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Abstract

Aneurysms are localized expansions of weakened blood vessels that can be debili-

tating or fatal in some cases upon rupture. Previous studies have shown that aneurysm

formation, growth, and rupture are complex processes influenced by factors from dif-

ferent disciplines like biology, material science, and fluid dynamics. Fluid mechanics is

one of these factors that is important in better understanding aneurysm behavior and

may lead to design of better treatment methods. However, analyzing flows in aneurysms

can be challenging as the flows exhibit complex spatial and temporal behavior. For this

investigation, there are two overarching goals: 1) to quantify the spatial and temporal

behavior of the large-scale flow structures in aneurysms for a range of inflow conditions

and two different aneurysm models, and 2) to quantify the observed flow features using

modal decomposition techniques. For this study, two different, idealized, rigid, sidewall

aneurysm models were used, one with a low risk of rupture and another with a high

risk of rupture. An in-house experimental setup was developed using a ViVitro Labs

pump system where non-dimensional inflow conditions such as Womersley number (α)

and peak Reynolds number (Rep) were varied to match conditions typically found in the

human circulatory system. An aqueous glycerin solution was used to match the index of

refraction of the models. Particle Image Velocimetry (PIV) was used to measure the flow

field in the aneurysm models. The hardware synchronization-based alias imaging ap-

proach was used to capture the behavior of large-scale flow structures at different phases

in the flow cycle. Advanced analysis methods such as Proper Orthogonal Decomposition

(POD) and Dynamic Mode Decomposition (DMD) were utilized to identify the spatial

and temporal behavior of the large-scale flow structures in the aneurysm.

This investigation showed that large-scale flow structures in the aneurysm are influ-

enced by changes in Rep, α, and morphology. The complex behavior of large-scale flow

structures, in turn, influences the path and strength of these vortical structures, their
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growth and decay, and the impinging location and wall shear stress distribution. These

variations in high-shear stress zones and impinging locations can be correlated to high

and low risk of rupture in the studied aneurysm models. POD provided an optimal modal

description of the observed large-scale flow structures. POD analysis showed the inter-

play of modes and highlighted how the large-scale structures evolved during the different

phases of the flow and impacted fluid dynamics parameters. Furthermore, the math-

ematical description of the flow fields defined by POD modes also provided a method

to qualitatively compare the observed flow features in aneurysm studies. In contrast,

the DMD modes are not optimal, but they provided critical information about the dy-

namics of flows and the spatiotemporal behavior of the flow structures. DMD provided

frequencies and growth rates of the spatial structures. DMD analysis clearly demon-

strated that the large-scale flow features and dynamics are influenced by the Rep, α,

and aneurysm shapes. We also developed a framework for using DMD with traditional

velocity field measurements with a low-frame rate setting for this investigation. This

framework allowed us to observe high-frequency flow features despite using low-frame

rate PIV systems. Finally, this study also showed that both POD and DMD provide

flow information at any desired phase in the flow cycle, saving considerable experimental

time compared to phase-locked measurements.
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ρb Blood density (kg/m3)

ρf Working fluid density (kg/m3)

ρp Particle density (kg/m3)

νb Blood kinematic viscosity (m2/s)

νf Working fluid kinematic viscosity (m2/s)

µf Dynamic viscosity of fluid (kg/ms)

Φ DMD modes
−→
Ψi(x, y) ith Proper Orthogonal Decomposition mode



xxiv

ψi
uu(x, y) Streamwise component of ith Proper Orthogonal Decomposition mode

ψi
vv(x, y) Transverse component of ith Proper Orthogonal Decomposition mode

Ωxy Domain of interest

Σ Rectangular diagonal matrix from SVD

ωm Frequency used for multi-modal Womersley solution

λi Energy captured by ith Proper Orthogonal Decomposition mode

Vand Vandermonde matrix

⊗ Tensor product

⟨...⟩ Ensemble averaging



1

CHAPTER 1

Introduction

There are many different types of flows that can be observed in nature or in engineering

systems. Simple flows such as flow over a flat plate or a pipe flow can be justified using

by using basic physics and engineering principles [3]. Others are complex, such as cavity

flows [4] and artery flows [5], which multi-factorial components encompasses geometry,

biology, material and fluid compositions, and chemistry to name a few. Understanding

different flows, simple or complex, is important as it translates to efficient engineering

designs, increased engineering productivity, reduced operational costs, increased lifetime

of components, and reduced catastrophic events leading to loss of lives. However, under-

standing complex flows can be challenging as they require extensive knowledge, resources,

and ingenuity.

Aneurysms are examples of arterial flows which exhibit complex flow phenomena.

Aneurysms are an abnormal localized expansion of a weakened blood vessel, and re-

searchers have classified them based on their shape or location. Typical shapes of

aneurysms are fusiform or saccular [6], and they are found in the aorta (called abdom-

inal aortic aneurysms (AAA)) [2], in the portion of the aorta through the chest area

(called thoracic aortic aneurysms) [7], and in the brain (called cerebral or intracranial

aneurysms) [8]. A few examples of aneurysms are shown in Fig. 1.1. An intracranial

aneurysm imaged using digital subtraction angiography is shown in Fig. 1.1(a), and an

abdominal aortic aneurysm imaged using magnetic resonance imaging (MRI) is shown

in Fig. 1.1(b). These imaging techniques are used for detection and detailed diagnosis

of aneurysms. Meanwhile, aneurysms, when left untreated or undetected, can impact

blood circulation as well as lead to thrombosis and blood clots [9, 10, 11]. A ruptured

aneurysm can cause stroke or internal bleeding which are life-threatening scenarios. Cur-

rent aneurysm treatment options are limited to observation, clipping, placement of coils

or stents [8]. However, each treatment method has their associated risks such as pa-
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tient discomfort after surgery, recurrence, and infections. Access to the aneurysm during

operation also poses a challenging task of managing and assessing aneurysms [8].

(a) (b)

Figure 1.1: Aneurysm examples in the human circulatory system. (a) cerebral aneurysm
[1], and (b) abdominal aortic aneurysm [2].

There is an exhaustive list of studies that have made efforts to provide explanations

on different aspects of aneurysm behavior, from initiation, growth, and rupture, and to

develop assessment and treatment methods for patients accordingly. For instance, earlier

studies used aneurysm size to quantify likelihood of rupture [12, 13]. With advancements

in technology and computational capabilities, other studies used non-dimensional geo-

metrical characterization of different sizes and shapes to identify aneurysms with low and

high risk of rupture [14, 15, 16]. A few studies have focused on hemodynamics using com-

putational [17, 18, 19] and experimental [20, 21, 22, 23] approaches. These studies have

identified hemodynamics to play an important role in aneurysm behavior particularly in

the aneurysm progression and rupture. Although these studies have shown the presence

and complex nature of large-scale flow structures in aneurysm flows, focus on these flow

structures’ impact on hemodynamic parameters has surprisingly not been investigated
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in detail. This includes investigations focusing on different geometries, inflow conditions,

and the ability to create mathematical models to accurately predict the large-scale flow

behavior.

Despite significant progress in the overall understanding of aneurysms, predictabil-

ity of their flow behavior and its contribution to the aneurysm pathophysiology in the

presence of unsteady inflow conditions still requires further investigation. For example,

large-scale flow structures in aneurysms are shown to be complex and their behavior

remains to be understood. Flow structures in aneurysms can consist of a single recircu-

lating structure that can remain stationary or move throughout the cardiac cycle. Other

flow structures may contain one or more recirculating regions that remain stationary or

become unstable during the cardiac cycle. These different large-scale flow patterns are

shown in previous studies [24, 25, 26, 27, 19]. Budwig et al. [24] reported that for steady

flow in AAAs, the flow field is characterized by a jet of fluid surrounded by a recircu-

lating vortex. Fukushima et al. [25] reported that in pulsatile flow in AAA, vortices

appeared and disappeared at different phases in the cardiac cycle. During this time, the

center of the vortex moved from upstream to the downstream side of the aneurysm. Yu

and Zhao [26] reported that for steady flow of their sidewall aneurysm studies, a large

recirculating vortex occupies the entire aneurysm sac. Le et al. [27] described in their

numerical studies that for sidewall aneurysm models, the vortex structure can remain

stable or move within the aneurysm sac. These observed flow complexities and presence

of large-scale structures have motivated us to further investigate the behavior through

the use of advance data analyses methods.

Modal decomposition methods have been growing in popularity as data analyses

tools to aid researchers in gaining an understanding of complex flows. They are used

to extract physically important features or modes in the flow field. These modes or

spatial features are associated with characteristic values which represent either the energy

levels or frequencies and growth rates [28]. Examples of these decomposition methods
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are Proper Orthogonal Decomposition (POD) which provides modes that are optimally

determined to capture the most possible energy in the fewest amount of modes [29, 30, 31],

and Dynamic Mode Decomposition (DMD) which provides modes that are defined by a

single frequency of oscillation and growth behavior [32, 33]. Review articles from Taira et

al. [28, 34] and Rowley and Dawson [35] provide an excellent broad overview of different

modal decomposition techniques as well as applications of these methods to flows over a

cylinder, an airfoil, and a rectangular cavity.

The application of POD and DMD to aneurysm flows have been applied to veloc-

ity data obtained either from experimental [36] or computational fluid dynamics (CFD)

investigations [37, 38, 39, 40]. A few of these studies have used these modal decom-

position techniques as a means to improve computational simulations, or to quantify

different flow regimes. For example, Byrne et al. [37] used POD on CFD simulations to

classify the hemodynamics of patient-specific intracranial aneurysm geometries according

to spatial complexity and temporal stability using parameters derived from vortex core

lines. The results from their study found ruptured aneurysms have complex and unsta-

ble dynamics while unruptured aneurysms have simple and stable dynamics. Daroczy

et al. [38] used POD to determine the spectral entropy of different flow regimes, and

quantified the flow state between laminar, transitional, or turbulent regimes for use with

their hybrid simulations. Janiga [40] used POD for comparison of different time-varying

three-dimensional hemodynamic data and showed the ability of POD to reduce the com-

plexity of the time-dependent data for quantitative assessment. With DMD studies,

Abulkhair [36] used POD and DMD on AAAs to reveal hidden dynamical structures.

Lastly, Lozowy [39] used DMD to remove high-frequency turbulent oscillations from the

reconstructed velocity field. These initial studies have provided valuable insight and mo-

tivation to researchers on how modal decomposition methods can be used in analyzing

complex aneurysm flows.

The existing body of knowledge about aneurysms have shown that they are a widely
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studied fluid dynamics problem, and researchers have attempted to answer fundamental

questions on aneurysm behavior with different levels of success. The advancements in ex-

perimental and computational methods have allowed researchers to look at the aneurysm

problem in greater detail than before, and enabled them to gain deeper insights into the

flow dynamics of aneurysms using advanced analyses methods. However, additional work

is still needed to expand the current knowledge on aneurysm flows, particularly in charac-

terizing flow structures at different inflow conditions and their influence on the aneurysm

hemodynamics. There is still a lack of comprehensive experimental studies that capture

these large-scale flow structures and quantify their importance to the overall flow dy-

namics. Although different studies show certain flow behavior to be similar or different

in their investigations, they have not provided an answer on why certain flow behav-

ior (i.e., large-scale structure movement) will move in similar/different fashion when the

inflow condition changes. Understanding and capturing this behavior will allow us to

create a mathematical description of the flow which can be used to predict or control

the flow in aneurysms. With the help of advanced decomposition methods such as POD

and DMD, these important flow features can be captured, differentiated, and analyzed

to help identify the similarities or differences across different inflow conditions.

Objectives

The goal of the present study is to provide an overarching work of investigating

spatial and temporal behavior of large-scale flow structure on impinging location, vortex

strength, movement, and wall shear stress in aneurysms for a range of inflow conditions.

Decomposition methods such as POD and DMDwill be used as diagnostic tools to analyze

flow behavior in aneurysms. They will also be used to highlight important spatial features

responsible for the changes in fluid behavior. The results from this study will highlight

the impact of large-scale flow structures on the flow behavior in aneurysms and make

way for further research on mitigating or controlling these structures. Furthermore, the
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results from the advanced analyses methods can be used to predict flow behavior for

similar aneurysm geometry across different inflow scenarios outside of this study. This

is beneficial as creating mathematical models can aid researchers in further parametric

studies without running experiments which can be time-consuming, expensive, and take

a lot of resources. With this in mind, the following objectives will be outlined and

addressed in this dissertation as follows:

� To capture the large-scale structures for a complete pressure cycle at different

inflow scenarios using hardware synchronization. For this study, two different,

idealized, saccular aneurysm models are considered. These models are characterized

with bottleneck ratio (BF ) of 1 and BF of 1.6. BF is defined to be the ratio of

maximum aneurysm diameter (Dmax) to the aneurysm neck diameter (Dneck) (i.e.,

BF = Dmax/Dneck). BF of 1 is defined to low risk of rupture while BF of 1.6

is considered to be of high risk of rupture [15, 16]. In order to capture the large-

scale flow structures and their behavior in this investigation, several experimental

methods are implemented and discussed in the Approach section.

� To demonstrate application of POD to extract the energetic modes pertaining to

the large-scale flow structures captured from the phase-averaged data. The use

of POD will provide key information about the flow dynamics in aneurysm flows

such as isolating different flow features and identifying uniqueness and similarities

of the large-scale flow structure across different inflow scenarios. Furthermore, the

use of POD will allow us to gain an insight into the interplay of the modes used to

describe the flow field.

� To demonstrate application of DMD to extract spatiotemporal information of the

large-scale flow structures which the POD method is not able to provide. DMD

will provide temporal information on flow structures and their associated frequency

and growth behavior.
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– First task is to validate the use of traditional flow field measurements such as

Particle Image Velocimetry (PIV) with a low-frame rate setting for use with

DMD.

– Second task is to implement the DMD with low-frame rate PIV data and

analyze the spatiotemporal behavior of the large-scale structures for BF = 1.0

at different inflow conditions.

The dissertation is organized as follows: Chapter 2 provides a brief overview of

aneurysm studies. Chapter 3 lays out the experimental methodology while Chapter

4 provides the analyses tools utilized in this study. Next, Chapter 5 provides the results

from the flow behavior in the two different aneurysm models. Here in this chapter, POD

results will be presented. It will be shown that POD provides unique modal descriptions

for each inflow scenario and can effectively reconstruct the flow data using few energetic

modes. DMD results will be presented for one of the aneurysm models. Here it will

be shown that DMD can also effectively represent the flow evolution using appropri-

ately selected DMD modes and frequencies. Lastly, Chapter 6 summarizes the important

findings of this study.
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CHAPTER 2

Background

This chapter provides a background on studying aneurysms as well as background on

advanced data techniques. The chapter is organized such that aneurysm studies are first

discussed. Background studies on Proper Orthogonal Decomposition and Dynamic Mode

Decomposition are then provided to give insight on their potential uses and applications

to studying complex flows. Initial attempts of using these methods on aneurysm flows

will also be discussed further in the chapter.

2.1 The aneurysm problem

The cardiovascular system is an internal flow loop in which blood circulates. It func-

tions to transport oxygen, nutrients, and waste throughout the body [5]. The system

consists of the heart, blood, and blood vessels. The heart pumps blood into a complex

network of muscular elastic arteries and distributes blood to different organs and supplies

them with nutrition [5, 6]. The blood returns to the heart through a network of veins

with a system of valves regulated by secondary muscular activity and the action of the

heart itself [41]. The pumping process is repeated approximately 70 times per minute,

100,000 times per day, or almost 3 billion times throughout the expected lifetime in a

healthy individual [42]. During this time, the arteries adapt to the changes in the flow

and pressure conditions by enlarging and shrinking themselves to meet hemodynamic de-

mands [5]. Furthermore, this enlarging and shrinking of the arteries requires the arterial

walls to regenerate and remodel to maintain the function and integrity of the system [6].

However, a portion of the arterial wall can weaken due to a disease or other complex

process that causes the wall to expand and to form an aneurysm. These abnormal di-

latations can appear anywhere where there is a weakened blood vessel, but they primarily

appear in the abdominal and thoracic portions of the aorta as well as in the intracranial
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arteries [6].

The formation, growth, and rupture mechanisms of an aneurysm are still unknown

as it is a multi-factorial process which includes complex interaction among physiolog-

ical conditions, biological processes, and hemodynamics to name a few. Unruptured

aneurysms are a public health concern [43] as they can be asymptomatic remain un-

detected until time of rupture [44]. A ruptured aneurysm can be debilitating and can

be fatal if left untreated. In the United States, an estimated six million people have

an unruptured brain aneurysm, and 1 in 50 people suffer from brain aneurysm rupture

annually according to the Brain Aneurysm Foundation. Several studies performed on the

stages of aneurysm have shown the complexity and multi-disciplinary nature of aneurysm

behavior. Numerous aneurysm studies [45, 46, 47] provide an excellent overview of the

current understanding of aneurysm behavior. The investigations on aneurysm behav-

ior can be classified into three broad categories: 1) clinical studies, 2) experimental and

computational fluid dynamic studies, and 3) experimental and computational biomechan-

ical studies. Previous studies on these categories are briefly discussed in the following

sections.

2.1.1 Clinical studies

Clinical studies on aneurysms have attempted to quantify aneurysm behavior based on

morphological parameters, and suggest treatment options based on the risk associated

with the treatment method. McCormick and Acosta-Rua [12] observed a correlation

between aneurysm rupture and average diameter. In their study, the diameter of ruptured

aneurysm was greater than 7.4 mm for female patients and 9.2 mm for male patients.

A similar study by Mizoi [48] found that surgeries are recommended for patients with

aneurysms larger in 5 mm in diameter. Beck [49] used height to neck ratio to determine

the difference between ruptured and unruptured aneurysms regarding lobulation. The

study found that irregular multilobular appearance was more common in aneurysms of
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5-9 mm size that ruptured. Ma et al. [15], Raghavan et al. [16], Shum et al. [50], and

You et al. [51], Valencia et al. [52] categorized different aneurysm morphologies, such as

aspect ratio (AR) and BF, into different shape indices and their associated risk of rupture.

Hoh et al. [53] has shown that bottleneck factor and height-width ratio are associated

with aneurysm rupture using patient data. Ujiie et al. [54] used AR and found that AR

greater than 1.6 can be associated with an increased risk of rupture. A similar study by

Prestigiacomo et al. [55] found that AR was significantly larger in ruptured aneurysms

than unruptured aneurysms. Ryu et al. [56] used volume-to-neck ratio (VNR) to indicate

that larger aneurysm volume in proportion to the neck can determine higher rupture

risk. Tremmel et al. [57] found that aneurysm-to-parent vessel size ratio (SR) is directly

correlated to aneurysm rupture, with 83% of unruptured aneurysms with a value of SR

of 2 or less, and 77% of ruptured aneurysms with an SR value of more than 2.

Other clinical studies focused on the hemodynamics in aneurysms. Work by Chien

et al. [58] found that hemodynamic values, such as wall shear stress (WSS) and flow rate,

change at different locations. Hans et al. [59] reported that changes in hemodynamics

lead to changes in vessel architecture and that aneurysms can be flow-related. Meckel et

al. [60] performed an in vivo study using 4-D MRI to study intra-aneurysmal hemody-

namics. In this study, flow patterns, distribution of flow velocities, and WSS seem to be

determined by vascular geometry of the aneurysm. Patti et al. [61] found that the blood

flow pulsatility was different between ruptured and unruptured aneurysms. These dif-

ference were particularly pronounced at the aneurysm neck, which may be an important

factor for aneurysm rupture.

Further clinical studies focused on the interaction between aneurysms and peri-aneurysmal

environment [62, 63]. Others have reported a rare case of multiple mirror-like aneurysms

[64] and rare cases of basilar artery aneurysms [65]. Studies on the circle of Willis have

also been performed [66, 67]. Other clinical studies have also suggested that age plays

a crucial role in aneurysm growth and rupture [68]. Medical protocols have been placed
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for patients with aneurysms that reach 6 cm in diameter or a growth rate of 1 mm/ year

[69, 70], although there are cases of smaller aneurysms culminating in rupture [71].

2.1.2 Experimental and computational fluid dynamic studies

Experimental and computational studies of aneurysm blood flow have also been

investigated to address different stages of aneurysm pathophysiology. These studies have

shown a wide variety of intra-aneurysm flow patterns, ranging from simple to highly

complex flow behavior. Budwig et al. [72], Drexler [73], Bluestein et al. [74] investigated

the steady inflow through fusiform aneurysms, and found that the flow field through

the concentric bulge is characterized by a recirculating vortex. Fukushima [25] and

Egelhoff [75] studied the pulsatile inflow conditions in fusiform and saccular aneurysms,

and observed different flow behaviors when compared to the steady inflow conditions. It

was also observed that the vortices appeared and disappeared at different phases of the

cardiac cycle. In similar studies, Steiger [76, 77, 78] and Gobin et al. [79] investigated the

flow structure for saccular aneurysms under pulsatile flow conditions and observed that

the center of the vortex grew as the flow velocity increased, while the center of the vortex

moved from the proximal end to the distal end. This was followed by the transient

reversal of flow at the minimum flow phase. Taylor and Yamaguchi [80] performed

a computational study of abdominal aneurysms and showed that in the pulsatile flow

case, regions of maximum pressure moved based on the flow cycle time. The study

also showed that local maximum pressures formed at the distal neck and then declined,

which led to the additional strain on the distal neck of the aneurysm bulge. Ferguson [20]

worked on identifying the mechanism that could contribute to the initiation, growth, and

rupture of aneurysms. The results of the study found that turbulence causes degenerative

changes that weaken the wall of an aneurysm which allows it to enlarge. Moreover, the

study showed the probability of rupture increases with an increase in intra-aneurysmal

pressure, an increase in aneurysmal size, a decrease in the minimum wall thickness of



12

an aneurysm, or a decrease in the strength of its structural components. Liou and

Liao [81] performed Laser Doppler Velocimetry (LDV) measurements on aneurysms with

various sizes and found that with decreasing aneurysm size, the inflow angle into the

aneurysm, the maximum shear stress acting on the distal lip of the aneurysm, and the

intra-aneurysmal vortical motion increased. Studies by Stehbens [82] found that for

Re considerably below critical levels for turbulence, flow disturbances in the aneurysm

(fusiform, cylindrical, spherical and lateral forms) may be a jet edge phenomenon.

Other investigations focused on the flow structures in aneurysms with curved parent

vessels. Niimi [83] found that the vortices induced in aneurysms influenced flow structure

and the presence of secondary flow due to vessel curvature. Meanwhile, work by Liou and

Liao [84] found that the intra-aneurysmal flow velocity, vorticity, and wall shear stresses

increase with increasing curvature of the parent vessel. Furthermore, Liou et al. [85]

investigated aneurysms arising from curved parent vessels at various angles and found

that aneurysms oriented at γ = 45◦ is the riskiest angle where the dome is at risk.

There were also studies that focused on the effect of inflow waveform on the hemo-

dynamics of sidewall aneurysms. Le et al. [27, 86] and Bouillot et al. [23] found that the

inflow waveform had a strong influence on intracranial aneurysm hemodynamics, partic-

ularly in the vortex formation phenomena. Yu and Zhao [26] investigated the steady flow

on stented and non-stented sidewall aneurysm models and found that flow movement

inside the aneurysm sac can be suppressed to less than 5% of the bulk mean velocity

for both stents and springs. The study also found that the highest level of wall shear

stresses always appear at the distal neck of the aneurysmal pouch. Yu and Zhao [26, 22]

worked on the pulsatile flow conditions on saccular aneurysms with and without stents

or springs. Their investigation showed that the flow velocities inside the aneurysm bulge

could not be suppressed completely, but could be reduced by more than 80%.

Baharoglu et al. [87] investigated the impact of aneurysm inflow-angle (IA) and found

that increasing IA resulted in higher inflow velocity and greater wall shear stress magni-
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tude and spatial gradients in both the inflow zone and dome. Cebral et al. [88] categorized

aneurysm hemodynamics depending on the complexity and stability of flow pattern, lo-

cation and size of flow impingement region, and size of inflow jet. The study found that

unruptured aneurysms were more likely to have simple stable patterns, large impinge-

ment regions, and jet sizes. On the other hand, ruptured aneurysms were more likely

to have disturbed flow patterns, small impingement regions, and narrow jets. Hope et

al. [89] used 3D phase-contrast MRI to evaluate aneurysms and found that an unstable

flow pattern with a more focal jet may have a high likelihood of rupture compared to

one that had a stable helical flow pattern with a large jet. Lu et al. [90] investigated

the hemodynamics in mirror aneurysms and found that ruptured aneurysms have lower

WSS compared with their parent arteries, a higher portion of the low WSS area to the

whole area of aneurysm, and higher oscillatory shear index (OSI) compared with the

unruptured aneurysms. Salsac et al. [91] investigated the evolution of WSS during the

growth of abdominal aneurysms and found that the mean WSS becomes negative along

most of the aneurysmal wall, and the magnitude of the WSS can be as low as 26% of the

value in a healthy abdominal aorta.

2.1.3 Experimental and computational biomechanical studies

Work has also been done on experimental and numerical biomechanical studies re-

garding mechanics of the artery. These can include vessel reconstruction methods to

rupture-criterion based on artery properties are presented here. Several comprehensive

studies [92, 93, 94, 95] provide an overview of current understanding of mechanics and

modeling of arteries. Chen et al. [96] performed CFD on reconstructed hypothetical

geometry of a healthy vasculature prior to intracranial formation using Frenet frames.

Results of the study observed that locally elevated WSS and gradient oscillatory number

(GON) are highly correlated with regions susceptible to sidewall aneurysm formation

while hemodynamic indices associated with oscillation of WSS have much lower cor-
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relations. Tateshima et al. [97] used rapid prototyping technique from a patient 3D

computerized tomography angiogram to reconstruct a basilar aneurysm model. Geoghan

[98] used rigid and flexible transparent flow phantoms suitable for PIV and other optical

methods.

Several studies worked on quantifying aneurysm behavior and rupture risk based

on mechanical properties such as wall stress. Galarreta et al. [99] focused on assessing

characteristics of AAA on wall stress. The study found that the local mean curvature

as a potential surrogate for wall stress which in turn is related to AAA rupture risk.

Results from Kyriacou and Humphrey’s [100] studies found that lesion shape, material

properties, and loading conditions, not just size, in governing the distributions of stress

and strain within a sub-class of axisymmetric saccular aneurysms. Lu et al. [101] used

an inverse shell based approach to predict pressure induced wall stress in intracranial

aneurysms. Results of the study found that this inverse method may be a viable tool for

patient-specific analysis, as patient-specific tissue properties are difficult to obtain. Polzer

et al. [102] determined that using residual strains (RS) in computational models lead to

homogenized wall stress and reduces peak wall stress (PWS) values. Gasser et al. [103]

observed that Peak Wall Stress (PWS) and Peak Wall Rupture Risk (PWRR) were 1.17

and 1.43 times higher in ruptured AAAs than diameter-matched unruptured aneurysms.
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CHAPTER 3

Experimental methodology

The organization of this chapter is focused on outlining the design parameters of the

experimental setup and test conditions used to help achieve the goal of this study. The

aneurysm design models are first discussed which will be followed by the working fluid

selection. Next, the theoretical setup of the PIV will also be provided in this section.

The flow-loop design will be presented with the focus on controlling the inflow conditions.

Lastly, the test inflow conditions that are considered in this study will be presented.

3.1 Aneurysm models

The aneurysm models used in this study are designed to model and simulate the fluid

conditions in the human circulatory system. As aneurysm flows are complex in nature,

several assumptions and idealizations are made in order to simplify the flow problem and

have full control of the experimental study. The design process begins with selecting

different criteria to satisfy the aneurysm geometries, flow regimes, and experimental

method capability. The first assumption is that the flow will go through a straight, rigid,

and circular tube with sufficiently long entry length before reaching the aneurysm cavity.

This design allows to control and to determine the fully developed profile upstream of

the aneurysm where the behavior is known for steady [3] and unsteady [104] flows. The

rigid assumption allows for further simplification as elasticity on the walls has minimal

impact on the flow [105, 5, 106]. For steady laminar flows, this entry length can be

designed using

Le

D
= 0.06Re, (3.1)

where Le is the entry length, D is the tube inside diameter, and Re is the Reynolds num-

ber. Thus, the entry length Le depends on tube diameter D to be used in the experiment,
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and Re which depends on the flow regime typically found in human circulatory system.

The Reynolds number, which is the ratio of fluid inertia to viscous forces, is determined

using

Re =
ρfVavgD

µf

, (3.2)

where ρf is the fluid density, V is the average fluid velocity, and µf is the dynamic

viscosity of the fluid. In human circulatory system, typical Re varies from 1 in small

arterioles to 4000 in the aorta [5].

For unsteady flows, the entrance region now depends on the Womersley parameter

(α) and Re. The Womersley number [104] is given as

α = R

√
2πf

νf
, (3.3)

where R is the tube radius, f is the flow frequency, and νf is the fluid kinematic viscosity.

The Womersley number is a measure of the ratio of unsteady forces to viscous forces. For

low α numbers, the viscous forces are more dominant than unsteady forces, the velocity

profiles are parabolic in shape, and the centerline velocity oscillates in phase with the

driving pressure gradient. On the other hand, α above 10 has unsteady forces more

dominant than viscous forces, which results in the flow with a flat velocity profile [104,

5]. In the human circulatory flow, α varies from 1 to 10 depending on the size of the

artery [107, 108]. With these in mind, the maximum entrance length for low α unsteady

flow scenarios is approximately the same as the steady peak flow and dependent on

Re [109, 5]. Thus, the design is based on Re using peak velocity that are to be used in

this investigation.

The next design criteria to capture the large scale flow structures is that the aneurysm

model material should allow optical access to the flow as well as it can easily match the

refractive index of the working fluid used in the study. Optical access to the flow is

necessary as the experimental method (i.e., PIV) is an optical-based technique which
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records velocity field measurements using a laser and a camera. Furthermore, the PIV

system to be used has a laser with a wavelength of 532nm which requires the model

material to have a high transmissivity for the light to pass through. For this design

constraint, several studies have provided a list of solid materials which can easily match

a compatible fluid [110, 111, 112, 113], and have been used to help in the design of the

aneurysm models.

The design constraints from previous paragraphs are then used to create the aneurysm

models using a computer-aided design (CAD) software, and the schematics are shown in

Figs. 3.1 and 3.2. The rigid tubes selected are made from borosilicate glass with total

length of 443 mm (17 in.), outside pipe diameter of 12.7 mm (0.5 in.), and inside diameter

of 9.37 mm (0.369 in). The material and dimensions are selected for their commercial

availability and costs. The aneurysm geometries are then fabricated using a local and

professional glass shop (TG Scientific Glass, 23041 La Cadena Dr., Laguna Hills, CA

92653). After fabrication, the actual aneurysm geometries are measured using images

of model slices at different locations. The aneurysm dimensions acquired are then used

to characterize the aneurysm geometry using studies from Ma et al. [15] and Raghavan

et al. [16]. Note that although the physical dimensional values obtained here are not

what is typically found in the human circulatory system, the models’ length and velocity

scales are appropriately adjusted such that Re and α match the values typically found

in the human arteries. Thus, using these design parameters, the maximum Re that

will have a fully developed profile in a steady laminar case is Re = 586. As for the

downstream conditions, the exit length of the tubes are shorter than the entry length

as flow instabilities will get smoothen out in the flow reservoir, and thus will not be of

interest in the study.
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Figure 3.1: Aneurysm dimensions for BF = 1.0.

Figure 3.2: Aneurysm dimensions for BF = 1.6.

3.1.1 Aneurysm housing

Each of aneurysm models is placed in a Plexiglass housing as shown in Fig. 3.3. To gain

optical access to the region of interest in a flow investigation, common experimental setups

require a clean outside fluid and a matching working fluid mixed with seeding particles.

The current design allows to isolate the region of interest, which is the aneurysm region,

to have an outside fluid for flow visualization. It also allows for ease of access especially

during maintenance. The surface of the Plexiglass are required to be scratch-free to allow

optical access to the aneurysm region. The aneurysm housing is put together using an

acrylic glue, while the surfaces that contact with the aneurysm model are sealed with a

silicon sealant to prevent the outside glycerin mixture to leak during the experiment. Due

to the silicone sealant applied between the aneurysm model and Plexiglass, the models

become fixed with the housing. This requires the aneurysm model to be oriented with

its sac facing the bottom of the housing. This orientation of the aneurysm sac prevents

any air bubbles to be stuck inside the sac if the bulge is orientated upwards.
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Figure 3.3: 3-D view of housing to contain aneurysm models.

3.2 Fluid selection

In this study, velocity field measurements will be acquired by performing PIV

measurements in the aneurysm region. To perform these measurements, it is critical for

the refractive index of the working fluid and the aneurysm models to accurately match

and minimize image distortion. As PIV is an optical-based measurement tool that will

be used for this study, it is then important to closely match the refractive index of fluid

and the solid material to precisely illuminate region of interest. If the refractive index is

not matched, refraction through a cylindrical tube wall for instance, can generate hidden

regions and multiple images [114]. An example of refractive index matching can be seen

in Fig. 3.4 where grid lines are placed behind the borosilicate glass model used in this

study (n = 1.47 [110, 111, 113]). If the refractive index of the fluid is not matched with

the glass model, as shown in Fig. 3.4(a) where light goes through the interfaces of air,

borosilicate, and air, it results into a distorted image of the grid lines. The distortion in

the grid lines disappears when the refractive index of the fluid matches with the model

as shown in Fig. 3.4(b) using pure glycerin.
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(a) (b)

Figure 3.4: View of grid lines through liquid-solid interfaces. (a) Index of refraction
mismatch with air and borosilicate interfaces, and (b) Matching index of refraction with
glycerin and borosilicate interfaces.

Several studies have provided excellent lists of materials and fluids with their refractive

index values [110, 111, 112, 113]. Previous investigations have found success in using

glycerin to match refractive index of their solid models [76, 115, 25, 79, 26, 116, 23,

117] . Furthermore, glycerin has been widely used for investigations as it is low-cost,

commercially available, and easy to handle in terms of use and disposal. Thus, for this

currently study, an aqueous glycerin solution of 60% by volume is used. This aqueous

solution is prepared such that the fluid properties can be used to match the inflow

conditions in the human circulatory system while still matching the index of refraction

of the solid material.

3.2.1 Validation of index of refraction

Experiments are performed to quantify the impact of index of refraction mismatch be-

tween the borosilicate glass model and aqueous glycerin solution. For this quantification,

a set of grid lines of known spacing are placed inside the tube with the aqueous solution.

The objective in mind is to identify the change from the known grid line spacing and the
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new grid line spacing after submerging the lines in the aqueous glycerin solution. Details

of this experiment are provided in the next following paragraphs.

Grid lines of 0.5mm in spacing are first generated from a commercial software to

ensure full control of thickness and quality of the lines. The grid lines are printed on a

transparency paper which are then cut to fit the inside diameter of borosilicate glass tube.

Next, tube and grid lines setup are placed in a rectangular Plexiglas container. Aqueous

glycerin of 60% glycerin by volume is then prepared and poured into the container, and

an image of the glycerin-water mixture is taken using a high-resolution camera (8MP

Imager LX8M, LaVision Inc.) with a macro lens attached (Tokina ATX, f = 100mm).

Once the image is acquired, it is then analyzed using MATLAB to identify the grid line

spacing.

An image analysis built in-house is used to determine and to compare the grid line

distortions occurring for the aqueous glycerin. The goal of this image analysis is to

determine the grid spacing by extracting the image intensities across a given image. The

analysis begins by opening the image, and the user selects the inner diameter of the tube

as well as the end location to extract the image intensities. The program then extracts the

intensities row-wise and performs an ensemble averaging of these intensities. The valleys

found in the figure correspond to the center of each grid line. A second-degree polynomial

curve fitting is performed to the ensemble average to have a sub-pixel accuracy of the

valley detection. The newly found valleys are then used to determine the change in grid

line spacing.

The result of this analysis is shown in Fig. 3.5. In this plot, the pixel difference is

normalized to the pure glycerin while the distance is normalized to the pipe radius (R). It

is observed from this figure that a good agreement with the 100% glycerin with minimal

distortion of the grid lines (i.e., within 95-100%). From these results, the 60% glycerin

by volume is able to be justified for use in this study.

Here we note that index of refraction experiment was performed on a cylindrical tube,
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the results would be different for a spherical geometry such as an aneurysm shape. This

is because different angles of incidence occur at different locations in the sphere when

compared to a round tube. However, we expect the difference in the optical distortion

between the round tube and sphere to be acceptable for the purpose of this investigation.

Further quantification of this difference can be quantified using a ray tracing approach

which can be part of future studies.
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Figure 3.5: Normalized pixel difference for different glycerin-water mixtures.

3.2.2 Validation of fluid parameters

The fluid properties of the aqueous glycerin solution such as density ρf and νf are

determined in order to calculate the Re and α values for this study. As glycerin is a widely

used fluid for different applications and studies [76, 115, 25, 79, 26, 118, 116, 23, 117], the

properties of the fluid and its aqueous solutions at different temperatures can easily be

determined. These values are readily available using published data [119, 120, 121, 122].

The viscosity values are verified using a Cannon-Fenske viscometer, and experiments

are repeated several times for accuracy and repeatability. Thus, using this mixture

yields a density value of ρf=1168.3 kg/m3 and a kinematic viscosity of νf=1.453·10−5

m2/s± 3.5794x10−7m2/s for 95% confidence level.
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3.3 Particle Image Velocimetry (PIV)

In this section, Particle image velocimetry (PIV) will be discussed. PIV is an

optical-based velocity field measurement technique which utilizes a laser, charged-coupled

device (CCD) cameras, seeding particles, and optically-accessible model. A basic PIV

arrangement is shown in Fig. 3.6. The basic principle of PIV is that the laser sheet

illuminates the flow field seeded with light-reflecting particles. The CCD camera takes

two successive images (i.e., image pairs) of this illuminated flow field. By knowing the

displacement of each particle and the time difference between the image pairs, the velocity

of the particles and thus the entire velocity field can be determined.

Figure 3.6: Particle image velocimetry arrangement.

The velocity determination of the entire flow field involves several steps. This is

because the images which contains numerous particles are not moving in the same speed,

each image are then divided into small sections called interrogation areas. These areas
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can take any shape (square, circular, etc.) as well as take size (4-128 pixels). Auto or

cross-correlation algorithm is then performed for the image pairs’ interrogation area to

determine the direction and speed of the particles. A correlation map is then generated

for each interrogation. area. By finding the peak location, and thus the location of

maximum correlation, the displacement of the particle can be found. To speed up the

analysis, Fast Fourier Transform (FFT) is implemented. The entire process of velocity

vector determination for a single interrogation area can be seen in Fig. 3.7 for cross-

correlation as an example.

Figure 3.7: Evaluation of velocity vector using cross-correlation.

The next few subsection discusses the components in a typical PIV system and further

details on PIV technique. Each subsection provides information on the role of each

component as well as the process involved in performing a basic PIV measurement.

3.3.1 PIV system components

Camera

The first component of the PIV system to be discussed here is the camera. The camera

is a device to detect and store optical information. In this case, the image recording is

performed electronically which provides immediate availability and feedback during the

operation or experiment. The camera used in the experiment is based on a charged-
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coupled device (CCD) which is an electronic image sensor to convert light into electric

charge. A CCD is made from a semi-conducting substrate which comprises of metal

conductors on the surface, an insulating oxide layer, an n-layer and a p- layer.

The basic working principle of a CCD is as follows. Voltage is applied between the

metal conductors which allows the p-layer to generate an electric field. Now, when light

of some wavelength enters the p-n junction of the semiconductor, an electron-hole pair

(i.e., photoelectric effect) is generated. This hole is then absorbed in the p layer which

generates an electron and migrates along the gradient of the electric field towards the

potential well. Electrons then accumulate during the duration of the CCD’s exposure to

light or until it reaches its capacity measured in electrons per pixel. With this in mind,

each CCD are arranged into an array of individual CCD’s (line or rectangular) which

makes up the entire image sensor. Each CCD in the sensor refers to a picture element or

pixel which generally is on the order of 10× 10µm2.

For the sensor to be read out, the pixels are then addressed sequentially by shifting

the electrons vertically one row at a time. These sensor readout is shown in Fig. 3.8 Each

row in the analog shift register is then clocked pixel by pixel using a charge to voltage

converter. The converter then generates the voltage for each pixel that correlates to the

amount of detected light for this pixel.

With this background, the camera used for the experiment is an 8MP (3312 x 2488

pixel), dual frame CCD camera (Imager LX 8M GigE). The dual frame is a camera

feature which allows to take two separate exposures at a very short time period between

the frames. The image acquisition using the two frames are then synchronized with a

light source which is pulsed to allow exposures for each frame to be different. This can

be a continuous-wave light (cw-light) which generates two different intensities for both

frames.



26

Figure 3.8: Schematic of a CCD sensor geometry.

Laser

The next component used in the PIV system is the laser. Lasers are typically used

in PIV measurements as they give out high energy density, monochromatic light. This

is beneficial as they can be clustered into thin light sheets for use in illuminating the

particles (see 3.3.1) in the region or flow field of interest. A typical laser consists of

a three main components which are the laser material, a pump source, and a mirror

arrangement. The laser material can be a semiconductor or solid material, or atomic or

molecular gas. The pump source introduces electrical or chemical energy to excite the

laser material. The mirror arrangement allows oscillation within the laser material.

The working principle of a laser used in PIV can be briefly explained as follows.
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In quantum mechanics, it is known that an atom can possible occupy different energy

levels with electromagnetic radiation. These possible states are absorption, spontaneous

emission, and stimulated emission. In absorption, an atom in state E1 receives energy hν

to raise to E2 and the photon is absorbed. In spontaneous emission, the excited atom at

state E2 drops back to E1 at short period of time, and emits energy hν in the form of a

randomly directed photon. For stimulated emission, an incident photon can stimulate an

atom at state E2 to a specific and non-spontaneous state E1 , and an additional second

photon in phase with the first photon occurs.

Absorption or stimulated emission predominate the processes when there are large

number of atoms involved. Absorption occurs if there are more atoms in state E1 than in

the state E2 (i.e., population density N2 < N1 ) while stimulated emission occurs if there

are more atoms in E2 than E1 (i.e., N2 > N1 ). Now the laser can operate if population

inversion takes place where an external energy is transferred to the laser material since

atoms usually exist in their ground state. This is attained by a pump mechanism which

depends on the laser material. Solid laser materials are pumped by electromagnetic

radiation, semiconductor lasers are pumped by electronic current, and gas lasers are

pumped by collision of atoms or molecules with electrons and ions. The population

inversion can be achieved by at least three energy levels of the laser medium. However,

a three level energy system is not very efficient as in order to amplify the impinging

photon, a fraction of more than 50% of the atoms have to be excited. With a four level

laser, a substantially less pumping power is required and thus more efficient than a level

three laser.

The current study uses a Neodym-YAG laser (Nd: YAG laser λ = 532nm), and a

typical PIV system laser setup is shown in Fig. 3.9. This laser system means that the

laser material and thus the laser beam is generated by Nd3+ ions. Furthermore, the

Nd3+ ions can be incorporated with different host materials such as YAG crystals (i.e.,

yttrium-aluminum-garnet). Thus, the Nd:YAG laser is four-level, solid-state, laser system
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typically used in PIV as it has high amplification and good mechanical and thermal

properties. It also emits the strongest wavelength (i.e., λ = 1064nm) and depending on

the laser cavity design, the population inversion can take place as soon as the threshold

is reached. The cylindrical shape of the laser material allows to increase the radiation in

a preferred orientation as the amplification correlates to the length of the material. In

this case, an optical resonator is used to extend the laser material and form an oscillator

using two aligned mirrors. The mirrors allow the randomly produced photon to reflect

and amplify again as it penetrates the laser material once more.

A quality switch (i.e.,Q-switch) shown in Fig. 3.9 allows the energy in the resonator

to be controlled as well as it allows the laser to be operated in triggered mode. The

Q-switch consist of polarize Pockel cell crystal driven by high voltage. This means that

the Q-switch can alter the resonance of the optical cavity, allowing the cavity to resonate

and reach the most energetic point during a flashlamp cycle (i.e., pumping cycle). For

this process to occur, at beginning of the pumping process, the Q-switch is closed, and

amplification is possible since there is no laser oscillation. When the stored energy

reaches the maximum, the Q-switch is then opened, laser oscillation occurs, and the

energy stored is then extracted in a pulse at a very short time duration. Typically,

PIV systems are designed with a double oscillator which functions to control the time

between the laser pulses independently. Furthermore, the laser beams are combined using

a beam combining polarizer. As the PIV wavelength is λ = 1064nm, it is frequency-

doubled using KDP crystal, with the separation of the frequency-doubled using a second

harmonic generator (SHG) to convert approximately one-third of the original light energy

at λ = 532nm.

Timing

With the camera and light source defined, the timing between these devices can

be explained in Fig. 3.10. Here the exposure times for the first and second frames are
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Figure 3.9: Schematic of a double oscillator laser system.

different. The first frame exposure is in the range of microseconds, which is then followed

by first frame readout, and the exposure for the second frame occurs. This entire process

happens within the order of hundred milliseconds and repeats based on the camera frame

rate setting.

Figure 3.10: Timing diagram for double frame image recording.
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Flow seeding

For the current study, the PIV seeding particles are silver hollow coated glass

spheres with diameters from 9-13 µm. The density of the particles is 1.1g/cm3 according

to LaVision manufacturing data. These seeding particles are chosen for compatibility

and stability with the fluid used in the experiment and are neutrally buoyant with the

fluid. To determine the residence time of the particle, the Stokes number is number is

determined. For this investigation, the time response of the particle and the characteristic

time of the flow are considered. In this case, the ratio between the two numbers gives

an indication of the Stokes number. Stokes number is the ratio of the particle response

time (τp) to a representative time scale in the fluid flow (τf ) and given as [123]

St =
τp
τf
. (3.4)

If St≫ 1, then the particles will travel on their own path, and if St≪ 1, the particles

will follow the fluid. The time response for the particle is determined using [123]

τ =
(2ρp + ρf )d

2
ρ

36µf

(3.5)

where ρp is the density of the particles, ρf is the density of the fluid, dp is the diameter

of the particles and µf is the viscosity of the fluid. Using the equation, the time response

of the particle 9-13 µm in diameter results in 1.38 × 10−6s. The characteristic time of

the flow is around 0.2s (convection time for the vortex to move across the aneurysm).

Using this information, the St ≈ 3.43 × 10−6 ≪1. Thus, it is reasonable to assume the

particles are following the fluid flow.
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3.3.2 Triggering and image synchronization

Now that the camera and laser system have been described, synchronization and

triggering of these devices is crucial in order to appropriately illuminate the flow field

and capture the illumination of the particles in a timely and appropriate sequence. This

is done through a Programmable Timing Unit (PTU) which takes control over the syn-

chronization of the devices. For this investigation, PTU X is used which is a software-

controlled synchronization unit by LaVision.

With the PTU, the concept of reference time is important as it describes the time

between the PTU trigger, the moment the image is taken by the camera, and the illu-

mination time by the laser. A common reference point in time is needed such that the

light pulse from the laser illuminates the flow field of interest which then leads to the

camera exposure. The reference time is set so that the camera can activate its sensor,

the laser gets charged with the flash lamp, and all other electronics can be monitored

and triggered. The DaVis software takes care of the individual timings of each devices

and triggers them before the reference time.

A timing diagram shown in Fig. 3.11 illustrates the reference time for the PIV double

frame double exposure setting. The red vertical line refers to the reference time for the

system. Here the laser 1 requires two trigger pulses. The first trigger (i.e., Flash Lamp

Trigger 1) is to activate the flash lamp for pumping the laser while the second trigger

(i.e., Q-Switch 1) emits the laser at the reference time. The camera trigger is activated

right before the reference time to expose the camera sensor. The process is similar for

the second laser at slightly different timing to allow the laser pulses to be separated at

some time dt .
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Figure 3.11: PTU timing diagram for camera and laser.

PIV analysis

The images acquired with PIV are evaluated in the post-processing step to acquire the

velocity field. The objective is to determine the displacement between two patterns of

particle images. This is done by subdividing the images into interrogation windows and

evaluating the windows using correlation techniques such as auto or cross-correlation.

Details of these methods for use in PIV evaluation can be found in [124].

For this study, the velocity fields are estimated using cross-correlation, multi-pass

approach with 50% overlap with final interrogation window of 32 × 32 pixels. These
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settings in the post-processing step yielded approximately 9000 vectors in the pipe region,

6000 vectors in the neck region, and 6800 vectors in the sac region for each of the studied

scenarios.

3.4 Pump system

In this section, a pump system is described which will be used to generate controlled

inflow conditions for this study. A piston pump system (SuperPump System AR Series,

ViVitro Labs Inc., Victoria, BC, Canada) will be used which has several components. In

this study, the pump system consist of the hydraulic piston pump, Viscoelastic Impedance

Adapter (VIA), pump head, and pump encoder. Each component will be described

including their role in generating the inflow condition.

The first component is the ViVitro SuperPump which is a pulsatile pump that utilizes

a hydraulic piston. This piston can be controlled digitally using preconfigured waveforms

or through a customizable ViViTest software input for the piston to follow. This allows

the pump to replicate physiological flows for in vitro investigations. A sample figure

of the pump system is shown in Fig. 3.12 while the critical features of the pump are

summarized in Table 3.1.

Table 3.1: SuperPump specifications.

Specifications
Cycle Rate 3-200 BPM

Waveform Accuracy
<4% of stroke volume at 70 BPM
<5% of stroke volume at 200 BPM
Pressure limit 360mmHg

Displacement Volume 0-180 mL

Standard Waveforms

Physio at 70 BPM
Sine 30% at 45 BPM
Sine 35% at 70 BPM
Sine 50% at 70 BPM
Sine 50% at 120 BPM

The second component of the SuperPump system is the Pump Controller which is
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Figure 3.12: ViVitro SuperPump used in the experiment.

shown in Fig. 3.12. The controller has a front panel which the controls are rotary en-

coders to select the amplitude and output waveforms. The rear panel contains different

connectors to monitor different signals such as position, instantaneous flow rate, and trig-

gering. The controller also has a waveform input to allow an external signal to control

the SuperPump.

The third component of the SuperPump system is a Viscoelastic Impedance Adapter

(VIA) and is shown in Fig. 3.12. For this study, smooth and realistic changes in pressure

cycle is important to simulate in order capture the flow evolution in the aneurysm study

and thus a VIA is used. The VIA consists of a fixed resistive element and two compliance

chambers that are adjustable for simulating the ventricular viscoelastic behavior. The

purpose of this adapter is to produce realistic physiological pressures in the flow and

correct flow rate waveforms by dampening the sharp changes in the momentum of the fluid

surrounding the ventricle generated by the piston [125]. The damping can be controlled

by changing the volume of the air inside the VIA output compliance and the VIA source

compliance chambers [125]. The critical features of the VIA are summarized in Table 3.2.
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Table 3.2: Viscoelastic Impedance Adapter specifications.

Specifications
Fixed Resistance 200 c.g.s. units

Compliance Air Volume
Source: 0-120 mL
Output: 0-60 mL

Total Liquid Volume 500 mL with Source/Output compliance air volumes zero

The last item in the SuperPump system is the Pump Head which is shown in Fig. 3.12.

The Pump Head’s function in the experiment is to create circulatory pulsatile loop. When

this is combined with VIA, the flow loop will have attenuated pressure traces and pressure

spikes from the piston reversal. The Pump Head consists of a silicone ventricle membrane

which isolates the SuperPump piston fluid (typically distilled water) from the test fluid.

It also has spring-loaded disc valves to allow for uni-directional flow in the flow-loop

system.

3.5 Flow-loop and hardware synchronization

The PIV system, pump system, and the aneurysm model are now put together as

part of the experimental setup to acquire velocity field measurements, and the schematic

of this entire setup is shown in Fig. 3.13. To capture the flow evolution and large-scale

structures in the aneurysm at different inflow scenarios, the two systems (i.e., PIV system

and pump system) are synchronized. Doing this synchronization step allows to accurately

determine when a PIV image is taken in a given phase in the pump pressure cycle. This

is done by simultaneously tracking the PIV trigger signal and the pump piston signal

shown as dashed lines in the figure. These signals are recorded using a data acquisition

system, and acquired using an in-house LabView code. The information acquired also

allowed to correlate the sub-regions of the aneurysm (discussed in the Test conditions

section) and used for analysis with POD and DMD.
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Figure 3.13: Schematic of experimental setup for fluid flow investigation. Broken lines
represent the system, bold solid lines represent subsystem components, and black solid
lines represent the signals.

3.6 Velocity profile validation

The piston pump described in the previous section was set to generate a controlled

and well-behaved flow for experiments. In this study, a sinusoidal waveform was used for

the piston to follow. The periodic cycle of the flow results in a total pump cycles of 170

and 1040 for α = 2 and α = 5, respectively. To assess the quality of the inflow condition,

a multi-modal Womersley solution [126] was fitted to the upstream pipe velocity profile.

The multi-modal solution for a velocity profile u(r, t) at time instance t is given as
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u(r, t) = a0(1−
r2

R2
) +

M−1∑
m=1

Re

{
am

(
1− J0(λmr)

J0(λmR)

)
exp(jωmt)

}
, (3.6)

where am is the complex fitting parameter, R is the pipe radius, r is the radial distance,

j is the
√
−1, ωm = mπ/T , T is the time period of the pump flow, and λm = j (ωm/ν)

3/2,

M is the number of frequencies and J0 is the Bessel function of order zero.

An example of a typical velocity waveform along with its piston phase for a flow

condition of Rep = 50 and α = 2 is shown in Fig. 3.14(a) while the upstream velocity

profile for non-dimensional period of t/T = 0.60 is shown in Fig. 3.14(b). The results

showed that the velocity profile was periodic using three frequency modes to fit the multi-

modal solution with the velocity profile. Other time instances and inflow conditions were

also verified and found good agreement with the multi-modal solution which are not

shown here.
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Figure 3.14: Pipe velocity information for Rep = 50 and α = 2. (a) Velocity waveform.
(b) Velocity profile with fitted multi-modal Womersley solution.

3.7 Test conditions

For this study, Re and α are the two dimensionless parameters that will be used to

characterize the inflow conditions in the aneurysm. These parameters are selected since

they play key roles in the flow behavior in aneurysm. Furthermore,these have been
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used in previous saccular aneurysm studies. For instance, studies by Ku [5] have shown

that the mean Reynolds number is around 300 and Womersley number is about 4 in

the carotid artery bifurcations located along the sides of the neck. Liou and Liou [127]

used mean Reynolds number of 500 to study human basilar tip aneurysms. Steiger

et al. [128] investigated basic flow structures in saccular aneurysms using mean Reynolds

number of 300 and an α of 1.3 for pulsatile flow investigations. Le et al. [27] used

peak Reynolds number range of 375 to 800 and α of 3.3-4.8. Lastly, Asgharzadeh and

Borazjani [19] in their computational study investigated the effect of mean Reynolds

number and α in intracranial aneurysms for mean Reynolds number of 173-914, and α

of 5 to 30. Using these parameters, the inflow conditions were varied for this study. Rep

was varied from ∼50-270 using the stroke length of the pump, while α was varied from

∼2 to 5 using the frequency setting of the pump. The diameter of the tube was used

for the characteristic length scale, and the maximum centerline velocity was used for the

velocity scale. The selected α for this study represents quasi-steady flow and unsteady

flow regimes as identified by White [129].

Initial PIV measurements and previous studies indicate a velocity magnitude differ-

ence between the pipe section and the aneurysm sac [23]. This difference becomes a

challenge in selecting an appropriate ∆t to capture the movement of the particle be-

tween the PIV image pairs. To overcome this challenge, the velocity field measurements

are divided into distinct sections, namely the pipe, neck and sac regions. This allows

for optimization of the time delay between the PIV image pairs for minimal uncertain-

ties in the velocity field vectors. The calculated velocity field used for the experiment

is cross-correlation, multi-pass with decreasing window size analysis technique with final

interrogation window of 32x32 pixels. Furthermore, PIV measurements are also taken at

different planes which are shown in Fig. 3.16. These measurements are taken to get a 3D

reconstruction of the flow inside the aneurysm sac.

The flow conditions are summarized in Table 3.3. The field of view for each region
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of interest and the corresponding time delay (dt) for the PIV image pair for each Re are

summarized in Table D1 for α of 2 and Table D2 for α of 5 for mid-plane measurements.

Furthermore, Table D3 show the region of interest and time delay for different flow

conditions for α of 2 while Table D4 show the parameters for α of 5. Note that the plane

measurements are only acquired for BF of 1.0 since it had the aneurysm volume to allow

these plane measurements.

(a) (b) (c)

Figure 3.15: PIV Image Sections used in flow investigation for (a)Pipe, (b) Neck, (c) Sac.
The arrows indicate the flow direction.

(a) (b) (c)

Figure 3.16: PIV Image Sections used in flow investigation for (a)Mid-plane, (b) 2mm
from mid-plane, (c) Near edge. The arrows indicate the flow direction.



40

Table 3.3: Flow conditions and measurements performed for this study.

BF Re α PIV

Images

PIV

Frame

Rate

(Hz)

Pump

Frequency

(Hz)

1.0 50 2 500 1.17 0.4

1.0 150 2 500 1.17 0.4

1.0 270 2 500 1.17 0.4

1.0 50 5 500 1.17 2.4

1.0 150 5 500 1.17 2.4

1.0 270 5 500 1.17 2.4

1.6 50 2 500 1.17 0.4

1.6 150 2 500 1.17 0.4

1.6 270 2 500 1.17 0.4

1.6 50 5 500 1.17 2.4

1.6 150 5 500 1.17 2.4

1.6 270 5 500 1.17 2.4
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CHAPTER 4

Analysis approach

This chapter discusses the methods used to analyze the velocity field data and

extract the large-scale flow features in the pressure cycle. The hardware synchronization

approach which captures the flow evolution is first presented. This is followed by the

vortex center detection approach to identify vortex core location. The impinging location

and wall shear stress analysis methods are then presented. The chapter continues with

the presentation and implementation of the advanced analysis methods such as POD and

DMD methods to extract pertinent flow features in the velocity field data.

4.1 PIV measurement with hardware synchronization

The first method discussed in this chapter is the hardware synchronization approach.

The method requires to set the sampling rate (i.e., PIV camera frame rate) at a slightly

different setting than the sub-multiple of the driving pump frequency. This allows the

PIV images to capture the flow fields at different phases in the pressure cycle. Holman

et al. [130] used this technique in their PIV experiment of synthetic jets to determine the

onset of jet formation. In their work, the method allowed them to acquire different vortex

structure in each image at different phases of their flow cycle. The resulting images are

sequenced over one cycle that forms an ”aliased movie” of the flow field.

A sample illustration of this method is shown in Fig. 4.1. Here, the pump setting is

set to 1 Hz and the camera frame rate is set to 1.6 Hz. The figure shows where the camera

has taken images in relation to the pump frequency, and the images are assigned numbers

from 1-8. Since the pump frequency is a well-behaved signal and cyclic in nature, the

images that are outside of the single cycle of the pump are transposed to the single period

cycle. These are indicated by the dashed arrows where the images should be in the single

period cycle. The resulting single pressure cycle with transposed images is shown in
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Fig. 4.2. The new arrangement of images allows for flow field information for a complete

pressure cycle. In the current study, each experiment is run for several pump cycles in

order to cover the entire flow field information for a single period cycle. Table 3.3 shows

the PIV camera frame rate and super pump frequency (i.e. the driving frequency) used

in the experiments. The test conditions in Table 3.3 gave 1025 pump cycles for α of 5,

while 170 pump cycles for α of 2. Furthermore, the hardware synchronization approach

was applied to different sections of the aneurysm which allowed and capture the complete

flow evolution for each sections.
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Figure 4.1: Image sequencing illustration for pump frequency and camera frame rate.
Each number represents the image number taken at a particular point in the pump cycle.
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Figure 4.2: Image sequencing illustration result for one pump cycle.
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4.2 Vortex path

The sequenced PIV images are analyzed for further flow structure behavior and

pattern. The initial analysis showed presence of vortex structures in the aneurysm at

different time phases and inflow conditions, and thus a vortex core identification is used

to identify the vortices and their location in the aneurysm. This approach is important

for the study as it allows us to quantify the vortical structure behavior at different

inflow conditions in conjunction with other analysis methods. For this analysis, a vortex

identification algorithm by Graftieaux et al. [131] is implemented to locate the center

of the vortex of each image. According to the method, let Γ1 be a dimensionless scalar

function at a fixed point P in the measurement domain. This is defined as [131]

Γ1(P ) =
1

S

∫
M∈S

(PM ∧ UM) · z
∥ PM ∥ · ∥ UM ∥

dS =
1

S

∫
S

sin(θM)dS (4.1)

where S is two dimensional area surrounding P , M lies in S, z is the unit vector normal

the measurement plane, θM is the angle between the velocity vector UM and the radius

vector PM . Γ1 results to a dimensionless scalar with magnitude |Γ1| bounded by 1.

For PIV measurements, where the velocity vectors are at discrete spatial locations, Γ1 is

approximated using

Γ1(P ) =
1

N

∑
S

(PM ∧ UM) · z
∥ PM ∥ · ∥ UM ∥

=
1

N

∑
S

sin(θM) (4.2)

S is a rectangular domain of fixed sized and geometry centered at P , and N is the number

of points M inside S. Note that the parameter N plays a role of a spatial filter. The

vortex center, Γ1, has typical values from 0.9 to 1 depending on the number of points

used in S using the Eq. 4.2.
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4.2.1 Vortex center implementation

The vortex center algorithm is implemented using Matlab and used to determine

the vortex center for each binned PIV images. The process of this implementation is as

follows: First, a single binned PIV image P1 is divided intoK windows. A sample window

K1 is shown in Fig. 4.3, and the velocity vectors inside this window are extracted and

shown in Fig. 4.4. Next, the center is determined for this window where it is indicated

by the red ”+” in Fig. 4.4. A radius vector from the center location of the window is

connected to each velocity vector present in the window, and a sample of this step that

shows an angle θ between the two vectors is illustrated in Fig. 4.4. A cross-product

operation is performed for between the radius vector and the velocity vector, and the

step is repeated for all the vectors present in the window. The resulting cross-products

are summed together to determine Γ1,K1 for this window. In equation form this is written

as

Γ1,K1 =
M∑
i=1

sin(θM) (4.3)

where M is the number of velocity vectors and θM is the angle created between the radius

vector and each velocity vector. The process is repeated for the subsequent windows in

the PIV image. Thus, the PIV binned image will contain Γ1,Kj
where j = 1, 2, 3, ..., K

values. The next step is determining the maximum Γ1(P ) for the entire flow field. The

location of this maximum Γ1 relates to the location of the vortex center (i.e., x and y

values) of the observed flow structure for each image.

A sample result of vortex center detection is shown in Fig. 4.5 where center is marked

with red ’x’ symbol. It can be seen from the figure that the method is able to determine

the vortex core location. The entire process is then applied to all PIV images to determine

the vortex path for each test condition. Note that for the binned PIV images that do not

contain any vortex, this algorithm will not work and thus resulting locations for these
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images will be excluded from the analysis.
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Figure 4.3: Sample binned image with sample window size.
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Figure 4.4: Extracted velocity vectors inside the sample window size.
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Figure 4.5: Estimated vortex location for the sample image. The center of the vortex is
marked with the red ’x’ symbol.

4.3 Impinging location

Part of the analysis approach of this dissertation is to quantify the flow structure

impact to fluid dynamics parameters. One of the ways to quantify this is to look at the

impinging location along the aneurysm geometry. The impinging locations are important

to study as they indicate the high pressure points in the aneurysm sac which may be

correlated to the increased risk of rupture [88, 132]. In this study, the impinging location

is defined to be the stagnation point in the velocity flow field. The PIV images are

individually analyzed for flow stagnation, and the implementation of this concept is

presented in the next section.

4.3.1 Impinging location implementation

The determination of flow impingement is implemented in Matlab and used to

identify the locations along the aneurysm geometry. The analysis begins by looking at

the flow evolution results and identifying the possible region of the impinging location.



47

For each individual PIV image, velocity vectors in the region of the flow field where flow

stagnation might occur are extracted. An example of this step is shown in Fig. 4.6 for a

single PIV image. A strip dl is drawn along the aneurysm wall close to the stagnation

location, and the velocity vectors in the extracted region are projected onto dl as shown

in Fig. 4.7. Thus, for k number of vectors in the extracted region, each projection Pi is

the dot product between the strip dl and the velocity vector Vi and shown as

Pi = ∥ML∥∥Vi∥cos(θ)i (4.4)

where ML is the length of the imaginary line, Vi is the velocity magnitude of each vector

in the extracted window, and θi is the angle created by each vector to the imaginary line.

Next, a contour plot is created for the PIV image, and the contour value that goes close

to zero is the impinging location as shown in Fig. 4.8.
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Figure 4.6: Original image with window size and strip dl.
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Figure 4.7: Extracted velocity vectors and strip dl.
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Figure 4.8: Estimated impinging location for a sample image.

The impinging locations for each phase in the pressure cycle are determined on the

distal side of the aneurysm cavity. The distal side was chosen as for this analysis current

study shows flow enters at the distal wall of the aneurysm. Furthermore, Cebral et al. [88]

reported frequent flow impingement are located on the distal portion of the neck. Only
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few cases in their study showed inflow impingement on the proximal neck which were

influenced by the parent artery curvature. With this in mind, the impinging locations are

then determined and presented as frequency distribution. For this part of the impinging

location analysis, an arc length s shown in Fig. 4.9 is divided into several equal intervals

from 0 − s. The impinging locations are then counted in each interval. The number of

impinging location occurrences that falls for each interval are then divided by the total

number phases in the pressure cycle which then gives the frequency distribution.
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Figure 4.9: Aneurysm wall geometry where the impinging locations are tracked.

4.4 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is utilized in this dissertation to extract

the energetic features or modes in the flow field. Using POD will enable us to understand

the flow behavior in the aneurysm by isolating different flow features and describe these

through their energy content levels. Furthermore, the interplay of these modes along with

their time-varying coefficients will allow us to describe the flow field in a mathematical

approach.

POD is a method first introduced in the fluid dynamics community by Lumley [29]

as a mathematical approach to extract coherent structures from turbulent flow fields.

It is a method commonly used for extracting coherent structures from experimental
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or computational data. To do this, POD optimally determines a basis of orthogonal

functions which span the data in the L2 sense [133]. The most important property of POD

is its optimality as it provides an efficient way of capturing the dominant components of

a high-dimensional process using only a finite amount of modes [30].

Since its introduction, POD has been used in variety of studies which are briefly intro-

duced here [29, 131, 134, 37, 38, 40]. Lumley [29] used POD to separate ’large eddies’ in

shear flows. Graftieux et al. [131] suggested using POD to separate pseudo-fluctuations

attributed to unsteady nature of the large-scale vortices from the fluctuations due to

small-scale turbulence. Chen et al. [134] used POD to quantitatively distinguish internal

combustion engine flows with extreme flow properties. In biofluids, Byrne et al. [37] used

POD on computational fluid dynamics simulations to classify aneurysm hemodynamics

according to spatial complexity and temporal stability for the parameters estimated from

vortex core lines. They found that ruptured aneurysms complex and unstable dynam-

ics while simple and stable dynamics are found with unruptured aneurysms. Daroczy

et al. [38] used POD to determine the spectral entropy in the flow which helped them to

appropriately select computational models based on the flow regimes. Janiga [40] intro-

duced POD for analysis of different time-varying three-dimensional hemodynamic data.

His work showed the ability of POD of reducing the complexity of the time-dependent

data for quantitative assessment.

The mathematical background and description of POD are provided by several au-

thors [29, 135, 30, 31]. For this dissertation, a traditional (i.e.,vector POD) approach

is used to ensure coupling of u and v components of velocity. The methodology and

implementation are described in the next few sections.

4.4.1 Mathematical background

Proper Orthogonal Decomposition is a method that aims to find a basis in the Hilbert

space (i.e., L2) that is optimal for the dataset that can be represented in the form
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−→
U (x, y, t) =

N∑
i=1

ai(t)
−→
Ψi(x, y), (4.5)

where
−→
U (x, y, t) is a velocity field, ai(t) is the time-varying coefficient of the ith basis

function (
−→
Ψi(x, y)) at time t. To find the basis functions

−→
Ψi(x, y), they are chosen such

that the averaged projection of the velocity field
−→
U (x, y, t) onto

−→
Ψi(x, y) is maximized.

This is shown as

max
Ψ∈L2([0,1])

⟨|
(−→
U (x, y),

−→
Ψ
)2

|⟩

∥
−→
Ψ∥2

, (4.6)

where |.| denotes the modulus, ⟨.⟩ is the ensemble average, (.) represents the inner product

and ∥.∥ denotes the L2 norm. The solution to Eq. 4.6 yields to the approximation to

the velocity field by a single function, but other critical points of this function are also

physically significant. Thus, the set of functions, when taken together, provide the desired

basis. This yields variational calculus problem shown as

J [Ψ] = ⟨|
(−→
U (x, y),

−→
Ψ
)2

|⟩ − λ(∥Ψ∥2 − 1). (4.7)

A necessary condition is that the derivative vanish for all variations Ψ+ δΨ ∈ L2, δ ∈ R

i.e.,

d

dδ
J [Ψ + δΨ]|δ=0 = 0. (4.8)

Using calculus principles, the equation reduces to an Euler-Lagrangian equation shown

as ∫
Ωxy

⟨
−→
U (x, y)⊗

−→
U (x′, y′)⟩

−→
Ψ(x′, y′)dx′dy′ = λ

−→
Ψ(x, y), (4.9)

where Ωxy is the domain of interest, ⟨
−→
U (x, y)⊗

−→
U (x′, y′)⟩ is the spatial correlation of the

velocity field, ⊗ is the tensor product, and λ is the energy associated with each POD
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mode. With further simplification and substitution, the formulation in Eq. 4.9 can be

seen as

R
−→
Ψ(x, y) =

∫
Ωxy

⟨
−→
U (x, y)⊗

−→
U (x′, y′)⟩

−→
Ψ(x′, y′)dx′dy′ (4.10)

where R is the kernel of the POD formulation, i.e., the spatial velocity correlation ma-

trix that results from the definition of velocity vector tensor product. The resulting

simplification can be seen as eigenvalue problem shown as

R
−→
Ψ(x, y) = λ

−→
Ψ(x, y), (4.11)

where the eigendecomposition will have eigenvectors (i.e., POD modes) ψuu(x, y) and

ψvv(x, y), and λ represents the eigenvalues or energies captured by the POD modes. The

velocity field reconstruction in Eq. 4.5 requires to find the coefficients ai(t) which can be

found by projecting the original velocity fields
−→
U (x, y, t) to each of the POD modes and

given as

ai(t) =
(−→
U (x, y, t),

−→
Ψi(x, y)

)
. (4.12)

POD was implemented in-house using MATLAB. For each experimental scenario, 500

PIV images were acquired spanning several minutes. For instance, for α = 2 case, images

were acquired over 170 pump cycles, while for α = 5 case, images were acquired over 1040

complete pump cycles (see Table 3.3). The average velocity flow field was subtracted for

each inflow scenario before using POD which allows to capture the POD modes based on

the flow fluctuations in the data set. Next, auto and cross correlations for the velocity flow

field were calculated to obtain POD kernel (i.e., R). For this study, the POD kernel was

a square matrix of ∼13000 × 13000 elements. The mathematical formulation provided

in Eq. 4.11 was solved to calculate the eigenvalues (i.e., λi), eigenvectors (i.e., Ψi
uu(x, y)

and Ψi
vv(x, y)) and the subscript i represents the POD mode numbers. The typical

calculation processing time for POD analysis was approximately one hour. The obtained
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eigenvectors (i.e., POD modes) were then used to calculate the time-varying coefficients

(i.e., Eq. 4.12) at a given time instance and the low-order velocity field was performed

using Eq. 4.5. The complete implementation of POD is attached in the Appendix.

4.5 Dynamic Mode Decomposition

Part of the objective of this dissertation is to utilize Dynamic Mode Decomposition

(DMD) to gain additional insight to the flow structures present in the aneurysm flow.

As POD discussed in the previous section will be used to extract modes characterized by

their energy content levels, we will use DMD to extract dynamically important features

in the flow and describe these modes by their growth rates and frequencies. This will

allow us to understand and capture the dynamically important modes that are impacting

certain fluid motion in the flow field. Furthermore, the modes of oscillation obtained from

DMD and their combination can be used to represent the flow dynamics in the data set.

The DMD method is introduced by Schmid [33] as an alternative algorithm to ap-

proximate the eigenvalues and eigenvectors of the infinite-dimensional Koopman operator

using only the snapshots of the flow field. Since its introduction to the fluids community,

DMD has found its use in different studies in fluids as well as beyond fluid applications

which are briefly discussed here [136, 36, 39, 137]. For instance, Grosek and Kutz [136]

used DMD to separate video frames into background and foreground components in real

time. Abulkhair [36] used DMD on AAA to reveal the hidden dynamics of the flow

behavior inside the AAA. He found that low flow conditions are characterized by oc-

currences of backflow and less temporal vortical structures. Lozowy [39] used DMD to

remove frequencies other than the pulse frequency from the velocity field. Using DMD

allowed him to represent the flow dynamics that consist of a single large-scale vortex. Wu

et al. [137] used DMD to investigate the flow structures of the jet in channel crossflow us-

ing direct numerical simulation results. They found that the modes reveal the frequency

information and corresponding spatial structures in the entire field and the interactions
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between different parts of the flow domain.

The mathematical background and review of DMD are provided by several refer-

ences [33, 138, 139, 28, 34]. As DMD is rooted from linear algebra, the method is

very extensible and allows for further developments and optimization. There have been

numerous different formulations and interpretations of the results from the method

[33, 140, 141, 142, 139, 143]. In this dissertation, we implement the methods according to

Kutz et. al. [139] and Jovanovic et al. [142]. The DMD methodology and implementation

used in this dissertation are summarized in the next few sections.

4.5.1 Mathematical background

We now consider the mathematical background of DMD to be used in this dissertation.

We will first look at a linear dynamical system which can be described as

ẋ(t) = Ax(t), (4.13)

which is a first-order ordinary differential equation and has a solution of

x(t) = exp(At)x(0), (4.14)

where x(0) is the initial condition. The eigenvalues contained in A are the behavior of

the linear dynamical system for x(t). The real components of the eigenvalues of represent

the growth or decay rate while the imaginary components of the eigenvalues represent

the frequency at which the system behaves. Next, we now consider a series of consecutive

snapshots {s1 s2...sm} separated by a time step ∆t. The snapshots si represent a single

flow field constructed with u, v components of velocity. The entire flow evolution is then

stored in matrix form D such that

D = {s1 s2 ... sm−1} ∈ Rnxm, (4.15)
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where m represents the total number of snapshots and n represents the number of vectors

containing u and v. A second data matrix D′ is defined such that the dataset D is shifted

forward in time by ∆t where

D′ = {s2 s3 ... sm} ∈ Rnxm. (4.16)

Here we assume a linear mapping between the snapshots using a coefficient matrix A

that connects the flow field si to the subsequent flow field si+1 shown as

si+1 = Asi. (4.17)

In general, the datasets D and D′ can be expressed in following form with the operator

A defined as

D′ = AD (4.18)

By this definition, the flow is assumed to be linearly dependent although the flow field is

non-linear in nature. Thus, the current approach is to determine a best-fit linear operator

that relates the two matrices D and D′. The matrix A is then a linear mapping matrix

that connects the velocity field data at time instant t with t + ∆t. We can find the

operator A by taking inverting the equation such that

D′D† = A ∈ Rnxn (4.19)

where † denotes the Moore-Penrose pseudoinverse operation. The eigenvalues and eigen-

vectors of A thus describe the dynamical behavior of the fluid system. However, due

to the large size of n, the matrix A is not directly computed and may produced an ill-

conditioned matrix, but instead projected onto a lower-dimensional subspace which still

contains similar dynamics of A. The objective of DMD then is to find a lower approxi-
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mation of A (i.e., Ã). To find the low-order mapping of A (i.e., Ã), Schmid [33] suggests

a preprocessing step using singular value decomposition (SVD) to the first data matrix

D (i.e., D=U Σ V ∗). Substituting the results to Eq. 4.18 and rearranging yields

U∗AU = U∗D′VΣ−1 ≡ Ã (4.20)

where U is the left singular vector,V is the right singular vector, Σ is a diagonal singular

matrix, ∗ denotes conjugate transpose, and −1 denotes a matrix inverse operation. The

matrix Ã can be viewed as a minimization problem of the Frobenius norm between the

difference of data matrices D′ and AD using A = UÃU∗

minimize
Ã

∥ D′ −UÃΣV∗ ∥2F (4.21)

Equation 4.20 shows the idea of DMD. The method aims to determine matrix Ã which

is a low-order approximation of matrix A. With SVD, the eigenvalues and eigenvectors of

A are approximated with eigenvalues and eigenvectors of Ã via similarity transformation

(i.e., A = UÃU∗). The key property of this transformation is it preserves the eigenvalues

of A. We also note here that the DMD operator A in Eq. 4.18 is related to operator

exp(A∆t) in Eq. 4.14.

The resulting low order mapping ofA (i.e., Ã) has the eigenvalues (i.e., Λ = diag(λ1 λ2...λm))

which provide information on the growth/decay rate as well as frequency oscillations of

each dynamic mode [33]. To extract this information, a logarithmic mapping of the

eigenvalue [33, 28] is used such that

λi =
log(Λi)

∆t
= gi + ifi, (4.22)

where the real part of each eigenvalue (gi = Re(λi)/2π) represents the growth/decay

rate while the imaginary part (fi = Im(λi)/2π) contains the frequency for each dynamic

mode.
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The DMD modes (Φ) are determined using the eigenvector (W) of Ã along with left

singular vector U given as

Φ = UW. (4.23)

The interpretation of the DMD modes is it is a projection of the eigenvectors W on

the vector space U. This vector space U contains the POD modes [33] which have flow

behavior at multiple frequencies.

Since the determined DMDmode represents oscillations of spatial structures at a given

frequency, each flow field snapshot si at time t can be reconstructed by superposition

of DMD modes Φ, DMD eigenvalues Λ, and corresponding DMD amplitudes β given as

[139]

si =
r∑

k=1

ϕk exp[λkt]βk = Φexp(λt)β. (4.24)

Thus, the low-order flow reconstruction can be used to provide insight to the flow field

which contain flow structures oscillating at different frequencies. By selecting low fre-

quencies to approximate the flow field, the flow behavior representation can contain only

the large-scale structures [39]. Equation 4.24 also provides information on growth rate

behavior of these DMD modes as each mode progresses over time, while DMD amplitude

β gives insight to the contribution of each DMD mode. The amplitude β can be seen

as the selection of the modes with the strongest influence on the system’s response from

the use of the initial condition and the time interval on which the snapshots are col-

lected [142]. To determine β, the optimal amplitude approach by Jovanovic et al. [142]

is used. Equation 4.24 can be written in matrix form shown as
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[s1, s2, ..., sm−1]︸ ︷︷ ︸
D

≈ [ϕ1, ϕ2, ..., ϕr]︸ ︷︷ ︸
Φ


β1

. . .

βr


︸ ︷︷ ︸

β



1 Λ1 · · · Λm−1
1

1 Λ2 · · · Λm−1
2

...
...

. . .
...

1 Λr · · · Λm−1
r


︸ ︷︷ ︸

Vand

, (4.25)

with the Vand is the Vandermonde matrix representing the temporal evolution of the

dynamic modes. Since the DMD modes Φ and temporal behavior Vand are known, the

unknown amplitudes β are solved through an optimization problem shown as

minimize
β

∥ D−ΦβVand ∥2F . (4.26)

Using the economy-size SVD of D=U Σ V ∗ and the definition of the the matrix Φ

(i.e., Eq. 4.23), the problem is of the following form

minimize
β

J(β) =∥ ΣV∗ −WβVand ∥2F , (4.27)

which is a convex optimization problem and can be solved with standard methods [144].

Following Jovanovic et al. [142] solution to the optimization problem in Eq. 4.27, the

DMD amplitudes β can be found as

β =
(
(W∗W) ◦

(
VandV ∗

and

))−1
diag(VandΣ∗W). (4.28)

This allows us to determine the optimal amplitudes from all the snapshots apart from

using the initial snapshot to determine the coefficients (i.e., β = Φ s1). Equation 4.28

is a result of the optimization problem finding the minimum β that best approximate s1

using Eq. 4.24. Here the overline in Eq. 4.28 means the complex-conjugate of a vector, ◦

is an elementwise multiplication of matrices, diag of a vector is a diagonal matrix with
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the main diagonal containing the elements of the given vector, and diag of a matrix is a

vector containing the main diagonal of the given matrix.

The DMD implementation is developed in-house using MATLAB. Unlike POD, the

mean flow is not removed for each inflow scenario, and the data matrices are constructed

such that the columns contain the u and v components of the velocity field. Thus, the

data matrices D and D′ contain tall and skinny matrices containing the velocity fields.

The algorithm and implementation of DMD can be found in the Appendix.
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CHAPTER 5

Results

This chapter discusses the results obtained from the experimental methods and

analysis techniques implemented for this study. The chapter is organized such that the

objectives of the study are addressed. In the first section, the PIV results are shown

which contain details about the mean flow, flow evolution, impinging location and wall

shear stress behavior for different models and inflow conditions. The second section

shows the results using POD to extract the important spatial features related to the

large-scale structures. The third section provides the DMD results applied on different

inflow scenarios to extract the spatiotemporal information of the large-scale structures.

5.1 Mean flow analysis

In analyzing the data set, the mean flow is first analyzed to give an overview of the

bulk features of the flow field. This is important as it can quickly allow simple and basic

insight on the behavior of the large-scale structure in the aneurysm. This is similar to

previous studies that used steady flows to study basic aneurysm behavior [20, 76, 24, 18].

For example, Ferguson [20] studied steady and pulsatile flows in a bifurcation by dye

injection and found that the impingement of the central stream to the apex of bifurcation

could be an important factor in initiation of aneurysms. Steiger et al. [76] used steady

flow in saccular aneurysms and found that the flow field matched well with pulsatile

flows particularly with the systolic flow field. Budwig et al. [24] used steady flow in

abdominal aortic aneurysms and found that the flow field is characterized by jet of

fluid passing directly through the aneurysm and surrounded by a recirculating vortex.

Bluestein et al. [18] used steady flow in their numerical simulations of abdominal aortic

aneurysms and found that the recirculation zone can create conditions that promote

thrombus formation (i.e., blood clots) and viability of rupture. Thus, the mean flow
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analysis can provide a general sense of the phenomena inside the aneurysm and a direction

on how to quantify the large-scale structure behavior.

5.1.1 Mean flow behavior results for BF=1.0

The mean flow results are first shown here to provide an overview of the bulk flow

features at different inflow conditions. The time-averaged velocity field over the total

number of images at different Rep are shown in Fig. 5.1 and 5.2 for α = 2 and α = 5,

respectively. For each inflow condition, 500 PIV images are used to calculate the time-

averaged flow field. As seen from the figures, the mean flow results qualitatively show that

the aneurysm is dominated by a clockwise vortex structure at different inflow conditions.

At Rep = 50 (i.e., Figs. 5.1(a) and 5.2(a)), the vortex structure is pushed deep near the

proximal side of the aneurysm sac with the average impinging location near the maximum

aneurysm diameter (i.e., x = 7mm, y = −5mm). The closely compact streamlines near

the distal neck (i.e., x = 7mm, y = 0mm) show high velocity gradients which suggest

increase in shear stresses in this area. For Rep = 150, there is a shift in flow behavior

where the vortical structure(i.e., Fig. 5.1(b) and 5.2(b)) has engulfed the aneurysm sac.

The average impinging location for Rep = 150 cases has moved closer near the distal neck

(i.e., x = 7.4mm, y = −0.4mm) when compared to Rep = 50, while high shear stress are

still observed in this area. The vortical structure shape and characteristics (i.e., location

of average impinging location and shear stresses) remain the same for Rep = 270 for both

α (i.e., Figs. 5.1(c) and 5.2(c)).

The average flow field results show that Rep highly impacts the vortex structure

shape than α. This is in agreement with studies performed by O’Brien [145] where she

showed that the mean flow shape in the cavity is dependent on the cavity dimensions

and incoming velocity profile. For this study, the cavity dimension is kept the same while

the flow profile is varied by changing Rep.
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(a) (c)(b)

Figure 5.1: Average flow field in aneurysm sac at α = 2 for (a) Rep = 50, (b) Rep = 150,
and (c) Rep = 270.

(a) (c)(b)

Figure 5.2: Average flow field in aneurysm sac at α = 5 for (a) Rep = 50, (b) Rep = 150,
and (c) Rep = 270.

5.1.2 Mean flow behavior results for BF=1.6

The time-averaged flow behavior inside the aneurysm for BF = 1.6 at different inflow

conditions are now shown in Fig. 5.3 and 5.4 for α = 2 and α = 5, respectively. The

mean flow results shown here are from the neck section for this model which captures

most of the large-scale flow structures. As seen from the figures, the neck region is

dominated by a clockwise vortex structure at different inflow conditions. For Rep = 50

scenarios (i.e., Figs. 5.3(a) and 5.4(a)), the center of the vortical structure is below the

neck diameter with the average impinging location near (x = 4.0mm,y = −2.7mm).

High velocity gradients are observed near the neck diameter (i.e., high shear stresses) as

the incoming flow gets diverted to the distal side for this Rep. For Rep = 150 scenarios
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(i.e., Figs. 5.3(b) and 5.4(b)), the vortex structure core has moved near the neck diameter

(i.e., x = 0.2mm,y = −3.3mm) with the average impinging locations and high velocity

gradients near this the neck area. The vortical shape and characteristics are also observed

for Rep = 270 (i.e., Figs. 5.3(c) and 5.4(c)).

The average flow field results show that Rep highly impacts the vortex structure

shape than α. At this BF parameter, similar shapes are still observed at different α and

similar Rep. However, when the two BF models are compared, the mean flow shapes

are different between the models. The vortex structure occupies the entire aneurysm

sac for BF = 1.0, while the vortex is only present near the aneurysm neck diameter for

BF = 1.6.
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Figure 5.3: Average flow field in aneurysm sac at α = 2 for (a) Rep = 50, (b) Rep = 150,
and (c) Rep = 270
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Figure 5.4: Average flow field in aneurysm sac at α = 5 for (a) Rep = 50, (b) Rep = 150,
and (c) Rep = 270.
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5.1.3 Peak vorticity and flow behavior

The observed presence of vortical structures from the previous section motivated us

to quantify their characteristic behavior by first looking at their peak vortex strengths.

We want to study this parameter as this may lead us in finding an answer on which

large-scale flow structures and what inflow conditions increase the likelihood of rupture

in aneurysms. As indicated from previous studies, ruptured aneurysms exhibit complex

and unstable flow patterns [146, 147]. Cebral et al. [146] found in their CFD simulation

of a reconstructed basilar artery aneurysm prior to rupture a complex and unstable flow

pattern with several vortices that moved within the aneurysm dome during the cardiac

cycle. Also prior to rupture, Sforza et al. [147] found in their CFD simulation of a patient

specific model several regions of flow recirculation in the basilar tip aneurysm during the

cardiac cycle. These studies have motivated us to investigate the role of the vortical

structure to the aneurysm geometry.

Figures 5.5(a)-(d) show the vortex strength values at different inflow conditions and

at different geometries. The plots indicate a linear trend of increasing average vortex

strengths at increasing Rep for different α and BF conditions. In terms of the impact

of α, it is evident through the peak vorticity values where α = 5 (i.e., Fig. 5.5(b)) shows

higher vorticity values than α = 2 (i.e., Fig. 5.5(a)) for BF = 1.0. This is also evident

with the inflow conditions for BF = 1.6, where α = 5 (i.e., Fig. 5.5(d)) conditions still

yield higher vorticity values than α = 2 (i.e., Fig. 5.5(c)). When the two aneurysm models

are compared, the results show that for a fixed α, the vortex strengths at different Rep

values are always higher for BF = 1.0 (i.e., Figs. 5.5(a) and 5.5(b)) than BF = 1.6 (i.e.,

Figs. 5.5(c) and 5.5(d)). This can be explained as wider neck opening (i.e., BF = 1.0)

has more fluid penetrating and thus more fluid mixing in the aneurysm sac than a narrow

neck opening (i.e., BF = 1.6). This is counter-intuitive with the definition of BF values

as higher values are prone to increase risk of rupture [15]. The mean vortex strength
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values indicate that BF = 1.0 has increased risk of rupture than BF = 1.6. The mean

value results have therefore motivated us to investigate this behavior further as to why

narrow neck openings (i.e., BF = 1.6) are considered to have a high risk of rupture. Thus,

we now analyze the instantaneous flow evolution for each inflow scenario and quantify

possible reasons for this argument.

Note that the linear behavior of the vortical strengths of the vortices allows us to

perform a first-order regression analyses for each scenario. These are shown as the curve

fit line with the 95% confidence interval for each plot. The equation of the line is also

shown for each α and BF scenario which can provide information on the behavior of

the average vortical strength of flow structures as Rep increases. This is an important

finding as we now have a model to predict the behavior of the large scale structures for

the investigated geometries. Another benefit of this finding is the results can guide future

experimental and computational studies on the expected average behavior of the flow.

5.2 Flow evolution results for BF=1.0

We will now look at the instantaneous flow evolution in the aneurysm sac to study

how the vortical structure behaves during the cardiac cycle at different inflow scenarios.

Understanding the flow field evolution allows us to study the changes in the large-scale

structure and their impact to fluid parameters such as impinging location and wall shear

stresses along the aneurysm wall which will be discussed later in the text. The flow

field evolution is presented for a single pressure cycle using the method discussed in the

Approach section.

The flow evolution results for α = 2 conditions are shown in Fig. 5.6 for Rep = 50

and Fig. 5.7 for Rep = 270. The velocity fields at each time phases are selected such that

distinct flow features as well as the overall picture of the flow evolution are captured.

Here the time phases are normalized by the period T of the flow cycle. The first half of

the flow evolution are shown in the top half of each figure while the remaining half are
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Figure 5.5: Vortex strength as function of Rep for different inflow conditions. (a) α = 2,
BF = 1.0, (b) α = 5, BF = 1.0, (c) α = 5, BF = 1.6, and (d) α = 5, BF = 1.6.

shown in the second row. At Rep = 50 (i.e., Fig. 5.6), the flow is initially seen with a

strong forward flow (i.e., t/T = 0.00). As the pipe flow decelerates, a clockwise vortex

develops near the proximal side of the aneurysm sac (i.e., t/T = 0.13) which grows in size

as it moves towards the aneurysm opening and out into the pipe region (i.e., t/T = 0.21-

t/T = 0.42). At the beginning of the acceleration phase (i.e., t/T = 0.47), the vortical
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structure is seen to get pushed back into the aneurysm dome by the increasing pipe

flow velocity. This entire process of vortex formation, growth, and dissipation repeats

for the remaining half of the pressure cycle (i.e., t/T = 0.57-t/T = 0.97). Similar flow

structure development is seen for Rep = 270(i.e., Fig. 5.7) where the vortex develops

near the proximal side and moves towards the aneurysm opening. The time span of this

process for Rep = 270 is more or less similar to Rep = 50 with a few differences. For

instance, the vortex forms earlier at a different location for Rep = 270 (i.e., t/T = 0.03 at

x = −5mm,y = −2.5mm) than Rep = 50 (i.e., t/T = 0.13 at x = −5mm,y = −5mm).

Comparing different flow features for the vortex evolution process shows the impact of

Rep as there are flow structure variation at different phases of the cycle while maintaining

the same trend.

The flow behavior for α = 5 at different Rep conditions are now shown in Figs. 5.8-5.9.

For this α scenario, the flow structure evolutions for each Rep are different than the ones

observed at α = 2. At Rep = 50 and α = 5 (i.e., Fig. 5.8), the clockwise vortex initially

forms near the proximal side of the aneurysm cavity (i.e., t/T = 0.11) which travels

towards the distal side and into the dome (i.e., t/T = 0.21-t/T = 0.42). This process

then repeats for the second half of the pressure cycle (i.e., t/T = 0.53-t/T = 0.89). With

Rep = 270 (i.e., Fig. 5.9), on the other hand, a primary vortical structure is observed to

be present at different phases of the cycle. This vortical structure moves in a clockwise

fashion within the aneurysm sac as a response to the changes in the pressure cycle.

Secondary vortical structures (i.e., at t/T = 0.16 and t/T = 0.73) are also seen to

merge with the primary vortex in this Rep condition which then impacts its overall flow

dynamics. Here, it is noted that the process of formation and evolution are different for

the two Rep conditions studied for this α. It is observed that in the current study, the

change in Rep impacts the flow dynamics and presence of secondary vortex structures.

The behavior of the flow structures in this study are also evident in previous investi-

gations. For pressure cycle with near zero flow phases (i.e., α = 2 in this dissertation),
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Aenis et al. [148] and Yu and Zhao [22] observed that the vortical structure moved into

the pipe region. As the acceleration phase began, the vortex structure moved back into

the aneurysm with rapidly decreasing strength. This sequence was also observed to re-

peat itself in their pressure cycle scenario. For pressure cycle with no zero flow phases

(α = 5 in this paper), previous studies [22, 27, 23, 86, 19] reported the vortex formation

near the proximal neck and moves towards the distal neck of the aneurysm sac. The

vortex formation and movement process was followed by the dissipation process as the

pressure cycle continued. Secondary vortical structures were also observed in these in-

vestigations. To further quantify the impact of α and Rep to the observed changes in the

flow structure for each inflow condition, the impinging locations, vortex strengths, and

wall shear stress values at different time phases are analyzed and presented in the next

few sections.

Figure 5.6: Phase-averaged flow evolution for Rep = 50, α = 2, and BF = 1.0.

5.3 Flow evolution results for BF=1.6

The phase-averaged flow field analysis are performed in the aneurysm model with

BF = 1.6 at select time phases and different inflow conditions. These are shown for

α = 2 in Figs. 5.10 and 5.11 for Rep = 50 and Rep = 270, respectively. Meanwhile,

the flow field results for α = 5 are shown in Figs. 5.12 and 5.13 for Rep = 50 and
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Figure 5.7: Phase-averaged flow evolution for Rep = 270, α = 2, and BF = 1.0.

Figure 5.8: Phase-averaged flow evolution for Rep = 50, α = 5, and BF = 1.0.

Figure 5.9: Phase-averaged flow evolution for Rep = 270, α = 5, and BF = 1.0.
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Rep = 270, respectively. For α = 2 flow conditions, the vortex formation, growth, and

movement follow the same trend as the flow behavior observed for α = 2 and BF = 1.0

(see Figs. 5.6). This indicates that there is vortex formation at the proximal side of the

aneurysm sac (i.e., t/T = 0.00) which grows and moves towards the aneurysm opening

and into pipe region (i.e., t/T = 0.11-t/T = 0.29). The acceleration of the pipe flow

velocity then pushes the vortex back into the aneurysm where it dissipates (i.e., t/T =

0.34), and the process repeats for the remaining half of the pressure cycle (i.e., t/T =

0.55-t/T = 0.89). At Rep = 270, the trend remains similar as with previous cases for

α = 2. However, the vortex forms earlier and at a different location (i.e., t/T = 0.03 at

x = −2.93mm,y = −3.83mm) than Rep = 50 (i.e., t/T = 0.00 at x = −1.32mm,y =

−5.31mm). Here it is noted that Rep impacts the vortical structure duration in the

pressure cycle while keeping the formation, translation, and dissipation processes the

same. Furthermore, the vortical structures’ path does not go past the aneurysm center

(i.e., x = 0.00mm) for the α scenarios at BF = 1.6 when compared to the α scenarios

at BF = 1.0.
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Figure 5.10: Phase-averaged flow evolution for Rep = 50, α = 2, and BF = 1.6.

The phase-averaged flow field results for α = 5 show two different flow phenomena

at different Rep scenarios. For Rep = 50 (i.e., Fig. 5.12), the first half of the cycle

shows vortex formation at the neck diameter which grows and moves towards the pipe
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Figure 5.11: Phase-averaged flow evolution for Rep = 270, α = 2, and BF = 1.6.

region (i.e., t/T = 0.00-t/T = 0.47). The remaining half of the cycle shows this vortical

structure oscillating within the aneurysm neck before dissipating towards the end of the

pressure cycle (i.e., t/T = 0.53-t/T = 0.95). With Rep = 270 scenario (i.e., Fig. 5.13),

there is presence of primary vortex structure which oscillates up and down the aneurysm

opening throughout the entire pressure cycle. There is also presence of a secondary

vortex structure (i.e., t/T = 0.42) which recharges the primary vortex, similar to the

flow behavior observed for the same α and Rep for BF = 1.0 (i.e., Fig. 5.9).
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Figure 5.12: Phase-averaged flow evolution for Rep = 50, α = 5, and BF = 1.6.



72

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

Figure 5.13: Phase-averaged flow evolution for Rep = 270, α = 5, and BF = 1.6.

5.3.1 Vortex path results for BF=1.0

Now that the flow evolution for different inflow scenarios have been discussed in

the previous section, we shall look into the path of these structures in detail. Previous

results indicate that for a fixed α scenario, qualitatively similar translation of the vortical

structure occurs at different Rep. For α = 2 scenarios, the vortex structure forms from

the proximal side and moves towards the aneurysm opening during the cardiac cycle.

For α = 5 scenarios, vortex formation occurs near the proximal side and moves towards

the distal side of the aneurysm. However, the influence of Rep could not be immediately

determined from the flow evolution results. Knowing this information will allow us to

know the location of the vortical structure, its properties such as vortex strength and

its impact to its surroundings such as wall shear stress and impinging location behavior.

Thus, the vortex structures are tracked for each inflow conditions for an entire flow cycle

to quantify the vortex structure translation at different inflow scenarios. The x and y

locations of the vortex center are recorded at each phase in the flow cycle using vortex

center detection method discussed in the Approach section.

Figures 5.14(a), (b), (c) show the vortex path for α = 2 for Rep = 50, 150, and 270,

respectively. On the other hand, Figs. 5.15(a), (b), (c) show the vortex path for α = 5
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for Rep = 50, 150, and 270, respectively. It is observed from these cases that the vortices

are not always present for every phase in the cycle. For this α, the results show that

the vortex forms near Dmax on the proximal side of the aneurysm sac during the first

half of the flow cycle. This vortex moves towards near the center of aneurysm orifice

and upwards towards the aneurysm opening. During the acceleration phase of the fluid

in the pipe, the rotating flow heads back down to the aneurysm sac and dissipates. A

new vortex forms in the second half of the flow cycle and follows the same trajectory as

the first vortex. It is also observed that the instantaneous impinging location moved in

the same direction as the vortex structure for this α. A similar trend is seen for Re=150

(Fig. 5.14(b)) and Rep = 270 (Fig. 5.14(c)) with the difference being the curvature of

the trajectories across the Re. It also is observed that the vortex trajectory goes to the

center of the aneurysm orifice and gets past it as Rep is increased.

The vortex follows a different path for α of 5 when compared to α of 2. Figure 5.15(a),

(b), (c) show the vortex paths for Rep = 50, 150, and 270, respectively. For Rep = 50,

the vortex forms near the proximal region of the aneurysm sac and moves towards the

center of the aneurysm opening and into the aneurysm dome, which is in contrast to the

movement observed for α of 2. This vortex dissipates as it reaches the aneurysm dome

and followed by a forward flow inside the aneurysm sac. For the second half of the flow

cycle, a new vortex forms and follows a similar trend as the first vortex. For Re=150,

the vortex forms near the proximal side of the aneurysm and convects near the center

of aneurysm sac. For the later half of the flow phase, gradual downward movement of

this vortex is observed before dissipating into the aneurysm dome. For Re=250, a vortex

structure is present in the entire flow cycle. This vortex structure behaves similarly as

vortex observed for Re=150; however, the initiation or formation of this main vortex

comes from the secondary vortex that is seen in the flow. Two instances of secondary

vortex structures are observed for this Re. The first secondary vortex(i.e. blue square

symbol in Fig. 5.15(c)) gets dominated when the main vortex is strong to maintain
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overall flow behavior, and a second instance of secondary vortex(i.e. red square symbol

in Fig. 5.15(c)) to recharge the main vortex. It is observed that the vortex path goes to

the center of aneurysm opening and shifts more to the right as Re is increased.
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Figure 5.14: Vortex path in the aneurysm sac for α of 2 for (a) Rep = 50, (b) Rep = 150,
and (c) Rep = 270.
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Figure 5.15: Vortex path in the aneurysm sac for α of 5 for (a) Rep = 50, (b) Rep = 150,
and (c) Rep = 270

5.3.2 Vortex path results for BF=1.6

The vortex paths are determined for α of 2 at different Reynolds number. Figs. 5.16(a),(b),

and (c) show the vortex paths for Rep = 50, 150, and 270, respectively. For this α, the

vortex structures moved in similar fashion as the flow behavior observed for BF = 1.0.

This means that the vortex structure forms from the proximal side of the aneurysm sac

and convects upwards towards the pipe region. The acceleration of the fluid in the pipe
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region pushes the vortex back to the aneurysm sac and dissipates. Furthermore, two

vortices are also observed to form and dissipate in one pressure cycle for all Re numbers

investigated. The vortex paths are observed to have curvature similar to the ones ob-

served for BF of 1. However, the vortex paths do not seem to go past the center of the

aneurysm orifice for all Re unlike the ones observed for BF = 1.0.

Different flow phenomena are observed at different Re for α of 5. Figure 5.17(a),(b),

and (c) show the vortex path for Rep = 50, 150, and 250. The vortex path, in general

travels upwards towards the aneurysm opening unlike the flow behavior observed for the

same α for BF of 1. For Rep = 50, the vortex forms near the proximal neck and convects

towards the aneurysm opening, and the acceleration of the fluid in the pipe pushes the

vortex back into the aneurysm sac. This vortex is observed to go up and down at the

center of the aneurysm sac before dissipating completely at the end of the cycle. For

Rep = 150, the vortex structure forms near the proximal neck and travels towards the

aneurysm orifice. This vortex stays around the aneurysm opening for a few phases in the

cycle, slowly heads to the aneurysm neck, then rapidly decays while moving towards the

aneurysm dome. Lastly, there is no clear indicator for the formation of the vortex for

Rep = 250. The vortex structure is present throughout the entire pressure cycle where

it travels up and down around the center of the aneurysm orifice. This may indicate the

presence of the rotating flow structure throughout the entire measurement for this case

scenario. It is observed that the vortex structure is pulled near the proximal neck from

time to time which may indicate the vortex being recharged similar to the one observed

for the same Re and α for BF = 1.0.

5.3.3 Vortex strength results for BF=1.0

The vortex strength of the flow structures observed are evaluated to quantify the

magnitude of the rotational motion inside the aneurysm sac. Understanding this behavior

helps us to understand the flow field behavior as well as quantify the quality of mixing of
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Figure 5.16: Vortex path in the aneurysm sac for α of 2 for (a) Rep = 50, (b) Rep = 150,
and (c) Rep = 270.
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Figure 5.17: Vortex path in the aneurysm sac for α of 5 for (a) Rep = 50, (b) Rep = 150,
and (c) Rep = 270

fluid in the aneurysm sac. Furthermore, understanding the vortex strength may provide

us insight to the contribution of the vortical structure to increase risk of rupture.

To perform this analysis, the vortex strength is determined by taking the curl of the

velocity field at different phases in the pressure cycle for each test cases. Furthermore,

the peak vortex strength at the center of the vortical structure for each phase of the cycle

is determined using a vortex center identification method by [131]. Figure 5.18(a) shows

the vortex strength for α = 2 cases while Figure 5.18(b) show the vortex for the α = 5

cases. It is observed that the vortex strength varies at different phases in the driving

pressure cycle. For α = 2 flow conditions (i.e., Fig. 5.18(a)), the vortex strengths of

the flow structures vary at different phases as they form and decay throughout pressure
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cycle (see Figs. 5.6 and 5.7 ). It is also observed that each of the vortices rapidly decay

in strength as they enter back in the aneurysm cavity during the acceleration phases of

the pressure cycle. Furthermore, the vortex formation and dissipation process for one of

the vortices is higher than the second vortex, and this corresponds to the higher velocity

peaks observed from the pipe centerline velocity results. This increase vortex strength

and rapid decay was also observed with experimental studies by [22]. In the current

study, the impact of Rep to the vortex strength behavior of the flow structures in the

aneurysm is shown.

Figure 5.18(b) shows the vortex strength values at α = 5 for Rep = 50 and Rep = 270

flow conditions. Here, the vortex strength trends at different Rep for this α is different

when compared to α = 2 (i.e., Fig. 5.18(a)). For this α, the vortices observed slowly

decrease in strength throughout the pressure cycle. Two different vortices are observed

for Rep = 50 (i.e., Fig. 5.8) with strengths that respond to incoming pipe flow velocity.

For Rep = 270, a complex interaction of vortices is observed. The two secondary vortices

of same strength (see green diamond symbols in Fig. 5.9) merge with the primary vortical

structure. One of the secondary vortex structure energizes the primary vortical structure

which can be seen as a rapid rise in vortex strength of the newly formed vortex structure.

(a) (b)

Figure 5.18: Phase-averaged vorticity in aneurysm sac for (a) α = 2 (b) α = 5.
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5.3.4 Impinging location results for BF=1.0

The flow impingement is an important parameter to study as this may be correlated

to the increased risk of rupture [88, 132]. Cebral et al. [88] reported that the inflow jet

most frequently entered the distal aneurysm neck which impacted the aneurysm wall.

In their study, they reported that aneurysms with changing impingement regions all

ruptured. Furthermore, their study also showed that the ruptured aneurysms had small

impingement zones, while unruptured aneurysms have large impingement zones. Baek

et al. [132] used CFD to study the wall shear stress and pressure distribution in internal

carotid artery with aneurysm and found that locations of high pressure coincide with

rupture locations. These studies have motivated us to investigate the instantaneous

impinging location behavior during the pressure cycle and identify how the flow structures

are influencing the impinging location distribution.

Impinging locations are tracked throughout the pressure cycle to identify potential

locations of high pressure points in the aneurysm sac. In this study, this is done by iden-

tifying a possible impinging location along the aneurysm geometry. Figure 5.19(a) shows

the schematic of the aneurysm geometry where the stagnation locations are determined

along the arc length s, and the impinging location method discussed in the Approach

section is implemented for this analysis.

The impinging locations for each phase in the pressure cycle are presented as frequency

distribution for each test cases. For these plots, the arc length s is first divided into nine

intervals where the impinging location occurrences are counted in each interval. These

number of occurrences (nj) are then divided by the total number of phases (N) in the

pressure cycle to give the frequency distribution. The results for α = 2 conditions are

now shown in Figs. 5.19(b) for Rep = 50 and 5.19(c) for Rep = 270. On the other hand,

the results for α = 5 conditions are shown in Figs. 5.19(d) for Rep = 50 and 5.19(e) for

Rep = 270. The results show that for α = 2 conditions, the impinging locations appear
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to have high distribution near Dmax to s. The impinging locations are more spread out

for Rep = 50 (i.e., Fig. 5.19(b))(∼10%), while for Rep = 270 (i.e., Fig. 5.19(c)) high

probability occurs towards s (∼30%). This suggests that Rep for the same α condition

impacts the impinging locations in the aneurysm sac. Although the flow trend is similar

for both Rep scenarios (see 5.2), the flow structures’ variation for each Rep may cause

the high pressure points to be more spread out at Rep = 50 over the distal region of the

sac than Rep = 270 where the high pressure points become concentrated towards the

distal neck. The trend observed is also similar for α = 5 conditions. At Rep = 50 (i.e.,

Fig. 5.19(d)), the impinging locations are distributed along Dmax to s (∼15% -20%). The

Rep = 270 flow scenario (i.e., Fig. 5.19(e)) now shows most of the distribution near the

distal neck (∼75%) than with the same Rep at α = 2(∼30%). The results obtained for

the different inflow scenarios then suggest that Rep appears to have a strong influence

over the impinging location than α.

The impingement behavior and location are also observed in previous studies. [88]

reported that the inflow jet most frequently entered the distal aneurysm neck which im-

pacted the aneurysm wall. In their study, they reported that aneurysms with changing

impingement regions all ruptured. Furthermore, their study also showed that the rup-

tured aneurysms had small impingement zones (i.e., size of impingement compared to the

size of the aneurysm), while unruptured aneurysms have large impingement zones. Here,

the current experimental study shows changing impingement regions (i.e., spread out

distribution of impinging location in this paper) and small impingement zones (i.e., con-

centrated distribution of impinging location in this paper) increase the risk of aneurysm

rupture.

5.3.5 Impinging location results for BF=1.6

The impinging locations are also determined for BF = 1.6 for a single pressure cycle at

different inflow conditions. The results are shown in Figs. 5.20(b)-(d), and the schematic
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Figure 5.19: Impinging locations and their probability in aneurysm sac for a single pres-
sure cycle. (a) Aneurysm schematic with arc length s, (b) α = 2, Rep = 50, (c) α = 2,
Rep = 270, (d) α = 5, Rep = 50, and (e) α = 5, Rep = 270.

of the aneurysm geometry is shown in Fig. 5.20(a) where the impinging locations are

tracked. The results show qualitatively that for all inflow conditions investigated in this

study, the impinging locations are located near the distal aneurysm neck. For α = 2

conditions (Fig. 5.20(b)), the impinging points are concentrated near smid (∼ 25%) for

one pressure cycle. This concentrated impinging points shifts upward (i.e.,smid-s) for

Rep = 270 (Fig. 5.20(c)) (∼ 45%) as the vortical structure stays longer for this Rep

condition.

The high pressure points for α = 5 flow conditions also show the locations at smid− s

for a single pressure cycle. The impinging locations for Rep = 50 show finer distribution

than its α = 2 counterpart. Nevertheless, the impinging locations are still concentrated

near smid (∼ 7.5%). Two locations of increased impinging locations (∼ 22%) exposure

are seen for Rep = 270 (i.e., Fig. 5.20(e)). The lower impinging location frequency
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distribution seen in this scenario is due to the shape of the vortex structure where its

center is near Dneck. This indicates that the for this Rep scenario, there is more shearing

stresses involved than impinging occurrences.

Figure 5.20: Impinging locations and their probability in aneurysm sac for a single pres-
sure cycle. (a) Aneurysm schematic with arc length s, (b) α = 2, Rep = 50, (c) α = 2,
Rep = 270, (d) α = 5, Rep = 50, and (e) α = 5, Rep = 270.

5.3.6 WSS results for BF=1.0

Wall shear stresses along the aneurysm sac are analyzed throughout the pressure cycle

to determine possible locations of increased likelihood of rupture [146, 45]. We want to

investigate the wall shear stress distribution along the aneurysm geometry during the

pressure cycle, and identify the impact of the flow structure to the wall shear stresses.

The wall shear stresses are determined along the arc length s (i.e., Fig. 5.19(a)) for each

phase in the pressure cycle at different inflow conditions. With no-slip condition at the

aneurysm walls, the velocity components parallel and 0.7mm away to every strip ds are
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extracted. Details of this wall shear stress calculation are provided in the Approach

section.

Figure 5.21(a) and (b) show the τ results for a complete flow cycle at α = 2 and

Rep = 50 and Rep = 270, respectively. Figure 5.22(a) and (b) show the τ results for

α = 5 and Rep = 50 and Rep = 270, respectively. The results for α = 2 conditions

indicate increased τ values near s which occurs during the peaks of the pressure cycle.

For Rep = 50 (i.e., Fig 5.21(a)), the high τ values occurs during the vortex formation

stages (see Fig. 5.6 at t/T = 0.00-t/T = 0.21). Initially, the flow is attached along the

aneurysm sac profile with accelerating flow near the distal side. At the vortex formation

instances, flow separation occurs at the proximal wall, and the incoming flow gets diverted

towards the distal wall. For Rep = 270 and α = 2 (i.e., Fig 5.21(b)), high τ values near s

also occur during the peaks of the pressure cycle (see Fig. 5.7 at t/T = 0.00-t/T = 0.11)

as flow trend of the vortical structures is similar to Rep = 50 (i.e., vortex comes out

of the aneurysm sac). Here τ values of nearly four times than τ values at Rep = 50 is

observed here since the Rep increased fivefolds. It is also important to observe here that

low τ values occur at 0−Dmax as fluid moves slow near the dome area at all time phases

of the pressure cycle.

High τ values are also shown near s for α = 5 flow conditions. The Rep = 50 flow

scenario (i.e., Fig 5.22(a)) show high WSS values during the vortex formation phases

(see Fig. 5.8 at t/T = 0.00-t/T = 0.21) which is similar to its α = 2 counterpart. Low τ

values are also seen from 0−Dmax at all phases in the flow cycle for this Rep condition.

For Rep = 270 (i.e., Fig 5.22(b)), τ values are distributed at different locations along

s. Peak τ appear near s during the vortex merging process of the pressure cycle (see

Fig. 5.9 at t/T = 0.00-t/T = 0.53). During these phases in the flow cycle, the secondary

vortical structure is merging with the primary vortex to create a new vortex which travels

towards the distal end of the aneurysm sac. This Rep condition also shows τ values near

Dmax during the vortex convection phases (i.e.,t/T = 0.42 − 0.53). Lastly, the τ values
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of nearly five times than τ values at Rep = 50 is observed here.

The observed high shear stress locations near s in the aneurysm sac are also evident

in previous investigations [22, 149, 150, 27]. In our study, the results now highlight the

impact of the inflow parameters to the observed τ locations and links them to the flow

structure at particular time phases. The current investigation also shows that the inflow

conditions primarily influence the distal region of the aneurysm sac as high τ are observed

from Dmax − s at all inflow scenarios. For a fixed α, impact of Rep is highlighted further

through the increased in shear stress at the distal neck region. Meanwhile, for a fixed

Rep, the impact of α is seen through the higher shear stress values at α = 5 than α = 2.

(a) (b)

Figure 5.21: Phase-averaged wall shear stress in aneurysm sac for BF = 1.0 for α = 2.
(a) Rep = 50 and (b) Rep = 270.

5.3.7 WSS results for BF=1.6

Wall shear stresses throughout the pressure cycle are also determined for BF = 1.6 at

different inflow conditions. This is determined along the arc length sneck for each phase

in the pressure cycle at different inflow conditions. No-slip conditions are still applied

along the aneurysm neck, while the velocity components parallel and 0.5mm away from

the walls are extracted. Figure 5.23 shows the τ results for α = 2 flow scenarios while

Fig. 5.24 shows the τ results for α = 5.
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(a) (b)

Figure 5.22: Phase-averaged wall shear stress in aneurysm sac for BF = 1.0 for α = 5.
(a) Rep = 50 and (b) Rep = 270.

Wall shear stress results for α = 2 show high τ values from 0−Dneck at several phases

in the pressure cycle. For Rep = 50 (i.e., Fig. 5.23(a)), these high τ values occur during

the vortex formation and growth stages (see Fig. 5.10 at t/T = 0.00-t/T = 0.21) where

the formed vortical structure approaches the center of the aneurysm geometry. This high

τ exposure at 0−Dneck repeats for the remaining half of the cycle as a separate vortical

structure forms and decays (see Fig. 5.10 at t/T = 0.55-t/T = 0.68). With Rep = 270

(i.e., Fig. 5.23(b)), similar observation can be concluded as the flow evolution is similar

to Rep = 50. The shear stresses, however, are more prominent with Rep = 270 than

Rep = 50 as there are a sharp increases in values for a short amount of time in the

pressure cycle. In addition, the τ values experienced at the distal wall for Rep = 270 are

double of the τ values for Rep = 50, and low shear stresses are found from Dneck − sneck

for both Rep scenarios.

With α = 5 flow conditions, the τ experienced by the distal aneurysm wall are different

than the ones observed for α = 2. For α = 5 and Rep = 50 (i.e., Fig. 5.24), increased τ

values are found near 0 −Dneck during vortex formation (i.e., t/T = 0.0.00-t/T = 0.21)

and vortex oscillation and dissipation phases inside the aneurysm (i.e.,t/T = 0.58-t/T =

0.95). The τ values are also found to be comparable in magnitude with the α = 2 and
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Rep = 50 flow condition. The presence of the vortical structure which moves in upward-

downward oscillating fashion for Rep = 270 (i.e., Fig. 5.24) results in τ values to rapidly

increase and decrease along 0 −Dneck. These high τ values occur when the vortex core

is at Dneck where high velocity gradients are observed due to the aneurysm curvature.

(a) (b)

Figure 5.23: Phase-averaged wall shear stress in aneurysm sac for BF = 1.6 for α = 2.
(a) Rep = 50 and (b) Rep = 270.

(a) (b)

Figure 5.24: Phase-averaged wall shear stress in aneurysm sac for BF = 1.6 for α = 5.
(a) Rep = 50 and (b) Rep = 270.



86

5.4 POD results

Based on the PIV flow field data, the large-scale flow structures exhibit a com-

plex evolution in the pressure cycle at different inflow scenarios. The mean flow results

illustrated that aneurysms contain a vortical structure that take different shapes and

characteristics depending on the inflow profile. By looking at the entire flow evolution

in a pressure cycle, the flow evolution results show that this vortical structure begins

its formation near the proximal side of the cavity, grows in shape and strength, moves

into the aneurysm opening or the distal location, and decays at the end of the pressure

cycle. The complex behavior from initial analyses leads us to investigate further on how

this phenomena occurs and how we can look at the problem at a different perspective or

decompose the flow into smaller key features. The phenomena observed motivated us to

look into using data decomposition methods to provide further insight into the flow in

greater detail than before.

We now discuss the application of advance data analysis techniques on the velocity

flow field to study the large-scale flow structures in detail and understand the mecha-

nisms that contribute to the observed flow behavior. The results from Proper Orthogonal

Decomposition are first presented which contain key results obtained from POD modes,

energies, time-varying coefficients, and low-order reconstruction. The results are orga-

nized such that each section contains the important information provided by the method.

5.4.1 POD modes for BF=1.0

The POD mode results are first presented here as they provide insight to the large-

scale flow structures and their underlying behavior. The POD modes are the basis

functions or eigenvectors (
−→
Ψ(x, y)) of the POD kernel (R) given in Eq. 4.11 that are

optimally determined to best represent the flow field. The modes shown here provide a

mathematical description of the behavior of the flow structures present in the aneurysm
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and are orthogonal to each other. The POD modes are shown in order of importance,

as each mode is related to the captured kinetic energies in the flow. Furthermore, the

modes determined represent the fluctuating energetic flow structures in the flow field

which can tell us about the coherent flow features influencing the overall flow behavior

(see 5.2 results). As the POD modes will have components ψuu(x, y) and ψvv(x, y), the

streamwise components (i.e., u-component of velocity) and transverse components (i.e.,

v-component of velocity) are analyzed at different inflow conditions in this section. Each

inflow scenario captured ∼ 13000 modes where the first few modes in each cases are

discussed in next few paragraphs.

The streamwise components for the first three POD modes (ψuu(x, y)) for Rep = 50

and α = 2 are shown in Figs. 5.25(a)-(c) while the transverse components (ψvv(x, y))

are shown in Figs. 5.26(a)-(c). The first three modes are only presented here as their

total energy contribution captures more than 95% of the total fluctuating kinetic energy

for this inflow scenario. A more detailed discussion of the POD modes’ energy and their

contribution are presented in the POD energies section of this dissertation (see 5.4.2). The

POD mode results shown indicate presence of different fluctuating structures. Looking

at the figures, it can be qualitatively seen that the mode shapes are different for each

given Rep condition. High peak components of the first mode shape relating to the u-

component of velocity are observed near the proximal and distal side of the aneurysm

(Fig.5.25(a)). This shows that the flow conditions are the same from the upstream and

downstream locations of the aneurysm. The entrance of the aneurysm shows a gradient

of components, which shows penetration of this component of fluid velocity inside the

aneurysm. The first mode shape relating to the v-component of velocity(Fig.5.26(a)) also

has high components near the proximal and distal sides of the aneurysm. This shows

high magnitudes of v-component of velocity enters and exits the aneurysm, and further

suggest high shear stress zones. The second mode shape relating to the u-component

of velocity shows high components at the aneurysm opening while a magnitude of u-
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component of velocity of the same order engulfs the aneurysm sac (Fig.5.25(b)). The

second mode shape relating to the v-component of velocity(Fig.5.26(b))has high values

which again suggests high shear stress zones. The third mode shape(Figs.5.25(c) and

(Figs.5.26(c) has structures that are similar to the ones observed with the first mode but

have a low energy content.

The difference is first observed when the first POD modes for the two scenarios are

compared as they are opposite of each other. The second mode shape for Rep = 50

looked similar to the third mode shape for Rep = 270, while the third mode shape for

Rep = 50 is similar to the mode shape for Rep = 270. While first POD mode remains the

same for both Rep, the order of the structure for the second and third mode will depend

on the flow regime. The same approach can be used with the POD modes related to

the v-component of velocity, shown in Figs.5.26 and 5.28, respectively. The second mode

shape for Rep = 50 is similar to the third mode shape for Rep = 270, while the third

mode shape for Rep = 50 is similar to the second mode shape for Rep = 270. This

indicates that the change in Rep while keeping the α the same suggest change in the

order of the POD modes. This points to the importance of the order of POD modes

which changes the dynamics of the flow.

Figure 5.25: Streamwise POD modes for Rep = 50 and α = 2. (a) ψ1
uu, (b) ψ

2
uu, and (c)

ψ3
uu.

Similar analysis are performed for Rep = 270 and α = 2 for the first three streamwise

(ψuu(x, y)) and transverse (ψvv(x, y)) POD modes which are shown in Figs. 5.27(a)-(c)

and Figs. 5.28(a)-(c), respectively. The first three modes have captured 95% of the

fluctuating kinetic energy and sufficient to describe the inflow scenario. Here the first
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Figure 5.26: Transverse POD modes for Rep = 50 and α = 2. (a) ψ1
vv, (b) ψ

2
vv, and (c)

ψ3
vv.

mode shape relating to the u-component of velocity(Fig.5.27(a)) has high components

near the proximal and distal side of the aneurysm. There is also a gradient of components

which indicates penetration of this component of velocity into the aneurysm. This flow

penetration is not as deep and inclined as Re=50, and thus the peak components are

near neck of the aneurysm. The first mode shape relating to the v-component of velocity

(Fig.5.28(a)) shows high components near the entrance and exit of the aneurysm, with

the flow going into the aneurysm occupying a large area while the fluid exiting uses

a small area. The components near the distal side also shows a high gradient which

suggest a high shear stress zone. The second mode shape relating to the u-component of

velocity (Fig.5.27(b)) shows structures that impinges and goes deep at the distal side of

the aneurysm sac, while the v-component shows structures at the entrance and exit of

the aneurysm. The third mode relating to the u-component of velocity also shows high

values at the entrance and the proximal side of the aneurysm, while very low values at

the distal end of the sac. The mode which relates the v-component shows high and low

values at the proximal and entrance of the aneurysm, which may indicate a presence of

vortex and high shear stress zone on the proximal side of the aneurysm.

Here, we see the impact of Rep to the flow condition for the same α scenario. For

Rep = 270, the POD modes for both streamwise and transverse components of velocity

are similar and different than the POD modes for Rep = 50. Similar in a sense that the

modes are visually same as Rep = 50 with contour field just shifted to the right. Although

a single fluctuating feature (i.e., POD mode) may not be entirely describing a flow field
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in this scenario, this is because it requires a combination of the POD modes to represent

the flow field for a particular phase in the pressure cycle. The results here indicate that

the flow fields seen in the phase-averaged results for Rep = 270 are a combination of the

POD modes. The combination of POD modes represents the coherent flow structures

in the flow field that will become evident when we analyze the POD energy results and

time-varying coefficient results.

Figure 5.27: Streamwise POD modes for Rep = 270 and α = 2. (a) ψ1
uu, (b) ψ

2
uu, and (c)

ψ3
uu.

Figure 5.28: Transverse POD modes for Rep = 270 and α = 2. ((a) ψ1
vv, (b) ψ

2
vv,, and

(c) ψ3
vv.

We now analyze the POD mode results for α = 5 and Rep = 50 flow conditions. The

streamwise modes (ψuu(x, y)) are shown in Figs. 5.29(a)-(e) while the transverse POD

modes are shown in Figs. 5.30(a)-(e). The first five POD modes are included for this

α condition as more number of modes are required to capture almost 95% of the total

fluctuating kinetic energy than the α = 2 condition. The results also show a different

set of spatial structures for this α than α = 2 for the same Rep scenario (see Figs. 5.25

and 5.26). The first mode shape for the u-component of velocity(Fig.5.25(a)) shows a

uniform structure inside the aneurysm sac while low components of this component of
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velocity are in the proximal and distal sides. The first mode of the v-component of

velocity(Fig.5.26(a)) shows a high and low peak values near the neck of the aneurysm

sac. This suggests a strong forward flow inside the aneurysm sac. The second mode of the

u component of velocity (Fig.5.25(b)) has a uniform structure inside the aneurysm sac

while the POD mode for the v-component of velocity(Fig.5.26(b)) shows a symmetrical

structure near the aneurysm neck. This suggest a uniform flow inside the aneurysm sac

but a coherent structure might be present near the aneurysm opening. A flow structure

can also be observed for the third POD mode (Fig.5.25(c) and Fig.5.26(c)) near the

proximal neck while uniform flow is present inside the aneurysm sac. As observed in the

figures, the first and second POD modes show symmetry at the aneurysm model center

(x = 0mm) while the third POD mode does not exhibit symmetry. The fourth and

fifth POD modes look similar in shape (Figs. 5.25(d)-5.25(e)) but differ in kinetic energy

content.

Figure 5.29: Streamwise POD modes for Rep = 50 and α = 5. (a) ψ1
uu, (b) ψ

2
uu, (c) ψ

3
uu,

(d) ψ4
uu, and (e) ψ5

uu.

Figure 5.30: Transverse POD modes for Rep = 50 and α = 5. (a) ψ1
vv, (b) ψ

2
vv, (c) ψ

3
vv,

(d) ψ4
vv, and (e) ψ5

vv.

The POD modes for Rep = 270 and α = 5 are analyzed and presented in Figs. 5.31(a)-

(e) for the streamwise component of velocity and Figs. 5.32(a)-(e) for the transverse
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component of velocity. The modes in this flow condition also require five POD modes to

capture 95% of the fluctuating kinetic energy which is similar to the amount of modes for

Rep = 50 and α = 5 scenario. Here, we now highlight the different and unique structures

captured by POD for this condition. The mode shapes show presence of different and

intricate spatial structures in the aneurysm cavity.

The first POD mode (i.e., Figs. 5.31(a) and 5.32(a)) high and low values near the

upstream and downstream lips of the aneurysm. This first POD mode shape is similar

to previous modes in other flow scenarios (see Figs. 5.25(a) and 5.26(a), Figs. 5.27(a)

and 5.28(a), and Figs. 5.29(a) and 5.30(a)). The second POD mode (i.e., Figs. 5.31(b)

and 5.32(b)) shows a structure near the aneurysm opening and symmetry features near

x = 0mm. The third POD mode (i.e., Figs. 5.31(c) and 5.32(c)) resembles the same

mode shape as Rep = 270 and α = 2 (see Figs. 5.27(c) and 5.28(c)) which contain high

and low values of u and v components of velocity near the upstream and downstream

lips of the aneurysm. These features are also present with the fourth POD mode (i.e.,

Figs. 5.31(d) and 5.32(d)) with one near the upstream lip and the other at the distal end of

the aneurysm. Lastly, the fifth POD mode (i.e., Figs. 5.31(e) and 5.32(e)) show a spatial

feature at the distal end of the aneurysm. These first few POD mode shapes are the most

important spatial features that can describe the flow field for this α condition. The POD

mode shapes also highlight the complexity of the flow field in the phase-average results

as each coherent structure contains the combination of these modes that have different

energy content.

Figure 5.31: Streamwise POD modes for Rep = 270 and α = 5. (a) ψ1
uu, (b) ψ

2
uu, (c) ψ

3
uu,

(d) ψ4
uu, and (e) ψ5

uu.
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Figure 5.32: Transverse POD modes for Rep = 270 and α = 5. (a) ψ1
vv, (b) ψ

2
vv, (c) ψ

3
vv,

(d) ψ4
vv, and (e) ψ5

vv.

The POD mode results presented in this section for BF = 1.0 show that the inflow

conditions impact the POD modes for each scenario. We note that the change in α

shows may change the POD modes that are necessary to capture a percent threshold

of turbulent kinetic energy in the flow. In this study, the α = 5 flow scenario contain

complex features as more POD modes are required to break down and capture its flow

dynamics than α = 2 scenarios. For a fixed α and different Rep conditions, the inflow

conditions may have similar POD mode shapes but their of importance or contribution

will be different. These are important findings as the POD mode shapes tell us what

spatial features are captured in the flow field. The mode shapes that describe the flow

conditions can also tell us why certain inflow conditions are complex. Lastly, certain

POD mode shapes maybe similar at various conditions, but their level of importance or

contribution to the flow are different. To further understand the POD modes and their

contribution to the flow, we will now look at the POD mode energy results.

5.4.2 POD energies for BF=1.0

The POD energy (λi) results are presented here to provide insight on the contribution

of each POD mode shapes to the observed flow behavior. The POD energy are the

eigenvalues from the discrete POD formulation given in Eq. 4.11. We present the POD

energy results as a relative contribution (i.e., the ratio of energy captured by each POD

mode and total fluctuating kinetic energy) where the total fluctuating kinetic energy can

be estimated by summing all the λi for a given flow scenario. The results are shown in
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Fig. 5.33 for the first ten modes out of ∼ 13000 captured modes for the studied flow

conditions. The results indicate that each POD mode has certain percentage of kinetic

energy contribution to the total fluctuating component of the flow. As observed from

the figure, the contribution of each POD mode decreases with increasing POD mode

numbers. For instance, for Rep = 50 and α = 2 scenario, the first mode captures ∼ 85%

of the total kinetic energy. The second mode adds ∼ 9% to the total kinetic energy for

this flow scenario, while the third mode only contains ∼ 2% of the total kinetic energy

content. These results allow us to justify the three POD mode shapes presented for this

inflow condition in the POD modes section (see Figs. 5.25 and 5.26) as these mode shapes

already captured ∼ 95% of the total fluctuating kinetic energy. Thus, the mode shapes

from four and beyond have smaller contributions compared to the first three modes.

Similar conclusions can be deduced for Rep = 270 and α = 2 scenario (i.e., three modes),

and α = 5 scenarios (i.e., five POD modes).

The POD energy results tell us that for the studied cases, about 95% of the fluctuating

energy can be captured either by the first three or five POD modes. For flow scenarios

with α = 2, the first three mode shapes are likely to have dominating influences on the

flow behavior in the aneurysm. This is in contrast with α = 5 flow conditions, where

five POD modes are needed to meet the 95% threshold. Since the POD method allow

us to decompose the data into optimally determined mode shapes to describe the flow,

the combination of these mode shapes allow for formation and convection of vortical

structures. The POD energy results now add insight to complex interplay of POD modes

and is influenced by Rep and α at different flow scenarios.

5.4.3 POD time-varying coefficients for BF=1.0

We now analyze the impact of the POD mode shapes to the flow field at a given

instance t in the pressure cycle. This can be evaluated by determining the time-varying

coefficients (ai(t)) of the POD modes. The time-varying coefficients can be determined
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Figure 5.33: Sum of energies for α = 2 and α = 5 for different Rep numbers.

by projecting the velocity field at a time t (i.e.,
−→
U (x, y, t)) on each of the POD modes

(
−→
Ψi(x, y)) (i.e., Eq. 4.12). These ai(t) values tell us the importance of the ith POD mode

at time t. The ai(t) are determined for the first three POD modes for α = 2 scenarios

while the first five ai(t) are calculated for α = 5 scenarios.

Figure 5.34 contains the phase portrait plots for first three time-varying coefficients

for α = 2, while Fig. 5.35 contains the first five ai(t)s for α = 5. The ai(t) are normalized

by the square root of respective energies (i.e., λi). For each sub-figure, ai(t) values are

sequenced to a single pressure cycle using the hardware synchronization method (see 4.1)

where time information of the coefficients is determined by correlating the PIV trigger

and the piston position from the experiments. The plots thus contain the scatter plot

for each time-varying coefficient, and a curve fit operation is performed to determine a

mathematical relationship for each coefficient. The results provided give us a general

idea that there is an intricate interplay between the various POD modes at different

points in the pressure cycle. The combination of the POD modes and their respective

coefficients at a time t will allow for capturing the large-scale flow structures observed

in an aneurysm at that time instance. This will become more evident when we look at

the low-order flow reconstruction results. This indicates that the large-scale structure we
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observed from the phase-average data at a certain time phase comprises of POD modes

appropriately weighted by their time-varying coefficients. To elucidate this further, we

look at Rep = 50 and α = 2 plot (Fig. 5.34). There are few points in the cycle where

particular time-varying coefficients might not be present (i.e., ai(t) = 0) while the other

coefficients have particular values. This means that certain POD modes and their time

varying coefficients are have high impact to the flow and thus that particular flow behavior

might be present during that point in the cycle. For example, the a2 and a3 have zero

values while a1/
√
λ1 at t/T = 0.1 has a value of ∼ −0.375. Looking at the phase averaged

results (Fig. 5.6) shows an attached flow inside the aneurysm sac at this point in the cycle.

Furthermore, at t/T = 0.3, the presence of a2 and hence the vortical structure behavior

becomes more dominant at this point in the cycle while the other modes have zero values

(i.e. a1 = a3 = 0).

The time-varying coefficient results also show us the impact of inflow conditions which

can be observed through the changes in the time-varying coefficient plots. For a fixed

α, changing Rep condition changes the interaction among the ai(t) coefficients. There

is amplitude variation in the coefficients, particularly for a2(t) and a3(t) for Rep = 270

than Rep = 50. This suggest that certain POD modes may be highly impactful to

the flow at certain phases of the pressure cycle. At α = 2, there are only three POD

mode interactions to capture 95% percent of the kinetic energy. With the change in α

conditions, there are more POD mode variation to capture the dynamics. The results

then suggest the flow complexity observed at α = 5 conditions from the phase-average

results are due to the complex interaction of the POD modes and their coefficients.

5.4.4 POD low-order reconstruction for BF=1.0

The POD results from previous sections are combined together to create a low-order

reconstruction for each flow condition. The low-order reconstruction allows us to gain

insight on the dynamics of the flow through the interaction of the POD mode shapes
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Figure 5.34: Time-varying coefficient for α = 2. Square, upward-pointing triangle, and
circle markers represent the experimental data for a1,a2, and a3, respectively. The lines
represent their curve fit data. (a)Rep = 50. (b)Rep = 270.
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Figure 5.35: Time-varying coefficient for α = 2. Square, upward-pointing triangle, circle,
downward-pointing triangle, and pentagram markers represent the experimental data for
a1,a2, a3, a4, and a5, respectively. The lines represent their curve fit data. (a)Rep = 50.
(b)Rep = 270.

and appropriately weighted coefficients. The reconstruction results also enable us to use

a mathematical model to predict the behavior of the flow field. To create a low-order

reconstruction model, Eq. 4.5 is used for selected N POD modes. The number of modes

is determined based on the amount of kinetic energy in the flow field to be reconstructed.

In this study, 95% of the turbulent kinetic energy is selected which is sufficient to capture

enough flow details. This corresponds to the first three POD modes for α = 2 scenarios

and the first five POD modes for α = 5 scenarios (see 5.4.2).

The low-order velocity reconstruction for selected time phases for α = 2 are shown

in Figs. 5.52-5.53 for Rep = 50 and Rep = 270, respectively. Meanwhile, the velocity

field reconstructions for α = 5 are shown in Figs. 5.54-5.55 for Rep = 50 and Rep = 270,

respectively. A clockwise vortex initiates near the proximal side of the aneurysm (i.e.,
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t/T=0.21) as seen in the figure. This vortex convects near the center of the bulge

(i.e., t/T=0.37) and then out of the aneurysm opening during the deceleration phase of

the flow cycle (i.e., t/T=0.41). The vortex then moves back towards the aneurysm dome

and dissipates when the flow from the pipe begins accelerating (i.e., t/T=0.44). A new

vortex forms once more and begins behaving similar to the previous vortex for the second

half of the cycle. For Rep = 270 and same α (Fig. 5.53), similar trend was also observed.

However, the vortical flow structure fills up the entire aneurysm sac (i.e., t/T=0.17) much

earlier in the cycle than as compared to Rep = 50 case (i.e., t/T=0.37). An important

observation from these figures is that the vortical structure stays in the aneurysm sac

for a longer duration (i.e., for t/T=0.17 to 0.50) for Rep = 270 case than the Rep = 50

case (i.e., t/T=0.37 to 0.50). The impact of this temporal behavior is also displayed in

the observed flow structure for Rep = 50 and 270 at α = 2 (as shown in Figs. 5.1(a) and

5.1(c)). The overall movement of the vortical structure was found to be similar for both

studied Rep cases at α = 2 of the variation in the temporal flow structures,.

Low-order reconstruction results for α = 5 at different Rep were also analyzed and

foundt that flow structures observed for this α are different than the ones seen at α = 2

flow conditions. For Rep = 50 and α = 5 flow condition, the vortex initially forms at the

proximal side of the cavity (i.e., t/T=0.04), which then moves towards the distal side

of the aneurysm, impinging the neck region (i.e., t/T=0.27) and dissipating towards the

aneurysm dome (i.e., t/T=0.37). This vortex formation and dissipation process repeats

for the remaining half of the cycle (i.e., t/T=0.43 to 0.84). Meanwhile, the Rep = 270

and α = 5 flow condition shows presence of vortical structure throughout the cycle that

stays near the center of the cavity. This vortex structure moves in a clockwise fashion

throughout the flow cycle (i.e., t/T=0.00 to 0.11). These few instances in the flow cycle

initiate a secondary vortex structure where the two vortices then merge together to form

a new vortex (i.e., t/T=0.14 to 0.17). This process of clockwise vortex movement repeats

itself thereafter. The behavior of the vortical structures for the same α condition is found
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to impact the overall temporal behavior and presence of secondary structures due to the

change in Rep. Moreover, the difference in temporal behavior with the change in Rep can

be seen in the overall mean structures for Rep = 50 and Rep = 270 at α = 5 (as shown

in Figs. 5.2(a) and 5.2(c)).

POD was able to capture the flow evolution in the aneurysm sac at different inflow

conditions with the low-order flow reconstruction. Results from POD provided informa-

tion on the uniqueness of each inflow condition, the important mode shapes that were

contained in each scenario, and the interaction of POD modes and time-varying coeffi-

cients that impact the flow features. The low-order reconstruction with POD results were

able to capture the vortex formation, evolution, and convection, which were correlated

with the change in α and Rep.

Figure 5.36: POD low-order reconstruction for Rep = 50 and α = 2 for selected time
phases. The velocity reconstruction uses three POD modes. Average normalized RMS
error observed in low-order reconstruction is ϵavg=2.107%, with minimum normalized
RMS error of ϵmin=0.7964% and maximum normalized RMS error of ϵmax=5.043%. The
RMS is normalized by the centerline velocity.

5.5 DMD results

The previous sections show the complexities involved in aneurysm flows. We first show

the results in the phase-averaged data and illustrate the changes in the flow dynamics in
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Figure 5.37: POD low-order reconstruction for Rep = 270 and α = 2 for selected time
phases. The velocity reconstruction uses three POD modes. Average normalized RMS
error observed in low-order reconstruction is ϵavg=0.7344%, with minimum normalized
RMS error of ϵmin=0.187% and maximum normalized RMS error of ϵmax=1.469%. The
RMS is normalized by the centerline velocity.

Figure 5.38: POD low-order reconstruction for Rep = 50 and α = 5 for selected time
phases. The velocity reconstruction uses five POD modes. Average normalized RMS
error observed in low-order reconstruction is ϵavg=0.775%, with minimum normalized
RMS error of ϵmin=0.487% and maximum normalized RMS error of ϵmax=1.389%. The
RMS is normalized by the centerline velocity.

the aneurysm at different inflow conditions. Next, the complex flow behavior at different

scenarios have been studied using POD which led to understanding that the flow field

observed from PIV phase-averaged data can be described as a combination of different

spatial mode shapes. Furthermore, the dynamics we see in the flow are the interactions
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Figure 5.39: POD low-order reconstruction for Rep = 270 and α = 5 for selected time
phases. The velocity reconstruction uses five POD modes. Average normalized RMS
error observed in low-order reconstruction is ϵavg=1.126%, with minimum normalized
RMS error of ϵmin=0.791% and maximum normalized RMS error of ϵmax=1.787%. The
RMS is normalized by the centerline velocity.

of these spatial mode shapes ranked by their kinetic energy. However, the dynamical

behavior of these structures and their temporal information are not captured by POD.

This is important as it can tell us how the physically important modes are behaving in

time through growth or decay information. This motivated us to use a different approach

to extract the spatiotemporal behavior of the large-scale structures.

We present the results of application of Dynamic Mode Decomposition method on the

velocity flow field to study the spatiotemporal behavior of the large-scale structures at

different inflow conditions. The results from DMD are divided into two parts. The first

part presents the DMD results to justify the use of traditional flow field measurements

such as PIV with a low-frame rate setting for use in advance data analysis such as DMD.

DMD is a method to extract pertinent flow processes and thus require sampling of data

to be taken at a sufficiently high frequency. This minimum sampling criteria is given
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by the Nyquist criterion [33]. We show in this part of the dissertation that similar

information can be captured when an inflow scenario is acquired at different sampling

rates. For this part of the DMD analysis, we analyze an inflow scenario of Rep = 50,

α = 2 and BF = 1.0 sampled at camera frame rate of 5Hz. The impact of sampling

will be discussed, along with DMD sensitivity analysis such as impact of different rank

selection, frequency selection, number of cycles, and impact of DMD amplitude.

The second part of this section presents the DMD results on the PIV data acquired at

a low-frame rate setting (see Table 3.3). DMD is thus applied to the velocity data where

phase-averaging and POD have been applied and analyzed. The DMD frequency, growth

or decay rates, and contribution results are first presented in this section. This is followed

by the DMD modes and low-order reconstruction results for each inflow condition.

5.5.1 DMD on low-frame rate applications

This subsection provides the results of using DMD for several scenarios and justify its

use for traditional flow field measurements such as PIV acquired with a low-frame rate

setting. For this study, 2000 PIV measurements for an inflow scenario of Rep = 50 and

α = 2 was acquired using a camera sampling rate of fs = 5Hz. The α = 2 corresponds to

a pump frequency of 0.4Hz. DMD is then performed on this data set at several scenarios

to identify impact of data structure to the DMD frequencies, growth rate behavior,

amplitudes, and modes.

Impact of sampling

The impact of sampling rates is discussed here. The idea of this study is to investigate

influence of different sampling rates to the DMD results and understand the information

that can be extracted from these conditions. For this study, DMD was performed on a

single pressure cycle for the fs = 5Hz data set (i.e., original data set). This single pressure

cycle was captured using 12 PIV images with ∆t = 0.2s between the images. DMD was
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then performed on other scenarios where the same data set was now sub-sampled at

fs = 2.5Hz and fs = 1.0Hz. A single pressure cycle was captured using 7 PIV images

with ∆t = 0.4s for fs = 2.5Hz, while 10 PIV images and ∆t = 1.0s for fs = 1.0Hz

Lastly, the hardware synchronization approach was also implemented to the fs = 1Hz

scenario (i.e., see 4.1) prior to using DMD. Using the hardware synchronization method

to capture a single pressure cycle yields 39 phase-averaged images with ∆t = 0.064s.

Figure. 5.40(a) shows the DMD frequency results (fi) while Fig. 5.40(b) shows the

DMD amplitude results for the different sampling scenarios investigated. Here, the results

show the number frequencies that can be captured by DMD at different sampling rates.

It is observed that the frequencies detected decreases with the decrease in sampling

rate. This is because it is dependent on the number snapshots used where the number

frequencies that can be determined is found by

N = m− 1, (5.1)

where m is the number snapshots used. For example, it can be seen that with fs = 5Hz

sampling (i.e., 12 PIV images), 11 frequencies were determined while for fs = 1Hz

sampling (i.e., 7 PIV images), 6 frequencies were calculated. It can also be seen from

Fig. 5.40(a) the maximum frequency that can be detected is half of the sampling frequency

fs for each scenario. This in turn divides that into frequencies where the frequency

spacing ∆f is determined using

∆f = 1/(N∆t). (5.2)

Thus, the smallest frequency that can be detected depends on the time between the

snapshots ∆t and the number of images N . Based on the results, the frequencies captured

using DMD were more or less similar for fs = 5Hz (i.e., first row in Fig. 5.40(a)),fs =

2.5Hz (i.e., second row in Fig. 5.40(a)), and phase-averaged of fs = 1Hz (i.e., fourth row
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in Fig. 5.40(a)). For fs = 1Hz (i.e., third row in Fig. 5.40(a)), up to 0.5Hz frequency can

be detected with ∆f = 0.1Hz. With the hardware synchronization and phase-averaging

approach implemented on the data set (i.e., fourth row in Fig. 5.40(a)), N becomes the

number of binned phases in the pressure cycle which are separated by ∆t. The hardware

synchronization approach allowed different phases of the pressure cycle to be captured,

which effectively made the sampling to fs = 15Hz. This in turn allowed the frequencies

to be captured similar to original data (i.e., first row in Fig. 5.40(a)). Furthermore,

frequencies up to 7.5Hz were captured using the phase-averaged approach, and these are

not shown in the figure as the frequencies are not physically relevant to the flow.

Along with the frequency results, the growth/decay rate (gi) information were also

captured with DMD. The results show near stable growth/decay rate for each of the de-

termined frequencies for fs = 5Hz (i.e., first row in Fig. 5.40(a)), fs = 2.5Hz (i.e., second

row in Fig. 5.40(a)), and phase-averaged of fs = 1Hz (i.e., fourth row in Fig. 5.40(a)).

This indicate that the frequencies and thus the modes (i.e., spatial structures) were

neither growing nor decaying in the flow. Note that the trend of the growth rates for

fs = 5Hz and phase-averaged of fs = 1Hz were more or less similar.

The DMD amplitude results are now shown in Fig. 5.40(b) that are calculated us-

ing the optimal vector approach (see 4.5). Here, the amplitudes are normalized to the

mean frequency (i.e., 0Hz) for each sampling scenario. Different contributions for each

frequency can be seen.

We will now look at the impact of sampling to the DMD mode shape. Figure 5.41(a)-

(d) shows the DMD mode results for 0.8Hz at different sampling scenarios. The first

row in this figure corresponds to the real component of the DMD mode, the second

row corresponds to the imaginary part of the DMD mode, the third row for magnitude,

and the fourth row for the DMD mode phase. Here we highlight that the 0.8Hz mode

shapes are in good agreement for fs = 5Hz (Fig. 5.41(a)) and fs = 2.5Hz (Fig. 5.41(b))

as the sampling rates are high enough to detect this mode shape. For fs = 1.0Hz,
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Figure 5.40: DMD results for Rep = 50, α = 2 using sampling frequency. (a) DMD
growth rate vs. frequency, and (b) amplitude vs. frequency.

however, the 0.8Hz mode shape is not captured as the maximum frequency that can

be captured is half of the sampling rate 0.5fs = 0.5Hz (see Fig. 5.40). With hardware

synchronization method implemented on the fs = 1.0Hz sampling, DMD can capture

the 0.8Hz frequency as well as capture the mode shape (Fig. 5.41(d)) in qualitatively

good agreement. Differences can be observed as the mode shape for fs = 5Hz was for

a single pressure cycle, while the phase-averaged fs = 1.0Hz was wrapped back into a

single pressure cycle. The results obtained in this study enabled us to justify the use

implementing DMD on flow fields acquired with low-frame rate settings. This further

enabled us to use DMD to study the flow dynamics in aneurysms for the given flow

conditions.
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Figure 5.41: DMD modes for fs = 5Hz using the streamwise component of velocity for
different sampling rates. (a)-(d) 0.8Hz (fs = 5Hz), (e)-(h) 0.8Hz (fs = 2.5Hz), (i)-(l)
0.4Hz (fs = 1Hz), and (m)-(p) 0.8Hz (fs = 1Hz*). (a),(e),(i),(m) real components.
(b),(f),(j),(n) imaginary components. (c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.

5.5.2 DMD results for BF=1.0

DMD frequencies, growth rates, and DMD amplitudes

DMD frequency results are presented here to provide the frequency information of the

spatial modes in the flow field. The DMD frequencies (λi) are the imaginary component

of the eigenvalues (Λ) which describe the frequencies of oscillation of the DMD modes

(Φ). These frequencies are determined from the eigendecomposition of Ã. On the other

hand, the real components of the eigenvalues (λr) represent the exponential growth or
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decay rate of the DMD modes. A positive real eigenvalue indicates a growing DMD mode

while a negative real eigenvalue indicates a decaying DMD mode. In terms of the actual

contribution to the flow field of the DMD modes, it can be quantified by their DMD

amplitudes (β). The amplitudes allow us to determine the DMD modes important to the

flow field. The total number of frequencies depends on the rank r selected to perform

the DMD analysis. Furthermore, the resolved frequencies can be determined from r as

df = 1/(r∆t). For α = 2 conditions, 37 DMD frequencies are resolved (positive and

negative) with df = 0.4Hz while 18 DMD frequencies are resolved with df = 2.4Hz for

α = 5 scenarios.

The DMD frequency spectrum results for α = 2 flow scenarios are shown in Fig. C1(a).

Here, we only show the positive side of the spectrum as the frequencies extracted are

symmetric about the imaginary axis as a consequence of processing real-valued data. The

results show that for α = 2 flow scenarios (i.e., Fig. C1), the mean flow, an oscillating

mode of 0.4 Hz and its harmonics are captured along with their growth/decay rate

information. The harmonics are captured as the flow scenarios are cyclical in nature. The

growth/decay rate of each frequency is near zero (i.e., λr ≈ 0) which suggest stability and

presence of these spatial structures throughout the pressure cycle. The corresponding

normalized DMD amplitude results obtained for α = 2 shown in Fig. C1(b) indicate each

frequency’s impact to the flow. Here, it should be noted that the 0Hz (i.e., mean flow)

is removed from the figure to highlight the contribution of the oscillating components.

The DMD amplitude results show that the majority of the contribution comes from the

first two frequencies (i.e., 0.4Hz and 0.8Hz) and decreasing contributions from higher

harmonics (i.e., λi > 0.8 Hz) for both Rep scenarios. The contributions can be justified as

the 0.4Hz corresponds to the pump frequency while the 0.8Hz corresponds to the impact

of the spring-loaded valve system used to create uni-directional flow from sinusoidal

driving pressure signal.

DMD frequency spectrum for α = 5 flow conditions are analyzed and shown in
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Fig. C2(a) and the corresponding normalized DMD amplitudes are shown in Fig. C2(b).

The positive frequency spectrum shows the resolved frequencies from 0Hz to 7.2Hz.

Higher frequencies (i.e., > 7.2Hz) are not shown in the figures as they do not physically

represent the flow from the phase-averaged results. For this α condition, the mean flow,

the pump driving frequency of 2.4Hz and its harmonics are also captured. In terms of

their contributions, highest contributions also come from the flow frequency and its first

three harmonics. For Rep = 50, the 4.8Hz dominates the flow, which corresponds to

spatial mode oscillation occurring twice in a cycle (see Fig. 5.8). This is in contrast with

Rep = 270 where the dominant mode is the 2.4Hz which in line with the pump driving

frequency.

The results provided in this section demonstrated the advantage of using DMD to

gain insight to the complex flow structures. DMD allows us to extract important spatial

features with each feature defined by a single frequency of oscillation and growth/decay

rate. The information that DMD provides tells us that certain spatial modes are present

in the flow field that oscillate at a particular frequency. These frequencies, along with

their contribution, allow us to determine which are the dominant feature that highly

impact the overall flow dynamics. Furthermore, DMD also enable us to create mathe-

matical models to predict flow patterns that are governed by these modes which which

may not be initially captured with the original velocity field data.

DMD modes

The DMD modes are presented here provide a modal description of the flow structure

from the PIV phase-averaged data. In the case of the present investigation, DMD can

be used for analyzing spatio-temporal behavior of energetic flow structures in aneurysm.

These DMD modes (Φ) are determined using Eq. 4.23 which would yield real and imag-

inary modes for both streamwise and transverse components of velocity. For brevity,

DMD modes are presented here from the frequencies discussed from the previous section.
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Figure 5.42: DMD frequency, growth rates and amplitudes for α = 2 at different Rep.
(a) DMD growth rate vs. frequency, and (b) DMD amplitude vs. frequency.
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Figure 5.43: DMD frequency, growth rates and amplitudes for α = 5 at different Rep.(a)
DMD growth rate vs. frequency, and (b) DMD amplitude vs. frequency.

Streamwise and transverse DMD modes from 0.4Hz− 1.6Hz for α = 2 and Rep = 50

are shown in Figs. 5.44(a)-(d) and 5.45(a)-(d), respectively. The DMD modes acquired

yield real and imaginary modes where the combination of the modes provide a mathemat-

ical description of the spatial flow structures and behavior in the aneurysm. In this flow

scenario, each mode has a temporal behavior associated with a single frequency, and the

flow pattern can be described by combining the real and imaginary u and v components

of the modes. The magnitude of the complex DMD mode shows the most active regions

of each mode, while the phase shifts show the convective motion of the flow structures
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captured by the modes. The results show that the DMD modes are more or less similar

in nature as the modes comprises of the fundamental flow frequency and its harmonics.

Combining these aspects for a single DMD mode shows the vortical structure movement

from the proximal side to the aneurysm opening at a given frequency. Here we now see

the capability of using DMD to capture the convective motion and provide a description

of its temporal behavior in a single DMD mode. This is in contrast with POD where

three or more POD modes are used to capture this motion, but unable to capture the

temporal description of the flow field (i.e, associated frequencies with the observed flow

structures).

Similar analysis is also performed for α = 2 and Rep = 270 flow scenario where the

streamwise modes are shown in Fig. 5.46(a)-(d) and the transverse modes are shown in

Fig. 5.47(a)-(d). We now highlight the influence of Rep to the flow structures. Although

the DMD modes for both and real and imaginary modes show a vortical structure moving

towards the aneurysm opening similar to Rep = 50, the high and low values of the

real and imaginary DMD modes are shifted towards the distal side of the aneurysm.

This suggests the vortical structure leans more towards the distal side influencing the

impinging locations and wall shear stress behavior. Thus, DMD is able to capture the

changes in the flow structure and behavior with the change in mode shapes.

We now analyze the DMD modes for α = 5 flow conditions. Figures 5.48(a)-(d) show

the streamwise DMD modes for Rep while Figs. 5.49(a)-(d) show the transverse DMD

modes at different frequencies. Here the DMD modes show relatively similar shapes

as they are from the fundamental frequency (i.e., 2.4Hz) and its harmonics. For a

single DMD mode, a flow structure can be seen to move from the proximal neck to the

upstream aneurysm opening oscillating at a particular frequency. A similar description of

this motion is captured by POD (see 5.4.1), yet five POD modes are necessary to capture

this motion and lacked the temporal information of this behavior. With Rep = 270

(i.e., Figs. 5.50 and 5.51), the DMD modes show shifted mode shapes in comparison with
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Figure 5.44: DMD modes for Rep = 50, α = 2 using the streamwise component of
velocity. (a)-(d) 0.4Hz (Mode 2), (e)-(h) 0.8Hz (Mode 4), (i)-(l) 1.2Hz (Mode 6), (m)-(p)
1.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.

Rep = 50, and the dynamics of the observed vortical structures have changed. The spatial

structures are seen near the distal neck region for the fundamental frequency. Similar

flow structure movement can be seen for the higher harmonics where the bulk motion of

the flow structures impinges the distal neck area. DMD thus highlight the differences in

the modes at different inflow conditions through the changes in mode shapes which then

influences the flow structure motion.

DMD modes show the capability of the method to gain insight to the mechanisms

involved in fluid behavior inside the aneurysm. The results indicate that the change in
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Figure 5.45: DMD modes for Rep = 50, α = 2 using the transverse component of
velocity. (a)-(d) 0.4Hz (Mode 2), (e)-(h) 0.8Hz (Mode 4), (i)-(l) 1.2Hz (Mode 6), (m)-(p)
1.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.

inflow conditions, either in Rep or α, provide different behavioral modes of oscillation.

Although similar frequency information are obtained when α is kept the same, different

flow oscillations or modes are contained for every Rep. This suggest the uniqueness

of flow behavior for every inflow scenario and the modes responsible for this behavior.

Furthermore, the real and complex DMD modes provide information on the movement

of the spatial structures at a particular frequency. This information is important as

it enables us to determine the flow feature, frequency in a single DMD mode. The

DMD mode shapes can be quantified through their contribution by examining the DMD
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Figure 5.46: DMD modes for Rep = 270, α = 2 using the streamwise component of
velocity. (a)-(e) 0.4Hz (Mode 2), (e)-(h) 0.8Hz (Mode 4), (i)-(l) 1.2Hz (Mode 6), (m)-(p)
1.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.

amplitudes (β) and temporal description (Λ) which can be combined together to allow

a flow realization of the flow field at a time instance. This realization can be shown by

looking at the low-order flow field reconstruction presented in the next section.

DMD low-order reconstruction

A low-order flow field reconstruction using DMD are performed for each inflow scenario

to model the large-scale structure behavior at different phases for a single pressure cycle.

For this study, the flow realizations are acquired using Eq. 4.24 and selecting key dominant
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Figure 5.47: DMD modes for Rep = 270, α = 2 using the transverse component of
velocity. (a)-(e) 0.4Hz (Mode 2), (e)-(h) 0.8Hz (Mode 4), (i)-(l) 1.2Hz (Mode 6), (m)-(p)
1.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.

DMD modes, and associated frequencies and growth rates. The flow field evolution

presented here for selected time phases with α = 2 are shown in Figs. 5.52 and 5.53

for Rep = 50 and Rep = 270, respectively. Meanwhile, the flow field reconstruction

results with α = 5 are shown in Figs. 5.54 and 5.55 for Rep = 50 and Rep = 270,

respectively. The velocity field reconstruction for Rep = 50 (i.e., Fig. 5.52) show the flow

behavior in the aneurysm at α = 2. Here, flow in the pipe is initially seen to enter the

aneurysm region with the fluid following the curvature (i.e., t/T=0.00). The fluid exits

at the distal side and recovers downstream of the aneurysm. As the flow in the pipe
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Figure 5.48: DMD modes for Rep = 50, α = 5 using the streamwise component of
velocity. (a)-(d) 2.4Hz (Mode 2), (e)-(h) 4.8Hz (Mode 4), (i)-(l) 7.2Hz (Mode 6),
and (m)-(p) 9.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary
components. (c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.

continuous to slow down, a clockwise vortex appears near the proximal side of the cavity

(i.e., t/T=0.04). This vortex gathers in strength as the pipe fluid continuously slows down

(i.e., t/T=0.19) while moving towards the aneurysm opening. At the lowest fluid velocity

in the pipe region, the aneurysm vortex can be seen to have moved towards the pipe region

(i.e., t/T=0.32). As the flow restarts accelerating again, the vortex is observed to move

back inside the cavity while rapidly decreases in strength and dissipating (i.e., t/T=0.38).

The process repeats itself in the second half of the cycle (i.e., t/T=0.5-1.0), where a newly

formed vortex behaves similarly as the previous first vortex structure. Note that the flow



116

Figure 5.49: DMD modes for Rep = 50, α = 5 using the transverse component of velocity.
(a)-(d) 2.4Hz (Mode 2), (e)-(h) 4.8Hz (Mode 4), (i)-(l) 7.2Hz (Mode 6), and (m)-(p)
9.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.

behavior is evident from the DMD modes for this scenario where the real and imaginary

components of the modes provide the convective motion of the vortical structure. In

addition, the repetition of the flow trend for a single pressure cycle is captured by the

dominant DMD amplitude at 0.8 Hz. For Rep = 270 and same α = 2 scenario (Fig. 5.53),

the flow behavior in the aneurysm region are qualitatively similar to Rep = 50. Using the

dominant modes and associated frequencies, vortex initiation starts near the proximal

side of the cavity (i.e., t/T=0.04). The vortex still grows in strength but stays in the

cavity at a longer duration (i.e., t/T=0.00 to t/T=0.51) than Rep = 50 (i.e., t/T=0.04
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Figure 5.50: DMD modes for Rep = 270, α = 5 using the streamwise component of
velocity. (a)-(d) 2.4Hz (Mode 2), (e)-(h) 4.8Hz (Mode 4), (i)-(l) 7.2Hz (Mode 6),
and (m)-(p) 9.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary
components. (c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.

to t/T=0.38). The vortex structure also does not fully go out of the cavity at this Rep

(i.e., t/T=0.41) when compared to Rep = 50 (i.e., t/T=0.32). The second half of the

pressure cycle repeats the process as the first vortex structure (i.e., from t/T=0.54 to

t/T=0.98), and the entire cycle is again recognized by DMD as the dominant 0.8 Hz.

Qualitatively, the flow trends are similar for Rep = 50 and Rep = 270 at α = 2 as

seen from the reconstruction figures. DMD differentiates these two scenarios through the

change in mode shapes to highlight the impact of change in Rep conditions.

Flow field reconstruction results for α = 5 are now shown in Figs. 5.54 and 5.55 for
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Figure 5.51: DMD modes for Rep = 270, α = 5 using the transverse component of
velocity. (a)-(d) 2.4Hz (Mode 2), (e)-(h) 4.8Hz (Mode 4), (i)-(l) 7.2Hz (Mode 6),
and (m)-(p) 9.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary
components. (c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.

Rep = 50 and Rep = 270, respectively. Here the flow behavior in the aneurysm region for

this unsteady scenario is different than the ones discussed for α = 2. For Rep = 50 flow

scenario, a vortical structure is initially observed to be present near the proximal side of

the cavity (i.e., t/T=0.00) which grows and moves towards the distal side before breaking

down into the aneurysm dome (i.e., from t/T=0.04) to t/T=0.38). This process is seen

to repeat itself for the second half of the cycle (i.e., t/T=0.58 to t/T=1.0), with the DMD

amplitude recognizing this behavior as 4.8Hz dominant frequency. The DMD mode shape

obtained for this scenarios also tell that the flow trend of the coherent structure will be
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Figure 5.52: DMD low-order reconstruction for Rep = 50, α = 2 for selected time phases.
Average normalized RMS error observed in low-order reconstruction is ϵavg=1.767%, with
minimum normalized RMS error of ϵmin=0.546% and maximum normalized RMS error
of ϵmax=2.947%. The RMS is normalized by the centerline velocity.

Figure 5.53: DMD low-order reconstruction for Rep = 270, α = 2 for selected time phases.
Average normalized RMS errors observed in low-order reconstruction is ϵavg=0.866%,
with minimum normalized RMS error of ϵmin=0.520% and maximum normalized RMS
error of ϵmax=1.176%. The RMS is normalized by the centerline velocity.

different than α = 2 conditions.

For Rep = 270 and α = 5 (i.e., Fig. 5.55), the vortex structure is observed throughout

the pressure cycle where it experiences different interactions with the incoming pipe flow.

Here, vortex structure moves from the proximal to the distal side of the aneurysm cavity

before moving towards the dome in a clockwise movement (i.e., t/T=0.0 to t/T=0.23). As

the vortex reduces in strength and impinging the neck then dome, a secondary vortex near
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the proximal side forms and merges with the first vortex (i.e., t/T=0.31 to t/T=0.37),

energizing the flow structure and impinges once more to the distal side of the cavity.

This process of vortex movement and secondary vortex appearance to energize the flow

in the cavity repeats for every cycle. Note that the DMD amplitude and mode shapes

for this Rep are different than the ones for Rep = 50 at α = 5. This illustrates that DMD

provides information on the change in the flow behavior through the change in mode

shapes and amplitudes, and highlight the impact of different inflow conditions.

Figure 5.54: DMD low-order reconstruction for Rep = 50, α = 5 for selected time phases.
Average normalized RMS error observed in low-order reconstruction is ϵavg=1.272%, with
minimum normalized RMS error of ϵmin=0.422% and maximum normalized RMS error
of ϵmax=2.783%. The RMS is normalized by the centerline velocity.
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Figure 5.55: DMD low-order reconstruction for Rep = 270, α = 5 for selected time phases.
Average normalized RMS error observed in low-order reconstruction is ϵavg=1.151%, with
minimum normalized RMS error of ϵmin=0.504% and maximum normalized RMS error
of ϵmax=2.857%. The RMS is normalized by the centerline velocity.
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CHAPTER 6

Conclusions

2D PIV measurements were performed for two rigid aneurysm models at different

inflow conditions to quantify the impact of large-scale structures on the fluid flow pa-

rameters in the aneurysm. These structures are studied to identify their influence on

fluid dynamics parameters such as impinging location, vortex strength, and wall shear

stress. Three different approaches were used to capture the large-scale flow structures

in the aneurysm: 1) using hardware synchronization, 2) using Proper Orthogonal De-

composition, and 3) using Dynamic Mode Decomposition. These approaches are used to

highlight their advantages and the information they can provide in analyzing complex

flow scenarios. To achieve the objectives of the proposed research, 2D PIV measurements

were conducted on rigid aneurysm models for a range of inflow parameters of α of 2 and

5, and Rep of 50 to 270. A SuperPump system was used for accurate inflow control where

the driving frequency of the pump was set to 0.4 Hz which corresponds to α = 2 and 2.4

Hz which corresponds to α = 5. For each inflow condition and models, 500 PIV images

were acquired. Key findings in this study are summarized in the next few sections.

The results from the hardware synchronization showed the ability of the method

to capture the large-scale flow structures at different inflow scenarios. The approach

showed that different inflow scenarios impact the behavior of the flow structures through

the changes in vortex evolution in the pressure cycle. It was found that Rep and α both

play a role in the vortex formation process particularly in the growth and decay, path

of the structures and vortex strength. These in turn impact the impinging location and

wall shear stress distribution along the aneurysm geometry.

Rep is found to influence the large-scale flow structures in the aneurysm. In this

dissertation, Rep is related to the strength of the vortices, with stronger vortex behavior

at increasing Rep. Furthermore, increasing Rep shifts the path vortex further towards

the distal side of the aneurysm, and presence of secondary vortical structures are also
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observed. The impinging location results also showed that increasing Rep changes the

distribution of high pressure points from along the distal wall to a concentrated distribu-

tion at the distal neck. Lastly, the wall shear stress values were impacted by the change

in Rep where wall shear stress values increased near the distal neck by increasing Rep.

α is also found to impact the flow structure behavior in the aneurysm particularly

in the vortex formation, growth, and dissipation processes. The vortex strength of the

vortical structures were found to be stronger with an increase in α. The results also

showed that the vortex path was influenced by the change α where the vortices may

exit the aneurysm sac or stay within the sac. α was also found to impact the dissipation

process of the vortical structures where rapid dissipation of the vortex structure occurred

at low α while gradual dissipation occurred at high α. These in turn influences the

impinging location results where α impacts the direction of the impinging location due

to the change in the direction of the vortical structure. Lastly, wall shear stress found

in the aneurysm cavity are impacted by α where an increasing in α increases the shears

stresses.

The impact of the bottleneck also influenced the vortex phenomena inside the aneurysm.

The vortices, when they appear, may able to travel towards the distal side of the aneurysm

sac for BF = 1.0. On the other hand, the vortices were restricted to travel only up to

the center of the aneurysm orifice for BF = 1.6. The neck constriction also impacts the

impinging location. The impinging location was able to spread out inside the aneurysm

sac at BF = 1.0 due to the wide neck opening. This meant that the incoming fluid

was able to penetrate more inside the aneurysm sac. Meanwhile, the impinging locations

were limited to the neck area for BF = 1.6. This meant that the incoming flow was not

able to penetrate inside the aneurysm sac and almost all of the impingement points and

increase shear stresses lie on the distal neck area of the aneurysm.

Proper Orthogonal Decomposition was successfully utilized in this dissertation to

further understand the behavior of the large-scale structures at different inflow scenarios.
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The energetic mode shapes were captured and highlighted the important features that

unique for each flow scenario. For a similar α and varying Rep, similar mode shapes

were found yet shifted horizontally due to the impact of Rep. The similarity in mode

shapes for fixed α showed how the flow evolution behavior would be similar. The shift

in these mode shapes further tell us where the high and low values have moved, and

could be related to the changes observed in the impinging locations and wall shear stress

values. With the change in α condition, completely different mode shapes were observed

which tells us that the flow behavior has changed. The POD energy results showed how

the fluctuating kinetic energy is distributed across different POD modes. More POD

modes are required for high α to reach similar energy content than low α. In terms

of time-varying results, the results showed the unique and complex interplay of POD

modes, and when certain POD modes and their combination are highly impactful to the

flow. As similar mode shapes can be found for the same α, unique interaction of the

modes are found with different Rep scenarios and increases in complexity as more modes

are considered. Lastly, the low-order reconstruction results were able to provide a clear

picture of vortex formation, evolution, and convection inside the aneurysm sac using a

combination of the POD modes and their time-varying coefficients for a given α and

Rep condition. These results are in agreement with the flow evolution using hardware

synchronization, but we now have information on the dynamics of the spatial structures

using POD.

DMD was also successfully utilized to understand the spatiotemporal features of stud-

ied inflow conditions. DMD was able to capture the frequencies for each inflow condition.

The results obtained showed that Rep only impacts the DMD mode shapes. With similar

α and an increase in Rep, the DMD mode shapes are relatively similar but shifted which

then shifts the convection of the vortical structure. On the other hand, α influences the

DMD frequencies as well as mode shapes. The obtained frequencies are different with

different α as the flow frequencies has changed. This in turn changes the mode shapes
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which shows a different flow trend with different α. Along with the frequency results,

the growth rate and amplitude results showed that the first few low frequencies were

stable and had high contribution to the flow dynamics. This information allowed us to

create a mathematical description of the large-scale structures in the aneurysm through

the interplay of the DMD modes, frequencies and growth rates. The mathematical model

estimates the flow field behavior using a linear combination of frequencies, mode shapes,

and their individual contributions. The combination of these spatial structures that os-

cillate at different frequencies provides the dynamics of the vortex formation, evolution

and convection inside the aneurysm sac. These flow models were in good agreement

with the results from hardware synchronization and POD, but now we have insight on

the temporal behavior of the oscillating structures present in each inflow scenario with

DMD.

The present study provided an overarching work of investigating the spatial and

temporal behavior of large-scale flow structures on fluid parameters for a range of inflow

conditions. The results obtained using different approaches allowed us to study the

aneurysm flow with sufficient detail and meet the objectives presented in the proposed

research. With hardware synchronization, the method enabled us to capture the large-

scale structures at different points in the pressure cycle. This allowed us to visualize the

entire flow evolution, and perform fluid dynamic analysis. For POD, it was used to extract

energetic flow features or modes in each flow scenario, and the combination of these

modes allowed us to perform a low-order approximation of the flow field. The method also

enabled us to study the vortex behavior such as formation and evolution by looking at the

interplay of the POD modes and their coefficients and their impact on flow parameters.

Similarly, DMD is used to analyze and to differentiate the observed flow behaviors at

different inflow conditions based on their frequencies, modes, and amplitudes. Low-order

flow reconstruction using DMD was also used to model the flow evolution for each inflow

scenario using a combination of the DMD parameters.
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The methods used in this dissertation provide alternative methods to study complex

flow scenarios through advanced analysis techniques. Both POD and DMD can be used

to create mathematical models which can be used to look into the flow evolution at suffi-

ciently great detail and at any time step. With POD, the method provides an approach

to look into the flow evolution behavior by analyzing the time-varying coefficients. The

phase-portrait of these coefficients can tell us the behavior of the modes (and thus the

flow itself) although the PIV images may be randomly distributed over the waveform.

On the other hand, an essential step in DMD requires images to be sequenced. This al-

lows the method to extract the flow processes accordingly. In our study, the PIV images

and their relation to pressure signal were determined. The synchronization of the PIV

trigger and pump waveform enabled us to sequence the PIV images prior to using DMD.

Thus, we highlight in this study how we can use POD and DMD to extract pertinent

information with the PIV images. These methods can provide an alternative approach

to phase-locked measurements which can be time-consuming, expensive, and requires

extensive hardware synchronization.

To give some perspective on phase-locked measurements, an experiment can take

months to carefully design, one or two months to trouble shoot the experiment and

properly synchronize each used equipment, and several months to analyze the data. This

then requires a big storage to store the data. The analysis time is greatly amplified as

more scenarios are collected and studied. Lastly, the approach and mathematical models

of the flow field can be used for validation of numerical and computational data.
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Appendix A: Impact of different DMD parameters

Impact of DMD amplitudes
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Figure A1: DMD results for Rep = 50, α = 2 using original snapshot and optimal vector
approach. (a) original snapshot, and (b) optimal vector amplitude.
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Impact of number of cycles
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Figure A2: DMD results for Rep = 50, α = 2 using original snapshot and optimal vector
approach. (a) original snapshot, and (b) optimal vector amplitude.
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Figure A3: DMD frequencies and growth/decay rates for Rep = 50, α = 2 using different
cycles. (a) DMD growth rate vs. frequency, and (b) amplitude vs. frequency.



151

Figure A4: DMD modes for fs = 5Hz using the streamwise component of velocity for
different cycles. (a)-(d) 0.8Hz (1-cycle), (e)-(h) 0.8Hz (2-cycle), (i)-(l) 0.8Hz (5-cycle),
and (m)-(p) 0.8Hz (10-cycle).(a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary
components. (c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.
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Impact of projected and exact DMD

Figure A5: DMDmodes for 0.4Hz and 0.8Hz using the streamwise component of velocity.
(a)-(d) 0.4Hz (Projected), (e)-(h) 0.4Hz (Exact), (i)-(l) 0.8Hz (Projected), and (m)-(p)
0.8Hz (Exact). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.
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DMD mode reconstructions for BF = 1.0

Figure A6: DMD mode for α = 2, Rep = 50 constructed for 0.4 Hz for a complete cycle.
The other half of the cycle repeats in the same fashion with opposite streamlines.

Figure A7: DMD mode for α = 2, Rep = 50 constructed for 0.8 Hz for a complete cycle.
The other half of the cycle repeats in the same fashion with opposite streamlines.
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Figure A8: DMD mode for α = 2, Rep = 50 constructed for 1.6 Hz for a complete cycle.
The other half of the cycle repeats in the same fashion with opposite streamlines.

Figure A9: DMD mode for α = 2, Rep = 270 constructed for 0.4 Hz for a complete cycle.
The other half of the cycle repeats in the same fashion with opposite streamlines.
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Figure A10: DMD mode for α = 2, Rep = 270 constructed for 0.8 Hz for a complete
cycle. The other half of the cycle repeats in the same fashion with opposite streamlines.

Figure A11: DMD mode for α = 2, Rep = 270 constructed for 1.6 Hz for a complete
cycle. The other half of the cycle repeats in the same fashion with opposite streamlines.
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Figure A12: DMD mode for α = 2, Rep = 270 constructed for 2.0 Hz for a complete
cycle. The other half of the cycle repeats in the same fashion with opposite streamlines.

Figure A13: DMD mode for α = 2, Rep = 270 constructed for 2.4 Hz for a complete
cycle. The other half of the cycle repeats in the same fashion with opposite streamlines.
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Figure A14: DMD mode for α = 2, Rep = 270 constructed for 2.8 Hz for a complete
cycle. The other half of the cycle repeats in the same fashion with opposite streamlines.

Figure A15: DMD mode for α = 2, Rep = 270 constructed for 3.2 Hz for a complete
cycle. The other half of the cycle repeats in the same fashion with opposite streamlines.
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Appendix B: POD results for BF = 1.6

POD modes for BF = 1.6

Figure B1: Streamwise POD modes for Rep = 50 and α = 2. (a) ψ1
uu, (b) ψ

2
uu, (c) ψ

3
uu,

and (d) ψ4
uu.

Figure B2: Transverse POD modes for Rep = 50 and α = 2. (a) ψ1
vv, (b) ψ

2
vv, (c) ψ

3
vv,

and (d) ψ4
vv.

Figure B3: Streamwise POD modes for Rep = 270 and α = 2. (a) ψ1
uu, (b) ψ

2
uu, (c) ψ

3
uu,

and (d) ψ4
uu.
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Figure B4: Transverse POD modes for Rep = 270 and α = 2. (a) ψ1
vv, (b) ψ

2
vv, (c) ψ

3
vv,

and (d) ψ4
vv.

Figure B5: Streamwise POD modes for Rep = 50 and α = 5. (a) ψ1
uu, (b) ψ

2
uu, (c) ψ

3
uu,

and (d) ψ4
uu.

Figure B6: Transverse POD modes for Rep = 50 and α = 5. (a) ψ1
vv, (b) ψ

2
vv, (c) ψ

3
vv,

and (d) ψ4
vv.
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Figure B7: Streamwise POD modes for Rep = 270 and α = 5. (a) ψ1
uu, (b) ψ

2
uu, (c) ψ

3
uu,

and (d) ψ4
uu.

Figure B8: Transverse POD modes for Rep = 270 and α = 5. (a) ψ1
vv, (b) ψ

2
vv, (c) ψ

3
vv,

and (d) ψ4
vv

POD low-order reconstruction for BF = 1.6
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Figure B9: POD low-order reconstruction for Rep = 50, α = 2, and BF = 1.6.
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Figure B10: POD low-order reconstruction for Rep = 270, α = 2, and BF = 1.6.
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Figure B11: POD low-order reconstruction for Rep = 50, α = 5, and BF = 1.6.

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

Figure B12: POD low-order reconstruction for Rep = 270, α = 5, and BF = 1.6.
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Appendix C: DMD results for BF = 1.6

DMD frequency and amplitude
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Figure C1: DMD frequency, growth rates and amplitudes for α = 2 at different Rep. (a)
DMD growth rate vs. frequency, and (b) DMD amplitude vs. frequency.
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Figure C2: DMD frequency, growth rates and amplitudes for α = 5 at different Rep.(a)
DMD growth rate vs. frequency, and (b) DMD amplitude vs. frequency.
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DMD modes

Figure C3: DMD modes for Rep = 50, α = 2 using the streamwise component of
velocity. (a)-(e) 0.4Hz (Mode 2), (e)-(h) 0.8Hz (Mode 4), (i)-(l) 1.2Hz (Mode 6), (m)-(p)
1.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.
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Figure C4: DMD modes for Rep = 50, α = 2 using the transverse component of veloc-
ity. (a)-(e) 0.4Hz (Mode 2), (e)-(h) 0.8Hz (Mode 4), (i)-(l) 1.2Hz (Mode 6), (m)-(p)
1.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.
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Figure C5: DMD modes for Rep = 270, α = 2 using the streamwise component of
velocity. (a)-(e) 0.4Hz (Mode 2), (e)-(h) 0.8Hz (Mode 4), (i)-(l) 1.2Hz (Mode 6), (m)-(p)
1.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.
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Figure C6: DMD modes for Rep = 270, α = 2 using the transverse component of
velocity. (a)-(e) 0.4Hz (Mode 2), (e)-(h) 0.8Hz (Mode 4), (i)-(l) 1.2Hz (Mode 6), (m)-(p)
1.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.
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Figure C7: DMD modes for Rep = 50, α = 5 using the streamwise component of velocity.
(a)-(d) 2.4Hz (Mode 2), (e)-(h) 4.8Hz (Mode 4), (i)-(l) 7.2Hz (Mode 6), and (m)-(p)
9.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.
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Figure C8: DMD modes for Rep = 50, α = 5 using the transverse component of velocity.
(a)-(d) 2.4Hz (Mode 2), (e)-(h) 4.8Hz (Mode 4), (i)-(l) 7.2Hz (Mode 6), and (m)-(p)
9.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.



169

Figure C9: DMDmodes forRep = 270, α = 5 using the streamwise component of velocity.
(a)-(d) 2.4Hz (Mode 2), (e)-(h) 4.8Hz (Mode 4), (i)-(l) 7.2Hz (Mode 6), and (m)-(p)
9.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary components.
(c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.
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Figure C10: DMD modes for Rep = 270, α = 5 using the transverse component of
velocity. (a)-(d) 2.4Hz (Mode 2), (e)-(h) 4.8Hz (Mode 4), (i)-(l) 7.2Hz (Mode 6),
and (m)-(p) 9.6Hz (Mode 8). (a),(e),(i),(m) real components. (b),(f),(j),(n) imaginary
components. (c),(g),(k),(o) magnitude. (d),(h),(l),(p) phase.
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DMD mode reconstruction for BF = 1.6

Figure C11: DMD mode for α = 2, Rep = 50 constructed for 0.4 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

x (mm)
y
 (

m
m

)
5 0 5

7

0

x (mm)

y
 (

m
m

)

5 0 5

7

0

Figure C12: DMD mode for α = 2, Rep = 50 constructed for 0.8 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C13: DMD mode for α = 2, Rep = 50 constructed for 1.6 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C14: DMD mode for α = 2, Rep = 270 constructed for 0.4 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C15: DMD mode for α = 2, Rep = 270 constructed for 0.8 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C16: DMD mode for α = 2, Rep = 270 constructed for 1.6 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C17: DMD mode for α = 2, Rep = 270 constructed for 2.4 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C18: DMD mode for α = 2, Rep = 270 constructed for 2.8 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C19: DMD mode for α = 2, Rep = 270 constructed for 3.2 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C20: DMD mode for α = 5, Rep = 50 constructed for 2.4 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C21: DMD mode for α = 5, Rep = 50 constructed for 4.8 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C22: DMD mode for α = 5, Rep = 50 constructed for 7.2 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C23: DMD mode for α = 5, Rep = 270 constructed for 2.4 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C24: DMD mode for α = 5, Rep = 270 constructed for 4.8 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.
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Figure C25: DMD mode for α = 5, Rep = 270 constructed for 7.2 Hz. Top row: flow
evolution for half-cycle. Bottom row: flow evolution for second half-cycle.

DMD low-order reconstruction for BF = 1.6
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Figure C26: DMD low-order reconstruction for Rep = 50, α = 2, and BF = 1.6.
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Figure C27: DMD low-order reconstruction for Rep = 270, α = 2, and BF = 1.6.
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Figure C28: DMD low-order reconstruction for Rep = 50, α = 5, and BF = 1.6.
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Figure C29: DMD low-order reconstruction for Rep = 270, α = 5, and BF = 1.6.
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Appendix D: Flow conditions

Flow conditions

Table D1: Test conditions used for α of 2 for mid-plane measurement

Region BF
Window Size

(pixel x pixel)

Field of View

(mm x mm)

dt(µs)

Re=50 Re=150 Re=270

Pipe 1.0 32x32 32x10 2000 1000 500

Neck 1.0 32x32 18x14 3000 3000 1000

Sac 1.0 32x32 18x8 10000 6000 1200

Pipe 1.6 32x32 34x10 2000 1000 400

Neck 1.6 32x32 16x13 8000 4000 5000

Sac 1.6 32x32 17x18 60000 60000 60000

Table D2: Test conditions used for α of 5 for mid-plane measurement

Region BF
Window Size

(pixel x pixel)

Field of View

(mm x mm)

dt(µs)

Re=50 Re=150 Re=270

Pipe 1.0 32x32 32x10 2000 1500 500

Neck 1.0 32x32 18x14 5000 2000 1000

Sac 1.0 32x32 18x8 10000 6000 1500

Pipe 1.6 32x32 34x10 2000 1500 400

Neck 1.6 32x32 16x13 8000 4000 5000

Sac 1.6 32x32 17x18 60000 60000 60000
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Table D3: Test conditions used for α of 2 in the sac region

Plane BF
Window Size

(pixel x pixel)

Field of View

(mm x mm)

dt(µs)

Re=50 Re=150 Re=270

2mm 1.0 32x32 18x14 5000 3000 1500

4mm 1.0 32x32 18x14 8000 5000 3000

Table D4: Test conditions used for α of 5 in the sac region

Plane BF
Window Size

(pixel x pixel)

Field of View

(mm x mm)

dt(µs)

Re=50 Re=150 Re=270

2mm 1.0 32x32 18x14 8000 4000 1500

4mm 1.0 32x32 18x14 8000 4000 2000


