
 

 

CMOS Image Sensors and Algorithms for Traffic Detection Applications 

 

 

A Dissertation 

Presented in Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

with a 

Major in Electrical Engineering 

in the 

College of Graduate Studies 

University of Idaho 

by 

Bingxing Wu 

 

 

Major Professor: Suat U. Ay, Ph.D. 

Committee Members: Mohsen Guizani, Ph.D.; Sameh Sorour, Ph.D.;  

Ahmed Abdel-Rahim, Ph.D. 

Department Administrator: Mohsen Guizani, Ph.D. 

 

 

 

May 2018 



ii 

 

AUTHORIZATION TO SUBMIT DISSERTATION 

This dissertation of Bingxing Wu, submitted for the degree of Doctor of Philosophy with a 

major in Electrical Engineering and titled “CMOS Image Sensors and Algorithms for Traffic 

Detection Applications,” has been reviewed in final form. Permission, as indicated by 

signatures and dates given below, is now granted to submit final copies to the College of 

Graduate Studies for approval. 

 

Major Professor:   Date  

 Suat U. Ay, Ph.D.    
     

Committee     

Members:   Date  

 Mohsen Guizani, Ph.D.    
     

     

   Date  

 Sameh Sorour, Ph.D.    
     

     

   Date  

 Ahmed Abdel-Rahim, Ph.D.    
     

Department     

Administrator:   Date  

 Mohsen Guizani, Ph.D.    
     

     

 



iii 

 

ABSTRACT 

Extracting information about vehicles or pedestrians detected by vision-based 

systems is vital for smart surveillance applications and traffic monitoring systems. These 

systems must have the ability to extract real-time parameters form the observed objects, 

such as number, location, speed, size, acceleration, temperature, signs, occupants, etc., 

necessary for next-generation intelligent transportation systems.  

Both image sensors and algorithms used in the vision-based systems require low data 

rate (leads to smaller communication bandwidth), low complexity (leads to simple and 

smalls implementation and lower cost), and low power for fast, smart and efficient 

operation. These requirements could be addressed by the proposed trapezoid (TZOID) 

multi-resolution complementary metal oxide semiconductor (CMOS) active pixel sensor 

(APS) imager that has customized pixels in the pixel array allowing efficient pixel-

resolution mapping (PR-M) method.  

The focus of this study is to develop techniques for designing multi-resolution 

CMOS APS imagers and to simplify the feature extraction algorithms with straightforward 

camera calibration methods while achieving low power, low complexity and low data rate 

for next generation traffic detection systems. Fundamental problems associated with 

designing pixel array of a multi-resolution CMOS image sensor, PR-M mapping method, 

and feature extraction algorithms with straightforward camera calibration method are 

addressed in this research. 

The technical inquiry is divided into four research objectives. First objective is the 

investigation of video-based traffic detection and general camera calibration/mapping 

methods. The main outcome of this objective is to illustrate the drawbacks of current 

techniques and to develop multi-resolution CMOS imager sensors and camera systems. The 

second objective is to model the relationship between pixel’s size and pixel’s spatial 

resolution in real-world for design and development of trapezoid pixel arrays that could 

generate low data rate at significantly reduced power consumption. The third objective is to 

develop camera calibration and mapping methods without specific calibration tools or 

iterative procedures. The fourth objective is to develop intelligent feature extraction 
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algorithms, specifically for vehicle and pedestrian detection with low complexity and 

computational requirements.  

The intellectual merits include: (1) providing a model for pixel’s physical size and 

related real-world spatial resolution, (2) understanding the challenges in design of multi-

resolution pixel array for traffic detection, (3) providing a general framework on multi-

resolution pixel array design for traffic applications with smaller frame memory, (4) 

understanding the challenges in camera calibration and feature extraction from two-

dimensional (2D) images, (5) developing efficient and accurate features extraction algorithm 

with low complexity  camera calibration procedures for vehicle and pedestrian detection. 

A TZOID multi-resolution CMOS APS image sensor that extracts real-time 

parameters from the observed objects without requiring any specific patterns or manmade 

markings for traffic applications is reported in this work. The TZOID imager sacrifices 

detection accuracy tolerable for alleviating superfluous data to achieve low communication 

bandwidth and low computation power. A new P-RM method that deduces the relationship 

between pixel’s size and its spatial resolution was used for both deriving pixel design 

equations for the TZOID image sensor and for extracting location and speed of the detected 

objects. Additionally, P-RM method was also used for height estimation and three-

dimensional (3D) reconstruction of scenes captured by the imagers.  

After computer simulations, both controlled laboratory and actual world experiments 

were performed with trapezoid and standard (rectangular) CMOS image sensors. The tests 

on 3D mensuration using proposed P-RM method showed overall accuracy of better than 

98% in laboratory environment and better than 96% accuracy in real world pedestrian height 

estimation cases. It is also shown that the proposed P-RM method provides a general 

algorithm for 3D information extraction and reconstruction of 2D objects.  

The TZOID multi-resolution CMOS APS image sensor integrated circuit (IC) was 

fabricated in a 0.18µm CMOS process. It was tested with P-RM method and its performance 

parameters were compared with an off-the-shelf standard CMOS image sensor IC. Tests 

showed that TZOID generates 98% less data than that of standard CMOS image sensors 

while trading off 2% detection accuracy.  
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CHAPTER 1 - INTRODUCTION 

Controlling traffic signals are mostly depend on monitoring vehicles on signalized 

intersection approaches. Current detection methods used in signalized intersection approaches 

are based on binary detection of objects at specific points on their approach, such as by using 

loop detectors. However, binary detection does not provide dynamic properties of 

approaching vehicles accurately, such as their location, speed, acceleration/deceleration, and 

expected time of arrival at the stop bar location, etc. If the traffic controller has access to these 

information by using detectors that have ability to monitor continuously and accurately, it 

would optimize traffic flow achieving better energy efficiency by minimizing delay and 

elimination of unnecessary stops.  

Continuous monitoring of traffic can be achieved by using three types of detector 

systems; infrared, radar, and video/image sensor [1]. Infrared detection devices utilize both 

active and passive methods. The passive infrared detectors cannot extract the vehicles speed, 

while the active ones may not be reliable and require regular maintenance [1], [2]. Radar 

detectors could not determine the size or profiles of vehicles, and usually require specific 

mounting locations and conditions [3]. Besides, both infrared and radar detectors are 

complicated systems that might be prohibitively expensive to be utilized in intersections. 

Video based system composes of a camera with charge-coupled devices (CCD) or 

complementary metal-oxide semiconductor (CMOS) imager sensors mounted on the traffic 

light poles to generate real-time traffic parameters such as, vehicle counts, vehicle speed, 

direction, and path.  

Incredible advances made in semiconductor industry in the last few decades were 

driven by shrinking feature sizes in CMOS technology. In every CMOS process generation, as 

transistors became smaller, faster and cheaper with continuous technology scaling, more 

transistors were integrated on microchips enabling denser and faster integrated circuits (ICs). 

In parallel, CMOS image sensors advanced with the features of camera-on-a-chip, including 

high-speed, high-dynamic range, low-power consumption, and low manufacturing cost [4]. 

CMOS image sensors has received a growing interest and become the dominant image sensor 

technology within the last two decades. 
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Unlike the CCD imagers, CMOS image sensors do not require dedicated 

manufacturing processes. They are built in the same mainstream CMOS electronic 

manufacturing processes used for manufacturing analog, digital, and mixed signal ICs, such 

as digital logic ICs, microprocessors, memory, and application specific integrated circuits 

(ASICs). Therefore, CMOS image sensors can be integrated with peripheral digital and 

analog electronics on the same chip. This allowed integration of complete camera systems on 

a single IC,  reducing the component, packaging, and system costs, [5].  

CMOS image sensor based camera systems are being widely used in security, 

surveillance, and traffic detection applications due to ease of installation and maintenance [6], 

[7]. These systems are often required to have the ability to extract real-time parameters from 

the observed objects, such as number, location, size, speed, acceleration, etc. For instance, it 

is important to determine the vehicle size, vehicle location and vehicle speed in real-time for 

modern intelligent transportation systems [8].  

Typically, the camera is placed high above the ground (higher than 12 meters) having 

a bird's eye view of the road in vision-based traffic monitoring systems [9]. These systems 

usually need high-speed cameras and digital signal processors (DSPs) or standalone computer 

nodes with complex camera calibration algorithm [6], [10]–[12]. Camera calibration 

algorithm is required for traffic monitoring to determine the relationship between two-

dimensional (2D) captured image by the camera and three-dimensional (3D) object exist in 

the field of view (FOV) of the camera, which is necessary for extracting vehicle’s location 

and speed [7], [13], [14]. If the systems and algorithms used in real-time traffic detection have 

none or few feature extraction capabilities, they will produce large amount of unimportant 

data, which will increase both communication bandwidth and system power consumption. As 

a result, more powerful computation capability is required that necessitates high performance 

platforms. Consequently, to meet low-power, low-cost and light-weight requirements of next 

generation traffic monitoring systems, a custom designed CMOS image sensor with a 

straightforward calibration method to extract object’s features is required. 

Several methods have been utilized for image sensors to eliminate irrelevant image 

data and alleviate the burden of image processing and calculation power in traffic monitoring 

platforms. The methods include providing direct frame difference output, utilizing multi-

resolution image sensors, and including on-chip clustering algorithms, [15]–[18]. Although 
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these custom image sensors and image pre-processing methods used by them reduces the 

generated image data, they still require camera calibration algorithms for traffic monitoring 

applications.  

Various camera calibration methods have been published for photogrammetry and 

mensuration for traffic applications [7], [10], [19]–[23].These could be classified into two 

categories; conventional and self-calibration methods. 

Conventional calibration methods have been widely investigated in the past. It usually 

requires a specific object with marked geometric patterns placed in 3D world [19]–[23], or 

uses road-lane markings [7], [13], [14], [24] as calibration targets. However, all these 

conventional methods require a specific pattern in 3D world with a rectangular shaped pixel-

array camera having redundant data output. The size of these patterns must be known, though 

the patterns could be road-lane markings. 

The methods based on self-calibration extract intrinsic and extrinsic parameters of the 

camera system without requiring any calibration rig or patterns in 3D world. It requires 

multiple images of a dynamic scene taken at different locations at the same time or multiple 

images of a static scene taken at different times [25]–[30]. Main disadvantages of the self-

calibration methods are that they are nonlinear, highly sensitive to noises, and many 

parameters are determined using iterative procedures.  

These techniques are shown to be reliable and time-tested for deriving intrinsic and 

extrinsic parameters of the camera setup. However, they have the disadvantages of complex 

algorithm with iterative procedures requiring significant computational resources that limit 

their application scenarios. They are also inefficient for real-time applications and require 

high communication bandwidth.  

To avoid the problems, a custom designed multi-resolution CMOS image sensor with 

the capability of extracting “only” the dynamic properties of incoming traffic and the facile 

features of vehicles is desirable. In addition, a new straightforward calibration and mapping 

methods are required. The new methods would work with both standard rectangular shape 

pixel array and customized shape pixel array image sensors to generate the relationship 

between 2D image and 3D world which is free of the disadvantages of the existing methods.  
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1.1 Motivation and Goals 

The focus of this research is to develop a multi-resolution CMOS active pixel sensor 

(APS) imager with a straightforward calibration method and feature extraction capability for 

traffic detection application. A custom designed multi-resolution CMOS APS imager can 

have a non-rectangular shaped pixel array with variety of pixel sizes. Each pixel’s size is 

determined and designed according to desired spatial resolution to achieve less unimportant 

data with enough detection accuracy. Research efforts are focused on two aspects to realize 

this special multi-resolution image sensor: (1) designing a trapezoid pixel array by 

investigating and developing the model between pixel’s physical size in pixel array and 

pixel’s spatial resolution in real world; (2) generating a straightforward method on calibration 

and feature extraction with enough detection accuracy by pixel-resolution mapping (P-RM) 

method without using specific real world patterns or iteration procedures. 

There are several ways to reduce the irrelevant data, and alleviate the burden of image 

processing in motion detection such as direct frame difference output, utilizing multi-

resolution image sensors, and clustering algorithm [15]–[18]. However, these methods do not 

give the relationship between physical size of the pixel in the array and related pixel’s spatial 

resolution in real world. On the other hand, these image sensors are essentially general 

rectangular shape imagers which have no ability to adjust balance between detection accuracy 

and amount of data generated by pixels. Additionally, camera calibration procedures have to 

be applied on the imagers before detection and mensuration start [25], [27]–[29].  

Thus, the motivation of this work is to develop a custom CMOS image sensor with 

specifically designed pixel array for traffic detection applications with innovative mapping 

algorithms and intelligent feature extraction methods. To achieve these, the research is 

divided into five research goals. The first goal is the investigation of fundamental principles, 

limits, and problems associated with vision-based traffic detection resulting in a design 

strategy including both sensor design and algorithm design. The second goal is the 

investigation and development of camera model to achieve a specific model (pixel-resolution 

model) for pixel’s physical size and related pixel’s spatial resolution. The third goal is to 

design and fabricate a TZOID CMOS imager based on pixel-resolution model for traffic 

applications. The fourth goal is to develop feature extraction algorithms for designed image 
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sensor with straightforward camera calibration algorithms based on pixel-resolution model. 

The fifth goal is to develop a TZOID CMOS image sensor based vision system which is 

suitable for traffic detection with high accuracy and low data rate.  

1.2 Applications 

The TZOID is designed for traffic detection, specifically for extracting “only” the 

dynamic properties of incoming vehicles or moving persons. Thus, the primary commercial 

markets for TZOD imager are traffic detection and surveillance monitoring applications 

including vehicle location detection, vehicle speed detection, vehicle size mensuration, 

pedestrian moving speed detection, and pedestrian height estimation. The algorithms 

including P-RM method, feature extraction method and straightforward calibration method in 

this research work could be used with any other 2D imagers directly. Besides, these 2D 

imagers could utilize the algorithms developed in this research for 3D mensuration without 

iterative procedures and by using single image.  

1.3 Contributions 

This research resulted in several advancements in the field of CMOS image sensors 

with multi-resolution pixel array, and vision-based traffic detection including image 

mensuration and camera calibration.  

The initial phase of this research work explored sensors used in traffic applications 

including related advantages and disadvantages that motivated the first goal of this research. 

This part of the research resulted in the investigation of fundamental principles, limits, and 

problems associated with vision-based traffic detection enlightening a whole research map 

including sensor design and algorithm design. 

The TZOID CMOS image sensor using trapezoid pixel array with varying sizes of 

pixels in rows and columns was developed and manufactured in 0.18m CMOS process and 

published in 2016, [31]. The design model for pixel’s physical size and related pixel’s spatial 

resolution in real world was developed and implemented. It was demonstrated that the pixel 

(array) design model and pixel-resolution model used in TZOID imager for achieving 

different desired distance resolutions played an important role in multi-resolution image 
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sensor design. These models could be used for building next generation  image sensors 

detecting long distance with low data rates, faster speed, and low power consumption [32]. 

The second contribution of this study is achieving P-RM method enlightened by pixel- 

resolution model. A unique 2D image to 3D real world mapping method that can recover 

dimension information from 2D image for object’s location, size, and speed detection with 

high detection accuracy was developed and integrated into TZOID based camera system [32].  

The third contribution of this study is the development of a simplified camera 

calibration method using detected object, such as vehicle and pedestrian, as calibration target 

instead of using specific patterns. The method could be implemented on both regular 

(rectangular) imager and on proposed custom TZOID imager with high accuracy (better than 

95%) and less computation power, which provides fast and flexible operations.  

The fourth contribution of the research is the realization of feature extraction 

algorithms including pedestrian height estimation algorithm based on P-RM method. The 

algorithms work successfully with both TZOID and regular commercial imagers providing 

high accuracy (better than 96%) for traffic detection. The pedestrian height estimation 

algorithm works without iterative procedures, that also able to reconstruct 3D scenes with 2D 

captures images.  

All these unique solutions and approaches were integrated and tested in controlled 

laboratory and real-world environments. Design details and measurement results are presented 

in subsequent chapters.  

The overall outcome of this research is the design and implementation of the world’s 

first trapezoid pixel array multi-resolution CMOS image sensor with flexible camera 

calibration technique and accurate feature extraction algorithms based on straightforward P-

RM method with pixel-resolution model.  

1.4 Organization of the Thesis 

Chapter 1 introduces the research motivation, goals, and applications. It also 

summarizes the research contributions and the organization of this thesis.  

Chapter 2 gives general background on vision-based traffic detection. First, general 

information on traffic detection by different types of sensors is provided. Second, a brief 
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introduction on vision system mounting and viewing considerations is presented. Third, 

typical vision detection algorithms are illustrated. 

Chapter 3 gives general background on CMOS active pixel sensor (APS) imagers. 

First, general information on CMOS image sensors are provided. Second, a brief historical 

background on CMOS image sensors is presented followed by a comparison of CMOS APS 

and CCD technologies and technical trends. Third, CMOS image sensor architectures, their 

functional sub-blocks and design requirements are discussed. 

Chapter 4 discusses camera calibration methods. First, the pin-hole camera model with 

basic terminologies is introduced. Second, current camera calibration techniques are presented 

in two categories; conventional camera calibration method and self-calibration method, 

respectively.  

The remaining chapters discuss the primary contributions and measurement result of 

this work including; 1) pixel-resolution model with modified camera model and derived 

equations, 2) pixel-resolution mapping method including calibration method and feature 

extraction algorithms, 3) design and development of TZOID CMOS image sensor, 4) 

experiments of TZOID imager and related algorithms. 

P-RM method is presented in Chapter 5. First, modified camera model is illustrated. 

Second, the relationship (pixel-resolution model, P-RM) between pixel’s physical size and 

pixel’s actual spatial resolution in real world is derived. Third, feature extraction algorithms 

including location detection, speed detection, and dimension detection based on P-RM 

method are explained. Typical image processing algorithms including image enhancement, 

foreground/background segmentation and edge detection are reviewed. Finally, flexible 

camera calibration method without specific pattern is discussed.  

Chapter 6 presents design details of TZOID image sensor. First, the background of 

TZOID imager is presented. Second, pixel design equations based on P-RM model and details 

of TZOID pixel array development are discussed. Third, the image sensor architecture and 

details of analog and digital building blocks are illustrated. Finally, the actual TZOID chip 

with a custom TZOID imager-based camera system is shown. 

Chapter 7 reports experimental results of this research work. First, experiments result 

on camera calibration and feature extraction algorithms by using commercial camera are 

presented including both vehicle detection and pedestrian detection. Second, testing results on 
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TZOID imager integrated with feature extraction algorithms is demonstrated. Third, the 

performance and efficiency of the TZOID is illustrated after comparing with a standard off-

the-shelf image sensor.  

Chapter 8 summarizes major accomplishments achieved in this research and presents 

ideas for future research. 
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CHAPTER 2 - VISION BASED TRAFFIC DETECTION 

By the late 1980s, video-based detection systems were marketed in the U.S. and 

elsewhere, generating sufficient interest to warrant research to determine their viability as an 

alternative to inductive loop detection systems. In 1990, the California Polytechnic State 

University began testing 10 commercially available video image processing systems in the 

United States. Evaluation results indicated that most systems generated vehicle count and 

speed errors of less than 20 percent over a mix of low, moderate, and high traffic densities 

under ideal conditions [33] . 

Video cameras transmit closed circuit television (CCTV) imagery to a human operator 

for interpretation. More advanced cameras of today use video image processing to 

automatically analyze the scene of interest and extract information for traffic monitoring 

using high-speed digital cameras. Typically, the imagery is digitized in hardware that is 

hosted in personal computer (PC) architecture. The PC also accommodates application-

specific software used to calculate the desired traffic parameters. Video image processors can 

replace several in-ground inductive loop detectors by a single above-the-road camera and 

signal processing that provide wide area detection of vehicles and promise lower maintenance 

costs. Video detection has the potential to classify vehicles and report vehicle presence, 

volume, occupancy, and speed for each class and for each lane observed, [33]–[35]. 

2.1 Mounting and Traffic Viewing Considerations    

Table 2-1 shows how processing of upstream or downstream imagery influences video 

detector performance. The primary advantage of upstream viewing is that incidents are not 

blocked by the resulting traffic queues. However, tall trucks may block the line of sight and 

headlights may cause blooming of the imagery. Downstream viewing offers advantages of 

camera concealment so that driver behavior is not altered, easier identification and tracking of 

vehicles using information contained in the tail lights, and better acquisition of vehicle tracks 

because the vehicles are closer to the camera at track initiation. 
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Table 2-1. Vision System Characteristics as Used in Upstream and Downstream Viewing. 

Upstream Viewing Downstream Viewing 

• Headlight blooming and glare from wet 

pavement; 

• More blockage from tall trucks; 

• With infrared imagery, there is no difference 

in information obtained from headlights or 

tail lights when a tracking algorithm is used; 

• Traffic incidents are not blocked by 

resulting traffic queues. 

 

 

• Camera concealed from drivers; 

• More information from tail lights available 

for braking indication, vehicle classification, 

and turning movement identification; 

• More information is available to a tracking 

algorithm from tail light viewing; 

• Easier to acquire vehicles that are closer to 

the camera.  

 

Based on line-of-sight considerations, the detection distance at which video detectors 

can differentiate two closely spaced vehicles along the surface of a road is a function of 

camera mounting height (h), inter-vehicle distance or gap (dgap), and vehicle height (hvehicle) as 

shown in Figure 2-1. The maximum detection distance (dmax) along a roadway could be 

derived as 2.1 according to similar triangle theory [36]. 

vehicle

gap

h

d
hd max         (2.1) 

 

Other factors to be considered when installing cameras used in video detector systems 

include, vertical and lateral viewing angles, number of lanes observed, stability with respect 

to wind and vibration, and image quality. 
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Figure 2-1. Concise camera mounting geometry with upstream viewing. 
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Video detectors tolerate an oblique view of the highway if the mounting height is high 

such as 45 to 50 feet (13.7 to 15.2 m). For lower heights, it is about 18 to 25 feet (5.5 to 7.6 

m). In all cases, a mounting location centered over the area of interest may be required. The 

number of lanes of imagery analyzed by the video detector becomes important when the 

required field of view is larger than the video detector's capability. For example, if the video 

detector provides data from detection zones in three lanes, but five must be observed, that 

video detector may not be appropriate for the application. Video detector’s sensitive to large 

camera motion may be adversely affected by strong winds.  

Image quality and interpretation can be affected by cameras that have automatic iris 

and gain controls. In tests conducted by California Polytechnic Institute at San Luis Obispo, 

these systems were disabled. In other video detectors, the signal processing is tailored to take 

advantage of automatic light control systems. Using the same camera for automatic vehicle 

detection with a video detector and video surveillance with pan, tilt, and zoom features 

requires the camera to be repositioned for each application. If the field of view is not returned 

to the calibrated value for video detector operation, the performance of the video detector is 

adversely affected. It may be technically feasible, however, to reposition the camera at 

previously established video detection zones after it has been panned, tilted, or zoomed to 

view an incident location for verification and identification. In this case, one camera can be 

used for both applications. If the remote control of cameras and their return to calibrated 

fields of view is not feasible, then separate cameras may be required to perform automated 

traffic data collection and video surveillance. When two cameras are used, a lower cost 

camera system will generally suffice for the video detector mission as the pan, tilt, and zoom 

features are not required [36]. 

2.2 Introduction on Video Detection Algorithms 

One of the first applications of digital images was in the newspaper industry, when 

pictures were first sent through submarine cables between London and New York. The first 

computers powerful enough to carry out meaningful image processing tasks appeared in the 

early 1960s. The birth of what we call digital image processing today can be traced to the 

availability of these machines and to the onset of the space program during same period. It 

took the combination of these two developments to bring into focus the potential of digital 
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image processing concepts. Work on using computer techniques for improving images from a 

space probe began at the Jet Propulsion Laboratory (Pasadena, CA, USA) in 1964 when 

pictures of the moon transmitted by Ranger 7 were processed by a computer to correct various 

types of image distortion inherent in the on-board television camera, [37]. 

Nowadays, image processing is among the rapidly growing technologies, which 

includes algorithms that could enhance or manipulate images to extract useful information 

from the acquired images while playing an important role in two principal application areas: 

improvement of pictorial information for human interpretation, and processing of image data 

for storage, transmission, and representation for autonomous machine perception. Typical 

applications in machine perception are automatic character recognition, industrial machine 

vision for product assembly and inspection, military reconnaissance, screening of blood 

samples, satellite imagery for weather prediction and environmental assessment, and traffic 

detection [37]–[39]. 

Typically, three steps including, foreground segmentation, vehicle or pedestrian 

detection and vehicle or pedestrian tracking, are used in traffic detection application with 

vision-based system.  

 Foreground Segmentation 

Foreground estimation and segmentation is the first stage of general visual 

surveillance systems. The foreground is defined as every object that is not a fixed furniture of 

a scene, where fixed could normally mean months or years. This definition conforms to 

human understanding, but it is difficult to algorithmically implement. A background model of 

some kind can be used to accumulate information about the scene background of a video 

sequence. The model is then compared to the current frame to identify differences, provided 

that the camera is stationary. This concept lends itself well for computer implementation but 

leads to problems with slow-moving traffic. Any car should be considered foreground, but 

stationary objects are missed due to the lack of motion [8]. Three typical foreground 

segmentation solutions for motion detection are presented concisely as following, and related 

implementations with examples are illustrated in Chapter 5. 
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 Frames Subtraction 

Frames subtraction methods employ a threshold technique over the inter-frame 

difference. The straightforward method for foreground segmentation is frame differencing. 

Frames subtraction methods detect moving objects region from current input image by 

performing a difference on two or three consecutive inter-frames. Meanwhile, a threshold 

criterion is provided to decide the region of the interest. The difference map is usually 

binarized using a predefined threshold value to obtain the motion region. The advantage of 

this method is easy to realize and its low computation requirements. However, the 

disadvantage of these methods is low efficiency, especially when there is no prior knowledge 

exists, [40]. 

The advanced techniques constrained to pixel-wise independent decision, as a step 

forward of inter-frame difference methods assuming intrinsically that the detection of 

temporal changes is equivalent to the motion detection [41]. The shortcoming of this method 

is that the assumption is valid when either large displacements appear, or the object 

projections are sufficiently textured. To overcome this drawback, temporal change detection 

masks and filters have been introduced [42]. The [42] presents a new variation framework for 

detecting and tracking multiple moving objects in image sequences. Motion detection is 

performed using a statistical framework for which the observed interframe difference density 

function is approximated using a mixture model. This model is composed of two components, 

namely, the static (background) and the mobile (moving objects) one. Both components have 

zero-mean and obey Laplacian or Gaussian law. This statistical framework is used to provide 

the motion detection boundaries. Additionally, the original frame is used to provide the 

moving object boundaries. Then, the detection and the tracking problems are addressed in a 

common framework that employs a geodesic active contour objective function. This function 

is minimized using a gradient descent method. A new approach named Hermes is proposed, 

which exploits aspects from the well-known front propagation algorithms and compares 

favorably to them. Very promising experimental results were provided using real video 

sequences [36]. The application of these masks improves the efficiency of the change 

detection algorithms, especially in the case where a prior knowledge about the size of the 

moving objects is available. 
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2.2.1.1.1 Background Subtraction 

Background subtraction is a widely used approach for detecting moving objects from 

(static) cameras. The basic concept of background subtraction is that the moving object in the 

frames (images) could be detected by obtaining the difference between the current frame, 

C(t), and a reference frame, B, which is often called the “background image”, or “background 

model”. The flow chart of background subtraction is shown in Figure 2-2. Flow chat of 

background subtraction.. Typically, the background image is a reference including the scene 

with no moving objects, which is kept regularly updated so as to adapt to the changes caused 

by weather or illumination [43].  

 

 

Figure 2-2. Flow chat of background subtraction. 
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The basic mathematical expressions for background subtraction are given in (2.2) and  

(2.3), where M(t) is foreground segmentation or moving object (M(t) = 1), if the value of D(t) 

is larger than (pixel) threshold, T. The threshold can be constant or dynamic. On the other 

hand, if D(t) is smaller than T, M(t) will be regarded as part of background (M(t) = 0).  

Background subtraction provides most complete feature information, but the problem 

of these techniques is that it is extremely sensitive to dynamic scene changes due to lighting 



15 

 

and extraneous events [8]. Consequently, it is important to generate a proper background B 

for obtaining moving object correctly.  

Different methods have published on background modeling including; running 

Gaussian average [44], [45], mixture of Gaussians [46], [47], temporal median filter [48], kernal 

density estimation (KDE) [49], and sequential kernel density (SKD) approximation [50]. 

One useful tool for building such representations is statistical modeling, where a 

process is modeled as a random variable in a feature space with an associated probability 

density function (pdf). The density function could be represented parametrically using a 

specified statistical distribution, which is assumed to approximate the actual distribution, with 

the associated parameters estimated from training data. Alternatively, nonparametric 

approaches could be used. These estimate the density function directly from the data without 

any assumptions about the underlying distribution. This avoids having to choose a model and 

estimating its distribution parameters. A nonparametric technique is called the kernel density 

estimation. It estimates the underlying density by avoid having to store the complete data, and 

it is quite general. In this technique, the underlying pdf is estimated with (2.4), where K is a 

“kernel function” (typically a Gaussian) centered at the data points in feature space, xi , and αi 

are weighting coefficients (typically uniform weights are used). This property makes these 

techniques quite general and applicable to many vision problems where the underlying 

density is not known [51]. 

 

 ˆ ( ) i i

i

f x K x x          (2.4) 

 

In this research work, kernel density estimation method is utilized for building 

representations for the background image for moving vehicle and person detection followed 

by edge detection. 

 Graph Cuts 

The foreground segmentation problem can be represented as a graph of a Markov 

random field (MRF). Every pixel of the images is represented by a node in the graph. The 

vertices between nodes and sources are set to a weight related to the data (data constraint). 
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Sources represent the labels for a pixel, which in this case, the foreground and the 

background. Vertices between nodes are used to introduce a smoothing constraint to avoid 

very small foreground or background regions. The graph cut completely separates the source 

and sink nodes and leaves the nodes connected to either source or sink node to indicate that 

this pixel corresponds to the respective label. The advantage of graph cuts is that the solution 

for this optimization problem can be found in polynomial time. A general introduction to 

graph cuts is given in [52]. 

 Vehicle Detection and Classification 

Vehicle detection methods can be classified into the following three categories: 1) 

knowledge-based; 2) motion-based; and 3) wavelet-based. Knowledge-based methods employ 

a prior knowledge detect the position of vehicle in ROI. Motion-based techniques detect 

vehicles using optical flow. Wavelet-based approaches detect vehicles wavelet neural network 

or wavelet based function [8]. 

  Knowledge-based Methods 

Knowledge-based methods employ a prior knowledge to decide whether the region of 

interest (ROI) is vehicle or not. The information used could be symmetry, color, shadow, 

vertical/horizontal edges, and texture. 

Symmetry, as one of the main signatures of man-made objects, has been used often for 

object detection and recognition in computer vision. The observation of vehicles from the 

stationary cameras are generally symmetrical in the horizontal and vertical directions. This 

has been used as a cue for vehicle detection in several studies, though it is sensitive to noise 

[53]. 

Although few existing systems use color information to its full extent for vehicle 

detection, color is a very useful cue for vehicle detection, lane road following, etc. Several 

prototype systems have investigated the use of color information as a cue to follow lanes, or 

segment vehicles from background. Techniques based on motion and color segmentation have 

been introduced to detect moving objects by taking advantage of color images. Vehicle 

segmentation is obtained by frame differentiation while color segmentation consists of a split-

and-merge algorithms, [54]. 
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By investigating image intensity, it was found that the area underneath a vehicle is 

distinctly darker than any other areas on an asphalt paved road. It is found that the shadow 

underneath a vehicle is a good cue to detect vehicles. Various methods have been proposed 

and published for the suppression of the moving cast shadow to enhance the detection 

accuracy of vehicles, [55].  

Using constellation of vertical and horizontal edges has shown to be a strong cue for 

vehicle detection too. There are two types of edges-based detection methods: conventional 

gradient based edge detectors, and morphological edge detectors. The conventional gradient-

based edge detection has found wide acceptance in image processing applications, such as 

Sobel operator and generalized Hough transform (GHT). However, morphological edge 

detectors have shown better performance than conventional edge detectors while having a 

lower computational cost, [54]. Morphological edge detection uses a combination of 

mathematical morphological operation like dilation and erosion to detect edges. The 

morphological edge detection highlights sharp grey-level transitions in the input image. 

However, these edge-based shape detection methods all suffer from the same problem, loss of 

information during the edge detection stage. 

The presence of vehicle in an image causes local intensity changes. Due to general 

similarities among all vehicles, the intensity changes follow a certain texture pattern. This 

texture information can be used as a cue to locate the possible vehicle in region of interest for 

vehicle detection. Only regions with high entropy were considered for future processing. 

Another texture-based segmentation method uses co-occurrence matrices. The co-occurrence 

matrix contains estimates of the probabilities of co-occurrences of pixel pairs under 

predefined geometrical and intensity constraints. The Gabor filter is used to extract different 

textures and then verified each candidate of vehicles using a classifier, [56].  

In the localization process in vehicle detection, experience suggests that better 

performance could be obtained by exploring task-based a priori knowledge. One of the 

advantages of 3D model methods is dealing with occlusion. Horizontal and vertical edges are 

grouped into vehicles using a probabilistic framework. The grouped vehicles are used for 

tracking in a highway surveillance application. All methods that employ 3-D modeling trade 

off additional prior information for higher computational complexity. It is necessary to 

establish the correspondence between the image features and the model features. As a result, 
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how to generate, and verify the correspondence plays a key role. Ghosh et al proposed a 3D 

model matching scheme to classify vehicles into various types such as, wagons, sedan, and 

hatchback in [38]. 

 Motion-based Methods 

The key information mentioned before are using spatial features to distinguish 

between vehicles and background. Another cue can be employed is motion of vehicles via the 

calculation of optical flow. Pixels on the images appear to be moving due to the relative 

motion between the sensor and the scene. The vector field of this motion is referred as optical 

flow. Motion-based vehicle detection methods use characteristics of flow vectors of moving 

objects over time to detect moving regions in an image sequence. Optical flow based method 

can be used to detect independently moving vehicles from camera. However, most of them 

are computationally complex and very sensitive to noise because it’s not very easy to derive a 

reliable and dense optical flow estimate from a stationary camera. It is also hard to use to 

analyze the video streams in real-time without having a specialized hardware [8], [56].  

 Wavelet-based Methods 

Wavelet transform methods have recently been recognized as useful tools for various 

applications such as signal image processing. For vehicle detection based on wavelet analysis, 

the motion is characterized via the entire 3-D spatio-temporal data volume spanned by the 

moving vehicle in the image sequences. These methods generally consider motion as a whole 

characterizing its spatio-temporal distributions. Wavelet-based methods by taking advantage 

of spatio-temporal motion characterization are able to acquire better performance both in 

spatial and temporal information of vehicle motion. Their advantage is low computational 

complexity and a simple implementation. However, these methods are susceptible to noise 

and to variations of timings of movements [41]. 

 Tracking 

Tracking is used to measure vehicle paths in video sequences. This is performed in the 

following two steps; 1) features for the object or foreground regions are generated in every 

video frame and 2) a data association step has to provide correspondences between the 
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regions of consecutive frames based on the features and a dynamic model. Temporal 

consistency constraints are required to avoid confusion of tracks and to smooth noisy position 

outputs of detectors. The data association step can use the same distance measure as machine-

learning algorithms. The classification result and location in the image is typically included in 

the feature for this association. There are several techniques used in tracking such as, Kalman 

filter, spatial-temporal Markov random field, graph correspondence, and event cones [8]. 

2.3 Summary 

Overview on vision-based traffic detection was presented in this chapter. A brief 

historical background on vision-based traffic detection was followed by mounting and traffic 

viewing consideration. Finally, an introduction on video detection algorithms was illustrated. 
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CHAPTER 3 - CMOS IMAGE SENSORS 

A solid-state image sensor, also called an “imager,” is a semiconductor device that 

converts photon energy incident on the photo sensitive element (i.e. pixel) into electrical 

current or voltage. Photons absorbed by the photosensitive materials energize electrons in the 

valence band into conduction band generating ideally one electron-hole pair per absorbed 

photon. Image sensor collects these photo electrons and generates electrical signals. Then 

these signals could easily be read, transferred, processed and stored by the peripheral analog 

and digital circuitry. 

In modern semiconductor industry, silicon is the most widely used material in mass 

production of very large-scale integration (VLSI) ICs. Moreover, it is also suitable for image 

sensors because the band gap energy of silicon matches the energy of visible light spectrum. 

Therefore, silicon can be used for manufacturing image sensors [57]. 

In this chapter, a brief technological and historical background on complementary 

metal-oxide semiconductor (CMOS) image sensors with emphasis on active pixel sensor 

(APS) devices is presented. First, historical background on image sensors is introduced. 

Second a comparison of CMOS APS and charge-coupled device (CCD) technologies are 

presented. Third, a generic CMOS image sensor architecture and its functional blocks are 

introduced. Finally, a summary of the chapter is presented. 

3.1 Historical Background on Image Sensors 

In the 1960’s, before CCD and CMOS APS were born, first generation of image 

sensors were proposed and developed by several groups around the world. In 1967, Weckler 

proposed using PN-junctions as pixels operating in photon flux integrating mode, [58]. The 

generated photo current discharges the initial charge stored on the parasitic capacitance of the 

PN-junction. The change left in the stored capacitance will be proportional to time integral of 

the photocurrent. He proposed addressing the pixels using a PMOS switch and converting the 

current pulse into a voltage pulse using a series of resistors. In 1968, an image sensor with 

100x100 array of photodiodes operating in a photon flux integration mode was reported in 

[59]. Noble described several configurations of self-scanned 2D silicon image detector arrays 
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with buried photodiodes to reduce dark current and charge integration amplifier for readout in 

1968, [60]. In 1969, Chamberlain reported an improved model of the sensor with integral 

scanning [61]. The main issue with these early solid state image sensors was the fixed-pattern 

noise (FPN) due to pixel-to-pixel variations. FPN was explored in 1970 by Fry, Noble, and 

Rycroft, [62].  

In 1970, the first CCD image sensor array was reported by W. S. Boyle and G. E. 

Smith, [63]. CCD image sensors could achieve low FPN and smaller pixel size with higher 

resolution due to simplicity of the CCD pixel structures. After CCD’s introduction, the main 

focus of research and development had been CCD sensor performance for decades. Criteria 

such as quantum efficiency, pixel fill factor (fraction of photo sensitive area to total pixel 

area), dark current, charge transfer efficiency, smear, readout rate, lag, readout noise, full 

well, and dynamic range favored CCDs over other solid state imagers. Number of pixels 

integrated in image sensors has been increasing steadily due to the resolution demand of new 

TV formats (i.e. HDTV) and scientific applications. In parallel, pixel size has been reduced to 

increase circuit density on sensor and to reduce cost. Because of their low image quality due 

to immature manufacturing technology, MOS image sensors had received little or no attention 

and research effort in 1970s and 1980s. 

Two independently motivated efforts had led to the rebirth of MOS and CMOS image 

sensors in early 1990s. The first effort was to create low cost, reasonable performance, highly 

functional single-chip imaging systems by researchers at the University of Edinburgh in 

Scotland and Linkoping University in Sweden. The second was the effort by researchers at the 

U.S. Jet Propulsion Laboratory (JPL) to design highly miniaturized, low-power, instrument 

imaging systems for next-generation deep space exploration spacecraft needed by the U.S. 

National Aeronautical and Space Agency (NASA). The technology developed at JPL was 

subsequently transferred to AT&T Bell Labs, Kodak, National Semiconductor and several 

other major US companies, including Photobit (later Aptina, today On Semiconductor). These 

efforts have led to significant advances in CMOS image sensors and the development of the 

CMOS APS imagers. The CMOS APS imager performance had become competitive with 

CCDs in terms of read noise, and dynamic range as of early 2000s. A noteworthy one is the 

CMOS APS imager developed by A. Krymski et al. from Photobit Corp. that was featured as 

500 frames per second frame rate, 1024 x 1024 array size, 8-bit digital output with 450mW 
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power consumption in 1999, [64]. By 2009, market share of CMOS image sensors suppressed 

CCDs in practically every application market.  

3.2 Comparison of CMOS Imager and CCD Imager Technologies 

Charge-coupled devices (CCDs) and CMOS image sensors are both mainly build in 

silicon substrates. Optical properties of the substrate dictate image sensor response to light. 

Therefore, CCDs and CMOS image sensors have similar responses to light. The main 

difference between CCDs and CMOS imagers are readout procedures and process steps used 

during fabrication. 

The CCD imager is basically an analog shift register that shifts electrons collected in 

pixels to an output amplifier. The virtues of the CCD include its high sensitivity, high fill-

factor, and large array formats. The high sensitivity arises from high net quantum efficiency, 

the high fidelity of reading out the CCD, and the low noise output amplifier [4]. However, the 

need for nearly perfect charge transfer operation is the Achilles' heel of CCDs, which requires 

extremely precise and expensive fabrication process, precluding efficient integration of 

camera-on-chip, [5].  

CCD has analog output(s) running at high frequency with a large voltage swing. 

Driving analog data off-chip requires very large bias current to charge output pad capacitors 

at the serial data rate because the analog output must settle quickly to preserve dynamic range. 

In contrast, the CMOS APS imager with on-chip ADC(s) has digital output. Driving digital 

output pad requires less current since digital output is much more robust and settling is not an 

issue. The overall power consumption of pixel readout circuits in CMOS APS imagers such as 

pixel source followers and charge amplifiers are significantly lower compared to CCD output 

amplifiers, [65]. 

Because of suffering from large fixed-pattern noise (FPN) caused by dark current non-

uniformity, early CMOS image sensors were suspected by many skeptics, though they have 

the ability of low power, high operation speed, and better cost-efficiency. However, with the 

recent introduction of pinned photodiode (PPD) technology, CMOS image quality issues are 

being resolved rapidly. The PPD active-pixel configuration and micro-lens techniques, 

together with on-chip signal-processing circuits, offers even lower temporal noise 

performance than that of CCD imagers. Moreover, the reduction of pixel sizes in CMOS 
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image sensors has been remarkable in recent years, due to the smaller process technologies 

and the introduction of shared-pixel configurations [57].  

With those technology improvements, CMOS image sensors have surpassed CCDs in 

most markets, such as market of smart phones, digital still cameras and digital single lens 

reflex (DSLR) cameras. The state-of-the-art of CMOS image sensors is supplanting the CCDs 

with excellent image quality, higher speed and pixel rates, faster readout rate, lower power 

consumption, and economical fabrication process. 

3.3 CMOS Image Sensors 

When a flux of photons is incident on a semiconductor material, the photons that have 

energy exceeding the semiconductor’s bandgap energy generate electron hole pairs. Photon 

energy is given by (3.1). 

 

gphoton E
hc

hE 


        (3.1) 

 

Because the band gap energy, Eg, of silicon is 1.1 eV, light with wavelengths longer 

than 1100 nm will not have enough energy to be converted to electric signals. On the other 

hand, silicon material absorbs photons with wavelengths only shorter than 1100nm [57]. 

The collected charge is converted into measurable voltage or current quantities. The 

analog voltage or current is buffered, processed and converted to digital data. These 

operations can be done at different levels. In CCDs charge transfer and buffering are on chip 

and signal processing and digital conversion are off chip. In CMOS image sensors buffering is 

done in pixels. Readout, signal processing and digital conversion may be global, column level 

or in each pixel. 

CMOS image sensor system in general composes of a pixel array, row and column 

addressing circuits, column readout circuits, analog signal processing (ASP) unit and analog 

to digital converter block as shown in Figure 3-1. Column parallel image sensors would have 

an ASP and ADC for each column of pixels with a shift register or a multiplexer for reading 

out the ADC outputs. In column series architectures, a global ADC is used for all columns [5]. 
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The voltage and current reference, timing generator, and logic controls are also required for a 

single chip imager system.  

 

 

Figure 3-1. CMOS imager sensor block diagram. 
 

 

 CMOS Pixels 

There are two basic structures used for accumulating charges, which are main part of a 

pixel. The first one is a photodiode, and the second one is a photogate as shown in  

Figure 3-2 and Figure 3-3, respectively. These two basic structures have evolved into 

three fundamental approaches to build pixels in CMOS imagers: photodiode-type passive 

pixel, photodiode-type active pixel, and photogate-type active pixel, [5]. 

 

 

Figure 3-2. Cross-sectional view of photodiode. 
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Figure 3-3. Cross-sectional view of a photogate. 

 

 Photodiode and Photogate 

The cross section view of photodiode is shown in Figure 3-2. P-substrate of it is 

grounded and the n+ region is first reset at a positive voltage. It then becomes electrically 

floating with the reverse bias condition being held. Electrons excited by photons tend to 

collect at the n+ region, reducing this region’s potential, while holes flow to the ground 

terminal. In this case, the electrons are the signal charge [57]. 

In Figure 3-3, the cross section of a photogate is displayed. When a positive voltage is 

applied to the gate electrode, the holes in the surface of the substrate are repelled and a 

depletion layer is formed under the gate oxide, while the majority of carriers (holes) are 

depleted [57], and photo generated charge under the gate are collected in the depletion region. 

  Passive CMOS Pixels 

The photodiode-type passive pixel was first proposed by Weckler in 1967, [58], [59]. 

Figure 3-4 shows the basic structure of a passive pixel which consists of a photodiode and an 

access switch. The voltage on the photodiode is reset to the column bus voltage as the 

photodiode is accessed in the pixel. The charge transferred to the photodiode, is converted to 

an output voltage by the column amplifier through column bus. The fill factor is high because 

only one access transistor is integrated in each pixel along with the photodiode. As a result, 

quantum efficiency of the passive pixel structure is high and pixel size could be small. 
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Figure 3-4. Passive CMOS pixel schematic. 
 

 

The readout noise is the biggest problem with the passive pixel. Readout noise in a 

passive pixel is typically on the order of hundred(s) of electrons r.m.s. while it is less than few 

electrons r.m.s. in a CCD. Another issue is scaling problem. The passive pixel also does not 

scale well to larger array sizes and faster pixel readout rates since more pixels connected to a 

column bus increases the bus capacitance. Increased bus capacitance and faster readout speed 

results in higher readout noise and higher power consumption. Passive pixel sensors also 

suffer from large fixed pattern noise from column amplifiers. 

 Active Pixels 

An active pixel means a pixel including an in-pixel amplifier, which is typically a 

source follower type amplifier. The image sensor equipped with active pixel array is named 

active pixel sensor (APS). The in-pixel amplifiers are enabled only during pixel readout. 

Therefore, the power consumption of pixels is relatively low, and the readout could be 

addressed in pixel level. A typical three-transistor (3-T) active pixel configuration is shown in 

Figure 3-5. Basically, all CMOS active pixels have the same operation, though complex pixel 

topology with added transistors for improving performance is available [57]. 
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Figure 3-5. Configuration of 3-T active pixel including source follower type amplifier 

readout. 
 

3.3.1.3.1 Photodiode Type CMOS Active Pixels 

The photodiode-type active pixel was proposed for solving the issues with passive 

pixel in 1968, [60]. However, the first high-performance photodiode-type active pixel was 

demonstrated in 1995 by JPL researchers, [66]. The photodiode-type APS pixels have high 

quantum efficiency as there is no overlying polysilicon. Typical photodiode-type APS uses 3T 

structure per pixel as shown in Figure 3-6, where M1 is the reset transistor, M2 is the pixel 

source follower and M3 is the row select transistors.  

Reset transistor resets the photodiode node to reset level VRST in the beginning of 

integration period, and then the voltage is stored on the depletion capacitance of the 

photodiode. The built in electric field drifts photo generated electrons to N-region and holes to 

the grounded P-region. Drifted photo generated electrons discharge the photodiode 

capacitance during the integration period. The final voltage, Vpix, at the end of integration 

period dependents on the light level. Pixels receiving more light will discharge faster than 

those receiving less light. The M3 is controlled by the signal from row addressing circuits. 

When a row select pulse is applied at the gate of M3, the M2 and a bias current load form a 

source follower circuit. The photodiode voltage, Vpix, is buffered by the source follower, and 
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the buffered output voltage at a Voutpix node is sampled on a sample-and-hold capacitor. The 

column-addressing circuit scans the sampled signals during the horizontal scanning period. 

 

 

Figure 3-6. Photodiode type 3T CMOS APS Pixel. 

 

More complex CMOS APS pixel structures with added transistors for improving 

performance are also available. However, all CMOS active pixels have the similar basic 

operation as described earlier. 

3.3.1.3.2 Photogate Type CMOS Active pixels 

The photogate type APS was developed in 1993 for high performance scientific 

imaging and low light applications at JPL, [67]–[69]. Photogate concept was adapted from 

CCD technology for low noise charge collection. The photogate type APS pixel schematic is 

shown in Figure 2-7. 

Signal charge is integrated under the photogate while the floating diffusion node (FD) 

and transfer gate (TX) are added to the pixel for correlated double sampling and low noise 

readout, which cause photogate-type active pixel is larger than those based on photodiode-

type due to the added components. Floating diffusion (FD) node is reset and the reset level is 

read first. Then the charge under the photogate is transferred to the FD node by pulsing the 

photogate and turning the transfer (TX) gate on. The FD node voltage is read after the charge 
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transfer again. The difference between the values before and after charge transfer is the 

absolute signal value accumulated under the PG during integration period.  

In photogate type pixel, the surface of the channel has better quality than that of the 

photodiode leading to lower surface dark current. In addition, there is no stress related dark 

current component in photogate. These lead to a very low dark current.  

 

 

Figure 3-7. Photogate type CMOS APS Pixel. 

 

 Analog Signal Processing 

Once the voltage at the source follower output is stored on sample and hold capacitors, 

pixel readout is completed for an active pixel sensor. Reset noise, 1/f noise, and fixed pattern 

noise (FPN) due to the pixel-to-pixel process parameter variations are largely suppressed by 

correlated double sampling (CDS) operation in ASP [5]. Typically, sample and hold circuit is 

followed by a programmable gain charge amplifier in the ASP. After the CDS and gain 

operations in ASP, the pixel data is sent to the analog-to-digital converters (ADCs). Other 

analog signal processing functions may also be implemented in the ASP. 
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Table 3-1. Comparison of different ADC topologies integrated in CMOS image sensors. 

ADC Type Resolution Speed Power Features 

Flash 8 bits 10 Msps – 1Gsps >50 mW 

+ Extremely Fast 

- Highest power consumption 

- Large die size 

- Expensive 

SAR 8 -16 bits 75 Ksps -2 Msps ~0.1 mW 

+ High resolution 

+ Lowest power consumption 

- Limited sampling rate 

- Low input bandwidth 

Ramp >14 bits <100 Ksps ~1 mW 

+ High resolution 

+ Low power consumption 

- Low speed 

Pipeline 10-14 bits 
10 Msps – 100 

Msps 
>10 mW 

+ On-chip self-calibration 

+ Digital error correction 

+ Fast speed 

- Requires 50% duty cycle 

Sigma-Delta >14 bits > 200 Ksps >10 mW 

+ Very high resolution 

+ High input bandwidth 

+ Digital on-chip filtering 

- limited sampling rate 

 

 Analog to Digital Converter (ADC) 

Analog pixel outputs can be converted to digital code on chip in a CMOS imager. 

Depending on the system architecture, a single global ADC operating at high speed, column 

ADCs operating at lower speeds or in pixel ADCs might be used.  

CMOS image sensor typically includes ADC in the same chip for digital output which 

has better noise immunity than analog output in addition to lower power consumption. The 

on-chip ADC could also reduce the cost on overall system with fewer component counts.  

The ADC used in CMOS image sensor should support video data rates depending on 

the resolution and frame rate. The ADC usually has at least 8-bit resolution with low integral 
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non-linearity (INL) and differential non-linearity (DNL) so that the image quality is not 

degraded. The power consumption and area of ADC should be considered as well.  

There are different topologies of ADC are integrated in CMOS image sensor [70]–

[73]. The comparison of different topologies is listed and compared in  

Table 3-1. 

3.4 Summary 

In this chapter, a concise historical background on solid state image sensor was 

introduced. In addition, the comparison between CMOS imager and CCD imager was 

illustrated. Finally, the basics of CMOS image sensor including pixel structures and related 

functional blocks were presented. 
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CHAPTER 4 – CAMERA CALIBRATION 

Vision systems are being widely used in security, surveillance, and traffic detection 

applications due to ease of installation and maintenance [6], [7]. These systems are often 

required to have the ability to extract real-time parameters from the observed objects, such as 

number, location, size, speed, etc. For instance, it is important to determine the vehicle size, 

vehicle location and vehicle speed in real-time for modern intelligent transportation systems 

[8]. Therefore, a technique or algorithm which could determine the relationship between two-

dimensional (2D) captured image by the camera and three-dimensional (3D) object exist in 

the field of view (FOV) of the camera is necessary for extracting object’s location, speed and 

size in traffic and surveillance application [7], [13], [14].  

Camera calibration is used for determining intrinsic and extrinsic parameters or the camera 

systems including geometric and optical characteristics of the camera, and the parameters of 

3D position of the camera with respect to a real-world coordinates, so as to achieve accurate 

mapping between the 2D image plane and 3D world image, [21]. Various camera calibration 

methods have been published for photogrammetry, [74], [75], machine vision, and computer 

vision applications, [7], [20], [21], [25], [29], [76]–[79]. These techniques could be classified 

into two categories; conventional calibration methods and self-calibration methods.  

In this chapter, camera calibration techniques are reviewed in the literature. First, the 

projection methods for camera are concisely illustrated. Second, a pin-hole camera model 

followed by basic terminologies is introduced. Finally, both conventional calibration methods 

and self-calibration methods are presented.  

4.1 Projection Methods 

A space is a collection of points in the realm of mathematics. In plane geometry, 

Euclidean space refers to the 3D physical space defined by three perpendicular (orthogonal) 

axes. Projections are formed by the intersection of lines (projectors) which emanate from a 

center of projection (COP) with a projection plane. Typically, projection methods are broadly 

grouped under parallel projection and perspective projection, the schematics of which are 

shown in Figure 4-1 and Figure 4-2, respectively [79]. 
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Figure 4-1. Schematic of parallel projection. 

 

 

Figure 4-2. Schematic of perspective projection. 
 

 Parallel Projection 

A parallel projection is a projection of an object in three-dimensional space onto a 

projection plane, where the projection lines are parallel to each other as shown in Figure 4-1. 

It is a basic tool in descriptive geometry.  

There are two types of parallel projection: orthographic (parallel) projection and 

oblique (parallel) projection. In orthographic projection, all the projection lines are orthogonal 
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to the projection plane, resulting in every plane of the scene appearing in affine 

transformation on the viewing surface. On the other hand, oblique projection is a parallel 

projection with two tilted directions, in which the projection lines are not orthogonal to the 

projection plane. 

 Perspective Projection 

In early Renaissance Italy, the projective geometry was initiated for an accurate 

depiction of three-dimensional scenes on two-dimensional surfaces or planes by the painters, 

who wanted to produce a convincing illusion of 3D depth in their architectural paintings [80]. 

For instance, Figure 4-3 shows a painting, The Delivery of the Keys, created by Pietro 

Perugino who show good understanding of perspective on his works.  

The edges of a pair of straight railway are parallel lines in 3D real world. However, in 

the 2D image they appear to converge as they recede towards the horizon as shown in Figure 

4-4. Any pair of parallel lines appears to meet at the point of the horizon corresponding to 

their common direction. Moreover, any two horizontal planes appear to come together in the 

distance and intersect in the horizon line. 

 

 

Figure 4-3. An early Renaissance era painting, The Delivery of the Keys, applying perspective 

geometry by Pietro Perugino. 
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In perspective projection, parallel lines that are not parallel to the projection plane 

converge to a vanishing point. The concept of vanishing points is well illustrated in Figure 

4-5. A vanishing point is a point on the image plane of a perspective projection where the 

two-dimensional perspective projections of mutually parallel lines in three-dimensional space 

appear to converge. 

 

 

Figure 4-4. Image of a pair of straight railways.  
 

 

Figure 4-5. Image of a pair of straight railways labeled vanishing point.  

 

In imaging, projection refers to the process of converting the brightness of a 3D object 

scene into a spatial intensity distribution on a 2D image plane (projection plane) through 

perspective transformation with COP placed at the geometric center of the lens. The optical 
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imaging process is a combination of 3D world coordinates to 3D camera coordinates of each 

object point followed by perspective projection, which is about 3D image scene to 2D image 

plane.  

4.2 Pin-hole Camera Model 

There is a strict geometric relationship between the 3D spatial points and the points in 

the 2D image, derived from pin-hole imaging principle. A basic pin-hole camera model is 

shown in Figure 4-6, which is based on Fung’s model [13] and Haralick’s perspective 

transformation [81].  

 

 

Figure 4-6. Pin-hole camera model. 

 

In this model, P(X,Y,Z) is assumed as an arbitrary point in the 3D world coordinates, 

and p(x,y) is assumed to be point P projected onto the 2D image coordinates. The camera is 

mounted at certain height, which is the perpendicular distance from the center of the camera 

lens to the X-Y plane, and looking down with certain tilt angle, , pan angle, , swing angle, , 

and focal length, f. Moreover, the tilt, pan and swing angles are the extrinsic parameters, which 

are used to determine the relationship between world coordinates and camera coordinates, 

besides 3 translation vectors, Xl, Yl, and Zl. On the other hand, the parameters only depending 
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on the inner configuration of camera are named intrinsic parameters, such as focus length (f), 

and image center that is the intersection of the optical axis with the image plane. 

Specifically, pan-tilt cameras, which have ability to rotate around Xc-axis for tilting and 

Zc-axis for panning with fixed swing angle 0 degree, are commonly used in road/traffic 

detection and surveillance [25], [28]. 

According to homogeneous coordinates representation and perspective transformation 

in 3D [81] with both intrinsic and extrinsic parameters, equation (4.1) with (4.2) could be 

achieved.  
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Then the x and y value of point p on the image plane projected from P, could be achieved by 

(4.3) and (4.4) derived from (4.1) and (4.2). 
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The inverse projection, X and Y value of point P in real world, could also be derived 

in terms of the same set of camera parameters as showing (4.5) and (4.6). 
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Equations (4.5) and (4.6) could be used to determine the 3D coordinate of a point in the 

image above the ground level, as Z≠0. The height of the point needs to be entered the equation 

to estimate its X and Y in 3D world coordinates. If the height information for that point is not 

available, it can be determined by transforming two points with the same X and Y coordinates 

with different heights, Z, from 2D to 3D using (4.5) and (4.6). Then enter Z into the equation 

for the upper point by doing iteration until the X and Y coordinates of both points match those 

in 3D space.  

For simplicity, equations (4.7) and (4.8) could be used when Z=0.   
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All the equations introduced above are based on the ideal pin-hole camera model, the 

ideal of which means there is no lens-distortion or camera assemble mismatch. Nonlinear 

optimization techniques could be used for the distortion [20]. 
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4.3 Current Camera Calibration Methods 

Camera calibration is used for determining intrinsic and extrinsic parameters of the 

camera systems including geometric and optical characteristics of the camera, and the 

parameters of 3D position of the camera with respect to a real-world coordinates, so as to 

achieve accurate mapping between the 2D image plane and 3D world image, [21]. Various 

camera calibration methods have been published for photogrammetry, [74], [75], and machine 

and computer vision applications, [7], [20], [21], [25], [29], [76]–[78]. These could be classified 

into two categories; conventional and self-calibration methods.  

 Conventional Calibration Methods 

Conventional calibration methods have been widely investigated in the past. It usually 

requires a specific object with marked geometric patterns placed in 3D world, such as 

diamond-shaped calibration pattern, [19], 16 squares pattern [20], chessboard calibration 

pattern [21], parallel circles [82], virtual grid [83], and others, [22], [23]. However, these 

man-made patterns are hardly practical for many applications, such as security and traffic 

surveillance. Techniques utilizing road-lane markings as calibration targets were also 

proposed, [10], [13], [14], [24], which reduces calibration complexity and increases their 

practicality in real-time applications. 

Fukui [19] used a diamond-shaped calibration pattern placed on a wall to determine 

the location and horizontal deviation of the camera with respect to the calibration pattern. The 

method assumes that the optical center and the calibration pattern must be set at the same 

height, and the dimensions of the calibration pattern must be known as priority. Practically, 

although diamond-shaped objects may be found on the road, camera systems are usually 

located at different heights with variant mounting conditions, thus it could not be general 

method for real traffic detection application. 

In [84], a method is presented that instead of using man-made patterns, the corner 

between a wall and a ceiling was used as a calibration pattern. The three intersecting lines of 

the planes form a ‘Y-shape,’ which varies according to the viewing angle of the camera. The 

camera parameters can be calculated if the distance between the camera and ceiling is known 



40 

 

in advance. However, it is still hardly being applicable in the practical traffic detection, 

though walls and ceilings can be found indoors for experiment testing. 

 

 

Figure 4-7. Schematic diagram of experimental setup for camera calibration using monoview 

coplanar set of points [20]. 

 

A versatile camera calibration technique depending on 16 (4x4) black squares is 

proposed in [20] and depicted in Figure 4-7. The 4 corners of each square are detected by 

using image binary, edge detection and special interpolation technique before starting 

calibration. Then, perspective projection with pin-hole geometry was used to transform these 

points of corners for calibration, and optimization techniques such as steepest descent were 

used to correct lens distortion. The major drawback of this approach is that a large amount of 

3-D data (64 corners) has to be handled during calibration, and a special or specific standard 

block should be prepared, otherwise, it is still impossible to find 16 squares on the road as 

calibration points as shown in Figure 4-8. 
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Figure 4-8. A 4x4-square array for calibration proposed in [20]. 
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Figure 4-9. The hexagonal calibration target used in [85]. 

 

A hexagon as shown in Figure 4-9 is employed as the calibration target to generate a 

vanishing line of the ground plane from its projected image in [85]. Theoretically, a vanishing 

line can be formed when the hexagon is projected from a 3-D scene onto a 2-D image in 

Figure 4-10. The vanishing line includes useful geometric hints about the camera orientation 

parameters and the focal length, from which the orientation parameters can be solved 

analytically [81]. For none ideal cases, a least-squares algorithm can be employed to fit a 

straight line to the vanishing points, and the camera parameters can be calculated based on the 

geometric hints of the fitted line. The hexagonal pattern is more feasible than the 4x4-square 
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array to be handled simplifying the feature extraction in relevant image processing. However, 

it is still facing the difficulty of finding perfect hexagonal objects on the road. 

 

Vanishing Line

 

Figure 4-10. Hexagonal calibration target projected from a 3-D image onto a 2-D image with 

vanishing line in [85]. 

 

The  road-lane markings were initially used for calibration, [86], where the edges of 

the road curb is utilized to generate calibration model. Four points (a, b, c and d) were chosen 

arbitrarily from the left and right edge as shown in Figure 4-11. The camera height, h, pan 

angle, ,  and tilt angle, , are assumed known. Thus, the vanishing point can be used to 

compute the rest of the camera parameters. To compare with the prior techniques, it is not 

required to set or use specific pattern(s) for calibration. On the other hand, only one vanishing 

point is assessed for the calculation. However, in reality, the edge of the road curbs may not 

clear or even not exist in the field of view. Moreover, this approach also requires large 

amount of calculation.  

Vanishing points and vanishing lines which provide information on the direction of lines 

and orientation of planes were extracted in [7], [9]–[11] to recover the image with affine 

properties of the perspective structure that could be used to estimate length of straight lines with 

reference height of a certain object in the scene. Although these are mature methods without 

requiring knowledge of the camera’s pose, the information in the image, which does not include 

much geometric cues, may not be sufficient to generate vanishing points or vanishing lines. In 

[87], a rectangular marker object with known size was used on the reference plane instead of 
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generating vanishing point or lines, which introduced back-projection method to obtain the 

height information. However, it still requires a specific pattern in 3D world which is not always 

suitable for real world applications.  
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Figure 4-11. Selected points of right and left road curbs for generating vanishing point as 

calibration hint [86] 

 

In [88], a three-stage dynamic camera calibration method is proposed. Instead of using 

fixed objects on the road for calibration, parallel and perpendicular lines on the road are 

identified through the analysis of extracted vehicle blobs as shown in Figure 4-12. An activity 

map of the traffic flow is created to identify lines that are parallel to the road direction, and 

the bottom edges of vehicles are used to identify perpendicular lines. Consequently, two 

vanishing points could be formed to calculate the camera parameters. Basically, it is still two-

vanishing-point camera calibration method. The major drawback of this model is that it would 

be inaccurate in situations where vehicles change lanes frequently, and also requiring a huge 

amount of computation power. 

A rectangular shape defined by road-lane markings which forms two vanishing points 

for calibration is shown in Figure 4-13[13]. The model requires the lane width (w), which 
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should be obtained from the road construction database or directly measured on the road. In 

[13], the proposed pattern used for calibration is not difficult to found in practical road, and 

then tow-vanishing-point calibration method could be used to compute camera parameters 

through pin-hole camera models. However, if two side-by-side road-lane markings are not 

completely aligned, then a rectangle is unlikely to be formed. It will still require large amount 

of calculation since that the model depends on two vanishing points. Moreover, one of the 

vanishing points might reach infinity that will cause error in the process of estimating 

parameters, as the camera viewing angle is parallel to the road direction. 

 

a b

Vanishing Point

 

Figure 4-12. Dynamic camera calibration method used in [88]. a) Sample image with 

superimposed lane boundaries. b) Activity binary image of car flows to identify lines that are 

parallel to the road direction. 

 

A criterion was proposed to reduce the estimation error for selecting only one of the 

two vanishing points if one of the points is approaching infinity [14]. The improved model of 

rectangle calibration method was shown to yield good performance in near-parallel cases. The 

tradeoff is that an additional parameter, the length of the lane markings, is needed in the 

model. An improved method that accept non-perfect rectangular is proposed for making 

calibration by trapezoidal patterns or parallelograms [7]. The model requires four reference 

points to determine the camera parameters as shown in Figure 4-14, increasing the flexibility 

and generality of the camera calibration models.  
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a b
 

Figure 4-13. Defined rectangle ABCD used for camera calibration. a)  Top view of the 

rectangle ABCD selecting. b) Rectangle ABCD shown in the image. [13]  

 

However, those works used in traffic application are based on direct linear 

transformation and vanishing-point camera calibration method which requires complex 

computational steps mapping the coordinates from image domain to real-world domain. 

Additionally, all those conventional methods require a specific pattern in 3D world and the size 

of these patterns must be known. 

 

 

Figure 4-14. 4 points selection for camera calibration [7]. 
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 Self-calibration Methods 

The methods based on self-calibration obtain intrinsic and extrinsic parameters of the 

camera systems without requiring any calibration rig or patterns in 3D world. It requires 

multiple images of a dynamic scene taken at different locations at the same time or multiple 

images of a static scene taken at different times. Maybank and Faugeras illustrated the concept 

of self-calibration in [29], [30] including Kruppa equations that could be solved for the 

coefficients of the image of the absolute conic. At least three images are needed to determine 

both internal and external parameters while mapping the 2D image and 3D world, or vice versa, 

[25]–[28], [89], [90]. Main disadvantages of the self-calibration method are that it is nonlinear, 

highly sensitive to noises, and many parameters are determined using complex iteration 

procedures. To address these, several modifications were proposed such as using active vision, 

[27], [89], using more constraints [91], [92], and referring to a known camera [90].  

Multi-camera based methods are employed in [93], [94], which generate 3D 

reconstructed image from aligned multiple cameras that looks into a single planar coordinate 

while using approximate values of intrinsic camera parameters. Multiple camera-based method 

gives larger surveillance area than that of a single view camera. However, it requires extra 

computation power for calibrating whole camera coordinates with respect to the common 

reference plane. Typically, the ground plane is used as reference plane, which is nonlinear, 

sensitive to noises, and environmental variations. Further, this method requires iterative 

computational procedures, expensive moving camera systems, and tedious setup of several 

cameras. 

The camera calibration methods described so far rely on the use of Kruppa equations, 

[29], and at least three images for self-calibration, and special or specific patterns for 

conventional camera calibration methods. These techniques are shown to be reliable and time-

tested for deriving intrinsic and extrinsic parameters of the camera setup to generate the 

relationship between the coordinates of 2D captured image and the 3D world-coordinates. 

However, they have the disadvantages of complex algorithms with iterative procedures 

requiring significant computation resources that limit their application scenarios. They also are 

inefficient for real-time applications and require high communication bandwidth and high-

power consumption. 
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4.4 Summary 

In this chapter, the pin-hole camera model was presented with specific terminologies 

in addition to the introduction on parallel projection and perspective projection. Current 

camera calibration methods used for traffic application were reviewed including both 

conventional and self-calibration methods.  

A camera calibration method that does not require specific patterns or iteration 

procedures with less complexity for traffic application is necessary.  

.
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CHAPTER 5 – PIXEL-RESOLUTION MAPPING (P-RM) 

METHOD 

This chapter presents pixel-resolution mapping (P-RM) method. First, modified 

camera model is illustrated. Second, the relationship (pixel-resolution model) between 

pixel’s physical size and pixel’s actual spatial resolution is derived. Third, typical image 

processing algorithms including image enhancement, foreground/background segmentation 

and edge detection are reviewed followed by feature extraction algorithms including 

location detection, speed detection, and dimension detection based on P-RM method. 

Finally, flexible camera calibration method without specific pattern is discussed.  

5.1 Modified Camera Model, Pixel-Resolution Model 

A basic camera model was shown in Figure 4-6, which is based on Fung’s model [13]. 

The camera is mounted at certain height, which is the perpendicular distance from the center 

of the camera lens to the X-Y plane, and looking down with certain tilt angle, , pan angle, , 

swing angle, , and focal length, f. Pan-tilt cameras, which have ability to rotate around Xc-

axis for tilting and Zc-axis for panning with fixed swing angle 0 degree, are commonly used 

in road/traffic detection and surveillance [25], [28]. Consequently, the proposed P-RM method 

is designed by considering swing angle equaling 0 degree, and the center of the imager is on 

the optical axis. According to these preconditions, a modified camera model, pixel-resolution 

(P-R) model, including pixel array is transformed from Figure 4-6 to Figure 5-1. The world 

coordinates is translated in Figure 5-1, whose origin point is at the projection point of the 

optical center on the world plane and the Yw-axis is overlapping on the projection of optical 

axis on the world plane. The optical center, Oc, at this world coordinates is (0,0,H) where H 

is the height of the camera.  

In Figure 5-1, P-R model is showing that the detection region of a camera is fixed as 

the size of image sensor, focal length of the lens and mounting position are known. The labeled 

points A and B are maximum detection distance, dymax, and minimum detection distance, 

dymin, respectively, which give the detection range for the imager. Image sensor is usually 2D 
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rectangular shape composed of number of square size pixels (number of pixels in row, M, 

times number of pixels in column, N) that are specifically designed and fabricated by IC 

industry [57]. Because of the tilted sensor plane in the camera, each pixel experiences its own 

(spatial) resolution on both x and y directions. The resolution of pixels may vary row by row 

or column by column, which are closely depend on mounting orientations, lens types, and 

pixels’ size. Indeed, the parameters for traffic monitoring such as location, size and speed of 

vehicles, could be simply extracted from the captured image if each pixels’ resolution is 

known. Furthermore, the connection between an image captured by a mounted camera and 

real-world scenery could be explained as the pixels relationship with pixels’ actual resolution 

in scenery/FOV is known. As a result, the conventional camera calibration problem could be 

transferred to the problem on determining pixel’s resolution, which initiated the development 

of the P-R method. 

 

 

Figure 5-1. P-R model for TZOID sensor designing and P-RM method building. 
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5.2 P-RM Method 

The proposed pixel-resolution mapping (P-RM) method, which could reconstruct 

image for mensuration in traffic monitoring application, is driven by identifying each pixel’s 

resolution on the image plane based on P-R model. In other words, the actual size of the 3D 

world image could be recovered by each pixel’s 2D resolution. Diagrammatic procedure of P-

RM method is shown in Figure 5-2, which intuitively illustrates the concept of this method.  

The camera has a field of view (FOV) in the scene which includes the object in gray 

color. The object in the FOV is captured by the camera, the pixel size of which is usually 

constant in modern commercial image sensor, generating a square shape raw image as shown 

in the middle of Figure 5-2. However, the spatial resolution of each pixel is varying depending 

on related detection distance. As a result, in the 2D raw image, the shape or the size of the 

captured object is usually distorted comparing the one in the real 3D world. The distortion 

caused by 3D perspective projection in the original 3D world image could be restored by using 

the spatial resolution of each pixel instead of pixel’s physical size so that the reconstructed 

2D image would have actual dimensional scale of 3D world. Consequently, it is important and 

essential to know each pixel’s resolutions for realizing P-RM method. 

 

 

Figure 5-2. Diagrammatic procedure to reconstruct an image by P-RM method. 

 

 Pixel Resolution Determination 

The resolution of each pixel consists of two parts; resolution on row (Xi) direction and 

resolution on column (Yi) direction, which are marked as Rx and Ry, respectively. Before 

continuing on explaining the Rx and Ry as shown in Figure 5-3 and Figure 5-4, following 
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conditions are assumed. The camera is mounted at height, H, and tilted with . The camera 

lens has focal length of f. The pixel size is described as lpy and lpx on column direction and row 

direction, respectively. The size of image sensor is Lix by Liy, which is the total length of a row 

multiplied by the total width of a column. Total number of pixels is N by M including N rows 

and M columns. The projection of optical center toward image sensor plane is assumed at the 

geometric center of pixels arrays, and the distortion from the lens is ignored. 

 Pixel Resolution in Column Direction, Ry 

Side view geometry of modified camera model is shown in Figure 5-3, which 

illustrates the model of pixel resolution in Yi direction, Ry, and achievable maximum and 

minimum detection distances. 

 

 

Figure 5-3. Side view of P-R model for Ry determination. 

 

Point A is the closest, and point B is the furthest side the senor could view. Pixels at 

the bottom of the pixel array (Row (M-1)) observe the furthest area (reaching up to point B), 

dymax, the sensor could detect, while the closest region (point A), dymin, could be detected by 
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the pixels at top of the array (Row (0)). The distance between farthest and closest detection 

line is the detection range, dyrange, which could be determined by (5.1). 

 

minmax dydydyrange          (5.1) 

 

In (5.1), dymax and dymin could be acquired based on trigonometric function as shown 

in (5.2) and (5.3), respectively, where ω is depending on the sensor size and focus length, 

which could be written as (5.4).  
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By substituting (5.4) into (5.2) and (5.3), equations (5.5), (5.6), and (5.7) for dymax, 
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The resolution in Yi direction of a pixel at Row(n), Ry(n), could be determined by using 

similar approach, but instead of pixels at bottom and top array, bottom and top edge of each 

pixel is used. The parameter Liy in (5.4) is total length of a pixel array, which equals each 

pixel’s length times total number of rows for consist pixel size array (Liy=lpy*N). In (5.2), φmax 

could be depicted by (5.11) after substituting (5.10) into, (5.8) and (5.9). 
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The resolution in Yi direction of a pixel at Row(n), Ry(n), could be achieved using 

similar approach, but instead of pixels at bottom and top array, bottom and top edge of each 

pixel is used, which introduce (5.13). In (5.13), dy(n) and dy(n+1) could be achieved by (5.14) 

and (5.15), respectively. 
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In (5.14) and (5.15), Liy(n) and Liy(n+1), are the length from current pixel’s top edge to 

top edge of the pixel array, and length from current pixel’s bottom edge to top edge of the 

pixel array bottom, respectively. For same size pixel array, Liy(n)=(n)*lpy and, 

Liy(n+1)=(n+1)*lpy. Consequently, the equation for Ry(n) could be obtained by substituting 

(5.14) and (5.15), into (5.13), where Θ= arctan(f/0.5Liy). Therefore, Ry(n) would be modeled 

by (5.16). 
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 Pixel Resolution in Row Direction, Rx 

Geometry for getting the resolution in Xi direction, Rx, which is considered as Rx(n) for 

the pixels at Row(n), is shown in Figure 5-4. In the figure, there are two triangles, ΔabOc and 

ΔABOc, which are similar triangles. Rx could be determined by these two triangles, which give 

the basic equation for deriving Rx(n) as shown in (5.17). 
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In (5.17), dy’
(n+1/2) and  f’

(n+1/2) could be determined by (5.18) and (5.19), respectively. 
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 By substituting (5.18) and (5.19) into (5.17), Rx(n) could be eventually obtained as 

shown in (5.20). 
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Equations (5.16) and (5.20) give the general expressions of a pixel’s (spatial) 

resolutions referred to ground plane in the 3D world, which could be determined if N,  lpy, 

lpx,  f , , and H are known. First three parameters, N, lpy, and lpx, could be obtained from 

commercial image sensor’s datasheet that includes size and number of pixels in the sensor. 

Focal length, f, could also be determined from specifications of commercial off-the-shelf 

lens.  

For instance, TZOID imager was designed and the camera system was used a lens 

that has f=4.42mm. H and  are depending on mounting situation of the camera, which are 

not difficult to be measured by laser altimeter and digital clinometer. However, camera 

systems used for traffic application are typically mounted on a traffic light pole at 8.84 m 

(29ft) above the ground [95]. Further, the tilt angle or mounting height could be calibrated 

by P-RM method easily in case  or H is not available. 

 



56 

 

Figure 5-4. Geometry for modeling pixel resolution in Xi direction. 

 

5.3 Feature Extraction  

The 2D size could be determined straightforward as each pixel’s resolution is 

achieved after edge detection. Consequently, the location, size, and speed of vehicles could 

be accessed. The height estimation by P-RM method could also achieved with certain 

assumption. 

 2D Length Detection 

The length measuring in Xi and Yi direction would be straightforward as knowing the 

pixel’s resolutions, RX and RY, after running edge detection algorithm. As shown in Figure 

5-5, the lengths of L1 and L2 are Rx multiplying number of pixel of L1, and Ry multiplying by 

number of pixel of L2, respectively. The edge length that is not exactly on the Xi or Yi direction 

could be calculated by trigonometric function, such as L3 in Figure 5-5.  
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Figure 5-5. Schematic diagram for length measuring. 

 

 

Figure 5-6. Geometry for height estimation, h. 

 

 3D Height Estimation 

In this section, a height estimation method based on PR-M method of single-view 

image is presented, which is an alternative way of reconstructing the scene without the 
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disadvantages of the existing methods. It is assuming that the potential target object such as 

human, is either walking or standing on the ground plane, and is perpendicular to the 

ground. Additionally, three parameters have to be known for the method to work; size and 

number of pixels in the image sensor, and the focal length of lens used in the camera system.  

The height estimation method is based on pixel’s spatial resolution in column 

direction, Ry. The location of object could be determined first by using (5.14) after detecting 

object’s bottom edge, point B. The top edge of the object, point A, needs be detected as 

well. As a result of the precondition that assumes object is perpendicular to the ground 

plane, the geometry for object height analysis is shown in Figure 5-6. Geometry for height 

estimation, h. including two similar triangles, ΔCOOc and ΔABO, which introduces following 

equation, (5.21) on height, h, extraction.  
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The size of object could be calculated directly using proposed model and equations if 

N, lpy, lpx,  f , , and H are known. First three parameters, N, lpy, and lpx, could be obtained 

from commercial image sensor’s datasheet that includes size and number of pixels in the 

sensor. Focal length, f, could also be determined from specifications of commercial off-the-

shelf lens. H and  are depending on mounting situation of the camera, which are not 

difficult to be measured by laser altimeter and digital clinometer. Further, the tilt angle and 

height could be calibrated by P-RM method easily in case  or H is not available. 
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5.4 Flexible Camera Calibration by P-RM Method 

The camera calibration methods described in Chapter 4 need at least three images for 

self-calibration, and special or specific patterns in 3D world for conventional camera 

calibration methods. These techniques are shown to be reliable and time-tested for deriving 

intrinsic and extrinsic parameters of the camera setup. However, they have the 

disadvantages of complex algorithm with iterative procedures requiring significant 

computation resources that limit their application scenarios. They are also inefficient for 

real-time applications and require high communication bandwidth. 

To avoid the problems, a new pixel-resolution (spatial resolution) mapping (P-RM) 

method is proposed that would work with both standard rectangular and proposed TZOID 

image sensors. The proposed PR-M is an alternative and efficient way to generate the 

relationship between 2D image and 3D world which is free of the disadvantages of the 

existing methods. Table 5-1. Comparison of camera calibration methods. summaries the 

main features of proposed P-RM method comparing with conventional and self-calibration 

methods. 

 

Table 5-1. Comparison of camera calibration methods. 

 Conventional Self-calibration Proposed P-RM 

Specific Patterns Required Not Required Not Required 

Moving Camera Not Required Required Not Required 

Iteration Procedures Required Required Not Required 

Complexity Medium High Low 

 

Three parameters must be known for the P-RM method to work; size and number of 

pixels in the image sensor, and the focal length of lens used in the camera system. Using 

these parameters, proposed P-RM method finds the relationship between sensor’s 2D pixels 

and 3D world pixels’ resolution directly. It provides straight forward features extraction 

without using iterative procedures, thus it is computationally less complex. As a result, the 
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camera system using P-RM method for traffic application does not need large computation 

capability, or high communication bandwidth, or multiple spatio-temporal image capture, or 

3D world patterns to work properly. 

 Tilt Angle Calibration 

The tilt angle, , might be difficult to determine as it could change when the 

environmental parameters are changed such as time of day, temperature, vibration due to 

wind, etc. Thus, it is necessary to get the parameter, , calibrated periodically. The proposed 

P-RM method achieves this simply by capturing two images without requiring special patterns 

or specific correction or calibration blocks. 

 Applying on Vehicle Detection Application 

The best calibration target is the moving vehicle itself in a traffic monitoring 

application. The length of a moving vehicle will not change as its location is changed. For 

instance, the white vehicle in Figure 5-7 could be used as a calibration target, the length of 

which, l, could be measured by finding the distance between the leading and rear edges of 

the vehicle using (5.22), which is similar to determining the pixel resolution described 

before. As a result, the expression of l could be written as shown in (5.23) 
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Figure 5-7. Two images capturing a moving vehicle for tilting angle calibration. 

 

Consequently, lA and lB, in frame nA and frame nB could be determined by (5.23), 

respectively. Then, an equation with one unknown variable,  (0o<<90o), could be solved 

after setting lA equaling to lB so that the tilt angle could be computed. 

 Applying on Pedestrian Detection Application 

The best calibration target is a person himself or herself in pedestrian monitoring 

application. The height of a moving person will not change as its location is changed. For 

instance, a person in white T-shirt shown in Figure 5-8 could be used as a calibration target, 

the height of him, h, could be measured by (5.24) based on (5.21).  
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Figure 5-8. Two images capturing a walking person for tilting angle calibration. 
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In (5.24), dy(BottomEdge) and dy(TopEdge) could be achieved by (5.14), then hA and hB in 

terms of H and  , in frame nA and frame nB could be depicted by (5.24), respectively. Then, 

a trigonometric equation with one unknown variable, , could be solved with a solution set 

after setting lA equaling to lB eliminating H so that the tilt angle could be calibrated, which is 

the one in the range between 0 and 90 degree. 

 Mounting Height Calibration 

The mounting height could be achieved easily by a known length or height object as 

reference in the field of view. For instance, a human whose height is known could be used as 

reference target for mounting height calibration, which is quite common in pedestrian height 

estimation application. The mounting height, H, could be derived by (5.25), in which href is 

the height of reference object. 
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5.5 Summary 

In this chapter, the modified camera model was presented which was the 

fundamental for P-RM method. The relationship between pixel’s physical size and pixel’s 

actual spatial resolution was illustrated with details on derivations. Typical image processing 

algorithms including background subtraction, shadow correction and edge detection were 

introduced followed by feature extraction algorithms including 2D length detection and 3D 

height estimation based on P-R model. Finally, flexible camera calibration method focusing 

on tilt angle and mounting height calibration without specific pattern was discussed.  
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CHAPTER 6 – TRAPEZOID (TZOID) IMAGE SENSOR 

This chapter presents design details of the trapezoid (TZOID) image sensor. First, 

the introduction and background of TZOID imager is presented. Second, pixel design 

equations based on P-R model and details of TZOID pixel array development are discussed. 

Third, the image sensor architecture and details of analog and digital building blocks are 

illustrated. Finally, the actual TZOID chip with a custom TZOID imager-based camera 

system is shown. 

6.1 Introduction and Background of TZOID Image Sensor  

If the cameras are used in real-time traffic detection, they have no or few feature 

extraction capabilities, resulting in producing large amount of unimportant information, 

which will increase both communication bandwidth and system power consumption. As a 

result, more powerful computation capability is required that necessitates high performance 

platforms. Consequently, it will be difficult to meet low-power, low-cost and light-weight 

requirements of next generation traffic monitoring systems. 

Several methods have been proposed and utilized for image sensors to eliminate 

irrelevant image data and alleviate the burden of image processing and calculation power in 

traffic monitoring platforms. The methods include; providing direct frame difference output, 

utilizing multi-resolution image sensors, and on-chip clustering algorithms, [15]–[18]. 

A CMOS active pixel sensor (APS) with direct frame difference output was reported 

in [15]. This image sensor could just output the difference between current frame and 

previous one as shown in Figure 6-1. The photon sensitive element is a photo diode formed 

by N-diffusion and P-substrate. The proposed APS pixel circuit has two sample and hold 

circuits and two signal readout paths for direct frame difference output. A sample and hold 

circuit consists of a sampling switch and a holding node. The sampling switches (M2, M3) 

act as electronic shutters to control the exposure time of the pixel. Two MOS capacitors 

(M8, M9) are added to increase the capacitances at the holding nodes of the source follower 

transistors (M4, M6). The chip is suitable for motion detection and only sending out moving  
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Figure 6-1. APS cell circuit with direct frame difference output [15]. 
 

 

objects, but it still needs traditional complex mapping algorithm for speed and location 

detection in traffic application.  

A spatio-temporal multi-resolution CMOS image sensor was reported in [17]. Block 

diagram of the imager is shown in Figure 6-2. This image sensor can simultaneously 

generate two outputs: one at a low frame rate with maximum spatial resolution for stationary 

backgrounds and the other at a high frame rate with reduced spatial resolution for moving 

 

 

Figure 6-2. Block diagram of spatial-temporal multi-resolution image sensor [17]. 
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Figure 6-3. Block diagram of the proposed CMOS Image Sensor with on-chip event 

generator and object localization [18] 

 

objects in the region-of-interest (ROI). However, the overall system requires two external 

controllers. Although it can automatically switch between modes quickly and captures the 

image of object in high or low resolution, complex coordinate mapping and calibration is 

still needed for traffic detection since the pixels of the sensor have the same physical size. 

In [18], a CMOS image sensor with motion generator circuit used for on-chip 

moving object detection and localization is presented. Figure 6-3 shows the system 

architecture of the proposed image sensor. Each pixel is equipped with an analog memory 

(capacitor) and can output both the new integration voltage on its photodiode and the 

previous voltage stored on its capacitor. The event generator computes the difference 

between the two voltages and compares it to a positive and negative threshold. A motion 

event is generated if this difference exceeds the thresholds. If the scene illumination and 

object reflectance are constant, the changes in scene reflectance only result from object 

movements or camera motion. The motion events are processed on the fly to build clusters 

based on a distance criterion. At the end of the frame, the position and size of the active 

object is obtained. The algorithm was implemented on-chip without the need for any 

external computation and storage. This image sensor performs frame differencing to 
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generate binary motion events, which are processed on the fly to build clusters based on a 

distance criterion. After the position and size of the active object is obtained, the sensor 

switches to ROI intensity mode and reports a picture of the object. This approach eliminates 

the background and static object information, generating outputs from pixel values that are 

the difference between two frames that are above a threshold value.  

As a result, although these custom image sensors and image pre-processing methods 

used by them reduces the generated image data, they still require camera calibration 

algorithms for traffic monitoring applications.  

To avoid the aforementioned problems, a custom designed multi-resolution CMOS 

image sensor with trapezoid array (TZOID) for extracting “only” the dynamic properties of 

incoming traffic and the facile features of vehicles is proposed. Designed custom TZOID 

imager with proposed P-RM method does not need large computation capability, or high 

communication bandwidth, or multiple spatio-temporal image capture, or 3D world patterns 

to work properly while the whole system could be built smaller and consumes significantly 

less power for traffic monitoring application nodes. 

6.2 TZOID Image Sensor 

Typically, the camera is placed high above the ground (higher than 12m) having a 

bird’s eye view of the road in video-based traffic monitoring systems, [96]. Proposed 

Trapezoid (TZOID) CMOS image sensor with varying pixel sizes uses this fact to provide 

straightforward camera calibration. Pixel sizes in the array was designed assuming that it 

will be mounted on a traffic light pole (typically 29ft high and 24ft to 48ft away from the 

stop line) looking directly toward two (or four) lanes (24-48ft wide) of incoming traffic. The 

TZOID is mainly designed for traffic detection, for extracting “only” the dynamic properties 

of incoming traffic and the facile features of vehicles using straightforward mapping and 

extractions methods, [97]. 

Gathering information about vehicles at the far end of the FOV (vehicle C in Figure 

6-4 (a)) requires high resolution pixels which are not needed for vehicles in the near region 

(vehicle A in Figure 6-4 (a)). Therefore, a pixel array with variable pixel sizes (Figure 6-4 (b)) 

covering trapezoidal FOV is proposed to obtain the location and speed of an incoming vehicle 

accurately and in real time with P-RM method. In this proposed TZOID image sensor, the 
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pixel sizes are diminishing gradually toward to the far end of the FOV. Such a structure 

provides higher resolution only for those parts of the FOV. 

 

 

Figure 6-4. Schematic diagram of FOV and pixel array from TZOID imager: (a) two-lane 

incoming road to an intersection, b) trapezoid pixel array with scaled pixel sizes from large 

at the near end to small at the far end. 

 

 TZOID Pixel (Array) Design 

The modified camera model, P-M model, in Figure 5-1 is also used for designing 

TZOID pixel array.  The TZOID based camera is placed on a traffic pole of height H. The 

optical center is at coordinates (0, H) and has an effective focal length of f, with tilt angle of 

. The center of proposed sensor’s pixel array is located at optical axis of the camera lens.  

In TZOID imager, pixel size depends on its desired pixel resolutions, Rx, according to assumed 

mounting situation and selected lens. Consequently, these parameters, H,  and f are initially 

assigned (H=8.84m,  =24 degree, and f=4.42mm) for TZOID pixel array design. The 

geometry for designing pixel size is the same as the geometry shown in Figure 5-3 and Figure 

5-4 As a result, pixel size in column direction, lpy, and pixel size in row direction, lpx, can be 

calculated by (6.1) and (6.2) hich are derived from (5.16) and (5.20), respectively, where dy(0) 

= dy(min) as n =1.  
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TZOID design composes of 152 rows of pixels with 6 different resolution sections 

(segment  to V). Pixels in these sections have 0.25m, 0.5m, 1m, 2m, 5m, and 10m spatial 

resolutions, respectively. Figure 6-5 shows the pixel size, lpy, and desired Ry of each pixels 

from Row(0) to Row(151) as TZOID mounts at initially assumed conditions. The minimum 

pixel size is 3.4µm which is limited by selected CMOS process technology.  

 

 

Figure 6-5. Desired pixel size and corresponding pixel resolution at initially assumed 

mounting situation (H=8.84m,  =24 degree, and f=4.42mm). 
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Pixel sizes in column direction, lpy, are adjusted to fit into the layout design grid of 

the fabrication process. For example, design equation (6.1) results in a pixel height of 

3.413µm but process grid allows only 3.40µm or 3.45µm pixel size causing measurement 

error due to rounding. After a manufacturable pixel size design and adjustment, distance 

measurement errors are calculated as shown in Figure 6-6. 

Expected ideal measurement error is less than ±1.0% of the absolute distance 

resolution on the road. The design results in measurement error (on x-direction) of ±1cm for 

far end of the observation field where per pixel measurement distance is 10m. At closer end 

of the observation field (the stopping lane) this is 1mm with 0.25m resolution. 

 

 

Figure 6-6. Expected ideal relative distance measurement error. 

 

Pixel size in row direction, lpx, can be different than the pixel size in column 

direction, lpy , that would result in rectangular pixels instead of general square size pixel, 

which could be achieved by (6.2). 

Figure 6-7 shows the pixel size in row direction, lpx, and desired Rx of each pixels 

from Row(0) to Row(151) in addition to the total width of each row. The pixel width and 

height in different rows are different, but the sizes of pixels in the same row are the same. 

The spatial resolution per pixel in x-direction is set 0.21m for the design. This 

resulted in a maximum pixel width (lpxmax) of 48.7µm. This limits the number of columns for 
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the imager. Based on the maximum pixel width, and assuming 10 columns per lane and 

maximum four lanes to be monitored, the number of imaging pixel columns is set to 40. 

Number of rows on the TZOID imager is set to 152. Of these pixels the first five (0-4) and 

last three rows (149-151) are covered for dark level measurement and correction.  

 

Figure 6-7. The pixel size in row direction and the total width of each row versus 

observation distance assumed mounting situation 

 (H=8.84m,  =24 degree, and f=4.42mm). 

 

 

Figure 6-8. Geometric dimension of proposed TZOID pixel array. 
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The dimension of whole TZOID pixel array is shown in Figure 6-8, which is isosceles 

trapezoid shape with total 119.29mm2
 area.  

6.3 TZOID Architecture 

Figure 6-9 shows the block diagram of the TZOID imager comprising the APS pixel, 

column readout circuits and peripheral circuits. 

 

 

Figure 6-9. Circuit block diagram of TZOID imager. 

 

Photodiode type, 3 transistor (3T) APS CMOS pixel was used in the design. The chip 

mainly comprises of the trapezoid pixel array, column readout circuits and peripheral circuits, 

which include pixel source follower load transistor, programmable gain charge amplifier, and 

auto-zero column comparators. Column readout circuit generates a latch signal to 8-bit 

transparent SRAM memories on each column[97].  

 Pixel Circuit 

Standard CMOS APS pixel containing three metal-oxide-semiconductor field effect 

transistors (MOSFET) (M1-M3) in each pixel was used in the design as shown in Figure 28. 

Pixel size varies in the imager as shown in Figure 3-5, however, photosensitive element, 

photodiode (PD), sizes are kept constant in three regions. Associated photodiode 

capacitances for different pixel array rows are given in Figure 6-10. PD capacitance is 75fF 
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for rows 0 to 62, 25fF for rows 63 to 135, and 12.5fF for rows 136 to 151. They are binary 

weighted for easy application of gain during readout. As a result of scaled PD capacitance, 

higher sensitivity is achieved by pixels that monitor vehicles far away from the stop light 

while vehicles close by are monitored with less sensitivity. 

 

 

Figure 6-10. Pixel photodiode capacitances of the TZOID imager versus row address. 

 

 Column Readout 

Column readout block composes three sub-blocks including programmable column 

charge amplifier, column comparators, and column latches and memory as shown in Figure 

6-11.  

Programmable 

Column Charge 

Amplifier

Column 

Comparators

Column Latches 

and Memory

c
o

l

Cout<0:7>

 
Figure 6-11. Block diagram of column readout. 

 

Figure 6-9 show the schematic of this block which is mainly composed by pixel 

source follower load transistor (M1), programmable gain (C2/C1) charge amplifier (A1), 

and auto-zero column comparators (CM1, CM2).  
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Pixel photodiode signals are read through the pixel source follower with a gain of 

0.75 V/V. The pixel signal and reset levels are subtracted performing correlated double 

sampling (CDS) and amplified by the charge amplifier. Gain of the charge amplifier is set 

with 3-bit binary control. Charge amplifier gain could be set between 0.67V/V and 32 V/V 

achieving pixel photodiode to chip output overall gain of between 0.5 V/V and 24 V/V. 

Charge amplifier output is sampled on a sample-and-hold capacitor (C3). Bottom plate of 

this capacitor is connected to global ramp generator output for column level ADC operation. 

Auto-zero two-stage comparator was used for the design. Offset voltages of the comparators 

are stored on two capacitors (C4, C5) and subtracted/cancelled during analog-to-digital 

conversion operation. Column readout circuit generates a latch signal (Cout) to 8-bit 

transparent SRAM memories also located on each column.  

 Analog-to-Digital Converter (ADC) and Memory Blocks 

A single slope ramp signal is applied during digitization of the pixel signals sampled 

on each column. Triggering occurs when the ramp signal is equal to the sampled pixel signal 

allowing digital quantization of them. Global programmable (6-bit/8-bit) synchronous 

counter, binary weighted charge redistribution digital to analog converter (DAC) with output 

buffer is used in the ADC block. Output of the synchronous counter also drives transparent 

SRAM cells placed on each column. A global sense amplifier was designed to digitize the 

column SRAM signals and drive to the digital pad of the imager IC.  

 Reference Generator and DACs 

A supply independent, programmable current reference circuit was designed and 

integrated in the TZOID imager as shown in Figure 39. Reference currents could set to 5µA, 

10µA or 20µA, using 2-bit control. Default current setting is 5µA for the design. Current 

DACs use reference current by binary scale mirroring and have 6-bit programming control 

through scan chain. Similarly voltage DACs were also designed that could be controlled 

with 6-bit resolution. Four current and five voltage DACS were designed and integrated in 

the design. 
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Figure 6-12. Circuit diagram of the programmable reference current generator. 

 

6.4 Actual TZOID Imager 

The TZOID imager blocks were simulated and their functionalities were verified 

before physical design and integration. Designed physical layout of the imager blocks were 

checked against the schematic and integrated into IC as shown in Figure 6-13. A 0.18µm 

CMOS process was used for the design and fabrication. Core supply voltage of the TZOID 

imager was set to 1.8V. Physical size of the imager die is 3.23mm x 2.9mm with 68 pads. A 

68 pin Ceramic Leadless Chip Carrier (CLCC) package were chosen to package the 

fabricated imager die. Packaged TZOID imager is shown in Figure 6-14.  

The packaged TZOID imager was soldered on custom designed camera board that 

holds FPGA development board, and various voltage regulators and digital buffers being 

configured as a camera system as shown in Figure 42 . The FPGA board on the camera 

board handles controlling communication with the PC, controlling the TZOID imager, and 

reading frames of images from the imager. Custom software that a user could set TZOID 

control registers and communicates with FPGA board was also written.  

The proposed trapezoid pixel array is composed of 6080 (152 x 40) total pixels. The 

minimum pixel size is 3.4µm. Thus, if a rectangular array image sensor is chosen, pixel size 

has to be 3.4µm x 3.4µm to accommodate minimum pixel size in the trapezoid image 

sensor. Consequently, a rectangular image sensor with 335,205 (585x573) pixels array size 
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is required to function as the designed trapezoid sensor with 6080 pixels, which is 55 times 

larger compared to the trapezoid imager. Rectangular imager with 585x573 array size 

running at 120 FPS would generate 40.225Mbytes/sec video. However, it is only 

0.730Mbytes/sec for TZOID imager which also requires 55 times lower communication 

bandwidth. 

 

 

Figure 6-13. Micrograph of the fabricated and packaged TZOID imager. 

 

 

Figure 6-14. Pictures of the packaged TZOID imager. 
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Figure 6-15. Custom TZOID camera system. 

 

6.5 Summary 

In this chapter, the details of TZOID image sensor were presented. The introduction 

and background of TZOID imager was depicted including current techniques that used to 

reduce irrelevant data in image sensor. The pixel design equations based on P-R model and 

details of TZOID pixel array development are discussed followed by TZOID image sensor 

architecture and illustration on analog and digital building blocks of the chip. Finally, the 

actual TZOID chip was displayed with a custom TZOID imager-based camera system.  
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CHAPTER 7 –TESTING AND MEASUREMENT RESULTS 

Testing was carried out in both controlled laboratory environment and outdoor 

settings. Proposed P-RM method was tested first by using standard rectangular image 

sensors before being tested on TZOID imager.  

In this chapter, testing and measurement results for P-RM method and TZOID image 

sensor are presented. First, the testing results from P-RM method implementing on 

commercial rectangular imager are introduced, which includes indoor lab testing, outdoor 

vehicle detection and outdoor pedestrian height estimation. Second, TZOID imager testing 

results including comparison results with standard rectangular imager are presented. 

7.1 Testing on PR-M Method 

There are two parts of testing for PR-M method because of existing two ways (5.23) 

and (5.24) to estimate tilting angle by P-RM method. It depends on the actual application as 

described in Chapter 5, section 5.5.1. 

Part I includes series of experiments for vehicle detection applications, while Part II 

is for pedestrian detection.  

A Cannon EOS 100D Rebel SL1 camera equipped with APS-C format (22.3mm x 

14.9mm) CMOS image sensor was used in the experiments, which has 4.31µm pixel size. A 

Canon EF 40mm f/2.8 lens was selected for the camera body to acquire images. Both indoor 

laboratory and outdoor field tests were performed. 

 Part I 

This section presents a series of experiments conducted for vehicle detection 

applications by using PR-M method. 

 Indoor Laboratory Tests 

First, tilt angle calibration was performed determining errors under indoor laboratory 

environment settings. Subsequently, dimensions of a standard chessboard pattern were 

determined by reconstructing images by P-RM method.  
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7.1.1.1.1 Tilt Angle Calibration  

The tilt angle could be calibrated by capturing a moving vehicle and using the 

equation (5.23). The camera was mounted at 32.7cm high (H=0.327m) using 0.35M pixels 

mode (720x480) as reference. The value of tilt angel measured by clinometer was used as 

truth value, which is 42.55 degree. 

 

 

Figure 7-1. Different testing position for tilt angle calibration using length of the object. 

 

A printed chessboard pattern with 10x10mm black and white unite lattice was used 

to verify the tilt calibration. Sixty-three positions are arranged as labeled Pxx, which have 

the same dimensions as shown in Figure 7-1. Assuming starting position of vehicle is P00 

and moving to the other position, such as P01, which gives one (the first) set of test 

condition for calibration, so that total of 62 testing positions/conditions could be accessed. 

RMS value of calibrated tilt angle was determined after repeating measurements for each 

test condition hundred times. The experiment results are shown in Figure 7-2 and Figure 

7-3. Standard deviation for whole values of calibrated tilt angle is 0.29 o with 42.51o average 

value, which is 0.04o (0.09% error) less than the truth value, 42.55o, though the maximum 

tested error is 1.91%. The RMS value for total acquired number is 42.52o that is -0.08% 

from truth value.  
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Figure 7-2. Achieved tilt angle with related error in tilt angle calibration testing. 
 

 

Figure 7-3. Cumulative distribution plot according to test results in tilt angle calibration 

testing. 

7.1.1.1.2 Two-Dimensional Measurement 

Each pixel’s resolution could be obtained after acquiring tilt angle value using the 

equations (5.16) and (5.20). The taken images could be rebuilt by P-RM method. Examples 

of reconstructed images are shown in Figure 7-4(c) and Figure 7-4(d) relative to their 

original taken images, Figure 7-4(a) and Figure 7-4(b), respectively.  
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The dimension of each black and white unites/lattices (10x10mm as truth value) 

were measured by including both static and dynamic repeatability tests. The results from 

100 times static repeatability tests is shown in Figure 7-5, where each point is the root mean 

square (RMS) value from 100 measuring data at each lattice. The largest error of width and 

length detection is 1.34% and -2.5%, respectively, while the largest maximum minimum 

deviation is 0.25mm for width detection and 0.45mm for length detection. 100 times 

dynamic repeatability testing result is shown in Figure 7-6, which is illustrating the largest 

error is -2.2% for width detection and -3.33% for length detection with largest maximum 

minimum deviation 0.40mm and 0.52mm, respectively. Amount of 99.73% of test errors 

would be smaller than 3.27%. 

 

 

Figure 7-4. Sample pictures from P-RM method realization: (a) and (b) taken image, (c) and 

(d) relative reconstructed image. 
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Figure 7-5. 100 times static repeatability test results on dimension measurement on each 

black and white lattice. 

 

 

Figure 7-6. 100 times dynamic repeatability test results on dimension measurement on each 

black and white lattice.  

 

Gaussian noise, the standard deviation of which is from 0 to 4 pixels, was considered 

for the edge detection measurements. This was used to investigate the performance of the P-
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RM method in ill-conditions, such as blurry image, soft focus areas, and unstable edge 

detection algorithm. Figure 7-7 and Figure 7-8 reflect the noise testing results. The error of 

tilt angles, Δ, versus added noises is plotted in Figure 7-7. Two-dimension (2D) 

measurement error versus tilt angle calibrating error given in Figure 7-8.  

 

 

Figure 7-7. Tilt angle error versus added pixel offset  
 

 

Figure 7-8. 2D dimension measurement error versus tilt angle error. 
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 Outdoor Field Tests 

The Cannon camera equipped with 40mm f/2.8 lens using 2M pixels mode 

(1920x1080) was used in this outdoor experiment. The camera was mounted at 28.71m high 

above the ground with 61.30 degree (truth value) tilt angle viewing a parking lot. Dimension 

mensuration (length test) and vehicle speed detection by using P-RM method were both 

applied, in addition to tilt angle calibration test. 

 

 

Figure 7-9. Outdoor field test on tilt angel calibration: (a) taken image (b) image processed 

by background subtraction and edge detection (c) sequences of detected vehicle’s roof. 
 

 

7.1.1.2.1 Tilt Angle Calibration 

A set of images contained a moving vehicle captured in a parking lot area is shown 

in Figure 7-9(a). The moving vehicle was the target for tilt angle calibration, which was first 
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detected by background subtraction using kernel density estimation (KDE) method [51] as 

show in Figure 7-9(b). Subsequently, the edge detection algorithm based on pixel intensity 

gradient was implemented to obtain the edges of moving vehicle’s roof. In Figure 7-9(c), the 

examples of moving vehicle extracted from a sequence of frames with detected roof edges 

are illustrated, which could be used for tilt angle calibration by (5.23). The calibration 

results from 120 groups of frames are shown in Figure 7-10(d). The average value of 

calibrated tilt angle is 61.291 degree, which has 0.01% error from the truth value with 

0.525% standard deviation, though the maximum error of 2.61% occurred at frame# 52.  

 

 

Figure 7-10. Computed tilt angle results. 

 

7.1.1.2.2 Feature Extraction 

To evaluate the accuracy, in Figure 7-11, twenty-two test lines (L1 to L22) were 

chosen for evaluation. The experimental lengths were computed by Euclidean distance 

method after obtaining each pixel’s resolution. The mean computed length and computed 

error of each test line are illustrated in Table 7-1. The proposed P-RM method produced 

highly accurate length estimation with mean accuracy of around 99.15% and overall 

accuracy better than 98.6%. 
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Figure 7-11. Labeled end points and lines for length test. 

 

Table 7-1. Extracted lengths for outdoor field test. 

Trial Line End points Actual length (m) 
Computed length 

(m) 

Computed 

error 
Accuracy 

1 L1 AB 2.885 2.900 0.536% 99.464% 

2 L2 BC 2.835 2.862 0.952% 99.048% 

3 L3 CD 7.690 7.771 1.049% 98.951% 

4 L4 DE 5.750 5.787 0.645% 99.355% 

5 L5 FG 2.875 2.876 0.035% 99.965% 

6 L6 JK 7.700 7.773 0.952% 99.048% 

7 L7 MN 5.290 5.338 0.913% 99.087% 

8 L8 OP 8.000 8.103 1.285% 98.715% 

9 L9 PQ 5.610 5.666 1.000% 99.000% 

10 L10 RS 5.530 5.572 0.767% 99.233% 

11 L11 ST 5.620 5.666 0.820% 99.180% 

12 L12 TU 5.560 5.619 1.066% 98.934% 

13 L13 AF 6.100 6.150 0.814% 99.186% 

14 L14 BG 6.050 5.979 -1.174% 98.826% 

15 L15 DH 5.950 5.900 -0.840% 99.160% 

16 L16 EI 5.900 5.845 -0.936% 99.064% 

17 L17 HK 5.860 5.803 -0.976% 99.024% 

18 L18 IL 5.900 5.925 0.428% 99.572% 

19 L19 LQ 7.190 7.251 0.846% 99.154% 

20 L20 VW 12.670 12.775 0.827% 99.173% 

21 L21 PL 10.210 10.330 1.175% 98.825% 

22 L22 CK 14.670 14.781 0.757% 99.243% 
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The speed of the moving vehicle in this experiment was also computed. The camera 

was running at 24 frames per second (FPS) so that the time difference, ΔtAB, between Frame 

nA and Frame nB is (nB-nA)/24 second. The leading edge of the moving vehicle was detected 

as shown in Figure 7-12, which was used to determine the moving distance, S, between two 

frames. The position, P, of the leading edge could be achieved by (5.14) so that the moving 

distance from Frame nA to Frame nB, ΔSAB, equals to PA minus PB. Consequently, the speed 

of the vehicle, Vvehicle, is obtained by (7.1). 
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Figure 7-12. Example frames for moving vehicle speed detection by leading edge detection. 

 

The vehicle speed was calculated at every ten frames, the result of which is shown in 

Table 7-2. The mean value of speed detection accuracy is 98.52% with maximum error of -

2.244%. The overall speed detection accuracy is better than 99.7%. 
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Table 7-2 Extracted speed of moving vehicle for outdoor field test. 

 

 

Trial 

 

 

Frame # 

Leading 

edge 

(pix) 

Leading 

edge 

(m) 

Actual 

Speed 

(m/s) 

Computed 

speed 

(m/s) 

 

Computed 

error 

 

 

Accuracy 

1 1 101.473 69.162 2.235 / / / 

2 11 107.585 68.246 2.235 2.198 -1.676% 98.324% 

3 21 113.800 67.335 2.235 2.187 -2.144% 97.856% 

4 31 121.159 66.422 2.235 2.190 -2.025% 97.975% 

5 41 128.208 65.512 2.235 2.185 -2.244% 97.756% 

6 51 133.346 64.601 2.235 2.185 -2.241% 97.759% 

7 61 139.852 63.684 2.235 2.200 -1.559% 98.441% 

8 71 146.736 62.756 2.235 2.229 -0.264% 99.736% 

9 81 155.220 61.826 2.235 2.230 -0.237% 99.763% 

10 91 161.879 60.902 2.235 2.218 -0.763% 99.237% 

11 101 170.751 59.985 2.235 2.201 -1.521% 98.479% 

12 111 178.192 59.070 2.235 2.196 -1.754% 98.246% 

13 121 186.975 58.150 2.235 2.208 -1.217% 98.783% 

14 131 194.570 57.233 2.235 2.202 -1.485% 98.515% 

15 141 202.551 56.316 2.235 2.201 -1.539% 98.461% 

16 151 211.207 55.398 2.235 2.203 -1.423% 98.577% 

 

 Part II 

Part II is a series of experiments implemented for pedestrian detection application by 

using PR-M method. 

 Indoor Laboratory Tests 

First, tilt angle and mounting height calibration was performed determining errors 

under indoor laboratory environment settings. Subsequently, dimensions of a standard 

chessboard pattern which was perpendicular to the ground were determined by P-RM 

method. 

7.1.2.1.1 Tilt Angle Calibration 

The tilt angle could be calibrated by capturing a moving object’s top and bottom 

edges with using (5.24). The camera was mounted at 296.00mm high (H=0.2960m) using 

2.5M pixels mode (1920x1280) as reference. The value of tilt angel measured by clinometer 

was used as truth value, which is 40.10o. 



89 

A wooden cube with height of 53.88mm was used as a moving object for tilt angle 

calibration test, which was moving from P0 to P17 as shown in Figure 7-13 including total 

18 positions. Any two images from those two positions could be set as a pair for tilt angle 

calibration, so that total 153 testing pairs could be arranged, which means 153 groups of 

tests. RMS value of calibrated tilt angle was determined after repeating measurements for 

each test pair hundred times.  

The experiment results are shown in Figure 7-14. Standard deviation for whole 

values of calibrated tilt angle is 0.232 o with 40.141o RMS value, which is 0.041o (0.11% 

error) larger than the truth value, 40.10o, though the maximum tested error is -1.47%.  

 

 

Figure 7-13. Different testing position for tilt angle calibration indoor experiment. 
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Figure 7-14. Achieved tilt angle with related error in tilt angle calibration testing. 

 

7.1.2.1.2 Mounting Height Calibration 

The height of wooden cube is 55.00mm, which could be used as reference height, href, 

for mounting height, H, calculation by using (5.21) derived in Chapter 5, Section 5.4.2. 

Eighteen test positions used in previous section were also imitated for mounting height 

calibration test. To keep the same manner as tilt angle calibration experiment, one hundred 

images captured at each position were used for gathering RMS values of mounting height 

achieved at each testing position. The testing result is showing in Figure 7-15, which illustrates 

that the mounting height calibration accuracy could achieve to better than 99.6% with 

maximum -0.38% error at P0 in the experiment. The standard deviation from total 1800 values 

of calibrated height, H, is 0.729mm with 296.08mm RMS value, which is 0.08mm (0.024% 

error) larger than the truth value, 296.00mm. 

The calibration results for indoor testing setup are listed in Table 7-3. 
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Figure 7-15. Achieved mounting height with related error in mounting height calibration 

testing. 

 

Table 7-3 Calibration Results for Indoor Laboratory Tests. 
Result Computed tilt angle Computed mounting height 

Average value 40.14o 296.08mm 

Average error 0.11% 0.024% 

 

7.1.2.1.3 Three-Dimensional Feature Extraction 

Two wooden cubes were placed on the ground plane which was covered by a printed 

chessboard pattern sheet as shown in Figure 7-16(a). The PR-M method was launched for 

feature extraction by substituting tilt angle value and mounting height value calibrated in 

Table 7-3, as a result, the pixels’ spatial resolutions in both column and row direction, Ry, 

and, Rx, at ground plane could be achieved by (5.16) and (5.20), which are plotted in Figure 

7-17. In Figure 7-16(b), total eighteen end points with twenty-five lengths were detected and 

labeled by using edge detection for verifying proposed mensuration accuracy. The RMS 

value of computed length and computed error of each test line from one hundred times static 

repeat images are listed in Table 7-4. The results show that the proposed method produced 

both accurate 2D length and 3D height estimation with mean accuracy of 99.47% and 

99.30%, respectively, in addition to the overall accuracy is better than 98.7%.  
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Figure 7-16. Indoor experiment on feature extraction (a) raw image (b) image labeled end 

points and lines for length estimation. 

 

 

Figure 7-17. Achieved pixels’ (spatial) resolutions by P-RM method. 

 

The bird’s eye view of two cubes’ edges in Figure 7-16(a) is reconstructed in Figure 

7-18, which includes reconstructed edges points with corner points’ coordinates and a restored 

ground plane/background image with correct dimensions. Additionally, three-dimensional 

views of reconstructed scene are generated as shown in Figure 7-19 and Figure 7-20 

containing 3D reconstruction of the camera location, two wooden cubes positions, and ground 

plane with actual scale. 
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Table 7-4. Extracted lengths and heights for indoor test. 

Trial Line 
End 

points 

Actual length 

(m) 

Computed length 

(m) 

Computed 

error 
Accuracy 

1 l1 ab 113.5 113.81 0.27% 99.73% 

2 l2 bc 28.1 27.95 -0.53% 99.47% 

3 l3 cd 113.0 113.45 0.40% 99.60% 

4 l4 da 27.9 27.96 0.22% 99.78% 

5 l5 fe 28.0 28.35 0.89% 99.11% 

6 l6 fg 114.5 114.50 0.00% 100.00% 

7 l7 hi 18.9 19.11 1.10% 98.90% 

8 l8 ij 28.6 28.35 -0.86% 99.14% 

9 l9 jk 18.9 18.67 -1.35% 98.76% 

10 l10 kh 28.6 28.60 0.02% 99.98% 

11 l11 fm 111.8 111.27 -0.47% 99.53% 

12 l12 rm 130.0 129.16 -0.65% 99.35% 

13 l13 mo 64.0 63.85 -0.23% 99.77% 

14 l14 op 170.0 170.69 0.41% 99.59% 

15 l15 pq 160.0 161.44 0.90% 99.10% 

16 l16 qr 170 169.51 -0.29% 99.71% 

17 l17 ro 160.0 159.36 -0.40% 99.60% 

18 l18 oq 233.45 232.17 -0.55% 99.45% 

19 l19 rp 233.45 234.71 0.54% 99.46% 

20 h1 af 18.8 18.61 -1.02% 98.98% 

21 h2 de 18.9 18.65 -1.30% 98.70% 

22 h3 bg 18.9 18.61 -1.55% 98.45% 

23 h4 hm 53.8 53.81 0.02% 99.98% 

24 h5 kl 53.9 53.84 -0.12% 99.88% 

25 h6 in 53.7 53.80 0.19% 99.81% 

 

 

 

Figure 7-18. Overhead view of two detected cube’s edges with measured corner points. 
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Figure 7-19. 3D view of detected cubes in FOV.  

 

 

Figure 7-20. 3D view of reconstructed scene including camera’s mounting position. 
 

Gaussian noise, the standard deviation of which is from 0 to 4 pixels, was considered 

for the edge detection measurements. This was used to investigate the performance of the P-

RM method in ill-conditions, such as blurry image, soft focus areas, and unstable edge 

detection algorithm. 
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(a) 

(b) 
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Figure 7-21. Noise testing results: (a) tilt angle error and mounting height error versus added 

pixel offset (b) mounting height error versus tilt angle error (c) three-dimension 

measurements error versus tilt angle error (d) three dimension measurements error versus 

mounting height error. 

 

Four images in Figure 7-21 reflect the noise testing results. The error of computed tilt 

angles and error of computed mounting height versus added noises is plotted in Figure 7-21(a), 

which means that four 4 pixels uncertainty will introduce maximum 2.8% error to tilt angle 

and 1% error to mounting height. Computed mounting height error versus error of computed 

(c) 

(d) 
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tilt angle is shown in Figure 7-21(b). Two-dimension (2D) measurement error and height 

estimation error versus tilt angle calibrating error and mounting height calibrating error are 

given in Figure 7-21(c) and Figure 7-21(d), respectively. The error of measuring is 

proportional to the error of mounting height since the estimated object height is proportional 

to the camera’s mounting height as shown in (5.21). The accuracy of 2D mensuration depends 

on tilt angle heavily. On the other hand, the height estimation takes less affection on the 

accuracy of tilt angle calibration. 

 Outdoor Field Tests 

The Cannon camera equipped with 40mm f/2.8 lens using 2M pixels mode 

(1920x1080) was used in this outdoor experiment. The camera was mounted at 8.378m (truth 

value) high above the ground with 52.50o (truth value) tilt angle viewing a lobby hall. Tilt 

angle and mounting height calibration test and dimension mensuration (pedestrian height 

estimation) test were both applied. 

Three student volunteers labeled as PA (1.590m), PB (1.840m) and PC (1.745m) were 

walking or standing in the FOV of the camera as shown in example frames in Figure 7-22 (a) 

and (b). The volunteers were playing roles of the reference target for calibration and detection 

targets for height estimation. The feet edge (bottom edge) and head edge (top edge) of the 

volunteers were acquired by background subtraction using kernel density estimation method 

[51] with Sobel edge detection operator [98] as show in Figure 7-22 (c) and (d), which were 

essential for calibration and dimension information extraction.  

 

   
 (b) (a) 



98 

 

   
 

 

 
 

 

 

 

 

Figure 7-22. Sample frames of outdoor test: (a) and (b) taken images (c) and (d) images 

processed by background subtraction and edge detection for obtaining head and feet edges 

of a person (e) and (f) 3D reconstructed images of (a) and (b).  

 

 

(c) (d) 

(e) 

(f) 
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7.1.2.2.1 Tilt Angle and Mounting Height Calibration 

The three volunteers were regarded as calibration target and reference height object 

successively for tilt angle and mounting height calibration. The calibration steps are the same 

as the procedures illustrated in section 7.1.2.1.1 and section 7.1.2.1.2.  

Twenty pairs of frames were randomly selected for computing the tilt angle value 

depending on reference target of PA, PB, and PC, respectively. The average values of 

computed tilt angles depending on PA, PB, and PC, which were respectively used in mounting 

height calculation test, are listed in Table 7-5. The initial testing results on tilt angles were 

shown in Figure 7-23 indicating that the maximum computed error for whole test is 2.36% 

with average value of 52.83o (0.63% error), the standard deviation of which is 0.46o. 

Twenty frames including three volunteers were processed for mounting height 

calibration test after tilt angle calibrating. The testing results are exhibited in Figure 7-24. The 

average value of calibrated mounting height is 8.395m, which has 0.21% error from the truth 

value with 0.079m standard deviation, though the maximum error of 2.26% at frame# 321. 

 

 

Figure 7-23. Tilt angle calibration results. 
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Figure 7-24. Mounting height calibration results. 

 

Table 7-5. Computed tilt angle, , and mounting height, H, for outdoor test. 

 

 

Cali. target/ 

Ref. height 

Computed  

(o) mean 

Actual 

 (o) 

 

Accuracy 

Computed H 

(m) mean 

Actual 

H (m) 

 

Accuracy 

1 PA 52.768 52.50 99.49% 8.407 8.378 99.65% 

2 PB 52.805 52.50 99.42% 8.417 8.378 99.53% 

3 PC 52.913 52.50 99.21% 8.362 8.378 99.81% 

Over All / 52.827 52.50 99.38% 8.395 8.378 99.79% 

 

The tilt angle and mounting height calibration results are summarized in Table 7-5, 

which gives the mean computed values and computed accuracies of each volunteers as 

calibration target. The proposed method produced accurate calibration with mean accuracy of 

around 99.38% and overall accuracy better than 97.64%. 

 

7.1.2.2.2 Pedestrian Height Estimation 

The previous computed values, 52.83o
 and 8.395m, were used as values of tilt angle 

and mounting height in (5.21), respectively, for pedestrian height estimation. The three 

volunteers were randomly walking in the FOV as the camera was capturing for height 

information extraction. As shown in Figure 7-22(c) and (d), the profiles of the volunteers were 

extracted with top/head and bottom/foot edges detection of the volunteers. Consequently, the 

height of the person could be estimated by proposed PR-M method as described in section 
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5.4.2. The examples of 3D reconstructed images for Figure 7-22 (a) and (b) are exhibited in 

Figure 7-22 (e) and (f), in addition to Figure 7-25, which demonstrates the experimental results 

of height estimation on three volunteers in one hundred different frames. The summarized 

estimation results are listed in Table 7-6, which shows that the overall accuracy on height 

estimation could achieve to better than 96%. 

 

 

 
Figure 7-25. Pedestrian height estimation results on three volunteers from one hundred 

different frames. 
 

Table 7-6. Height estimation results for outdoor test. 

 

 

 

 

 

Volunteer 

Actual 

height 

(m) 

Estimated  

height mean 

(m) 

Standard 

Deviation 

(m) 

 

Error 

mean 

 

Error 

max 

 

 

Accuracy 

1 PA 1.590 1.608 0.022 1.15% 3.31% 96.69% 

2 PB 1.840 1.852 0.021 0.63% 2.98% 97.02% 

3 PC 1.750 1.763 0.025 0.77% 3.48% 96.52% 

 

The proposed PR-M method calibrated mounting information correctly and recovers 

the 3D information from a 2D image accurately with 96% height detection accuracy. Note 

that smaller pixel size, increasing number of total pixels in the array, and more elegant image 

processing algorithms could generate more accuracy detection results and yield more robust 

3D reconstructions. 
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7.2 Testing on TZOID Image Sensor with PR-M Method 

The TZOID camera setup was mounted at 0.28m above ground plane tilting at 24 

degree with a fixed focus-lengths lens (f=4.42mm). The distribution of pixels’ resolutions is 

shown in Figure 7-26, which keeps 6 different resolution sections detecting from 0.52m to 

6.98m away, though the mounting height was decreased by 8.56m. The percentage (96.833%) 

of mounting height reduced is the percentage (96.83%) of pixel resolution enhanced.  

 

 

Figure 7-26.  Pixels’ resolutions of TZOID sensor as mounting at 1.4m high and tilting at 24 

degree with 4.2mm focus-length lens. 
 

 
Figure 7-27. Two-lane straight road model with model vehicle for TZOID image sensor 

testing. 
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A two-lane straight road model was used for TZOID image sensor testing as shown in 

Figure 7-27. The model vehicle on the model road was pulled by a step motor at certain speed 

controlled by a microcontroller, which makes test setup more controllable and reliable. 

The tilt angle calibration was tested as described in Sec.5.5.1. Figure 7-28(a) shows 

where both leading and rear edge of the vehicle were detected for computation. The 

computed tilt angle and percentage of accuracy is listed in Figure 7-28(b). 

 

 

 

 

Figure 7-28.  Two-lane straight road model test: (a) Example frames for leading edge and 

rear edge detection; (b) computed tilt angle. 

 

An off-the-shelf image sensor (OV7670) was used, which has 1/6” optical size 

including 640x480 numbers of pixels, to compare the performance of TZOID image sensor 

using road model. Both OV7670 and TZOID cameras were mounted at 0.6m high with 17.5 

degree of tilt angle, running at 30fps with the same lens, to achieve a detection region which 

is 1.28m to 4.29m away from camera setups. The speed detection procedures implemented in 

Section 7.1.1.2.2 were used on both sensors to obtain speed test result respectively. The 

comparison is started from the number of pixel rows and pixels’ spatial resolution in the same 

(b) 

(a) 
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detection territory, which is shown in Figure 7-29 including three resolution sections of 

TZOID. Totally 480 pixel rows of OV7670 were focused on the detection region, whereas 

only 79 pixel rows of TZOID were for the same area, which was 6 times less. The average 

numbers of pixel resolution in this region of OV7670 and TZOID are 0.0063 meter per pixel 

and 0.038 meter per pixel, respectively.  

 

 

Figure 7-29. Pixel resolutions of TZOID and OV7670 sensor versus detection distance 

(1.28m-4.29m). 

 

Testing results for speed detection by both sensors are listed in Table 7-7 and Table 

7-8. The average detecting accuracy of TZOID is 97.37%, which is 1.79% lower than OV7670. 

The comparison result between two sensors are listed in Table 7-9, which illustrates that 

OV7670 does have around 2% better detection accuracy than TZOID does during the same 

detection territory by loading 6 times more pixel rows. On the other hand, TZOID trades off 

2% accuracy for total 98.6% less image data, which means 98.6% less communication 

bandwidth and 80 times faster processing speed. 
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Table 7-7. Extracted speed of vehicle by TZOID sensor using P-RM method. 

 

Trial 

 

Frame 

# 

Leading 

edge 

(pix) 

Leading 

edge 

(m) 

Actual 

Speed 

(m/s) 

Computed 

speed 

(m/s) 

 

Computed 

error 

 

 

Accuracy 

1-1 1219 24.81 4.181 22.26 / / / 

1-2 1819 30.50 3.722 22.26 22.97 3.09% 96.91% 

1-3 2419 37.39 3.261 22.26 23.04 3.39% 96.61% 

1-4 3019 45.51 2.802 22.26 22.96 3.05% 96.95% 

1-5 3619 57.53 2.346 22.26 22.79 2.33% 97.67% 

1-6 4219 70.94 1.888 22.26 22.89 2.75% 97.25% 

1-7 4819 86.30 1.434 22.26 22.71 1.98% 98.02% 

2-1 607 19.62 4.619 31.03 / / / 

2-2 1207 26.68 3.976 31.03 32.14 3.45% 96.55% 

2-3 1807 36.05 3.334 31.03 32.11 3.36% 96.64% 

2-4 2407 46.51 2.694 31.03 32.01 3.06% 96.94% 

2-5 3007 66.44 2.058 31.03 31.80 2.42% 97.58% 

2-6 3607 86.78 1.425 31.03 31.65 1.96% 98.04% 

3-1 611 20.07 4.447 40.96 / / / 

3-2 1211 31.52 3.646 40.96 40.02 -2.35% 97.65% 

3-3 1811 44.35 2.842 40.96 40.23 -1.81% 98.19% 

3-4 2411 67.98 2.038 40.96 40.17 -1.97% 98.03% 

3-5 23 20.52 4.461 45.20 / / / 

4-1 623 33.51 3.527 45.20 46.69 3.19% 96.81% 

4-2 1223 47.86 2.597 45.20 46.48 2.75% 97.25% 

4-3 1823 77.33 1.678 45.20 45.96 1.65% 98.35% 

 

Table 7-8. Extracted speed of vehicle by OV7670 sensor using P-RM method. 

 

Trial 

 

Frame 

# 

Leading 

edge 

(pix) 

Leading 

edge 

(m) 

Actual 

Speed 

(m/s) 

Computed 

speed 

(m/s) 

 

Computed 

error 

 

 

Accuracy 

1-1 33 16.10 3.9670 22.26 / / / 

1-2 633 47.60 3.5150 22.26 22.60 1.53% 98.47% 

1-3 1233 87.04 3.0636 22.26 22.57 1.39% 98.61% 

1-4 1833 138.74 2.6130 22.26 22.53 1.21% 98.79% 

1-5 2433 210.92 2.1643 22.26 22.44 0.79% 99.21% 

1-6 3033 315.96 1.7170 22.26 22.37 0.47% 99.53% 

2-1 5 18.02 3.9344 31.03 / / / 

2-2 605 65.08 3.3067 31.03 31.3835001 1.14% 98.86% 

2-3 1205 130.54 2.6788 31.03 31.395 1.18% 98.82% 

2-4 1805 232.26 2.0538 31.03 31.25 0.71% 99.29% 

2-5 2405 414.44 1.4315 31.03 31.115 0.27% 99.73% 

3-1 13 14.26 4.0002 40.96 / / / 

3-2 613 76.7 3.1678 40.96 41.62 1.61% 98.39% 

3-3 1213 178.14 2.3442 40.96 41.18 0.54% 99.46% 

3-4 1813 378.8 1.5231 40.96 41.05 0.23% 99.77% 

4-1 14 24.00 3.8395 45.2 / / / 

4-2 614 100.14 2.9306 45.2 45.44 0.53% 99.47% 

4-3 1214 238.28 2.0249 45.2 45.29 0.19% 99.81% 
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Table 7-9. Comparison results between TZOID and OV7670. 

 

 

Sensor 

 

 

OV7670 

 

 

TZOID 

TZOID 

vs 

OV7670 

Accuracy (Sec. IV) (%) 98.58 96.84 -1.77% 

Accuracy (Sec. III) (%) 99.45 97.68 -1.78% 

Pixel Rows (Sec. IV) 117 19 -83.76% 

Pixel Rows (Sec. III) 291 33 -88.66% 

Average Accuracy (%) 99.16 97.37 -1.81% 

Total Pixel Rows 480 79 -83.54% 

 

7.3 Summary 

In this chapter, testing and measurement results for P-RM method and TZOID image 

sensor were presented. First, the testing results from P-RM method implementing on 

commercial camera are introduced, which includes indoor lab testing, outdoor vehicle 

detection and outdoor pedestrian height estimation. Second, TZOID imager testing results 

including comparison results with standard rectangular imager, OV7670, were presented. 
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CHAPTER 8 - CONCLUSION 

This research work develops a multi-resolution CMOS active pixel sensor (APS) 

imager with a straightforward calibration method and feature extraction capability for traffic 

detection application. The prototype of a custom CMOS image sensor with specifically 

designed pixel array for traffic detection applications with innovative mapping algorithms 

and intelligent feature extraction methods are accomplished. 

The research is divided into five research objectives. The first objective is the 

investigation of fundamental principles, limits, and problems associated with vision-based 

traffic detection. The second objective is the investigation and development of camera 

model to achieve a specific model (pixel-resolution model) for pixel’s physical size and 

related pixel’s spatial resolution. The third objective is to design and fabricate a TZOID 

CMOS imager based on pixel-resolution model for traffic applications. The fourth objective 

is to develop feature extraction algorithms for designed image sensor with straightforward 

camera calibration algorithms based on pixel-resolution model. The fifth objective is to 

develop a TZOID CMOS image sensor based vision system which is suitable for traffic 

detection with high accuracy and low data rate.  

The fundamental principles, limits, and problems associated with vision-based traffic 

detection are investigated resulting in a design strategy including both sensor design and 

algorithm design. The background and development of CMOS image sensor are analyzed 

followed by a literature review on current camera calibration methods used in traffic 

detection. The main drawbacks for those current methods are impractical and consuming 

high computation because of iteration procedures, requiring specific patterns, and requiring 

multiple cameras.  

A modified camera model is developed to achieve a specific model (pixel-resolution 

model) for pixel’s physical size and related pixel’s spatial resolution. This model gives a 

new way to generate the relationship between 2D image and related 3D scene based on 

spatial resolution pixels in CMOS image sensor arrays. The proposed PR-M method and 

related feature extraction algorithms including height estimation are based on this pixel-

resolution model. The PR-M method achieves height estimation without using specific 
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patterns in real world or multiple (or moving) cameras with straightforward camera 

calibration algorithms. A commercial camera is used to verify the efficiency of the PR-M 

method. Both tilt angle and mounting height of the camera were calibrated correctly in lab 

and outdoor experiments. Three-dimensional mensuration tests are applied, which show 

better than 98.7% accuracy in lab tests and better than 96% accuracy in actual pedestrian 

height estimation tests. Additionally, reconstructed 3D image of detected points is 

successively obtained by in this research work. 

A TZOID CMOS image sensor is designed and fabricated based on pixel-resolution 

model for traffic applications. Each pixel’s size was determined and designed according to 

desired spatial resolution to achieve less unimportant data with enough detection accuracy. 

The abundant data could be alleviated by reducing the number of redundant pixels without 

losing unacceptable detecting accuracy. A TZOID CMOS image sensor based vision system 

applying on traffic detection is generated which was tested in the laboratory. After 

comparing with a commercial counterpart running at the same frame rate, TZOID generates 

98% less data but only 2% detection accuracy lost.  

The overall outcome of this research is the design and implementation of the world’s 

first trapezoid pixel array multi-resolution CMOS image sensor with flexible camera 

calibration technique and accurate feature extraction algorithms based on straightforward P-

RM method with pixel-resolution model.  

8.1 Future Directions 

There are third directions of future work for TZOID image sensor design.  

The first is integrating the motion detection and edge detection ability in the image 

sensor chip to achieve less data, less communication bandwidth and faster speed. 

The second research direction is implanting pixel merging function to the next 

generation of TZOID pixel array, the pixel size of which could be adjusted according to 

actual mounting situation to keep pixels’ spatial resolutions in the desired resolution zones. 
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The third research direction is designing a 3D camera system by using single view 

camera that can generate 3D reconstruct scene, especially for vehicle, and pedestrian, in real 

time. 
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