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Abstract

There is a need in the roasting industry for better real time feedback during roasting
to consistently achieve the desired qualities in roasted coffee, and NIR spectroscopy
has shown some promise for this purpose.

This project generated a new roast degree scale based on in situ NIR prediction
of the cracking sounds which are commonly used as a real time indication of roast
degree. This required measuring the start and end times of the two crack events by
analyzing recorded audio from a large set of roasts including eight varieties of coffee
with four roast temperature profiles each. An NIR spectrometer with a custom diffuse
reflectance probe attached to the roaster recorded in situ spectra during each roast
for predicting the crack event times and determining the roast degree.

Measurements of coffee acidity provided a basis for comparing the newly devel-
oped crack scale to two other scales: a simple scale generated based on NIR ab-
sorbance and the common CIELAB scale based on visible color. Both NIR based
scales performed better than the visible scale in this comparison, and the simple NIR
scale performed best. This scale was then used as a basis for determining the ef-
fects of different roast temperatures on acidity, to explore the ability to control acidity
independent of roast degree. A new set of constant temperature roasts provided the
dataset for this analysis, resulting in simple linear relationships between roast degree,
roast time, and acidity.
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CHAPTER 1 Introduction and Background

Coffee is the world’s most popular beverage besides water, with 9.4 million metric
tons of green coffee beans produced in the 2016-17 growing season [35, 38]. The
global average price for green coffee during this season was only $1.32 per pound,
but roasted coffee in stores commonly sells for more than $5 per pound. Roasting is
responsible for the majority of this increase, and consequently, the quality and consis-
tency achieved through roasting are critical to the value of the final product. Unfortu-
nately, methods of achieving this are lacking, and many roasters still rely on sensory
perceptions to guide the roasting process, often resulting in inconsistency and requir-
ing a lengthy trial-and-error process to determine the optimum parameters for roasting
a new variety of coffee [48].

1.1 Coffee Production Background

Coffee production can be broken down into four steps, all of which can have a signifi-
cant impact on the characteristics of the beverage. These steps are growth, process-
ing, roasting, and brewing.

Plant variety is the most important factor related to coffee growth. There are four
species of coffee on the market today (arabica, robusta, liberica, and excelsa), al-
though only arabica and robusta are widely traded [38]. The flavor and aroma of
arabica coffee are generally considered to be superior, and arabica makes up 60-70%
of world production. There are numerous varieties of arabica and robusta on the mar-
ket as well, and new varieties are being bred with the primary purposes of increasing
disease resistance and productivity [3]. Soil and climate also play an important role in
the quality of the final beverage, and coffees produced in acidic soil and at high eleva-
tions are generally considered superior. Growth is restricted to lower latitudes, as the
plants cannot survive freezing. Coffee plants develop a fruit, called a coffee cherry,
inside of which are two seeds. Although commonly referred to as coffee beans, they
are technically not beans.

After harvesting, the seeds must be removed from the coffee cherry and dried.



There are several methods for this processing step which have a considerable impact
on the final product [8, 48]. The simplest method is referred to as natural or dry pro-
cessing and consists of sun drying the cherries on patios and breaking the dried fruit
off the seed. The prolonged contact with the fruit in this method results in more fruity
aroma in the final product, but lower acidity and often lower cup scores, a rating re-
sulting from a standardized tasting procedure, than the other methods. Alternatively,
machines can remove the outer skin from the cherry, leaving some of the pulp still
attached. Coffee that is dried naturally on patios at this point before removing the
remaining pulp is called pulped natural or honey processed. Because the drying is
quicker than the natural method, the resulting coffee has higher acidity and less fruity
aroma. Instead of allowing the pulped coffee beans to dry, the pulp can also be re-
moved by fermenting the coffee in tanks for 8 to 72 hours [56] after which it will can
easily be removed. This is referred to as washed or wet processing, and since the
coffee spends less time in contact with the fruit, the resulting coffee has higher acidity
than the first two methods. Due to higher cup scores, the fast turnaround time, and still
relatively low equipment costs, wet processing is the most common [8]. All three of the
above methods involve some time where the coffee is influenced upon by microbes,
either during intentional fermentation steps to remove the pulp or while the coffee is
naturally drying. Instead of allowing wild yeast to perform this step, inoculating with
different strains of yeast has become a promising new area of interest, which may
have the ability to produce new aromas [27, 41, 50, 56]. An alternative to fermentation
in the wet processing method is mechanically removing the skin and pulp in a single
machine, which is referred to as mechanical demucilagination and minimizes the op-
portunity for microbes to act on the coffee. Additional steps that take place before the
coffee is exported are cleaning, hulling, polishing, sorting, and storage [8].

The third step in the coffee production process is roasting. Roasting is responsible
for generating the characteristic flavor and aroma and coffee and accomplishes this
in a very short time-frame. Typical roasts last 7 to 20 minutes, although coffee has
been roasted in as little as one minute in fast roasting conditions, which increases
the yield of soluble mass at the expense of homogeneity and perceived quality [10].
After the start of roasting the temperature rises until the beans begin to turn yellow.
This is the first visible change and is considered the start of the “drying phase.” Soon
after, the beans begin to turn brown, which is attributed to the Maillard reaction, the
non-enzymatic browning reaction which also causes the browning of bread crust [59].
Near this time, chlorogenic acids from the green coffee begin to break down, and by
the time the coffee reaches a light roast, the coffee loses more than half of its chloro-



genic acid content [42]. As the roast continues, the coffee begins to pop, sounding
similar to popcorn, in an event called first crack. Heat and mass transfer models of
coffee roasting predict the formation of a sharp drying front in the bean, outside of
which there is no liquid phase water, which moves toward the center of the bean [28].
As it approaches the center, the pressure gradient increases, which may eventually
overcome the strength of the bean, causing the center to burst. The cavity caused by
the first crack can be seen in Figure 1.1. The end of first crack is often considered the
start of a light roast.

Figure 1.1: Coffee beans at different stages of roasting from left to right: unroasted,
before first crack, after first crack, before second crack, after second crack.

After first crack, the coffee continues to darken gradually, and the transition point
to a medium roast has no clear indication. The Maillard reaction continues, and
caramelization and pyrolysis begin to occur as the temperature increases. Eventu-
ally, the coffee begins to emit another set of cracking sounds, called second crack,
which marks the transition to a dark roast. Second crack is associated with the re-
lease of oils to the surface of the bean, and while the cause of second crack remains
uncertain, suggested possibilities include CO, pressure or fracturing of the cell matrix
[48, 61]. Coffee roasted to the end of the second crack is typically considered burnt,
and even dark roasts typically end somewhere in the middle of the event [22, 48].

During roasting, the physical properties of the coffee change drastically [10]. The



beans lose the majority of their moisture content and 5-8% of their organic mass in a
medium to dark roast while increasing in volume due to internal pressures estimated
in excess of 15 atm [28]. This causes a typical change in density of 70%.

The final process before coffee can be consumed is grinding and brewing. Two
parameters often used to describe the result of the brewing process are concentration
and level of extraction [31]. Concentration is the strength of the beverage, measured
as percent total dissolved solids (TDS), and extraction is the fraction of total soluble
material extracted from the coffee. While the preferred strength varies with brew-
ing method, the optimum extraction range is always 18-22% for brewed coffee and
espresso [11]. If the extraction is too low, the beverage will contain a higher fraction
of the most soluble components which dissolve most quickly (e.g. acids), making the
coffee taste under-developed or sour. If the extraction is too high, some undesirable
components with lower solubility begin to reach noticeable levels, causing the coffee
to taste bitter and astringent.

The ability to choose a grind size and to grind the coffee consistently and uniformly
is important to achieve the desired extraction level and strength, especially in brew
methods where grind size influences brew time, such as espresso and drip. Coffee
grinders can be split into two categories: impact grinders and gap grinders [45]. Impact
grinders consist of rotating blades that exert a shock on particles in their trajectory,
causing them to break. The particles remain in the path of the blades no matter how
small, so these grinders are not good at regulating size. Gap grinders consist of
two cutters (or burrs) with a gap between them, which move relative to each other.
Particles pass through the gap after being cut, so the size of the gap determines the
size distribution.

Many different brew methods have been developed in coffee’s long history, but they
can be split into three categories: decoction, infusion, and pressure methods [19]. De-
coction methods involve adding the coffee to the water before it is brought to boiling
(e.g. percolators and Turkish coffee), infusion methods involve heating the water be-
fore adding the coffee (e.g. pour-over or auto-drip coffee), and pressure methods use
high pressure to push the water through the coffee, as with espresso. An additional
important factor is the use of a paper filter, which eliminates sediment, but can remove
oils and small particles, which contribute to the flavor and body.



1.2 Roast Degree Measurement

1.2.1 Industry Methods

Roast degree may be the most important metric describing coffee roasting, because
the flavor of the same coffee changes drastically when roasted to different degrees.
Light roasts are often acidic and bring out the unique characteristics of the variety
of coffee being roasted. Medium roasts have lower acidity and more body than light
roasts, making them the mildest roast and allowing the sweetness of the coffee to
be more easily perceived. Dark roasts take on new smoky and roasted aromas, the
highest level of body, and often increased bitterness relative to the other roasts. Dif-
ferences in water content, size, and chemical composition can cause different coffees
to roast differently, even when the same temperature-time roasting profile is applied,
making the ability to measure roast degree in real time necessary.

Color is the roast degree indicator most familiar to coffee consumers, but changes
in color can be difficult to judge visually and may be perceived differently depending on
the observer or the lighting. To help with this, there are colorimetric roast analyzers,
which can measure the color of the coffee based on the CIELAB color scale [36].
This scale breaks color into Luminance/Lightness (L*), a red-green value (a*), and a
yellow-blue value (b*). The asterisks are used to separate the current CIE version
of the color scale from an older version. These roast analyzers take the subjectivity
out of measuring roast color, but there is still some question as to whether color is an
acceptable measurement of roast degree.

The color of roasted coffee can be affected by a variety of factors not related to
roast degree. It is apparent when looking at different green coffee varieties that the
initial color of the green coffee can vary, but different coffee varieties are also known
to change color at different rates during roasting. The rate of color change is affected
by the processing method of the green coffee, as coffee processed with the natural
method require a higher temperature to reach the same color as coffees processed
with the washed method [10]. Even the temperature profile followed during roasting
can affect the final color of the roasted coffee. One study compared CIELAB color to
roast loss, the percent reduction in dry mass of the coffee, after roasting with different
temperature profiles and found that the relationship between color and roast loss dif-
fers for different temperature profiles [46]. These observations all indicate that color is
not a suitable property for determining roast degree.

The first and second crack events are commonly used as references for roast de-



gree, with the end of the first crack typically representing a light roast and the start of
the second crack marking the transition from a medium to a dark roast. This does not
provide any information about roasts between these two levels. For example, a full city
roast, the most popular roast point in the US, can be described as ending “just before
the start of second crack,” but this is difficult to judge without knowing when second
crack will start. For this method to be more useful, the ability to predict the start of
second crack and an actual measurement of the progression between first crack and
second would be useful. This is one area where online NIR spectroscopy may be able
to add value to the roasting process by providing such a prediction.

The percent mass loss during roasting is also sometimes used as a measure of
roast degree, but it cannot easily be measured in real time. Roasting loss is the loss
in dry mass, after subtracting the change in water mass, which provides an indica-
tion of the cumulative chemical changes [10]. This may be another area where NIR
predictions could prove useful by making roast loss predictions available in real time.

1.2.2 NIR Roast Degree Measurement

Near-infrared (NIR) is the region of light from 800 to 2500 nm or 12,500 to 4000 cm™*
[43]. Diffuse reflectance measurements in this region primarily yield information about
the overtones and combinations of vibrations which have fundamental frequencies
in the infrared region. The most prominent signals are caused by overtones and
stretching-bending combinations of OH, NH, CH, and SH bonds. This makes NIR
spectroscopy useful in the identification of many organic compounds, but because of
wide peaks which overlap heavily, determining the chemicals responsible for individ-
ual peaks is often not possible. Instead it is necessary to resort to chemometrics to
extract information from NIR with techniques like principle component analysis (PCA)
and partial least squares (PLS) regression.

The ability to use optical fiber probes in non-destructive analysis has made NIR
spectroscopy a technique of interest in many applications, including coffee. Applica-
tions for NIR with coffee include determination of defects and adulterants, measure-
ment of caffeine content, prediction of sensory properties, and measurement of roast
degree [7]. Multiple studies have focused on the measurement of roast degree with
NIR and most have used the prediction of color as the primary metric (Table 1.1).
The first such study [25] achieved a determination coefficient (R?) of 0.925 using PLS
regression to correlate the NIR spectra to color measured with a visible spectrome-
ter. This is a low R? value relative to the three other characteristics measured in the



same study, which were total acidity, caffeine content, and chlorogenic acid content.
The authors suggest this is because color is a visible quality and the NIR wavelength
range reflects chemical properties. Although it is not considered a chemical property,
the color of coffee follows a darkening trend with increasing roast degree, which can
be related to changes in the chemistry of the roasting coffee and allows color to be
indirectly predicted by NIR. Given the unsatisfactory ability of NIR to predict color, the
amount of emphasis placed on it is unsubstantiated, especially considering that visi-
ble spectrometers, which can directly and accurately measure color, are generally less
expensive than NIR spectrometers. Bertone et al. [9] used a modified version of the
PLS algorithm to measure color and arabica/robusta content simultaneously with an
R? value of 0.87. This is an even further reduced accuracy than the first study, possibly
because of differences in the regression method, pre-processing methods, or the fact
that blends of arabica and robusta coffee varieties were used instead of single variety
samples. Santos, Viegas, et al. [53] used NIR to predict color in situ with an R? of
0.94.

The remaining study used NIR to measure roast degree based on density, weight
loss, and moisture content with R? values of 0.986, 0.954, and 0.977, respectively
[2]. Except for moisture content, these properties are also not direct measurements of
chemical properties, but the quality of the fits suggest that they are strongly correlated
with chemical changes in the coffee, allowing them to be predicted with NIR.

It is useful to look at the methodology these studies used to collect and treat data
for regression as this has a significant impact on the quality of the regressions. The
first step in implementing PLS regression is to collect a large set of data by roasting
different coffees with multiple roasting times and temperatures, taking the NIR spec-
trum of each roast, and measuring the properties to be correlated. The number of
roasted coffee samples collected for the data set ranged from 52 to 168 in these four
studies. This data set is then often split into two subsets for regression. The calibration
set is used to produce the model and typically comprises 75 to 80 percent of the data,
and the prediction set is used to test the model.

The NIR spectrometers varied for each study, and the wavelength ranges they
measured were all slightly different. Four of the five used Fourier Transform (FT) NIR
spectrometers and only one used a standard grating spectrometer. All four studies
used extended wavelength NIR spectrometers with a high-end wavelength between
2200 and 2857 nm as opposed to the limit of approximately 1700 nm reached by
spectrometers without the extended range, and this extended range does appear to
contain information which is important for identifying characteristics of coffee based
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on these studies.

Several methods are available for pre-processing of the NIR spectra before re-
gression, and the pre-processing method appears to have a substantial impact on the
accuracy and robustness of the resulting model. Pre-processing methods improve the
regression results either by removing noise (filtering), correcting for baseline shift, or
modifying the NIR spectra in some other way to improve the results of the regres-
sion algorithm [43]. One of the groups correlating coffee color and some three other
characteristics to NIR [25] considered the impact of several different pre-processing
methods on the results. They compared PLS regression results after pre-processing
with mean-centering, standard normal variate (SNV), first derivative, orthogonal signal
correction (OSC), and direct orthogonal signal correction (DOSC), and used the per-
cent of variance explained by the PLS regression in the calibration set and prediction
set as metrics to compare the different methods. The percent of explained variance
for both sets should be as high as possible, but if the percent of explained variance for
the validation set is significantly higher than for the prediction set, it is a sign of over-
fitting. In the regressions performed by Esteban-Diez et. al., the results with OSC and
DOSC were best. The other researchers used a few additional methods, including
vector normalization and second derivative.

The study measuring the color in situ during roasting [53] is especially interesting
because of its relevance to the current project. To acquire the in situ NIR spectra, the
researchers placed a fiber optic NIR probe 2 mm from the glass window in a home
drum roaster and acquired a new spectrum every minute. The dataset used for PLS
regression contained 52 samples, which is the smallest of the PLS datasets reviewed
here. Color was measured ex situ with a colorimeter and correlated to the in situ NIR
measurement from the time the sample was removed. The resulting PLS model had
an R? of 0.94, which is comparable to the 0.925 achieved ex situ by Esteban-Diez et
al. [25]. This was the second study published by Santos about in situ NIR, and the first
did not perform as well [52]. The first study used in situ NIR to predict titratable acidity,
analogous to the ex situ measurement of acidity performed by Esteban-Diez et al.
[25]. The in situ model had an R? of 0.89 which as opposed to the 0.987 reported for
the ex situ study. One explanation for this difference is that the first study by Santos
used only mean centering as a pre-processing method, while the later study used
SNV, first derivative, and second derivative. This suggests that the pre-processing
method is very important to the predictive ability of the regression model.
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1.3 Coffee Chemistry and Flavor

Coffee is often rated based on flavor categories. This is a useful way of handling
the considerable complexity found in the chemistry of roasted coffee. The ability to
measure flavor categories is of interest for two reasons. First, some flavors are directly
linked to the degree of roast. The goal of choosing a roasting endpoint is to achieve
the organoleptic characteristics associated with a desired roast level. Consequently, a
scale for roast degree should be strongly correlated with the characteristics associated
with each roast level. This provides a method for validating different roast degree
scales. Second, the ability to alter flavors independent of roast degree by altering
the roasting temperature-time profile gives the roaster greater control and provides an
opportunity to improve the quality of the final product. Recent studies have suggested
that NIR spectroscopy can be used to measure these properties in real time, making
this level of control possible. Sweetness, acidity, body, aroma, bitterness are a few of
the characteristics which are thought to be strongly affected by roasting and warrant
further consideration for these purposes.

The main source of sweetness in coffee is sucrose, which has an initial concen-
tration between 6% and 8% in green arabica coffee and has been shown to decrease
throughout the roasting process [8]. Sucrose has successfully been measured on-
line during roasting with NIR spectroscopy with a correlation coefficient of 0.93 [53].
While sweetness in coffee is an important attribute, it is often subtle, and many cof-
fees display almost no perceived sweetness. Because of this, sweetness may not be a
suitable attribute for validating roast degree, but the measurement of sweetness would
be very beneficial in a complete in situ NIR coffee roasting solution.

Acidity is another important aspect of the flavor of coffee. Moderate levels of acidity
create a pleasant effect also described as brightness or liveliness in the beverage,
while high levels are described as sour, and coffee with low acidity is described as
flat. Previous research has shown that the perception of sour is related to acids, and
that titratable acidity is more correlated to sourness than pH [21]. Research specific
to coffee compared the results of measuring titratable acidity at different pH endpoints
and found that lower titration endpoints showed better correlation to perceived acidity,
with correlation coefficients (R?) increasing from 0.85 to 0.87 to 0.92 as the endpoint
pH decreased from 8 to 7 to 6 [6].

The acid content of green coffee is mainly comprised of citric, malic, chlorogenic,
and quinic acids [57]. During roasting, some acids break down and new acids are
formed, including formic, acetic, glycolic, and lactic acids. Overall, this causes the



11

titratable acidity to increase early in the roast, then reach a peak and begin to decrease
[6, 52]. This peak occurs early in the roasting process, before or near the typical
endpoint of a light roast, so the perceived acidity is typically described as highest in
light roasts and decreasing as the roast degree is increased [48].

The importance of acidity to perceived quality and strong correlation to roast de-
gree make it a good potential indicator of roast degree and of interest as a quality
parameter to monitor during roasting. A study has already applied in situ NIR to mea-
sure titratable acidity with an R? of 0.89, and two studies have successfully correlated
perceived acidity from tasting panels to ex situ NIR spectra [26, 49, 52].

Body, or “the tactile feeling of the liquid in the mouth, especially as perceived be-
tween the tongue and roof of the mouth,” [47] may be the only attribute used to rate
coffee which is not related to taste or smell. It is often used interchangeably with the
term viscosity, although it is most likely not the same. In coffee, body is related to
lipids, proteins, and polysaccharides and increases with roast degree, becoming high-
est in oily dark roasts before decreasing as the coffee becomes over-roasted [22, 49,
57]. This makes it a good candidate to use as a roast degree validation and in situ
monitoring, provided it can be measured objectively. Measurements of body in coffee
typically come from sensory evaluation, as the physical origin of this attribute is un-
certain. Two studies have correlated sensory evaluations of body based on brewed
coffee and espresso to NIR with R? values of 0.77 and 0.81, respectively [26, 49].

Bitterness is a very strong flavor in some coffees, with a primarily negative im-
pact on quality. It can be caused by many different chemicals, but some of the main
contributors in coffee are chlorogenic acids and their by-products [57]. Chlorogenic
acid content is reduced as degree of roast increases, but some of the by-products re-
main and may even cause an increase in perceived bitterness. Robusta coffees have
higher chlorogenic acid content than arabica coffees, and this has been proposed as
the cause of their increased bitterness. Caffeine is also often associated with bitter-
ness but may not be a major source. A study published in 1975 [32] compared the
taste thresholds for individuals with high and low sensitivity to caffeine and found that
the low sensitivity group cannot taste the levels present in brewed coffee, while the
high sensitivity group can. Even with high sensitivity individuals, the study suggested
that the contribution to bitterness may be small relative to other factors. Bitterness lev-
els are generally considered to increase in dark roasts [22, 48], but due to variations
in bitterness due to variety or processing, this may not be a good basis for validating
roast degree. Bitterness was also correlated to NIR based on tasting panel results,
with R? values of 0.76 and 0.86 [26, 49].
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Aroma is the most complex aspect of coffee and is very important to its perceived
quality [57]. Over a thousand volatile compounds have been discovered in coffee;
most of these are formed in reactions occurring during the roasting process. Re-
searchers have attempted to determine which of these components are aromatically
active using gas chromatography-olfactometry (GCO) techniques, which involves a
person smelling the effluent of a gas chromatograph [12, 51, 57]. This is necessary
because the human nose is extremely sensitive to some compounds, detecting con-
centrations as low as parts per trillion. Most of the GCO studies consist of diluting
the effluent until it can no longer be detected to determine a detection threshold and
reporting the ratio of measured concentration to the detection threshold. Such stud-
ies have found fewer than 30 aroma-active compounds, but the specific set of aroma
active compounds varies based on coffee origin, post-harvest processing, and roast-
ing. The isolation techniques for determining aroma active compounds in coffee do
not account for possible synergistic effects between compounds which could result in
even more aroma-active compounds in the mixture that are not detected after isola-
tion. Another issue which must be considered is the solubility of these compounds
in water, which has been shown to result in an increased presence of polar aromatic
compounds in brewed coffee relative to non-polar compounds [12].

Because of the extremely low concentrations at which aromatic compounds are of-
ten present, NIR spectroscopy is not an ideal method for detection. One technique
which has been demonstrated for in situ detection of aromatic compounds during
roasting is mass spectrometry (MS). In situ MS has been applied for process con-
trol and measurement of roast degree [20, 23, 29, 40, 60] and to measure individual
components that contribute to aroma [5, 24, 33, 34]. The changes in aromatic com-
pounds during roasting are complex and measuring changes in individual compounds
is not sufficient for controlling roast degree and aroma. These studies often resort to
chemometric techniques similar to those used in NIR to produce useful results from
MS data.

1.3.1 Controlling Coffee Flavors with the Roasting Temperature
Profile

The ability to control flavors and aromas independent of roast degree is of particular
interest to roasters, and several studies have focused on this. These studies typically
compare the effects of high temperature short time (HTST) roast profiles to low tem-
perature long time (LTLT) profiles and keep the roast degree constant using either the
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cracks, visible lightness, or Agtron number. The actual temperatures cannot be di-
rectly compared between studies because of differences in heat transfer effectiveness
between roasters.

Aroma is the most common subject for comparison, which has a higher total in-
tensity in the HTST roasts [30, 55]. When comparing the intensities by chemical
class, pyridines, which are associated with unpleasant fishy aromas, increased in LTLT
roasts, while ketones increased in HTST roasts, and total furans did not show signif-
icant change [44]. Comparing the aromatic composition of more varied temperature
profiles (e.g. starting at high temperature and switching to low) revealed that the full
temperature time history affects the volatile profile, and constant temperature profiles
may not be sufficient [30]. Another study compared the composition of coffee roasted
in a drum roaster and an air roaster with the same temperature profile and found that
they generated the same volatile profile, which indicates that conclusions made based
on one type of roaster can be applied to the other [5].

Studies comparing the effect of different temperature profiles on titratable acidity
found that the acidity is highest in HTST profiles [30, 58]. The peak acidity, which
occurs before the coffee reaches a light roast, decreases in HTST roasts, but the
roasts used in making this conclusion were very fast, reaching the end of first crack in
under 4 minutes [58].

Chlorogenic acids are of particular interest in coffee because they make up a high
fraction of the green bean mass, around 6.5% for arabica and 10% for robusta [37].
They also have antioxidant properties and are associated with bitterness in brewed
coffee [57]. Chlorogenic acids are highest in green coffee, and decrease with roast
degree, reaching less than half their initial concentration in a light roast [30, 58]. Similar
to titratable acidity, chlorogenic acids are highest in HTST roasts.

Sensory evaluations revealed that HTST roasts result in more oil migration and
less burnt flavor, both of which make them more suitable for dark roasts [58]. All these
results are interesting, but the lack of a consistent method of comparing roast degrees
makes them less useful, as it is impossible to compare results between studies. The
temperatures and times defining HTST and LTLT profiles also vary between different
studies, so there are still considerable gaps which must be filled for a complete under-
standing of how coffee flavor can be controlled with the roasting temperature profile.
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1.4 Objectives

The goal of this project was to improve the ability to control the roasting process and
consistently achieve desired flavor profiles in the roasted coffee using online NIR. The
primary focus was on roast degree, but the ability to measure flavor aspects in real
time and control these independent of roast degree by changing the temperature-time
roasting profile was also of interest. The following three objectives aided in obtaining
this goal.

1. Create a new roast degree scale based on the cracks. The first objective is to
use recorded audio during roasting to monitor the first and second crack events,
capture the start and end times of these events, and predict these times with
online NIR. These predictions will then be used to create a numerical scale for
roast degree. First and second crack are already commonly used as references
for roast degree in both commercial and home roasting, but the difficulty of pre-
dicting the start and end times of these events before they occur or even judging
the times after they occur currently limits the usefulness of this technique. Using
recorded audio to determine the exact times could be a useful and cost-effective
tool for home roasters, and using NIR to predict the events will provide a robust
measurement of roast degree for industrial roasters.

2. Compare roast degree scales. This consists of first developing a method for
comparing roast degree scales based on one or more roast dependent sensory
aspects of brewed coffee. Then, the objective is to create a simple roast de-
gree scale based on NIR absorbance and compare this to the scale based on
the cracks and to the industry standard roast degree based on visible lightness
measured on the CIELAB color scale. This will test the hypothesis that visible
lightness is not sufficient for measuring roast degree and NIR is capable of pro-
ducing a more reliable measurement. Acidity and body are two aspects strongly
associated with roast degree which have shown potential for being measured
with NIR. Titratable acidity can easily be measured in a chemical lab, but body
has only been measured by trained tasting panels. Lack of resources to per-
form tasting trials on the required scale will require exploring the possibility of
measuring body based on physical or chemical measurements if it is to be used.

3. Control coffee flavor independent of roast degree. The final objective is to
explore the ability to control flavor aspects of coffee at a given roast degree by
changing the roasting temperature-time profile. Studies have found that different
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roasting temperature-time profiles can affect the flavor and aroma. With the
ability to measure roast degree in situ, it is possible to show the extent to which
flavor aspects can be adjusted. This objective will focus on acidity as the flavor
aspect to control and roast degree based on NIR darkness.
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CHAPTER 2 Monitoring Coffee Roasting Cracks and Predicting
with in Situ NIR Spectroscopy

2.1 Abstract

The prediction of start and end times of the first and second crack events in roasting
coffee is feasible with in situ NIR spectroscopy. Roasting samples analyzed herein
consist of eight varieties of arabica coffee with different origins and processing meth-
ods, roasted with four temperature-time profiles. Real-time analysis of recorded audio
from coffee bean popping sounds provides a basis for determining the start and end
times of each major event. A custom in situ diffuse reflectance probe improved NIR
output, and PLS regression generated a separate model for each crack event. The
resulting PLS models show strong potential for process control implementation. A
newly developed roast degree scale based on the progression through crack events
is arguably more meaningful than common color cues to connect and correlate the
complex chemistries and consumer qualities in roasted coffee.

2.2 Introduction

Coffee roasting is a complex process involving three modes of heat transfer, elevated
pressure, transient evaporation, and changes in material density and phase occurring
at the same time as chemical reactions that produce hundreds of different chemical
species [28, 57]. These processes occur on a wide range of time scales, depending
on roasting conditions, with some roasts completing in under 10 min and others as
long as 20 min or more. Even with the same heat application and quantity of coffee
beans, differences in moisture levels, size, and chemical composition of the beans can
cause the coffee to roast to a different level [13, 14]. This makes the ability to judge the
roast degree in real time beneficial, but methods commonly used by roasters for this
judgement, such as color, aroma, and sounds emitted (cracking or popping) during a
roast, can be subjective and imprecise. One such method is based on the timing of
the first and second crack events.
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Two sets of popping sounds occur during roasting, referred to as first crack and
second crack. First crack is often described as sounding like popcorn popping, and
second crack is higher pitched and more frequent and numerous. These are used as
a reference for degree of roast (light roast begins near the end of first crack, dark roast
after the start of second crack). Beans are often observed to become oily soon after
the start of second crack (Figure 1.1), and oiliness is an important distinguisher for
dark roasts [48].

The causes of the cracks remain uncertain. First crack is often assumed to be
caused by pressure from water vapor and carbon dioxide within the beans, and second
crack is associated with oils migrating to the bean surface and sometimes attributed
to fracturing of the cell matrix [48, 61]. Two articles studied coffee in situ with mass
spectrometry and found spikes in caffeine and phenols during cracking but did not
distinguish between first and second crack [23, 33]. Two more studies have used
recorded audio during roasting to analyze the cracks, with the first study concluding
that first crack is higher amplitude and lower frequency, while the pops in second crack
occur at a higher rate [61]. The second study used neural networks to differentiate
between the first and second crack, claiming a 100% success rate [62].

A difficulty that arises from using the cracks as a measurement of roast degree in
small batches is the stochastic nature of the pops. The pops are caused by individual
beans, and differences in the beans or temperature variations within the roaster can
cause random variation in the times of the pops. Instead of attempting to listen for
the start and end of these events, this variability could be reduced by recording audio
during roasting and determining the time of each pop. Then with the full set of pop
times, the start and end of the events can be determined in a way that is not affected
as drastically by any single pop.

Even with the consistency gained with recorded audio, it is impossible to know
when the cracks will happen before they start, which is problematic when attempting
to use the cracks to judge the endpoint of roasts which fall between the first and
second crack, as do most light and medium roasts. This study will attempt to reduce
this uncertainty by predicting the start and end times of the events with in situ near
infrared (NIR) spectroscopy.

Multiple studies have used NIR to predict roast degree metrics, including color,
density, weight loss, and moisture content [2, 9, 25, 53]. Only one study [53], mea-
sured color in situ with a correlation coefficient of 0.89. Several recent studies have
measured other aspects of coffee with in situ NIR, including acidity, sucrose, roasting
disturbances, and antioxidant properties [15, 16, 52, 53]. Roast degree has also been
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measured based on color with NIR hyperspectral imaging [18].

The objectives of this research were to use audio recordings to determine the start
and end times of the first and second crack events during roasting, to use in situ NIR
spectroscopy with partial least squares (PLS) regression to predict the start and end
of the cracks, and to develop a numerical scale for roast degree (viz., a quantifier for
the more generic but typical light-medium-dark reference terms) based on the PLS re-
sults. Samples consisted of eight coffees of different origins roasted with four different
temperature profiles, and a new metric derived from the spectra, called NIR darkness,
aided in analysis.

2.3 Methods

2.3.1 Coffee Roasting

A Fresh Roast™ SR500 air roaster (Home Roasting Supplies, UT, USA) modified for
temperature control up to 250 °C and fan power control (0-24 VDC) roasted the coffee,
and an application developed in MATLAB controlled the roaster and collected data,
including time, inlet temperature, outlet temperature, heater power, and fan power.
Thermocouples measured air temperature entering and exiting the roasting chamber,
and adjustments in heater power controlled the inlet air temperature.

Table 2.1: List of coffee varieties used in this study

Coffee Origin | Processing

Method
| 1 | Honduras | Washed |
| 2 | Ethiopia | Washed |
| 3 | Brazil | Natural |
| 4 | Kenya | Washed |
| 5 | Indonesia | Washed |
| 6 | Guatemala | Washed |
| 7 | Colombia | Washed |
| 8 | Ethiopia | Natural |

Roasting samples consisted of eight arabica coffee varieties (Table 2.1) selected
from different regions and included washed and natural processing methods. The fo-
cus of this study was on improving the ability to produce high quality specialty coffees,
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which typically only consist of the arabica variety. Roasts consisted of only one vari-
ety, under the assumption that blending could be performed after roasting. Each roast
contained 120 g of green coffee.

Each variety ran with four different temperature-time profiles, which were designed
to mimic industrial roasts (Figure 2.1). In profiles 1 and 2, the roast ended after the
end of second crack, in profile 3, it ended after the start of second crack, and profile
4 ended approximately midway between the first and second cracks. Profiles 1 and
2 start at the same temperature and then deviate at 300 s, with profile 1 increasing
slowly and staying below 220 °C, and profile 2 quickly exceeds 220 °C to capture the
difference between fast and slow dark roasts. The cracks become less pronounced in
low temperature roasts (below 200 °C), which limits the extent to which the roast could
be slowed down. Profiles 3 and 4 were designed to capture the difference between
profiles which increase more slowly in the early stages of the roast.
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Figure 2.1: Inlet air temperature-time profiles used in roasting

2.3.2 Crack Detection

A microphone (CVL-1064, Cyber Acoustics, WA, USA) placed 5 cm from the air outlet
of the roaster recorded audio, and a MATLAB application analyzed the audio. The
application split the audio into 0.01-second intervals and performed a Fourier trans-
form on the data then averaged the amplitude of all frequencies between 4 and 7 kHz.
The algorithm counted a pop for any value more than twice the previous value. The
average times of the first and last five pops in each cracking event marked the start
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and end of the event, respectively.

2.3.3 In Situ NIR

A Si-Ware NeoSpectra SWS62221-2.5 Fourier transform NIR spectrometer (Si-Ware
Systems, Egypt) with a range of 1350-2500 nm captured in situ diffuse reflectance NIR
spectra through a 550 um diameter, 0.5 m long low OH fiber optic cable (Thorlabs, Inc.)
placed at a 3 cm distance from the side of the roasting chamber (Figure 2.2). Before
each roast, the spectrometer recorded three background spectra against a solid PTFE
cylinder placed inside the 1.5 mm thick glass roasting chamber. Two 50 W halogen
bulbs placed at a 45° angle from the fiber probe illuminated the chamber, and the
spectrometer captured a new NIR spectrum every 10 s during roasting. This differs
from the setup used in previous in situ NIR studies, which have placed the probe at a
distance of 2 mm from the roasting window [15, 16, 52, 53]. The increased distance
allows a larger area of the sample (6 cm?) to be captured by the probe, resulting in
improved averaging of inconsistencies in the coffee, but also requiring a more intense
light source.

Roasting

Halogen Lights
Chamber

Fiber Optic
Cable

Figure 2.2: Schematic of the roaster with NIR mount
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2.3.4 NIR Data Analysis

The NIR spectra underwent first-order Savitzky-Golay filtering in time with a window of
14 points preceding the current time for noise reduction [54]. This effectively applied
a linear regression to the last 140 s of data for each wavelength to provide a value for
the current time. The window size selection was based on the performance of the final
PLS models as there was a trade-off between noise reduction and responsiveness.
Although Savitzky-Golay is more commonly used in filtering across wavelengths, the
continuous acquisition of spectra used in this study also opened the possibility to filter
each wavelength in the time direction.

PLS regression in MATLAB utilized the libPLS library with autoscaling as the se-
lected pretreatment method and the leave-one-out method for cross-validation [39].
Additional pretreatment methods of interest included multiplicative scatter correction
(MSC) and orthogonal signal correction (OSC), but these were not used in the final
models. Analysis resulted in four separate PLS models, with one for each event (first
crack start, first crack end, second crack start, and second crack end).

The response variable (Y) for PLS regression is a continuous value which needs
to depict the proximity to the crack event of interest at the time an NIR spectrum
originated. If time were used for this variable, the result from the PLS model would
be the number of seconds before or after the crack event. The problem with this
approach is that the number of seconds is dependent on the temperature profile and
cannot be accurately judged from the NIR data alone. Instead, the response variable
was generated from NIR absorbance values (see section 2.4.2).

To optimize the accuracy of each model near the event of interest, the datasets
included only spectra close to the event. To achieve this, the cutoff for each model
was the previous and next event (e.g. the first crack end data set ranged from the start
of first crack to the start of second crack). If another crack event was not available
as a limit, a fixed limit of 100 s from the event became the cutoff, but the cutoff never
exceeded the start of the cooling sequence. Although spectra from every 10 s were
available throughout each roast, the filtering in time caused adjacent spectra to be
co-dependent, which is not conducive to good regression models. To mitigate this the
dataset included only one in every three available spectra, resulting in a 30-second
separation between specitra.

Randomly spitting the full dataset into 80% and 20% generated calibration and
prediction datasets, respectively. A separate prediction data set is used after the cre-
ation of the PLS model to test the results and check for overfitting by comparing the



22

root mean square error of calibration (RMSEC) to the root mean square error of pre-
diction (RMSEP). The coefficient of determination (R?) and range error ratio (2.1) are
additional test statistics generated from the prediction dataset for this study.

RER = (ymax — ymin)/RMSEP (2.1)

2.4 Results and Discussion

2.4.1 Sound Analysis

The ability to determine automatically whether the current event is part of the first
or second crack was of interest but did not prove to be possible with the methods
applied here. When listening to the cracks, there is a discernable difference in the
frequency of the sounds, with second crack having a higher frequency than first. The
Fourier transforms (Figure 2.3) of the sounds did not consistently show a difference
in the frequency of the two types of pops, so programmatically determining the type
of pop was not feasible. The peak frequencies observed in this research for both
first and second cracks were between 4 and 7 kHz. This differs significantly from
previous research, which reported the peak frequency from first crack at 800 Hz and
second crack at 15 kHz [61]. While the current research confirmed a higher amplitude
for first crack and a higher rate for second crack, both quantities displayed too much
variation to be useful in separating the two events. Instead, the method chosen for
discriminating between them was to manually input a time range for each event and
then allow the MATLAB app to determine more precise start and end times.

The crack detection algorithm results in a list of times for the individual pops in
the first and second crack, which can be used to determine the start and end times
of the events. Because of the stochastic nature of the pops, using the first and last
pop as the start and end of the event would result in too much variance in the event
times. A set of crack data from 12 roasts for first crack and 5 roasts for second crack
allowed several methods for using the complete set of pop times to determine the
event start and end times to be explored. Methods included first and last pop, a
formula based on the average and standard deviation of all the pop times, and using
the average of the first and last five crack times as the event start and end times. The
latter method showed the most success in representing the events while reducing the
dependence of the start and end times on individual cracks. Both events tail off at the
end (Figure 2.4), which can cause increased variability in the end time of the events



0.04
(@
(0]
©
2
= 0.02
1S
<
0 .
0 2000 4000 6000 8000 10000
Frequency (Hz)
0.015
[
g 0.01 F
.(_;1
£ 0.005
0 . . .
0 2000 4000 6000 8000 10000
Frequency (Hz)
0.04
(]
e)
2
=5 002 f
S
<
0 H . .
0 2000 4000 6000 8000 10000
Frequency (Hz)
0.02
()
(0]
©
2
= o0t f
1S
<
0 .
0 2000 4000 6000 8000 10000

Frequency (Hz)

Amplitude Amplitude Amplitude

Amplitude

-0.5

23

0.5

0.002

0.004 0.006 0.008 0.01
Time (s)

0.002

0.004 0.006 0.008 0.01
Time (s)

0.002

0.004 0.006 0.008 0.01

0
Time (s)
0.5
(h)
0 Wwwvwwmfvw»«ww

0

0.002

0.004 0.006 0.008 0.01
Time (s)

Figure 2.3: Fourier transform (left) and raw audio data from two first crack sounds
(a-d) and two second crack sounds (e-h)

based on the timing of the last few random cracks. The number of pops detected in
the 120 g (approximately 700 coffee beans) test batches roasted in these experiments
had an average of 48 pops in first crack and 93 in the second. The small number
of cracks observed caused some variation in the measurement of the start and end
times measured, especially at the end of both events where a tail is observed in the
distribution. The number of pops observed increased with roasting temperature for

both first and second crack.



24

80

-
o
o

(o]

o
[2]
o

(o2}
o

Number of Cracks
S
o

Number of Cracks
N
o

N

o
N
o

L

300 350 400 450 500 550 600 700 800 900
Roasting Time (s) Roasting Time (s)

Figure 2.4: Histograms of first crack times from 12 roasts (a) and second crack times
(b) from 5 roasts

2.4.2 NIR Spectra

As mentioned in section 2.3.4, a PLS response variable needed to be generated from
NIR absorbance to provide a continuous measure of proximity to each event. The
criteria identified for this variable were that it should change continuously throughout
the roast and have a minimal amount of random variation. To avoid random variation,
averaging a section of wavelengths proved to be helpful. Most of the NIR wavelengths
(Figure 2.5a) decrease in absorbance during roasting, but the change in absorbance
levels off in dark roasts, which is not ideal. The far-left region of the spectrum (1300-
1400 nm or 7692-7142 cm™) can be seen to increase in absorbance toward the end
of the roast, so subtracting this from a region on the right side helped to counteract
the leveling off. Based on these observations, the response variable was generated
by subtracting the mean absorbance between 7692 and 7142 cm™' from the mean ab-
sorbance between 6667 and 6250 cm™'. The resulting value was termed NIR darkness
(Figure 2.5b), which decreases with roast degree, contrary to darkness in the visible
spectrum. This NIR darkness is essentially a measure of roast degree, with arbitrary
units, and performed better in the PLS models than a single NIR wavelength. The re-
maining step in generating the response variable was to subtract the NIR darkness at
the crack event of interest (e.g. the start of first crack) from the current NIR darkness,
resulting in the NIR darkness offset value, which is positive before the event, zero at
the event, and negative after the event.

Spectral pre-processing with MSC is helpful in visualizing local changes in the
dataset (Figure 2.6). Seven regions with different features are labeled, and the most
active regions based on the change in absorbance are | (7700-7100 cm™), Il (7100-
6600 cm™), V (5500-5000 cm™"), and VIl (4650-4000 cm™). Regions Il and V are
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Figure 2.5: Time-series-spectral-overlay after Savitzky-Golay filtering taken during a
roast with the wavelengths used in the NIR darkness predictor (7700-7142 cm™ and
6667-6225 cm™) highlighted. (a). The resulting NIR darkness value vs time
throughout the roast (b).

associated with water which decreases during roasting [2, 26]. Other regions have
been associated with the major components of coffee based on the vibrational fre-
quency of chemical bonds or by separating the components and measuring their NIR
spectra, but there is a significant amount of overlap between the components, making
it difficult to attribute NIR peaks to specific components [49].
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Figure 2.6: MSC treated time-series-spectral-overlay with regions-of-interest labeled

The coffee NIR spectra observed in this study differ slightly from previous studies,
especially in region VII [2, 52], attributed to unique probe geometries, to the method
for background reference methods, and to the result of high temperatures used in
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roasting. In this study, the reference was taken using a block of PTFE inside the glass
roasting chamber.

To explore the effect of temperature on the NIR spectrum of coffee, it is useful to
look at spectra taken at the end of the roast during cooling. The cooling phase con-
sisted of turning off the heat and leaving the fan running to force room temperature air
through the coffee. Figure 2.7 shows the change in absorbance after 60 seconds of
cooling, during which time the coffee cools from 220 °C to below 100 °C. The rate of
cooling is fast enough that the effects of continued roasting reactions should not be a
major factor, and a significant change in absorbance is seen from 5000 cm™ to 4000
cm™'. Reducing the intensity of the light source by replacing the two 50 W bulbs with
a single 20 W bulb increased this effect while the high wavenumber range was unaf-
fected. This leads to the conclusion that the change is likely due to increased emission
at elevated temperatures as opposed to temperature dependence of reflectance. The
features found at 7000 cm™ and 4900 cm™" are more likely due to a change in reflec-
tivity, because they become more prominent with the more intense light source.
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s x50 W lights J
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Absorbance (AU)

7500 7000 6500 6000 5500 5000 4500 4000
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Figure 2.7: NIR spectrum before cooling subtracted from the spectrum after 60 s of
cooling comparing two light source intensities

2.4.3 PLS Models for Crack Prediction

Selection of pretreatment methods was based on their impact on the RMSE and R?
values of the PLS models. The first pretreatment applied was Savitzky-Golay filtering
in time, with a window size of 14 spectra. The window only included past spectra
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Table 2.2: PLS regression results. The number of points for each model is different
because of the selection criteria and includes both calibration and test data. ("Range
Error Ratio

Event Points | Y Min Y Max | PLS RMSEC RMSEP R? RER(™
Components (AU) (AU) Prediction
First Crack 213 -0.0788 | 0.0730 6 0.0061 0.0068 0.95 22.2
Start
First Crack 238 -0.0895 | 0.0772 8 0.0080 0.0091 0.92 18.3
End
Second Crack 191 -0.0875 | 0.0818 4 0.0042 0.0041 0.99 40.9
Start
Second Crack 134 -0.0094 | 0.0892 5 0.0060 0.0070 0.93 12.7
End

to insure this filtering would be possible in real time. Time filtering combined with a
10 s acquisition interval provided two benefits over the use of a longer window which
would not require filtering. First, it allows more frequent updates, which is beneficial
when using NIR to control the roasting process, and second, it allows more flexibility in
choosing the filtering time window that provides the best performance without affecting
the data acquisition window. Although some noise was visible in the wavelength direc-
tion after applying the time filter, applying Savitzky-Golay filtering across wavelengths
did not improve the PLS results. The final models used MSC pretreatment, but not
OSC, which failed to provide improvement in the results. The analysis also explored
using roast time as the response variable (Y) for generating the models instead of NIR
darkness. This would result in the models predicting the number of seconds from the
start and end of the cracks instead of the less useful NIR darkness number, but the
performance of the models suffered with this method. This is partially because the
time to the start and end of each crack event is dependent on the temperature-time
profile, which is not information contained in the NIR spectrum.

The results of the four models (Table 2.2 and Figure 2.8) varied in quality, but all
met standard minimum acceptance criteria [1]. An RER above 10 is recommended
for quality control and above 15 for quantification. All four models met the quality
control minimum, and only the second crack end model failed to meet the minimum for
quantification. The number of PLS components selected ensured that there was not a
large discrepancy between the RMSEP and RMSEC and the ratio did not exceed the
recommended maximum of 1.2.

The two crack start models performed better than the crack end models, which is
likely because the pops tail off at the end of both events, resulting in greater variance
in the observed end times. The model for start of second crack displayed the best fit,
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Figure 2.8: Prediction plots of PLS models vs measured NIR darkness offset (AU)
values. Values represent the change in NIR absorbance which will occur before the
event of interest. A value of 0 occurs at the event, positive values before, and
negative after. The four plots represent first crack start (a), first crack end (b), second
crack start (c), and second crack end (d).

with an R? of 0.99. This may be because of the appearance of oils on the bean surface
at the start of second crack, which would be expected to cause a distinct change in
the NIR absorbance at this time. In contrast, if first crack is caused by the sudden
expansion of water vapor in the center of the bean, this may not have as much impact
on the NIR spectrum observed at the surface. For the purposes of monitoring and
controlling the roast and determining the desired endpoint, the ability to predict the
end of first crack and the start of second are more important than the others, because
most roasts end between or near these events. Light roasts typically complete near
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Table 2.3: Reference numbers used in defining a roast degree scale based on the
crack events. A roast ending between two events receives a roast degree between
the two reference numbers. The exact value is determined by the output of the PLS
models.

| Event | Roast Degree |
| First Crack Start | -100 |
| First Crack End | 0 |
| Second Crack Start | 100 |
| Second Crack End | 200 |

the end of first crack, medium roasts between the two cracks, and dark roasts during
the first half of second crack, but rarely to the end [48].

2.4.4 Numeric Roast Degree Scale

Developing a numeric roast degree scale made the results of the PLS models more
useful in real time, allowing the results to be displayed as a single number instead of
four. Arbitrary numbers were assigned to the start and end of cracks as a reference
for this scale (Table 2.3). Herein, a roast ending at that start of first crack (much
lighter than most roasters would ever go) will have a roast degree of -100 (arbitrary
units), and a roast ending at the end of first crack would be 0 (a typical start point for
many light roasts). Roasts falling between two events are assigned a roast degree
by interpolation between the two reference numbers, using the PLS model output to
determine the exact value. For example, a roast ending during second crack with a
second crack start output of -0.02 and a second crack end output of 0.03 has a roast
degree of 140, as shown in equation (2.2). A more detailed example can be found in
Appendix J. On this scale, light roasts would typically fall between 0 and 50, medium
from 50 to 100, and dark roasts above 100. The use of this scale requires that the
proximity to the next event be known, which is only made possible in real time with the
values produced by the PLS models.

0.02
0.03 + 0.02

The result of this scale is shown in Figure 2.9, comparing the result of the PLS
models to the values measured based on recorded audio and NIR darkness. The pri-
mary source of noise is variations in the coffee beans passing in front of the sensor, so

RoastDegree = 100 + 100( ) =140 (2.2)
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increasing the size of the viewing window would decrease the influence of these fluc-
tuations and increase the prediction accuracy. This would be possible using a larger
roaster than the one in these experiments but would also require a larger diameter
fiber optic probe cable to supply enough light.
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Figure 2.9: Roast degree predictions from in situ NIR compared to actual roast
degree from crack times measured with a microphone

2.5 Conclusions

Based on PLS regression with audio recordings from coffee roasting, in situ NIR spec-
troscopy provides a reasonably accurate measuring technique for the prediction of the
start and end times of first and second crack events, which are key system state in-
dicators for a vast majority of desired roasting outcomes. The predictive model then
becomes the basis for establishing a new roast degree scale that can provide better
objectivity. This new roast degree provides a numerical scale to represent the pro-
gression through characteristic events in the roasting process for a more consistent
comparison of coffees with different origins and from different roasters. Additional
work is required to compare this scale to other common methods of measuring roast
degree, such as color and Agtron number, to be thorough in demonstrating the full
range of benefits and potential shortfalls of this new roast degree for industry and
consumer needs.
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CHAPTER 3 Online Determination of Coffee Roast Degree
toward Controlling Acidity

3.1 Abstract

Three methods of measuring coffee roast degree are compared using titratable acidity
as an indicator of roast-dependent flavor change. The first roast degree method was
based on the cracks, the second was based on NIR absorbance, and the third was
the common L* value from the CIELAB color space in the visible spectrum. Roasting
trials utilized arabica coffee from eight origins in an air roaster. A second dataset with
constant temperature roasts showed how acidity can be controlled by changing both
the roasting temperature and roast degree, finding the linear effects of roast time and
roast degree on acidity.

3.2 Introduction

Roast degree is the primary descriptor of roasted coffee and often the first consid-
eration consumers consider when buying coffee, though there is no consensus on
how roast degree should be measured. The most common method is based on vis-
ible color or lightness, determined visually or with color analyzers measuring on the
CIELAB color scale [36].

Unfortunately, the color of coffee is affected by factors other than roast degree,
such as the green coffee processing method, with dry processed coffees requiring
more time or higher temperatures to reach the same color as wet processed coffees
[37]. Additionally, research has shown that the relationship between color and mass
loss is different depending on the roasting temperature-time profile [29, 46]. These
observations indicate that color is not the best attribute on which to judge roast degree.

Several methods in addition to color have been used to determine roast degree.
The change in mass or density provides an indication of the cumulative chemical
change, and the water loss is often subtracted from the weight loss to give a value
called roast loss [37]. Because these methods cannot easily be applied on-line, they
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are not useful for controlling the roast in real time, but they could be made useful by
predicting with NIR spectroscopy [2]. Studies have also demonstrated the possibility of
determining roast degree based on statistical analysis of volatile compounds evolved
from the coffee [20, 23, 29, 40].

The first and second cracks, which are two sets of popping sounds typically occur-
ring at different times during the roast, may be the most common method for determin-
ing roast degree in real time. By itself, this method is subjective and difficult to judge
consistently, but the subjectivity can be removed by predicting the crack events with in
situ NIR spectroscopy and using the result to generate a numeric roast degree scale
(see Chapter 2).

Although there is evidence that visible color is deficient for measuring a robust
extent of roasting that is objectively consistent for taste, demonstrating the suitability of
another roast degree scale requires a more rigorous method of comparison. Since the
aim of roast degree is to communicate the roast-dependent flavor and aroma changes
in coffee, it would make sense to use measurements of a coffee flavor attribute to
compare roast scales.

Some important flavor attributes used for rating coffees include body, aroma, and
acidity [47]. Body is the tactile feeling of coffee in the mouth [47] and is generally
thought to increase during roasting from light to dark roasts, although it decreases
again in very dark roasts [22]. While it might make a good reference for comparing
roast degree scales, it is typically determined by sensory panel evaluation, and an
attribute that can be measured based on physical or chemical measurements is pre-
ferred [49]. Aroma also changes with roast degree, though due to a large variety of
chemical compounds generated in small quantities at different times in the roast [57].
This would make comparing coffees of different roast degrees by aroma difficult. Acid-
ity, which can be measured by titration, initially increases during a roast, then reaches
a peak and begins to decline [6, 52]. Most roasts end at some time after this peak
such that the acidity is typically considered to decrease monotonically with increasing
roast degree. The strong association with roast degree and simplicity of measurement
makes acidity an ideal attribute for comparing distinct roast degree scales.

Studies have shown that acidity is affected by roast temperature in addition to its
dependence on roast degree [30, 52, 58]. This is done by comparing the acidity
of high temperature-short duration roasts with low temperature-long duration roasts
while keeping the roast degree constant based on either the crack events or color
measurements. The results of these studies allude to the possibility of controlling
acidity at a given roast degree by altering the roast temperature profile, but additional
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data are required to quantify the extent to which acidity can be altered across different
roast degrees and varieties of coffee. This is an area where the quality and quantitative
accuracy of the roast degree scale are important, as it is used to differentiate the effect
of roast duration from the effect of roast degree. Other studies that have compared
coffee attributes under different roasting profiles at the same roast degree primarily
focused on volatile compounds and aroma [5, 44, 55].

The objectives of this research were to use titratable acidity from roasted coffee to
compare three roast degree scales and to use the best scale to explore the ability to
control acidity with the roasting temperature-time profile. These three scales consisted
of a simple scale based on NIR absorbance, a numerical scale generated from pre-
dictions of the start and end times of the first and second cracks with in situ NIR, and
visible lightness from the CIELAB color space. A new method of scaling the acidity by
the peak acidity for each coffee variety facilitated the comparison of titratable acidity
results from multiple varieties of coffee.

3.3 Methods

3.3.1 Roasting and Sampling

The roaster modifications and coffee varieties are described in section 2.1.1. The
same set of four roast profiles designed to simulate industrial drum roasts were used
to generate the dataset for comparing roast degree scales, with four samples removed
during each roast for acidity and color measurement. A separate set of constant inlet
temperature roasts generated the acidity control data set, with two samples removed
at selected roast degrees during each roast.

The fan power profile for each roast was slow enough that the lid could be removed
for sampling at any point in the roast without losing a large number of beans. A small
metal spoon removed 12-15 g of coffee for each sample, which was then placed in
an identical roasting chamber and cooled with room temperature air. The dataset
consisted of samples from eight varieties of coffee with four roasts per variety. After
roasting, a burr grinder (Cuisinart CBM-18N) ground the samples at the smallest grind
setting, at which 80% of the grounds could pass through a #40 sieve (425 pum).

3.3.2 In Situ NIR

The methods for measuring and analyzing /n Situ NIR were the same as described in
section 2.3.3.
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3.3.3 Ground NIR

A custom 3D-printed ground coffee diffuse reflectance probe allowed a large surface
area of ground coffee to be captured by the fiber optic cable for the spectrometer.
The 12-mm deep, 64-mm diameter sample tray exposed a surface area of 32 cm? of
coffee. Two 20-W halogen light bulbs with a color temperature of 2700 K illuminated
the sample. A 0.5-m long 550-um diameter low OH fiber optic cable (Thorlabs Inc.,
NJ, USA) placed 90 mm above the sample surface carried light to the spectrometer.
Three measured spectra were averaged for each sample.

3.3.4 Lightness Measurement

A portable color analyzer (CTI, China) with an 8-mm diameter viewing window mea-
sured lightness of the ground coffee samples in the CIELAB color scale (CIE, 2004).
The reported lightness values are averages of five samples.

3.3.5 Titratable Acidity

The standard method detailed by the Association of Official Agricultural Chemists in
AOAC 920.92 provided a basis for the titratable acidity procedure [4]. A 30-mL volume
of 80% ethanol extracted acids from 4 g of coffee at room temperature for 16 hours,
after which the samples were filtered and diluted to 150 mL with water. The titration
was performed using a pH probe with a pH of 7.0 as the titration endpoint instead of
phenolphthalein indicator. The samples were titrated with 0.05-M NaOH, and the result
was reported as the volume of 0.1 M NaOH required to neutralize a 100-g sample of
coffee (as specified in the AOAC method). A set of 6 repeat titrations resulted in a
measurement standard deviation of 10 mL of 0.1 M NaOH/100 g.

3.4 Results and Discussion

3.4.1 NIR Roast Degree

In Chapter 2, a quantity called NIR darkness provided the basis for measuring the
distance from the crack events. The selection of this property was based on its mono-
tonically decreasing behavior throughout the roast. Figure 3.1 shows some wave-
length ranges explored for deriving this quantity from the full set of spectra in Figure
2.5. Averaging the absorbance of ranges 100 nm wide reduced the noise from the
spectrometer and simulated the measurement that could be obtained with single color
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NIR LEDs in a simplified sensor design that might be produced at far lower cost than
implementing a full NIR spectrometer. Three ranges were evaluated for their unique
characteristics and suitability to such a designing such a sensor.
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Figure 3.1: Mean NIR absorbance over three wavelength ranges: 1300-1400 nm (a),
1500-1600 nm (b), and 1900-2000 (c) and the absorbance resulting from subtracting
two ranges: c-a (d) and b-a (e).

Although these spectra come from a single roast, the behavior was consistent
when observing data from other coffee varieties or roast profiles in this study. The
first range selected of 1300-1400 nm (7692-7143 cm™) decreases initially and then
begins to increase near 500 s into the roast. This would make the range a poor choice
for a roast degree scale, as it would produce the same value at two different times.
An additional inflection can be seen near 200 s, which can be observed in all three of
the wavelength ranges to some extent. The second and third ranges evaluated were
1500-1600 nm (6667-6250 cm™") and 1900-2000 nm (5263-5000 cm™"), respectively,
which primarily decrease throughout the roast but flatten out at the end. Again, this
change in rate would not be an ideal behavior for a simple roast degree scale because
of the difficulty in differentiating dark roasts in particular. Subtracting the 1300-1400
nm range from one of the higher ranges addresses these issues, keeping the value
from flattening out at the end in both cases. The approach found the best result with
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the middle wavelength range (3.1e), which removed the shoulder at 200 s and shows
a more constant slope early in the roast (before 300 s), whereas the higher range
(3.1d) appeared noisy early in the roast.

The resulting value is referred to as NIR darkness and is obtained by subtract-
ing the average absorbance of 1300-1400 nm from 1500-1600 nm. This results in a
roast degree scale capable of differentiating roasts at any level in real time rather than
grinding samples offline.
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Figure 3.2: NIR darkness (a) and visible lightness (b) plotted against time for all eight
coffee varieties roasted with profile 1.

3.4.2 Comparing NIR Darkness to Visible Lightness

Plotting NIR darkness and visible lightness values measured on ground coffee sam-
ples (Figure 3.2) against roast time for a single roast profile highlights the differences
between the two scales. The most noticeable difference is that NIR darkness displays
a lower level of noise. Although these plots include eight different varieties of coffee,
which cannot be expected to roast at the same rate, the increased consistency seen
in the NIR darkness plot provides evidence that improvement over that visible scale
can be achieved. This indicates that NIR darkness is less affected by differences in
coffee varieties, and instead is displaying the result of changes occurring during the
roast.
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3.4.3 Comparing Online and Ground NIR Darkness

NIR darkness values can be measured either in situ based on the whole beans in the
roaster or after roasting and grinding. Ground coffee measurements are a more direct
comparison to lightness measured on ground coffee (Figure 3.2), but online roast
degree measurements are more useful when controlling the roast. The online and
ground measurements (Figure 3.3) have a very strong correlation (coefficient of 0.99).
Therefore, the remaining results will use online measurements to validate conclusions
for roast degree measurement.
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Figure 3.3: Comparison of NIR darkness values measured online vs offline ground.

Although the correlation between online and ground NIR is strong, the difference
may still be useful to roasters. Agtron® roast analyzers, which are commonly used
in industry and base their measures on NIR, allow the roast degree to be compared
between whole bean and ground coffee. The difference is considered to measure
the development of the roast. If the whole bean measurement results in a darker
roast than ground samples, this indicates that the coffee may be underdeveloped, or
roasted too fast so that the inside of the bean did not reach a high enough temperature
to undergo the necessary reactions and produce satisfactory flavor. The roasts from
the acidity control portion of this study can be used in a similar manner (Figure 3.4).
The line through the faster roasts is higher than the line for the slower roasts, meaning
that the inside of the bean is less roasted than the outside in faster roasting.
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Figure 3.4: Comparing offline vs. ground NIR darkness correlation for high
temperature fast roasts to low temperature slow roasts with separate trend lines
(dotted).

3.4.4 Titratable Acidity Results

Titratable acidity results (Appendix A), reported as the quantity of 0.1 M NaOH re-
quired to neutralize the acidity from 100 g of coffee, ranged from a maximum of nearly
200 mL to as low as 20 mL. The highest acidity occurred near the end of first crack,
with the lowest values found at the darkest roasts. Slower, low-temperature roast-
ing conditions also decreased the acidity in a given variety. In addition to differences
caused by roasting, natural differences between coffees from different origins caused
a high degree of variation in acidity. This is best observed based on differences in the
peak acidity values measured for each variety, which varied from 146 to 199 mL 0.1 M
NaOH/100 g. Scaling the acidity results by the maximum acidity observed for that cof-
fee variety allowed this variation to be removed, emphasizing the differences caused
by roasting. The researchers verified that several acidity values were measured near
the peak of each variety to support the validity of the peak value, and subsequent con-
clusions were based on the set of eight varieties for statistical robustness. An example
of the observed acidity values and scaled values is found in Figure 3.5.
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Figure 3.5: Measured and scaled acidity values vs NIR darkness for one coffee
variety (Kenya).

3.4.5 Roast Scale Comparison

Results of the roast scale comparison by acidity (Figure 3.6) are split by roast pro-
file because the different profiles are not expected to yield the same acidity trends.
Samples from profiles 1 and 2 focused on acidity values after the peak acidity, so a
decreasing trend is observed. Both the crack scale and NIR darkness scale show
strong correlations to acidity measurements in the first two profiles, but more varia-
tion can be seen in the results on the visible lightness scale. Roast profiles 3 and
4 included some lighter samples removed before the peak acidity. In these roasts,
the peak acidity location can be clearly seen and shows the least variation on the
NIR darkness roast scale, especially in profile 4. The timing of this peak is especially
important in light roasts, which are often valued for their high acidity [48].

Fitting each of these graphs with polynomial regression allowed a numerical com-
parison of the correlations (Table 3.1). These results come from first-order fits of roast
profiles 1 and 2, which only contained samples after the peak acidity, and second-
order fits of profiles 3 and 4. In all cases, the crack scale and NIR darkness result in
better fit quality than visible lightness, and NIR darkness performs best in three of the
four profiles. Therefore, the NIR darkness roast degree scale appears to be the best
based on its strong correlation to coffee acidity.
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Figure 3.6: Comparing scaled titratable acidity values on three roast degree scales
(columns 1-3), separated by roasting temperature profile (rows 1-4). Points from each

roast are connected by lines representing eight coffee varieties.

The roast degree values at the start and end of the cracks can be used as another
method of comparing roast degree scales, as these are already used as industry ref-
erences. To determine the roast degree values at the crack events from ground coffee
samples, the roast degree values were interpolated between the two samples nearest
to the event. This method was used with NIR darkness as well as visible lightness. The
results are displayed as box plots (Figure 3.7), where more separation can be seen
between the NIR darkness results than visible lightness. It is especially important to
be able to differentiate first crack end from second crack start, which separate light and
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medium roasts, and second crack start from second crack end for dark roasts. Both of
these ranges overlap in the visible lightness measurements, which again makes NIR
darkness the better roast degree scale.

Table 3.1: Results of linear regression fits on the three roast degree scales vs. acidity.
Root mean square error (RMSE) values are in terms of unit-less scaled acidity.

| | Crack Scale | NIR Darkness | Visible Lightness |
| Profile | R | RMSE | R? | RMSE | R? | RMSE |
‘ 1 ‘ 0.94 ‘ 0.07 ‘ 0.96 ‘ 0.06 ‘ 0.77 ‘ 0.14 ‘
| |
| |
| |

2 093] 007 |096| 006 |075| 0.14
3 |08 | 007 |090| 005 |058| 0.10
4 | o066 | 009 |057| 010 | 051 | 0.1

These box plots provide a reference for assigning the common light, medium, and
dark roast ranges to the NIR darkness scale. The start of light roasting can be defined
by the average location of peak acidity, which occurs before the average end of first
crack. The transition to medium occurs between the crack events, and the transition
to dark roast is often set at the start of second crack. Based on this, the range 0.12 to
0.08 would correspond to light roasting, 0.07 to 0.05 would be medium, and 0.04 and
below would be dark.

02 35 p
—_—
JE—
0.15 30 F +
T
— - -
?
& 0.1 ®© 25f
(0] =
2 5 —
© 5 [ |
Q o L
= 0.05 B 20 .
=z Y B k%) -
== g '
— ==
—
oF — 15 F
-
0.05 . . . . . 10 . . . "
FCS FCE SCS SCE FCS FCE SCS SCE

Figure 3.7: Box plots showing the roast degree values at first crack start (FCS), first
crack end (FCE), second crack start (SCS), and second crack end (SCE) for NIR
darkness and visible lightness roast degree scales.
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3.4.6 Acidity Control Roast Profiles

A separate dataset, generated using constant inlet temperature roast profiles, demon-
strates the ability to control acidity during roasting. The outlet air temperature during
three sample roasts (Figure 3.8) provides insight into the coffee temperature relative to
the inlet air temperature, showing that the coffee approaches the inlet air temperature
in 300 s and surpasses the inlet temperature near 400 s due to exothermic roasting re-
actions. These times are related to the external heat transfer rate to the beans, which
is determined by air velocity and mixing, and consequently, these inlet temperatures
could not be applied to other roasters with the same results [17]. The more important
aspect to focus on in the following results is the effect of changes in temperature on
roast degree and acidity.
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Figure 3.8: Outlet air temperatures (solid line) during the first 500 s of three constant
inlet temperature roasts (dotted lines).

3.4.7 Acidity Control Roast Results

The results of the acidity control roasts (Figure 3.9) show the same acidity trends with
respect to roast degree and roast profile as have been reported previously [30, 52, 58].
The slope of the lines demonstrates decreasing acidity at a constant roast degree as
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the roast profile moves from high temperature-short duration to low temperature-long
duration. Based on the slopes, the relationship does not appear to change drastically
across roast degrees or coffee varieties. Acidity also decreases with increasing roast
degree (smaller NIR darkness values), but the exact relationship is not clear based on
this figure. Modeling these results helped to illustrate the relationships between four
parameters (roast temperature, roast degree, time, acidity).
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Figure 3.9: Constant temperature roast results for acidity control. Each line results
from multiple roasts with the same coffee variety, to approximately the same NIR
darkness roast degree, with different inlet air temperatures.

In Equation 3.1, scaled acidity is a linear function of roast degree (D) and time () in
seconds, with an adjusted R? of 0.95. Plotting of the residuals by time (Figure 3.10a)
showed a parabolic pattern, suggesting the possibility of a second-order relationship
in time. The selected model did not include this second-order term, in favor of the
simplicity found in a simple linear relationship that is independent of time and therefore
has more significance to the non-constant roast temperature profiles typically used in
industry. However, it is important to notice that the second-order term suggests a
reduction in the rate of acidity decrease with increased roasting time. The residuals by
roast degree (Figure 3.10b) show no pattern, indicating that the first-order fit in roast
degree is sufficient.
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Acidity = —0.0478t + 369D + 72.7 (3.1)
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Figure 3.10: Residuals of the acidity model by time (a) and NIR darkness roast
degree (b).

A second model shows the effect of time and temperature on roast degree. The
trend observed in roast degree (Figure 3.11) during constant temperature roasts was
a rapid initial decrease that levels off over time, which is not ideal for modeling with
linear regression. The relationship resembles a first-order decay model, and because
of its relevance to reaction kinetics, this became the basis of the nonlinear model.
The exponential decay (Equation 3.2) moves from an initial roast degree (D) to a
final roast degree (Dy) as a function of time (t) in seconds, but the final roast degree
increased with temperature. Using the measured average of 0.33 for the initial roast
degree and a linear relationship between final roast degree and time (Equation 3.3)
resulted in three terms in the combined model, and solving this model with nonlinear
regression in a standard error of 0.0095 NIR darkness units, with a range of 0.11 in
the NIR darkness values and T in °C.

D =D;— (Dy —0.33)e 000325 (3.2)
f f
D = —0.00518T + 1.06
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Figure 3.11: NIR darkness roast degree values observed in three example roasts
(solid lines) with the modeled results (dotted lines).

These two models for acidity and roast degree allow the relationship between the
four values to be viewed in a single plot (Figure 3.12), averaging differences between
coffee varieties, deviation in the NIR spectra, and titratable acidity to demonstrate
a simple relationship between the four values. This provides an indication of how
changing the roast degree, temperature, and time affects acidity.

Both industrial and home roasting often take place in drum roasters, which have
lower air velocities and require more time for the coffee to approach the inlet temper-
ature. The temperature and time values from this study cannot be applied directly to
these roasts. Instead, these relationships would be most valid in predicting the effect
of extending or shortening the final stage of the roast, when the coffee is near its final
temperature. For example, the slope of acidity at constant roast degree shows that
increasing the roast time by 5 minutes will decrease the acidity by about 14% of the
peak acidity. A similar comparison can be made with roast degree, where the acidity
from a light roast with NIR darkness of 0.10 to a medium roast at 0.06 will decrease
by about 15% if the roast time is held constant.
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Figure 3.12: Relationship between acidity, roast time, roast degree (shown by color),
and temperature (white lines) based on regression models for acidity and roast
degree.

3.5 Conclusion

Comparing three roast degree scales based on their correlations to titratable acid-
ity has shown that the NIR darkness and crack scales both correlate better to this
property than visible lightness on the standard CIELAB color scale. NIR darkness
performed best overall, and the greater simplicity of this scale makes it the recom-
mended candidate for measuring roast degree, especially for future studies on other
coffee properties. Measuring titratable acidity over a wide array of roast temperatures
and times and then modeling the result allowed quantification of the relationships be-
tween acidity, roast time, and roast degree. Additional work to extend these results
to other coffee attributes such as body, sweetness, aroma, or bitterness will help in
developing a more complete understanding of the ability to target and control coffee
flavors through the roast and lead to a roast degree scaling methodology with greater
and more robust degrees of freedom for coffee attribute prediction and production.
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CHAPTER 4 Conclusion and Recommendations

The results of this project show how NIR can be a useful tool for coffee roasting,
providing real time feedback on roast degree to improve the roaster’s ability to achieve
a consistent result, and providing a reference for controlling coffee acidity independent
of roast degree.

The use of recorded audio to determine crack times during roasting could be a
useful, low cost tool for home roasters, removing some doubt as to when a past crack
event started, reached a peak frequency, and ended. Predicting the start and end of
these events with NIR spectroscopy and displaying the results in a new roast scale re-
moves even more of the uncertainty in determining roast degree based on the cracks,
providing a numerical scale which can be used to consistently achieve the same roast
degree.

A new method for comparing roast degree scales based on measurements of im-
portant sensory attributes allowed the new crack scale to be compared to two other
scales, with titratable acidity as a basis for comparison. This provided some validity to
claims that visible color has shortcomings for measuring roast degree and showed that
NIR measurements are more strongly tied to coffee acidity than visible lightness. Over-
all, the simple scale based on NIR absorbance from two wavelength ranges, called
NIR darkness, performed best based on its strong tie to the peak acidity location. This
roast scale does not require the hundreds of wavelengths provided by an NIR spec-
trometer and could potentially be measured by a lower cost sensor accessible to small
industrial roasters or even home roasters.

The recommended NIR darkness sensor design uses two single-wavelength LEDs
at 1350 and 1550 nm (7407 and 6452 cm™), have a reported wavelength range of 100
nm around the reported center, which is similar to the range used in developing the
NIR darkness scale. The sensor would operate by turning on one set of LEDs, mea-
suring the reflectance with the InGaAs photodiode, and then switching to the other
set of LEDs and reading the reflectance again. This cycle could be repeated multiple
times per second, depending on the response time of the LEDs and photodiode. The
background signal due primarily to direct reflectance off of the glass roasting chamber
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should be measured by reading the signal of both LED colors with the roasting cham-
ber empty, providing a reference for 0% diffuse reflectance. The maximum reflectance
should be measured by placing a piece of Teflon inside the roasting chamber and read-
ing the two signals again as 100% diffuse reflectance. Finally, the reflectance values
would be converted to absorbance and then subtracted from each other to produce
the NIR darkness output.

«— Glass Roaster Window
1350 nm LEDs
1550 nm LEDs

InGaAs Photodiode

Controller

Figure 4.1: Design of a simple NIR darkness sensor.

Many NIR studies focus on directly measuring coffee aspects with NIR, and this
would provide another valuable online roasting tool. Applying PLS regression to the
acidity data from this study demonstrated this possibility and also showed the ability
of the PLS model to respond to the acidity differences between different temperature
profiles to the same roast degree (Appendix G).

The real time feedback provided by NIR darkness facilitated the measurement of
simple numerical relationships describing the effects of roast degree and roast time
on acidity during constant temperature roasts. This shows how roasters can control
acidity by changing the roast temperature profile.

Future work could include extending these methods to other flavor characteris-
tics for a more complete understanding of how coffee can be controlled by roasting.
The ability to measure body in coffee would be especially useful in strengthening the
roast scale comparison because increased body is an important characteristic of dark
roasts. During the current project, tests to determine whether contact angle is related
to body in coffee did not reveal a significant relationship, and neither did turbidity or
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viscosity (Appendix F). Dissolved oils in brewed coffee and tannins are two additional
measurements which may be worth exploring for their relation to body.

Body or another coffee attribute could be measured and used to compare roast
scales in a similar analysis to section 3.4.5. If the new analysis results in the same
conclusion, this would strengthen the comparison between NIR and visible roast de-
gree, especially in dark roasts. If the results do not show the same conclusion, it may
still be possible to modify the NIR roast scale to use different wavelengths that corre-
late well to both attributes. Additionally, a new measured attribute could be used to
develop models similar to those in section 3.4.7, which shows the relationship between
acidity, roast degree, temperature, and roast time. The new relationship may show a
different correlation with other attributes than these, in which case the model may take
a different form. For example, in the case of sucrose, a previous study suggested that
sucrose is highly affected by the coffee temperature [53]. In this case, it may be best to
model sucrose as a function of temperature instead of time. Determining the response
of multiple attributes to different roasting conditions would create a new opportunity to
control different combinations of these attributes (e.g. roast degree, acidity, and body)
relative to each other using roast temperature profiles, which would provide an exciting
new tool to enhance the art of coffee roasting.
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APPENDIX A Roast Degree Acidity Data

o6

Table A.1: Titratable acidity results for 32 roasts with 4 samples per roast. Used for
comparing roast degree scales and to generate a PLS model based on acidity.

Sample | Variety Roast | Roast | Acidity Online Visible Crack

Profile | Time | (mL 0.1 MNaOH | NIR Lightness | Roast

/100 g coffee) Darkness Degree
| 1 | Honduran |1 | 520 | 129.1 | o084 | 208 | 16 |
| 2 | Honduran |1 | 630 | 83.3 | 0052 | 176 | 107 |
| 3 | Honduran |1 | 755 | 48.7 | 0021 | 183 | 167 |
| 4 | Honduran |1 | 905 | 437 | 0002 | 165 | 208 |
| 5 | Honduran | 2 | 490 | 146.7 | 0084 | 216 | -14 |
| 6 | Honduran | 2 | 595 | 78.9 | 0038 | 194 | 128 |
| 7 | Honduran | 2 | 665 | 55.2 | o015 | 168 | 175 |
| 8 | Honduran |2 | 750 | 34.4 | -0013 | 145 | 208 |
| 9 | Honduran | 3 | 425 | 137.6 | 0104 | 258 | 52 |
| 10 | Honduran | 3 | 505 | 119.9 | 0083 | 214 | -8 |
| 11 | Honduran | 8 | 585 | 90.0 | 0055 | 175 | 98 |
| 12| Honduran | 3 | 620 | 87.2 | 0042 | 192 | 125 |
| 13 | Honduran | 4 | 380 | 96.1 | o131 | 367 | -138 |
| 14 | Honduran |4 | 455 | 142.8 | o110 | 288 | -62 |
| 15 | Honduran | 4 | 537 | 115.6 | o008 | 208 | 37 |
| 16 | Honduran | 4 | 600 | 85.8 | o058 | 168 | 78 |
| 17 | Ethiopian Washed | 1 | 490 | 153.7 | o100 | 213 | -6 |
| 18 | Ethiopian Washed | 1 | 595 | 1275 | oo | 184 | 35 |
| 19 | Ethiopian Washed | 1 | 750 | 737 | 002 | 158 | 122 |
| 20 | Ethiopian Washed | 1 | 1120 | 19.1 | -0041 | 117 | 212 |
| 21 | Ethiopian Washed | 2 | 485 | 152.0 | o009 | 176 | 7 |
| 22 | Ethiopian Washed | 2 | 575 | 108.5 | o042 | 181 | 110 |
| 23 | Ethiopian Washed | 2 | 645 | 79.9 | o006 | 149 | 175 |




| 24 | Ethiopian Washed | 2 | 815 | 29.3 | -0021 | 125 | 193 |
| 25 | Ethiopian Washed | 3 | 395 | 156.4 | o013 | 274 | 67 |
| 26 | Ethiopian Washed | 3 | 460 | 1711 | o102 | 223 | 17 |
| 27 | Ethiopian Washed | 3 | 555 | 125.9 | o058 | 185 | 66 |
| 28 | Ethiopian Washed | 3 | 610 | 105.2 | o032 | 172 | 121 |
| 29 | Ethiopian Washed | 4 | 395 | 119.1 | o166 | 317 | -107 |
| 80 | Ethiopian Washed | 4 | 480 | 177.9 | 0108 | 245 | 21 |
| 31 | Ethiopian Washed | 4 | 545 | 1455 | o082 | 173 | 3 |
| 82 | Ethiopian Washed | 4 | 585 | 131.7 | oo0s8 | 182 | 81 |
| 33 | Brazil Natural |1 | 520 | 136.4 | o089 | 172 | 31 |
| 34 | BraziNawral | 1 | 620 | 104.6 | o060 | 168 | 87 |
| 85 | Brazil Natural |1 | 715 | 72.0 | 0020 | 147 | 127 |
| 86 | BrazilNatural | 1 | 914 | 24.4 | 0014 | 115 | 204 |
| 87 | Brazil Natural | 2 | 475 | 145.0 | o100 | 175 | 2 |
| 88 | BrazilNatural | 2 | 585 | 92.2 | 0021 | 144 | 145 |
| 39 | Brazil Natural | 2 | 640 | 54.4 | -0008 | 105 | 190 |
| 40 | Brazil Natural | 2 | 700 | 31.0 | -0033 | 82 | 222 |
| 41 | Brazil Natural |3 | 402 | 160.5 | 0129 | 222 | -54 |
| 42 | BrazilNatural | 3 | 494 | 130.9 | oo0e4 | 184 | 78 |
| 43 | Brazil Natural | 8 | 542 | 96.4 | 0033 | 146 | 128 |
| 44 | BrazilNatural | 3 | 570 | 85.1 | 0021 | 131 | 153 |
| 45 | Brazil Natural | 4 | 385 | 123.7 | o156 | 207 | 111 |
| 46 | Brazil Natural |4 | 475 | 160.1 | o109 | 180 | 21 |
| 47 | BrazilNatural | 4 | 540 | 133.7 | 0070 | 171 | 60 |
| 48 | Brazil Natural | 4 | 568 | 116.8 | 0054 | 143 | 97 |
| 49 | Kenya |1 | 473 | 175.2 | o088 | 177 | 34 |
| 50 | Kenya |1 | 605 | 114.9 | 003t | 166 | 134 |
| 51 | Kenya |1 | 665 | 82.7 | 0017 | 153 | 167 |
| 52 | Kenya 1| 721 | 59.7 | 0004 | 138 | 179 |
| 53 | Kenya |2 | 418 | 184.1 | o105 | 206 | 24 |
| 54 | Kenya | 2 | 515 | 139.6 | o050 | 170 | 97 |
| 55 | Kenya | 2 | 582 | 99.1 | 0020 | 147 | 158 |
| 56 | Kenya | 2 | 688 | 46.8 | -0016 | 122 | 208 |
| 57 | Kenya | 3 | 385 | 177.1 | 0134 | 247 | 55 |
| 58 | Kenya |8 | 481 | 1787 | o090 | 186 | 39 |




| 59 | Kenya | 8 | 513 | 153.6 | o065 | 182 | 63 |
| 60 | Kenya | 3 | 560 | 119.0 | 0034 | 158 | 117 |
| 61 | Kenya | 4 | 390 | 151.7 | 0151 | 264 | -104 |
| 62 | Kenya |4 | 450 | 187.1 | o112 | 216 | -18 |
| 63 | Kenya | 4 | 534 | 162.3 | ooes | 182 | 61 |
| 64 | Kenya | 4 | 560 | 147.1 | o049 | 151 | 96 |
| 65 | Indonesia |1 | 433 | 186.1 | o110 | 287 | -14 |
| 66 | Indonesia |1 | 530 | 159.4 | 0074 | 186 | 64 |
| 67 | Indonesia |1 | 625 | 1147 | o040 | 186 | 102 |
| 68 | Indonesia |1 | 990 | 26.2 | -0083 | 134 | 208 |
| 69 | Indonesia | 2 | 435 | 181.9 | o109 | 227 | 15 |
| 70 | Indonesia | 2 | 535 | 1347 | o057 | 176 | 75 |
| 71 | Indonesia | 2 | 615 | 94.7 | o015 | 164 | 152 |
| 72| Indonesia | 2 | 705 | 49.0 | 0021 | 138 | 198 |
| 78 | Indonesia | 3 | 388 | 159.4 | o151 | 248 | -89 |
| 74 | Indonesia | 8 | 465 | 187.8 | 0095 | 210 | 37 |
| 75 | Indonesia | 3 | 565 | 1825 | o048 | 190 | 90 |
| 76 | Indonesia | 8 | 595 | 116.7 | 0034 | 182 | 111 |
| 77 | Indonesia | 4 | 360 | 96.2 | 0179 | 342 | -143 |
| 78 | Indonesia |4 | 455 | 178.0 | o115 | 265 | 6 |
| 79 | Indonesia | 4 | 514 | 169.7 | o082 | 214 | 55 |
| 80 | Indonesia | 4 | 560 | 1416 | 0050 | 175 | 93 |
| 81 | Guatemala |1 | 485 | 166.2 | o105 | 226 | -13 |
| 82 | Guatemala | 1 | 600 | 1335 | 0083 | 172 | 66 |
| 83 | Guatemala |1 | 695 | 103.6 | 0026 | 168 | 121 |
| 84 | Guatemala |1 | 957 | 37.8 | -0081 | 132 | 206 |
| 85 | Guatemala | 2 | 480 | 163.5 | o106 | 199 | 15 |
| 8 | Guatemala | 2 | 566 | 136.3 | o066 | 193 | 70 |
| 87 | Guatemala | 2 | 655 | 107.9 | 0025 | 158 | 128 |
| 88 | Guatemala |2 | 901 | 337 | -0034 | 123 | 202 |
| 89 | Guatemala | 8 | 455 | 171.9 | o121 | 241 | 12 |
| 90 | Guatemala |3 | 522 | 168.6 | 0098 | 192 | 18 |
| 91 | Guatemala | 8 | 583 | 144.4 | o070 | 180 | 63 |
| 92 | Guatemala | 3 | 657 | 118.8 | 0032 | 178 | 125 |
| 93 | Guatemala | 4 | 395 | 112.4 | 0150 | 308 | -130 |




| 94 | Guatemala | 4 | 480 | 1743 | o115 | 241 | 31 |
| 95 | Guatemala | 4 | 538 | 167.0 | 009t | 200 | 38 |
| 96 | Guatemala | 4 | 562 | 159.0 | o077 | 178 | 49 |
| 97 | Colombia |1 | 470 | 188.4 | o113 | 227 | & |
| 98 | Colombia |1 | 560 | 163.1 | o085 | 171 | 17 |
| 99 | Colombia |1 | 635 | 187.7 | 0055 | 179 | 78 |
| 100 | Colombia AR 31.9 | -0028 | 127 | 202 |
| 101 | Colombia | 2 | 485 | 180.4 | o111 | 202 | 29 |
| 102 | Colombia | 2 | 550 | 161.7 | o077 | 177 | 49 |
| 103 | Colombia | 2 | 648 | 1185 | 0020 | 169 | 119 |
| 104 | Colombia | 2 | 889 | 42.9 | -003 | 133 | 221 |
| 105 | Colombia | 8 | 445 | 1916 | 0120 | 280 | -24 |
| 106 | Colombia | 3 | 520 | 185.0 | 009t | 194 | 25 |
| 107 | Colombia | 8 | 585 | 1493 | o065 | 169 | 68 |
| 108 | Colombia | 3 | 650 | 121.4 | 0034 | 181 | 106 |
| 109 | Colombia | 4 | 380 | 1075 | 0160 | 340 | -128 |
| 110 | Colombia |4 | 480 | 198.7 | o107 | 286 | 2 |
| 111 | Colombia | 4 | 533 | 1736 | 0084 | 191 | 41 |
| 112 | Colombia | 4 | 560 | 165.9 | o069 | 174 | 57 |
| 113 | Ethiopian Natural | 1 | 490 | 156.5 | o098 | 286 | -28 |
| 114 | Ethiopian Natural | 1 | 585 | 130.5 | 0070 | 185 | 28 |
| 115 | Ethiopian Natural | 1 | 713 | 90.8 | 0025 | 165 | 125 |
| 116 | Ethiopian Natural | 1 | 935 | 33.6 | -0020 | 114 | 192 |
| 117 | Ethiopian Natural | 2 | 522 | 148.6 | 0089 | 197 | 11 |
| 118 | Ethiopian Natural | 2 | 576 | 135.9 | o007t | 170 | 34 |
| 119 | Ethiopian Natural | 2 | 711 | 87.0 | 0021 | 170 | 139 |
| 120 | Ethiopian Natural | 2 | 836 | 48.2 | -0003 | 140 | 171 |
| 121 | Ethiopian Natural | 3 | 498 | 162.5 | o106 | 229 | 45 |
| 122 | EthiopianNatural | 3 | 580 | 147.8 | o087 | 191 | 36 |
| 123 | EthiopianNatural | 3 | 640 | 127.4 | o069 | 193 | 34 |
| 124 | EthiopianNatural | 3 | 730 | 94.6 | o003 | 174 | 99 |
| 125 | Ethiopian Natural | 4 | 405 | 93.2 | 0145 | 366 | -147 |
| 126 | Ethiopian Natural | 4 | 535 | 164.6 | 0109 | 284 | -39 |
| 127 | Ethiopian Natural | 4 | 615 | 1446 | o080 | 189 | -9 |
| 128 | EthiopianNatural | 4 | 660 | 93.6 | o070 | 193 | 41 |




APPENDIX B Crack Data

Table B.1: Crack start and end times determined by recorded audio from 32 roasts
with 8 coffee varieties and 4 roast temperature profiles.

Variety Roast | First First Second Second
Profile | Crack Crack Crack Crack
Start (s) End (s) Start (s) End (s)
| Honduran 1 | s | 529 | 594 | 860 |
| Honduran 2 | s | s04 | 572 | 711 |
| Honduran 3 | o | 520 | 58 | 0 |
| Honduran |4 | 422 | 539 | 0 | 0 |
| Ethiopian Washed | 1 | 349 | 521 | 680 | 1092 |
| Ethiopian Washed | 2 | 342 | 482 | 586 | 771 |
| Ethiopian Washed | 3 | 349 | 512 | 601 | 0 |
| Ethiopian Washed | 4 | 387 | 516 | 0 | 0 |
| Brazil Natural |1 | 388 | 45 | e51 | 0 |
| Brazil Natural 2 | 889 | 474 | 32 | 670 |
| Brazil Natural | 3 | 873 | 426 | 520 | 0 |
| Brazil Natural |4 | 396 | 499 | 0 | 0 |
| Kenya 1 | 846 | 412 | s62 | 689 |
| Kenya 2 | s | 45 | 5518 | 659 |
| Kenya 3 | 84t | 414 | 551 | 0 |
| Kenya |4 | 384 | 463 | 0 | 0 |
| Indonesia 1 | 870 | 405 | 619 | 949 |
| Indonesia 2 | s34 | 46 | 66 | 687 |




| Indonesia | 3 | 340 | 409 | 587 | 0 |
| Indonesia 4 | 872 | 419 | 0 | 0 |
| Guatemala 1 | st | s06 | 637 | 926 |
| Guatemala 2 | 882 | 459 | 602 | 858 |
| Guatemala |3 | 395 | 469 | 643 | 0 |
| Guatemala 4 | a7 | 48 | 0 | 0 |
| Colombia 1 | 857 | 46 | 669 | 1084 |
| Colombia 2 | se4a | 478 | 607 | 858 |
| Colombia | 3 | 384 | 46 | 641 | 0 |
| Colombia 4 | 43 | s09 | o | o |
| EthiopianNatural | 1 | 379 | 540 | et | 897 |
| EthiopianNatural | 2 | 407 | 588 | 652 | 818 |
| EthiopianNatural | 3 | 424 | 541 | 726 | 0 |
| EthiopianNatural | 4 | 464 | 587 | o | 0 |
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APPENDIX C Crack PLS Coefficients

PLS models consist of a matrix of coefficients which are multiplied by the matrix of
predictor variables to determine the response variable. These predictors indicate the
effect each wavelength has on the output and can be used to determine the most
important regions of the spectrum for a given model. A higher the coefficient mag-
nitude signifies a higher influence for that predictor, but if the value of the predictor
does not change between different data points, the influence of that predictor will be
low independent of the coefficient value. To account for this, the coefficients can be
multiplied by the standard deviation of the corresponding predictor value to generate
an importance value for each wavelength (Figure C.1).

Importance

7500 7000 6500 6000 5500 5000 4000

Importance

7500 7000 6500 6000 5500 5000 4500 4000
Wavenumber (cm'1)

Figure C.1: Absolute value of the PLS predictor importance in the models for first
crack (a) and second crack (b) with the most important regions labeled A-F. Results
have been smoothed to improve readability.



APPENDIX D Scaled Acidity Plots
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Figure D.1: Acidity scaled by the maximum acidity measured. First 4 varieties.



Indonesia
~ T 9 * O Profiled| |
= ® ® Profile 2
2 osf o % Profile 3| 1
i L Profile 4
S o6} !
> 1 ®
3 04f :
<
®
0.2 F T T T L
0.15 0.1 0.05 -0.05
Online NIR Darkness
Colombia
1 3 . -
*® o Profile 1
.:g xq - ®  Profile2
Bost U " % Profile3|
T’é o Profile 4
= 06} » !
>
S
<(E) 0.4 F L
02 F 4 4 4 @ .
0.15 0.1 0.05 -0.05

Online NIR Darkness

Acidity/Max Acidity

Acidity/Max Acidity

o
o

o
o

o
~

o
o

o
e

o
o

o
~

64

Guatemala
b~ O  Proflet| |
® Profile 2
’6 % Profile3| -
Profile 4
0.15 0.1 0.05 0 -0.05
Online NIR Darkness
Ethiopian Natural
Y -
(o) O  Profilet
¢ ®  Profile2
Q % Profile3|
Profile 4
xQ |
®
0.15 0.1 0.05 0 -0.05

Online NIR Darkness

Figure D.2: Acidity scaled by the maximum acidity measured. Last 4 varieties.
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APPENDIX E Acidity Control Data

Table E.1: Data from constant temperature roast profiles for acidity control described
in Chapter 3

Variety Roast Roast | Relative | Online Ground
Temperature | Time Acidity NIR NIR
(°C) (s) (%) Darkness | Darkness

| Colombia | 195 | 550 | 773 | 0098 | 0152 |
| Colombia | 195 | 1150 | 401 | 0048 | o0.104 |
| Colombia | 200 | 560 | 792 | 0097 | 0159 |
| Colombia | 200 | 980 | 466 | 0049 | 0106 |
| Colombia | 205 | 380 | 890 | 0095 | o166 |
| Colombia | 205 | 528 | 663 | 0051 | 0113 |
| Guatemala | 204 | 488 | 736 | 0064 | 0128 |
| Guatemala | 204 | 773 | 382 | o018 | 0075 |
| Guatemala | 208 | 440 | 794 | 0063 | 0134 |
| Guatemala | 208 | 630 | 454 | o018 | 0071 |
| Guatemala | 220 | 350 | 832 | 0044 | 0117 |
| Guatemala | 220 | 402 | 616 | 0013 | 0077 |
| Ethiopia Washed | 180 | 1200 | ee6 | 0120 | 0174 |
| Ethiopia Washed | 185 | 800 | 795 | o118 | 0177 |
| Ethiopia Washed | 190 | 600 | 871 | o012t | o018 |
| Ethiopia Natural | 190 | 620 | 82 | 0108 | 0165 |
| Ethiopia Natural | 190 | 1015 | 513 | 0080 | 0135 |
| Ethiopia Natural | 198 | 413 | 96 | o110 | 0173 |




| Ethiopia Natural | 198 | 610 | 683 | 0079 | o141 |
| Ethiopia Natural | 205 | 357 | 987 | o109 | o0.166 |
| Ethiopia Natural | 205 | 457 | 827 | 0079 | 0145 |
| Brazil Natural | 187 | 535 | 83 | 0117 | o0.166 |
| Brazil Natural | 187 | 715 | es7 | 0098 | 0147 |
| Brazil Natural | 194 | 485 | 899 | 0114 | 0165 |
| Brazil Natural | 194 | 585 | 773 | 0097 | o152 |
| Honduras | 200 | 125 | 301 | 003 | 008 |
| Honduras | 203 | 875 | 383 | 0029 | 008 |
| Honduras | 210 | 555 | 522 | 0028 | 008 |
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APPENDIXF Coffee Body Measurement Attempts

F.1 Contact Angle

These experiments attempted to determine whether contact angle can be used to
measure body in coffee. The perceived body of coffee increases with roast extent
and this is often associated with the amount oil dissolved in the coffee. The research
question here was whether changes in contact angle are related to the amount of oil
dissolved in brewed coffee and consequently, body. The oils may act as surfactants
on the surface of the droplet, reducing the surface tension and decreasing the contact
angle.

A goniometer read contact angles of droplets placed on a thin glass slide coated
with Rain-X®. The slide was placed on a heated aluminum block for temperature
control. Contact angles was measured on the right and left edge of 10-20 droplets,
and this was repeated for three roasts degrees on the same batch of brewed coffee.
This test showed an increasing trend in the contact angle with roast extent, which is
opposite to the expected trend, bringing the contact angle closer to that of pure water
(104°).
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Figure F.1: Contact angle on Rain-X® coated slides on an aluminum block heated to
70 °C.

The same test performed with the coffee in a boiling water bath to keep it from
cooling before removing samples no longer showed the upward trend as the roast
degree increased, but there was not a significant difference between the means. It is
possible that the trend here was caused by oils in the coffee, but the differences in
contact angle were not pronounced enough to provide useful data with this method.
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Figure F.2: Contact angle on Rain-X® coated slides on an aluminum block heated to
70 °C with the brewed coffee kept in a boiling water bath.

Repeating the test above on Indium Tin Oxide coated slides (a less hydrophobic
surface) resulted in an upward trend again, but still not a significant difference.
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Figure F.3: Contact angle on InSnO coated slides on an aluminum block heated to 70
°C with the brewed coffee kept in a boiling water bath.

Changing the slide heating to human body temperature and using unheated slides
(Figure F.4) reproduced the sudden cooling which occurs when drinking coffee. The
hypothesis was that this could cause oils to precipitate out and change the surface

tension. These tests did not show any significant difference between roast levels.
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Figure F.4: Rain-X® coated slides heated to 37 °C (a) and InSnO coated slides
without heating (b). In both cases, the coffee was in a boiling water bath until

removed for sampling.
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F.2 Viscosity

Body in coffee is sometimes used interchangeably with the term viscosity, as the
mouth-feel of coffees with more body can give the impression of being thicker. Mea-
suring the viscosity of unfiltered brewed coffee in a 75 °C water bath at different roast
degrees did not show a significant difference in viscosity between light and dark roasts
(Table F.1). Kinematic viscosity measurements came from a size 25 Cannon-Fenske
viscometer, and specific gravity measured by weighing cooled coffee in a 50 mL vol-
umetric flask allowed the dynamic viscosity to be calculated. Between each mea-
surement, the viscometer was cleaned with ethanol and water. The viscosity of water
measured before and after measuring the coffee viscosity demonstrated no issues
with fouling.

Table F.1: Coffee viscosity results

Time (s) | Kinematic | Specific | Dynamic
Viscosity Gravity Viscosity
(cSt) (cP)

\ Water \ 218.3 \ 0.437 \ 1 \ 0.448 \
| Light Roast | 235.5 | 0.471 | 1.0064 | 0.480 |
| Medium Roast | 235.0 | 0.470 | 1.0064 | 0.479 |
| Dark Roast | 2325 | 0.465 | 1.0064 | 0.474 |
|

| Water 12180 | 0.436 E | 0.447
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APPENDIX G Predicting Acidity with PLS Regression

Online acidity measurements with NIR were demonstrated in an existing study [52],
so the main interest here was to determine whether the online acidity measurements
are able to differentiate between roasts to the same roast degree with different tem-
peratures and times, as used in the acidity control roasts (Section 3.4.6. The acidity
PLS model used 60% of the roast degree dataset (Appendix A) and 84% of the acidity
control data (Appendix E) for calibration and the remainder as the test dataset. The
resulting model (Figure G.1) had an R? of 0.90.
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Figure G.1: Plot of acidity predictions vs measured values.

To see whether the model predicts acidity changes due to different roast temper-
atures at the same roast degree, the acidity control results which were not in the
calibration dataset are shown in Figure G.2. The lines connect two sets of roasts to
the same roast degree with the same coffee variety. Although there is some noise in
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the results, there does appear to be an upward trend in the predictions which follows
the actual acidity.
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Figure G.2: Plot of acidity predictions vs measured values for a set of roasts to the
same final roast degree with different roast profiles.
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APPENDIXH Full Range NIR Spectrum

Figure H.1 shows the behavior of the full NIR spectrum of coffee from 900 to 2600
nm generated with two different spectrometers. The low wavelength spectrometer
was a CDI NIR256L-1.7T1 grating spectrometer (Control Development Inc., South
Bend, IN) with a range of 900-1700 nm, and the high wavelength spectrometer was
a Si-Ware NeoSpectra SWS62221-2.5 Fourier transform NIR spectrometer (Si-Ware
Systems, Egypt) with a range of 1300-2600 nm. The two sets of spectra came from
two different roasts, because only one spectrometer could be used at a time, but the
roasting parameters (coffee variety and quantity, temperature, and fan power) were
identical in both roasts.
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Figure H.1: Combined online NIR data from two NIR spectrometers with different
wavelength ranges measured on two identical roasts.

This serves two purposes. First, it shows the full behavior of the coffee NIR spec-
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trum, which increases in absorbance with roasting on the left side, similar to the vis-
ible spectrum, and decreases in absorbance on the right side. The transition from
increasing to decreasing appears to occur between 1100 and 1300 nm, where the
absorbance decreases initially and then increases. The drop in absorbance on the far
right is caused by the reduced sensitivity of the spectrometer at those wavelengths.
The second purpose of comparing the two spectrometers is to verify the accuracy of
the Fourier transform spectrometer calibration. The overlapping regions of the spec-
trometer show the same peaks, which indicates that the wavelengths reported are
accurate. Standard grating spectrometers do not require calibration, which allows the
CDI spectrometer to be used as a reference.
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APPENDIX |1 Online NIR Validation

Some aspects of the in situ NIR setup used in this study are uncommon in NIR spec-
troscopy and warrant validation. First, the NIR spectra were acquired through the glass
roasting chamber, and second, the spectra were taken at non-constant temperatures,
starting at room temperatures and reaching maximum temperatures near 220 °C.
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Figure 1.1: NIR spectrum of the glass roasting chamber with a Teflon block inside,
after subtracting the spectrum of the Teflon block without the roasting chamber as a

reference.

The effect of the glass roasting chamber can be evaluated by measuring the re-
flectance of a Teflon block with and without the glass roasting chamber in place. The
spectrum of the Teflon placed directly on the roaster without the glass roasting cham-
ber was used as the 100% reflectance reference, and then the spectrum of the Teflon
block with the roasting chamber in place was measured (Figure 1.1). This shows the
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absorbance of light by the glass. Some absorbance by the glass can be observed,
but the main concern here was that the glass was not absorbing all of the light that
reaches it and some light is still reflected back from inside the roasting chamber. This
is evident from the figure and from the fact that changes in the in situ NIR spectra
could be seen throughout the roast in previous figures.

The effect of temperature on the glass roasting chamber was another concern.
This could not be measured with the Teflon block in place, because the roaster could
not be run with the Teflon inside blocking airflow. Instead the spectrum of the empty
glass roasting chamber at room temperature and at 230 °C (Figure 1.2) provided an
indication of whether a major change in reflection or emission by the glass occurs.
Very little change in the NIR spectra can be seen between the two temperatures.
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Figure I.2: NIR spectra of the empty glass roasting chamber at room temperature
and at 230 °C.
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APPENDIX J Crack Roast Degree Example

Figure J.1 shows an example plot of NIR darkness roast degree vs time during a
roast. In this example, first crack occurs from NIR darkness values of 0.14 to 0.10 and
second crack occurs from 0.04 to -0.02. The red dot represents time during the roast
when the sample calculation takes place, which has an NIR darkness value of 0.07.
The PLS models are applied to the NIR spectrum at this time, returning the predicted
NIR darkness offset from each event, which would be -0.07, -0.03, 0.03, and 0.09 for
first crack start, first crack end, second crack start, and second crack end respectively,
assuming no prediction error.
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Figure J.1: Sample calculation of roast degree from crack predictions based on NIR
darkness offset.

Based on the model output, the current time could be identified as between first and
second crack, so its crack roast degree value should be between 0 and 100 based on
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the reference values defined previously (Section 2.4.4). The exact roast degree value
is then found by interpolation between 0 and 100 based on the NIR darkness offset
values of the two nearest events (-0.03 and 0.03). Since the roast is directly between
the two events, it has a crack roast degree of 50.



