c”. We also varied the 

values of “c” from 10 to 90 at intervals of 5. The range of “c” is based on the MODIS user guide. For 

continuity between the albedo and the NDSI snow cover product we considered values of less than 10 

as snow free (Hall & Riggs, 2016). The selected value of “c” is given as a subscript. We have a pair 

of images, FDLc and LDSc, for all 17 years (34 in total) and 17 values of “c” for a total of 578 FDLc 

and LDSc images. 
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The FDLc or LDSc images can both be used to calculate the PCAc model. It was demonstrated 

by Woodruff & Qualls (2019) that calculating the PCA model with the LDS images is 99.9% 

correlated to the PCA model found using the FDL images. This suggests the influence of cloud is 

discarded into Principal Components (PC) not used derive the model. In their case the recurrent 

pattern was captured completely by PC1. In this study we use the FDLc images to calculate the PCAc. 

The FDLc values are found and transferred into a matrix, Equation 4.1. There are M columns, each for 

a melt period or FDLc, and N rows, or pixels. Each pixel has an associated centroid of x and y 

coordinates. For row Ni, there are M FDLc values that all have centroid coordinates of xi and yi. The 

PCAc is applied to the N by M matrix and Principal Components are calculated. The PCAc model is 

calculated by multiplying the N by M matrix by the vector “PC1”. This matrix multiplication results 

in the PCAc vector given as t. This vector is then reattached to the x and y coordinates and finally 

converted to a raster. The raster is equal in size and geolocation as the MODIS imagery and is 

referred to hereafter as the PCAc model. 

Equation 4.1 

[
1, 1 ⋯ 1, 𝑀

⋮ ⋱ ⋮
𝑁, 1 ⋯ 𝑁, 𝑀

] ∗  [
1
⋮

𝑀
] =  [

1
⋮
𝑁

]  →  [

𝑡1 𝑥1 𝑦1

⋮ ⋮ ⋮
𝑡𝑁 𝑥𝑁 𝑦𝑁

]  → 𝑃𝐶𝐴𝑐  (𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑎𝑠𝑡𝑒𝑟) 

Comparing the PCAc Models 

The PCA statistical method calculates Eigen Values and Eigen Vectors commonly referred to 

as Principal Components (PC’s). Each Principal Component is orthogonal to the rest and describes a 

portion of the total dataset variance. Cumulatively the PC’s describe the total data variance. The 

Principal Components are ordered from 1 to M, where the first vector describes the largest portion of 

the total variance and the Mth vector describes the least. We use the variance to quantify how well the 

PCAc model captures the recurrent pattern. We also analyze the factor loading, or the correlation of 

the PCAc to the FDLc data. Both the variance and factor loadings are calculated for each PCAc and 

compared. 

A more complete picture of the difference between two PCAc models can be found by 

considering the raw pixel values of the models. A pixel value for a given PCAc describes the relative 

timing of melt of a pixel in relationship to all the other pixels. A value closer to zero melts earlier than 

a value further away from zero. We order the pixels from 1 to T where 1 melts first and T melts last. 

For a given pixel in a PCAc model we can denote the pixel’s relative timing of melt as ti. Because T is 

equal in length for all PCAc models, a direct comparison of the ti describes how the timing of melt for 
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pixel ti changed for each PCAc model. For example, the PCA40 model may record a pixel as the 

10,000th pixel to melt (ti equal to 10,000). For the same pixel, PCA10 may record a ti value of 8,000. 

Therefore, the timing of melt for that pixel has shifted 2,000 pixels earlier for one model compared 

with the other. The true recurrent pattern would be represented by accurate description of the relative 

timing of melt determined by ti of each pixel. Comparing the shift in the relative position of ti for two 

models graphically communicates the similarity or dissimilarity of the models. 

While the comparison of the shift in melt timing communicates how the models differ in 

timing, a spatial comparison highlights where in the study site these shifts in ti occur. Certain 

locations within the watershed may have very poor viewing condition all the time making them more 

error prone. This spatial comparison can illuminate where and potentially why these errors arise. We 

normalize the PCAc models to a 0 to 1 scale and subtract the normalized PCAc models. The output is a 

heat map of where the greatest differences between models occurred. This comparison is completed 

for only select PCAc models. 

Model Performance Validation 

Spatial accuracy of each PCAc model against independent data is the best method for 

identifying the most accurate model. A wealth of data is available and we use all available MODIS 

data, not just the independent data, to quantify clear day accuracy. For a given model, PCAc, we 

quantify the spatial accuracy for every image (Imgc) with less than 10% cloud cover. It is important to 

note the image and model are using the same value of “c”. The best fit PCAc, SCA is determined by 

equation 4.2, the VPE. To implement equation 4.2, a PCAc model converted to a binary SCA is 

compared against a given Imgc. We calculate the number of pixels incorrectly modeled as snow free 

(IL), the number pixels of incorrectly modeled as snow covered (IS), and the total number of visible 

pixels (TP). Given an image with 10% cloud cover the total number of visible pixels would be equal 

to 90% of total pixels in the study site. 

Equation 4.2 

𝑉𝑃𝐸 =  √
𝐼2

𝐿 +  𝐼2
𝑆 

𝑇2
𝑃

 

The spatial accuracy is given as a percentage shown in equation 4.3. We use the same value 

of “c” so as to not introduce errors contained in the selection “c” for either the PCAc or Imgc. We are 

intentionally comparing the best case scenario. The highest accuracy should be found by comparing, 
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for example PCA10 versus Img10, rather than PCA10 versus Img50 if each PCAc accurately captures the 

recurrent pattern. This issue is discussed below. The accuracy is expressed as a percent. 

Equation 4.3 

𝐴𝐶𝐶 =  (1 − 
𝐼𝐿 + 𝐼𝑆

𝑇𝑃
) × 100% 

Quantifying the Source of Spatial Error 

The foundational question we are addressing is what value of “c” produces the most accurate 

model of the true recurrent pattern. We must address whether the higher accuracies with a different 

value of “c” are due to a more spatially accurate model, or due to a less robust picture of snow 

coverage using different values of “c”? We compare the most accurate PCAc as determined by the 

previous steps against clear day images (Imgc), but with varied values of “c”. For example, we would 

compare the PCA10 model with a cloud free image with the following values of “c”: Img15, Img20, 

Img25, etc. For example, if the PCA10 model is truly more spatially accurate than the PCA40 model, 

then the clear day accuracy of the PCA10 versus Img40 should be higher than PCA40 versus Img40. This 

would indicate that the true recurrent pattern is better captured by PCA10 rather than PCA40. On the 

other hand, if the spatial accuracy for PCA10 versus Img40 is less than the spatial accuracy of PCA40 

versus Img40, then we can attribute the accuracy difference to the selection of “c” rather than the 

model. This final analysis quantifies if the best fit pattern is robust against different user selections of 

the value of “c”. 

Results 

The results are presented in the following order. First, for each PCAc model we present 

descriptive statistics, factor loadings, visual comparisons, and a comparison of the shift in melt timing 

between select models. Second, a formal analysis of the spatial accuracy of the PCAc models is 

presented which allows us to select the best model of the true recurrent pattern. Finally, we analyze 

the source of the spatial errors as it relates to the selection of “c” for the Imgc. 

PCAc Model Results 

FDLc images were calculated for values of “c” ranging from 10 to 90 for the period of 2000-

2016. A PCA is then applied to the FDLc images to find the resulting PCAc model. Two descriptive 

statistics describe how well each PCAc captured the recurrent spatial pattern of snowmelt: total 

dataset variance described by PCAc model and the factor loadings. Factor loadings are the correlation 

of a given PCAc model with the corresponding FDLc images. We calculate 17 correlations, one for 
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each year. Four values are reported in Table 4.1: the total dataset variance described for each PCAc, as 

well as the minimum, maximum, and average factor loadings. 

Table 4.1: Descriptive statistics for each PCAc model. The total dataset variance described by each PCAc model is given as 

well as the minimum, average, and maximum factor loadings for the comparison of each PCAc versus the corresponding 

FDLc. 

PCAc 

First 

Principal 

Component 

Variance 

Factor 

Loading 

Minimum 

Factor 

Loading 

Average 

Factor 

Loading 

Maximum 

10 0.936 0.949 0.968 0.979 

15 0.929 0.945 0.964 0.977 

20 0.919 0.935 0.959 0.974 

25 0.905 0.921 0.952 0.967 

30 0.889 0.908 0.943 0.958 

35 0.871 0.892 0.933 0.951 

40 0.848 0.877 0.920 0.940 

45 0.820 0.866 0.905 0.929 

50 0.784 0.840 0.884 0.913 

55 0.725 0.787 0.851 0.894 

60 0.645 0.710 0.797 0.870 

65 0.606 0.640 0.763 0.853 

70 0.643 0.555 0.786 0.862 

75 0.670 0.505 0.797 0.891 

80 0.620 0.480 0.750 0.860 

85 0.491 0.253 0.596 0.832 

90 0.406 0.011 0.386 0.859 

 

There is a steady decrease in the variance described from 0.936 to 0.606 from PCA10 to 

PCA65 where a local minimum is recorded. From PCA70 to PCA75 the variance described increases 

after which it declines to a value of 0.406 at PCA90. These variance values suggest that at a certain 

point the recurrent pattern is not captured and instead noise is represented. The factor loadings further 

support this hypothesis. At PCA10, all three of the factor loadings are the largest with minimum, 

average, and maximum values of 0.949, 0.968, and 0.979 respectively. The factor loadings steadily 

decline until PCA65, which mirrors the variance. At PCA90, the lowest factor loadings are recorded 

with values of 0.011, 0.386, and 0.859 for the minimum, average, and maximum, respectively. The 

factor loadings are an initial indication of how well the recurrent pattern is or is not captured by each 

PCAc model. The factor loadings also describe the quality of the FDL data, discussed later. 
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Significant decreases in the minimum and average factor loadings are found at PCA65 to PCA90, and 

because of this we can conclude the best recurrent pattern is not captured by these PCAc models. 

These results also support our hypothesis that the recurrent pattern is best captured by PCA10. 

The results in Table 4.1 indicate there is little difference for PCA10 through PCA50. This set of 

PCAc models maintain large factor loadings (minimum greater than 0.8) and they describe a large 

portion of the total dataset variance. A sharp decline in the minimum factor loadings is recorded from 

PCA50 to PCA55. A spatial visualization the difference between PCAc and FDLc images may offer 

more insight. Figure 4.2 shows from left to right the FDL10, FDL40, and FDL90 calculated for 2006 in 

the top row and PCA10, PCA40 and PCA90 in the bottom row. In all six panes black indicates the first 

pixels to melt and white the last. A well-defined recurrent pattern, or PCAc model (bottom row), 

should look very similar to a topographic map. One can clearly see that PCA10, bottom left, has the 

smoothest transition from earliest to last pixel to melt, or black to white. PCA40 on the other hand, 

bottom center, has many black (early to melt) pixels completely surrounded by white pixels (last to 

melt). This is recorded most notably in the Northern third of the watershed. These pixels are likely 

spurious errors. PCA90 is nearly all black with only a few white pixels. As suspected, PCA90 does not 

capture the recurrent pattern of melt. 

The quality of the three PCAc models is mirrored by the quality of the FDLc images, Figure 

4.2. FDL10, top left, shows a smooth progression of melt. A few black pixels surrounded completely 

by white pixels, or potential errors, exist. An example of these errors can be seen in the Southeastern 

portion of the watershed. FDL40 also shows a fairly smooth description of melt, top center. One 

difference between FDL10 and FDL40 is that the most northern tip of the watershed melts first in 

FDL40, while the southwest portion of the watershed melts first in FDL10. FDL40 also has far more 

dark pixels surrounded completely by white pixels. FDL90, top right, is a complete departure from the 

other two images in the top row. These FDLc images presented in Figure 4.2 are calculated for 2006; 

however, the same relationship is found by the other 16 years. The quality of the FDLc image has 

significant implications for the ability of the PCAc model to capture the recurrent pattern of melt. 
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Figure 4.2: FDL images for melt period of 2006 are shown for FDL10, FDL40, and FDL90 in the top row from left to right, 

respectively. The PCA calculated using FDL’s for 2000-2016 are shown from left to right, PCA10, PCA40, and PCA90. The 

darkest areas melt the earliest and the lightest values melt the latest for all 6 images shown. 

We have demonstrated the true recurrent pattern is best captured by one of the models 

between PCA10 through PCA50. We can visualize what appear to be minute differences in the results 

presented thus far by conducting a spatial comparison of the PCAc models. To spatially compare these 

models, we first normalize the PCAc models. The normalized models are on a 0-1 scale where zero 

melts first and one melts last. Next, we subtract the normalized models. The result is a heat map of 

the differences between the models. This shows the degree to which these models differ. The results 

from the subtraction of two normalized models are shown in Figure 4.3. On the left, PCA10 is 

subtracted from PCA40. Green areas show where the PCA40 model melts earlier than the PCA10 model, 

and red shows where the PCA40 model melts later. There are quite a few green areas that correspond 

to the areas of early melt discussed in Figure 4.2 above. The legend also shows the green values are 

significantly larger than the red values. Therefore, the greatest difference between these models 

resides in the pixels which PCA40 indicates should melt first. In contrast the right pane of Figure 4.3 
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depicts PCA10 subtracted from PCA15. The range in values is far smaller, -0.15 to 0.11, for this model 

compared to PCA40 and PCA10, -0.56 to 0.16. This demonstrates the PCA15 model is far more similar 

to the PCA10 model than the PCA40 model is. Interestingly we see that the areas which are green for 

the left pane of Figure 4.3 are present but smaller in the right pane. These pixels may have difficult 

viewing conditions leading to these spurious errors. They are a result of less consistent data for those 

pixels in particular in the daily MODIS images. These errors are present in the FDLc and propagate 

through to the PCAc. 

 

Figure 4.3: Normalized difference between three PCA models are shown as a heat map. On the left the normalized PCA10 

model is subtracted from the normalized PCA40 model. On the right the normalized PCA10 model is subtracted from the 

normalized PCA15 model. 

One final comparison of the PCAc models may show the degree to which the models differ in 

pixel by pixel melt timing. We compare the shift in a pixel’s melt timing given different PCAc. A 

direct comparison of, for example, PCA10 versus PCA15 shows how the pixel values changed; 

however, if we order the pixel values from closest to zero (first to melt) to furthest away from zero 

(last to melt) we then have each pixel’s relative timing of melt given by the PCAc, or simply the pixel 
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melt order. If we plot the ordered values for two PCAc model’s against one another, we show how the 

relative timing of melt of each pixel changes for different PCAc models. 

In Figure 4.4 two comparisons are shown. The red triangles show the ordered values for each 

pixel for PCA15 plotted against the ordered values of PCA10. If the two models were exactly the same, 

the points would fall on a one-to-one line. We can see these two model’s produce very similar 

descriptions of when each pixel melts or the pixel’s relative melt timing. The black circles are the 

ordered values for PCA40 plotted against the ordered values of PCA10. Many of the points fall on the 

one-to-one line which is obscured by the red triangle, but quite a few fall below. Points which fall 

close to the x-axis at large x values (ordered PCA10 values) have significantly different relative melt 

timing according to these two models. According to PCA10, pixels with large x-values should melt 

late in relation to other pixels in the study site. In Figure 4.4, many points with large x-values have 

small y-values. This means the PCA40 has assigned these pixels early relative melt timing. Referring 

back to Figure 4.3 (left), this result makes sense. PCA40 showed green areas indicating earlier melt 

timing compared with PCA10. Woodruff & Qualls (2019) noted these areas as a potential source of 

error in their model of the recurrent pattern of melt. The PCA40 model has locations which incorrectly 

melt early. This leads to spatial errors until the snowline reaches and absorbs those locations. In 

Figure 4.4, these two PCAc models converge to very similar melt timing at around y- axis ordered 

pixel 30,000 and 35,000. This is associated with about 27% SCA. In Woodruff & Qualls (2019) 

spatial accuracy was lowest at larger SCA values (smaller y-axis values in Figure 4.4) and largest 

(above 92% spatial accuracy) for SCA values smaller than 35%. According to Figure 4.4, The PCA10 

model may more accurately describe relative melt timing. A more accurate description of melt timing 

should result in greater spatial accuracy. 
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Figure 4.4: The ordered relative timing of melt of all pixels in PCAc models is shown for three PCAc models. The black 

circles show the PCA40 ordered relative timing of melt values (y-values) plotted against the PCA10 ordered relative timing of 

melt values (x-values). The red circles show the PCA15 ordered relative timing of melt values (y-values) plotted against the 

PCA10 ordered relative timing of melt values (x-values). 

Spatial Accuracy of PCAc Models 

Thus far we have compared model to model differences however the true test of a model is 

validation against raw data. Before we can choose which model best captures the recurrent pattern, an 

assessment of the spatial accuracy of each model versus clear day imagery was conducted. Every 

cloud free (<10% cloud cover) image for the periods of 2000-2017 was compared with each PCAc 

model. As these models describe the melting period and not the accumulation, we chose to limit the 

analysis to day of year 1 to 250 beginning on January 1. A total of 945 cloud free images exist for this 

18 year period. We compare each PCAc model with the corresponding Imgc. For example, PCA10 

would be compared with cloud free images classified into snow and no snow using a value of 10 for 

“c”, or Img10. The true recurrent pattern should be the most spatially accurate model. Due to the 

volume of cloud free images available we present the calculated accuracies in boxplots, Figure 4.5. 
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Figure 4.5: Boxplot of accuracies in percent are given for all PCAc models. Accuracies are calculated for all cloud free 

images for the period of 2000-2017. 

As seen in Figure 4.5, the accuracy of PCA10 through PCA35 are fairly similar aside from a 

small number of outliers. Interestingly we see the magnitude of the outlier’s decrease between PCA30 

and PCA45. The median accuracy, indicated by the black line within the box, also remains very large 

for all PCAc models. Similar to the variance and factor loadings shown in Table 4.1, we see the lower 

quartile of the accuracy, indicated by the lowest value of each box, remain large (>95%) for PCA10 

through PCA45. The minimum accuracy plummets between PCA50 and PCA70 after which it increases. 

These results suggest that between PCA10 through PCA45 the recurrent pattern is captured to some 

degree. It then breaks down and noise is captured by the model. Both the Imgc and PCAc at large 

values of “c” do not capture any sort of recurrent behavior. The PCA method captures some degree of 

the true recurrent pattern for a wide range of values of “c”, but as clearly shown in Figure 4.5 this 
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breaks down as “c” increases. This plot also suggests, contrary to previous results, that PCA35 of 

PCA40 may be the best model due to lack of significant outliers noted for PCA10 through PCA30. 

One important note is the accuracies shown in Figure 4.5 include images with 100% and 0% 

snow cover at the beginning and end of the melting period. Our purpose is to identify the model that 

most closely captures the true recurrent pattern, therefore these values which potentially over inflate 

the accuracy, hinder our ability to select the best PCAc model. A more stringent approach is to restrict 

our validation window to a SCA range for the actively melting time period. We use the SCA 

calculated for PCA10 (SCA chosen by each model on a given day fluctuates so we use only one model 

to select the days to include) to filter the results and include only accuracies calculated for the range 

of 90-10% SCA. The averages accuracies for 2000-2017 for this subset are presented in Table 4.2. 

We exclude the PCAc models greater than PCA50 because these do not accurately describe the 

recurrent pattern as shown in Figure 4.5. The average accuracies for the full dataset are given in 

column one of Table 4.2. The highest average accuracy of 98.76% (indicated by red font) was found 

at PCA20. The values in column one are nearly equivalent between PCA10-PCA25. When we apply the 

filter the distribution of the averages describe a different story, see column two. We record the highest 

average accuracy of 95.46% for PCA10. This is also substantially higher than PCA15, 95.24%. 

Referring to column one in Table 4.2, one can see the full dataset average accuracies for PCA10 

through PCA25 were all within a range of 0.07%. When we restrict the dataset to only the melt period 

(SCA 90-10%) there is an immediate reduction in accuracy by 0.22% from PCA10 and PCA15. From 

PCA15 through PCA45 we record a drop in the average spatial accuracy by 4% for the reduced dataset. 

This is far larger than the 1.49% range in accuracy for the full dataset, column one. These results 

clearly identify PCA10 as the most accurate representation of the true recurrent pattern. 

  



93 

 

 

Table 4.2: Average accuracies calculated for PCA10 through PCA45 are shown for all cloud free images in the period of 

2000-2017. Also shown are the average accuracies calculated for each model using the subset found by restricting images to 

the SCA range of 90-10%. 

PCAc 

Mean of Full 

Cloud Free 

Data 

Mean Cloud 

Free Data with 

SCA between 

90-10% 

PCA10 98.69 95.46 

PCA15 98.72 95.24 

PCA20 98.76 95.19 

PCA25 98.71 94.82 

PCA30 98.6 94.3 

PCA35 98.38 93.56 

PCA40 97.96 92.61 

PCA45 97.27 91.39 

 

Determining the Source of Spatial Error 

We have demonstrated that the true recurrent pattern is best captured by PCA10; however, we 

have not determined whether that is a function of the model or a function of specific value of “c” used 

to classify the daily imagery. We can determine whether the error lies in the model or in the 

classification of the daily imagery by calculating the accuracy of the PCA10 model versus Img15, 

Img20, Img25, etc. and comparing it against the accuracy a given PCAc versus its equivalent Imgc. For 

example, if the PCA10 model versus Img20 is more spatially accurate than the PCA20 versus Img20, then 

we can confidently state the PCA10 model is the most accurate model. 

For this final comparison we use the cloud free data from 2018-2020, which is all 

independent data. The spatial accuracy of each PCAc versus the corresponding Imgc was calculated 

for each PCAc model. The spatial accuracy of the PCA10 model against Img15, Img20, Img25, etc. 

through Img90 was also calculated. The mean spatial accuracy for each year was calculated for both 

comparisons. We then subtract the mean accuracy calculated for the PCAc versus Imgc from the mean 

accuracy calculated for PCA10 versus Imgc. A positive result indicates the PCA10 model was more 

spatially accurate than the PCAc versus Imgc. The results are given in Table 4.3. The PCA10 model is 

the superior model compared with PCA15 through PCA45 as seen by the total average (far right 

column). After this point, the benefit of the PCA10 declines. This is likely due to the noisy data, which 
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also describes why the PCA method loses spatial accuracies at larger values of “c”. The source of the 

spatial error in PCAc models is a result of the FDLc development because the Imgc values are noisier 

at larger values of “c”. 

We can conclude two equally important points from Table 4.3. One, the errors we see in the 

PCAc model is likely due to early identification of melt in the FDLc models. This is clearly 

communicated by the increase in accuracy using the PCA10 mode. Persistent errors exist in the other 

models. Two, every PCAc model from PCA10 though PCA45 captures some degree of the recurrent 

pattern. This does not mean a pattern cannot be extracted at greater values of “c” (greater than 50), 

but it does mean our method cannot accomplish this with reasonable accuracy. 

Table 4.3: Difference in spatial accuracy of a given PCAc model compared with its corresponding Imgc images compared 

with PCA10 model compared with Imgc image for 2018-2020 cloud free images. A positive result indicates the PCA10 model 

more accurately represents SCA than the straight across comparison of the corresponding PCAc model. 

PCA10 - PCAc 2018 2019 2020 
Total 

Average 

PCA15 0.04 0.04 0.04 0.04 

PCA20 0.10 0.08 0.04 0.07 

PCA25 0.17 0.13 0.05 0.12 

PCA30 0.22 0.21 0.08 0.17 

PCA35 0.35 0.33 0.12 0.27 

PCA40 0.55 0.55 0.23 0.45 

PCA45 0.76 0.77 0.39 0.64 

PCA50 0.51 0.80 0.35 0.55 

PCA55 0.28 0.37 0.00 0.22 

PCA60 -0.37 -0.92 -0.81 -0.70 

PCA65 -0.87 -3.45 -2.19 -2.17 

PCA70 -0.74 -5.18 -2.50 -2.81 

PCA75 -0.13 -4.78 -2.49 -2.46 

PCA80 0.02 -2.74 -0.91 -1.21 

PCA85 0.15 -0.14 -0.11 -0.03 

PCA90 -0.14 -0.09 0.02 -0.07 

 

Discussion 

Although the pattern breaks down, we can use the best fit model PCA10 to extract more 

information on a given day about snowmelt than previously thought. There is a gradation of 

information that can be extracted with the recurrent pattern by comparing the PCA10 model versus 

Img15, Img20, and Img25 etc. Each of these represents a description of the how many pixels have 
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changed on that day. This information was previously useless because we lacked a normalized 

method of comparison. A significant amount of research has been invested in producing subpixel 

resolution SCA and improved SCA data based on variations in the NDSI (Painter et al. 2009; Rittger 

et al., 2020). Far fewer have approached the SCA information from an image patterning perspective, 

as we do here. Ultimately the pattern approach lends itself to ideas that support the use of ANN, 

specifically higher order patterns that we do not represent in our current snowmelt modeling 

frameworks. This result opens the door to new analyses about snowmelt modeling as described by the 

recurrent pattern versus different thresholds. We have demonstrated there is a range in values of “c” 

that are useful: 10-45. The potential for this application is shown in Figure 4.6. 

In Figure 4.6 we show the multiple SCA values found by comparing PCA10 versus varied 

Imgc values for the 2018 melt period. In the top pane of Figure 4.6, the PCA10 model was compared 

against Img10, Img25, and Img40 which a given by a black hollow circle, red X’s, and blue hollow 

triangles, respectively. We can see quite clearly that the points are all very similar at the beginning 

(before DOY 100) and end of melt (after DOY 200). The vertical distance between the points for a 

given DOY signifies the difference in SCA by simply altering the value of “c” used to classify Imgc. 

The vertical distance increases through the middle of melt. Rather than a single SCA value for a given 

day we now have information about the distribution of melting pixels in relationship to the recurrent 

pattern of melt. To further verify that the recurrent pattern breaks down at values of “c” greater than 

45 we have plotted SCA values calculated for Img10 (for reference), Img50, Img70, and Img90 in the 

bottom pane of Figure 4.6 as hollow black circles, solid black circles, red triangles, and blue crosses, 

respectively. The Img90 values do not resemble the Img10 values at all. Img70 values are a departure 

from the time series of Img10 as well. Img50 values are the most similar to the baseline Img10, but we 

can note there is significant variability early in the melt period. These plots demonstrate the existence 

of a recurrent pattern for values of “c” between 10 and 45, and a breakdown of the pattern above 45. 

Applying the PCA10 model against all the applicable Imgc values (10-45) can offer a snapshot 

of the snowmelt progression with only a single MODIS image. This is an area of research worth 

investigating as it may be a foundational step towards forecasting snowmelt given only a remotely 

sensed images. Rather than a single point of SCA for a given day we now can produce multiple 

values which theoretically could increase prediction accuracy, similar to how multiple ground-based 

stations increase simulation accuracy. A similar analysis could be done without the recurrent pattern; 

however, there would be no normalized way of comparing what is measured at different values of 

“c”. It is the existence and application of a pattern that makes this information valuable. The data 
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collected by MODIS about SCA is spatially normalized across multiple years providing a baseline of 

comparison in a single year and in a single image. Watershed characteristics offer more than 

simplifying a complex system. In our case, this watershed characteristic provides a new approach to 

analyzing how snow melts over a landscape and how it behaves over multiple years. We have 

demonstrated the accuracy of the PCA model of the recurrent pattern of melt can be increased by 

lowering the value of “c” in the derivation of the FDL and LDS values. From Table 4.2 we can see 

that during the melting period for 2000-2017 the average spatial accuracy of the previously published 

model (Woodruff & Qualls, 2019) is 92.61% and by lowering the value of “c” we find an average 

accuracy of 95.46%. 
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Figure 4.6: Two plots of SCA calculated using PCA10 versus Imgc for varied values of ‘c’ are shown for the melt period of 

2018. In the top panel SCA values for Img10, Img25, and Img40 are given by the black hollow circles, red X’s, and blue 

triangles, respectively. In the bottom panel SCA values for Img10, Img50, Img70 and Img90 are given by the black hollow 

circles, black solid circles, red triangles, and blue crosses, respectively. 

Conclusions 

In this article we have presented a robust validation of the recurrent pattern of snowmelt 

using the spatio-temporal PCA model as derived from 17 years of remotely sensed MODIS data for 

the Upper Snake River Basin. We have demonstrated that increased spatial accuracy can be achieved 

by altering the user selection of “c”. We found the PCA10 model was the most accurate model and 

achieved average spatial accuracies of 95.46% for the period of 2000-2017, which includes one 

independent year. For the independent period of 2018-2020 the PCA10 more accurately represented 
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SCA for a given Imgc with “c” varied from 15-90 than the direct comparison i.e., PCA15 versus Img15. 

This robust analysis indicates PCA10 is the most spatially accurate model and produces higher average 

spatial accuracy (95.46%) than the previously published model (92.61%) by Woodruff & Qualls 

(2019). 

The spatio-temporal PCA model of snowmelt has been demonstrated to be spatially and 

temporally recurrent and, in this work, we show that the spatial accuracy can be increased by tuning 

the user selection of “c”. In the data rich world we live in, spatial and temporal patterns are crucial to 

expanding our knowledge of the complex system of snowmelt. As clearly demonstrated in the 

literature, ANN, Deep Learning, and other data driven approaches produce exceptionally high 

accuracies for simulating streamflow, but we sacrifice interpretability. Our physically based models 

are easily interpreted but lack accuracy and low computational cost that data driven approaches 

provide. The spatio-temporal PCA model of snowmelt is a potential bridge between data driven ANN 

and physically based snowmelt runoff models. This pattern is not explicitly described in physically 

based snowmelt models. It is on average 95.46% accurate during the crucial melt period. The same 

pattern can be used year after year because it is unchanging. It is not computationally expensive to 

derive or use. We have derived this higher order pattern, which is an inaccessible characteristic 

utilized by ANN, and packaged it into an easily digestible framework for use in physically based 

snowmelt runoff models. 

Moving forward the intrinsically valuable spatio-temporal model of snowmelt can and should 

be directly compared to physically based models and should be worked in as a data input. The value 

of a recurrent pattern cannot be overstated for the highly variable process of snowmelt. This work 

clearly and thoroughly demonstrates exactly how robust this pattern is spatially and what a valuable 

tool it can be to water managers everywhere. 
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Chapter 5: Expansion and Sensitivity of the Spatio-Temporal Model of the 

Recurrent Pattern of Snowmelt over the Snake River Basin with a 

Principal Component Analysis 

Introduction 

Snow is an important component of water management world-wide. In the Western United 

States, it has been estimated that 50-80% of the streamflow is from snowmelt (Stewart et al., 2004). 

The amount of water contained in the snowpack, or snow water equivalent (SWE), is the most 

descriptive variable of water availability. Representing SWE has proved difficult, as it is spatially 

heterogenous. In a study over the upper portion of the Yukon River Kasurak et al. (2007) found that 

only 50% of the spatial variability of snow depth, and consequently SWE was represented using a 

complex hierarchical linear spatial mixing model. This study included two years of SWE 

measurements at 215 sites and 3924 measurements. The spatial heterogeneity of SWE has increased 

complexity under climate change. An example of this complexity is the declining snowpack in the 

Cascade Mountains which has long been accepted Mote (2003). Barry & McDonald (2013) 

demonstrated that the origin of this decline may be an interaction between climate cycles and climate 

change in the Washington Olympics and Cascades using snow course data. This combination of 

uncertainty, importance, and heterogeneity marks the importance of understanding and accurately 

modeling the snowmelt runoff process. 

Understanding and accurately modeling these processes in a data rich world can be benefited 

using Artificial intelligence (AI). (Shen 2018) overviewed the current state of hydrologic modeling 

stating the use of AI is a necessary advancement. Resistance to this in the hydrologic community has 

likely been the result of a desire to understand why a system is behaves the way it does. A potential 

area of interest is pattern recognition, which unites understanding why a system behaves the way it 

does and AI. The use of pattern recognition in remote sensing is widespread. Pasquale et al. (2014) 

used a pattern recognition algorithm to identify riverbed forms with terrestrial photographs. Guevara 

et al. (2021) applied pattern recognition to gap-fill soil moisture and increase the spatial resolution of 

the European Space Agency Climate Change Initiative soil moisture dataset. Snow has long been 

noted as having spatial patterns (Adams, 1976; König & Sturm, 1998; Luce & Tarboton, 2004; Sturm 

& Wagner, 2010; Wang & Xei, 2009). Parr et al., (2020) demonstrated that even redistribution of 

snow by wind forms patterns predetermined by the landscape. Woodruff & Qualls (2019) developed a 

model of the recurrent pattern of snowmelt and used it to interpolate cloud covered pixels. However, 

patterns exist across many disciplines including snow hydrology, but often these patterns are used as 
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methods to infill data. However, patterns simplify complex problems. AI produces some of the most 

accurate snowmelt runoff modeling and relies on patterns in data which we as scientists fail to 

represent in our models. 

Remote sensing has been used in operational snowmelt runoff modeling for many years 

(Rango, 1988). Hesitation due to the quality of remote sensing has been widespread. Compared with 

the highly accurate point measurements of SWE, remote sensing offers lower quality of data. 

Andreadis & Lettenmaier (2005) compared the output of the VIC model snow location versus the 

moderate resolution imaging specroradiometer (MODIS) pixels and reported agreement only 75.2-

84.8% of the time. A mismatch of data type and spatial extent exists in the comparison. Furthermore, 

using the point locations a model has been calibrated to and comparing point accuracy to spatial 

remotely sensed pixels is inappropriate. A fair comparison would be to calibrate the model with the 

remotely sensed imagery as well. Anything less introduces data bias. 

The MODIS sensor collects daily world-wide snow-covered area (SCA) data at a spatial 

resolution of 500 meters and has shown 93% accuracy with ground verification on cloud free days 

(Hall & Riggs, 2007). The difficulty with using this data for snowmelt runoff modeling is that cloud 

cover is extensive during the melt period. This data loss is compounded with issues related to 

topography, viewing angle, illumination, and vegetation (Riggs et al., 2017). Significant research has 

been invested in cloud removal, and in 2021 NASA released a cloud free dataset which uses a 

temporal filtering interpolation scheme to infill cloud covered pixels (Hall et al., 2019). Even though 

cloud cover is a significant issue, inclusion of MODIS data in snowmelt runoff models has increased 

streamflow accuracy. Nourani et al. (2021) tested different calibration techniques for the Snowmelt 

Runoff Model using MODIS as SCA input noting validation R2 values of 0.66 and 0.8 over the Aji-

Chay River in Northern Iran. Siemens et al. (2021) used the SRM model to simulate runoff under 

climate scenarios and found during the calibration and validation period of 2000-2010 Nash-Sutcliffe 

Efficiencies of 0.822 to 0.923 over the Athabasca River Basin. MODIS is especially useful in 

ungauged watersheds. Qiu et al., (2014) applied the SRM model with MODIS data over the ungauged 

Lhasa River basin and reported streamflow simulation R2 values of 0.86 and 0.87 for calibration and 

validation respectively over 2002-2003. 

Overall, MODIS data can help with accuracy when modeling snowmelt runoff. With MODIS 

we can also extract patterns. Woodruff & Qualls (2019) extracted the recurrent pattern of snowmelt 

over the Upper Snake River Basin and applied the model to cloud removal, reporting spatial 

accuracies of 84.9-97.5% when compared to two independent years of MODIS data. They termed this 
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model the principal component analysis (PCA) model. This novel approach joined the practicality of 

patterns with the large amount of data available with MODIS. In the context of snowmelt runoff 

modeling, a spatial pattern simplifies representation of snow depletion in space and time. In this work 

we further analyze the accuracy and scaling requirements of the methods developed by Woodruff & 

Qualls (2019) over larger basins. 

The objectives of this research can be summarized with four points. One, determine how 

many years are required to develop a robust PCA model of the recurrent pattern of snowmelt. Two, 

develop PCA models for large watersheds testing their accuracy against cloud free data, and analyze 

whether accuracy is lost at the sub-basin scale when area is increased. Three, develop a method for 

determining whether two watersheds can be grouped into a single PCA model. Four, develop 

relationships between ground-based data and the PCA model. These objectives directly address 

significant remaining questions about the nature, expansion, accuracy, and development requirements 

of the PCA model. With this groundwork laid, expansion of this model and use within snowmelt 

runoff models can be accomplished with confidence. 

Study Site and Data 

Study Site 

The study site includes seven watersheds, which together cover the Upper and Middle Snake 

River Basins (Figure 5.1). The watersheds cover a total area of 279,469.88 square kilometers. All 

seven watersheds are at the Hydrologic Unit Code (HUC) 6 size. The Snake Headwaters and the 

Upper Snake make up the Upper Snake Basin, shown in blue Figure 5.1. The remaining five 

watersheds include the Middle Snake Boise, Middle Snake Powder, Salmon, Clearwater, and the 

Lower Snake; these make up the Middle Snake Basin, shown in red in Figure 5.1. The Middle Snake 

Boise is the largest area at 85,150.16 km2, and the Middle Snake Powder is the smallest at 10,645.52 

km2. These watersheds cover a variety of topography and snow conditions. Many of these watersheds 

do not receive complete snow coverage in every year. The Boise River is a sub-basin within the 

Middle Snake Boise and is comparable in size and snow coverage conditions to the area used by 

Woodruff & Qualls (2019). Also shown in Figure 5.1, are three SNOTEL locations within the Salmon 

watershed. Bear Basin is located at 1631 meters in elevation, Deadwood Summit at 2566 meters, and 

Morgan Creek at 2316 meters. Data from 2010-2020 was downloaded for all three SNOTEL sites. 
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Figure 5.1: Study site with HUC-6 boundaries. Middle Snake River Basin HUC-6 boundaries are shown in red. The Upper 

Snake River Basin HUC-6 boundaries are shown in blue. The Boise River watershed, shown in black, is a sub basin within 

the boundary of the Middle Snake-Boise watershed. Watershed names are also shown. Three SNOTEL locations within the 

Salmon watershed are also shown. 

Data Sources 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is onboard the Terra and 

Aqua satellites. Both MODIS sensors can be used; however, one of the Aqua satellite sensor bands 

failed and even after the algorithm was restored, the commission errors for this product are larger than 

the Terra satellite (Hall et al., 2019). We use the Terra satellite MODIS data product from the version 

6 dataset. The NDSI snow cover data product is used for all the analyses. The MODIS h09v04 and 

h10v04 swaths are required to cover the study site, and all available daily imagery was downloaded 

for the period of 2000-2020. No cloud removal was conducted. A NDSI snow cover value of 10-100 

was used to represent snow and 0-9 to represent snow free. All imagery was used in model 

development regardless of cloud cover, but only cloud free (<10% by area) imagery was used for 

validation. 
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Methods 

PCA Model Methods 

A fundamental component of the analysis to follow is the data pre-processing and derivation 

of the PCA model. These methods are outlined in full in Woodruff & Qualls (2019); however, for 

clarity a brief explanation is presented. The development of the PCA model requires two steps. One, 

consolidation of the MODIS daily imagery into First Day of Land (FDL) images. Second, the FDL 

images are the ingested into a principal component analysis. 

Derivation of the FDL images is completed one year at a time. All the available MODIS data 

is iterated through and the first day land is seen for each pixel is stored in the FDL image. Through 

this preprocessing, each year’s melt information is consolidated into a single image. Woodruff & 

Qualls (2019) used FDL images from 2000-2016 to develop their PCA model. We develop our PCA 

models using the same number of years unless otherwise noted i.e., selection of the minimum number 

of years. 

FDL images are then transformed from their gridded data structure to a matrix. Within this 

matrix, a row contains all the FDL value for one pixel. A column contains all the FDL values for a 

year. A principal component analysis is applied. The results are eigen values and vectors. Woodruff 

& Qualls (2019) demonstrated the spatio-temporal recurrent pattern of snowmelt is extracted by the 

first Eigen Vector or principal component. This is used to linearly transform, through matrix 

multiplication, the FDL data into one resulting vector. This vector is then replotted into the grid 

format and is termed the “PCA model”. 

Selecting Minimum Number of Years 

To identify the minimum number of years necessary to derive a robust spatio-temporal model 

of the recurrent pattern of melt, we implement a monte carlo simulation. We consider the model 

derived using 17 years to be the best model, which we will refer to as PCAbest. This assumption is 

reasonable, given the influence of cloud and the necessity to discard this information in the derivation 

of the model. We develop a PCA model for combinations of 3 years, 4 years, 5 years and so on up to 

16 years with the FDL images. We define the number of years used to develop a PCA model as Q. 

We identify the smallest combination of years required to develop a robust model by sampling from 

all possible combinations. A random sample (N) consists of 10% of the total number of possible 

combinations up to 100 combinations and at least 17. For example, for a Q of 3 years a total number 

of possible combinations is 680. Our random sample size N equals 68. The random samples 
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determine which years (FDL images) are used to develop the PCA model. The PCA model vector 

output of each is saved along with the years used. 

The random sampling of years used for each PCA model allows us to assess the variability in 

the results for a given Q. The metric used to determine the quality of the PCA model is the correlation 

of the PCAbest with the PCA model for a given Q within the sample set N. Correlations are used 

because they capture the similarity of the pattern. This mirrors the application of factor loadings in 

PCA analysis (Jensen, 2016). 

We record descriptive statistics about each correlation for a given Q. In the case of Q equal to 

3, our sample size N is 68. There is a total of 68 PCA models generated all with different years used. 

A correlation is calculated for each PCA model against PCAbest. The maximum, minimum, average, 

and standard deviation of these correlations is calculated once all 68 models have been developed. 

With these values recorded, we can select a good practice number of years required to develop a 

robust PCA model for the watershed analyzed. 

Determining Spatial Extent 

The PCA model method for extracting the recurrent pattern of snowmelt has only been 

published for the Snake Headwaters with an area of 8,894 km2. This large watershed records 

complete snow coverage in every year. Applying the method to a watershed which does not always 

receive 100% snow coverage introduces a new source of variance. The HUC-6 boundaries produced 

by the United States Geological Survey offer a variety of topographic variance and a variety of snow 

coverages over 2000-2016. We use these HUC-6 boundaries to develop PCA models of the recurrent 

pattern of melt. HUC-6 boundaries vary significantly in area (Figure 5.1). Martinec et al. (1983) 

stated the SRM model has been tested without issue on watersheds ranging in size from 2.65 km2 to 

4000 km2 and at sizes larger than this sparse meteorological data reduced modeling accuracy.  Many 

macro-scale hydrologic models operate at watershed sizes larger than 4000 km2. The VIC has been 

widely tested at large scales (Demaria et al., 2007; Haddeland et al., 2002; Troy et al., 2008), however 

the data used to run these models varies across space allowing it to adapt to the region. As we are 

developing a watershed specific snowmelt pattern model, we must rely on snow water equivalent 

trends to guide size parameters at first pass. Mote (2003) demonstrated there are varied trends in 

Snow Water Equivalent across Idaho. For this reason, we use the HUC-6 boundaries. 

Two questions are addressed in the spatial extent sensitivity analysis. One, is the HUC-6 size 

an applicable size for applying this method. Two, can the recurrent pattern of snowmelt be extracted 
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for watersheds that do not receive complete snow coverage in each year. Both questions require 

development of the PCA model using the FDL images for 2000-2016. The accuracy of a PCA model 

is calculated by comparing it against cloud free (<10% cloud cover by area) MODIS images. To 

calculate accuracy a fitting algorithm must be completed to determine the spatial coverage of snow as 

described by the PCA model. A PCA model is comprised of unique values for each pixel. Converting 

the PCA model to a binary snow and no snow image requires selection of a threshold, t*. This 

threshold identifies the PCA value used to split the pixels into either snow or no snow. A 

characteristic of the PCA model is the values are ordered in terms of their relative melt timing. 

Because of this, selection of t* allows us to represent SCA on a given day. We select t* by optimizing 

the VPE (equation 5.1) following the methods of Woodruff & Qualls (2019). 

Equation 5.1 

𝑉𝑃𝐸 =  √
𝐼𝑙

2 +  𝐼𝑠
2

𝑇𝑝
 

Optimizing the VPE is done by first converting the model to a snow and no snow image by 

selecting a t*. The binary model representation is then directly compared against a cloud free MODIS 

image. For the t* used we calculate Il, the number of incorrectly modeled land or snow free pixels, Is, 

the number of incorrectly modeled snow pixels, and the total number of visible pixels in the MODIS 

image. The t* is selected to optimize the VPE, which produces the best fit PCA model representation 

of SCA for that MODIS image. Once the best fit t* is selected we calculate the spatial accuracy by 

equation 5.2. All cloud free daily MODIS images from 2017-2020, independent years, were used to 

calculate spatial accuracy for all 7 watersheds (Figure 5.1). 

Equation 5.2 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (1 − 
𝐼𝑙 + 𝐼𝑠

𝑇𝑝
) × 100% 

The applicability of the HUC-6 size for a PCA model is determined by calculating the PCA 

model for all seven watersheds (Figure 5.1). Each PCA model is calculated with FDL images from 

2000-2016, and the accuracy of each model is found using cloud free images from 2017-2020. All 

cloud free images from the melt period were used to calculate accuracy excluding the accumulation 

phase. 

The second question is addressed by comparing the PCA model for the Middle Snake-Boise 

(MS-Boise) against the PCA model for the Boise River sub-basin (Figure 5.1). A PCA model is 



110 

 

 

developed for the Boise River with FDL images from 2000-2016. The PCA model for the MS-Boise 

is clipped to the Boise River watershed boundary. The MS-Boise does not record complete snow 

coverage and includes a large valley. The Boise River sub-basin records complete or nearly complete 

snow coverage between 2000-2016. We directly compare the PCA model results of the clipped MS-

Boise with the Boise River sub-basin. A plot is presented of the values contained in each model and 

correlations are given. The correlation describes the similarity of the melt timing of each pixel 

specifically the t*, which is simply the similarity of the pattern. 

Identifying Ideal Groupings 

A final question we seek to address in this article is whether any theoretical boundaries exist 

between melt rates of adjacent watersheds. If the melt ratio of the total snow accumulation between 

two watersheds varies from one year to another, one might expect the relative timing of melt between 

the two watersheds to differ from year to year. In this case, the PCA model should be synthesized 

separately for the two watersheds. This separation is fundamental to the recurrent pattern method. 

Areas which melt asynchronously with respect to one another across years are distinct in their 

snowmelt timing. The goal of this analysis is two parts: determine the boundaries using remote 

sensing and develop a ground-based relationship which can be used in the future to identify areas 

which can be grouped. 

The t* values move linearly with time. This is an outcome of the linear transformation used 

by a principal component analysis. If we plot the t* values selected for all the cloud free MODIS 

images within a year we can fit a linear regression and determine the slope or rate of melt (S). The 

rate of melt S is simply the change in t* over the change in time, t. To determine whether two 

watersheds should be grouped, we compare S for multiple years (2017-2020). With slopes for 

watershed A and watershed B, we calculate Si equation 5.3. For a given year we divide SA by SB. We 

use 2017-2020 and therefore we have four values of Si. If two watersheds can theoretically be 

grouped together, they must satisfy two constraints. One they must be spatially contiguous. Two, they 

must produce an Si of greater than one in every year of less than one in every year. If Si varies from 

greater than one to less than one, then the watersheds do not melt in parallel with one another. As we 

are determining the largest size, we can group we will not conduct any of these analyses on 

watersheds smaller than the HUC-6 size. 
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Equation 5.3 

𝑆𝑖 =  

∆𝑡∗
𝐴

∆𝑡⁄

∆𝑡∗
𝐵

∆𝑡⁄
 

Determining this relationship prior to developing a PCA model must rely on the ground-

based SNOTEL data. Let us first identify the variable from the ground-based SNOTEL data that is of 

greatest importance to this analysis: melt out timing. The spatio-temporal characteristic of the PCA 

model requires a ground-based verification which indicates a time and space dependent change. 

Changes in the z-direction of snow depth or SWE only describe snow presence when comparing 

SCA. The current validation methods apply a snow or snow free comparison for pixel to ground-

based data (Dong & Menzel, 2016; Parajka & Blöschl 2006; Klein & Barnett, 2003). While this 

method is applicable for validation of snow presence, melt out date describes a point in time as well 

as a spatial value. This approach assumes the melt out date is associated with a given SCA rather than 

a given pixel. We can simplify this comparison further by relating the linear t* values with time 

instead of the non-linear SCA. 

To develop this relationship more data is necessary than 2017-2020. We use cloud free 

MODIS data from 2010-2020 for the Salmon watershed. A linear regression is applied to the t* 

values and dates for the cloud free MODIS images for each year. The linear regression is necessary to 

interpolate the t* values for dates without a cloud free MODIS image. The melt out dates for three 

SNOTEL sites (Figure 5.1) are recorded for 2010-2020 and t* values can be calculated. We then use a 

two-tailed paired t-test to determine whether these t* values are significantly different from one 

another assuming an alpha of 0.05. Demonstrating order in melt out timing related to the t* values 

suggest that melt out timing alone can be used to identify which areas can be grouped. 

One consideration for completing this analysis is the Salmon is large and encompasses a 

significant variation in elevation and snowpack. This leads to a condensed representation of the 

SNOTEL melt out versus t*. The PCA model developed for sub-basins offers greater distinction 

among t* values for melt out timing. In our case the large number of SNOTEL stations in the Salmon 

and relatively small slice of t* values that are associated with representing the melt out dates crowds 

the analysis. In an operational setting the ability to determine which areas can be grouped with less 

data is meaningful. We use only three SNOTEL stations spread across melt timing: first to melt, 

middle melt, and last to melt. This data can be gathered from the SNOTEL site. The purpose of this 

analysis is to develop a relationship that can be used before the PCA model is derived. Establishing 
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this is the starting point, and further investigation will be necessary to determine whether this is a 

viable method to group watersheds. 

Results 

The results are presented in the following format. First, we present the total number of years 

necessary to develop a robust PCA model of the recurrent pattern of snowmelt for the Boise River 

sub-basin. Second, the PCA model is applied to all seven HUC-6 watersheds and is verified for 

accuracy against four independent years. Third, we determine whether the resulting PCA model for a 

sub-basin is changed by including a larger area that does not receive complete snow coverage. Lastly, 

we present a method for determining which watersheds can and cannot be grouped, and a ground-

based relationship for determining groupings is also derived. 

Determining Number of Years 

The number of years required to develop a robust PCA model is of significant interest as it 

could reduce processing time while also increasing the number of independent years for model 

validation. We use the Boise River sub-basin (Figure 5.1, shown in black) to conduct this analysis as 

it is nearly equal in size to the study site used in Woodruff & Qualls (2019). A PCAbest is developed 

using all FDL images from 2000-2016. Combinations, Q, of 3-16 were tested as potential 

combinations to develop a robust PCA model. For a given Q, a sample of the total number of possible 

combinations is taken and a PCA model is developed for each of the sampled combinations using the 

FDL images. The correlation of a single sampled PCA model is calculated against PCAbest. A 

correlation is calculated for all PCA models developed within a sample. The minimum (red X), 

maximum (hollow black square), and average (solid blue dot) correlations are plotted versus Q in 

Figure 5.2. 
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Figure 5.2: Correlations of PCA models versus PCAbest plotted against Q varied from 16 to 3. Maximum correlation for a 

given Q is given by black squares, average correlation is given by blue circles, and the minimum correlation by the red “X”. 

Figure 5.2 clearly illustrates as Q decreases so does the correlation of PCA models with 

PCAbest. For Q between 16 and 10 the correlations are all nearly equal. For Q less than 10, the 

minimum correlation drops dramatically and continuously. While the average and maximum 

correlations remain high for all values of Q, between 0.985 and 1, the minimum correlations drop 

below 0.975 at a Q of 3. It is important to recognize the correlations plotted in Figure 5.2 are all 

exceptional; however, with this large dataset a small change in correlation could indicate significant 

changes in the relative melt timing of individual pixels. The pattern is simply the relative melt timing 

of each pixel, and a small change in timing may lead to larger decreases in spatial accuracy when 

compared against independent cloud free MODIS data. 

The results plotted in Figure 5.2 suggest a Q of greater than 3 may adequately extract the 

pattern with decreased accuracy. A more compelling representation of the stability of the models 

developed with a varied Q can be shown by representing the standard deviation. We plot the 

theoretical normal distribution defined by the average and standard deviation of the correlations for 

each Q in Figure 5.3. 
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Figure 5.3: Theoretical normal distributions for varied Q. Each value of Q is represented by a single line. A Q of 16 years is 

given as a thick black line, 15 a blue two dash line, 14 solid red line, 13 solid green, 12 solid magenta, 11 dashed black, 10 

heavy dot dashed blue, 9 thin solid red, 8 dotted black, 7 two dashed green, 6 dot dashed black, 5 solid purple, 4 solid 

yellow, and 3 solid orange. 

There is significant degradation in the output of the PCA model with Q less than 10 in Figure 

5.3, given as the heavy dot dashed blue line centered around 0.9975. An ideal resulting normal 

distribution in Figure 5.3 is tall and narrow centered very close to a correlation of one. This would 

indicate we are producing the same PCA model with every sampled combination for that Q. As the 

distribution decreases in height and flattens, the confidence that you will produce the same PCA 

model with any combination decreases. Every combination greater than 10 produces a tall narrow 

theoretical normal distribution. For the Boise River sub-basin, we can conclude at least 11 years, 

shown as the dashed black line, is necessary to develop a robust PCA model. A Q of 10 or less can be 

used to develop a PCA model; however, the model may contain more error and it may fluctuate 

depending on the years used in the combination than one developed using a Q of greater than 10. This 

analysis offers insight into this specific watershed; however, a good practice for developing the PCA 
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model would be to use all the years possible. The source of this variability in the PCA model output is 

undetermined at this time, although it may be due to cloud influence in the FDL images. Potentially, a 

critical minimum number of years is necessary to extract the pattern and discard the influence of 

cloud. For this watershed it is 11. 

Determining Spatial Extent 

Snake River Basin PCA Models 

The PCA model was developed for all seven HUC-6 watersheds in the Upper and Middle 

Snake River Basins across Idaho. The PCA models are presented in Figure 5.4. An important 

consideration in visually analyzing these models is each PCA model was developed independently for 

each watershed. This means that early melt (black) in one watershed does not indicate the same time 

of melt in another watershed. These models are to be analyzed separately. This is best described by 

the two watersheds in the Upper Snake River Basin (blue). We can see that the Snake Headwaters 

(smaller watershed) has a black area in the center which is early to melt. The Upper Snake (larger 

watershed) is dominated by a valley floor which appears to melt from west to east with the eastern 

portion melting later (lighter grey pixels). The lighter eastern portion of the Upper Snake in fact melts 

before the black pixels in the Snake Headwaters. This points out why these PCA models cannot be 

interpreted as continuous across watershed boundaries. 
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Figure 5.4: PCA models for the seven HUC-6 watersheds in the study site. Each PCA model is independent of one another. 

Black areas within a watershed boundary melt earliest within that boundary and white pixels melt latest. The values are not 

continuous across watershed boundaries. 

We can note some interesting characteristics of the watersheds in Figure 5.4. The Salmon 

watershed has extremely varied and well-defined melting behavior, likely due to the elevational 

changes and consistent snowpack in this mountainous area. In the MS-Boise we see a more subtle 

description of melting where the Boise River Mountains in the Northeast melt latest, but there is a 

more mottled melt appearance in the south of the watershed. These characteristics may be attributed 

to elevation, slope, aspect, vegetation, and accumulation. Each watershed carries its own 

characteristic melt pattern. 

Snake River Basin PCA Model Accuracy 

The PCA models shown in Figure 5.4 were validated for spatial accuracy against cloud free 

MODIS images from four independent years (2017-2020) using equations 5.1 and 5.2. Spatial 

accuracy was considered only during the melt period and excluded any significant accumulation 

events after the watershed reached SCA of 0%. Table 5.1 presents the minimum, maximum, and 
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average spatial accuracy (equation 5.2). Overall spatial accuracies are exceptional. Average spatial 

accuracies ranged from 96.95% (Salmon, 2019) to 99.58% (Lower Snake, 2017). Maximum spatial 

accuracies were 100% in many cases and minimum spatial accuracy ranged from 72.94% (MS-Boise, 

2017) to 98.88% (Lower Snake, 2017). In fact, only three minimum spatial accuracies were below 

90%, shown in red. The lowest spatial accuracy of 72.94% can be attributed to a secondary snowfall 

event which traveled through the valley of the MS-Boise depositing snow erratically across the valley 

floor. Once this melted, spatial accuracies returned to the 90% range. 

Table 5.1: Spatial accuracies by HUC-6 PCA models are given. Minimum, maximum, and average spatial accuracies 

calculated for cloud free data over the independent period of 2017-2020 are given by year. 

Watershed   2017 2018 2019 2020 

Clearwater 

Min 95.36 95.74 95.32 94.22 

Max 100.00 100.00 100.00 99.96 

Average 99.10 99.25 98.05 98.04 

Lower Snake 

Min 98.88 95.40 98.56 95.37 

Max 99.92 100.00 100.00 99.94 

Average 99.58 99.44 99.58 98.86 

Middle Snake Boise 

Min 72.94 95.59 89.86 94.44 

Max 99.99 100.00 100.00 100.00 

Average 98.93 99.39 98.19 99.08 

Middle Snake Powder 

Min 98.68 93.76 92.22 96.71 

Max 99.89 100.00 100.00 99.94 

Average 99.52 99.35 98.69 99.04 

Salmon 

Min 93.38 93.72 94.19 92.72 

Max 100.00 99.98 100.00 99.99 

Average 97.39 97.65 96.95 97.55 

Snake Headwaters 

Min 93.55 93.53 94.65 94.15 

Max 100.00 100.00 100.00 100.00 

Average 98.02 98.52 99.09 99.00 

Upper Snake 

Min 88.60 91.98 92.82 90.67 

Max 99.92 99.98 99.95 99.98 

Average 98.44 98.98 97.90 98.56 

 

The PCA Models represent snow depletion with exceptional spatial accuracy over all seven 

watersheds when compared against independent cloud free MODIS data. The PCA method accurately 

extracts the recurrent pattern of snowmelt for each watershed. The HUC-6 size is handled with ease 
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by the PCA method. The variation in topography, accumulation of snow, and melt timing does not 

impede the ability of the PCA method to extract the recurrent pattern. 

Incomplete Snow Coverage Impacts on Spatial Model 

The cloud removal results show the model accurately extracts a robust spatial pattern of 

snowmelt. A remaining question for water management is does inclusion of areas which do not 

receive complete snow coverage reduce the spatial accuracy of the PCA model. Snowpack 

accumulates and persists with regularity in the mountainous areas in Idaho but is ephemeral in the 

lower elevations. The MS-Boise is a suitable watershed to address this question as it contains a 

massive area which does not receive complete snow coverage in each year. This could potentially 

lead to noise in the FDL images used to develop the pattern thereby reducing the ability of the 

principal component analysis to extract the recurrent pattern. We approach this problem by analyzing 

the PCA model developed for the mountainous Boise River sub-basin (Figure 5.1) two ways. First, 

we develop the PCA model for the entire MS-Boise and clip the model to the Boise River sub-basin. 

Second, we develop the PCA model for the Boise River sub-basin. PCA models for both watersheds 

are produced using the FDL images from 2000-2016. These models are compared. 

The results of the PCA models are shown in Figure 5.5. The PCA values contained in the 

MS-Boise clipped to the Boise River are plotted against the PCA values of the Boise River model. 

These values describe a pixel’s relative melt timing. A difference between the two models in a pixel’s 

value indicates the pixel’s relative melt timing is very different between the two models. If both 

models are equal, we can expect a perfect 1:1 line. This would indicate the relative timing of melt of 

each pixel is the same in both models. We see a nearly perfect 1:1 line in Figure 5.5. Even more 

interesting is the range of values has not changed. The values of -100 are the first pixels to melt. The 

early stages of melt from -100 to -300 are slightly scattered about the 1:1 line. After this brief scatter 

nearly all the pixels are equal from -300 to -750. The overall correlation of these values is 0.9999. 

Inclusion of the lower elevation areas in the MS-Boise PCA model has not changed the representation 

of melt timing the Boise River sub-basin. 
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Figure 5.5: PCA values for the MS-Boise PCA model clipped to the Boise River sub-basin are plotted against PCA values 

for the PCA model developed for the Boise River sub-basin. A 1:1 line indicates the values have not changed. Individual 

points are plotted as hollow black circles. 

Determining Ideal Groupings 

Using t* to Determine Ideal Groupings 

Thus far we have shown the HUC-6 watershed boundary is an applicable watershed size; 

however, we have not developed any methods for determining which watersheds should be grouped. 

We can identify groupings through equation 5.3. The rate of melt in one watershed compared with 

another should produce a stable Si over multiple years if these areas can be grouped into a single PCA 

model. Using cloud free imagery from 2017-2020 we fit a linear regression to the t* values plotted 

with time for each year for the Salmon, Snake Headwaters, Upper Snake, and Clearwater watersheds. 

The comparison of slopes is given in Table 5.2 by year. We also suggested a constraint that only 

contiguous areas can be joined into one PCA model. These areas are not all contiguous, but 

comparison shows the strength of the method to determine which areas can be joined. The sign of the 

t* values is arbitrary. 



120 

 

 

From Table 5.2, the Salmon and Snake Headwaters exhibit the most similar melt behavior of 

all the pairs. From 2017-2019 Si is all less than -1, however in 2020 it is greater than -1. This shows 

these watersheds do not melt in parallel with one another in every year and should not be grouped. 

The comparison of the Upper Snake to the Snake Headwaters also indicates these watersheds should 

not be grouped; however, we can note the spread in values of Si are larger for this comparison than for 

the Salmon versus the Snake Headwaters. The same is true for the Salmon versus the Upper Snake. 

Both watersheds are contiguous with the Upper Snake. The larger and more widespread snowpack the 

Salmon and Snake Headwaters leads to a more similar Si than the comparison of one of these 

watersheds versus the lower elevation Upper Snake. The lack of consistent snow coverage could 

explain why the Upper Snake watershed should be analyzed separately from the Salmon and Snake 

Headwaters. The Clearwater and the Salmon although contiguous also should not be grouped. This 

mirrors the trends discussed in Mote (2003). Finally, the comparison of the Snake Headwaters and the 

Clearwater produce wildly different Si values which is to be expected as storm tracks and 

accumulation trends differ greatly between these areas. 

Table 5.2: Calculation of Si for 2017-2020 for the Salmon, Snake Headwaters, Upper Snake, and Clearwater watersheds. 

Watersheds Compared 2017 2018 2019 2020 

Salmon/Snake Headwaters -1.08 -1.12 -1.07 -0.94 

Snake Headwaters/Upper Snake 0.95 0.84 1.28 0.89 

Salmon/Upper Snake -1.02 -0.94 -1.37 -0.83 

Salmon/Clearwater -0.75 -0.98 -1.08 -0.99 

Snake Headwaters/Clearwater 0.70 0.88 1.01 1.06 

Upper Snake/Clearwater 0.74 1.05 0.79 1.19 

 

Table 5.2 demonstrates none of these watersheds should be grouped into a single PCA model. 

The HUC-6 size appears to be appropriate for the PCA models in the Upper and Middle Snake River 

Basins. It is beneficial from the point of view of spatially modeling snowmelt to use larger areas for 

one simple reason: cloud removal. Woodruff & Qualls (2019) demonstrated this method can be used 

for cloud removal. The larger the selected area is, the more opportunity for visible pixels on a cloudy 

day. For this reason, as well as the documented accuracy of the PCA model at smaller scales, we do 

not use the t* slope analysis to determine sub-basin groupings. 
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Ground-based Method for Ideal Groupings 

We have demonstrated the t* versus time slope comparisons can be used to determine which 

areas can and cannot be grouped together into a single PCA model. In an operational setting this 

knowledge would be most useful before deriving the PCA model. To lay the foundational work for 

this comparison, we propose relating the t* values with melt out dates of ground-based SNOTEL 

sites. The Salmon is selected for this comparison. As discussed in the methods the large watershed 

area and relatively small range in t* values for SNOTEL melt out timing led us to use only three sites. 

These SNOTEL stations: Morgan Creek, Bear Basin, and Deadwood Summit melt out on average in 

the following order when compared to the other stations within the watershed (2017-2020): first, 

middle, and last. 

The lack of cloud free days requires interpolation of t* values to associate them with melt out 

date. For the period of 2010-2020 every cloud free image except for 100% snow coverage images 

were used to determine the linear regression model of t* versus time. The slope and intercept for each 

year can then be used to interpolate the t* value for missing cloud covered day. The slope, intercept, 

and R2 values are given in Table 5.3. The R2 values are greater than 0.9 except for 2010, which only 

had cloud free imagery near the end of the melting period. The melt out day of year (DOY) as 

measured from January 1 for all SNOTEL sites, as well as the interpolated t* values are also given in 

Table 3. We perform a two-tailed paired t-test on the t* values for each site combination. P-values of 

8.08E-5, 7.03E -9, and 3.90E-8 for the comparisons of Morgan Creek to Bear Basin, Bear Basin to 

Deadwood Summit, and Morgan Creek to Deadwood Summit, respectively are calculated. In all three 

cases with an alpha of 0.05, we reject the null hypothesis that the difference in means is equal to zero. 

These t* values are statistically significantly different from one another. 
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Table 5.3: Melt out timing of Morgan Creek, Bear Basin, and Deadwood Summit are shown for 2010-2020. The linear 

regression slope and intercept as calculated by the cloud free t* data for each year is shown with R2 values. The interpolated 

t* values for each melt out day is also shown. 

    DOY t*   

Year Slope Intercept R2 

Morgan 

Creek 

Bear 

Basin 

Deadwood 

Summit 

Morgan 

Creek 

Bear 

Basin 

Deadwood 

Summit 

2010 4.8201 -183.11 0.843 137 154 172 477.24 559.19 645.95 

2011 4.2526 -128.36 0.958 156 169 188 535.05 590.33 671.13 

2012 3.4521 85.953 0.950 117 142 179 489.85 576.15 703.88 

2013 3.91 54.586 0.977 127 131 160 551.16 566.80 680.19 

2014 3.9261 10.697 0.965 127 143 174 509.31 572.13 693.84 

2015 3.3713 158.62 0.924 110 121 151 529.46 566.55 667.69 

2016 3.5186 98.577 0.980 113 136 166 496.18 577.11 682.66 

2017 3.6674 28.444 0.973 131 148 183 508.87 571.22 699.58 

2018 4.5137 -46.757 0.970 128 136 158 531.00 567.11 666.41 

2019 4.5374 -84.581 0.991 118 151 174 450.83 600.57 704.93 

2020 3.9765 2.052 0.985 125 149 166 499.11 594.55 662.15 

 

The relationship identified in Table 5.3 demonstrates the use of melt out date as a potential 

substitute for t*. A statistically significant relationship between melt out date for a SNOTEL site and 

the t* values exist. We can therefore apply the melt out date as a substitute for the Si calculations we 

conducted earlier. The purpose of this analysis is to develop the foundational relationships between t* 

and melt out date rather than use melt out date to determine which watershed can be grouped. As we 

have demonstrated the HUC-6 size is the appropriate size for many of the watersheds in this study 

(Table 5.2). 

Discussion 

We have demonstrated a PCA model of the recurrent pattern of snowmelt requires several 

years, has size constraints, is spatially accurate at the HUC-6 size, and we have demonstrated 

potential methods for identifying watersheds which can and cannot be grouped through remote 

sensing and ground-based data. A guiding principle for this analysis, and application of the PCA 

model, is watershed characteristics. 

The recurrent pattern is unique for each watershed and should be treated as a watershed 

characteristic. The process of extracting the pattern requires many years of data. There is variability in 

the timing of melt, secondary snowfall events, cloud cover, snow accumulation, as well as potential 

land cover changes due to fires or land use change. We demonstrated for the Boise River sub-basin 11 

years were necessary to produce a robust and similar pattern with any potential combination of years. 
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For other watersheds a different number of years may be necessary. This is by no means a best 

practice suggestion, rather a watershed specific proof of concept. Using the methods outlined here 

this can be determined for any PCA model for a given watershed. 

The applicable spatial extent of the PCA model was also analyzed. The HUC-6 boundaries 

varied significantly in area from 10,645.52 km2 for the Middle Snake-Powder to 85,150.16 km2 for 

the Middle Snake-Boise. The changes in elevation and snowfall also dramatically change over these 

areas. Even with all this variation, these hydrologic boundaries could be used to develop a PCA 

model with exceptional spatial accuracy when compared against independent cloud free MODIS data. 

Overall, the Lower Snake had the highest overall average spatial accuracy (99.37%), calculated as the 

average of the averages. The lowest overall average of four years spatial accuracy was recorded in the 

Salmon watershed (97.39%). For all seven basins, we demonstrated the PCA model accurately 

represented snow covered area with a total average spatial accuracy of 98.65%. Only four images 

across all 4 years for every watershed recorded a spatial accuracy of less than 90%. If this watershed 

size was inappropriate for developing the PCA model of the recurrent pattern of snowmelt we would 

not record such exceptional spatial accuracies when compared against independent data. This pattern 

approach is not only spatially accurate, but it contains predictive qualities for each pixel and for the 

time component. 

The relationship between the PCA model t* values and time is linear for the Salmon 

watershed. The watershed recorded the worst average spatial accuracy, but still recorded R2 values of 

0.843 to 0.991 for the period of 2010-2020. The lowest R2 of 0.843 was recorded in 2010, which did 

not have any cloud free images until DOY 163 when melt was nearly finished. This value may be a 

spurious error due to the lack of cloud free images as all the remaining 10 years recorded R2 values of 

greater than 0.92. The PCA model describes the spatial progression of snowmelt, and when associated 

with time it can linearly describe the rate of snowmelt. With this relationship we can effectively 

determine which areas can and cannot be grouped into a single PCA model. 

The simplification of snowmelt into a linear description based on spatial properties is a 

function of the stable drivers of snowmelt. Attributes such as topography, aspect, and slope do not 

change (Hock, 2003). When the time component of snowmelt is added this process is made more 

complex, as sun angle at different times of the year fluctuates This fluctuation changes the interaction 

of slope and aspect in the melt process. This may appear at first glance to disagree with our linear 

representation of snowmelt timing; however, it suggests the melt timing is also strongly related to the 

spatial location of the snow. The snowline itself plays an important role in the repeatability of the 
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snowmelt pattern. When advection near the snowline is analyzed, increases in ablation have been 

recorded to increase 25-30% as demonstrated over the Dischma Valley in the Swiss Alps (Schlogl et 

al., 2018). In 2011, significant late snowfall occurred in the Salmon. In this case shortwave radiation 

is higher during melt as it began melting later in the year. Even so, we still recorded a linear 

progression of melt with a high R2 of 0.958 (Table 5.3). The snowmelt pattern and snowmelt timing 

are not independent of one another. As we have demonstrated once snowmelt begins, the t* values 

follow a linear trajectory with time. This complex process can be distilled down to a simple linear 

regression. Analyzing the relationship between ground-based melt out data to the t* values is 

simplified because of the linear description of t* with time. In the Salmon watershed Morgan Creek, 

Bear Basin, and Deadwood Summit all melt out at a given statistically significant unique t* value 

each year (2010-2020). With this relationship established a formal assessment should be conducted 

on whether watersheds can be identified and grouped by SNOTEL melt out data alone. Further 

research into this area is required for seamless expansion. 

Limitations 

In this study we did not compare, nor attempt to group, smaller watersheds using the t* 

relationships with time. The PCA model has demonstrated accuracy at smaller scales (Woodruff & 

Qualls, 2019). In their foundational work, a different NDSI snow cover value was used to determine 

snow or snow free leading to the accuracy differences reported here. There is a benefit to using larger 

watersheds from a management point of view as well as a cloud removal point of view. We found that 

anything larger than the HUC-6 size could not be grouped for the Snake Headwaters, Upper Snake, 

Salmon, and Clearwater watersheds. In other areas a larger size may be grouped so long as the 

snowmelt moves in parallel for the two watersheds. While the results of the t* values with melt out 

dates of the SNOTEL stations are promising, a more in-depth analysis is required. As we include 

more SNOTEL sites the results may be muddied. Smaller watershed PCA models may help address 

this issue. We have presented a relationship and method; however, further investigation is required. 

Conclusions 

In this study we identified four objectives. For the first objective we determined for the Boise 

River sub-basin eleven years were necessary to develop a robust pattern of the recurrent pattern of 

snowmelt with the PCA method. Fewer years could be used; however, the consistency of the resulting 

model will vary by years included to develop the model. The source of this is unclear. Expansion of 

the PCA method should be done using as many years as possible to avoid inconsistencies and errors. 
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The second objective required applying the PCA method to larger watersheds and assessing 

the spatial accuracy of the resulting models. We applied the PCA model to seven HUC-6 size 

watersheds which comprise the Snake River Basin over Idaho. Areas ranged from less than 11,000 

square kilometers to over 80,000 square kilometers. We found an average spatial accuracy of 98.65% 

when the models were compared against independent cloud free data for 2017-2020. Only four 

images recorded a spatial accuracy of less than 90%. We also demonstrated the PCA method extracts 

the recurrent pattern for sub-basins even when the larger basin is included in the analysis. The Boise 

River sub-basin PCA model was 0.9999 correlated with the PCA model developed for the MS-Boise 

clipped to the Boise River boundary. Areas which do not receive complete snow coverage in every 

year do not impact the integrity of the recurrent pattern of snowmelt for mountainous sub-basins. 

The third objective focused on developing a method for grouping watersheds into a single 

PCA model analysis. We used the slope of the linear relationship between the t* values versus time 

for watersheds to determine whether they melted in parallel. We demonstrated for the Snake 

Headwaters, Upper Snake, Salmon, and Clearwater watersheds that they could not be grouped, and 

the HUC-6 size was the largest grouping. If the HUC-6 size was too large we would not have 

calculated such high spatial accuracies as varied melt timing within sub basin in a watershed would 

influence the location of snow and the spatial accuracy of the independent validation set 2017-2020. 

Finally, in the fourth objective we related the t* values to melt out date of ground-based 

SNOTEL sites. We demonstrated each SNOTEL site over the period of 2010-2020 had a statistically 

significant unique t* value associated with its melt out timing. This relationship not only can be used 

to potentially relate watersheds which can be grouped into a single PCA model but also serves as a 

spatio-temporal ground-based verification metric. If the pattern shifted within a year, the t* values 

would vary for the melt out date. Although we used a linear regression to interpolate t* values this did 

not force the melt out day to be associated with a given t*. 

Overall, the PCA model has demonstrated excellent spatial accuracy at the varied spatial 

scales described by the HUC-6 sizes over the Snake River Basin. It can be expanded with confidence 

by including many years, and it produces a linear description of snowmelt with time. The potential 

applications of this type of model are numerous including normalizing melt timing, increasing 

available spatial data, and potentially as an input in snowmelt runoff models. Further research is 

necessary to determine if larger watersheds can be grouped in different snow regimes and to identify 

the number of years required to develop a robust model at larger and smaller scales.  
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Chapter 6: Concluding Remarks 

In this work we have discussed the importance of snow and the utility of remote sensing to 

extract spatial patterns. The existence of a pattern has long been accepted however we are the first to 

utilize it beyond cloud removal. The recurrent pattern of snowmelt has significant advantages in 

simplifying snowmelt. The literature and hydrologic community use remote sensing as a data source 

for measurement and in many cases, it is regarded as a lesser data source. We have demonstrated 

throughout this work that remote sensing also can be used to develop a model. 

The spatio-temporal model of the recurrent pattern of snowmelt not only accurately 

represents the spatial depletion of snow but also describes snowmelt linearly with time. We provided 

a thorough analysis of the linearity of the time component. Secondary snowfall events impact the 

timing of snowmelt, but only as a brief interruption. Overall, the spatial component is intrinsically 

tied to the temporal component of snowmelt. Snowmelt has been viewed as temporally variable, but 

we simplified it into a linear regression.  

Development of a pattern is completed with a Principal Component Analysis throughout most 

of this work however other methods can be applied. A K-means clustering analysis also can produce a 

model of the recurrent pattern. This method is hindered by the discrete steps identified by the number 

of clusters defined by the user. User decisions hinder the K-means clustering model, but they are also 

an important consideration in the PCA method. We found that a slight alteration to the previously 

published PCA model NDSI snow cover threshold value led to significant increases in spatial 

accuracies. These analyses communicate the importance and sensitivity of big data models to simple 

decision such as what we consider snow.  

Finally, we investigated spatial and temporal scaling questions. We demonstrated the PCA 

model can be applied to HUC-6 watershed sizes with exceptional accuracies. We also provided an 

analysis of the changes in the resulting PCA model dependent on the number of years used to develop 

the model. While these findings were area specific, they provide insight into some good practices for 

developing the PCA model of the recurrent pattern of snowmelt. 

The spatial and temporal pattern of snowmelt is investigated in depth in this dissertation. The 

impact this work could have on how we approach climate change is significant. Although we expect 

to see changes to the mean temperature and precipitation the year-to-year variability we captured in 

our study period suggests the pattern will remain the same under a changing climate. So long as snow 

accumulation leads to a winter snowpack the pattern will exist. The work in Chapter 5 discussed the 
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ability of the PCA model to extract the pattern in a watershed which did not see complete snow 

coverage (Middle Snake Boise). The pattern for the mountainous sub basin was extracted and nearly 

equivalent using only the sub basin as input and using the whole watershed as input. There is 

potential to use this methodology to track the changes, to plant succession for example, under climate 

change. Given sufficient years we can recalculate the PCA model and compare changes in the melt 

timing. Similarly, we can quantify from a spatio-temporal normalized perspective the elevational 

zones and aspects subject to the most change under climate change. These potential applications 

require more research but given the robust nature of the pattern they are avenues of application. 

The work completed in this dissertation identifies theoretical applications, sensitivities, and 

scaling all with validated spatial accuracy assessments against independent data. These are 

foundational steps necessary to expand and apply this method world-wide.  This emerging field of 

spatial patterns of snowmelt has the potential to alter how we approach snowmelt modeling in real-

time and under climate change simply because we can normalize snowmelt across years. 


