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Abstract 

Snowmelt represents an important component of the hydrologic cycle with 

implications for water managers. In this research, we assess the applicability of intra-annual 

patterns for use in spatially modeling snowmelt. This is done through remote sensing which 

offers daily imagery of the watershed for the time period between 2000 and 2018. This 

thesis assesses the applicability of intra-annual patterns and develops two spatial models 

describing snow extent changes throughout a melting season. 

 In the first chapter we identify whether a pattern exists using spatial statistics and 

spatial comparisons. This fundamental step is the foundation for developing a model. We 

then address a critical assumption in the second chapter. Modeling the snowmelt progression 

is often done with depletion curves. We use narrowed error bounds to fit a curve, which 

solidifies our choice of curve to represent melt. This curve can be used to represent any 

snowmelt season. It is called a dimensionless curve and can be applied to any year. 

 The heart of this research is developing a spatial model which combines years of 

spatial data to describe the melting patterns. This is accomplished in chapter 3 with a 

principal component analysis. The model developed uses information from 2000 through 

2016. It is applied to the snowmelt seasons of 2017 and 2018 to verify the spatial accuracy.  

 The final chapter creates another spatial model using a fundamentally different 

statistical approach. Not only are the results very similar using these two methods, but both 

can be accomplished quickly. This opens the door to further research into the widespread 

use of this type of model. Applications of both spatial models are real-time modeling, 

climate change modeling, cloud removal, and producing spatially distributed information in 

ungauged watersheds. 
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Chapter 1: Exploring the Existence of Snow Melt Patterns 

 

Introduction 

Water stored as snow serves as an important component of available freshwater. 

Well over half of the world’s potable water supply is extracted from rivers [Barnett et al., 

2005]. In the Western United States 50-80% of the annual streamflow comes from snowmelt 

[Stewart et al., 2004]. In snowmelt dominated areas such as the example of the Western 

United States, water managers and legal systems rely on accurate modeling of discharge 

amount and timing [Qualls et al., 2013]. Remote sensing of snow has been available since 

the 1970’s with the Advanced Very High Resolution Radiometer (AVHRR) with daily 

imagery available at a spatial resolution of 1.1 kilometers at nadir [Jensen, 2016]. This 

provides spatially distributed imagery of snow on a daily time step, an ideal temporal 

resolution for monitoring snow coverage. This information has been used by many research 

groups to derive information which can be used for modeling purposes [Martinec & Rango, 

1986]. The spatial resolution of 1.1 kilometers may not accurately depict snow coverage in 

complex terrain [Rango, 1993]. With the launch of the MODerate Resoltuion Imaging 

Spectroradiometer (MODIS) on board the Terra satellite, and a second sensor on board the 

Aqua satellite, worldwide daily imagery of snow cover at a spatial resolution of 500 meters 

is available from 2000 through to the present [Jensen, 2016]. Microwave remote sensing has 

developed into an exciting data source for snow monitoring. Remotely sensed data in the 

microwave wavelengths along the electromagnetic spectrum can detect snow water 

equivalent (SWE) and snow depth even on cloudy days. The Advanced Microwave 

Scanning Radiometer- Earth Observing System (AMSR-E) collects SWE and snow depth 

information which can be used in snow melt modeling, but the spatial resolution of 25 

kilometers leaves this data at a disadvantage in complex terrain [Wulder et al., 2007; 

Pulliainen, 2006]. The spatial resolution of AMSR-E is the best available for collecting data 

on snow depth and SWE. These data sources provide spatially distributed data with 

applicable temporal resolution for monitoring snow. With this information, snowmelt 

modeling may become more accurate. One statistical test has been used on spatially 

distributed information which can lead to further understanding of the nature of space on 

measurement values: autocorrelation. Autocorrelation is a global statistic which identifies 



2 
 

whether the assumption that the spatial distribution of measurements is independent of the 

others [Brunsdon & Comber, 2015]. This measure can indicate whether location is a factor 

in determining a value of a particular measurement.  

Remote sensing of snow is a great tool for modeling snowmelt runoff; however, each 

type has complications. SWE and snow depth measurements are measured by means of 

microwave remote sensing. The low energy output over large ranges of wavelengths in the 

microwave spectrum forces this remote sensing to have large spatial resolutions from 25 

kilometers and up. The course resolution hinders the use of this data in operation 

hydrological modeling [Kelly et al., 2003; Dressler et al., 2006]. The high variability in 

SWE across a landscape may also lead to incorrect representation of the spatial distribution 

by remote sensing. Spatial distribution of SWE is dependent on accumulation, topography, 

slope, aspect, vegetation, and a number of other factors [Jost et al., 2007]. This combination 

of large spatial resolution and high variability in SWE is a significant setback for using 

microwave remote sensing. On the other hand, snow extent is measured in the visible and 

mid-infrared wavelengths. The high amount of measureable energy over small ranges in 

wavelengths in the visible spectrum leads to finer spatial resolution, 500 meters with 

MODIS. The Normalized Difference Snow Index (NDSI) has been applied in the MODIS 

products to help differentiate between snow and cloud cover [Hall & Riggs, 2015]. The 

NDSI is a combination of two bands, one associated with the visible wavelengths (Red) and 

the other with the mid-infrared wavelengths. Since a portion of the calculation of the NDSI 

relies on visible wavelengths, snow extent detection is hindered by cloud cover. The MODIS 

product is also subject to uncertainty and errors at the pixel level due to viewing conditions, 

land cover, the amount of snow, and cloud cover or masking [Riggs et al. 2017]. On cloud 

free days the MODIS product showed 93% agreement with ground measurements, therefore 

cloud cover is a persistent challenge [Hall & Riggs, 2007]. Although the measurement of 

snow extent is less desirable, the finer resolution along with a daily temporal resolution 

makes it quite useful for research.  

A substantial amount of research has been focused on addressing the issues 

associated with cloud cover and identification of snow in varied land cover. Many research 

groups have tackled the issue of cloud cover with good success. Combinations of the 

MODIS sensors on board the Aqua and Terra satellites, which have different pass over 
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times, have been used as a temporal filter to remove cloud cover [Dietz et al., 2012]. Other 

temporal filters have used imagery from preceding and succeeding days to identify whether 

a pixel is cloud covered [Parajka & Blöschl, 2008; Wang & Xie, 2009]. Spatial interpolation 

has also been used, which relies on adjacent pixels to inform the value of a cloud covered 

pixel [Gafurov & Bárdossy, 2009]. Elevation models have also been used. These define an 

elevation range that is considered to be all snow, a transition elevation range where pixels 

can be snow or land, and an elevation range which are all land [Parajka et al., 2010; Krajčí et 

al., 2014]. Step by step methods that incorporate the simpler methods outlined above with 

other more technical statistical methods to remove cloud cover. Examples of these are the 

MODSNOW-tool, and the Adaptive Spatio-Temporal Weighted Model (ASTWM) [Gafurov 

et al., 2016; Li et al., 2017]. These advanced methods boast cloud free daily imagery with 

agreement as good as 98.92% up to 99.8%. Other research groups have focused on accurate 

classification of pixels to address the variation in NDSI values based on land cover. 

MODSCAG uses a combination of spectral responses on a pixel by pixel basis to let each 

pixel independently define what spectral response is associated with snow cover [Painter et 

al., 2009].  

Changes in snow pack and extent are an area of significant research in climate 

modeling. If the intensity in precipitation does not change, a warming climate could lead to 

less precipitation coming as snow leading to earlier peak discharge in rivers and streams 

[Barnett et al., 2005]. Spatial statistics offer a way to analyze these changes. A vital 

assumption of a linear regression model is independence of values. For spatial data this 

includes spatial dependence. Many research groups have developed regression models to 

estimate SWE over a basin [Mizukami et al., 2011; Bocchiola, & Groppelli, 2010]. A 

fundamental step to verifying the validity of the model is a measure for spatial 

autocorrelation. Chang et al., [2014] found that maps of runoff ratio and coefficient of 

variation of the runoff ratio showed strong positive spatial autocorrelation and application of 

a Geographically Weighted Regression (GWR) model more accurately predicted runoff 

ratio’s than an ordinary least squares (OLS) model. Both used the same predictor variables 

with adjusted R-squared values increased from 0.793 to 0.828. The application of a GWR 

model reduces the spatial autocorrelation in the residuals of the model preserving the 

independence of predictor variables. To our knowledge, measures of autocorrelation have 
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not been widely applied to snow extent, for good reason. Snow extent is by nature a pattern, 

exhibiting high degrees of autocorrelation. Areas of snow cover are more likely to be close 

to other areas of snow cover, rather than completely spatially random (CSR). It has long 

been accepted snow exhibits a pattern in snow covered area (SCA) across multiple years; 

therefore the use for autocorrelation is not needed. The pattern of snow melt has been noted 

to exist independent of snow depth [Adams, 1976; König & Sturm, 1998; Luce et al., 2004; 

Sturm & Wagner, 2010]. The purpose of this research is to conduct a formal assessment of 

the existence of a repeatable pattern in the spatial distribution of snow as melt occurs for the 

period of 2000 through 2018. Spatial autocorrelation does not specifically address this; 

however the degree of spatial autocorrelation may prove to be useful in tandem with an 

assessment of the location of the SCA. 

Study Area and Data Sources 

Study area 

 Our study area, the Upper Snake Basin (Fig. 1.1), covers an area of 3,465 mi
2
 (8,894 

km
2
) and elevation ranges between 5,799 -13,760 feet (1,737 – 4,194 meters). The extent of 

the watershed has a Northing of 4752708.5 to 4938033.6 meters and an Easting of 262199.4 

to 828367.5 meters in the Albers 1927 datum and UTM zone 12 projection. The area serves 

as an important water resource for Idaho agriculture, power generation, in stream fish 

requirements, as well as municipal, commercial, and industrial uses. The watershed is 

bordered to the West by the Teton Mountains and includes the hydrologic units known as 

the Snake Headwaters, Gros Ventre, and Greys-Hobock. Snow seasonally covers the 

watershed making remote sensing a useful tool for collecting snow cover information. The 

study site also has 11 ground based monitoring stations (SNOTEL sites), which measure a 2 

meter by 2 meter snow pillow and collect snow water equivalent (SWE) measurements. The 

study site land cover is variable. Forest accounts for 47.9 percent of the total area with 46.6 

percent of the total area classified as evergreen forest. Shrub and grass land account for 45.4 

percent of the total area with the remaining 6.7 percent belonging to agriculture, developed 

land, and wetlands. Percentages calculated are based on the 2011 National Land Cover 

Database [Homer et al. 2015].  
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Data Sources 

 The MODerate Resolution Imaging Spectoradiometer (MODIS) on board the Terra 

satellite was used. The version six data product, MOD10A1 (MODIS Terra snow cover 

daily L3 global 500 m Sin GRID V006) distributed by the National Snow and Ice Data 

Center (NSIDC) was used. This data product comes with NDSI snow cover, NDSI snow 

cover basic QA, NDSI snow cover algorithm flags QA, NDSI, and snow albedo data. In this 

study only the NDSI snow cover was used because it gives information about snow and 

cloud extent. MOD10A1 was chosen as it has consistently shown less cloud obstruction 

[Parajka & Blöschl, 2008]. The calculation of NDSI is a combination of the red band (0.545-

0.565 μm) and a middle infrared band (1.628-1.652 μm). The NDSI equation is the 

difference between the red and middle infrared bands divided by the sum of the two. The 

MODIS sensor aboard Aqua had a failure in the mid infrared band forcing a slightly 

different NDSI calculation. Since no temporal combination of Terra and Aqua was applied, 

only MOD10A1 product from the Terra satellite was used. To convert the data to fractional 

snow covered area (SCA) a constant threshold of 0.4 was used, as documented in the version 

six user guide [Hall & Riggs, 2015]. Two MODIS swaths were needed to encompass the 

study region, h09v04 and h10v04. All available MODIS imagery from 2000 through 2018 

was used in this study.  

Methods 

 Two methods were used to assess the existence of a pattern of the spatial distribution 

of snow at different SCA across multiple years. A join count statistic was applied, which 

measures the degree of autocorrelation. Positive and negative autocorrelation signify spatial 

dependence where no autocorrelation represents complete spatially randomness. In the 

context of this research spatial dependence is expected since snow cover is by nature 

distributed based on physical characteristics of a watershed which are not random. 

Identifying the existence of a pattern requires a comparison of the join count statistic and a 

comparison of the location of snow cover. The join count statistic is a global autocorrelation 

statistic (one value describing the entire image), which is the reason an analysis of location 

of the pattern is required.  
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Join Count Statistic 

 The join count statistic is a method for measuring spatial autocorrelation on binary 

data. Where other more frequently applied statistics for measuring spatial autocorrelation 

(Moran’s I) are applicable to continuous data the join count statistic is defined explicitly for 

binary datasets. In the case of the MODIS daily snow cover products an NDSI is given. 

While it is tempting to apply Moran’s I to this data, which is on a scale of 0 to 100, it would 

be incorrect because the data is binary in nature not continuous. Snow exhibits an NDSI 

value of greater than zero [Riggs et al., 2017]. The complication is an NDSI value for a pixel 

which is 50% snow covered varies based on land cover (forested or not), viewing angle of 

the sensor, illumination of the pixel, and the slope of the pixel [Riggs et al., 2017]. Where 

one NDSI on a given day may mean a certain percentage of snow cover, it may not mean the 

same snow cover on a different day, or even at a different location. For this reason the 

Moran’s I is not applicable to this data without significant processing of the imagery and 

ground based verification. The join count statistic was applied to deal with this issue. A 

constant NDSI threshold of 0.4 (40 on the scale of 0 to 100) was applied to the data 

consistent with the MODIS user guide recommendations. The threshold converts the NDSI 

imagery to a binary snow or no snow image where cloud cover is also included in the no 

snow portion. This also may be subject to the errors in NDSI; however processing time is 

reduced greatly for a comparison of this size.  

 All imagery with cloud cover less than 5% of the total area were converted into the 

binary snow and no snow. The cloud free imagery (<5% cloud cover by area) from 2000 

through 2018 during the melting period or day of year (DOY) 1-200 were used. Images at 

SCA values of 85, 75, 65, 55, 45, 35, 25, and 15 percent were identified and converted into 

the binary format. Images rarely measure exactly at a particular SCA; therefore at a given 

SCA a ±3% buffer was used. If for example, an image measures at 78% SCA it would be 

used for the 75% SCA comparison. This means theoretically if both the image allowable 

SCA error and allowable cloud cover error were maxed out a difference of 8% could be seen 

in snow covered area. The average cloud cover was 2.6% with a maximum of 4.8%. A total 

of 53 images fit these criteria.  

 Performing a join count statistical measure of spatial autocorrelation requires the 

definition of a neighborhood. The test visits each pixel in the image and analyzes the 
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neighboring pixels to calculate the statistic. Three methods can be used for the neighborhood 

rook’s case, queen’s case, and k-nearest neighbor. Queen’s case was used in this analysis as 

it is the most theoretically fitting. The rook’s case only analyzes the pixels bordering the 

pixel in question, a neighborhood of 4 pixels. The queen’s case analyzes the bordering and 

adjacent pixels, a neighborhood of 8 pixels. The k-nearest neighbor is most applicable to 

non-uniformly sized data such as counties within a state. Queen’s case was chosen since 

snow melt is driven by a number of drivers such as elevation, slope, aspect, and more 

suggesting adjacent pixels are of interest when calculating the statistic. The edge of a 

melting snowpack is complex in its distribution throughout a watershed which can be 

captured by the queen’s case neighborhood, but might be misrepresented by the rook’s case. 

Row standardization was also applied, which normalizes the dataset. The Join Count statistic 

provides an expectation value and a measured value. A join is measured when pixels of 

differing values are adjacent to one another. The expectation is the calculated number of 

joins which would be expected if the distribution of points is completely spatially random. 

For an in depth discussion of the derivation of the join count statistic, refer to Cliff & Ord 

[1981]. With the expectation value and measured value both calculated for each image, 

plotting the two gives a method for comparing the statistics at a given SCA for images from 

multiple years. The combination of these two in fact describes the interface between snow 

and land. This is because a measured join is a location where a pixel within the queen’s case 

neighborhood has a different value than the pixel being analyzed. If one snow pixel is 

surrounded by 2 no snow pixels, and subsequently 6 snow pixels, 2 joins would be recorded. 

The interface between land and snow is where all the joins are measured in theory. 

 The location of the extent of snow and interface between land and snow was 

identified through a spatial comparison of all the cloud free images at a given SCA. The 

binary imagery of snow or no snow was assigned a value of 0 for snow and 1 for no snow. 

By adding the images at a given SCA together and dividing by the total number of images 

used, the number of times a pixel differed at a across all the images at a given SCA can be 

shown. If there are five images to compare and one pixel has a value of one image 

disagreement, this indicates one of the five images had a different value, whether it was 

measured as snow once and land on the other 4 images or vice versa. The higher the number 

of disagreement the less consistent the pixel is in the pattern of melt.  



8 
 

Results 

 Snowmelt is driven by a number of energy fluxes. Spatial autocorrelation is a 

measure of the randomness of the spatial distribution of values. High degrees of spatial 

autocorrelation are expected for melting snow on a watershed scale. It is unexpected for 

snow to melt in a random fashion because snow accumulation, slope, aspect, elevation, all 

influence melt. With only accumulation varying, the physical drivers (watershed physical 

characteristics) of snowmelt are consistent therefor areas of snow are more likely to be near 

areas of snow in a watershed as melt occurs. What is of interest in this research is the pattern 

across multiple years. The join count statistic produces two values: expected joins and 

measured joins. In this context the expected value would be the number of times a snow 

pixel joins a land pixel based on the number of snow pixels in the image. The expected 

value is based on the value that has the lowest count in an image, which is why once SCA 

switches from being the majority to the minority the expected value declines. At high snow 

covered area percentages the expected value is based on the no snow pixel count and vice 

versa at low SCA percentages. This information can be compared for multiple years helping 

to identify the existence of a pattern in snowmelt by explaining the interface between snow 

and land or the “snow line”.  

 As expected, high degrees of spatial autocorrelation were recorded at every image. A 

high degree means the expectation is much larger than the joins value. Each was highly 

significant with p-values of less than 2.2e-16 for every image. Figure 1.2 shows the 

comparison of join count statistic versus expected value at SCA values of 85, 75, 65, and 55 

percent. Each point represents an image. The points are grouped together based on SCA 

percentage. Each group of points is distinctly different than the next especially along the x-

axis (expected value). There is also a difference in the y axis. As the SCA decreases the 

Joins increase. It is expected that there would be a difference in the expected value, but very 

meaningful that the y axis or join counts also follows a trend. This shows that the interface 

between land and snow follows a trend from year to year. Figure 1.3 shows the SCA values 

of 45, 35, 25, and 15 percent. As snow covered area decreases the expectation decreases, 

which follows the definition of how the expected value is defined as discussed above. The 

trend in the join counts in this plot follows an increasing trend as SCA increases. The 

percentages of 35 and 45 appear quite similar in join counts. This may be due to the limited 
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number of images used for these two percentages, four for 35 and six for 45 percent. The 

expectation value at 15 percent SCA is also interesting falling on 2 distinct expectation 

values rather than the mixture of expectation values seen at all the other SCA values. One 

can note the two figures produce similar expectation values. When all the image used are 

plotted on one plot 85 and 15 percent SCA plot on top of one another, as does 75 and 25, 65 

and 35, and 55 and 45. This is because of how the expectation and join count statistic are 

defined. It is interesting though the join counts produce similar results at inverse SCA value 

such as 85 and 15. This suggests the length of the interface at these two snow covered areas 

are similar. At the mid-range SCA values the expectation and join counts are closer together. 

Even as melt occurs between 35 and 65 percent SCA the length of the snow line changes 

very little, an interesting finding.  

 The interface between snow and land at a constant SCA across multiple years shows 

a trend; however without the spatial comparison of the snow extent this alone does not 

identify a year to year pattern. At each of the SCA values used in the join count analysis the 

associated images were compared through raster algebra (addition of the pixel values with 

the same geographic location). At each SCA one image was created by adding all the images 

available at that SCA. To normalize the data, the final image was divided by the number of 

images used. This resulted in pixel values ranging from 0 to 1. With five images used the 

range of possible values would be 0, 0.2, 0.4, 0.6, 0.8 and 1. A zero or one indicates no 

difference at that particular pixel between all 5 images used. A 0.2 and 0.8 indicate one 

image differed from the other four at the pixel level. Subsequently a 0.4 and 0.6 indicate 2 

images differed. The figures use black to indicate agreement between all the images used. 

Black represents agreement between snow and no snow. A grey scale was used to show 

image disagreement on the pixel level. Some disagreement is expected since no image has 

exactly the same SCA as another. In all the figures the interface between land and snow can 

be tracked by the edge of the disagreement values or grey to white pixels. The thicker 

disagreement line is the more spatial difference was recorded. A very thin grey line shows a 

very similar snow line across all the images compared while a thick one shows a bigger 

spatial difference in the distribution of snow. Ideally the images would be all black. 

Figures 1.4 through 1.11 show the agreement of the spatial distribution of snow at 

different SCA percentages. It is important to note the cloud is considered no snow. Raw 
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imagery was used in this analysis and no attempt to interpolate the data was made. Figure 

1.4 represents 85% snow cover and each subsequent figure is a 10% reduction in snow 

cover, presented in the same progression as snow melts. As melt begins (Fig. 1.4) the 

interface between land and snow is shifted in one image. The northern light grey colored 

area is a one image disagreement. Very few pixels show a 2 image disagreement. This 

shows that the pattern is mostly steady across the 5 images compared. At 75% SCA (Fig. 

1.5) the Southeastern portion of the watershed is less consistent showing 3 image 

disagreement. The main bulk of melt, which is encircled by the white and grey, is the same 

and the line is similar in many locations. Figure 1.6 shows the stabilization of the pattern in 

the southern end at 65% SCA. The disagreements in Figure 1.5 are all but gone in Figure 

1.6. The North and Eastern edge of melt is now blurred with two and three image 

disagreement. The main area of melt is once again stable. At 55% SCA the majority of the 

snow line is extremely consistent across all the images used (Fig. 1.7). The northern end of 

the main melt still shows multiple image differences. It is between 55% SCA and 45% SCA 

that a significant increase in spatial agreement is seen. 

 The agreement of all the images used at 45% SCA (Fig. 1.8) can be seen by the very 

thin line representing the snow line. Even with disagreement it is so little around the snow 

line at this percentage it can be safely stated the pattern is stable at this percentage especially 

since 6 images were compared. This trend continues as the SCA decreases. Figures 1.9 

through 1.11 all show good agreement in the spatial distribution of snow. The relationship 

between the spread of join count statistics and spatial agreement is evident when both are 

considered. The SCA with the worst spatial agreement 75-65% also show a great spread in 

the join count values in Figure 1.2. In fact at 75% SCA there appear to be two groups for the 

join count statistic. Three of the seven images used group together, this is represented in 

Figure 1.5 as 3 images showed disagreement in the spatial extent of snow. While the join 

count statistic does not describe explicitly the spatial extent of snow, it is related. This is 

further backed up by the tight groupings of join count statistics in Figure 1.3 with a range of 

315 at 45% SCA compared with the range of 661 at 55% SCA and 620 at 75% SCA in 

Figure 1.2. In terms of the statistic as snow melts the join count statistic decreases meaning a 

more stable snow line. This is also seen in the spatial comparison of the imagery.   
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Discussion 

 The implications of a repeatable pattern in snow melt are wide spread and 

underutilized. This long accepted fact has remained a novelty for remote sensing. In an 

aggregated way dimensionless depletion curves have been proposed, using the pattern in a 

non-spatial way [Luce & Tarboton, 2004]. These curves represent the spatial change in snow 

extent through a melting season with time. The dimensionless part of the curve is added by 

shifting the curve and altering the rate or steepness which can be fit to any snow year. 

Depletion curves have long been developed as input into snow melt models particularly the 

snowmelt runoff model (SRM) [Martinec & Rango, 1986]. In these cases a depletion curve 

is derived for each year independent of previous years. A repeatable pattern reinforces the 

applicability of the dimensionless depletion curve which fits each year. A repeatable pattern 

in SCA changes across multiple years is a relationship that can be used in real-time 

modeling, cloud removal, climate modeling, and can be used as spatial information in 

ungauged watersheds.  

 Modeling snowmelt has used remote sensing as an input as early as 1982 with the 

AVHRR sensor [Baumgartner et al., 1987]. Currently remote sensing of snow cover is only 

used as input when cloud cover is below a certain threshold or interpolated [Steele et al., 

2017]. This preliminary work shows a significant stability in the pattern of melt across a 19 

year period. With this information accurate depiction of the spatial coverage of snow at 

multiple snow covered areas can be developed. A very important note about the pattern can 

be seen in Table 1.1. The DOY and year of each image used in this analysis is shown sorted 

by SCA. While differences in snow packs exist this information shows the variability in the 

timing that each SCA is achieved. The most surprising value is the range in the DOY at each 

SCA. The largest range in DOY of 39 is measured at an SCA of 25%. The smallest of 16 

days is associated with 15% SCA. All SCA percentages except for 15% had more than 20 

days difference. This information shows the high variability in the snow melt timing. A 

criticism of this work may be that years of similar snow and melting conditions were used; 

however this shows significant shifts in the timing of melt across all SCA percentages and 

years. The patterns exist regardless of the snow depth, max SWE, and melt timing. A  SCA 

value of 45% is the same spatially in any year. This assessment shows the stability of the 

pattern even with some variability at SCA percentages of 55 and 65.  
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 The most exciting application of a repeatable pattern is ungauged watersheds. Spatial 

information is extremely useful for real time modeling, cloud removal, and climate 

modeling, but ungauged watersheds have relied on interpolation for distributed data 

[Teutschbein et al., 2018]. A repeatable pattern, which is shown to exist here with remotely 

sensed data, is a new exciting application for spatial information in ungauged watersheds. 

The pattern is a product of the physical characteristics of a watershed, which is available 

through remote sensing. Where data in these locations has relied on interpolations, real 

spatial data is available. Since the pattern is applicable across multiple years and snow pack 

conditions data from years passed is useful.  

 Remote sensing of snow offers a variety of data, some of which are more important 

for modeling than the spatial extent of snow. Remote sensing of SWE and depth of snow 

have both become an area of interest. The question remains, why is the spatial extent of 

snow useful if SWE, a much more desirable variable, can be interpolated? Two factors 

determine the reason snow covered area is presently more valuable. One, the spatial 

resolution of SWE measurements is too large to capture its variability in complex terrain. 

Most importantly year to year SWE measurements are driven by precipitation and 

temperature which may not show a significant year to year pattern in spatial distribution. 

Snow extent on the other hand shows a stable pattern across multiple years and varying 

snow melt timing. While the pattern in this watershed may be slightly more variable 

between 75-55% SCA, once snow cover is less than 50% the spatial pattern and interface is 

exceptionally stable. This is shown in terms of the spatial coverage and the join count 

statistics which are more clustered together at the lower SCA values. This is shown to be 

even more valuable with the wide range in DOY at 25% SCA of 39 days for the images 

used. The pattern exists even if melt timing is significantly different. 

Limitations 

 In this study a constant threshold was applied to the NDSI to transform the imagery 

into a binary snow or no snow image. The fact is any NDSI value greater than zero may 

indicate some snow in the pixel [Riggs et al., 2017]. With this watershed nearly 50% 

covered by evergreen forest errors in the spatial distribution of snow in the forested areas are 

unavoidable using the constant threshold. NDSI values of 0.2 or greater have been shown to 

indicate complete coverage in forested areas, which is substantially lower than the 0.4 used 
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in this study [Rittger et al., 2013]. While this use of a constant threshold limits this study it 

does not disprove the pattern, but may underestimate snow coverage. Using a varied 

threshold also may not fix the issue as viewing angle of the sensor, illumination, and age of 

the snow all play a part in defining the NDSI value. One positive NDSI value may represent 

a wide variety of snow coverage [Riggs et al., 2017].With this in mind a constant threshold 

was applied for ease and because the solution to identifying snow is not as simple as a varied 

threshold based on land cover. As identification of snow with remote sensing becomes more 

accurate the pattern may become even more stable.  

Conclusion 

 The goal of this research was to investigate the existence of a pattern in snowmelt 

across multiple years. This idea has long been accepted in the literature [Adams, 1976; 

König & Sturm, 1998; Luce & Tarboton, 2004; Sturm & Wagner, 2010]. No formal 

assessment of the pattern to our knowledge has been conducted, merely noted by other 

research groups. Two methods were applied to identify the stability of the pattern, one a 

global statistic describing the interface between snow and land and the other a spatial 

comparison of the location of the pattern. Both analyses showed separation between SCA 

percentages and a stable pattern. Even with the variability in the spatial location of the 

pattern at the higher SCA percentages the pattern was significant even with a high 

variability in the snowmelt timing, or the DOY associated with the images used. These 

finding support the long accepted idea of patterns at the watershed scale. The pattern is a 

result of the watershed physical characteristics which do not change such as elevation, slope, 

and aspect which are all important to the radiation a snow pack receives. For this reason a 

year to year intra-annual pattern exists, which is stable due to these unchanging physical 

characteristics. Applications of the pattern are widespread with a particularly exciting area 

of ungauged watersheds. Spatial data on a daily time step at a spatial resolution of 500 

meters is available from 2000 to the present. This research shows the imagery from years 

passed can inform future years with spatial representation of snow extent. While other 

remote sensing technologies develop such as microwave remote sensing the spatial extent of 

snow offers a finer resolution to observe daily snow cover changes through a melting 

season. 
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 The patterns in melt offer a new untapped area of research in snowmelt modeling. 

This information is applicable to real time modeling, climate modeling, cloud removal, and 

offers extremely valuable information in ungauged watersheds. Further research is required 

into developing a methodology for applying this information to hydrological models. Next 

steps in this research are to develop an application of this information. The old idea of 

patterns may prove to be useful information as we manage our water in a changing climate.   
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Tables 

Table 1.1: Summary of imagery used for the analysis with year and DOY presented at different SCA percentages. 

SCA % 85 75 65 55 45 35 25 15 

  Year DOY Year DOY Year DOY Year DOY Year DOY Year DOY Year DOY Year DOY 

 

2003 98 2003 99 2004 103 2001 116 2002 133 2003 143 2001 132 2006 156 

 

2003 100 2005 106 2006 119 2002 124 2003 136 2012 134 2003 147 2010 169 

 

2004 89 2013 116 2008 137 2003 134 2004 116 2015 121 2005 146 2014 157 

 

2006 110 2014 123 2010 114 2004 114 2006 135 2017 151 2006 151 2014 162 

 

2018 111 2015 103 2013 122 2004 117 2009 138 

  

2006 152 2017 170 

   

2017 124 2015 110 2006 133 2016 124 

  

2008 168 2018 154 

   

2018 116 2018 117 2007 118 

    

2008 171 

  

       

2008 138 

    

2017 158 

  

       

2015 107 

        

       

2017 130 

        Range in 

DOY   22   25   34   31   22   30   39   16 
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Figures 

 

Figure 1.1: Upper Snake Basin with associated SNOTEL stations. 
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Figure 1.2: Comparison of join count statistic versus expected at snow covered areas between 85 and 55% across multiple 

years at varied snow covered areas. Each point represents one image. 
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Figure 1.3: Comparison of join count statistic versus expected at snow covered areas between 45 and 15% across multiple 

years at varied snow covered areas. One point represents the values calculated for one image, while shape point shape 

differentiates snow covered area. 
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Figure 1.4: Agreement of all the images used at 85% snow covered area. 
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Figure 1.5: Agreement of all the images used at 75% snow covered area. 



25 
 

 

 

Figure 1.6: Agreement of all the images used at 65% snow covered area. 
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Figure 1.7: Agreement of all the images used at 55% snow covered area. 
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Figure 1.8: Agreement of all the images used at 45% snow covered area. 
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Figure 1.9: Agreement of all the images used at 35% snow covered area. 
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Figure 1.10: Agreement of all the images used at 25% snow covered area. 
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Figure 1.11: Agreement of all the images used at 15% snow covered area.  
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Chapter 2: Developing Dimensionless Depletion Curves 

 

Introduction 

 Snow melt is a vital component of available fresh water in the Western United 

States. Between 39% and 67% of the annual precipitation in the North American West 

comes as snowfall, and between 50–80 % of the annual flow is contributed by snowmelt 

[Serreze et al., 1999; Stewart et al., 2004]. The timing and amount of discharge is of the 

utmost importance especially in areas such as Southern Idaho where legal authority for 

water management relies heavily on the timing of water availability and storage [Qualls et 

al., 2013]. Since the 1970’s remote sensing has offered spatially distributed information of 

snow. In 1999 the Moderate Resolution Imaging Spectoradiometer (MODIS) was launched 

on board the Terra satellite. MODIS offers daily worldwide coverage at a spatial resolution 

of 500 meters making it ideal for monitoring snow. Unfortunately, snow detection errors and 

uncertainty at the pixel level are affected by viewing conditions, land cover, the amount of 

snow, and cloud masking [Riggs et al. 2017]. The MODIS product showed 93% agreement 

on cloud free days for detection of snow and thus cloud cover poses a persistent challenge as 

shown by Hall & Riggs [2007].  

 Cloud removal techniques have been developed for remotely sensed imagery using 

interpolation methods. Most of these methods use a form of spatial interpolation, temporal 

interpolation, a combination of these, or complex multistep procedures to produce cloud free 

imagery [Gao et al., 2010; Krajčí et al., 2014; Painter et al., 2009; Parajka & Blöschl, 2008; Parajka 

et al., 2010; Gafurov & Bárdossy, 2009; Gafurov et al., 2016]. Significant cloud reduction has 

been achieved however; real time modeling of the spatial coverage of snow requires the 

ability to forecast. For this application a depletion curve that can be fit early in the melt 

season is ideal. An example of the application of a depletion curve is input into the 

Snowmelt Runoff Model (SRM) [Martinec & Rango 1986; Rango & Martinec, 1994]. The 

utility of depletion curves can be extended to ungauged catchments using MODIS as well, 

but to overcome cloud masking interpolation methods are used [Safari et al., 2014; Qui et 

al., 2014]. Often days that are too cloud covered (>10% by area) are simply thrown out 

[Steele et al., 2017]. With the magnitude of imagery collected by MODIS, identifying the 

effects of cloud cover during a melt season on a pixel by pixel basis can be accomplished. 
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Doing so increases the available data points by reducing the effects of cloud cover while 

maintaining the original data. 

The method developed in this research takes advantage of the large amount of 

available MODIS imagery, ground based data, and the ideas used in temporal interpolation 

to add spatial and temporal error bounds to depletion curves. With smaller error bounds and 

more available days, a depletion curve can be developed. A dimensionless depletion curve 

can be derived from this, which is applicable to all years. A dimensionless depletion curve is 

of similar shape for each year altering only specific parameters and is dimensionless with 

time. To fit a dimensionless depletion curve to any given melt season, only a couple 

parameters need to be identified. This idea is based on the consistent snowmelt patterns 

across multiple years. Repeatable patterns of snowmelt have been recorded and accepted for 

many years [Adams, 1976; König & Sturm, 1998; Luce & Tarboton, 2004; Sturm & Wagner, 

2010]. Relying on the year to year pattern, a dimensionless depletion curve which is derived 

from the original data with reduced error bounds could be a useful tool for real-time snow 

melt modeling. 

Study Area and Data 

Study area 

 Our study area, the Upper Snake Basin, covers an area of 3,465 mi
2
 (8,894 km

2
) and 

elevation ranges between 5,799 -13,760 feet (1,737 – 4,194 meters) (Fig. 2.1). The area 

serves as an important water resource for Idaho agriculture, power generation, in stream fish 

requirements, as well as municipal, commercial, and industrial uses. The watershed is 

bordered to the West by the Teton Mountains and includes the hydrologic units known as 

the Snake Headwaters, Gros Ventre, and Greys-Hobock. Snow seasonally covers the 

watershed making remote sensing a useful tool for collecting spatial information. The study 

site also has 11 ground based monitoring stations (SNOTEL sites), which measure a 2 meter 

by 2 meter snow pillow and each collects a number of physical measurements. The study 

site land cover is variable. Forest and shrub/grass land account for 47.9 and 45.4 percent of 

the total area respectively, with the remaining 6.7 percent belonging to agriculture, 

developed land, and wetlands as calculated using the 2011 National Land Cover Database 

[Homer et al. 2015].  
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Data Sources 

 Snow cover data used in this analysis was collected by MODIS on board the Terra 

Satellite. The version six data product, MOD10A1 (MODIS Terra snow cover daily L3 

global 500 m Sin GRID V006) distributed by the National Snow and Ice Data Center 

(NSIDC) was used. This product comes with five layers relating to snow extent and albedo. 

Of the five layers, only the NDSI snow cover was used. Since no temporal filtering was 

applied there was only a need to use one sensor, MOD10A1. Fractional snow coverage was 

calculated using an NDSI threshold. Two MODIS swaths were needed to capture the study 

region, h09v04 and h10v04. All available MODIS imagery from 2000 through 2016 was 

used in this study. 

 SNOTEL data distributed by the Natural Resource Conservation Service (NRCS) 

was also implemented in the algorithm. There are eleven sites in the watershed; however for 

the purposes of this study snow water equivalent (SWE) measurements from one site were 

collected: Base Camp, station ID 314. Base Camp is located at one of the lower elevations at 

7060 feet, but the snow pillow at this station melts completely before the other ten stations 

in most years. Figure 2.2 shows peak SWE measured at Base Camp for each year. The 

largest peak SWE was measured in 2011 with a value of 26.3 inches and the smallest in 

2001 at 8.7 inches. Over the seventeen years the average value for peak SWE is 17.2 inches. 

Methods 

Model development 

 Analyzing spatial and temporal error bounds on depletion curves requires 

identification of the days melt occurred and the effect of cloud cover during the melt season. 

To do this a data reduction algorithm was developed. The algorithm takes advantage of the 

great deal of spatial information available through MODIS daily imagery, and on a pixel by 

pixel basis records dates of interest in two separate rasters which can be opened in ArcGIS, 

python, and many other platforms making it useful for many research applications. Ground 

based SNOTEL data is incorporated into the algorithm to increase accuracy. For each year 

of available data, 2000 through 2016 in this study, two output files are created. For example, 

2000 would have two rasters of spatial resolution and geolocation equal to the MODIS daily 

imagery. The two rasters are made up of dates. The “snow” raster contains the last day snow 

was seen for each pixel, and the “land” raster the first day land is seen for each pixel. Ideally 
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if cloud cover posed no issue during melt the land raster would be exactly one day larger for 

each pixel than the snow raster. Since this is not the case, the difference between these 

rasters is cloud persistence during the time period in which we know melt has occurred for 

each pixel.  

 Three basic steps are incorporated in this algorithm: a land, snow, and cloud 

protocol. To increase processing speed the algorithm works by sub-setting pixels as it works 

through the large amount of data. Before the algorithm is initiated a starting date is 

identified. Snow cover is seasonal in this watershed and the timing of peak snowpack varies 

year to year. In order to best capture the peak snow coverage of the watershed the SNOTEL 

station with the earliest melt out date over the 17 years (Base Camp) is used to define the 

start date for each year. Melt out refers to the complete melt of the snow pillow at that 

station, or the date snow water equivalent is equal to zero. The day of peak snow water 

equivalent (SWE) for each year was used as the start date. This helps avoid capturing 

secondary snowfall events after melt has already occurred. Secondary snowfall would be 

considered a snow fall event which occurs after melt over the peak snow coverage has 

occurred. The dates of peak SWE used for each year are included in Table 2.1. It is evident 

from the large spread in the date of peak SWE that the years used vary greatly in the 

snowpack with peak SWE dates ranging from day 68 to day 113. To coincide with the 

MODIS nomenclature dates are listed on a scale of 1 to 365 (366 in leap years) where day 

one is January 1
st
. Since this date tracking is the same as MODIS it can be used to identify 

imagery for a given year.  

The algorithm extracts the last day of snow and first day of land values by iterating 

through all the available imagery one year at a time using the day included in the MODIS 

nomenclature as a guide for processing. The day on a scale of 1 to 365 is included in each 

image along with the year. For the following description “day” describes the MODIS image 

on that specific day. A few scenarios can take place during processing. Given a pixel that is 

identified as snow on the start day the algorithm begins forward processing, known as the 

snow protocol. Forward processing means the next day of MODIS imagery is analyzed and 

the next for only the pixels identified as snow on the first day, saving the day that snow was 

last seen in one raster and the first day land was seen in another until all the pixels have a 

value for each raster. For the pixels identified as land on the start day, the algorithm back 
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processes, analyzing the previous day of MODIS imagery until snow is seen for each pixel, 

known as the land protocol. If a pixel was never snow covered or cloud cover never allowed 

for snow to be seen the date of last day of snow is saved as day 0. The final scenario is 

pixels that are identified as cloud on the start day. For these the algorithm begins back 

processing. As back processing proceeds, if pixels are identified as snow first they are sent 

to the snow protocol beginning on the day after the start day. For pixels identified as land 

first they are sent to the land protocol. If a pixel is cloud covered for the entire period from 

the start day to January 1
st 

the algorithm begins forward processing from the day after the 

start day. For these pixels if land is seen first the day is only saved to the first day of land 

raster. The last day of snow raster is saved as a zero meaning it was never seen as snow 

before it is identified as land. 

 This method brings in ground based data to inform the timing of the algorithm 

methodology to efficiently reduce the large amount of imagery available to only two images 

per year. The output images describe the spatial melt progression through a melting season. 

The depletion curve for a given year can be derived by fitting the curve to the snow covered 

area reduction with time. Unlike the other methods for creating a depletion curve, which rely 

on the limited cloud free days or interpolation methods, this algorithm can be used to create 

a depletion curve that still incorporates the cloud free days but does not interpolate in 

between. While the depletion curve in essence is interpolating with time, a substantial 

amount of raw data is used with spatial and temporal error bounds since the output is a 

collection of dates of interest.  

Identifying Effects the of Cloud Cover 

 With all of the imagery available for each year condensed down into two images the 

effect of cloud cover over the melt season on a pixel by pixel basis, can be quantified. The 

difference between the land and snow raster describes the cloud persistence of each pixel 

during this time. The number of pixels on a given day that had the “potential to melt” can be 

extracted.  Potential to melt refers to a pixel on a given day of year (DOY) whose last day of 

snow seen pixel value is greater than the given DOY, but less than the first day of land. The 

pixel would be considered cloud obscured during its specific period of melt. For each day 

the number of pixels that had the potential to melt can be quantified. This number acts as a 
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spatial error bound with temporal meaning. The count of pixels is spatial while the temporal 

component comes from the potential to melt pixel count, which varies each day. 

A depletion curve describing snow covered area with much smaller error bounds 

based on cloud cover during the melt season on a pixel by pixel basis can be developed. This 

curve is superior because it is a product of the original data rather than a spatial interpolation 

of cloud cover on a daily basis, but it still produces daily values with error bounds. 

Effectively the data is less aggregated than using an interpolation method due to the tighter 

error bounds. From here a dimensionless depletion curve can be derived.  

Developing Dimensionless Depletion Curves 

 Extending the research conducted by Qualls & Arogundade [2012], a Gaussian 

Decay was applied to model the melt trend of the watershed. It is important to note that this 

particular watershed was well described by this function while other watersheds may not be. 

The curve was fit using a numerical solver to minimize the sum of squared errors by 

adjusting two parameters: the rate of melt and date of 50% snow covered area. Before the 

curve can be fit fractional snow covered area (FSC) and the error bounds must be defined. 

The first day of land raster was used to calculate the fractional snow covered area because it 

defines the day there is confidence the pixel has melted. Fractional snow covered area is 

calculated according to Equation 2.1. The error bounds were defined using the number of 

pixels with the potential to melt on a given day. This value is calculated in the same way as 

FSC where the numerator is the number of pixels with the potential to melt.  

 𝐹𝑆𝐶 =  
𝑆𝑛𝑜𝑤 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑖𝑥𝑒𝑙𝑠
 Equation 2.1 

The error bounds were added to the FSC. Since the first day land is seen raster was 

used, the errors are only associated with pixels that have not melted on each DOY. To fit the 

curves, an error was only assessed if the curve fell outside the region defined by FSC area 

plus the fractional representation of the pixels with the potential to melt. With this approach 

a spatial and temporal error bound is added, as the number of pixels with the potential to 

melt fluctuates day to day. The cloud free days a still represented using this method. To 

create the dimensionless depletion curve a simple equation is applied (Equation 2.2). A z 

score is calculated at each snow covered area (SCA). The X50 value is the DOY 50% SCA is 

achieved and σ is the rate of melt or the steepness of the Gaussian decay function. Since 



37 
 

 

each depletion curve for any given year is numerical fit to minimize the sum of squares error 

by altering X50 and σ the z value is quickly calculated.  

 𝑧 =  
𝑋50−𝐷𝑂𝑌

𝜎
 Equation 2.2 

Results 

 Similarly to a temporal filtering method for cloud removal the algorithm effectively 

reduces the impact of cloud cover. Applying these cloud covered pixels with the potential to 

melt as an error bound increases the confidence in the fit of a depletion curve. As seen in 

Figure 2.3 the depletion curve agrees very well with the measured snow covered area and 

potential to melt error bounds. The depletion curve, on a given DOY, should ideally fall on 

top of the snow covered area point or in between the snow covered area and potential to melt 

error bound. The significant portion of the melt from 75% to 25% snow covered area is 

represented well with the depletion curve.  

 Like a temporal interpolation method applied to cloud covered imagery, this method 

effectively reduces cloud cover. MODIS daily imagery ranged in average cloud cover over 

the same time period as the depletion curve from 56.89% to 65.59% of the total watershed 

area. The algorithm reduced the average daily cloud cover to a range of 1.36% to 3.83% of 

the total area. The maximum cloud coverage was also reduced from 100% in the MODIS 

daily imagery to a range of 8.06% to 20.97% across all 17 years. Reducing the effects of 

cloud cover puts more confidence in the depletion curve. The fit of a depletion curve can be 

quantified using the root mean squared error (RMSE) across all the years. Using the same 

depletion, but altering only the timing of 50% melt (when snow covered area is equal to 

50% of the area) and the rate of melt produces a small RMSE over all 17 years. The RMSE 

is lowest for 2013 with a value of 0.0084 and highest for 2010 at 0.0326. 

The issue of cloud masking is decreased using this method. To illustrate the ability of 

this method to reduce the influence of cloud cover 2013 was analyzed. Since the melt season 

is the only important time period for this analysis only days 50 through 200 were compared. 

The MODIS daily imagery had a far larger spread in days with cloud masking. Only 41 days 

had less than 20% cloud covered area. Using the algorithm all 151 days had 20% or less 

cloud covered area with 136 of those days at 5% or less cloud covered area.  

The depletion curve fit to 2013 (Fig. 2.3) is based on the dimensionless depletion 

curve by altering X50 and σ to minimize the sum of squares error. A dimensionless depletion 
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curve is shown in Figure 2.4. The curve crosses the y axis at the value of X50, a z value of 0 

as calculated by Equation 2.2. By only altering the two parameters this curve is easily fit to 

any year, even with the smaller error bounds. The application of the dimensionless curve is 

based on the repeatable pattern of melt. 

Figures 2.5 and 2.6 both show the fitted depletion curves for the highest and lowest 

snow water equivalent years 2001 and 2011, respectively. The snow water equivalent for 

2013 is slightly below the average peak SWE of 17.2 inches over the 17 years at 15.5 

inches. The shape of the curve appears equal to the 2013 curve however the timing is shifted 

greatly in 2001 and 2011. The utility of dimensionless depletion curve (Fig. 2.4) is seen in 

these differing years. 

While it does seem odd that the cloud covered area points exceeds 1 in each of the 

plots, the reasoning is sound. On the dates this occurs, the pixels contributing to this are 

cloud covered for an extended period of time, but were last seen as snow. In this particular 

watershed the cloud persistence is greatest early in the melt season. Since this method aims 

to track the influence of cloud cover rather than interpolate the cloud covered pixels a value 

greater than 100% of the area is permissible. The depletion curve does follow the melting 

trend the rest of each year indicating the error associated with this extended cloud coverage 

is limited. For years 2001 and 2011 the curve struggles to fit the beginning of melt, but 

closely tracks from 75% snow covered area to 0%. The nearly horizontal number of points 

for 2011 around day 170 may be attributed to cold snap or a snowfall event, however the 

date is late in the year. Speculation aside the curve tracks the melting of snow after the brief 

disagreement only slightly overestimating the day of complete melt. Comparison of the three 

plots shows the variation in the timing of the 50% melt data for each year and the difference 

in the rate of melt or decline. The timing of 50% melt was day 118, 162, and 128 for 2001, 

2011, and 2013 respectively. The rate of melt in terms of days was 23, 24, and 21 for 2001, 

2011, and 2013 respectively. The rate does not vary as much as the timing of 50% melt but a 

small change in rate extends the melting period substantially. For 2001 and 2011 with only a 

difference of 1 in rate the melting period between 75% snow covered area to 25% is 

extended by 2 days.  

 The dimensionless depletion curve (Fig. 2.4) relies on snowmelt patterns. For this 

particular watershed with a hypsometric curve is similar to a Gaussian decay curve making 
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it a good representation of melt. As seen in Table 2.2, the depletion curve fits each year 

independent of snowpack. As seen in Figure 2.2 the peak SWE at the Base Camp station 

varied greatly over the 17 years in this analysis. The smaller error bounds defined through 

the algorithm add confidence to the validity of this method for modeling snow covered area 

across multiple years. 

Conclusion 

 Modeling snow melt is a vital component of water management. With the help of 

remote sensing daily coverage of snow covered area can be calculated although cloud 

coverage is a persistent issue. Although snow covered area does not explicitly define the 

snow water equivalent, the spatial resolution of MODIS imagery at 500 meters is applicable 

to complex terrain and the daily coverage is ideal as an input for models such as SRM. The 

method outlined in this research adds spatial and temporal error bounds to depletion curves. 

These error bounds establish more confidence in the use of depletion curves, namely 

dimensionless depletion curves. Over the 17 years of imagery a dimensionless depletion 

curve showed agreement with the measured snow covered area independent of the highly 

variable peak snow water equivalent. The modelled curve also handled extreme differences 

in the timing and duration of melting periods with 50% melt varying between day 162 and 

118 for the most significantly different years, 2001 and 2011.  

 The overall benefit of this methodology for developing depletion curves is its 

applicability to all years independent of snowpack. With only one equation for a depletion 

curve and altering only two parameters, all seventeen years could be represented. In other 

methods cloud cover poses a substantial issue forcing data loss or interpolation, however 

this method decreases the effects of cloud cover while maintaining the original data. The 

dimensionless curve relies on the year to year spatial pattern of snow melt and simply shifts 

the timing and rate of the melt to describe each year. Using remote sensing is not a new 

method for calculating snow covered area for deterministic models such as SRM as applied 

by Baumgartner et al. [1987]. It has long been established as a method, but this new method 

increases available data, and may provide new opportunity with higher confidence for 

deriving depletion curves in gauged and ungauged catchments. This can be used in modeling 

scenarios real time and historic. It can be applied in climate change modeling since the curve 

is independent of snow pack and relies only on two parameters. In other watersheds a 
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different depletion curve may be necessary to describe the melt patterns, which may 

complicate the procedure but the year to year patterns associated with snowmelt in this 

watershed lend themselves to a simple approach.  
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Tables 

Table 2.1: Dates of peak snow water equivalent at Base Camp SNOTEL station. 

Year 
Start Day (Maximum 

SWE at Base Camp) 

2000 80 

2001 79 

2002 87 

2003 87 

2004 68 

2005 95 

2006 92 

2007 69 

2008 100 

2009 93 

2010 100 

2011 113 

2012 80 

2013 111 

2014 97 

2015 85 

2016 89 
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Table 2.2: Algorithm efficiency for reducing cloud cover and fitting a dimensionless depletion curve 

Year 

Average Daily 

Imagery Cloud 

Cover 

Average Algorithm 

Derived Cloud 

Cover 

Algorithm Maximum 

Cloud Coverage 

Depletion Curve 

RMSE 

2000 56.89 3.65 19.65 0.0182 

2001 58.36 1.88 10.34 0.0122 

2002 60.11 2.85 17.59 0.0152 

2003 60.98 2.26 11.21 0.0183 

2004 57.89 1.59 10.80 0.0273 

2005 59.46 2.54 13.15 0.0231 

2006 58.51 1.36 8.82 0.0172 

2007 60.93 1.66 8.06 0.0235 

2008 61.10 2.25 15.82 0.0158 

2009 62.46 2.59 16.52 0.0157 

2010 64.25 3.83 20.97 0.0326 

2011 65.59 2.34 11.76 0.0145 

2012 58.08 1.51 8.50 0.0219 

2013 60.43 1.53 10.67 0.0084 

2014 62.46 1.55 9.51 0.0116 

2015 58.18 2.94 12.88 0.0254 

2016 61.32 2.05 14.68 0.0146 
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Figures 

 

Figure 2.1: Study site, Upper Snake Basin and associated SNOTEL stations. 
 

 

Figure 2.2: Peak snow water equivalent values for Base Camp SNOTEL station. 
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Figure 2.3: Fitted dimensionless depletion curve for the 2013 melt season. Snow covered area is indicated by the hollow 

circles, cloud covered area by the “X”, and the dimensionless depletion curve by the solid line. 
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Figure 2.4: Dimensionless depletion curve which is applied to each year.  

 

 

Figure 2.5: Fitted dimensionless depletion curve for the 2001 melt season. Snow covered area is indicated by the hollow 

circles, cloud covered area by the “X”, and the dimensionless depletion curve by the solid line. 
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Figure 2.6: Fitted dimensionless depletion curve for the 2011 melt season. Snow covered area is indicated by the hollow 

circles, cloud covered area by the “X”, and the dimensionless depletion curve by the solid line. 
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Chapter 3: Derivation and Application of a Spatial Model (PCA) 

 

Introduction 

 Snow melt is a vital component of available fresh water in the Western United 

States. Between 39% and 67% of the annual precipitation in the North American West 

comes as snowfall, and between 50–80 % of the annual flow is contributed by snowmelt 

[Serreze et al., 1999; Stewart et al., 2004]. Remote sensing of snow coverage has been 

available since the 1970’s. Daily imagery at a spatial resolution of 1.1 kilometers at nadir 

has been available since 1979 with the Advanced Very High Resolution Radiometer 

AVHRR [Jensen, 2016]. Although this sensor had exceptional temporal resolution, the 

spatial resolution of 1.1 kilometers may be too large for small basins [Rango, 1993]. The 

launch of the MODerate Resolution Imaging Spectoradiometer (MODIS) in 1999 on board 

the Terra satellite provides daily worldwide coverage at a spatial resolution of 500 meters. 

MODIS imagery snow detection is subject to errors and uncertainty at the pixel level, which 

is affected by viewing conditions, land cover, the amount of snow, and cloud masking 

[Riggs et al. 2017]. Of these errors and uncertainty cloud cover poses the most persistent 

problem. For the watershed in this research during the annual snowmelt period, lasting 

approximately 150 days, only 28 days on average had less than 10% cloud cover. In Austria 

an average cloud coverage of 63% over mountainous basins was observed during the 

snowmelt period [Parajka & Blöschl, 2006]. Cloud cover poses a data availability issue 

while other errors at the pixel level are an issue of accuracy. On cloud free days the MODIS 

product showed 93% agreement with ground measurements, therefore cloud cover is a 

persistent challenge [Hall & Riggs, 2007]. Remotely sensed imagery can be incorporated 

into deterministic models such as the Snowmelt Runoff Model (SRM) to generate depletion 

curves which describe how the area in a watershed changes from snow cover to exposed 

land with time [Martinec & Rango, 1986]. MODIS imagery has been used to increase the 

accuracy of SRM, however cloud cover is such a persistent issue that the imagery is 

interpolated or not used [Qui L. et al., 2014; Safari et al., 2014; Steele et al., 2017]. 

Interpolation of MODIS imagery has been an area of particular interest to produce cloud 

free imagery. 
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 Interpolation methods can be divided into three main categories: spatial, temporal, 

and spatiotemporal methods. Spatial methods have been developed based on adjacent pixels 

and more complex methods. A regional snow line method has been applied by many to 

reduce cloud cover. The regional snow line uses visible pixels on a given day along with 

elevation to interpolate cloud covered pixels [Parajka et al., 2010; Krajčí et al., 2014]. This 

method assumes elevation to be the only influence of snowmelt. The relationship between 

elevation and snowmelt is only a portion of the topographic effects that drive snowmelt, 

where slope and aspect play an important role [Hock, 2003]. The regional snowline method 

acknowledges this by defining an elevation range considered to be partial snow [Parajka et 

al., 2010]. Krajčí et al. [2014] found a decrease in accuracy during the month of April using 

the regional snow line attributing it to patchy snow melt during the end of the melt season; 

this was also discussed in Parajka & Blöschl [2012]. Use of neighboring pixels has also been 

incorporated as a spatial interpolation method [Gafurov & Bárdossy, 2009]. This method 

relies on the visibility of pixels next to or near cloud obscured pixels. 

 Temporal filtering methods have also been developed. The MODIS sensor is flown 

aboard both the Aqua and Terra Satellites. The Terra satellite has a morning overpass and 

the Aqua an afternoon overpass time. This combination produces two images with different 

cloud cover location in one day. Cloud cover reduction by combing the two has achieved 

39.9% cloud cover removal over Europe [Dietz et al., 2012]. Sensor combinations of 

MODIS and Aqua Advanced Microwave Scanning Radiometer (AMSR-E) have also been 

proposed to produce cloud free imagery [Gao et al., 2010]. Unlike the visible product from 

MODIS, AMSR-E uses microwave observations and measures snow water equivalent, 

which is not hindered by cloud cover, however it has a coarse spatial resolution of 25 x 25 

kilometers [Jensen, 2016]. Combining the two MODIS sensors, one on Terra and the other 

on Aqua, was found to reduce average cloud cover by 12.2% and 7.2% for Aqua and Terra 

respectively. Other combinations use imagery from before and after the image on a given 

date to interpolate whether a cloud covered pixel is snow or land [Parajka & Blöschl, 2008; 

Wang & Xie, 2009]. Cloud cover can be greatly reduced using a combination of temporal 

methods, but for real time snowmelt forecasting these methods require imagery from before 

and after the date in question, delaying data availability for modeling scenarios. 
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 Spatiotemporal methods use combinations of spatial and temporal interpolation, 

often in sequential steps to achieve substantial cloud reduction, and in many cases cloud free 

imagery. Use a chain of decisions to produce cloud free imagery. Gafurov & Bárdossy 

[2009] proposed a six step process implementing a temporal method in steps one and two, 

and spatial interpolation in steps three and four. The final step uses a threshold day 

indicating over a 365 day time series to determine whether the pixel is snow covered. A 

similar methodology was derived by Ronco & De Michele, [2014] implementing only 5 

steps. In both of these a probability of snow is defined in the last step based on a “snow 

season”, the multi-year average time period of snow cover over a pixel. Probability of snow 

cover has been an area of particular interest in recent years. Li et al., [2017] used a two-step 

method where the second step is defined by the probability of snow cover based on spatial 

probability (a regional snowline style approach) and temporal probability incorporating a 

weighting scheme based on prior and subsequent images where a pixel is visible. More 

complex methods incorporate image analysis methods such as the Hidden Markov Random 

Field to create a statistical measure to remove cloud [Huang et al., 2018]. Simpler spatial 

and temporal combinations have also been developed, but do not achieve cloud free imagery 

on a daily time step [Parajka & Blöschl, 2008].  

The incorporation of conditional probability of snow cover has been increasing in 

popularity among research groups. The idea proposed by Gafurov & Bárdossy, [2009] and 

expanded in the development of the MODSNOW-tool, a methodology for daily cloud free 

imagery, incorporates information from multiple water years [Gafurov et al., 2016]. Monthly 

probabilities of snow coverage are developed based on historic MODIS imagery as well as a 

conditional probability relating pixels. The conditional probability relates pixels throughout 

the area by a probability of snow cover. The probability of one pixel being snow covered 

can be determined by other pixels in the watershed. They use this concept to remove cloud 

cover. If a pixel is visible and another is cloud covered the probability can be used to 

identify whether the cloud covered pixel is snow or land. A final step in the MODSNOW-

tool uses the snow onset and snowmelt days in previous years for each pixel to identify 

whether it is snow covered on a given day. This method has been expanded on to include 

meteorological data such as temperature, snow depth, and precipitation interpolated using a 

kriging interpolation to create spatially distributed grids [Dong & Menzel, 2016]. These are 



53 
 

 

complex multistep methodologies that incorporate multiple year data. The incorporation of 

multi-year data is weakened by outlier snowpack years especially in the use of monthly 

probability and snow onset and snowmelt days. The watershed used in this study saw a year 

with melt out dates a full month later than many other years and melt out dates occurring in 

three separate months over a 19 year study period, based on SNOTEL station data. The use 

of interpolated meteorological data can induce errors through the interpolation method and 

requires a number of gauging stations in the watershed. These methods produce cloud free 

imagery, but may be prone to error in early melt years and late melt years. Earlier snowmelt 

has been shown to relate to earlier discharge [Tan et al., 2011]. For modeling purposes 

discharge timing is critical for water management especially in states such as Idaho whose 

legal authority for water management relies on the timing of water availability [Qualls et al., 

2013]. Modeling accuracy in these years is particularly important, yet available probability 

methods are likely to produce the largest errors in these years. 

While the conditional probability approach is effective it overlooks one consistency 

in snowmelt. It has long been accepted that snow melts in the same pattern across years 

independent of snow depth [Adams, 1976; König & Sturm, 1998; Luce & Tarboton, 2004; 

Sturm & Wagner, 2010]. Although the timing of melt does not always fall on the same day, 

or last the same duration it follows a similar distribution. The spatial pattern of snow melt is 

consistent even though the timing may shift. It is precisely this shift that the probability 

approaches overlook. The pattern of snowmelt along with variable snow duration and onset 

was observed in the Tianshan Mountains over the relatively short period of 2001 through 

2006 [Wang & Xie, 2009]. Thus far no research has applied this idea as the basis for 

developing a method for cloud removal. MODSCAG, a model used to characterize fraction 

of snow cover at the subpixel level, models the overall shape of snow with precision of 

93.7% to 100% for correctly identifying snow [Painter et al., 2009]. This model relies on 

remotely sensed spectral information to identify snow, but does not use spatial information 

from multiple years to inform future scenarios. The model developed in this research uses 

spatial patterns observed over multiple years to inform cloud removal by deriving a single 

map describing snowmelt patterns. This map is applicable for cloud removal, and is equally 

valuable for simulating the impact of climate change on snowcover variability. 
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Study Area and Data Sources 

Study area 

 Our study area, the Upper Snake River Basin, lies in the northwestern United States 

(Fig. 3.1), covers an area of 3,465 mi
2
 (8,894 km

2
), and its elevation ranges between 5,799 -

13,760 feet (1,737 – 4,194 meters) above mean sea level (amsl). The area serves as an 

important water resource for Idaho agriculture, power generation, in stream fish 

requirements, as well as municipal, commercial, and industrial uses. The watershed is 

bordered to the West by the Teton Mountains and includes the US Geological Survey 

hydrologic units known as the Snake Headwaters, Gros Ventre, and Greys-Hobock. Snow 

seasonally covers the watershed making remote sensing a useful tool for collecting 

snowmelt information. The study site also has 11 ground based monitoring stations 

(SNOTEL sites) each of which hosts a 2 meter by 2 meter snow pillow that measures snow 

water equivalent (SWE). Land cover over the study site is variable. Forest accounts for 47.9 

percent of the total area with 46.6 percent of the total area classified as evergreen forest. 

Shrub and grass land account for 45.4 percent of the total area with the remaining 6.7 

percent belonging to agriculture, developed land, and wetlands. These percentages are 

calculated based on the 2011 National Land Cover Database [Homer et al. 2015].  

Data Sources 

 The MODerate Resolution Imaging Spectoradiometer (MODIS) on board the Terra 

satellite was used. The version six data product, MOD10A1 (MODIS Terra snow cover 

daily L3 global 500 m Sin GRID V006) distributed by the National Snow and Ice Data 

Center (NSIDC) was used. This data product comes with the Normalized Difference Snow 

Index (NDSI) snow cover, NDSI snow cover basic QA, NDSI snow cover algorithm flags 

QA, NDSI, and snow albedo data. In this study only the NDSI snow cover was used. 

MOD10A1 was chosen as it has consistently shown less cloud obstruction [Parajka & 

Blöschl, 2008]. The calculation of NDSI is a combination of band 4 and band 6, which are 

the visible red and mid infrared wavelengths respectively. The MODIS sensor aboard Aqua 

had a failure in the mid infrared band forcing a slightly different NDSI calculation. Since no 

temporal combination of Terra and Aqua was applied, only the MOD10A1 product from the 

Terra satellite has been used in this study. To convert the data to fractional snow covered 

area of the total watershed area (SCA) an NDSI threshold of 0.4 was used, as documented in 
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the version six user guide [Hall & Riggs, 2015]. Two MODIS swaths were needed to 

encompass the study region, h09v04 and h10v04. All available MODIS imagery from years 

2000 through 2018 was used in this study.  

 SNOTEL data distributed by the Natural Resource Conservation Service (NRCS) 

was also used as an input in model development. There are eleven sites in the watershed. 

Base Camp station ID 314 daily SWE measurements, were used as an input for model 

accuracy. This station is not the lowest elevation site in the study region at 7060 feet, but 

over the 19 year study period was one of the first stations to melt completely each year.  

Methods 

Model Development 

 To compare melt patterns across multiple years one must first define and identify the 

important days. The pattern of melt can be extracted for each year by identifying two days of 

interest for each pixel. The last day on which snow (LDS) is seen, and the first day land 

(FDL) is seen on a pixel by pixel basis can describe melt. The two output files are equal in 

spatial resolution and geolocation to MODIS imagery. It is also essential to capture the melt 

of the maximum snowpack, rather than secondary snowfall which can occur in the spring 

time throughout the melting season. Snow water equivalent (SWE) measurements from 

ground based SNOTEL stations can help identify secondary snowfall. The model starts each 

year on the day of year (DOY) of maximum SWE for the SNOTEL station that achieves a 

SWE of zero early in the melt season. The SNOTEL stations in this watershed all see 

seasonal snow cover for extended time periods, which may not be true for every watershed. 

The SNOTEL station Base Camp was used to identify the DOY of maximum SWE. In the 

model development stage only the years 2000 through 2016 were used. 

The model extracts the two days, LDS and FDL, by iterating through all the 

available imagery one year at a time. A few scenarios can take place during processing. 

Given a pixel that is identified as snow on the DOY the model starts on, the model begins 

forward processing, known as the snow protocol. Forward processing means the next day of 

MODIS imagery is analyzed, and the next, for only the pixels identified as snow on the first 

day, saving the LDS in one grid file (raster) and the FDL in another raster until each pixel 

has a value for the LDS and FDL saved in each raster. For the pixels identified as land on 

the start day the model back processes, analyzing the previous day of MODIS imagery until 
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snow is seen for each pixel, known as the land protocol. For pixels which were never snow 

covered, or cloud cover never allowed for snow to be seen, the LDS is saved as DOY zero. 

The final scenario, which can take place are pixels identified as cloud on the DOY the 

models starts on. To handle this, the model begins back processing. As the model back 

processes if pixels are identified as snow first they are sent to the snow protocol beginning 

on the start DOY day plus one day. For pixels identified as land first they are sent to the land 

protocol. If a pixel is cloud covered for the entire period from the start day to January 1
st 

the 

model begins forward processing from the start DOY plus one day. For these pixels if land 

is seen first, the DOY is saved to the raster containing the FDL. The raster containing LDS 

is saved as a zero for these pixels, to signify the pixels were never seen as snow before they 

were identified as land. 

 This method brings in ground based data (DOY of max SWE at a SNOTEL station) 

to efficiently reduce the large amount of imagery available to only two images per year. 

These images describe the melt patterns and the difference between the FDL raster and LDS 

raster for each pixel is the number of days cloud cover obscured the view of the pixel during 

the crucial melting time period. Similar to the temporal method applied by Wang & Xie 

[2009], two images are extracted that describe the dates each pixel transitions from snow to 

land. This method produces two cloud free images that describe the melt progression 

through the melting season using the DOY as the value to describe the melt. The DOY and 

year is used in the nomenclature for MODIS imagery distributed by NSIDC. Given the year 

2001 and DOY 145 a MODIS image for tile h09v04 would include the following 

MOD10A1.A2001145.h09v04 followed by additional version information. The first nine 

characters identify the product, Terra daily 500 meter sin grid, followed by the four 

character year, three character DOY, and finally the tile identifier. This information was 

used in the model to accurately save the DOY for the correct year to the LDS and FDL 

rasters. 

Combining the Data 

 This model has an output of two images for each year, producing a total of 34 

images. The FDL raster from each year can be combined using a principal component 

analysis into one raster. The principal component analysis is a data reduction method 

commonly used in remote sensing. Orthogonal directions defined by the Eigen vectors are 
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used to explain directions of increasing variance. The first principal component captures the 

direction of maximum variance, followed by the second component describing orthogonal 

direction of second most variance. The number of data series used determines the number of 

principal components, 17 years and 17 principal components. This method is used to 

condense large data sets into only a few principal components which can describe up to 95% 

or more of the total variance. For an in depth discussion of this method refer to Everitt, B. & 

Hothorn, Torsten, [2011]. The FDL raster was used because this describes the first day there 

is confidence a pixel has changed from snow to land. The LDS raster is greatly affected by 

cloud obscuration over the period of melt. The principal component analysis over data of the 

same type may be viewed as an indexing method, however since a pattern exists it may be 

helpful in reducing the amount of data needed to describe the melting pattern across multiple 

years. The first principal component should describe the melt pattern if the pattern is 

repeatable across years, meaning the maximum variance is not contained in the year to year 

changes, but rather the variance in the FDL in each year. This is to say that the distribution 

of FDL is similar year to year. If the melting trend can be described by the same function 

year to year by shifting the curve and altering the slope, then the first principal component 

should capture a great deal of the variance because the maximum variance is attributed to 

the range in DOY in the FDL for each year rather than the range across multiple years. 

Equation 3.1 shows the matrix multiplication used to take all 17 years and the first principal 

component to produce what are referred to as the transformed values. The matrix 

multiplication in essence projects the 17 years of data into the direction of the first principal 

component, which is defined by the first Eigen vector. Equation 1 shows the dimensions of 

the input data. The far left matrix is 41,503 x 17 multiplied by the first principal component 

rotation matrix dimensions 17 x 1. The rotation matrix projects the data onto the direction 

defined by the first Eigen vector. Multiplying these matrices in this order gives the 

transformed values. The final matrix has dimensions of 41,503 x 1 where each row is 

associated with one pixel, which has the same geographic location.  

 [
1 ⋯ 17
⋮ ⋱ ⋮

41,503 ⋯ 41,503
] × [

1
⋮

17
] = [

1
⋮

41,503
] Equation 3.1 

If this is indeed the case and a pattern exists, the principal component analysis will 

reduce the 17 FDL rasters, one for each year, to one raster that describes the melting pattern 
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across all years. We can use the first principal component to transform all 17 years into one 

raster. The principal component transformation can then by scaled to 0 to 100 on a pixel 

basis where 1 would be equivalent to 1% of the pixels and therefore 1% of the area. From 

here a contour map can be developed where contours describe the interface between land 

and snow at different SCA percentages. Due to the limited number of days with less than 5% 

cloud cover, contour lines of 5% were developed. The contour map can be used for cloud 

removal as well as climate change modeling.  

Results 

Climate Modeling Results 

 The model produces two rasters FDL and LDS containing only DOY information for 

each year. The output for 2013 is shown in Figure 3.2. Although the difference is slight 

between these two images the range for the first day of land (right) has larger minimum and 

maximum values at 25 and 188 compared to the last day of snow (left) at 21 and 186. The 

difference between the two images is best shown in a histogram. The distribution of pixel 

values is shown for 2013 and 2007 (Fig. 3.3). 2013 has a higher frequency of pixels with 

values less than 5, while 2007 which had more cloud influence has a higher frequency of 

values greater than 5. The basic trend of melt throughout the 2013 melt season can be seen 

in both of these images where melt begins with the dark colors and finishes with the light. 

One can also see there are some spurious errors indicated by the small dark areas completely 

surrounded by light areas. This suggests that the area melted much earlier than the 

surrounding pixels sometimes 100 days earlier. This issue is observable for each year, but is 

the result of MODIS sensor values. The model only extracts the days therefore these errors 

are a part of the raw MODIS image and illustrated in the FDL and LDS images. 

 The output for each year is then combined using a principal component analysis. The 

rotation matrix of the first principal component is used for matrix multiplication to produce 

a single matrix. Each row in the final matrix (transformed values from Equation 3.1) is 

associated with a single pixel and when this is plotted with the x, y coordinates it produces 

the final single map describing melt patterns. The first principal component captured 85% of 

the total variance across all 17 years used. As discussed earlier the majority of the variance 

is contained in the singular DOY values in one year, and because there is a pattern of melt 

the 85% variance captured does not describe yearly fluctuations in melt patterns. Each 
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subsequent component is far less useful with the second component describing only 2% of 

the total variance. The additional 16 components, principal components two through 

seventeen, can be considered noise because of the small amount of variance they describe. 

The contribution of each year in the first principal component is shown in Table 3.1. Most 

years have a weight between 0.2 and 0.27 with only two less than 0.2, 2013 and 2006 both at 

0.19. The two that fall outside the upper bound are 2004 and 2010 at 0.31 and 0.29 

respectively. The principal component analysis is designed to capture the maximum 

variance and in turn years that are different than the rest are weighted higher. The most 

similar years, which produce the smoothest output with fewer spurious errors, 2006 and 

2013, are weighted the lowest. The similarity in the weights among all 17 years supports the 

idea of a repeatable pattern across multiple years. 

 The transformed values can be re-plotted using their geographic coordinates to create 

a raster describing melt using the first principal component (Fig. 3.4). The isolated errors 

noted earlier in the 2013 output can be seen in the principal component map. The black area 

at the northernmost tip of the watershed along with the specs of black scattered throughout 

the north half of the watershed all appear to be spurious errors. The contour map is 

developed from this in ArcGIS (Fig. 3.5).  

Model Accuracy 

Two years were not used in the principal component analysis, 2017 and 2018. To 

verify the fit of the model, days with less than 5% cloud cover were used. In 2017 there 

were 15 days available and for 2018 at the time of completing the analysis 8 days were 

available. The contour map is drawn with 5% SCA intervals. Total error was assessed as the 

sum of the commission and omission errors. Since the map is modeling snow covered area 

an omission error is considered a pixel modeled as land, but measured as snow using the raw 

MODIS image. Because of the framework of ArcGIS it is easier to represent snow cover in 

terms of exposed land percentage. The snow covered area is therefore 100% minus the 

exposed land. This choice was made to make processing of multiple images easier in 

ArcGIS even though the model is aimed at snow covered area. In 2017 the greatest error of 

15% is assessed at 75% SCA (Table 3.2). Between the range of 75% and 55% SCA, the 

error is above 10% in 2017. For 2018 the errors exceed 10% between 85% and 65% SCA. 

Outside these SCA ranges, the errors drop significantly. The smallest errors for 2017 and 
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2018 are 2.41% and 3.4% at the smallest available SCAs, 5% and 10% for 2017 and 2018 

respectively.  

 The years included in the analysis also offer information about the model’s accuracy 

for SCA. Five additional years were used for accuracy assessment 2001, 2004, 2007, 2011, 

and 2013.These years were chosen based on the peak SWE and melt-out dates to represent 

outlier years in snow pack and average years. Each year represents a different snow 

condition meaning low snowpack (2001 and 2007), high snowpack (2011), and average 

snowpack (2004 and 2013). The model performed similarly in each of these years as it did in 

2017 and 2018. The minimum error for each year was assessed at the smallest available 

SCA. The error at 5% SCA varied from 2.14 to 2.42 percent and at 10% SCA errors varied 

from 3.67 to 4.39 percent. The greatest error for 2001 was 12.49% at 65% SCA, 12.49 in 

2004 at 65% SCA, 12.88% in 2007 at 55% SCA, 14.9% in 2011 at 60% SCA, and 13.72% 

at 65% SCA in 2013. The error is greatest in the years used in the map development and the 

unused years at a SCA of 50% to 75%. Taking the average of the total error at each SCA 

shows the error is greatest at 60% with a value of 14.73%. On average, the errors are above 

10% between SCAs of 80-40%, and drop significantly on both ends. These errors are 

favorable in comparison to other research.  Gafurov et al. [2016] retrieved accuracies of 77.3 

-99.8% from the Karadarya Basin  in the 84 days with ≤10% cloud cover in 2008, with the 

lowest accuracy appearing in the transitional periods such as the melting season. These 

numbers were calculated under 100% cloud cover, but require additional days to produce 

cloud free imagery. The Adaptive Spatio-Temporal Weighted Model (ASTWM) also 

produces cloud free imagery on a daily time step. This method found greater overall 

accuracy ranging from 93.11 – 98.92% with a five day temporal filter [Li, et al., 2017]. The 

watershed used in their study had seasonal snow fraction of 25% compared with seasonal 

snow cover of 100%, changes in snow coverages are limited in that study region. Identifying 

snow in this watershed guarantees an accuracy of at least 75% at the height of snow 

coverage with the potential for error reduced to only 25% of the watershed. A conditional 

probability method which incorporates interpolated meteorological data also found good 

agreement of 92% during the snow season, but noted reduced accuracy during the latter half 

of the snow season with errors ranging from 22% to 13% [Dong & Menzel, 2016]. The 

model presented in our research is a relatively easy technique for identifying SCA, and 
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produces accuracies of 85-97.9% during the melting season. MODSCAG produces an 

average RMS error of 5% across multiple images modeling fractional snow cover on a daily 

basis with added complexity [Painter et al., 2009]. This varies the spectral response on a 

pixel by pixel basis to identify snow cover based on the preceding MEMSCAG model 

[Painter et al., 2003]. This method is useful for determining fractional snow covered area, 

but requires a cloud free day and cannot be applied for climate modeling as it requires a 

sensor response to produce an image. 

 The increase and decrease of errors at specific snow covered areas is explained by 

the location of the errors in the contour map, and the type of errors assessed. Comparison of 

the average omission error percentage and the average commission error percentage in a 

year shows them to be nearly equal (Table 3.3). In each year except 2018, the omission error 

is slightly larger than the commission error. Total average error across all SCA was smallest 

in 2011 at 5.8% and largest in 2007 at 9.67%. In 2013, the average omission error was 

3.68% and the total average error was 6.82%, meaning that omission errors accounted for 

about half of the total error. The omission and commission errors are nearly equal on 

average. 

Identifying the type of error shows the error is actually due to the distribution of 

SCA. The contour map (Fig. 3.5) models SCA and if an area that does not melt early is 

incorrectly modeled as early melt the area is distributed from the area of true melt to an area 

that is not actually melting. The equal commission and omission errors are due to this error 

in the distribution of snow covered area. Errors exceeding 10% begin to occur when SCA 

drops to 80% with the average greatest error occurring at 60% SCA (Table 3.2). An example 

of where the error is occurring is shown in Figure 3.6 at 75% modeled snow covered area 

using an image from April 26, 2018 with a measured SCA of 77.99%. The modeled area of 

exposed land is overlaid on the image from 4/26/2018. The image is shown in three colors. 

Brown represents measured land, blue is measured snow, and white is cloud cover since the 

image had 2.5% cloud cover. The model predicted exposed land is shown in transparent 

pink. Blue areas are where the model correctly predicted snow. Brown shows where the 

model predicted snow, but the image shows land (commission error). The fuchsia areas 

(transparent pink over brown) are the areas where the model correctly predicted land. The 

purple areas represent omission errors where the model indicates land, but the imagery on 
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that day shows snow. In this image it is clearly seen that the north and western portions of 

the watershed suffer from spurious errors in the model. The locations where the model 

indicates land but the image shows snow in Figure 3.6 coincide with the initial model output 

before the principal component analysis. The initial model output refers to the yearly FDL 

image shown in Figure 3.2. As shown in Figure 3.2 some locations are showing an early 

melt out date surrounded by later melt out dates (dark pixels surrounded by light pixels). 

These occur in the same areas the final map incorrectly models land as shown in Figure 3.6. 

This type of error was seen in all 17 FDL images. These islands of incorrect “early melt” are 

passed through the principal component analysis and lead to errors in the models spatial 

accuracy of snow extent. These errors are omission errors, but because the model is built on 

a percentage of area basis if the model shows an area incorrectly melting early the area 

which is actually melting has commission errors. A percentage area representing exposed 

land is shifted into an incorrect location of the watershed away from the correct location. 

When the areas which are incorrectly predicting exposed land are compared to the 

land cover a significant source of error becomes apparent. Figure 3.7 shows the impacts of 

land cover on the model accuracy for the same image as in Figure 3.6 using the 2011 

National Land Cover Database. Areas where the model correctly identified exposed land are 

blacked out, whereas areas with omission errors where the model incorrectly identified land 

when images showed snow are outlined in red. Green indicates coniferous forests. Nearly all 

of the red outlined areas are filled with green. Use of a fixed threshold for each pixel 

regardless of land cover to identify binary classifications of land versus snow across images 

proves to be problematic. The threshold for identifying snow cover on a pixel by pixel basis 

has been shown to reduce from 0.45 in open areas to 0.2 in forested areas [Rittger et al., 

2013]. The purpose of this research is not to develop more accurate methods for identifying 

a pixel on a cloud free day. The error due to forest cover is persistent throughout all years 

and therefore a part of the multiyear combination. These thresholds are not consistent based 

on land cover alone. Viewing angle, the dropping of snow from the canopy to the forest 

floor, and topographic effect all influence the NDSI value. These factors can produce a wide 

range of NDSI values and any NDSI value greater than 0 indicates presences of some snow 

in the pixel, but quantifying how much requires a more intensive approach [Riggs et al., 

2017]. Where the model does not take into account the effect of viewing angle, low 



63 
 

 

illumination, and a varying NDSI spectrum that can be seen in pixels of differing land cover 

the FDL can develop biases. The reason these biases result in errors when compared to a 

cloud free image could be the result of viewing angle and illumination alone. A cloud free 

image taken at nadir with good illumination may produce all around higher NDSI values 

compared to an image taken at a poor viewing angle and partially cloud covered. The FDL 

image does not differentiate but rather uses the threshold of NDSI greater than or equal to 

0.4 to identify snow. 

 The effects of forest on model accuracy are quantified during the melt season for 

SCA values ranging between 80 and 40 percent in Table 3.4. The entry for 45% was omitted 

because no imagery was available. This was done by identifying the percentage of the areas 

that were incorrectly modeled as land (omission errors) whose land cover was coniferous 

forest. Only one image was used for each SCA value in Table 3.4. Preference was given to 

imagery in 2017 and 2018, but if a specific SCA was not available the image with the 

highest omission error was used from 2001, 2004, 2007, 2011, or 2013. Coniferous forest 

covered between 75.2 and 90.0% of the model misclassified areas. Remote sensing of snow 

in forested areas is challenging; initially when snow falls on forested areas, it clings to the 

top branches of trees and is detectable in satellite images, however, after some time the snow 

is shed from branches and accumulates on the ground below the tree canopy where it is 

difficult to detect by visible remote sensing and the pixel is prematurely classified as land. 

This movement of snow from canopy to forest floor is made even more complex by viewing 

angle of the sensor, illumination, and landscape features. Eventually the below-canopy snow 

melts, but it is not readily apparent when this transition occurs.  The use of a fixed threshold 

for land/snow classification in this research induces premature classification of some 

coniferous forest pixels as land, and implementation of the non-reversible “First Day of 

Land” classification, intended to identify the melt pattern of the primary snowpack as 

opposed to secondary snowfall events on previously melted land, causes this omission error 

to persist in the model. Most of the coniferous land cover pixel omission errors occur in 

isolated “islands”, separate from the main contiguous body of “land” pixels.  Once these 

misclassified islands become engulfed by the main area of melt, which occurs around 35% 

snow covered area, the errors drop significantly. Agreement between modeled and remotely 

sensed SCA for a given day increases from around 85% when the coniferous forest pixel 
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omission errors are largest at SCA values of about 60%, to 97.8%. This shows the impact 

that early misclassification of a pixel as “land” has on the model accuracy. 

Cloud Removal Results 

 Cloud removal is another area of application for this model. A primary area of 

research for snow melt modeling purposes with MODIS is cloud cover removal as discussed 

earlier. For this watershed in the 150 day period in which melting generally occurs, DOY 60 

– 209, the number of days with less than 10% cloud cover is limited. A closer look at when 

these minimal cloud-cover days are available reveals they generally occur during the tail end 

of the melt period. Within the overall 150 day melt interval, the most critical window is 

when rapid melting occurs, especially between SCA of 80-10%. During this narrowed 

window, only a small number of days remain with less than 10% cloud cover. This time 

period is most relevant for snowmelt modeling in real time because a large fraction of the 

total snowmelt volume flows out during this period, and because this period also 

encompasses the peak discharge. Between 2000 and 2017, 25 days or more between DOY 

60 and 209 for each year have less than 10% cloud cover. Even with this relatively large 

number of low cloud cover images none of the 19 years has more than 13 days with less 

than 10% cloud cover between SCA values of 80-10% (Fig. 3.8). The average number of 

days with less than 10% cloud cover during the transition from 80-10% SCA is 9 days. The 

average length of this period across the 18 years is 66 days. 2018 was not included because 

the melting was not complete at the time analysis. This period is relatively short for the 

amount of change that occurs in the snowpack. The longest melting period (80-10% SCA) 

occurred in 2010 at 92 days and the shortest occurred in 2014 at 44 days. This spatial change 

in snow coverage does not explicitly mean small or large snowpack, but rather a fast spatial 

melt rate once it begins. With the short window of time critical to real time modeling using 

MODIS becomes difficult. While many methods produce cloud free imagery they all 

employ a temporal interpolation that can take days to complete. The delay added to 

availability because of the temporal interpolation in the short time period of changes in SCA 

can be troublesome. This delay to cloud free imagery adds on to the delay for imagery from 

the NSIDC. While these seem trivial, if the melt period from 80-10% SCA is only 44 days 

long a 5 day wait for imagery can influence real-time snowmelt modeling.  



65 
 

 

 The principal component spatial model presented in this article (Fig. 3.5) can be 

applied to daily imagery to remove cloud cover.  As long as some portion of the interface 

between snow and land is visible in a daily image, interpolation of the snow covered area 

can be accomplished. Each line shown in the model (Fig. 3.5) represents the interface 

between land and snow. To apply this model as a method for cloud removal the only step is 

choosing the best fit line in the model to the interface of snow and land in the cloudy image. 

The accuracy provided by cloud-free image days is not relinquished in this method, but 

rather serve as a refinement for the progression of snow melt. For example, if the watershed 

was measured at 80% snow covered area on a cloud free day, and the next day is cloud 

covered the value of 80% can be used to narrow the number of lines in the model under 

consideration for cloud removal. The cloud covered day can be compared against the 90%, 

85%, 80%, 75%, and 70% lines in Figure 3.5. Since the time period we are most interested 

in removing cloud is during the melting period the progression of SCA should be declining. 

For this reason we consider 80%, 75%, and 70% SCA lines against the visible interface of 

snow and land on the cloudy day. It is unlikely in this watershed that more than 10% of the 

area melts in the span of one day. We also look at 90% and 85% SCA in case there was a 

secondary snowfall event which would increase SCA. The impacts of forest cannot be 

overlooked when applying this model. Certain areas have better agreement with the interface 

between land and snow than others. Cloud removal can be achieved quickly. As soon as data 

is available and converted to binary snow cover, this contour map can be applied.  

 A relatively clear day in 2006, DOY 152 with a total of 4.2% measured cloud cover, 

is used to illustrate the use of the model presented here for cloud cover removal and to 

assess the overall accuracy achieved. A “cloud” that obscured 85% of the watershed was 

superimposed on the image (Fig. 3.9).  The areas that remain visible were used to apply our 

model and produce a cloud-free image. Even with the substantial cloud cover the snow 

covered area can be determined because portions of the interface between snow and land are 

visible. Contours of 20%, 25%, and 30% SCA from the model are displayed. As one would 

do in real-time modeling, information from the previous day was used to inform the best 

guess of snow covered area. DOY 151 was measured to have 27% SCA with 0.5% cloud 

cover. Because of this the contours of 20% through 30% were selected for comparison. Very 

small portions of the interface are visible on DOY 152, however as shown Fig. 3.9 the 30% 
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SCA line depicted in red clearly overestimates the snow coverage. The ideal line would pass 

through each pixel of snow that is adjacent to a pixel of land. The 20% line appears to 

underestimate the coverage however the 25% also is not a perfect fit. The best fit contour 

lies between 25% SCA and 20% SCA, but of the two the 25% contour appears to provide 

better agreement. Once the imposed cloud is removed the contour interpolation accuracy is 

revealed (Fig. 3.10). Using only the small segments of the visible interface the best fit is 

identified as an SCA percentage between 20% and 25%, leaning closer to the 25%. In some 

areas the 20% contour fits best, but generally underestimates snow covered area. The 25% 

contour is a better fit overall since it equally underestimates and overestimates the snow 

covered area. The actual measured snow covered area was 25% on DOY 152 in 2006 with 

70.7% land cover.  

Discussion 

 The final product of this analysis is a contour map (Fig. 3.5) describing the interface 

between land and snow at different SCA percentages. Applying this to produce daily cloud-

free images is done quite simply. A daily NDSI snow cover image can be imported into 

ArcGIS, reclassified into fractional snow covered area, and the snow covered area can be 

extracted by identifying the interface between land and snow. For real time application this 

method can provide daily data of snowmelt as long as a portion of the interface is visible. 

Current methods that achieve complete cloud removal require time to process since they 

incorporate a temporal filter. Real time modeling is hindered by this delay of data 

availability and thus the methods cannot be used during a current melting season, especially 

during the middle of the melt season when melt occurs rapidly. The only model which 

outperforms this approach is the ASTWM with agreement of 93.11% or better [Li et al., 

2017]. This was achieved in a watershed that sees maximum fractional snow coverage of 

25%, a temporal filter of 15 days, and 26 meteorological stations. This method may face 

difficulty when applied in a watershed with complete seasonal snow coverage and no 

meteorological stations. Although a SNOTEL station was used in the model developed in 

this research, it is not a requirement and a start date appropriate to the watershed could be 

applied each year in the absence of ground data. Aside from these issues for real-time 

modeling none of the current methods can be used in climate models. This method produces 

a spatial map which characterized the melt patterns of this watershed. 
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 A criticism of this technique may be the similarity of snow packs seen over the 19 

year study period; however this is not the case. A wide variety of snowpack duration and 

peak SWE was observed across these 19 years (Fig. 3.11). Lewis Lake Divide, situated at 

7,850 feet had the largest snow water equivalent measured between 2000 and 2018 at 56.9 

inches. This value far outweighs the value recorded at Gunsight Pass of 27.3 inches even 

though Gunsight Pass is 1,970 feet higher in elevation. This difference shows the variability 

not only in the years but how elevation is not always an indication of higher snowpack. The 

lowest elevation site Granite Creek at 6,770 received a maximum of 30.1 inches of SWE. 

All of these maximum SWE values substantially exceed the minimum peak SWE values of 

19.1, 10.5, and 10.0 inches at Lewis Lake Divide, Gunsight Pass, and Granite Creek 

respectively. For Lewis Lake Divide the range of maximum SWE values recorded across all 

19 years is 37.8 inches. Median SWE values at these latter stations were 31.7, 13.4, and 15.7 

inches respectively. It is important to note the maximum SWE values across all eleven 

SNOTEL Stations were not all recorded in the same year. The largest maximum SWE 

values on a station by station basis were recorded in 2011 (7 stations), 2017 (3 stations), and 

2014 (one station). No single years had all of the largest maximum SWE measurements at 

all stations, but some years such as 2011 and 2017 had overall larger SWE values at all 

eleven stations. The smallest maximum SWE values recorded across all 19 years on a station 

by station basis were also spread across multiple years. Six of the smallest maximum values 

were recorded in 2001, five in 2010, and one in 2004. Like the large snowpack years of 

2011 and 2017 these low snowpack years had overall smaller maximum SWE values at all 

the SNOTEL stations. In the 17 years used for model development two years could be 

considered large snow fall years 2011 and 2014 and three years could be considered drought 

years, 2001, 2004, and 2010. In the years used for model verification 2017 had considerably 

larger SWE measurements than most other years. The DOY complete melt was achieved at 

each station further documents the differences among the years (Table 3.5). At all stations 

2011 had the latest melt out date (first day of SWE equal to zero). The earliest melt out dates 

were shared between 2000, 2001, 2007, 2012, and 2015. Large peak SWE was recorded in 

2011 with a late melt, whereas 2001 saw small peak SWE and early melt. This ground based 

information shows the variability in the snowpack in all 19 years and the timing melt. The 

principal component model presented here applies independent of snowpack and timing. 
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 In fact this great variation is handled well by the model. Since the pattern is 

consistent, the model performs well regardless of snow depth or timing. The methods that 

use a probability of snow cover based on snow cover season, add this step at the end of their 

cloud removal methodology since it is error prone [Gafurov et al., 2016]. Other research 

groups have used elevation zones to identify areas with similar snow cycles. A snow cycle 

was determined based on accumulation and ablation. Areas were grouped together if the 

“cycle” was similar in multiple years; however in application the group only used a single 

year cycle to remove cloud cover. Patterns were noted in this method, but cloud removal 

relied on the current year snow cycle, namely the day of first accumulation, maximum snow 

extent, and day of minimum snow extent. Increased accuracy using this method was seen. 

The snow cycle step was added at the end of the 5-step cloud removal protocol, but takes 

advantage of the shift in snow melt timing [e.g., Paudel & Andersen, 2011]. A set back to 

this method is the entire snow season has to pass before the cloud can be removed. In our 

watershed alone it is easy to see why using a probability of snow cover based on other pixels 

is error prone given a highly variable snow pack. Of the eleven SNOTEL stations five 

(Thumb Divide, Lewis Lake, Snake River Station, Phillips Bench, and Gunsight Pass) each 

melted out completely in 3 different months over the 19 year study period (Table 3.5). This 

variability in melt timing shows the issues with using a bulk statistic to estimate melt timing. 

In the model presented in this article the melt timing is adjusted for a particular time in the 

pattern which is consistent year to year. Using elevation zones and snow cycles as proposed 

by Paudel & Andersen [2011] may help deal with this problem, but is still limited by the 

single-year-at-a-time approach, overlooking the pattern. This method uses an aggregated 

approach rather than a spatial model which limits its applicability in the middle of a melting 

period since the first day of accumulation, day of maximum extent, and day of minimum 

extent all have to be known before cloud removal can be completed. Extreme years may 

pose problems for these methodologies since they lie in the tails of statistical distributions. 

In snowmelt modeling, extremely high snowpack years are of utmost importance for flood 

control especially when snowmelt occurs late in the season (e.g., 2011), and small snow 

pack years with early melt (2001) are important for drought simulation. The point that is 

overlooked by these previous models is that the melt pattern is the same, and only the time 

and rate of melt are shifted. With a contour map derived from a collection of highly variable 
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snow pack years this issue can be dealt with effectively. This is shown with the model 

performance in 2017 a large snow pack year and 2018, as well as the performance in the 

significantly different years such as 2011 and 2001. The model performs adequately 

independent of snowpack, a difficult achievement using other approaches.  

 The principal component analysis achieves a good fit at varied SCA percentages 

across multiple years. The model achieves this with 84.8% of the total variance captured in 

the first principal component. The other 15% of variance is thrown away. A simple analysis 

can show where this percentage which is thrown out comes from. A principal component 

analysis was conducted on the difference between the FDL and LDS imagery. This is the 

influence of cloud in the model accuracy. Significantly less information is explained by the 

first principal component showing the variability in the cloud persistence during the most 

crucial time as a pixel melts. Relating the principal components of the difference PCA and 

the FDL PCA may show the source 15% of variance that was not used. A correlation matrix 

was created to compare the two analyses. Table 3.6 shows the matrix with the highest 

correlations bolded and boxed. Also shown along the bottom is the contribution of each 

principal component in describing the variance. The first principal component describes 

84.8% of the total variance and the second describes only 2%. In fact, after the first principal 

component no subsequent principal component describes more than 2% of the total variance. 

An addition of the next eight components, 2-9, only describes 10 additional percent of the 

total variance. Any component which describes less than 1% of the total variance can be 

considered noise. For this section of analysis principal components 2-9 of the FDL PCA are 

analyzed for their relationship to the influence of cloud. 

 Each high correlation relates the FDL PCA and the difference PCA. By tracing the 

principal component which is most highly correlated to the FDL PCA for each principal 

component the year related to the high correlation from the difference PCA can be extracted. 

This is meaningful because if the year with the highest weight in the difference PCA also 

has a high occurrence of cloud cover then the relationship can show that the additional 

variance described in the FDL PCA is actually only capturing variance due to cloud 

influence. The difference image once again shows the duration of cloud cover between the 

last day of snow and first day of land on a pixel by pixel basis. From the correlation matrix 

we can identify the principal components in the difference PCA related to PC 2-9 in the 
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FDL PCA. This is best shown through the relation Table 3.7. For example, for PC 2 of the 

FDL PCA the highest correlation calculated as PC 10 of the difference PCA with a 

correlation of 0.73. PC 10 of the difference PCA has the highest weights for the years 2000 

and 2004. The correlation is positive so therefore the year should be positively weighted in 

the principal component. With this logic we can say the year most related to PC 2 of the 

FDL PCA is 2000. Both of the years with the highest weights, positive and negative, are 

shown for transparency in Table 3.7. 

 Once the years are identified the relationship between the principal components of 

the FDL PCA and cloud can be determined. The average number of days a pixel was 

obscured on a yearly basis was calculated. This was accomplished by summing up the 

difference image values and dividing by the total number of pixels. Figure 3.12 shows the 

average number of cloud obscured days for each year. The average of all the years was 

calculated to be 5.37 days which is shown in the figure as a horizontal line. Comparing the 

years from Table 3.7, one can see 2000, 2002, and 2011 all have greater average cloud 

influence than the overall average. 2004 does fall below average, but is only related to PC4 

of the FDL PCA which may represent an outlier not the overall relationship. Across all the 

years shown in Table 3.7 only 2004 and 2001 fall below the average cloud cover line.  

 With this information it can be shown that in fact the principal components discarded 

in the derivation of the contour map (Fig. 3.5) add no additional information about the 

overall pattern. The information left out is a product of the influence of cloud and does not, 

with confidence, describe any additional information about the pattern.  

 Using the pattern as a method for developing a map of characteristic melt pattern 

makes this model superior and applicable for climate models. Years of highly variable peak 

snow water equivalent and melt out dates were used in the derivation of the map. The model 

shows good agreement during extremely high or low snowpack years as well as during years 

of average snowpack. It has also shown good agreement with validation years not used in 

development of the snowmelt pattern, making it applicable for use in climate models. None 

of the other methods focus on this untapped area of research. Current methods for climate 

modeling of snowpack are downscaled approaches taking advantage of meteorological data 

[e.g., Abatzoglou & Brown, 2012]. These methods may be useful over large areas; however 

snowpack accumulation and ablation is not driven by elevation alone, as it is merely a 
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portion of the topographic effect [Hock, 2003]. Smaller-scale, spatially distributed models 

developed from observable spatial distribution of snow are lacking. Incorporation of these 

types of models into climate change models may better depict spatially what happens with 

rising temperatures.  

 The simple application of this model for an entire snow season can be seen in Figure 

3.13. The only missing information with the map derived in this research is a dimension of 

time. To add a dimension of time all that is required is fitted curve to the melt progression 

with time, or a depletion curve. By using cloud free days (cloud cover ≤ 5%) a line can be 

fit. Using a least squares optimization the curve can be fit to the cloud free days, which is 

what was done in Figure 3.13 for two snow seasons, 2007 and 2011. Each horizontal line 

represents a 5% decrease in snow covered area, which is what the contour map (Fig. 3.5) 

models. The raw data showed a similar distribution to a Gaussian decay function when 

plotted with time. Theoretically if a pattern is repeatable the same type of curve could be 

applied to multiple snow years. This is shown here as a Gaussian decay curve is fit to two 

very different snow years 2007 and 2011. The difference in the rate of melt or steepness of 

the curve and timing of 50% melt differ greatly. By incorporating a time component into 

this, once again using only raw data to inform the decision and curve fitting, the contour 

map shown in Figure 3.5 has the power to accurately represent a melting season with time. 

This simple application is of great worth for snowmelt modeling is all still rooted in the 

fundamental idea of consistent melting patterns across multiple years. While the Gaussian 

decay curve fits this data it may not fit other watersheds. It was chosen and applied here 

because the data appeared to follow that curve in two very different years. Each watershed 

may have its own curve which is characteristic to that area and melting pattern. 

 A significantly valuable component of this method for modeling snow distribution is 

its data collection methodology. Only free data collected through remote sensing is required 

to develop the model. The final model is not a function of elevation alone, but rather a 

combination of all the drivers of snowmelt on a pixel by pixel basis taking full advantage of 

the intra-annual pattern of snowmelt. Consequently, this model is ideal for gauged and 

ungauged watersheds alike. For gauged watersheds use of ground based data to inform the 

starting day of the model can increase the accuracy of the model and in ungauged stations a 

standard starting day could be used.  
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Limitations 

 This model was applied to a watershed that experiences complete snow coverage 

each year. A change in this may result in a change in the model accuracy due to differencing 

snow extents. A study conducted over an area of 950,000 square kilometers in Eurasia 

encompassing Kazakhstan which receives a maximum snow coverage of 32% in some areas, 

and up to 80% in other portions, noted a pattern [Zhou et al., 2013]. While the derivation of 

the map may change, the principal would still apply. The characteristic map is also limited 

by the available years, the use of a consistent NDSI threshold rather than a variable 

threshold for different land cover types [Painter et al., 2009], and the watershed size. For 

smaller watersheds a clear repeatable pattern may be more difficult to derive due to the 

impact cloud cover may have. It can also be noted that the confidence in the pattern is 

variable throughout the melt period. 

Accuracy may vary at SCA between 80-40% due to early misclassification of pixels 

as land. The model extraction of FDL and LDS is set up in such a way that if the threshold is 

passed the pixel is deemed as melted. To combat this issue and produce more accurate 

results, a variable threshold, or spectral mixing could be employed [Rittger et al., 2013]. The 

early detection errors are propagated through the model displacing area of actual melt to 

areas of incorrect melt since the model works on the basis of percent area. A pixel which is 

incorrectly deemed melted in a forested area early in the melting period commits a portion 

of the total percentage of melted area incorrectly. The use of a principal component analysis 

to combine the data favors the most distinctly different patterns as well. The goal of the 

principal component analysis is to reduce the data into orthogonal independent planes 

described by the Eigen vector. These planes capture the directions of decreasing variance 

where the first component indicates the direction of maximum variance. Because of this the 

two most dissimilar years from the majority are favored in the first principal component as 

well as the areas of early detection of melt due to land cover. Proof of this favoritism can be 

seen in the errors associated with these years. One of these years 2011, showed some of the 

best average agreement. This year had a very late melt out date for the SNOTEL sites and 

had the latest starting date for the model.  
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Conclusion 

 The goal of this research was to develop a spatially distributed model of snowmelt 

processes. The model was based on 17 years of data and combined to produce a contour map 

which has applications in cloud removal during melt, and climate change modeling. The 

model performed with 85.0-97.6% agreement in 2017 and 2018. Compared with other 

models which also produce cloud free imagery such as MODSNOW-tool and ASTWM the 

model performs adequately, but outperforms all in terms of timing of data availability 

[Gafurov et al., 2016; Li et al., 2017]. No current method produces daily cloud free imagery 

without a temporal filter which requires imagery on subsequent days of the cloudy day. This 

method reduces the time required for cloud free image production from multiple days, a 

requirement for the temporal interpolation to create cloud free imagery, to near real-time as 

long as some small portion of interface between land and snow is visible. For real time 

snowmelt modeling this method pioneers a new approach for the production of cloud-free 

snow covered area images on a daily time step which is simpler to use on an ongoing basis 

compared to existing, more complex methods such as MODSCAG [Painter et al., 2009].  

 The model is not restricted to cloud removal and real-time modeling. The map 

describes a long lasting intra-annual pattern of snowmelt over a variety of differing snow 

packs and durations with 85.0- 97.9% agreement. It serves as a spatially distributed model, 

characteristic of a watershed which may increase modeling accuracy in climate change 

scenarios. Current methods rely on downscaled data and modeling of snow packs. While this 

approach is accepted spatially distributed data is far more valuable than interpolated data. 

This model is applicable to watersheds with or without in situ data, intuitive to use for cloud 

removal, and easily incorporated as spatial snow cover extent into modeling scenarios. 

 While the focus of remote sensing of snow has been restricted to cloud removal and 

increasing accuracy a significant application of long term trends has been overlooked. Many 

researchers have noted the existence of consistent patterns of snow melt across multiple 

years [Adams, 1976; König & Sturm, 1998; Luce & Tarboton, 2004; Sturm & Wagner, 

2010; Wang & Xie, 2009; Zhou et al., 2013]. To our knowledge, this research is the first to 

develop a methodology to assimilate multi-year data for the purpose of defining the seasonal 

spatial melt pattern for a watershed. This article uses Principal Component Analysis to 

identify the melt pattern of a test watershed, and applies the pattern for cloud removal.  Use 
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of the method to simulate the impact of climate change on snowmelt is suggested as an 

application for future research. 
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Tables 

Table 3.1: Principal component analysis weights for the first principal component. Larger values describe more influence 

in the first principal component. 

Year 

Principal 

Component 

Weight 

2000 0.2250318 

2001 0.2114065 

2002 0.2385 

2003 0.2503311 

2004 0.3099047 

2005 0.254732 

2006 0.1991916 

2007 0.2612577 

2008 0.2362055 

2009 0.2289876 

2010 0.2864082 

2011 0.2309159 

2012 0.2680333 

2013 0.1940405 

2014 0.2220782 

2015 0.2474614 

2016 0.2294085 
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Table 3.2: Total error by snow covered area percentage and year. 45% snow covered area is not shown since no imagery 

with less than 5% cloud cover was available. A "-" signifies there was no data for that year (column) at that particular SCA 

(row). 

 

Total Error by Year (Omission and Commission) 

 Snow Covered 

Area 

Percentage 

2001 2004 2007 2011 2013 2017 2018 

Average 

Total 

Error 

90% - - - 5.37 4.10 - - 4.73 

85% - 6.97 7.48 - 5.77 - 12.30 8.13 

80% - - - - - 8.27 14.44 11.35 

75% - - 8.48 - 13.09 14.99 - 12.19 

70% 8.35 - 11.24 - - 13.78 - 11.12 

65% - 12.49 - - 13.72 - 11.43 12.55 

60% - - - 14.90 - 14.56 - 14.73 

55% 7.75 12.02 12.88 - - 10.25 - 10.73 

50% - 10.30 - - - - - 10.30 

40% 11.52 8.68 11.57 - - - - 10.59 

35% - - - - - 7.35 - 7.35 

30% - - - 9.40 - 8.08 6.71 8.06 

25% 5.87 - - - - 5.97 6.63 6.16 

20% - - 6.38 5.86 8.15 - 5.44 6.46 

15% - - - - - 4.82 - 4.82 

10% 4.22 4.00 - 4.39 3.67 3.30 3.40 3.83 

5% 2.42 - - 2.14 2.39 2.41 - 2.34 
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Table 3.3: Average omission, commission, and total errors by year. Average error is an average of error at all available 

SCA for each year. 

Year 
Average 

Omission 

Average 

Commission 

Total 

Average 

Error 

2001 4.10% 2.23% 6.34% 

2004 5.29% 3.69% 8.98% 

2007 5.81% 3.86% 9.67% 

2011 3.26% 2.55% 5.80% 

2013 3.68% 3.14% 6.82% 

2017 4.06% 3.11% 7.17% 

2018 3.88% 4.09% 7.97% 

 

Table 3.4: Fraction of omission errors associated with coniferous forest land cover for SCAs between 40 and 80 percent.  

SCA of 45% was omitted owing to lack of images with sufficient cloud-free area. 

Snow Covered Area 

Percentage 

Omission of 

Snow by Model 

Percentage of Pixels 

with Omission Errors 

Classified as 

Coniferous Forest 

80 6.61% 86.19% 

75 7.40% 89.50% 

70 8.26% 86.08% 

65 7.84% 75.19% 

60 8.92% 89.24% 

55 6.42% 79.82% 

50 8.38% 89.99% 

40 7.40% 88.92% 
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Table 3.5: Earliest and latest melt-out dates for SNOTEL stations among the 19 years of images included in this study. 

SNOTEL Station ID 
Latest Melt 

Out Date 
Earliest Melt Out Date 

Base Camp 6/10/2011 5/1/2001 and 5/1/2007 

Thumb Divide 6/16/2011 4/23/2015 

Lewis Lake Divide 7/3/2011 5/13/2015 

Snake River Station 6/6/2011 4/29/2015 and 4/29/2007 

Two Ocean Plateau 7/18/2011 6/6/2007 

Togwotee Pass 7/22/2011 6/6/2007 

Phillips Bench 7/6/2011 5/19/2007 

Gros Ventre Summit 6/21/2011 5/11/2012 

Gunsight Pass 7/6/2011 5/18/2001 and 5/18/2007 

Granite Creek 6/14/2011 5/5/2000 and 5/5/2007 

East Rim Divide 5/28/2011 4/23/2012 
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Table 3.6: Correlation matrix comparing the principal components of the First Day of Land analysis (columns) and the difference principal component analysis (rows). The 

highest correlations are bolded and boxed. 

  

Principal Components of First Day of Land PCA 

  

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 

P
ri

n
ci

p
a

l 
C

o
m

p
o

n
e
n

ts
 f

ro
m

 P
C

A
 o

n
 D

if
fe

r
en

ce
 I

m
a

g
es

 

PC1 0.43 0.00 -0.38 0.18 -0.12 -0.74 0.03 -0.46 -0.13 0.04 0.11 0.05 0.01 -0.01 0.07 0.10 -0.03 

PC2 0.08 0.42 0.61 0.29 -0.14 0.08 -0.07 -0.30 -0.02 0.12 -0.25 -0.13 -0.20 -0.25 -0.13 -0.14 0.09 

PC3 -0.20 0.17 -0.39 -0.19 0.47 0.38 0.00 0.16 -0.19 0.09 0.06 0.17 0.02 0.32 0.35 0.22 0.18 

PC4 0.02 -0.03 0.47 0.03 0.00 -0.06 0.14 -0.16 -0.12 0.05 0.16 0.34 0.65 0.29 0.22 -0.04 0.06 

PC5 0.11 0.20 -0.18 0.27 -0.27 0.13 0.22 0.17 -0.53 -0.05 -0.30 0.51 -0.09 -0.05 -0.16 0.12 0.07 

PC6 0.06 -0.17 0.05 -0.35 0.36 0.00 0.36 -0.28 0.03 -0.37 -0.03 0.35 -0.09 -0.40 -0.17 -0.21 -0.03 

PC7 0.13 0.16 0.03 0.22 -0.21 0.03 0.42 0.13 0.06 -0.68 0.27 -0.28 -0.07 0.18 0.16 0.00 0.09 

PC8 -0.13 0.16 -0.13 0.12 0.15 0.26 0.60 -0.41 0.17 0.45 0.03 -0.15 -0.15 0.20 -0.01 0.04 0.02 

PC9 -0.02 0.04 0.21 -0.12 0.33 -0.34 0.28 0.37 -0.52 0.19 0.10 -0.36 -0.02 0.01 -0.23 -0.05 -0.09 

PC10 -0.49 0.73 0.03 -0.45 -0.01 -0.29 0.01 0.14 0.29 -0.01 -0.06 0.15 0.00 -0.02 0.06 0.19 0.07 

PC11 0.43 0.15 0.07 0.42 0.67 -0.11 -0.28 -0.11 -0.07 -0.25 -0.23 -0.01 -0.14 0.07 0.29 0.02 0.11 

PC12 0.17 -0.19 0.30 -0.19 -0.06 0.08 0.00 -0.20 -0.17 -0.08 0.02 -0.06 -0.23 -0.06 0.18 0.79 -0.21 

PC13 0.13 0.07 -0.03 -0.42 -0.21 0.12 -0.17 -0.31 -0.47 -0.03 0.08 -0.19 -0.18 0.04 0.31 -0.34 0.36 

PC14 0.33 -0.20 0.21 0.11 -0.05 -0.19 0.13 0.30 0.15 0.27 0.27 0.34 -0.49 -0.10 0.42 -0.13 0.17 

PC15 0.39 -0.31 0.04 -0.12 -0.07 -0.20 0.23 0.10 0.15 0.00 -0.67 -0.17 0.09 0.11 0.09 0.10 0.49 

PC16 0.22 0.08 -0.15 0.15 0.03 0.11 0.10 0.09 -0.03 0.12 0.12 -0.19 0.39 -0.74 0.29 0.15 0.21 

PC17 0.05 0.04 -0.05 -0.06 -0.10 -0.01 0.15 0.06 -0.04 0.01 -0.39 -0.07 0.04 -0.04 0.52 -0.26 -0.68 

                   Proportion of 

Variance 0.848 0.020 0.015 0.014 0.012 0.011 0.011 0.010 0.009 0.009 0.008 0.007 0.007 0.006 0.006 0.005 0.004 
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Table 3.7: Relation table. For each principal component adding 2% additional variance described the related difference 

principal component is shown with the related year. 

Look Up Table 

First Day of Land 

Principal 

Component (PC) 

Sign 

Direction of 

Weight 

Related 

Difference PC 

Year Related to 

Difference PC 

(Same Sign) 

Year Related to 

Difference PC 

(Different Sign) 

PC2 Positive PC10 2000 2004 

PC3 Positive PC2 2011 2015 

PC4 Negative PC10 2004 2000 

PC5 Positive PC11 2002 2001 

PC6 Negative PC1 2011 2010 

PC7 Positive PC8 2011 2005 

PC8 Negative PC1 2011 2010 

PC9 Negative PC5 2000 2011 
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Figures 

 

Figure 3.1: Upper Snake Basin with associated SNOTEL stations. 
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Figure 3.2: Model output for 2013. First day of land right, and last day of snow on the left. Larger DOY values are 

depicted by white and smaller values by black. 
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Figure 3.3: Histograms showing distribution of the pixel values for the difference between FDL and LDS images for 2013 

and 2007. 
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Figure 3.4: Principal component raster output. Values are not significant because they are the product of matrix 

multiplication. The year to year melting pattern is seen with black indicating early melt and white the latest melt. 
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Figure 3.5: Contour map describes intra-annual melting trends 2000 through 2016. Each contour describes the interface 

between snow and land at different exposed land  covered area percentages. SCA is the 100 minus the line value in the 

legend. Large snow covered areas are depicted in dark green and small areas in dark red. 
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Figure 3.6: Location of the model error at 75% SCA. Imagery from 4/26/2018 was used depicted in blue (snow), brown 

(land), and white (cloud). The modeled 75% SCA contour is overlaid in pink. 
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Figure 3.7: Effects of land cover on model accuracy. Forest is depicted in green, brown, and orange (2011 NLCD). 

Correctly modeled locations from 4/26/2018 are blacked out while incorrectly modeled areas are outlined in red. 
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Figure 3.8: Number of days with less than 10% cloud cover. Black indicates days with less than 10% cloud cover during 

the transition of 80-10% SCA. Black plus white indicates total less than 10% cloud cover days in 150 day period. 
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Figure 3.9: Cloud cover proof of concept application. 85% cloud cover imposed over 2006, DOY 152. Dark blue indicates 

measured snow, brown measured land, white measured cloud, and light blue imposed cloud. Model contours of 20, 25 and 

30% SCA are depicted. 
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Figure 3.10: Cloud removal proof of concept. Fit of the contours to "cloud" free day. Blue indicates measured snow, brown 

measured land, and white measured cloud. 
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Figure 3.11: Peak SWE measurements by SNOTEL station. Maximum peak SWE measured in a year is depicted in black, 

median peak SWE over all 19 years in grey, and minimum peak SWE in white. 

 

Figure 3.12: Average number of days of cloud influence by year. Cloud influence is defined as the difference between the 

FDL and LDS images. The average number of days across all years is 5.37 indicated by the horizontal line. 
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Figure 3.13: Application of contour map throughout two melt seasons. Fitted curves for 2007 and 2011 are shown, fit tow 

the <5% cloud cover days. The curves describe the change in snow covered area with time. Each horizontal gridline of 5% 

is associated with the 5% melt contours of the spatial model developed. 
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Chapter 4: Spatial Model Development (Clustering) 

 

Introduction 

 Snow is an important resource in the Western United States with 50-80% of the 

annual streamflow coming from snowmelt [Stewart et al., 2004]. With a changing climate 

the snowmelt dominated watersheds are sensitive to changes in temperature and 

precipitation which may affect accumulation of snow and therefore storage of water as snow 

[Barnett et al., 2005]. These changes in temperature and precipitation are vital to understand 

and prepare for, especially where legal systems such as water rights are built around timing 

and amount of available water. Remote sensing is a useful tool for mapping the extent of 

snow as melt progresses, but cloud cover often poses an issue. On cloud free days the 

Moderate Resolution Imaging Spectoradiaometer (MODIS) has shown 93% agreement with 

in-situ measurements [Hall & Riggs, 2007]. Remote sensing has been used to verify climate 

model predictions of snow coverage, and is used in current snowmelt models [Curtis et al., 

2014; Steele et al., 2017].   

 Climate modeling is subject to many uncertainties which can be summarized into 

four components. Greenhouse gas emission scenario, global climate model (GCM), 

downscaling method, and impact or catchment model [Ficklin et al., 2016]. Modeling at the 

watershed scale, is of the utmost importance in Southern Idaho where agriculture, power 

generation, municipalities, and in-stream fish requirements are all reliant on a legal system 

built around the timing of available water [Qualls et al., 2013]. Preparing for extreme years 

is likely as important as a long term changes where these legal constructs exist. Minimizing 

the error in the hydrologic model may lead to more confidence in climate modeling, 

especially in snowmelt driven watersheds. Poulin et al., [2011] applied two snowmelt 

models to quantify the uncertainty in hydrologic models using 22 emission scenarios for 

2060. A lumped temperature index model and a spatially distributed combination of an 

energy budget and temperature index model were compared. Both models displayed higher 

uncertainty during spring runoff and summer months with less uncertainty during the 

accumulation season. Variability in the GCM can often be biased with precipitation and 

temperature leading to up to 2
◦
C changes in mean projected temperature and 30% of points 

when bias correcting precipitation [Pierce et al., 2015]. With the variability and bias that is 
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introduced in climate modeling by greenhouse gas scenarios and the GCM, it is fundamental 

to reduce the uncertainty of what we know: the hydrologic models.  

 The current use for remote sensing in climate change modeling is verification. A 

number of different sensors have been used to verify surface albedo, snow water equivalent 

(SWE), and snow extent. Verification spatial resolutions, whether remotely sensed or in-situ 

measurements, often differ greatly from the modeled output [Curtis et al., 2014; Brown et 

al., 2014; Dickerson‐Lange & Mitchell, 2014]. Because the climate models simulate 

accumulation of snow, the existence of measureable SWE is often used to calculate snow 

cover fraction [Themeßl et al., 2012].  The relationship between SWE and snow cover is 

non-linear in nature [Luce & Tarboton, 2004]. This complicates the accurate spatial extent 

of snow if modeling is not correct. This is made even more difficult due to the varied spatial 

resolution currently available for input data (GCM) and verification methods (remote 

sensing). Microwave remote sensing is promising because it can detect snow depth and 

snow water equivalent. The spatial resolution of microwave remote sensing is 25 kilometers 

and larger [Jensen, 2016]. Typical GCMs do not have sufficient resolution for the 

mountainous Western United States and watershed scale modeling requires resolutions of 

~1-10 kilometers [Lanzante et al., 2018]. If input data at resolutions greater than 10 

kilometers is not applicable then verifying models using remotely sensed imagery at spatial 

resolutions greater than 10 km are not applicable. This discrepancy in spatial resolution in 

complex terrain and the non-linear relationship between SWE and snow cover fraction hide 

errors in model output. Downscaling methods have been employed to remove the well-

known biases in GCMs due to spatial resolution [Ficklin et al. 2016; Lanzante et al., 2018; 

Wood et al., 2004]. Even with these corrections many have noted there is less uncertainty in 

the accumulation period of snow than the melting period [Poulin et al., 2011; Thrasher et al., 

2012; Poyck et al., 2011]. As the spatial resolution of the input precipitation and temperature 

data is refined the hydrologic models will still be a source of error.  

 Remote sensing of snow offers an untapped resource in climate modelling. While 

snowmelt timing and snow depth may vary each year, the pattern is the same [Adams, 1976; 

König & Sturm, 1998]. This pattern is a result of the watershed characteristics. In the arctic 

it was found that repeated patterns could be used to model snow distribution year to year 

[Sturm & Wagner, 2010]. Even at a smaller scale intra-annual patterns in snow distribution 
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were noted in the Reynolds Creek Experimental Watershed in Southern Idaho [Luce & 

Tarboton, 2004]. The pattern has also been used to develop a dimensionless depletion curve 

which describes the change in snow cover fraction as melt progress. The curve is 

dimensionless in time making it applicable to any snow year [Luce et al., 1999]. The key 

idea that has been overlooked, applied in by Luce et al., [1999], is the shift in the timing and 

duration of melt. A characteristic map describing snow melt patterns independent of snow 

depth and timing can be developed using remotely sensed imagery. MODIS offers 19 years 

of daily imagery at a spatial resolution of 500 meters making derivation of such a map 

accomplishable. If a map was created it could be used in deterministic models such as the 

Snowmelt Runoff Model (SRM) [Martinec & Rango, 1986; Rango, 1993]. In this research a 

characteristic melt map was developed, describing the spatial changes in snow cover in any 

given year. An integral part to the utility of this characteristic map for climate modeling is 

an accompanying dimensionless depletion curve. These two components give climate 

modelers snow cover fraction, spatially represented and the ability to forecast the timing of 

melt. The dimensionless depletion curve can be given dimensions of time with two 

parameters. To our knowledge no at this time no research uses the large amount of remotely 

sensed imagery to predict future scenarios. 

Data Sources and Study Site 

Study area 

 Our study area, the Upper Snake Basin Fig. 4.1, covers an area of 3,465 mi
2
 (8,894 

km
2
) and elevation ranges between 5,799 -13,760 feet (1,737 – 4,194 meters). The area 

serves as an important water resource for Idaho agriculture, power generation, in stream fish 

requirements, as well as municipal, commercial, and industrial uses. The watershed is 

bordered to the West by the Teton Mountains and includes the hydrologic units known as 

the Snake Headwaters, Gros Ventre, and Greys-Hobock. Snow seasonally covers the 

watershed making remote sensing a useful tool for collecting snowmelt information. The 

study site also has 11 ground based monitoring stations (SNOTEL sites) which measures a 2 

meter by 2 meter snow pillow and collect snow water equivalent (SWE) measurements. The 

study site land cover is variable. Forest accounts for 47.9 percent of the total area with 46.6 

percent classified as evergreen forest. Shrub and grass land account for 45.4 percent of the 

total area with the remaining 6.7 percent belonging to agriculture, developed land, and 
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wetlands. Percentages calculated based on the 2011 National Land Cover Database [Homer 

et al. 2015].  

Data Sources 

 The MODerate Resolution Imaging Spectoradiometer (MODIS) on board the Terra 

satellite was used. The version six data product, MOD10A1 (MODIS Terra snow cover 

daily L3 global 500 m Sin GRID V006) distributed by the National Snow and Ice Data 

Center (NSIDC) was used. This data product comes with the NDSI snow cover, NDSI snow 

cover basic QA, NDSI snow cover algorithm flags QA, NDSI, and snow albedo data. In this 

study only the NDSI snow cover was used. MOD10A1 was chosen as it has consistently 

shown less cloud obstruction [Parajka & Blöschl, 2008]. The calculation of NDSI is a 

combination of the red band and a middle infrared band. The MODIS sensor aboard Aqua 

had a failure in the mid infrared band forcing a slightly different NDSI calculation. Since no 

temporal combination of Terra and Aqua was applied, only MOD10A1 product from the 

Terra satellite was used. To convert the data to fractional snow covered area (SCA) a 

threshold of 0.4 was used, as documented in the version six user guide [Hall & Riggs, 2015]. 

Two MODIS swaths were needed to encompass the study region, h09v04 and h10v04. All 

available MODIS imagery from 2000 through 2018 was used in this study.  

 SNOTEL data distributed by the Natural Resource Conservation Service (NRCS) 

was also used as an input in model development. There are eleven sites in the watershed. 

Base Camp station ID 314 daily SWE measurements, were used as an input for model 

accuracy. This station is not the lowest elevation site in the study region at 7060 feet, but 

over the 19 year study period melt was one of the first stations to melt completely.  

Methods 

Model Development 

 To compare melt patterns across multiple years one must first identify the important 

days. The pattern of melt can be extracted for each year by identifying two days of interest 

for each pixel. The last day snow (LDS) is seen and the first day land (FDL) is seen on a 

pixel by pixel basis can describe melt. The two output files are equal in spatial resolution 

and geolocation to MODIS imagery. It is also essential to capture the melt of the maximum 

snowpack, rather than secondary snowfall. Secondary snowfall is common in spring time 

after the main snowpack has begun to melt. SWE measurements from ground based 
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SNOTEL stations were used to inform the extraction of the LDS and FDL to avoid 

secondary snowfall. The algorithm processes one year at a time starting each on the day of 

year (DOY) of maximum SWE. Choosing the SNOTEL station to use is important. A station 

with high elevation may achieve max SWE at a late date making the model susceptible to 

missing the peak snow pack at lower elevations. To combat this, a station of lower elevation 

which achieves max SWE early is ideal. The SNOTEL stations in this watershed all see 

seasonal snow cover for extended time periods, which may not be true for every watershed. 

The SNOTEL station Base Camp elevation 7060 feet was used to identify the DOY of 

maximum SWE. In the model development stage only the years 2000 through 2016 were 

used. 

The model extracts the two days for each pixel, LDS and FDL, by iterating through 

all the available imagery. This is done one year at a time. A few scenarios can take place as 

the algorithm works through a year. A pixel identified as snow on the DOY the model starts 

on, the model begins forward processing, known as the snow protocol. Forward processing 

means the next day of MODIS imagery is analyzed and the next for only the pixels 

identified as snow on the first day. As the snow protocol works it saves the LDS in one grid 

file (raster) and the FDL in another raster until each pixel has a value for the LDS and FDL 

saved in each raster. For the pixels identified as land on the start day the model back 

processes, analyzing the previous day of MODIS imagery until snow is seen for each pixel, 

known as the land protocol. For pixels which were never snow covered, or cloud cover 

never allowed for snow to be seen, the LDS is saved as DOY zero. The final scenario is 

pixels identified as cloud on the model start DOY. To handle this, the model begins back 

processing. As the model back processes if pixels are identified as snow first they are sent to 

the snow protocol beginning on the start DOY day plus one day since all the images in 

between have already been analyzed. For pixels identified as land first they are sent to the 

land protocol. If a pixel is cloud covered for the entire period from the start day to January 

1
st 

the model begins forward processing from the start DOY plus one day. For these pixels if 

land is seen first, the DOY is saved to the raster containing the FDL. The raster containing 

LDS is saved as a zero for these pixels; to signify the pixels were never seen as snow before 

they were identified as land. 
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 This method brings in ground based data (DOY of max SWE at a SNOTEL station) 

to efficiently reduce the large amount of imagery available to only two rasters per year. 

These raster grids describe the melt patterns and the difference between the FDL raster and 

LDS raster is the number of days cloud cover obscured the view of the pixel during the time 

period in which we know melt occurred. These rasters contain melt DOY and confidence in 

dates on a pixel by pixel basis signified by the difference between the FDL and LDS. This is 

similar to the temporal method applied by Wang & Xei, [2009] to images. Images are 

extracted from all the daily imagery available, which describe the dates each pixel 

transitioned from snow to land. This method produces two cloud free images that describe 

the melt progression through the melting season using the DOY as the value to describe the 

melt. The influence of cloud is contained in the difference between the rasters.  

The method for iterating through the 366 and less images available for each year 

takes advantage of the nomenclature to identify MODIS images. The DOY and year are 

contained in each MODIS image name as distributed by NSIDC. Given the year 2001 and 

DOY 145 a MODIS image for tile h09v04 would include the following 

MOD10A1.A20001145.h09v04 followed by addition version information. The first nine 

characters identify the product, Terra daily 500 meter sin grid, followed by the four 

character year, three character DOY, and finally the tile identifier. This information was 

used in the model to accurately save the DOY for the correct year to the LDS and FDL 

rasters. This allows the algorithm to quickly iterate through imagery. Processing is also sped 

up by sub-setting pixels in the snow, land, and cloud protocol. Entire MODIS tiles 2400 

pixels by 2400 pixels can be run in 4 hours depending on the cloud cover on the start day.  

Combining the Data 

 Each year’s melt pattern can be described by the combination of the FDL and LDS 

rasters. The first day there is faith a pixel has melted is contained in the FDL and it was used 

to develop the spatial model. The FDL raster for the years 2000 – 2016 were combined 

using a statistical method to classify pixels into groups. The DOY and coordinates of each 

pixel for all 17 years were brought into excel and analyzed in the statistical language R. A 

K-means clustering analysis was used to identify DOY clusters. Clusters were based on the 

DOY only. The clustering analysis is a multivariate approach which identifies separation of 

data points in multiple dimensions. Because 17 years were used there were 17 dimensions 
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the analysis took into account to define each cluster. Much like an x, y, z coordinate scheme 

puts a data point into 3 dimensions the DOY for each pixel (17 for each pixel) plots the 

point into 17 dimensional space. For a singular pixel the DOY acts as coordinates in the 

multidimensional space. It is in this multidimensional space that the K-means clustering 

analysis partitions pixels into groups. 

 K-means clustering is a step by step partitioning method which minimizes the Within 

Group Sum of Squares Error (WGSS). The WGSS is the sum of squares error based on 

Euclidean distance for each point in a cluster to the centroid. The number of clusters is first 

identified by the user. The algorithm then selects centroids for each cluster, which is a guess 

first. The data points are then partitioned into clusters based on distance from the centroid, 

and the WGSS is calculated. The algorithm then begins optimizing the WGSS by moving 

the centroids based on the last WGSS. Optimization occurs in a step by step method, moving 

the centroid, partitioning the data, and calculating the Within Group Sum of Squares Error. 

The partition with the lowest WGSS is saved. For a complete discussion of the methods 

behind K-means clustering refer to Everitt, B. & Hothorn, Torsten, [2011]. In essence this 

clustering is identifying the pattern of snow melt across all the input years. K-means 

clustering is generally applied to data that shows distinct clustering. At first glance while 

analyzing this data clusters are not apparent due to the continuous melting of snow rather 

than a discrete form of data. Only when the clusters are plotted with the pixel coordinates 

does the pattern emerge. The application of this statistical method to a continuous dataset 

like this led to the serendipitous finding of the intra-annual snow melt pattern. The results 

make sense when the idea of a consistent melting pattern independent of snow depth and 

timing is accepted. This reinforces this concept. 

 The K-means clustering analysis used to develop the final model used 10 clusters. A 

difficulty with the K-means approach is it is impossible to select the number of data points 

the algorithm assigns to each cluster. Clusters are assigned through the optimization of the 

WGSS and each cluster varies in number of data points belonging to it. Twenty-five 

iterations were used in the optimization to find the best partitioning with the lowest WGSS. 

Ideally every cluster would be tested but computers are not capable of this, which means the 

most optimal clustering may not have been chosen using only 25 iterations. With so many 

pixels 41,503 a second run may produce slightly different results. The ten groups did not 
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partition into equal percentages of the total number of pixels, however membership to each 

cluster was not wildly different. The clusters were ordered so cluster 1 would be considered 

the first “melt”, or group of pixels which melt first, and cluster 10 are the last pixels to melt. 

Percentages of area were calculated based on number of pixels in each cluster divided by the 

total number of pixels. Each cluster could be grouped together and assigned an area 

percentage. This percentage describes the land visible at that particular stage of melt.  

 Ideally the spatial model would describe between 1% and 5% snow covered area 

changes. Since the clustering analysis does not allow the user to set the number of data 

points included in each cluster (pixels in this case), describing changes in snow covered area 

with such fine precision is impossible with this dataset. As the number of clusters go up the 

partitioning does not result in equal membership for each cluster. With 10 clusters the 

membership was nearly equally distributed so each cluster represented about 10% of the 

pixels and therefore area. Twenty clusters was attempted, which would hopefully produce 

5% by area clusters, however the results were not as promising. One cluster ended up with 

10.2% of the area while another ended up with 0.66%. In fact using 20 clusters only 

produced three clusters between 4-6% by area. For this reason 10 clusters were used. The 

inability of this method to produce equal percentages of area makes it less applicable for 

real-time cloud removal during melt. The model is very useful for climate modeling 

purposes due to the simplicity and quick results when combining the data. A typical k-means 

clustering analysis for a data set of this size runs in under 10 minutes. 

 The K-means clustering output was manipulated in ArcGIS to create polygons 

associated with each percentage. For ease of analysis due to the tools available in ArcGIS, 

the polygons describe the area that would be considered land at each percentage of snow 

covered area. The outermost edge of each polygon represents the interface between snow 

and land at the given snow covered area. Ten polygons were created, each equal to a cluster. 

These could be compared against cloud free imagery from 2017 and 2018. Since these two 

years were not used in analysis comparing the model to them shows the model’s ability to 

forecast spatial coverage of snow in future scenarios. Two types of error were assessed, 

omission and commission errors. An omission error is a pixel measured as snow in the raw 

image, but modeled as land. Commission error is a pixel measured as land, but modeled as 

snow. Total error can then be calculated as the addition of commission and omission errors. 
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With the limited number of cloud free images, finding an image with the exact snow 

covered area represented by the model is difficult. The errors can be adjusted to account for 

the difference between the raw data image snow covered area and the model represented 

snow covered area. For the adjustment to be applicable the difference in the model snow 

covered area percentage and the raw data snow covered area percentage must be less than 

either the omission error or the commission error not the total error.  

Results 

 The final product of this climate model is a map describing melting patterns 

throughout any given year. The map can be seen as a progression of snowmelt where each 

percentage describes a later date in a melting season. This map was verified at multiple 

snow covered areas with the unused years of 2017 and 2018. The snow covered area 

percentages represented by the map are shown in the final map (Fig. 4.2). Percentages are 

calculated based on number of pixels in each cluster divided by the total number of pixels. 

The spatial fit of three snow covered area percentages are shown in Figures 4.3-4.5. Each 

figure shows a snow covered area percentage with two images one from 2017 and the other 

from 2018 side by side. Overall agreement with the modeled percentage and the measured 

snow cover can be seen in two snow years. Areas where the model is correct are shown in 

dark green. Black indicates measured land modeled as snow (commission error) and light 

green shows the areas modeled as land, but measured as snow (omission error). To separate 

out the impact of cloud cover, cloud is shown in red (orange when it is within the modeled 

land area).  

 The model fit for 2017 is shown in Table 4.1. The model performs best at 4.73% 

snow covered area with 1.42% adjusted total error. Adjusted error accounts for the 

difference between the measured snow covered area for the image and the model snow 

covered area. Since it is nearly impossible to find an exact match in snow covered area with 

cloud cover less than 5% an adjustment is needed. To calculate the adjusted error (AE) the 

difference in snow covered area is calculated. This will either be a commission adjusted 

error (CAE) or omission adjusted error (OAE). An OAE means measured snow covered area 

is greater than the model snow covered area. An example of the OAE would be an image 

where the measure snow covered area is 70.07% but the model can only predict 69.07%, and 

the OAE would be 1%.The overall error of the fit is calculate and adjusted by the OAE or 
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CAE. This can only be done if the measured omission error or commission error is greater 

than the OAE or CAE. In all the images the measured error was greater than the OAE or 

CAE. The worst fit for 2017 was measured at 69.07% snow covered area with and AE of 

12.31%. Agreement between the model and the imagery from 2017 was greater than 90% 

for all snow covered areas except for 69.07% and 55.65% with agreements between 87.69% 

and 89.11% respectively. In 2018 agreement was even better (Table 4.2). For all snow 

covered areas the AE was less than 10% with the best fit at 11.92% snow covered area, an 

error of 3.43%. At 75.78% snow covered area the error was less in 2018 than 2017 by 

1.66%, with an AE of 6.85%. Agreement in 2018 ranged from 93.15% to 96.57%.  This is a 

smaller range than 87.69% to 98.58% measured in 2017. While the model appears to fit 

better in 2018 it is important to note that certain snow covered areas had less error in 2017 

than in 2018 such as 22.05% snow covered area with an AE of 3.82% in 2017 and 5.50% in 

2018. This shows the models ability to accurately predict snow cover independent of year 

and snow depth.  

The fit of the model at different snow covered area percentages was better in certain 

locations of the watershed than others. At 75.8% the fit is over all good in the southern 

portion of the watershed, but underestimates and overestimates snow covered area in the 

northern half of the watershed. Overestimation of snow is seen in the Northwestern quadrant 

and underestimation in the Northeastern quadrant. As the snow covered area shrinks the 

error is lessened and more evenly distributed. At 32.8% snow covered area the fit is quite 

good. The Northern portion of the watershed still experiences some overestimation of snow 

cover, but the fit along the west and south follows the interface between snow and land. A 

similar result is achieved in the 22.1% snow covered area. The fit is nearly perfect with 

some overestimation of snow in the Northern area. The error at all of these snow covered 

areas is generally in a similar area. Even though the location is the same the extent of the 

error varies. This may be a result of including 17 years in model development. This is 

advantageous though since it uses information from large snow years and small snow years. 

The model accurately represents 2017 a very large snow year as seen in Figure 4.6. Changes 

in maximum SWE recorded at the SNOTEL station Two Oceans Plateau for 2000 through 

2018 are shown. This site often records the largest SWE measurements of all SNOTEL sites 

in the watershed even though the elevation is not the highest of the sites at 9,240 feet. The 
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smallest maximum SWE was recorded in 2001 at 22.8 inches and the largest maximum 

SWE in 2017 at 55.1 inches, and the average over all the years is 35.7 inches. The years 

used in model development 2000-2016 include below and above and average snow packs, 

while the verification years are an extreme year (2017) and an average year (2018). 

 Although this model produces differing groupings of snow covered area, analyzing a 

snow covered area which falls in between two percentages shown in the model 

communicates the model’s ability to accurately map snow extent. Using the same method 

for adjusting the error, an image 51.08% measured snow covered area was compared to the 

two closest model percentages 55.65 and 43.87 (Table 4.3). For the 55.65% modeled extent 

a high commission error would be expected, and a large omission error for 43.87%. The 

model performed with good agreement when adjusted. For 55.65 snow cover the 

commission error was 8.07%, far larger than the omission error of 5.69% and when adjusted 

the AE was found to be 10.25%. For 43.87% modeled extent the omission error was 10.77% 

with a commission error of 1.46%. When adjusted the AE was reduced to 8.67%. Since no 

imagery was available for modeled snow covered area of 55.65% and 43.87% this 

adjustment shows how the model may perform at those snow cover percentages. This 

resulted in similar agreement values of 89.75% and 91.33%. This proves the model can 

accurately depict snow cover percentages in between the model percentages. The model’s 

ability to interpolate is valuable in climate change and snowmelt modeling. 

No spatial model for snow covered extent as melt progresses based on remote 

sensing exists. A common issue in climate modeling is accuracy in snow cover extent as 

melt progresses. To combat this type of error Curtis et al., [2014] introduced cold air pooling 

into their model using MODIS imagery to verify the snow extent. This approach used 

downscaled data and complex methods for introducing cold air pooling to represent the 

snow cover fraction. They found representing SWE with this method was more accurate, but 

was often underestimated. They noted lower elevations were more susceptible to changes in 

April 1
st
 SWE measurements. As shown in Table 4.4 even under current conditions in this 

watershed the lower elevations are variable in the timing of maximum SWE and melt out 

while upper elevations are more stable. Using a single date to analyze SWE overlooks the 

variability in snow packs for each year and the shift in accumulation and melting of 

watersheds. Depicting the snow cover changes may give a more accurate representation of 
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SWE. Rather than using SWE to estimate snow cover, a non-linear relationship, using snow 

cover which progresses in the same way each year to inform SWE may be a more precise 

way of approaching this rather than complex methods such as introduction of cold air 

pooling. This issue has been difficult to handle and many approaches to accurately depict 

snow cover and subsequently streamflow have been attempted.  

Poyck et al., [2011] incorporated a highest melt factor day into a degree day/energy 

balance snowmelt model and 100 meter elevation bands modeled separately to predict 

streamflow. They found overestimation of winter flows and underestimation of summer 

flows. While they captured long term averages it is clear that a year with large snowfall late 

in the year could be difficult to model. Shepherd et al., [2010] experienced similar issues in 

estimating streamflow with earlier modeled peak streamflow and an R
2
 of 0.64 for modeled 

and historic flows. This in part could be a misrepresentation of albedo due to snow cover an 

important component for modeling energy exchange [Roesch, A., 2006]. 

The concept overlooked in many of these approaches is the shift in snow 

accumulation and melting periods. This shift is especially sensitive to lower elevations in 

this watershed as seen in Table 4.4. Not only are the values of maximum SWE recorded at 

each SNOTEL site larger in 2017 than 2018, but the timing of melt differs greatly. The melt 

period defined here is the number of days between the first day the maximum SWE is 

measured and the first day the station reaches a value of 0 inches of SWE. While the higher 

elevation sites such as Two Ocean Plataeu and Gunsight Pass are relatively stable with the 

melt period in 2018 4 days shorter than 2017 and 3 days earlier in 2017 than 2018 for Two 

Ocean Plateau and Gunsight pass respectively, the lower elevations are far less stable. The 

melt period was a whole 49 days shorter in 2018 than 2017 at Base Camp. Every station 

below an elevation of 8000 feet except for Lewis Lake Divide had a melt period shorter by 

23 or more days in 2018 than 2017. These shifts in melt period are measured between 6,770 

and 9,820 feet while the watershed elevation ranges from 5,709 to 13,768 feet. The 

beginning of melt is therefore sensitive, and where the higher elevation, later melt, is far 

more stable. With this large variability in the timing and duration of melt it is clear to see 

why modeling is difficult. Using the single date for each year may incorrectly underestimate 

lower elevation maximum SWE and struggle with extreme years. Extreme here meaning in 

snowpack and/or timing of snowpack accumulation and melt. A spatial model of snow 
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covered area throughout a melt season helps to accurately geo-locate snow extent and timing 

of melt. 

 While the model performs well at smaller snow covered areas it has the greatest 

errors between 75-50% snow covered areas. A closer look at the land cover reveals the 

source of the error. To investigate this, the image in 2017 at 69.07% snow covered area (the 

largest error) was used. Every location the model was incorrect was identified. The 2011 

National Land Cover Database image was then clipped to the extent of where the model was 

incorrect (Fig. 4.7). The areas are nearly all covered by evergreen forest with a small 

percentage belonging to mixed and deciduous forests and the rest to a mixture of other 

classifications. Of the area modeled incorrectly 85.7% belongs to evergreen forest. It is well 

documented that the spectral response in forest areas is different than in open areas, a 

shortcoming of using a constant threshold in the model development. Varying the spectral 

response of each pixel to identify snow is the basis for the model known as MODSCAG 

[Painter et al., 2009]. This combats the issues associated with forest cover by using a 

number of sensor band combinations (electromagnetic responses) to identify the spectral 

response on a gradient of snow cover in each pixel. The NDSI is affected by the viewing 

conditions and landscape features and lower NDSI values in boreal forests are associated 

with snow cover [Riggs et al., 2017]. While this issue poses a challenge in remote sensing 

the focus of this research is to derive a spatial model of snow cover rather than the changes 

in NDSI due to land cover. 

 The spatial model alone offers a wealth of information, but when combined with a 

depletion curve the true power of such a model is revealed. The widely used deterministic 

model SRM uses elevation zones and a depletion curve to inform melt timing in a 

watershed. The depletion curve describes the disappearance of snow cover with time. 

Remote sensing has been historically used to develop these curves using the advanced very 

high resolution radiometer (AVHRR) in as early as 1982 [Baumgartner et al., 1987]. With 

the new methods to produce cloud free MODIS imagery, it has also been used to develop 

depletion curves [Steele et al., 2017]. A spatial model that fits any snow year suggests a 

curve could be developed to fit any year, or a dimensionless depletion curve. This was 

proposed by Luce et al., [1999] and applied here. Fig 4.8 shows a dimensionless depletion 

curve for this watershed. The MODIS imagery from 2013 was used to derive this curve as 
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done in chapter 2. The y axis describes the fractional coverage of snow while the x axis 

describes the dimensionless z score. The z score is a function of time, X50 (the DOY 50% 

melt is achieved) and σ (rate of melt). By adjusting only X50 and σ this depletion curve can 

be fit to any year in the same way the spatial model can be fit to any year. When the 

dimensionless depletion curve and spatial model are combined a time component can be 

derived. Once x50 and σ are identified for a given year DOY can be found by Equation 4.1. 

 𝑧 =  
 𝑋50−𝐷𝑂𝑌

𝜎
 Equation 4.1 

 This watershed can be represented by a Gaussian decay function each year. This may 

not be applicable to every watershed, but Luce et al., [1999] describes a methodology for 

deriving a dimensionless depletion curve. This map and dimensionless depletion curve 

together can be direct input into SRM. While remote sensing has remained a verification 

technique in climate modeling, this combination gives a method for using spatial 

information of snow derived at the watershed scale to model future scenarios in some of the 

most uncertain areas in the United States. Remote sensing also offers information about 

ungauged watersheds. It has been used in current methods to develop depletion curves in 

ungauged catchments [Safari et al., 2014; Qui L. et al., 2014]. This gives spatial information 

in watersheds which have historically relied on interpolation of the area since downscaling 

of input data cannot be verified. 

Discussion 

 This research presents a spatially distributed model describing snowmelt patterns. 

The model was applied to verify the fit for 2017 and 2018. Spatial distribution of snow relies 

on the consistent melting pattern independent of snow depth and timing. Remote sensing of 

snow has been available since the 1970’s with the AVHRR sensor launched in 1979 [Jensen, 

2016]. Even with this large amount of data, and more recently daily data with MODIS, no 

one has used this to develop spatial patterns to model the future. Brown et al., [2014] used a 

host of remotely sensed information including MODIS imagery in conjunction with 

statistically downscaled GCM data to model climate scenario predictions for 2003 – 2010. 

Microwave remote sensing has also been used to verify SWE measurements, but as 

discussed earlier the spatial resolution of 25 km is far too coarse for the Western United 

States [Lanzante et al., 2018]. It has been said there is good certainty in the accumulation of 

snow, but high uncertainty during melt [Poulin et al., 2011; Thrasher et al., 2012; Poyck et 
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al., 2011]. A model such as the one presented here offers spatially distributed data and a 

time series in the depletion curve to help reduce this uncertainty during the melting season. 

The focus of research in snow extent monitoring, MODIS in particular, has been focused on 

cloud removal and accuracy of snow detection in varying landscapes [Painter et al., 2009; 

Gafurov et al., 2016; Dong & Menzel, 2016; Li, et al., 2017]. This is an important area of 

research for long term snow extent monitoring; however none of these techniques are 

applicable outside of a single year at a time. Many use information from a single year to 

interpolate missing days, but cannot use the information for the next snow year. This model 

uses long term patterns in snowmelt to create a spatial model of the stages of snowmelt.  

 Downscaling of GCM data has been applied to remove biases and increase the 

spatial resolution of the gridded temperature and precipitation data. While the biases are 

reduced using these methods non-trivial biases in resolution still exist [Ficklin et al., 2016; 

Wood et al., 2004]. These biases in spatial resolution during the melt season have been 

attributed to the incorrect representation of snow albedo, and correctly representing the snow 

cover fraction is crucial [Roesch, A., 2006; Wood et al., 2004]. Downscaling has been 

successful at reducing much of the bias in the GCM raw data and refining the spatial 

resolution of the data. Spatial resolutions have been downscaled to 1/16 of a degree, about 6 

kilometers, and as low as 90 meters [Pierce et al., 2014; Brown et al., 2014]. This data is 

then used in snowmelt models which has often relied on the VIC model at 12 kilometer 

resolution, and in some cases physically based models at 150 meter resolution [Maurer et al., 

2010; Dickerson‐Lange & Mitchell, 2014]. Two major issues exist in this approach. Albedo 

is a source of error, and spatial resolution is too coarse in many cases. The model presented 

here may be a solution to both issues as it is a spatial representation of snow cover as melt 

occurs with a resolution of 500 meters which is much finer than most climate models. As the 

spatial resolution of the input data is refined the correct representation of snow cover may 

persist especially in complex terrain. A simple approach of using the concept of consistent 

snowmelt patterns as a means to develop spatial models may be easier and possibly more 

accurate than adding complexity to the models. 

Modeling long term averages may not reveal the true impact of inaccuracies in snow 

cover. In areas which rely on accurate modeling of runoff timing, such as Southern Idaho, 

capturing the average is just as important as the extremes for water management and 
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preparation in a changing climate. It was shown by Gergel et al., [2017] the range in 

maximum and minimum SWE compared to the mean change in SWE in the Western United 

States is uncertain. In fact the Upper Snake Basin showed some the highest uncertainty 

when comparing 10 GCMs. The ability of a climate model to project the extremes, given an 

emissions scenario, is important for the agricultural needs of Idaho. Extremes in climate 

scenarios are difficult to handle with the current methods. Watershed characteristics have a 

large influence that is not well understood in a changing climate on streamflow [Teutschbein 

et al., 2018]. The model developed in this research is a product of the watershed 

characteristics. What drives a pixel to melt is the combination of elevation, slope, aspect, 

accumulation, and other factors which are what determine when a pixel melts in relation to 

the rest of the watershed. These are built into the model even though they are not 

specifically identified making it superior to models which rely on elevation alone.  

Conclusions 

 Hydrologic modeling of snow has been aided by remote sensing since the late 

1970’s. While remote sensing has remained a verification technique in climate change 

modeling, there is opportunity to use this spatial information to inform future scenarios. In 

this research a spatially distributed model describing snow melt was developed. The model’s 

ability to accurately represent snow covered area in future scenarios was assessed. One 

concept, consistent melt patterns, was used as the basis of the model development. It has 

been shown melting patterns are consistent across multiple years [Adams, 1976; König & 

Sturm, 1998; Luce & Tarboton, 2004; Sturm & Wagner, 2010]. The melt patterns can also 

be represented by a dimensionless depletion curve [Luce et al., 1999]. With the large amount 

of daily imagery available which measure snow covered area the model could be derived. 

The statistical approach allows the data from all the years included to organize into clusters 

independent of location. The model performed with 87.7-98.6% agreement in the two years. 

The combination of the dimensionless depletion curve and the spatial information is a new 

source of data that may help to accurately model snow melt. 

 This model also can provide information in ungauged watersheds. In current climate 

change modeling scenarios these ungauged areas rely on interpolation often at large spatial 

resolutions. With no information to help in predicting the climate change impacts on these 

watersheds errors may go unnoticed on the local level but show up in the streamflow as 
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gauged watersheds contribute. This model offers information which is currently not 

available at a spatial resolution adequate for representing complex terrain. The spatial and 

temporal information this model offers may fundamentally change the way modeling 

climate change scenarios is conducted. The model is accurate independent of snow year and 

timing giving climate modelers the ability to capture extremes and average years, a difficult 

task with the current methods. Water management relies on accurate modeling of all 

scenarios and this information may help areas such as Southern Idaho, which have high 

uncertainty in the future changes in SWE in the Upper Snake Basin and rely on a legal 

system for water management, prepare for the future. 
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Tables 

Table 4.1: Model fit to the 2017 imagery. Error type is identified as well as the snow covered area represented by the 

model and the measured percentage in the raw imagery. Expected errors are the error type due to the difference in 

modelled and measured snow covered area.  

2017 

Modelled 

Snow 

Covered 

Area (%) 

Omission 

Error 

(OE) 

Commission 

Error  

(CE) 

Total 

Error 

Measured 

Snow 

covered 

Area (%) 

Expected 

Error 

Type 

Adjusted 

Error 

(AE) 

75.78 5.49 5.70 11.20 73.09 CE 8.51 

69.07 9.05 5.07 14.12 70.88 OE 12.31 

55.65 6.49 4.41 10.90 55.63 CE 10.89 

32.78 5.78 2.12 7.90 34.90 OE 5.78 

22.05 4.36 1.84 6.21 24.44 OE 3.82 

11.92 2.37 1.77 4.15 12.53 OE 3.53 

4.73 2.19 0.28 2.48 5.78 OE 1.42 

 

Table 4.2: Model fit to the 2017 imagery. Error type is identified as well as the snow covered area represented by the 

model and the measured percentage in the raw imagery. Expected errors are the error type due to the difference in 

modelled and measured snow covered area.  

2018 

Modelled 

Snow 

Covered 

Area (%) 

Omission 

Error 

(OE) 

Commission 

Error  

(CE) 

Total 

Error 

Measured 

Snow 

covered 

Area (%) 

Expected 

Error 

Type 

Adjusted 

Error 

(AE) 

89.31 3.92 5.55 9.47 85.89 CE 6.05 

75.78 6.57 2.50 9.07 78.00 OE 6.85 

32.78 2.58 5.68 8.26 28.34 CE 3.82 

22.05 3.82 2.61 6.42 22.97 OE 5.50 

11.92 1.69 2.75 4.45 10.90 CE 3.43 

 

  



120 
 

 

Table 4.3: Errors associated with an image with snow covered area in between two modelled snow covered areas. 

Modelled 

Snow 

Covered 

Area (%) 

Omission 

Error 

(OE) 

Commission 

Error  

(CE) 

Total 

Error 

Measured 

Snow 

covered 

Area (%) 

Expected 

Error  

Adjusted 

CE and 

OE 

Adjusted 

Total 

Error 

55.65 5.69 8.07 13.76 51.08 CE 3.51 10.25 

43.87 10.77 1.46 12.22 51.08 OE 3.56 8.67 

 

Table 4.4: Changes in SWE and melting periods for all eleven SNOTEL stations in the watershed for 2017 and 2018. 

SNOTEL Station ID 
Elevation 

(ft) 

Max 

SWE 

2017 (in) 

Max 

SWE 

2018 (in) 

Melt 

Period 

2017 

(days) 

Melt 

Period 

2018 

(days) 

Melt 

Period 

Difference 

(days) 

Max SWE 

Difference 

(in) 

Base Camp 7060 27.1 19.8 81 32 49 7.3 

Thumb Divide 7980 22.9 21.7 56 33 23 1.2 

Lewis Lake Divide 7850 48.7 45.6 48 51 -3 3.1 

Snake River Station 6920 21.8 19.4 64 37 27 2.4 

Two Ocean Plateau 9240 55.1 43.6 66 62 4 11.5 

Togwotee Pass 9580 37 36.1 58 67 -9 0.9 

Phillips Bench 8200 42 33.2 48 50 -2 8.8 

Gros Ventre Summit 8750 21.7 17.5 38 45 -7 4.2 

Gunsight Pass 9820 26.3 19.3 49 52 -3 7 

Granite Creek 6770 30.1 18.8 75 40 35 11.3 

East Rim Divide 7930 18.8 13 58 28 30 5.8 
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Figures 

 

Figure 4.1: Upper Snake Basin with associated SNOTEL stations. 
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Figure 4.2: Final model of snow covered areas. Percentages of snow covered area are shown in a gray scale. 
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Figure 4.3: Side by side comparisons of model fit for 2017 (left) and 2018 (right) for 75.8% snow covered area. Correctly 

modelled areas are shown in dark green. Black indicates areas where the model indicated snow, but was measured as land. 

Light green shows the areas the model predicted land but snow was measured. Cloud cover is shown in red. 
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Figure 4.4: Side by side comparisons of model fit for 2017 (left) and 2018 (right) for 32.8% snow covered area. Correctly 

modelled areas are shown in dark green. Black indicates areas where the model indicated snow, but was measured as land. 

Light green shows the areas the model predicted land but snow was measured. Cloud cover is shown in red. 
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Figure 4.5: Side by side comparisons of model fit for 2017 (left) and 2018 (right) for 22.1% snow covered area. Correctly 

modelled areas are shown in dark green. Black indicates areas where the model indicated snow, but was measured as land. 

Light green shows the areas the model predicted land but snow was measured. Cloud cover is shown in red. 
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Figure 4.6: Variations in maximum SWE measured at Two Oceans Plateau from 2000-2018. SWE is shown in inches. 
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Figure 4.7: Effects of land cover on model accuracy due to NDSI threshold. 
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Figure 4.8: Dimensionless depletion curve for the watershed. Snow cover fraction on is shown on the y-axis and z score on 

the x-axis. The snow covered areas shown on the contour map are represented by circles along the curve. 
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Chapter 5: Concluding Remarks 

 

 The purpose of this thesis research was to develop a spatial model to accurately represent 

snow covered area changes during a melt season in multiple years. This was accomplished through 

three steps. We first proved the existence of a pattern, which is essential to this research. A method 

for accurately modeling snow covered area through a melting season with time was developed. 

Lastly, we developed two models which uses the repeatable pattern of snow covered area to 

represent snow covered area in any melting season. The truly fascinating finding in this research was 

the likeness of the two spatial models developed. In Chapter 3 a model was developed using a 

principal component analysis based on Eigen vectors and Eigen values which a mathematically 

derived, which was manipulated in ArcGIS to represent changes in snow covered area of 5%. The 

second method in Chapter 4 used a method based on an optimization technique which moves closer 

and closer to the true value like a Newtonian approximation. This model represented about 10% 

spatial changes in snow covered area. These methods differ fundamentally in their approach to 

finding the best way to describe the data.  The fact that both methods derive a map which fits the 

actual data, with similar accuracy, and both appear visually similar is astounding. This once again 

proves the applicability of a repeatable intra-annual pattern in snow cover depletion. This long 

accepted idea has been excluded from remote sensing, but shows an exciting new area of research.  


