Modified SPARC Instruction Simulator (SI'S) to Support Experimental

Tagging Architectures

A Thesis
Presented in Partial Fulfillment of the Requirementsfor the
Degree of Master of Science
with a
Major in Computer Science
in the
College of Graduate Studies

University of Idaho

by

Saeede Zakeri

Augest 2014

Major Professor: Jim Alves-Foss, Ph.D.

Authorization to Submit Thesis

This thesis of Saeede Zakeri, submitted for theekegf Master of Science with a Major in
Computer Science and titledt'odified SPARC Instruction Simulator (SIS) to Support
Experimental Tagging,” has been reviewed in final form. Permission, radidated by the
signatures and dates given below, is now grantesubmnit final copies to the College of

Graduate Studies for approval.

Major Professor Date
Dr. Jim Alves-Foss

Committee
Members Date
Dr. Robert Rinker

Date

Dr. Daniel Conte de Leon

Computer Science

Department

Administrator e Dat
Dr. Gregory Donohoe

Discipline's

College Dean,

College of

Engineering Date
Dr. Larry Stauffer

Final Approval and Acceptance by the College ofdbede Studies

Date

Dr. Jie Chen

Abstract

This thesis is a part of an Air Force Research tatooy (AFRL) project focused on
developing a framework based on existing secumiyging techniques. These techniques are
developed to prevent or lower the overhead of kneecurity vulnerabilities. Critical to prevent
these security vulnerabilities is choosing techegjthat target the most disruptive attacks such as
buffer overflow, out of bound memory accesses amditialized memory access. For instance, over
the last five years, buffer overflow vulnerabilityas the cause of non-deterministic failures and
security breaches. The other main vulnerabilitynsufficient validated user inputs, which lead to
dangerous security flaws such as format string, $Q@mhmand injection and path traversal. The
flaws are exploitable when user input is passedutoerable programs without sufficient validation.
Buffer overflows and Insufficient validated usemputs are among the top 25 software errors
according to the CWE/SANS list of “Top 25 Most Dangus Software Errors”.

This study presents research focused on evalua@ndware implementation of security
tagging techniques. Run time hardware based taioking is an effective technique which controls
data propagation during execution of an applicafldrese techniques associate security tags with
user provided data and track tags during prograsowion. To keep tags updated, the techniques
intercept every attempt to access application andgss data. A detection of a misuse of data will
result in a security exception. Each techniqueehdsgferent approach for intercepting and isolating
instructions to prevent possibly difficult classafsvulnerabilities. The focus of this researchas t
understand the nature of security tagging as adation for developing a framework for simulating
the different security tagging techniques to deteenhow well they can detect software flaws and
vulnerable programs with minimum overhead. An addél objective of this work is to compare the
efficiency of different proposed tagging techniquiée AFRL project uses ERC32 (radiation-
tolerant 32-bit RISC Processor) which is a SPARGawa based computer systems. Accordingly a

SPARC Instruction Simulator is adopted to develegusity techniques.

Acknowledgements

This project would not have been possible withaytp®rt of many people. | would like to
express my gratitude to my advisor, Dr. Jim Alvess; whose expertise, understanding, and
patience, added considerably to my graduate experid would like to thank the other members of
my committee, Dr. Robert Rinker and Dr. Conte deri,dor agreeing to serve on my committee.

I would like to thank the department chair, Dr. Gy Donohoe, and Mrs. Darby Baldwin,
Mrs. Rhonda Zenner, Ms. Arvilla Allen, and otheafétmembers in the department of Computer
Science for their help during my study in the dépant. | would like to thank all the staff of the
College of Graduate Studies for their help and sughroughout my study at Ul.

I wish to acknowledge the United States Air Forceséarch Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARIAxupporting me during the course of my
graduate studies through grant number FA8750-104%-0

I am indebted to all of the team members who wonk@tlh me in the past and present. |
would like to thank Cindy Song, Stu Steiner and &pPatil for their input at various stages of my
research.

Last, but certainly not least, | would also like tttank my family for the support they
provided me through my entire life and in particulamust acknowledge my husband and best
friend, Mahdi, without whose love, encouragemernt aditing assistance, | would not have finished

this thesis.

Dedication

This thesis is dedicated to my husband, Mahdi @&ikav. You are the love of my life, my

strength and support. | also want to dedicate thimy amazing parents and beloved grandma.

vi

Table of Contents

ADSEIACE ...ttt iii
ACKNOWIEAGEMENTS. ...t e e st e e e besae e e e sre et e stesreensesreennense e iv
D= [[or= 1§ o] o TSP PP PSSR v
TaDIE OFf CONENTS ...t nr e nen e vi
BLIE: oL L= T[N = SRS Xi
TaDIE Of TADIES ...t Xiii
(O F=To | = g IR I 1 o [T f o o PSRN 1
1.1, ProBlem AFCa......cco i e e e 2
1.2. RESEAICH ODJECHVEScevvviiieieieeeeeeeeee ettt e e e 6
1.3, TNESIS OVEIVIEW.......etiiiiiiiiiii ettt eae et e e e e e 8
Chapter 2. Background and Framework OVErVIEW............cccceeerieeerene e 9
2.1. Dynamic Information Flow Tracking Background..............cccccoeeeeiiiiiiieeee, 9
2.1.1. DIFT initialization and propagation Phas@...........cccceeeeeiiiiiiii e, 10
2.1.2. DIFT CheCKING PRASE.......ccvveeiiet s e et e e et e e e 10
2.2. Memory Bound Checking technique Backgroundccoooeiviiiiiii e 11
2.2.1. BC initialization PRasemeeieeeiieieeee ettt 12
2.2.2. BC propagation PRASEooiiieeeeeeeiiiie s 12
2.2.3. BC cheCKiNng PhaSeccooiiee ittt 13
2.2.4. BC implementation at HardwWareccceece.evvveerieeeiiieiiiiiiiiiiiiieiieeeeseveeeeeeeeeeees 14

2.3. Uninitialized Memory Checking Background................cccccoooieeee, 14

2.3.1. UMC initialization PhasSe............iiceeeeiiiiiiee s 15
2.3.2. UMC propagation PhaSe........uuueuee e eeeeee e 15
2.3.3. UMC ChecKing PhaSecooo oottt e e 16
2.4, FrameEWOrK OVEIVIEWcoiiuiiiiiiiieeeme ittt 16
2.5, CONCIUSION ...ceiiee ettt mmmmm ettt e e et et e e e e e e e e e e e e e s e e e e e e e e e e e e s aannes 18
Chapter 3. Background iN SIS ..o 19
3.1. SPARC Instruction Simulator (SIS)......cccceeiiiiiiiiiiiiiiieieiieei e 19
G 32 1 1 (=0 = U T L A (1 21
3.2.1. Integer Unit General Purpose and WindOWSSREY.uuueerrmmemmmmmmneinnnninnnnnes 21
3.2.2. Integer Unit Control and Status REQISIEIS . ..ccceviiiiiiiiiiiieceee e 23
TG T B - | = Y/ o= SRR 26
3.4, TU INSTIUCTION SBEeeiiiiiiiiiii i cemeee ettt e e 27
3.5. Instruction Format and AddreSSiNg ..o 28
3.5.1. LOAD/STORE INSIIUCHONSeeeeeeiommmmmsesreeeeeeeeeeaaesisireeeeeeeeeesssssieeeeessaannnes 31
3.5.2. Arithmetic and LOgQIC INSITUCHIONScccciiviiiiiieeieeeeeeeeeeeeeeeeeeeee e 32
3.5.3. CONtrol TrANSTEceiiiiiiiii e e e 32
3.6. MEMOry Controller (MEC)uuuiiii ettt e e 33
T R O] o] (0 Tol 2o | LT 34
3.8, CONCIUSION ...ttt mmmmn ettt e e e e e s e e e e e e e s s e e e e e e e e e e e aanne 35
Chapter 4. Implementation of DIFT Tagging Schemesin SIS.........cccocceoiv e, 36

4.1. DIFT Initialization of Tag ENQINE.......cmeeerinmmiiiiiiiirns s sesssennnennnnnnnes 37

4.2. DIFT Propagation RUIES..... ... e 37
4.2.1. Rules for Group 2 INSIIUCHIONSucemmemiieieeeeeeee e 38
4.2.2. Rules for Group 3 iNSIUCLIONSuceeeeeiiiiei e 39
4.2.3. Rules for Group 4 iNStIUCLIONSueeeeeeiieieii e 43
4.2.4. Rules for Group 5 iNSIUCLIONSuceremeiiiiieieee e 45

4.3. DIFT CheCKING FUIESceeiiiiiiiiiee e nnnennnes 45
4.3.1. Rules for Groupl iNSLIUCLIONSvieeeeeerieiee e 45

4.4, CONCIUSION ...ttt mmne ettt et et e s e e e e e e e 47

Chapter 5. Implementation of Memory Bound Checking techniquein SIS...........c..ccc... 48

5.1. BC Initialization of Tag ENQINEccoomiii e 48

5.2. BC Propagation MUIESuuuuuusmmmmmmm e eeeeeeeeeieeseeeeeetssesseeesesesessssesesseasaeseaaseesaeeseees 49
5.2.1. Rules for Group 1 iNSIrUCLIONScceeeeeiiiiiiiiiiec e e e e 50
5.2.2. Rules for Group 2 iNSTIUCLIONScereeeiieeeieeeee e 51
5.2.3. Rules for Group 3 INSIIUCLIONScoeeeeiiiiiiiiieeeiiiiie e 51
5.2.4. Rules for Group 4 iNSIrUCLIONScceeeeeiuiniiiiiiiec e e e e 52
5.2.5. Rules for Group 5 iNSIIUCLIONScceeeeeiiiniiiiiiee e 53
5.2.6. Rules for Group 6 iNSTIUCLIONScurremiieiiieieee e 54
5.2.7. Rules for Group 7 iNSTIUCLIONScerremiieieieieee e 54
5.2.8. Rules for Group 8 iNSIIUCLIONScoeeeeiiiiiiiiieeiiiiiiie e 55
5.2.9. Rules for Group 9 iNSIIUCLIONSceeeeeiiieiiiicec e e 56

5.3. BC ChECKING FUIES ...uviiiiiiiiiiiiieii s e e s snn e 57

5.4, CONCIUSION ...ceiiieeee ettt mmmmm ettt e e et e e et e e e e e e e e e e e e e s s e r e e e e e e e e e e aanne 57
Chapter 6. Implementation of Uninitialized Variable tagging techniquein SIS................. 58
6.1. UMC Initialization of Tag ENQINE........oeiieiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeteeeeen e 58
6.2. UMC propagation RUIES.........cociiiii ettt e e e e ee e e e e e e e e e e e e eees 59
6.2.1. Rules for Group 2 INSIIUCTIONScceeaeiiiiiiieee e 59
6.3. UMC ChecKing FUIES.......coo ittt 60
6.3.1. Rules for Group 1 iNSIIUCLIONScceeeeeiiiiiiiicec e e e 60
6.3.2. Rules for Group 3 INSIIUCHIONScceeeeeiiiiiiiicee s e e 61
6.3.3. Rules for Group 4 INSIIUCTIONSceeeeeiiiiiieeee e 61
6.3.4. Rules for Group5 INSIIUCLIONS ... cceeeeeiiiii e 62
6.4, CONCIUSION......uiiiiiiiiiiie ettt mmnee ettt s e e e e e e e e s 63
Chapter 7. Evaluation and ANAIYSIS.......ccccieieiiieeresieeie e ese sttt st s 64
7.1. Implementation Testing and test Case deSigNevieiriiiiiiiieiiiiiiiiieiiieeeeee e 64
7.1.1. DIFT Rule- verification TeStINGcccueiiiiiiiiiiieiiieiiiieeiiieiieeiieeeeeeeereeeee e e e eeeees 65
7.1.2. UMC Rule- verification TeStNG......ccceevviieeiiieiiiieeeeeeeeeeeeeeeeeeeeeeeveeeeee e 68
7.1.3. MBC Rule- verification TeStNGccoeeeieiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 69
7.2. Performance @ValUAtIONceeeeeiie et mmn e 75
7.2.1. Performance Evaluation for DIFT ... 75
7.3. ANAlySiS N0 RESUILSccoiii ettt enneennennnes 77
T4, CONCIUSION ...ttt mmeee ettt s et e e e e e e e e 78

(O gF=T o (= T O] ok 11T Lo o O 79

8.1. Conclusion.........
8.2. Future Research

Chapter 9. Bibliography

Figurel-1: Heartbleed code vulnerability......... .o 4
Figure3-1: Cicular Stack of Register WiNOWccccccooiiiiiiiiiieeieeeece e 23
Figure3-2: Change of the Register WiNdOW.........coeeiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 24
Figure3-3: Processor State RegiSter ... 25
FIQUIE3-4: ICC DItS ..ottt eannneeesseesesssssensnennnnes 25
Figure3-5: Format 1 (op = 1): CALL INStrUCLION ... ceeeeiiiiiiiiiiiiiiiiiiiiieiieeeeeeeee e 29
Figure3-6: Format 2 (op = 0): BRANCH INStruCtioN......ccoeevvviiiiiiiiiiiiiiiiiiiiieieeee e 30
Figure3-7: Format 2 (op = 0): SETHI INSrUCHION .. eemmemevvveeveeevieeviiiiiiiiiveevvevvvvvviveveeeeee e 30
Figure3-8: Format 3 (op = 2, 3): Integer and load/StoBructions.............cccceeeevviiiininnnns 30
Figure3-9: Format 3 (0p = 2): FP/CP INSIUCHIONS e vvvvvvevvvveviveiivaiiineviennninnnsesveeeeneeess 30
Figure4-1: DIFT tag data StrUCTUIE..........oiiiieeeeee et 37
Figure5-1: MBC Tag data StrUCLUIEoiiieeeeeeiiiii s s ennennnes 49
Figure6-1: UMC tag engine data StrUCIUIEccoeeeeiieieiiiicece e 59
Figure7-1: Sample C code fOr TESHNGcoiiimmmmereeeeeeeeee e e e nreeee e 66
Figure7-2: Corresponding Assembly code for the te€St .. .ueeeiiiiiiieiii e, 66
Figure7-3: Result of running C code inside DIFT tag €BgiN...........cccceevriiiiiiiirieeeeeesssimnn 67
Figure7-4: Buffer OVEIfIOW tEST.......... e ceeee s 67
Figure7-5: Buffer OVEIflOW FrESUILuuiueiiimmm e e e eeeeeeee ettt ee e e ee e e 68
Figure7-6: UMC tag propagation teStcccoioi e 68
Figure7-7: UMC tag propagation ASsembly COE......ccceemriiiiiiiiiiiiiiiieiiieiieeviieiieeeeeeeeeees 69
Figure7-8: UMC tag propagation reSUlt.............ouumeeiiieiiiiiieeeeee e 69
Figure7-9: Inline Assembly code general format... o ...eeeerreerreerieeeiiieriiriieeee.. 70

Xi

Table of Figures

Figure7-10: sample BC code improper handling tag for lrdaintercccceee. 71

Xii

Figure7-11: Assembly code for corresponding C COUE . ceeieiriiieiiiiiiiieiiiiieeeeeeeee 72
Figure7-12: Result of improper handling tag for FramenBami.................ooooeeeeeeeeeeeeeee i 2
Figure7-13: C code proper handling tag for Frame Pointer...............coooooieeelld 73
Figure7-14: Results of proper handling tag for Frame Boin............cccccoeeeveeeveienennnnn 24
Figure7-15: C code for out of bound Memory acCess....ccuuuvvviivvvievveeeiiieiiiiiiievievveveeee 74
Figure7-16: Results of out of boUNd MEMOrY ACCESS......uuuuuiiiiiiiee s 75
Figure7-17: Performance evaluation for DIFT running RTERlications........................... 76
Figure7-18: Performance evaluation for BC running RTEMlications.............cccceevvveeeeee. 76
Figure7-19: Performance evaluation for UMC running RTER$licationsccc........ 76

Figure7-20: Tag engine OVEIrNEAU.uuviieeeieeeiiieeiieeceeeeeee ettt e e e e ee e e e e 78

Xiii

Table of Tables

Table1-1: 2011 CWE/SANS top 25 most dangerous SOftWAIEFR..............cvvveeeeeeeeeenniiiiineen 3
Table3-1: SPARC regiSter SELcooi i e e e e e e 22
Table3-2: SPARC Data TYPESccoviiiiiiieeeeee ot ettt ettt e e e e e e e e e e e eeeeeas s aa e 27
Table3-3: OP and OP2 @NCOAINGcoeie i 28
Table4-1: Implemented ALU INSEIUCLIONScooiome e, 38
Table4-2: Rules for ALU INSIIUCHIONSoii e 39
Table4-3: Implemented LOAD INSIIUCHIONS ... oo 40
Table4-4: Implemented STORE iNStrUCLIONScommmerverrrerrirnniinnirinieeiennn ... 41
Table4-5: Implemented LOAD-STORE and SWAP iNStruCtONS...........ccooviiiviiiiieeeeeenne 42
Table4-6: NeW CPOPL INSIIUCHONSc.uviiiiiimeeeene et 43
Table4-7: New CPOP2 INSIIUCLIONScciiiiiimmmmemrieie et e et e e e e 44
Table4-8: Implemented CALL, BRANCH, JUMP and RETURN mgttions......................... 46
Table5-1: Implemented MUL, DIV, OR and XOR instructians...............eevvvvvvevvvrvvvennnnnnnnnn. 50
Table5-2: Rules for Groupl INSIFUCHONS.......cooieeeee e 50
Table5-3: Implemented SUB iNSITUCLIONoeeeeeeiiiiiiiiiiieieieeeiveevvevvrevvvevee e eeee e 51
Table5-4: Rules for Group 2 INStIUCLIONSooeeieeiieiiieeieeeeeeee e e 51
Table5-5: Implemented ADD iNSrUCLION............cccceeeiiieeiieeeeeeeeeeevee e reee e 52
Table5-6: Rules for Group 3 INStIUCLIONSccoeeeiiiiiiiiieceeeeeeeeeeeeeeeeee e 52
Table5-7: Implemented AND INStrUCLION...........oocooieeeeeieeeeee e 52
Table5-8: Rules for Group 4 iNStIUCLIONSccceeeiiiiiieiieeeeeeeeeeeeeeee e e 53
Table5-9: Implemented LOAD INSIIUCHIONcooiiiieeeeee e 53
Table5-10: Implemented STORE iNStrUCLION........cceeeeevviveiiiiiiiiiiiiiiiiiiiiieeseeeeeeeeee 54
Table5-11: Implemented Load/Store and SWAP inStructian.............ccccoeevvviiiiineeeneeenn. 55

Table5-12: NeW CPOP2 INSIIUCLIONScccoi i e e e e e e ettt ee e e e e e e s e e e e e 56
Table6-1: Implemented STORE iNStrUCLIONScommmmereeerrereireniinnirininniennn ... 60
Table6-2: Implemented LOAD INStIUCHIONS..........eee e, 60
Table6-3: Implemented LDSTUB and SWAP INStrUCHONS. ceeeevevveeeiiiiiiiiiiiieeceeee e 61

Table6-4: NeW CPOP2 INSITUCIONSuiiieeiiieticceemmee et e e st s et resasesaseeenieresnsesanresens 62

Chapter 1. Introduction

Computer security has become a very important enanand social problem. There has been
a lot of research conducted to develop new waysdtect systems over the past three decades. This
research has been conducted with the goal of ptiegethe ever-growing catastrophic effects of
security vulnerabilities. According to estimategber security attacks directly cost US companies
tens of billions of dollars a year and much morendirect cost to companies and individuals.
“General Keith Alexander, Chief of the U.S. Cybem®@eand and Director of the National
Security Agency, points out that the United Stagews a 17-fold increase in cyber attacks
between 2009 and 20111].

Every year new security vulnerabilities and attaehkeerge. Today almost everything relies on
worldwide network communications, so having vuliégacode will cause serious worldwide
impacts and losses of billions of dollars. In thestptwo years several companies and government
organizations have been victims of hacker's atta@@me of these attacks exploited software
vulnerabilities which caused buffer over flow andt @f bound memory accesses. Other attacks
exploited vulnerabilities at a high level such a@LS(Structured Query Language) injection,
command injection, CSS (Cross Site Scripting) andrs These vulnerabilities are further discussed
in section 1.1.

As an example of vulnerable code we can mentiomgachlled Heartbleed which was publicly
announced on April ¥} 2014. This bug is a good sample of how a vulrderabde can have a
worldwide affect. Heartbleed is a security bug ipe® Secure Socket Layer (SSL) library. This bug
can be exploited if either client or server usegulmerable OpenSSL instance. National Cyber
security and Communications Integration Center (ND)Gtates that using Heartbleed vulnerability,
attackers can decrypt previously encrypted infoiomatind stole servers’ private keys and users

session cookies and passwords [2].

Over half a million secure web servers were vidbkr to this bug. Several groups called the
Heartbleed bug "catastrophic". Forbes cyber sgcwolumnist Joseph Steinberg wrote, "Some
might argue that [Heartbleed] is the worst vulnéitgtfound since commercial traffic began to flow
on the Internet." [3] .

There are tools such as firewalls and anti-virdBascan be used to reduce the damage caused
by Heartbleed types of attacks. But research shbatsthe security tools do not provide a reliable
protection against ever-increasing attacks andgsesuhat exploit low level programming errors.

One approach to enhance security is to use harelveaes security tagging techniques to cope
with the security vulnerabilities. These techniquesally deploy security tags to support memory
access control. In this thesis we evaluate theotisecurity tags associated with data to reduce the
damages of vulnerable code.

This current Research is a part of an Air ForceeResh Laboratory Project focused on the
framework development of different security taggimgchniques inside SPARC Instruction
Simulator. The goal of this thesis is to develop amplement a framework to test and evaluate
hardware-based security tagging techniques. In ¢hepter section 1.1 introduces some of the
common problem areas and basic concepts of setagiyng and security tagging schemes. Section
1.2 introduces the motivation and objectives o tleisearch. Section 1.3 concludes with an overview

of the remaining parts of the thesis.

1.1. Problem Area

Table 1-1 lists the 2011 Common Weakness Enunoe/&ysAdmin, Audit, Network,

Security (CWE/SANS) top 25 most dangerous softwaraknesses [4] .

Rank | ID Category Name

1 CWE-89 1 Improper Neutralization of Special Elemseused in an SQL
Command ('SQL Injection’)

2 CWE-78 1 Improper Neutralization of Special Elatse used in an OS
Command ('OS Command Injection’)

3 CWE-120 2 Buffer Copy without Checking Size of Input (‘Glas Buffer
Overflow")

4 CWE-79 1 Improper Neutralization of Input Durivgeb Page Generatign
('Cross-site Scripting’)

5 CWE-306 3 Missing Authentication for Critical Function

6 CWE-862 3 Missing Authorization

7 CWE-798 3 Use of Hard-coded Credentials

8 CWE-311 3 Missing Encryption of Sensitive Data

9 CWE-434 1 Unrestricted Upload of File with Dangerous Type

10 CWE-807 3 Reliance on Untrusted Inputs in a Security Deaisi

11 CWE-250 3 Execution with Unnecessary Privileges

12 CWE-352 1 Cross-Site Request Forgery (CSRF)

13 CWE-22 2 Improper Limitation of a Pathname Restricted Directory (‘Path
Traversal')

14 CWE-494 2 Download of Code Without Integrity Check

15 CWES863 3 Incorrect Authorization

16 CWE-839 2 Inclusion of Functionality from Untrusted Cont&phere

17 CWE-732 3 Incorrect Permission Assignment for Critical Rese

18 CWE-676 2 Use of Potentially Dangerous Function

19 CWE-327 3 Use of a Broken or Risky Cryptographic Algorithm

20 CWE-131 2 Incorrect Calculation of Buffer Size

21 CWE-307 3 Improper Restriction of Excessive Authenticatidtempts

22 CWE-601 1 URL Redirection to Untrusted Site (‘Open Redlyect

23 CWE-134 2 Uncontrolled Format String

24 CWE-190 2 Integer Overflow or Wraparound

25 CWE-759 3 Use of a One-Way Hash without a Salt

Table 1-1: 2011 CWE/SANS top 25 most dangerous softwareerrors

These weaknesses are divided into three categories:
1- insecure interaction between components
2- risky resource management
3- porous defenses
Each category as well as its relevant weaknessaarkings are shown in Table 1-1.
The weaknesses in the insecure Interaction betwemponents category 1, are caused by
improper data exchange between systems, programoesses. As we can see in Table 1-1, this

category largely deals with SQL injection attackd £SS attacks.

The second category weaknesses are caused byghapien handling of systems resources.

This category includes different buffer overflowaaks, directory traversal, format strings and 180 o
The third and last category of these weaknesseyntesals with misused defensive techniques [4].

As we can see in Table 1-1, the first categorytiafcks exploits vulnerabilities at a high level
such as Structured Query Language (SQL) injectommand injection, Cross Site Scripting, etc.
These vulnerabilities allow malicious users to [@uattacks by executing arbitrary code or stealing
sensitive data. SQL injection is a technique fguleiting web applications which ask for user’s data
in SQL queries. Web applications provide the abilir users to store and retrieve information to
and from databases over the internet. This infaonaincludes user’s credentials, bank account
information and so on. SQL injection attacks cands8QL commands to the back end database
through web application. The attacker can then yadter or remove user’'s data through these SQL
commands.

Weaknesses in the second and third categories bife Tlal are related to buffer overflow
attacks, out of bound memory accesses and so @seTtategories are also dangerous and harmful.
The newly emerged Heartbleed vulnerability can lassified in the out-of-bounds memory access

attack group. The vulnerable code for this attacshiown in Figure 1-1 [5].

C Code:
if (hbtype == TLS1_HB_REQUEST)
unsigned char *buffer, *bp;

intr;
buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;

[* Enter response type, length and copy payload */
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);

memcpy(bp, pl, payload);
r = ssI3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payloa
d + padding);

Figure 1-1: Heartbleed code vulner ability

In the SSL Heartbeat protocol one of the SSL usergls a request to the other with a
payload of data and a size. The end user is sugpgos®py the payload and send it back. However
the size of the payload specified in the messagever checked. Since attackers can lie, they can
request a return of a large amount of data ancettteuser will comply, copying data from main
memory including possible encryption keys and ysesswords. This is an example of category 2
vulnerabilities that could cause at least 500 lghildollars [6].

Companies use defensive and preventive measupgsvent or lower the cost of corruption
or theft of their information. Defensive measunmedude firewalls, cryptography, Intrusion detection
Systems and antivirus programs. Preventive measwkgle penetration testing, authentication and
verification.

The problem in most of the mentioned defensive mmegsis that they usually take a look at
the symptoms of the attack rather than its sounee;know that it's almost impossible to write
perfectly secure code. Some hardware developems tame up with the idea of using hardware
based protection to prevent these attacks or ifpp@tenting them, at least to stopping the attacks
from going farther. Among the proposed techniqueesgurity tagging schemes exist to prevent
attacks by adding security tags to the data. Omenple of security tagging schemes is Dynamic
Information Flow Tracking (DIFT).

The DIFT technique was developed to prevent bufferrflow and format string attacks.
DIFT was proposed to prevent the majority of atsattkat change the flow of programs in order to
gain control or unauthorized access. It preventks by associating security tags to data, marking
data as malicious and tracking it as it goes thnahg system. Malicious data is defined as any data
that comes from malicious I/0O. By assigning a séctag, the DIFT security engine can track data
that attempt to transfer control of the system.dBagsn the implementation dependent rules in the
DIFT tag engine, if tainted data is used in a waat it changes the control flow of the program or
logic of the program, the tag engine hardware &iggan exception and pops back to the operating

system. DIFT will be described in further detailsGhapter 2 [7].

Several techniques have been developed based dwdrarprotection. However most of the
existing techniques use simple applications whrehtested in small scale.

The designed tests only show that the detectiomrecd he tests do some simulations to
determine performance, overheads, but most of ithalaion and experimentation is done at the
register transfer level which is really slow. Aagimgly, the developed techniques have never been
evaluated in full experiments. Having the capapiiit comparing and contrasting the logic, security
behavior and functionality of the techniques caliillfithis shortcoming. This capability can be
achieved by running known vulnerable applicatiohsough multiple security technigues. We

accomplished this by simulating the techniquesimatruction simulator.

1.2. Research Objectives

The purpose of this thesis is to develop a framkwior which we can plug-in different
hardware tagging schemes. The framework is useddtate the effectiveness and functionality of
tagging schemes. The proposed framework has beemh tasimplement three different tagging
schemes: Dynamic Information Flow Tracking (DIFTjemory Bound Checking (BC) and
Uninitialized Memory Checking (UMC). As describedfbre, the DIFT technique is developed to
associate data with security tags. In this simdldtee DIFT tagging engine. The engine will be
responsible for moving and checking tags throughetkecution of each instruction. The engine also
includes an exception handler in the case of sioexception.

The UMC technique targets uninitialized memory.sTtachnique intercepts each memory
access to check if memory is initialized duringdivgy a value from memory. UMC associates each
memory word with a tag. Memory tags are first altialized to zero, indicating that memory block
is not initialized. Then during each memory starstiuction, memory tags for the corresponding
memory location will be set. During loading a vafuem memory, the tag value will be checked to

prevent uninitialized access. This technique i€deed in further detail in Chapter 6 [8].

The BC technigue has characteristics of both DIR@ &MC. Each memory word and
processor register is associated with a tag. These get propagated based on the BC tag engine
rules. During memory access, tags are checkedetdf siee tag value falls in the memory boundary
range. If not, the BC tag engine will cause seguwitception. We will describe this technique in
further detail in Chapter 5 [9].

The obijectives of this thesis are as follow:

e Objective 1: Introduce DIFT, UMC and BC security techniques. he able to
implement these techniques, we need to look infdepeach of these techniques. We
will give an extensive background on each of theshniques at the instruction level in
Chapter 2.

e Objective2: Apply these techniques to SPARC (Scalable Processtitecture) using
SIS (SPARC Instruction Simulator). In this objeetmwe group SPARC instructions to
different categories for each technique. We theplément tagging rules for each
technique. We also introduce new instructions totr@d the tag engine and manipulate
tags for registers and memory for each techniqaeind the new instructions gives us
more control over the tag engines.

o Objective 3. Develop a framework for testing different secutigging techniques in
the instruction level hardware simulator SIS. Aftemplementing each technique we
develop test cases to test techniques and confparegults.

Implementing all three techniques in one framewankkes it easy to compare each

technique to another. This framework helps estirmpézific features and the upsides and downsides

of each technique.

1.3. ThesisOverview

This thesis is organized as follow. Chapter 2 piesia background and survey on DIFT,
UMC and BC security tagging schemes as well aseaveaw of how to add these techniques to the
framework. Chapter 3 gives details about the SPARitecture and SIS. In Chapter 4 we describe
DIFT technique implementation in SIS. In Chaptexé describe BC implementation in SIS and in
Chapter 6 we describe UMC implementation in SIS. diéeuss different experiments, tests, results
and evaluation of each technique in Chapter 7. Thergive the conclusion and future work in

Chapter 8.

Chapter 2. Background and Framework Overview

In this Chapter we present an extensive backgréamdIFT, BC and UMC security tagging
techniques. We then describe the whole designatigee framework and how we can integrate each
technique to the simulator. We introduce each teglenby describing how it works at the source
code level. Each technique is capable of detedfiegific sort of security attacks. For instance DIF
is capable of detecting buffer overflow attacks. ONé capable of detecting uninitialized memory
accesses. BC is capable of detecting out of bouahary and illegal memory accesses. Having
these techniques implemented in a framework, websilable to detect and prevent vast majority of

security vulnerabilities.

2.1. Dynamic Information Flow Tracking Background

DIFT, designed by Suh et al. [7], is a hardwareusgctagging technique which assigns
security tags to data and checks the data manigulat instructions to restrict the use of untrdste
input. DIFT was developed to prevent a vast cldsofiware security vulnerabilities such as buffer
overflows. DIFT prevents security attacks by idigiig and restricting the malicious information
flow at runtime. DIFT implements a security taggieggine which includes the logic for book
keeping and checking of security tags.

To take control of a program, attackers modify toatents of memory in a vulnerable
program space with either malicious code or a poitit a malicious code. To modify content of
memory, they need to insert a value from input cletsr DIFT marks untrusted input and output
channels with a one bit tag. By tracking the unedgata, it traps malicious manipulation of the
data. In general, malicious use of the data cateffieed as any disallowed manipulations of the data

based on the permitted security policies. DIFT refimalicious use of data as using tagged data as a

10

jump or branch target address. DIFT security potjeyerates a trap in the case of this use. If the
operation is not allowed based on the permittedirégcpolicy, the trap handler terminates the
operation.

DIFT rules are defined to prevent executing of nialis code or transforming control of a
program using malicious data. The key concern herbow to identify malicious code from
legitimate code. The operating system makes thisidacwhich means it initializes the untrusted

channels as malicious data. Then operating systskst malicious data.

2.1.1. DIFT initialization and propagation phase

To identify legitimate and malicious data, DIFT siseone bit tag for each register in the
processor and each byte of memory. Memory addretssegisters’ tags are initialized to zero in the
initialization phase of the tag engine. The opampBystems tags data with the value one only if the
data comes from a malicious input source.

The DIFT tag engine defines a set of rules to pyapa tags through program execution.
These rules can be categorized into three groups.fifst group is defined as instructions which
have either one or two operands and none of theands are tagged. The result of running first
group of instructions is an untagged value. Th@sggroup of instructions has at least one tagged
operand. The result tag for the second group oftiogons is a tagged value. Finally the third grou
of instructions has two operands which are botlgedg Running the instructions result in a tagged
value.

The above three groups of propagation rules caly &p@ALU, Load and Store instructions.
Not all of the SPARC instructions propagate DIFgstaWe will describe in details how propagation

rules are implemented for each set of SPARC intnug in Chapter 4.

2.1.2. DIFT checking phase
The DIFT tag engine defines two policies for instrons’ tag checking. First policy tracks

Load and Store instructions’ tags. Loading from atmting, using an address in a register that is

11

marked as malicious is not allowed based on DIFEstuTherefore every time load or store
instructions get executed, the tag engine willrirgae to check tags of source operands.

The second policy tracks Branch and Jump instraosti®IFT rules stops execution of the
instruction which uses a tagged value as jump taddress. These policies do not apply to other
instructions such as ALU instructions. ALU instriocts can be executed with having tagged

operands. Recall that the tags are still propagated

2.2. Memory Bound Checking technique Background

The main focus in the BC technique is on memonyt$athat occur by memory accesses
through pointers. lllegal Memory Accesses (IMA) dam classified as memory faults which arise
when a memory region is accessed with a pointdrishaot initially assigned for that region. BC
also covers vulnerabilities such as out of bounchory accesses [9].

The BC technique uses limited number of tags toaate with data. Tags can be 1-bit, 4-
bits or 8-bits long. The BC technique associatgs ta&ith memory blocks and pointers. When the
memory “m” is allocated, BC associate tags with ‘rb&ter when a pointer “p” is created, which
points to “m” address, “p” is tainted with the samaint mark that is associated with the memory
“m”. During execution of program, pointer tags gebpagated. Finally when a memory region is
accessed using a pointer, the BC technique chextkstdigs for memory and pointer in order to see if
they match or not. The more bits BC uses, the ikl it will detect inappropriate use of pointer.

Memory taints never get propagated but pointert tauark gets propagated as the program
executes. However the BC tag engine separates mdoaations’ tags from pointers’ tags. The
process of implementing the BC technique breaksndowo initialization, propagation and checking

steps.

12

2.2.1. BC initialization phase

There are two type of memory allocation: static dgdamic. Static memory allocation can
be referred to as defining global and local vagablin static memory allocation the technique
identifies the memory location used for storingiables. Therefore it can initialize the taint marks
for the specific memory locations. In dynamic meynalfocation the technique identifies the amount
of memory that should get the taint marks througimmunication with the allocation functions such
as malloc. After that, the specific memory locasigiet the same fresh taint marks. No too adjacent
allocated regions get the same taint mark.

In pointer initialization, pointers get the taintrk base on the memory location they point
to. For example pointers that point to dynamicallipcated memory intercept the function call to
malloc and use the return value to get the sameasathe dynamically assigned memory. Since
finding out the starting addresses of this typangimory is straight forward, initializing the taint
marks for pointers that point to statically alleghtmemory is easier than dynamically allocated
memory. In both cases after finding out the addfessmemory location, pointer and memory

location will get the same taint mark.

2.2.2. BC propagation phase

The BC technique doesn’t define rules for conitnetructions, so, data flow instructions are
responsible for propagating tags in this techniglise BC technique treats tag propagation for
memory and pointer differently. Memory locationdagye never propagated. Memory location’s tags
get initialized at the beginning of program andacdel at the end of program or start and end of a
function call for variables on the stack. During theallocation of a memory location, this technique
intercepts the function call to lower level memaallocation function to figure out the proper
address in order to erase the taint marks. Alsoaismciated pointer taint mark for this memory
address should get erased. Otherwise it conveysnaept like a dangling pointer. Calling the

deallocation function with an initial address aganameter frees dynamically allocated memory, so

13

intercepting this function gives us the memory tmra whose taint mark should be erased.
Returning from a function call will also deallocatttically allocated memory, so the intercepting
function exits gives us the memory location whagettmark should be erased.

Pointer taint marks are responsible for propagatides during execution of the program.
Every operation has a propagation rule definectfdeculating the result of the taint mark based on
the operands’ taint marks. The rules for pointgr paopagation are developed based on patterns
found in the software subjects and underlying maeltdanguages. These rules are finely developed
to remove cases that cause false negatives beadutite underlying language and function
implementation.

These rules handle different sets of instructioffferéntly. For example, in addition and
subtraction operations, if both operands are nated, then the result remains untainted. In some
cases where just one of the operands is tainted, ttie taint mark will propagate and the resulting
taint mark gets the taint mark of the tainted opédran cases that both operands are tainted,
operations decide the propagation rule. For exampteng the addition operation, the result tag is
the sum of the two operands’ taint marks [9].

In operations like multiplication and division thesult is never tainted. In bitwise AND
operation if both operands are tainted or untairited result is untainted. But if just one of the
operands is tainted the result gets the taint roftke tainted operand [9].

Propagation rules for bitwise NOT can be derivednfraddition and subtraction propagation
rules. Accordingly the result gets the negativeigadf taint mark of the operand. In bitwise OR and

XOR instruction the result is always untainted [9].

2.2.3. BC checking phase
The checking rules for BC technique intercept amymory access. If the taint mark of the

memory location and its corresponding pointer liocatre the same, it is considered as a valid

14

memory access. Any scenario other than this isideredd as an illegal memory access and it throws
security exception.

Since the main goal in this technique is to impletriee approach in hardware, the number
of taint bits plays an important role on the parfance overhead and design complexity of
hardware. The problem with a small number of lotstiie taint mark is that some memory locations
have the same taint marks. So it causes an unddtddi. The probability of detecting IMAs with
having 4 bits of taint mark is 94% [9]. Also by ngidifferent strategies the probability of two
memory locations having the same taint mark caretlaced. This is feasible by assigning different

taint marks for adjacent regions of memory.

2.2.4. BC implementation at Hardware

When a technique is implemented in hardware, theraot enough information about
statically allocated memory. So by reducing thecigien of the technique, the technique taints fll o
the statically allocated region of the memory wsdme taint mark, Therefore the technique is not
capable of detecting IMA’s in local variables, httstill can detect IMA’s between statically

allocated variables and dynamically allocated mgmor

2.3. Uninitialized Memory Checking Background

Reading from or writing to uninitialized memory amother type of error that causes the
system to stop working or crash. Due to the natir¢hese errors, they are most likely to go
undetected. Another type of error is a memory Mich happens because a block of memory has
not been released. Memory leaks also produce dhratsare hard to find and also harder to fix. The
UMC technique helps find memory leaks and accessrsersuch as reading from uninitialized

memory or out of bound access of arrays. This tecienhelps find errors that happen at runtime [8].

15

The way this technique is implemented is that It kéep a tag for each memory address. It
then intervenes each memory access and looks éotatty value of the corresponding memory
address tag. Then the technique decides whethactwsss is authenticated or not.

UMC calls a specific function before any memory esscfunction such as load and store.
The implemented function for tags is responsiblentke sure that memory address tag is the same
as expected tag. This technique holds two bitsessmting state code for each byte in memory. This

technique represents three different states tieatn#mory can be in.

1. Unallocated state:
The unallocated state represents the unallocatedonye In this state memory bytes
can neither be read from nor written to.
2. Allocated and initialized state:
The memory that is allocated and initialized ishis state. Each memory byte which is
in this state is allowed to be written to and r&adh.
3. Allocated but uninitialized state:

In this state we are able to write to allocated mgmbut we are not able to read from

2.3.1. UMC initialization phase

UMC keeps one bit tag for each byte of memory. Tdge value shows the state of that
memory location. These tags are initialized atltéginning of the program with tag value zero. Tag

value zero indicates that the specific memory mregganot initialized or allocated.

2.3.2. UMC propagation phase
Executing store instruction changes thremary state from either unallocated or allocated

but not initialized state to the allocated andatized state. During executing store instructioiv)C

16

technique sets the tag value of memory. This io8tra is the only one that can propagate tags and

set tags for memory regions.

2.3.3. UMC checking phase

The check function intervenes with evergess to the variables through the load instruction
and compares the status tag with the expectedLtagling a value can only be performed from
allocated and initialized state. If a memory logatis in this state, it has tag value of one. [hmoey
is in any other state, meaning that its tag is,zeiC technique stops the execution of instruction

and halt program.

2.4. Framework Overview

We have added a new module to the SIS simulatdre-tagging engine. This module is
designed to simulate the behavior of the taggingramessor. Within the SIS simulator we have
added hooks to enable execution of the coprocesdue.first set of hooks defines the operations of
CPORP instructions (coprocessor operations). The RIPf@rmat instructions are used to control
operation of the coprocessor (e.g., turn it on affid The CPOP2 format instructions are used to
manipulate the specific tags (e.g., set a tagrefgester or memory location). In addition, we have
hook from the simulator that calls tteg-dispatch-instruction() function. This function
is the framework used to specify the execution ienaf each instruction, or more specifically the
execution behavior of the tag engine for each uesibn. This function is called prior to actual
execution of the instructions to ensure that thmufitor simulates the throwing of a security
exception prior to completion of the instructiofor each instruction, as illustrated in the follogi

chapters, we implement specific tag checking aogagation rules.

To add techniques to the SIS simulator, we chosggging mechanism and defined tag

formats for it. We determined the items that neetld tagged and formulas for tag propagation and

17

checking for each technique. Then we assignedeathalt specifies how the tag engine can initiate

its work.

We specified list of data structures need for #tpengine part of each mechanism. This data
structure includes the storage of tags, manageaidat engine and placeholder for tag engine state
information. We characterized a process which isdudor initialization of data structures and
variables of tag engine. We then defined set oftions that can have access to the data struaiure f

necessary modifications.

We determined tag propagation and checking ruleterims of data structure for the tag
engine based on the chosen mechanism. We defieeggrdpagation and checking rules that shows
how tags can be access and what functions cantepamatags. We then specified API's for both

propagation and checking functions that includentagipulation and propagation operation.

In some cases tag checking rules cause a trap.kidgecules for each technique is
implemented differently to be able to detect ddfar a set of attacks. So running different

instructions in different technique may lead t@tcaused by tag checking rule of tag engine.

To handle traps we defined a trap interface, weipd set of information and the procedure to
pass the information to the trap handler. We definap specific interface function API and it's @at

structure.

We designed the interface for RTEMS to communiedth the simulator and the memory
addresses for communicating with the trap engine. d&fined set of control functions and data
needed for the control functions. We then specififed API's for interface within the tag engine for
each control function and the process that cansacttee control functions and communicate with
them. We write library for supporting the new cohtiunctions and API's for interface within the

tag engine for each control functions.

18

To do the testing and evaluation we conducted mlesview for data structures, APIs and
list of functions. We conducted a unit testing dh raodules and functions. These tests are
standalone tests to ensure each module behavettpri&e then designed set of generic test suits

that can be used for each tagging technique.

2.5. Conclusion

In this chapter we have discussed three differardwiare-based tagging techniques that we
implement in our simulator. There are server teghes that have been discussed in the literature,
but most of them are similar to the once revieweh&/e then bring a whole overview of the

framework and how each technique can be integtatéte simulator.

19

Chapter 3. Background in SIS

In Chapter 2 we introduced DIFT, MBC and UMC setyuragging techniques. We gave an
overview of how these techniques work and how tbag prevent security vulnerabilities. To
implement these techniques at the assembly ingirulgtvel, it's necessary to know the details & th
underlying system where these techniques are ingriged. In this thesis the tagging techniques are
implemented in the Scalable Processor ARChitec(®@ARC) using the SPARC Instruction
Simulator (SIS). SIS is a SPARC instruction simodatvhich is capable of emulating ERC32
(radiation-tolerant 32-bit RISC Processor). ERC82ai SPARC variant based computer system
implements SPARC version 7 [10].

This chapter provides details about SIS, SPARGuUn8bN level and assembly level details.
It also gives details about important features emaiponents of the ERC32. The purpose of using
ERC32 is that it provides high performance compomafor embedded real time devices. The
simulated ERC32 only implements memory and apptinaspecific peripherals, although other
functionalities are supported by the core. ERC3ppsut neither MMU nor cache memory.

Therefore it needs to access memory directly tostare and load instructions.

3.1. SPARC Instruction Simulator (SIS)

SIS is a SPARC Instruction simulator which simwuiatiee CPU board for the ERC32 based
computer systems. ERC32 based computer systenB8ishbit RISC processor which implements
SPARC Version 7. All the ERC32 instructions haw&2ébit constant length [11].

The ERC32 incorporates different functionalitiegpiemented in its own computing core.
The main ERC32 board functionalities are ERC32 camed ERC32 peripherals. ERC32 core

includes Processor and MEmory Controller (MEC) @HIRC32 peripherals include EDAC, wait

20

state generator, timer, interrupt handler, watch dod UART. ERC32 core Processor consists of
three components including IU, FPU and implemeatatdependent CoProcessor (CP). These
components form the 32-bit embedded ERC32 procgtapr

The SIS simulator simulates ERC32 processor, MECL 3ibit wide instructions. The U
part of the processor is responsible for computiadion of ERC32 and is explained in Section 4.2.
FPU executes single and double precision floatiomtpinstructions. FPU instructions can be
executed concurrently with the IU instructions. Tingplementation dependent CP can also be
accessed through specific instructions. CP impl¢atism dependent registers can also be accessed
through CP instructions. All of these three uniss ERC32 processor can work concurrently.
Different naming convention exists for each prooes®mponent registers. Registers that are used
in the IU called “r" registers, those that are ugethe FPU “f’ registers and those that are used i
CP are called “c” registers. There are also corgral status registers implemented to keep track of
the status of events in the processor [12].

SIS simulates RAM and PROM for ERC32. By defauét #ERC32 chip has 32 MB RAM
and 4 MB PROM which is used as the default amoantSiS simulated RAM and PROM. SIS
provides functionalities to simulate ERC32 differapplications. Since RAM and ROM sizes are
configurable through SIS, these applications catatgprocessor memory sizes.

To run applications using SIS, we can attach SitBédGNU DeBugger (GDB) like a remote
target so it can be used to debug application tirdsDB [11].

Two versions of SIS has been developed to makeapalle of simulating different
applications. These versions are named SIS and4SE6 is capable of simulating time up 6 2
clock ticks which can run about 5 minutes at 14MidrjuencySIS 64 is capable of simulating time
up to 2*clock ticks which provides almost unlimited timesifnulation but it is 20% slower than the
previous version of SIS. Running ERC32 applicatianh security tag engines does not require

unlimited time of simulation, so we chose SIS vamndior our implementation.

21

3.2. Integer Unit (1U)

Instruction execution and computation is done alth. The IU is capable of executing one
instruction in each cycle. The IU contains 136 gahpurpose registers and manages the operations
that occur in the processor. The IU keeps trackhefProgram Counter (PC) during execution of
each instruction. It is also responsible for perfiog integer arithmetic and logic instructions and
computes memory addresses for load and store @tistng. All of the ALU instructions are register
to register operations; and only load and storé&ringon access memory. The following section

describes the register model, data types of theddtrol and status registers [13].

3.2.1. Integer Unit General Purpose and Windows Register

There are total of 140 32-bit registers availalde the IU. While 136 32-bit registers are
general purpose registers, the rest of them areadtstatus registers. General purpose registers ar
divided into 8 global registers and 128 window sigfis. The 128 window registers are then divided
into 8 sets of windows registers on a circular lstdthe circular stack contains 24 r registers. The
SPARC register file model is known as a registerdewv [10].

There are 32 general purpose registers visibleptmgram at any given time:

o %g0 to %g7 global registers for storing global data

o %Il0 to %I7 local registers for storing local data.

o %i0 to %i7 in registers for storing incoming argurtse

e %00 to %07 out registers for storing argumentutorautines.

The 8 global registers are mapped to physical teagisand the remaining 24 registers are
mapped to one of the overlapping register winddgch register window has local registers, in

registers and out registers. These registers amgrsim Table 3-1.

22

Register Namr Register Numbe
Ins r[24] to r[31]
Locals r[16] to r[23]
Outs r[8] to r[15]
Globals r[0] to r[7]

Table 3-1: SPARC register set

Global registers are shared among all of the wirgjawth %g0 register hardwired to zero.
Local registers belong only to the current windavd ahey are not shared among other windows.
They are usually used for storing temporary andllealues. The current PC is stored in %l1 and
Next PC (NPC) is stored in %I2 when a trap occurs.

The in and out registers in the register windowsdrared with adjacent windows. They are
used for passing parameters and storing incomiggnagnts. Among the in registers %i0 is used to
store the return argument, %i6 is used for stoitiage pointer (%fp) and %i7 is used for storing the
return address. Within the out registers, regisieo®-%05 are used to store the arguments that are
passed to a function. %06 stores the stack pof{ftsp) and %07 stores the return address. There
exists a Current Window Pointer (CWP) which alwaygsnts to the current active window. This
register changes during executing TRAP, SAVE an&RBERE instructions to adjust its content in
order to point to the right window [10].

Upon a subroutine call, the return address wilstmed in %07. The new window will be
activated and the out registers of the current awndbecome in registers of the next window as
shown in Figure 3-1 (adapted from SPARC Internatidnc.). Save instruction decrements the CWP
by one to activate next window. The subroutine’lir@a procedure’s out-registers becomes the
callee’s procedure in the registers. In this wasapeeters passed directly. A program needs its own
register window to return from a subroutine. TheSRBRE instruction increments CWP to restore

the caller’'s window. In this way the previous wimdbecomes the current window. By the nature of

23

circular stack, the last register window is adjaderthe first one as shown in Figure 3-2 (adapted

from SPARC International Inc.).

SAVE

Figure 3-1: Cicular Stack of Register Window

3.2.2. Integer Unit Control and Status Registers
The control/status registers are 32-bit registeckiding:
e Processor state registers (PSR)

e Windows Invalid Mask (WIM)

o Trap Base Register (TBR)

e Multiply/Divide register(Y)

e Program Counter (PC, nPC)

24

At any given time the program has accesthe current windowthrough CWPfield of
Processor State Registé?SR). Register windc overflow and underflow can be detected v

Windows Invalid MasKWIM) register

window (CWP + 1)

r[31]
) ins
1[24]
1[23]
) locals
1[16] window CWP
r[15] r[31]
ouis ; ins
r[8] r[24]
r[23]
x locals
r[16] window (CWP —1)
r[15] r[31]
: outs : ins
8] r[24]
r[23]
: locals
r[16]
[15]
: outs
1[8]
1[7]
; globals
1[1]
1[0] 0

Figure 3-2: Change of the Register Window

4. Processor State Register (PSR)

25

The Processor StateeRister holds data that controls the processohaws the status of tt
processor. There are several instructions thateadify the PSR. These instructis include SAVE

and RESTORE.

impl ver lec Reserved EC| EF PIL S| pPs|ET cwe

Figure 3-3: Processor State Register

Eachof the implementation and \sion fields are 4 bits long and hold informatiogaging
to the processor implementation number and Integetr\émgionnumber respectivel

The icc field holdghefour condition codes for the Integer Unithdre are several arithme
and logic instructionsvhose mnemoniend with cc. These instructions can modify thebis in
PSR. There are also BICC and TICC instruct that cause control transfer baseddifferent bits of
icc. The icc field itselfcontains bits fc negative (N), zero (Z), overflow (V) and carry flags.
These bits areet or reset bad on the results of arithmetic and logic instructidhe icc fieldsare

shown in Figure 3-4.

Figure 3-4: Icc bits

The reserved bitébits 14 through 1¢ are reserved for future used they are all set to z(
at this timeThe Enable Coprocessor (EC) lwhich is bit 13, indicatesf the coprocessor is enabl
or not. If it is not enabled or the coprocessorsdoet exist then this bis set to zerc The Enable
Floating Point Unit (EFjlag is bit 12 and it indicat: if the floating point unit is enabled or not. Li
the EC, if the Floating Poirinit (FPU) is not enabled or the pessor does not support F then

this bit will set to zeroThe Processor Interrupt Level (IPL) idifies the level o current the

26

interrupt. The processor will accept any interryich has the priority equal or greater than the
value that IPL defines. The Supervisor (S) bites ® 1 when the processor is in the supervisor
mode. The Previous Supervisor (PS) bit holds theevaf the S bit when a trap occurs. Enable Traps
(ET) bit indicates if traps are enabled or disabladhe case of disabled traps, all the traps lbéll
ignored. The CWP holds the index of the currenivacindow O to 31. These 5 bits CWP can be
modified by TRAP, SAVE and RESTORE instructions.
5. Trap Base Register (TBR)
This register provides the address of the trapetd®tanch instructions read contents of this

register when flow of program execution causes trap

6. WindowsInvalid Mask Register (WIM)

The WIM register is controlled by operating systembdftware and used in the hardware to
determine register window overflow or underflow. WIs 32 bits wide while each bit corresponds
to one of the 32 register window. If one bit is sethe WIM, it indicates that the corresponding
register window is invalid.

The trap occurs in the case of register window ftmsr or underflow, in the case of
execution of SAVE or RESTORE/RETT instruction regpely. In the case of a trap, the CWP
points to an invalid window indicated in the WIMgister. Every time SAVE, RESTORE, or RETT
instruction executes, CWP compares the decrememtddncremented CWP against the WIM to

check for window overflow or underflow.

3.3. Data Types

The U unit of the ERC32 supports eleven data tyfém three basic data formats and
supporting width for each format are shown in Téb2 Single precision floating points uses 32 bit
format; double precision floating points uses @4f@imat. The minimum size of each register is 32

bit wide. If the data written to the register isdethan 32 bits, it's written to memory startingnfr

27

LSB. Depending whether the data is signed or uesigthe remaining bits are zero extended or sign
extended. For 32 bit data, whether it is unsignedigned, data is simply loaded from or stored to
the memory. Double word operands read from or toad/o consequent registers [10].

The organization of data in memory follows the Bigdian convention which means lower

addresses contains the higher order bytes.

DATA SUPPORTING WIDTH
FORMATS
signed Integer Byte(8 bits), Halfword (16 bits), Word (32 bit),Tagged Word(30 bits

with 2 bit tag), Doubleword (64 bit)

unsigned Byte(8 bits), Halfword (16 bits), Word (32 bit), Tagged Word(30 bits

integer with 2 bit tag), Doubleword (64 bit)

floating point ~ Word (32 bit), Tagged Word(30 bits with 2 bit tag), Doubleword (64

bits), Quadword(128 bits)

Table 3-2: SPARC Data Types

3.4.1U Instruction Set

The ERC32 processor reads an instruction from eifspenemory address provided by the
PC. Instructions can be executed, annulled or &dppy the processor. In the case of a trap
occurrence, the operating system forwards contaskd on the trap table. Trap table contains the
trap handler addresses. The trap handler's basessdid set by the operating system. In the cade th

an instruction’s execution doesn’'t cause a trap,atidress for the next instruction is copied from

28

NPC to PC. The normal address for the next ingomds generated by incrementing the PC address

by 4. This address is copied to the NPC registdrisinsed in the next cycle of instruction exeautio

3.5. Instruction Format and Addressing

Instructions are categorized into three differemtrfat categories. The first format is CALL
instruction. The second format is BRANCH and SETskructions. The third format is logical and
arithmetic instructions as well as memory instrtsi. Format 3 also supports floating point and
coprocessor instructions. We will not give detaiteout Floating Point instructions since the tested
security techniques are not applied to FloatinghPioistructions. However, since we want to use the
coprocessor as a major component for the secwgfyehgine in our design we give details of the
coprocessor instructions. Formats for all instautdi are shown in Figure 3-5 through Figure 3-9
[11].

The address for operands of each instruction daherelocated in the instruction itself or
calculated from displacement bits. The OPeratiahec@®P) field is a 2-bit field which determines
the instruction types and encodes the 3 majoruostm formats. OP2 is a 3-bit field which encodes

instructions in format 2. The instruction encoditig®ugh OP and OP2 are shown in Table 3-3.

Format OoP OP2 Instruction

! 1 Unimplemented CALL

2 0 0 Unimplemented
1 Unimplemented
2 Bicc
3 Unimplemented
4 SETHI
5 Unimplemented
6 FBcc
7 CBcc

3 2 . : .

Unimplemented Memory instructions
3 3 Unimplemented Ari.thmetic, 'Ogic?‘"
shift and remaining

Table 3-3: OP and OP2 encoding

29

The other fields in the instructions shown in Fegd5 through Figure 3-9 are encoded as
below:

- Rd field: is a 5-bit field stores the address for sourcéastination register. This address is
used by IU, FPU or CP.

-imm22 fied: It's a 22-bit field is constant and is used by SfETnstruction to calculate the
destination register.

- cond: It's a 4-bit field that chooses the condition cddebranch instructions.

- a: It's ai-bit field in the branch instructions thetnuals the instruction execution based on the
type of branch.

- 0p3: It's a 6-bit field that encodes format 3 instrocs.

- i: it’s a 1-bit field that selects the second operfmmarithmetic and load/store instructions.

- disp22 and disp30: these are 22-bit and 30-bit fields. They are uasdPC-relative
displacement for call or branch instructions.

- Address Space ldentifier (ASl): it's an 8-bit field which is used by load/storaeahate
instruction. ASI is sent to the system memory f@mmory accesses. It is used to control supervisor/
user mode accesses to memory instruction and data.

- rsl: It's a 5-bit field. It shows the address of fissturce operand in r, f or ¢ register.

- rs2: It's a 5-bit field. It shows the address of secendrce operand inr, f or ¢ register when i
field is O.

-simm13: it's a 13-bit field. It has 13-bit immediate valused in the case that | field is 1 as the
second source operand.

- opf: it’s a 9-bit field that encodes floating pointtingtions or coprocessor instructions.

op displ3

31 29 0

Figure 3-5: Format 1 (op = 1): CALL Instruction

30

op | A | Testcond. ap2 Disp22
31 2 x5 22 0
Figure 3-6: Format 2 (op = 0): BRANCH Instruction
op Rd op2 imma22
31 28 i 22 0
Figure 3-7: Format 2 (op =0): SETHI Instruction
op rd Op3 Rs1 0 asi Rs2
31 i 25 18 14 13 5 0
op rd Op3 Rs1 - 1 Immi13
31 i 25 19 14 13 0
Figure 3-8: Format 3 (op =2, 3): Integer and load/store I nstructions
op rd op3 Rsl Opc/opf Rs2
31 2 25 19 14 5 0
Figure 3-9: Format 3 (op = 2): FP/CP Instructions

SPARC instructions can be further categorized éntlifferent categories:

Load/Store instructions — Format 3, opcode 3

Arithmetic and logic instructions - Format 3, oded®

Control transfers — Format 1 and 2, opcode 0 and 1

Floating Point Instructions — Format 3, opcode 2

Coprocessor instructions — Format 3, opcode 2

31

Since SPARC is a load/store architecture, loadsamek instruction are the only instructions
which have access to memory. There are three eliffescenarios in which memory addresses for
load and store instructions can be generated. ifstestenario uses two registers indicated by rsl
and rs2 fields of an instruction. The value in th&so registers is added to create the address for
load and store instructions. The second scenads as immediate value. In this scenario the i field
is 1, rsl field is used as the first source opetamdi the imm13 used as the second source operand.
The address is calculated by adding the conterglofo the sign-extended value of imm13 field of
the instruction. The third scenario is a specialkecaf the second scenario. In this case we want to
create the address by only using imm13 field initigruction. For the third scenario the imm13
field value will be added to the rsl register whistset to %g0. Since %g0 is hardwired to O the
resulting address value will be only the sign edtshvalue of imm13 field. In this scenario we can
have an absolute addressing mode.

We can also use the program counter to calcula&eatiiress. The CALL and BRANCH
instructions use the program counter as one otdleces for generating the target address. As we
saw in Figure 3-5, in the CALL instruction form#te 30-bit displacement is the second source for
calculating the address. Note that the ERC32 islaydd control transfer machine. The PC gets the
NPC before the control transfer instruction. Aftee address is calculated, NPC gets the new
address. This means that the instruction followthmgy call or branch instruction is executed before
the call or branch is taken.

As we see in instruction format 2 in Figure 3-62 BRANCH instruction uses the PC as

well as a 22-bit displacement to calculate thedbagldress.

3.5.1. LOAD/STORE instructions
Load and store instructions move data to/from teggsfrom/to memory. As discussed
earlier the address for load and store instruct®mralculated based on different fields of the

instruction. The destination field defines where tlsult is going to be loaded from or stored to.

32

This field can be any of the system registers oraRB CP registers. There are also two special
load/store instructions, SWAP and LDSTUB (atomiadand store instruction). These instructions
are atomic instructions meaning they cannot berupéed. SWAP instruction swaps the contents of
a register with a word in memory. LDSTUB reads frommory into a register and fills out the

memory location with 1's

3.5.2. Arithmetic and L ogic instructions

Arithmetic and logic instructions take two operaras a source, perform the specific
operation on them and save the result in the dpddaiestination register. These two operands can be
either two registers in the case that i field i®0it can be one register and a 13-bit immedialees
in the case that i is equal to 1.

Most arithmetic and logic instructions can be categd into two sub-categories. The first
category can set the icc bits in the icc fieldla# tnstruction as well as performing the instructio
This category of instructions has cc at the enthefname of each instruction. The second category
only performs the arithmetic and logic calculataomd never touches the icc bits.

Arithmetic and logic instructions are divided irathmetic, logic, shift, SETHI, multiply,
divide and tagged add/subtract. In this study,dhtagged instructions are defined by SPARC and
they are not related to the security tags.

The SETHI instruction is used to create a 32-bitstant value, by using SETHI along with
an arithmetic instruction. The 22-bit immediateueain the SETHI instruction is loaded in the upper

bits of destination register.

3.5.3. Control Transfer
The Control Transfer instructions set the valudNBIC to the desired target address. There
are five different sets of instruction in this agtey, which include conditional Branch, call, Jump,

trap, return from trap, SAVE and RESTORE. ERC3 alspports delayed control transfer.

33

Branch instructions use the icc bits, set by arétiminstruction, to decide to take branch or
not. There are two branch instructions BA (Brandtvalys) and BN (Branch Never) that are not
decided based on the icc bits. The result of thegeinstructions are always or never branch,
respectively. Traps are also occur or not baseth@rondition codes. In the case of the occurrence
of a trap the following sequence happens. Trapsligebled, the state of the processor is saved, and
current windows pointer is changed to point to tlext windows. The address of the trap base
register is copied to PC and the NPC gets the vafilRC+4. In the case of returning from a trap,
CWP is restored, the return address is calculatetl teap conditions is enabled. State of the
processor is restored and NPC gets the targetssldre

The address for the target of a CALL instructisncalculated base on the rules we've
discussed. Jump however uses two registers asmujseos one register plus 13-bit displacement to
calculate the target address. The return addrefe GEALL instruction will be stored in %o register
of the current window. The return address for tb&1P instruction will be stored in the register
specified by the rd field of the instruction. SAWStruction is used to save the current window of

the caller and the RESTORE instruction restoreséfled window.

3.6. MEmory Controller (MEC)

The MEC is designed to interface FPU and IU to mgmand /O devices. It supports
concurrent error detection and handling. MEC inekidecessary system functions such as: [14]

¢ memory interface to RAM ranging from 256KB to 32MB

e memory interface to PROM ranging from 128KB to 4MB

e System clock

e 1/Ointerface

e Address decoding

e EDAC

34

e wait state generator

e 2 32-bit timers

e interrupt handler

e watch dog

e two UARTs

e Block protection

e test and debug support

The MEC can be reprogrammed to interface with diffi¢ sizes of RAM ranging from
256KB to 32MB. The default value for the RAM size256KB. By using MEC_MCR register, we
can divide RAM size up to 8 different blocks of n@mm Each block is composed of 32-bit data,
parity bit and 7-bit check code. The default numifdslocks is one.

MEC registers are writeable in the supervisor mdue they can be read in the user mode.
MEC registers are all 32-bit registers. Each bigiarup of bits can be used to perform functionality
In some of the MEC registers not all 32-bits aredus he bits that are not used in these registers a
marked as reserved bits and will hold a fixed valinéch is generally a zero. These bits can be read

but they are write-protected.

3.7. Coprocessor

The SPARC architecture uses the IU as the mainepsiitg core, but the capability of
adding two coprocessor extensions is also provifiedse extensions can be implemented by using
instruction set extensions. The coprocessor exipasiare designed so that it can operate
concurrently with the IU and FPU. To support therugefined coprocessor, the coprocessor should
include an internal register set and a statusterges defined by the SPARC architecture.

The coprocessor register model is defined by SR Architecture. A coprocessor has up to

32 x 32-bit registers called c registers. All of thperands for the coprocessor instruction areskbad

35

from “c” registers and results are stored in th&lsing coprocessor load and store instructions, the
content of these registers can be loaded or stwex,from memory [11].

The processor can also execute coprocessor instisaivhich are defined by CPOP1 and
CPOP2 opcodes. CPOP1 and CPOP2 opcodes defingctimsts that can perform calculation inside
coprocessor. CPOP1 and CpOP2 instructions are edcod type 3 format.

Coprocessor control/status registers includes @egsor State Register (CSR) and
Coprocessor Deferred-Trap Queue (CQ). CSR contaestatus of coprocessor and can be checked

upon execution of Coprocessor instructions. Copsmeexception deferred trap is handled using

CQ.

3.8. Conclusion

In this chapter we discussed features of SPARCucEbn simulator that simulates ERC32
processor. We introduced different categories gkFS® instructions set and its register window. We
discussed ERC32 simulated components such as U, &l CP. SIS has lot of functionalizes

implemented in it. We chose set of functionalitiest can be used by each tagging technique.

36

Chapter 4. Implementation of DIFT Tagging

Schemesin SIS

Chapter 2 provided background on three differemmust tagging techniques including
DIFT. This chapter explains the implementation defar the DIFT technique for SPARC. DIFT is
implemented at the instruction level in SIS. Ir awork, we classify the SPARC instructions base
on the rules for DIFT. The tagging rules are defifier each group of instructions as classified
below:

e Group 1 defines the BRANCH and CALL instructions

e Group 2 defines 35 ALU instructions

e Group 3 defines LOAD, STORE and SWAP instructions
e Group 4 defines CPOP1 and CPOP?2 instructions

e Group 5 defines the rest of the instructions

Base on the rules for the DIFT technique, all af themory locations and registers are
initialized with zero tag value represents untairtey value. During the instructions executionstag
are retrieved, manipulated, set in registers’ &ags saved in the memory tags. To perform get and
set of the tag values for the registers and merumations key functions have been used. The key
functions are called from inside the propagatiod elnecking functions to modify or return the tag
values from the tag data structure [7].

In our framework we decided that tags should beclkd#® before execution of the
instruction. This allows any security exceptiomptevent instruction execution. To simulate this, we
created thetag_dispatch_interface() function. Thetag_dispatch_interface()
function contains the propagation and checkingsuheeded for all five instruction groups

introduced aboveTag_dispatch_interface() function is called at the beginning of the

37

dispatch_instruction_interface() function of SIS so that the tags are checked and
propagated before execution of instructions.

In a real machine this would be accomplished irlpelrwith an error preventing completion
of the instruction. Since error detection happerfote completion of the instruction, a close

evaluation of the hardware implementation is presid

4.1. DIFT Initialization of Tag Engine

The DIFT technique keeps a 1-bit location tag freword in the memory and each
register. The data structure for tags in this tepis shown Figure 4-1. This structure will be

changed for each tagging technique.

C code:
Typedef struct tag
{
Char dift_tag ;
}tag t;
typedef struct
{
tag_t r[128];
tag_ t g[8];
tag_t pc,cc, cwp,y;
}UI_TAGS;
U _TAGS tags;

Figure4-1: DIFT tag data structure

4.2. DIFT Propagation Rules

Propagation rules are rules that are responsibtetfe tags propagation in different
instructions. Propagation rules are defined for @eups 2, 3 and 4 of the SPARC instruction as

explained hereafter. Each separate tagging tecbmiguhave its own propagation rules.

38

4.2.1. Rulesfor Group 2 Instructions

Group 2 includes arithmetic, logic and shift instians as shown in Table 4-1. Propagation
rules for this group of instructions are definedTiable 4-2. The propagation rules state that using
tainted data in arithmetic, logic and shift instiaos produce tainted result. All of the instruasan
this group can either have one or two operandghdncase of two operands, rules are described in
Table 4-2. In the case of having one operand, é¢sglt's taint mark is the taint mark for the only
operand.

For example, executing instruction SUB %g1, %8683, subtracts the content of %g1 from
the content of %g2 and stores the result in %geittfer of %gl or %g2 is tainted then %g3 is
tainted. For instructions which modify the conditioodes, propagation rules are exactly the same

regardless of the result of the icc bits evaluation

Opcode

Name

SMUL (SMULCC)
UMUL (UMULCC)

Signed Integer Multiply (and modifgd)
Unsigned Integer Multiply (and modifigc)

SDIV (SDIVSCC)
UDIV (UDIVCC)

Signed Integer Divide (and modifg)c
Unsigned Integer Divide (and modifgd)

XNOR (XNORCC)
XOR (XORCC)

Exclusive Nor (and modify icc)
Exclusive Or (and modify icc)

OR (ORCC)
ORN (ORNCC)

Inclusive Or (and modify icc)
Inclusive Or Not (and modify icc)

ANDN (ANDNCC)
AND (ANDCC)

And Not (and modify icc)
And (and modify icc)

SUB (SUBCC)
SUBX (SUBXCC)
TSUBCC
TSUBCCTV

Subtract (and modify icc)

Subtract with Carry (and modify icc)
Tagged Sub and modify icc

Tagged Sub and modify icc and Trap on

ADD (ADDCC)
ADDX (ADDXCC)

Add (and modify icc)
Add with Carry (and modify icc)

TADDCC Tagged Add and modify icc
TADDCCTV Tagged add and modify icc and Trap on
SSL Shift Left Logical

SRL Shift Right Logical

SRA Shift Right Arithmetic

Table 4-1: Implemented AL U instructions

39

TADDCC, TADCCTV and TSUBCC, TSUBCCTYV instructionseathe same as ADDCC
and SUBCC respectively except that tagged instostiresult depends on the result of ADDCC and
SUBCC instructions. If bits at location 0 or 1 afyaof the operands are not zero, the tag overflow
occurs. Recall this is not a security tag. Alsothig result from an addition instruction causes
overflow then tag overflow occurs, which resultsedting the overflow bit in PSR. In case that it
does not cause tag overflow, the overflow bit irRAS cleared and the result of the calculation is
stored in the destination register. The differeneeveen TADDCC and TADDCCTV or TSUBCC
and TSUBCCTYV is that in TADDCCTV and TSUBCCTYV isathif the tag overflow occurs,
execution of TADDCCTV and TSUBCCTYV instructions saua trap and the contents of the
destination register and icc bits remain unchang&d.propagation function for these instructions is
called before the tag overflow evaluation to makeestag overflow doesn't interfere with the
propagation rules. It would be useful to modify {m®pagation rules such that register clearing
operations including XOR %r1,%r1,%r1 do not progagags. However register cleaning operation

in runtime is not specified in the DIFT specificatj therefore they are not implemented here.

Op1 taint Mark Op2 taint Mark Result taint Mark
1 0 1
0 1 1
1 1 1
0 0 0

Table 4-2: Rulesfor ALU instructions

4.2.2. Rulesfor Group 3instructions

Group3 includes LOAD, STORE, Atomic load store &WAP instructions. Group 3 can be
divided into three different sub groups accordiogthe similarity of the DIFT propagation and
checking rules. The sub groups are:

e Subgroup 1 defines 12 LOAD instructions

40

e Subgroup 2 defines 8 STORE instructions
e Subgroup 3 defines LDSTUB and SWAP instructions

Following is the detailed description of each soogr.

e Subgroup 1defines 12 L OAD instructions

Opcode Name

LDD (LDDA) Load Double word (from Alternate space)
LDSB (LDSBA) Load Signed Byte (from Alternate space

LDUB (LDUBA) Load Unsigned Byte (from Alternate sps)

LDSH (LDSHA) Load Signe Halfword (from Alternateage)
LDUH (LDUHA) Load Unsigned Halfword (from Alternate

LD (LDA) Load Word (from Alternate space)

Table 4-3: Implemented L OAD instructions

Table 4-3 shows the Load instruction in the SPAREhigecture. Load instructions copy a
byte, half word, word or double word from memorytte register rd. Load instructions are in
Format 3 instructions of SPARC. In case of a zétdiéld, the effective address to load from is
calculated by adding contents of the registersargd rs2. If the “i” field equals one, the effective
address is calculated by adding the contents a$texgsl to the sign extended simm13. All of the
registers are 32-bits wide, so in the case of t@adi byte or half word, the value is right justifim
the destination register. The rest of the bitshim itd register are sign extended if the instruction
signed load. In the case of executing unsigned tloadest of the bits are filled with zeroes.

Checking rules for Load instruction is defined utls way that if load instructions’ address
is calculated using one register, the DIFT tagtfat register is checked. If the value of the &g i
tainted then it causes a security exception. Ifathéress is calculated using two registers, thé&v DI
tags of both registers should be checked, andhiéebne of them is tainted, then program will @aus

a security exception.

41

In the case that no exception occurs, the execuofidime instruction proceeds to propagating
the tag. Propagation rules for the Load instructenthe tag of the register rd with the tag vaitie
the data structure of the memory address.

The Load Double Word instruction copies a doubledrMoom memory into a register pair.
The LDD instruction loads the contents of the ngighificant word into the register rd and the less
significant word into the register rd+1.

Checking rules for LDD is the same as other loatiuctions. Checking rules checks the tag
value of the source register which is used to d¢ateuhe target address. In addition source ragiste
causes an exception if the tag value is taintedvedver the tag propagation rules are different. The
tag value of the register rd gets the tag of thstms@nificant memory address, and the tag for the
register rd+1 gets the tag of memory address+4 dhmice was made since LDD is often used as an
optimization for the copying of large amount of tignous data, where some adjacent words are

differently tagged.

e Subgroup 2 defines 8 STORE instructions

Opcode Name

ST (STA) Store Word (from Alternate space)

STB (STBA) Store Byte (from Alternate space)

STH (STHA) Store Halfword (from Alternate space)
STD (STDA) Store Doubleword (from Alternate space)

Table 4-4: Implemented STORE instructions

Store Instructions, which are in subgroup 2, avshin Table 4-4. These instructions store
the contents of the register rd into the specifiseimory address. ST stores a word from rd into a
word of memory, STB stores the least significartebyf rd into memory and STH stores the lease
significant half word of rd into memory. The addressed to store the result is calculated either by
using contents of the register rs1 or both regstet and rs2. If rsl is the only register thatsed to
calculate the address, DIFT checking rules chebkstag for register rs1l to make sure that the

calculated target address does not come from thiwtdue. If rsl's tag value is tainted then a

42

security exception occurs. If registers rs1 andarg2used to calculate the target address, bdtheof
tags of these two registers is checked and if eitime of them is tainted, the program throw an
exception.

If the checking phase passed in the two scenaripkined before, the program proceeds to
the propagation phase. In the propagation phaseémeory address gets the tag value of the register
rd.

Store Double Word instruction, stores a value ftbmregisters rd and rd+1 to the memory
at the effective address and effective addresss@entively. The effective address is the address of
the most significant. The effective address iswdalted using register rs1 or rs1 and rs2. The addre
of less significant word is effective address+4ergfiore rs1 or rs1 and rs2 should be checkedelf th
rsl (in first case) or rsl and rs2 (in second chs&g zero tag value, tag propagation takes place.
Tag propagation copies the tag values of the mgistd and rd+1 to the effective address and
effective address+4 respectively.

o Subgroup 3 definesLDSTUB and SWAP instructions

Opcode Name
LDSTUB (LDSTUBA) Atomic Load-Store unsigned Bytedin
SWAP (SWAPA) Swap r Register with Memory (from Ahate

Table 4-5: Implemented LOAD-STORE and SWAP instructions

Subgroup 3 instructions are shown in Table 4-5. D8TUB instruction loads a byte from
memory to the register rd and then writes 1 toaodlithe bits in the address specified in the
instruction. The address to load from and storéstejther calculated using rs1 or rs1 and rs2hén
checking rules for LDSTUB the tag value for the oslrs1 and rs2 are checked. If any of the tag
values of rs1 or rs2 is tainted the program caasgcurity exception, otherwise tags are propagated
Propagation rules are different based on the natfirthe LDSTUB. For the load part of the

instruction, register rd gets the tag value of ¢pecified memory byte. In the store part of the

43

instruction, since the memory byte is filled witls vhich is a constant value, the tag of the memory
byte is cleared.

The SWAP instruction, like LDSTUB, consists of tinstructions executed atomically. It
swaps the content of the register rd with a wortheamemory. At first the effective address of the
specific word in the memory is calculated by usthg register rsl or registers rs1l and rs2. The
SWAP instruction loads content of the memory teragorary register, following by storing content
of the register rd to memory which after the temapue is stored in the register rd. Checking takes
place for the registers which used to produce temany address. The same thing happen for the tag
values, after calculating the effective address télg value for this address is stored in the teargo
value. The tag value of register rd will get ovdtien to the tag value of the memory address and

the temporary tag value will be stored as the tgevof register rd.

4.2.3. Rulesfor Group 4 instructions

CPOP1 and CPOP2 instructions constitute group 4#ructtons. CPOP1 and CPOP2
instruction are in Format 3 in the SPARC architeetunstruction format. Although the
implementation of the CPOP is not in the SPARC itgcture, we used these instructions by hard
coding functionalities. We used the Coprocessamfiement the tag engine and tag related function
inside the tag engine. The 9 bit opc field of tlprocessor provides the ability to define up 1o 2
different instructions for each one of the CPOPd @®?OP2 instructions. In our implementation we

used CPOP1 to control tag engine by turning it oofb We defined a set of instructions as shown

in Table 4-6.
CPOP1 Opc Field Value Address in HEX Format
CPOP_TURN_ON_TAGGIN 0 0x81B00000
CPOP_TURN_OFF_TAGGI| 1 0x81B00020
Table 4-6: New CPOP1 instructions
The two inline assembly functions _rtems_tag_enable() and

_rtems_tag_disable() are created as an interface so that the CPOMtageecan be turned

44

on and off respectively from users’ programs. ther of these instructions is executed by the user,
tag_dispatch_interface() executes the cpopl instruction. In the beginningxafcution of
each instruction in theag_dispatch_interface() the cpop variable is checked. If cpopl is
not set it means that no tagging instruction isvedld to execute unless the tag engine is on. If the
user requests to turn off the tag engine, the go@ble value is set to false and all of the regis
tags are cleared. If execution of an instructionsea an exception at any point of the execution in
the tag_dispatch_interface() , the cpop value will set to false and the progeamcution

will be forwarded to security exception handling.

CPOP2 instructions are responsible for manipulatagy values in the tag engine. These
instructions can set, clear and return the tagevéiu a specific memory location in the DIFT tag
engine.

Since these instructions are responsible for progniag the coprocessor, CPOP1 and

CPOP2 instructions always execute whether the @ipgps true or false.

CPOP1 Opc Field Value Address in HEX Format
CPOP_SET_DIFT_TAG 0 0x87B84002
CPOP_CLEAR_DIFT_TAG | 1 0x87B84022
CPOP_GET_MEMORY_TA| 2 0x87B84042

Table 4-7: New CPOP2 instructions

Executing CPOP2 instruction will yield to executiohthe cpop function. Cpop function
takes the opc value of the CPOP2, the address whgseeeds to be manipulated and the result
register as an argument. Each value of the opmglthe execution of cpop2 function provides
separate scenarios of the tag manipulation. Thessasios can be described as setting the tag for a
specific address, clearing the tag of a specifidress, and returning the tag value of a specific
memory location.

CPOP2 instructions are executed as a result obathe following function calls from the
user’s program:

e _rtems_set_ dift_tag(addr)

45

o _rtems_clear_dift_tag(addr)
e _rtems_get_memory_tag(addr)
These three functions use the inline assemblynestio set, clear and return the tag values

for the specific address provided by the user.

4.2.4. Rulesfor Group 5instructions

The rest of the instructions are floating pointtinstions, trap instruction and SETHI
instruction. Since we didn’'t implement any of thegding techniques for the floating point
instruction, execution of these instructions neitteuses a security exception nor modifies theltresu
tag. The trap instruction follows the same ruletlas floating point instruction meaning that it
doesn’t have any effect on the tag engine. Howexecuting the SETHI instruction modifies the
result tag. As described in the SIS background tehagxecuting SETHI instruction results in
writing a constant value to the destination regisiince the value written is a constant, the tegis

gets the tag value of zero. However, there areéhegaldng rules for the SETHI instruction.

4.3. DIFT checking rules

Checking rules check the tag for specific instiutsi base on the DIFT rules. In the case of
illegitimate access, the checking function will sawa security exception. Checking rules are defined

for Group 1 of the SPARC instruction as definethie remainder of this section.

4.3.1. Rulesfor Groupl instructions

Group 1 instructions are shown in Table 4-8. CAldd &8ranch instructions are in Format 1
and Format 2 of the SPARC instructions respectivéPL and RETT instructions are both in
Format 3 of the SPARC instructions. According td-Dlrules, data that carries tag value of one is

tainted data. If the calculated target addressGi@up 1 instructions is tainted, then execution of

46

these instructions is not allowed and state of dixtem will change to illegitimate state, which

causes a security exception. This group of ingoostnever propagates tags.

Opcode Name

CALL Call and Link

Bicc Branch on integer condition code
JMPL Jump and Link

RETT Return from Trap

Table 4-8: Implemented CALL, BRANCH, JUMP and RETURN instructions

In the Group 1 instructions the register NPC ghts riesult target address. This value is
passed to théag_check(npc) function. This function checks the NPC’s tag.HétNPC has a
tainted tag value, execution of the instructionfasvarded to the exception handler. Different
scenarios for each instruction in Group 1 are @efinere under:

CALL Instruction: The CALL instruction stores content of the PC irtth] which is %07.

Since CALL is Format 1 instruction of the SPARCtakes the value of the disp30 field of

the instruction. It attaches 2 zero bits at theirb@gg of dsip30 to make it 32 bits. Then it

stores the value as a jump address in the NPCr Afileulating jump target address,
tag_check CALL() is called. The calculated address is passed asgument to this

function so it can be evaluated.

Branch Instruction: Conditional branch instructions contain Branch ApwaBA) and
Branch Never (BN) instruction. BN never takes thmanich which means it is a NOP. BA
always takes the branch regardless of the statuscofield. Other branch instructions
evaluate the condition code in the icc registeusing comparison and creates a result based
on the result of the comparison. This result canelbker true or false. If the result of
evaluating icc for a Bicc instruction is true thiag_check branch(npc) function is

called.

47

JUMP Instruction: JMPL instruction stores the contents of PC int@gister specified in
the rd field of the Format 3 instructions. NPC géis value of r[rs1]+r[rs2] in the case that
the “i” field is zero, or r[rsl]+sign-extended[sid3] if the “i” field is 1, as a jump target
address. After calculating jump target addrésg, check_JMPL() is called to evaluate

the target address’s tag value.

RETT Instruction: RETT instruction is used to return from a trap Hand\NPC gets the
value of the r[rs1]+r[rs2] in the case that i fiefdzero, or r[rs1]+sign-extended[simm13].
After calculating jump target addressg_check RETT() is called and it checks the
contents of the tag for the target address.

As we mentioned, the Group 1 of instructions neseds a tag for any specific address so they

only check for the illegitimate use of data.

4.4. Conclusion

In this chapter we introduced instruction leveksufor the DIFT tagging engine. We defined
the implemented data structure for the DIFT. Weegatized SPARC instructions into different
groups and defined propagation and checking rdegéch group. We then introduced the set of
new API's that added to the DIFT tag engine insidprocessor. These API's are used to enable or

disable tag engine operations or manipulate tags.

48

Chapter 5. Implementation of Memory

Bound Checking techniquein SIS

The Memory Bound Checking technique was implemeiedising the coloring scheme
introduced by Clause et al. [9]. The BC technigssigns a tag to each memory location and
pointers. As we described in the background chapgi#ing memory allocation, the BC technique
assigns the same tag value of location and poicaér for the allocated memory. During the
program execution, the pointer tags is propagatetl ghecked whenever a memory location is
needed to be accessed. If the pointer and memgsydia not match, program execution is forwarded
to the exception handler.

We implemented the Bound Checking technique inSH& The coprocessor maintains 4-
bits tag for pointer color for each register anddvim memory. It also keeps 4-bits tag for location
color for each memory location. The tags set byigp@structions implemented in the coprocessor.
Based on the instruction execution, the tags anpggated. The tag result is checked to see if the
pointer color matches the location color of the ragmocation. If these two values don’t match the
coprocessor throws an exception. A detailed desanipof implementing the BC technique is

explained in this chapter.

5.1. BC Initialization of Tag Engine

The BC technique keeps a 4-bit location color apthtpr color tags for each word in
memory. It also keeps a 4-bit pointer color tagdach register. The data structure for tags in this

technique is in Figure 5-1:

49

C code:
Typedef struct tag
{
Char location_color ;
Char pointer_color ;
}tag t;
typedef struct
{
tag_t r[128];
tag_t g[8];
}UL_TAGS ;
U _TAGS tags;

Figure5-1: MBC Tag data structure

As it's shown in Figure 5-1, pointer color and ltboa color are assigned to each memory
location and register. Location color for registésnot initialized or used during the program
execution, since location color is only associatégti memory locations.

We defined a value for initializing untainted |ldcat and pointer colors. This value can be
any number outside the range of 0 to 15. In thenodéng of the coprocessor initialization, all okth
words in memory and register location and pointdors will be set to this value. Also we should
mention that untainted value is different from tague 0. Tag values can be any value between O
and 15.

One of the key points in initialization and propéga of the tags is their range. Tags are
stored in 4-bit Char locations so they cannot govweero nor above 15. To ensure that, every time

a tag value is going to get set, we use mod l16atiparto prevent overflows or underflows.

5.2. BC Propagation rules

Tag propagation rules are implemented based orutbe described in Clause et al. [9]
paper. Based on the described propagation ruleslassified the SPARC instructions into 7 groups:

o Group 1 defines MUL, DIV, OR and XOR ALU instruatis.

50

e Group2 defines SUB ALU instructions

o Group3 defines ADD ALU instructions

o Group 4 defines AND ALU instructions

e Group 5 defines LOAD instructions

o Group 6 defines STORE instructions

o Group 7 defines SWAP and LDSTUB instructions

e Group 8 defines CPOP1 and CPOP2 instructions

o Group 9 defines the rest of instructions
A common scenario exists among propagation rulealfgroups of instructions. It is

possible that none of the operands are tainted. ddse should be handled appropriately to prevent

any non deterministic behavior in the code.

5.2.1. Rulesfor Group linstructions

Opcode Name

SMUL (SMULcc) Signed Integer Multiply (and modify icc)
UMUL (UMULcc) Unsigned Integer Multiply (and modify icc)
SDIV (SDIVcc) Signed Integer Divide (and modify icc)
UDIV (UDIV) Unsigned Integer Divide (and modify icc)
MULScc Multiply Step (and modify icc)

DIVScc Divide Step (and modify icc)

IOR (ORcc) Inclusive-Or (and modify icc)

IORN (ORNcc) Inclusive-Or Not (and modify icc)
IXOR (XORcc) Exclusive-Or (and modify icc)

IXNOR (XNORcc) Exclusive-Nor (and modify icc)

Table 5-1: Implemented MUL, DIV, OR and XOR instructions

Op1 taint Mark Op2 taint Mark Result taint Mark
top1 Untainted Untainted
Untainted top2 Untainted
top1 top2 Untainted
Untainted Untainted Untainted

Table 5-2: Rulesfor Groupl Instructions

51

Multiply, Division, OR and XOR instructions are stioin Table 5-1. These instructions are
either conditional or unconditional. No matterh&tinput is tainted or not, the result will alwdyes
untainted. This logic is shown ifable 5-2. Executing any of the Groupl instructionié make a
call to their specific propagation functions. THisction will remove the tag for the specific

register’s pointer color.

5.2.2. Rulesfor Group 2 instructions

Opcode Name

SUB (SUBcc) Subtract (and modify icc)

SUBX (SUBXcc) Subtract with Carry (and modify icc)

TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on
overflow)

Table 5-3: Implemented SUB instruction

Op1 taint Mark Op2 taint Mark Result taint Mark
Untainted Untainted Untainted
topl Untainted topl
Untainted top2 top2
topl top2 topl - top2

Table 5-4: Rulesfor Group 2 instructions

Arithmetic instruction Subtract is shown in Tabl& 5Instruction such aSUB %g2, %qg,
%g3 will subtract the value 8692 from the value in %gl and will store the resullueain %g3
According to the rules shown in Table 5-4, the paircolor of %gl and %g2 are checked to
calculate the result pointer color of theg3 In immediate type SUB instruction, the resultrper
color is the pointer color of the register. We alsmat the instructions that change the conditional

code the same as the usual instructions, so ths foif these two types of instructions are the same

5.2.3. Rulesfor Group 3instructions

52

Opcode

Name

ADD (ADDcc)
ADDX (ADDXcc)

TADDcc (TADDccTV)

Add (and modify icc)
Add with Carry (and modify icc)

Tagged Add and modify icc (and Trap on
overflow)

Table 5-5: Implemented ADD instruction

Op1 taint Mark Op2 taint Mark Result taint Mark
Untainted Untainted Untainted
topt Untainted top1
Untainted top2 top2
Top1 Top2 Top1 + top2

ADD instructions forms Group 3 of instructions show Table 5-5. These instruction
propagation rules shown in Table 5-6 are similgrrtgpagation rules described for SUB instructions.
The main difference is caused by the way the teglencalculates the result register’s pointer color.

In this group we add the two pointer color valudstie register operands and in the case of

Table 5-6: Rulesfor Group 3instructions

immediate value, the result pointer color is thenfg color of the register, whether it is an unted

register or register with a pointer color.

5.2.4. Rulesfor Group 4 instructions

Opcode Name
IANDN (IANDcc) And Not (and modify icc)
IAND (IANDcc) And (and modify icc)

Table5-7: Implemented AND instruction

53

Op1 taint Mark Op2 taint Mark Result taint Mark
Untainted Untainted Untainted
top1 Untainted top1
Untainted top2 top2
top1 top2 Untainted

Table 5-8: Rulesfor Group 4 instructions

Group 4 instructions shown in Table 5-7. In instimT AND %g1, %g2, %g3 if both of
the%gland%g2are tainted or untainteog3will be untainted. In cases that one26§1and%g2
is tainted,%g3 will be tainted if it points to an address in tb@me memory area as the tainted
operand. The rules for this group of instructioe ahown Table 5-8.This can be implemented by
using a heuristic. For example a check should me do see if the first 16-bits of the value%§3
and tainted register match each other. Otherwisdllitbe a situation such as masking a value by

performing AND to an operand afast0000 value.

5.2.5. Rulesfor Group 5instructions

Opcode Name

LDSB (LDSBA) Load Signed Byte (from Alternate space)

LDSH (LDSHA) Load Signed Halfword (from Alternate space)

LDUB (LDUBA) Load Unsigned Byte (from Alternate space)

LDUH (LDUHA) Load Unsigned Halfword (from Alternate
space)

LD (LDA) Load Word (from Alternate space)

LDD (LDDA) Load Doubleword (from Alternate space)

Table 5-9: Implemented L OAD instruction

Table 5-9shows Load instructions in SPARC architecture. Lvestructions copy a value
from memory space to a register. For example,rbguctionLD [%fp-16], %01 loads content
of the memory spacfofp-16] to %01 register. The destination register pointer coletsgthe
pointer color of the address which is loaded aev&tam, whether this value is an untainted value or

any color in the range of O to 15.

54

We classified the Load Double word instruction lre tsame group as Load instructions.
These instructions are basically the same in oyslémentation. Load Double word instructions
move a double word from memory into a register.pEirimplement these instructions, we perform
two calls to the load propagation function. In fist call the pointer color of the memory addréss
copied to the pointer color of the specified registin the second call the pointer color of the

adjacent memory location is copied to the pointdorcof the next register in the register pair.

5.2.6. Rulesfor Group 6 instructions

Opcode Name

STB (STBA) Store Byte (into Alternate space)

STH (STHA) Store Halfword (into Alternate space)

ST (STA) Store Word (into Alternate space)

STD (STDA) Store Doubleword (into Alternate space)

Table 5-10: Implemented STORE instruction

Table 5-10 has a list of Store instructions in$MARC architecture. Store instructions copy
a value from a register into memory. Store instans propagation rules can be implemented the
way similar to Load instructions, except that tleénger color of the specific register will be coghie
to the pointer color of the address. Store Doubdedwnstructions also copy a double word from
register pair into the memory. In this case samehasload double word, we use the same
propagation rules twice, so that the pointer cofothe register pair is copied to the pointer calbr

the adjacent memory locations.

5.2.7. Rulesfor Group 7 instructions

SWAP and LDSTUB instructions are from the type ofd-store instructions. These
instructions are implemented as an atomic loadséo@ instructions. We treat these two instructions
the same. We actually didn’t implement separat@ggation rules. We used the load propagation
rules for the specific address and register, therused the store propagation rules for the address
and a fixed untainted value for the pointer colothe register, so that storing a fixed value ressu

an untainted value in memory.

55

Opcode Name

LDSTUB (LDSTUBA) Atomic Load-Store Unsigned Byte (in
Alternate space)

SWAP (SWAPA) Swap r Register with Memory (in Alternate
space)

Table5-11: Implemented L oad/Store and SWAP instruction

5.2.8. Rulesfor Group 8 instructions

CPOP1 and CPOP2 are implemented for UMC to cothmltag engine. The coprocessor
should be enabled at the beginning of executiothefUMC technique. The CPOP1 instruction is
responsible for enabling or disabling coprocesHoexecution of an instruction causes a security
exception, then coprocessor is turned off, so herdnstruction can produce another exception and

gets executed after the security exception. Tagnengan be turned on and off from user’s program

by calling _rtems_tag_enable() and _rtems_tag_disable() functions. Calling the
_rtems_tag_enable() function from the user’'s program will cause thee@stion of the
tag_dispatch_interface() . However calling the rtems_tag_disable() function

will abort execution ofag_dispatch_interface()

The CPOP2 instructions are responsible for maniimglahe memory location tags and also
memory and pointer color tags. These instructiomstachnique specific, meaning that they are
hardcoded individually for each security tagginght@ique. We used the instructions provided in the
Table 5-12 to set/clear the BC tag or to returntéigevalue of a specific memory address.

CPOP1 and CPOP?2 instructions always execute, whittbepop flag is true or false, since
these instructions are responsible for programrttiegcoprocessor.

CPOP2 instructions are executed as a result obéattye following function calls from the
user’s program:

e _rtems_set_pointer_color

e rtems_set location_color

e _rtems_clear_bc_pointer_color

56

_rtems_clear_bc_location_color

_rtems_get_memory_pointer_color

_rtems_get_memory_location_color

e rtems_set register_pointer_color

CPOP2 Opc Field Value| Address in HEX
CPOP2_SET_POINTER_COLOR 5 0x87B840A2
CPOP2_SET_LOCATION_COLOR 6 0x87B840C2
CPOP2_CLEAR_POINTER_COLOR 7 0x87B840E2
CPOP2_CLEAR_LOCATION_COLOR 8 0x87B84102
CPOP2_GET_MEMORY_LOCATION_COLOR 9 0x87B84122
CPOP2_GET_MEMORY_POINTER_COLOR 10 0x87B84142
CPOP2_SET_REGISTER_POINTER_COLOR 11 0x87B84162

Table 5-12: New CPOP2 instructions

The above function calls are hardcoded functiadealithat added to the tagging technique so
we can manipulate tags from user’'s program. Inah implementation, the compiler would insert
these calls into the code. Execution of any ofitis¢ructions from user’s program sets the opc and
address field of the CPOP2 instruction. Then tlyeigents will be passed tocaop2() function.
Based on the argument thpop2() function decides to set/ clear the location cpioiriter color,

or return the memory color.

5.2.9. Rulesfor Group 9 instructions

The rest of the instructions are floating pointtinstions, trap instruction, Branch and Call
instructions. Since we didn’'t implement any of ttegging techniques for the floating point
instruction, execution of these instructions widlither cause a security exception nor modify the
result tag. Trap instruction also follows the saruke as the floating point instruction means it
doesn’t have any effect on the tag engine. Als@ lmesBC'’s rules, control dependency instructions
are disregarded. Therefore executing any of théralodependency instructions such as Branch and

Call have no effect on the flow of tag engine code.

57

5.3. BC checking rules

Checking rules for BC intercepts any memory acedssther it is Load or Store through a
pointer. If memory location and the pointer whichused to access, have the same tag value,
checking is passed. Conversely, if memory locatiod pointer have different taint mark, program is
halted and it throws exception.

The load checking rule checks the tag value otffextive address for load instruction. The
effective address is calculated by adding the cusatef two operand registers, if i field is zeoo,t
is calculated by adding the content of registerapg and sign extended immediate value, if i field
is one. The load checking rule extracts the poiotdor associated with these two register operands
and adds them. In the next step the checking aklesk to see if the specified address locationrcolo
matches the calculated pointer color. If the twéuea match then this access is considered legal
access. We should also mention that there are spe®al cases that both the value of the location
color of the address and calculated pointer calertlae same but they are both untainted. We count
this scenario as an illegal access so it throwsxeption in this case for both load and store
instructions. Checking rules for store instructisnalso the same as load. Pointer color tags for
registers that are used to calculate the storeeaddyet checked. If they are the same as thedacati
color of memory which the result is going to berstmto, then the access considered as a legal
access. In both load and store instructions, ififgoicolor and memory location color do not match,

IMA occurs and the program execution will be forded to the exception handler.

5.4. Conclusion

In this chapter we defined the instruction levepiementation of BC technique tag engine.
We defined the data structure for memory locatiamd registers in the tag engine. We categorized
SPARC instructions into different groups and dedimgopagation and checking rules for each
group. We then defined the set of API's that caabém or disable the tag engine. API's also are

capable of manipulating tags for registers and mgrozations.

58

Chapter 6. Implementation of Uninitialized

Variable tagging techniquein SIS

Uninitialized Memory checking is a common technigoglemented to prevent reading
from an unutilized memory. Chapter 2 gives backgtbwn this technique. In this chapter we
describe the implementation of a UMC technique 8.\ one bit tag is associated with each
memory location for the UMC technique, which idiadized to zero at the beginning of execution of
the program.

Writing a value to a specific location using stamstruction set the tag for the location.
Loading a value from the memory location perfornthack on this tag to make sure it is initialized.
The tag value equal to zero indicates that the ngiongation is uninitialized; therefore the loadlwi
result in a security exception. The UMC implementatonfigures SIS so that execution of the load
and store instructions is forwarded to the tag megiThe tag engine also implements some

intermediate instructions to set or get the tagealf the specific memory locations.

6.1. UMC Initialization of Tag Engine

Figure 6-1 shows the data structure of tags inUMC technique. The tag value of a
memory location can be extracted by translating memory address to the address of the
corresponding 1-bit tag in the tag engine datecsire. For ease of implementation in the simulator
we assigned a character to tags but we only usedt-the character. The 1-bit memory address’s
tag is extracted by adding an index value to theelzaldress of tag data structure. The index value i
equal to its corresponding memory index value fittve memory base address. The functions that
perform the address resolution for setting andirggettag values areget_umc_tag() and

set_umc_tag() respectively.

59

C code:

struct tag

{

¥
typedef struct tag tag_t;
tag_t tag_ram[(RAM_END - RAM_START)>>2];

char umc_tag;

Figure 6-1: UMC tag engine data structure

Implementing the UMC technique requires defininggagation and checking rules for load
and STORE instructions. The following list classifieach group of instructions for the UMC
technique.

e Group 1 defines load instructions

o Group2 defines store instructions

e Group3 defines load/store instructions

o Group 4 defines the rest of instructions

The UMC memory is the only place where affectedchyrying, initializing and clearing
tags. Thereafter registers are not affected wightalys and do not need associated tagging rules.

In the beginning of the SIS execution, the one-tinigalization function assigns the zero tag value

for each RAM memory location.

6.2. UMC propagation Rules

Tag propagation rules are implemented for store laad/store instructions which are
categorized in group 2 and 3 SPARC instructions Gislg propagation rules set the tag value of the

address accessed through store instruction.

6.2.1. Rulesfor Group 2 instructions
The store instructions set the tag for memory adr&his group of instructions takes the

address of instruction and they set the tag vatwettfe specific address to one. There are no

60

checking rules implemented for this group of instians, so whenever the system wants to write a

value to a specific memory address, the tag valuée address is set.

Opcode Name

STB (STBA) Store Byte (into Alternate space)

STH (STHA) Store Halfword (into Alternate space)

ST (STA) Store Word (into Alternate space)

STD (STDA) Store Doubleword (into Alternate space)

Table 6-1: Implemented STORE instructions

6.3. UMC checking rules

Checking rules for UMC intercepts any memory loastruction. If memory location that is
used to load a value from is tagged, checking ss@@é Conversely, if memory location is not
initialized hence not tagged, the program throwsareption. Checking rules are implemented for
Group 1 instructions. Also the load part of loagl/stinstruction also gets checked using the saine se

of rules for load.

6.3.1. Rulesfor Group 1instructions

As described before, the load instruction checksnlemory location’s tag value to see if it
is initialized or not. Instructions in this groupwver initialize or modify a tag, they only checleth
tags. The checking rules for this group take thdregk from the instruction, translate the address t
get the tag value and check its tag value. If #iievalue is not one, meaning the memory location is

uninitialized; it throws a security exception armkdn’t load the value.

Opcode Name

LDSB (LDSBA) Load Signed Byte (from Alternate space)

LDSH (LDSHA) Load Signed Halfword (from Alternate space)

LDUB (LDUBA) Load Unsigned Byte (from Alternate space)

LDUH (LDUHA) Load Unsigned Halfword (from Alternate
space)

LD (LDA) Load Word (from Alternate space)

LDD (LDDA) Load Doubleword (from Alternate space)

Table 6-2: Implemented L OAD instructions

61

6.3.2. Rulesfor Group 3instructions

Group 3 instructions include the atomic load/stastruction and the swap instruction. The
proper way to handle the LDSTUB instructions iscteeck the tag value of the specific memory
location that is going to be used to load the valtleen LDSTUB sets the tag for the memory
location that will be written to. The swap instiioct also consists of a load and store instruction.
the load part, both memory locations should be kbeclf either location is uninitialized, the swap
instruction is halted and security exception isedi This group of instructions is the only groligtt
has both propagation and checking rules implemen®&/AP instruction, however, doesn’t need

the propagation rules since both the tags have seh

Opcode Name

LDSTUB (LDSTUBA) Atomic Load-Store Unsigned Byte (in
Alternate space)

SWAP (SWAPA) Swap r Register with Memory (in Alternate
space)

Table 6-3: Implemented LDSTUB and SWAP instructions

6.3.3. Rulesfor Group 4 instructions

CPOP1 and CPOP2 are implemented in UMC to contmltag engine. The coprocessor
should be enabled at the beginning of the UMC teglen execution. The CPOP1 instruction is
responsible for enabling or disabling the coprooesk the execution of an instruction causes a
security exception, then the coprocessor is turokdBy turning off the coprocessor no other
instruction can produce another exception and d&ll e executed executed after the security

exception. Also, as we discussed before, tag enginébe turned on and off from user’s program by

calling _rtems_tag_enable() and _rtems_tag_disable() functions. Calling the
_rtems_tag_enable() function from the user's program causes the exmtubf the
tag_dispatch_interface() . However calling the rtems_tag_disable() function

aborts execution dhg_dispatch_interface()

62

There are also some instructions added using th®P2Pinstruction format. These
instructions are technique specific, meaning thay/ tare hardcoded individually for each security
tagging technigue. We used the instructions pralideTable 6-4 to set or clear the UMC tag or to
return the tag value of a specific memory address.

CPOP1 and CPOP?2 instructions always execute, whitthepop flag is true or false, since

these instructions are responsible for programrttiegcoprocessor.

CPOP1 Opc Field Value Address in HEX Format
CPOP_SET_UMC_TAG 3 0x87B84062
CPOP_CLEAR_UMC_TAG 4 0x87B84082
CPOP_GET_MEMORY_TAG| 2 0x87B84042

Table 6-4: New CPOP2 instructions

CPORP2 instructions are executed as a result of@lowing function calls from the user’s
program:

e _rtems_set umc_tag(addr)

e _rtems_clear_umc_tag(addr)

e rtems_get_memory_tag(addr)

The above function calls are hardcoded functioeslitthat are added to the tagging
technique so we can manipulate tags from user'gran. Execution of any of the instructions from
user’'s program sets the opc and address field ®fCAOP2 instruction. Then the arguments are
passed to apop2() function. Based on these argumentsapep2() function decides to set or

clear the UMC tag or return the memory tag.

6.3.4. Rulesfor Group5 instructions
All of the instructions except the Groups 1 to desh’'t have any effect on the UMC tagging
technique, so execution of these instructions gimplreturn ~ from the

tag_dispatch_instruction() without modifying any tag.

63

6.4. Conclusion

In this chapter we defined the instruction levelpiementation of UMC technique tag
engine. We defined the data structure for memocations and registers in the tag engine. We
categorized SPARC instructions into different gapd defined propagation and checking rules for
each group. We then defined the set of API's thatenable or disable the tag engine. API's also are

capable of manipulating tags for registers and mgrozations.

64

Chapter 7. Evaluation and Analysis

The assumption of increasing the probability ofchatg malicious attacks by adding
security tags to the data is the foundation ofemirstudy, yet a set of test suits is needed tpstp
the basic assumption. The evaluation of this woith wespect to several hardware and software
issues has been done by:

e Testing prevention of known vulnerable programs asa world vulnerabilities by
running them against each related techniques. Eatinique is developed to prevent
special types of attacks. These attacks are descnibthe background section of each
technique. For example, we can validate the effentiss of DIFT technique against
different types of buffer overflows. To demonstrties, we have performed a series of
tests on the buffer overflow vulnerable code usii§T technique to evaluate its

effectiveness.

o Evaluating the effectiveness of propagation andcking instructions that have been
developed based on the rules for each techniquis. &faluation can be done by

designing a technique-based test suite and rurinagginst the related technique.

¢ Running the RTEMS test suites for each of the teghes. In this way we are able to

compare the performance of DIFT, BC and UMC onsifu@e set of test suites.

7.1. Implementation Testing and test case design

In this section, we describe each set of tests hlagt been developed to validate each

technique based on the desired implementation néfespicked different groups of instructions as

65

described in each technique and ran the test dgher®. We also defined a set of propagation and

checking rules for each technique.

7.1.1. DIFT Rule- verification Testing

As we discussed in Chapter 4, DIFT rules are ddfifer 5 different categories of
instructions. We designed a set of test suiteotercall propagation and checking rules for these 5
categories. We also break down the testing intoenpoecise testing. Precise testing feeds in all the
permutation of input tags to the test suite, cal@d the output tag and compares it with the disire
output tag. Figure 7-1 shows a sample of test implged for one of the category of instructions in
DIFT.

We test Category 1 branch and call instructionsrbglementing test cases that include
decision statements. We also implemented diffetesit cases with multiple outcomes of decision
statements to verify that all propagation and chreckules for Category 1.

Category 2 which defines ALU instructions has thesminstructions among the DIFT
categories. Although running each of the instruciio this category forwards the execution to the
same propagation and checking routine, we impleeterdifferent test cases to validate the
consistency in each instruction testing result.nBast case has a set of instructions which beiong
this category. Then we compared the results of gestiuction with the desired DIFT result.

Category 3 defines rules for load and store usmns. We tested this category by
manipulating arrays with both tagged and untaggades. In Figure 7-1 we can see a sample of
code that has both load and store instruction implged. In Figure 7-2, we included the assembly
code for the highlighted portion of the C code.dugh the highlighted code the tag engine is turned
on and a tagged value tries to access one elerhemt array. This case causes an exception since

this test case violates the DIFT rules.

C code:

volatile uint32 valuel = 2;
int main(void)

{ int array[3];

tag_ttagl,tag2;
tag_t new_tag;

_rtems_set_dift_tag((addr_t)&valuel);

printf("Turning on the tag engine \n");
asm CPOP_TURN_ON_TAGG NG ;
array[val uel] = 4;
asm CPOP_TURN_OFF_TAGAE NG ;

return O;

Figure 7-1: Sample C code for Testing

Assembly code:

1 25 "test.c" 1

.word 0x81B00000
10™2

doc1270

mov 4, %g2

ld [%l0+%lo(valuel)], %g1
sl %g1, 2, %gl
add %fp, %gl, %gl
st %g2, [%gl-12]
doc1290

129 "test.c" 1
.word 0x81B00020

Figure 7-2: Corresponding Assembly code for the test

66

67

Results:

in function tag_check_st_imm address for storing is :1land

dift tag for sourcel is:1

EXCEPTI ON HAPPEND BECAUSE OF STORE | NSTRUCTI ONS W TH SOURCE2
AS | MVEDI ATE

Unexpected trap (40) at address 0x020012B4

Figure 7-3: Result of running C code inside DIFT tag engine

7. Buffer overflow detection with DIFT
We ran different scenarios of buffer overflow testsletermine the effectiveness of DIFT.
We took samples of the buffer overflow code fromig@nostic Test Suite for evaluating buffer
overflow detector” from software assurance refeeat@tabase [15].
We also ran a couple of tests in a case that aethgglue has been used indirectly to
calculate the result address for storing data. Dlif@s also catch this type of tests. A samplénef t
buffer overflow tests is shown in Figure 7-4 and tdorresponding result for the code is shown in

Figure 7-5.

C code:

volatile uint32 valuel = 123;
volatile uint32 value2 = 456;
int main(void)
{
tag_ttagl,tag2;
tag_t new_tag;
_rtems_set_dift_tag((addr_t)&valuel);

uint32 *valuel ptr = &valuel;
_rtems_set_dift_tag((addr_t)&value2);

asm(CPOP_TURN_ON_TAGGING);
*(valuel_ptr + value2) = 3;
asm(CPOP_TURN_OFF_TAGGING);

}

Figure 7-4: Buffer Overflow test

68

Results:

in function tag_check_st dift tag for sourcel is:0 and dift

tag for source? is:1

EXCEPTI ON HAPPEND BECAUSE OF STORE | NSTRUCTI ONS W TH SOURCE2
AS REQ STER

Unexpected trap (40) at address 0x020012C0

Figure 7-5: Buffer Overflow result

7.1.2. UMC Rule- verification Testing

Test suites are developed to evaluate UMC rulesatigadescribed in Chapter 6. One set of
test suites relates the tag propagation by irdiiai a variable through other initialized variable.
Figure 7-6, the C code related to this exampldntsv®. Figure 7-7 describes the assembly code for
the code section highlighted in Figure 7-6.

Note that using non volatile variables causes jfstem to do some optimization to remove
the need of initializing variables. To make surat tve fully tested the functionality of UMC testing

we should disable any compiler optimization by gsiolatile variables.

C code:
int main (void)
volatile uint32 valuel ;
valuel = 123;
int new;
_rtems_set_umc_tag((addr_t)&valuel);
asm(CPOP_TURN_ON_TAGGING);

new = valuel;

asm(CPOP_TURN_OFF_TAGGING);
}

Figure 7-6: UM C tag propagation test

Assembly code:

.word 0x81B00000
1o™2

doc1190

Id [%fp-4], %gl

st %01, [%fp-8]
.LLVL1:

doc1210
121 "init.c" 1

.word 0x81B00020

Figure 7-7: UMC tag propagation Assembly code

Resul ts:

In function _rtems_set _umc_tag, valuel address is: 33719404
cpop is set to true
cpop is set to false

the result tag for new is:1
TEST PASSED

Figure 7-8: UM C tag propagation result

69

The other set of tests for UMC are designed basmitalizing arrays. We initialized the

first element in an array usingtems_set_umc_tag() function. We used the first element in

the array to initialize the next element. Each @etrin an array is initialized with the content of

previous array element. We initialized the firsgraént in an array and checked the tag value of the

last element to see how UMC tags get propagated.t€ht verifies a memory address initialization

results in initializing its corresponding tag valuBnce a memory address is initialized; the

corresponding tag keeps its value throughout tbgram.

7.1.3. MBC Rule- verification Testing

Bound checking technique rules are some sort obawetion of UMC rules and DIFT rules.

Memory access rules are implemented like UMC withikeother instructions’ rules are implemented

like DIFT with modification.

70

Local variables are stored below the frame poiffi&fip] and are accessed with negative
offsets. Parameters start at [%fp + 68]. In théotwing test we implemented a case to copy content
of one array element to the other. Both arraydratialized with the same location color and pointe
color. We used an inline assembly code in our Tdst. general format of using Inline assembly code

is shown in Figure 7-9.

Assenbl y code:

Asm (“assembly code”

: output operands

> input operands

list of clobbered registers

);

Figure 7-9: Inline Assembly code general for mat

In the inline assembly, having input/output opesaadd clobbered registers is optional. In
the inline assembly section of the code we perfdranesimple instruction which doesn’t affect any
other instruction. Running the instruction infor@€C about using all registers except frame pointer
and stack pointer. So GCC moved all active data fpoogram out of these registers.

The assembly code in Figure 7-11 only has the spomding code in between turning on
and off the tag engine. As we can see, it accebsdsame pointer to load a value. Since the frame
pointer hasn’t been initialized with the properrger color tag, the program throws exception. The

result is shown in Figure 7-12.

C code:

int main (void)

{

int a[30];
int b[30];

int i
for (i=0 ; i<10 ; i++)
{

_rtems_set_location_color((addr_t)&ali],3);

}

for (i=0 ; i<10 ; i++)
{

_rtems_set_location_color((addr_t)&Dbli],3);

}
asm volatile("add %%Il0,%%I10,%%I0\n\t"

o "gO","g1","92","93","94","gS","gG","g?",
"lo","11","2","3","14","5","16","17",
"o, 2, i3, a4, s, T,

"00","01","02","03","04","05","07");

asm(CPOP_TURN_ON_TAGGING);
a[1] =b[1];

asm(CPOP_TURN_OFF_TAGGING);

exit(0);

}

Figure 7-10: sample BC code improper handling tag for Frame Pointer

71

Assembly code:
.word 0x81B00000
1o™2
doc1560
Id [%fp-236], %gl
st %01, [%fp-116]
doc1580
I 58 "init.c" 1
.word 0x81B00020

Figure 7-11: Assembly code for corresponding C code

Results:

AS IMMEDIATE

cpop is set to false

EXCEPTION HAPPEND BECAUSE OF LOAD INSTRUCTIONS WITHFSOURCE2

'i-.|it vector 0x28!! @ PC = Oxopc is equal to:1

20012E4 with NPC = 0x20012E8

Figure 7-12: Result of improper handling tag for Frame Pointer

72

In the next test, we slightly modified the aboveedy adding highlighted piece of inline

assembly code in Figure 7-13. The code in Figut& fitializes frame pointer with the same color

tag value as both arrays.

C code:

int main (void)
{
int a[30];

int b[30];

int reg = 30;
intop2 = 3;
inti;

30;
3;

int reg
int op2

for (i=0 ; i<10 ; i++)
{
_rtems_set_location_color((addr_t)&ali],3);
}
for (i=0 ; i<10 ; i++)

_rtems_set_location_color((addr_t)&Dbli],3);

}
asm volatile("add %%Il0,%%I10,%%I0\n\t"

2 "g0","g1","g2","93","g4","g5","96","g 7",
"lo","11","2", "3, "4, "s", e, 17,

"o, "2, i3, a4, s T,
"00","01","02","03","04","05","07");
asn("nov %, %Wgl\n\t"

"mov %4, %g2\n\t"
CPOP_SET_REG STER_POl NTER_COLOR

:"r"(reg),"r"(op2)

"gl","g2");
asm(CPOP_TURN_ON_TAGGING);
a[1] =b[1];

asm(CPOP_TURN_OFF_TAGGING);
}

Figure 7-13: C code proper handling tag for Frame Pointer

73

74

Results:

TEST PASSES !!

Figure 7-14: Results of proper handling tag for Frame Pointer

The highlighted code in Figure 7-13 is the part thas added to the previous test case. As
shown in Figure 7-14, this test case passed.
Another set of test cases relates to uninitialimeanory. This test initializes an array then it

tries to access array element located outside laoigsdof array.

C code:

int main (void)
{
inti;
int a;

volatile int b[10];
int reg, op2;

for(i= 0 ; i<10 ; i++)
{
_rtems_set_pointer_color((addr_t)&bJi],3);
_rtems_set_location_color((addr_t)&bli],3);
b[i] = 5;

}

reg = 30;0p2 = 3;

asm(CPOP_TURN_ON_TAGGING);
a = b[11];

asm(CPOP_TURN_OFF_TAGGING);
exit(0);

}

Figure 7-15: C code for out of bound memory access

75

Results:
EXCEPTION HAPPEND BECAUSE OF LOAD INSTRUCTIONS WITHSOURCE?2
AS IMMEDIATE

Hit vector 0x28!! @ PC = Oxopc is equal to:1
cpop is set to false
2001310 with NPC = 0x2001314

Figure 7-16: Results of out of bound memory access

This is a good test case that shows how out of dhowemory access can be tracked and

captured using memory bound checking technique.

7.2. Performance evaluation

To evaluate performance of each tagging techniggeadded tagging statistics to SIS for
each technique. The common ground of all technidgi@sopagation and checking of memory and
registers tags during execution of instructionsweaadded statistic counters for tag propagatan, t
check, memory tag check and memory tag set. Rureanl test case gives statistics for each one of
the values. We gathered the statistics data. Toaltseshow what percent of instructions are tag
propagation or tag check. Also what percentagésstfuctions try to access memory to either check

or set the tag values.

7.2.1. Performance Evaluation for DIFT

We ran tests for DIFT, BC and UMC on the same $eRDEMS applications. These
applications include check for uboot support in bad print application. We ran each set of test for
each technique. Then we calculate the percentatggqgiropagation, tag check, memory tag set and
memory tag check for each application. We calculateaverage of each of the statistics through
different applications. The results of study fo~lD] UMC and BC techniques are shown in Figure
7-17 through Figure 7-19 respectively. The Figwslesws on the Y-axis the instructions percentage
for each technique. The X-axis shows set of insivaccategories. The Figures show how each

technique spend resources.

DIFT Results

100
2
S 80
B
2 60
3 40
ks
S]
i
0 _— Il
Tag Tag Check Memory Tag Memory Tag
Propagation Set Check

Figure 7-17: Performance evaluation for DIFT running RTEM S applications

BC Results
100
2
S 80
B
2 60
3 40
G
o 20
i
0 —]
Tag Tag Check Memory Tag Memory Tag
Propagation Set Check

Figure 7-18: Performance evaluation for BC running RTEM S applications

UM C Results

100
2]
S 80
B
2 60
3 40
X

o, .1l []
Tag Tag Check Memory Tag Memory Tag
Propagation Set Check

Figure 7-19: Performance evaluation for UM C running RTEM S applications

77

The highest percentage of instructions that exdadatboth DIFT and BC's tag engine are
tag propagation. UMC tag propagation stat is tlmeesas UMC memory tag set instructions. Also in
UMC memory tag check is the same as tag check &hading a value from memory is the only

instructions that uses tag check.

7.3. Analysis and Results

Figure 7-20 shows on the Y-axis the tag enginelmamt percentage for each technique. The X-
axis shows different techniques. To calculate thertwead of running each technique, we first ran
RTMES applications and captured number of execiumsttuctions in the absence of security
techniques. Then we enabled each technique andlai@d RTEMS applications instruction
execution in the existence of each technique. Runttie tests gives us the amount of overhead each
technique has. DIFT has overhead of 23.6 %, UMC728& and BC has 41.5%.

As we see BC has the highest overhead, since priopagation and checking rules for memory
access checking as well as dataflow checking. UME dnly memory access checking so it has the
lowest amount of overhead among all techniques.TDH&s dataflow checking which includes
propagation of tags through ALU instruction andattieg of tags through jump instructions. Since
BC has both features of UMC and DIFT, BC’s overhé&adlose to UMC and DIFT overhead

combined.

78

Tag Engine Overhead

100

80

60

40

overhead

20

% of tag engineisntruction

DIFT UuMC

Figure 7-20: Tag engine over head

7.4. Conclusion

In this chapter we showed set of test suites #sitdropagation and checking rules for each
technique. We then showed the result of runningehaéworld attacks such as buffer overflow and
out of bound memory access for each technique.hafe showed the result of running all techniques
on the same set of application. We represent teehead of running each technique and then

compared the result of all technique.

79
Chapter 8. Conclusion

8.1. Conclusion

Today with the explosive growth of computer anduwek technology, we rely on computer
systems to manage sensitive data and personatafimn. In recent years promising mechanisms
and techniques developed to enhance computer &nvdnkesystem security. Some of the existing
security techniques track instruction flow at rime.

Our goal was to design a framework which has rumetsecurity techniques to prevent
runtime attacks. As a first step toward this gdlails thesis gives an extensive background on the
most common run time security technigques such & DBC and UMC which are implemented to
prevent buffer overflows and illegal memory accesséVe then give a description of SPARC
Instruction Architecture and how security technigjgan be implemented in SPARC using SPARC
instruction Simulator. The validation of securigchnique implementation is completed by running
test suites and RTEMS applications.

We developed tagging schemes that will be impleptktite ERC32 processor, which is a
SPARC variant. The understanding of SPARC instoucéirchitecture gives us a better view of how
each technique can be implemented for differentrucions. According to each technique, we
divide instructions into different logical groupsdathen defined propagation and checking rules for
them. Dividing instructions into different groups/gs us the ability to design test suites for each
group as well. So we were able to check how eatdintque propagates and check security tags.

We validate each technique by running test suftasare designed specifically for it. Recall
that each technique is capable of detecting sattatks. We ran attacks for each technique tofsee i

the technique is able to capture it.

80

To evaluate performance of each tagging technigue added tagging statistics for tag
propagation, tag check, memory tag check and mertegyset. Running each test case gives
statistics for each one of the values.

We ran tests each technique on the same set of BTEpplications as well. Then we
calculate the average of each of the statistigzeotent of instructions that got executed in tlge ta
engine to the whole executed instructions throdifferént applications.

BC requires the biggest data structure among elinigues. It assigns each memory and
register with 4-bit location tag and 4-bit pointag. DIFT and UMC assign a 1-bit tag for memory
and registers. Running the test suites show thaisBsapable of detecting more attacks. It also has
the highest overhead among all techniques. DIFERmable of detecting buffer overflow attacks and
it comes in the second place in the matter of ilsiton overhead. UMC has the lowest overhead and
it is capable of detecting uninitialized memory esses.

In summery the work presented in this thesis pmwithsight to the run time security
techniques. While we hope to see these technigupleimented in a frame work as an architecture
solution, we expect this research to be a usefsbuee for studying and evaluating security

techniques.

8.2. Future Resear ch

The previous section has summarized the work af ttiésis. However, as in any research
effort, there still are a number of areas wheréhemrwork could enhance the prevention of misusing
code vulnerabilities. Runtime taint tracking wilbbrtinue to be an important tool for the security
research. The evaluation that is conducted in tbeiqus chapters revealed several opportunities to

improve the implemented framework. These are desnibelow:

81

1. Runthe SISon amulti coreprocessor or on multi-processor system
SIS simulator supports a single core processorwigk to modify it to support simulation
of multi-core processor. This involves the desiimailti-core simulator. Multi-core simulator will

include memory model, inter processor communicadioth simulating time.

2. Implement security tagging rulesfor trap instructions and trap handler
We currently didn’'t implement propagation and chegkrules for Ticc and RETT (trap
instructions). We need to evaluate these instrostio verify if we are able to implement rules for
them. At the same time we need to investigate whases trap in the system to make sure that rules

are implemented correctly.

3. Implement security tagging rulesfor floating point instructions
We have assigned tagging rules to Integer Instrastin the SPARC architecture. But we
didn’t add the support for floating point instruis. We need further effort to implement tag engine
rules for DIFT, BC and UMC and evaluate each teminiin the existence of Integer instructions’

rules as well as floating point instructions.

4. Add the capability of having a network or simulated network to test techniquesin the
existence of networ k accesses.

At this time each test suite implemented for thehiéque manually set the tag values for
memory locations and registers. We wish to exphedstmulator and add the capability of network
simulation to it. Having this capability, we arelalo send traffic from network channels, and for
DIFT, we can label couple of network channels atiaas input. In this way we can verify how

DIFT can handle malicious IO channels.

82

5. Implement thesetechniquesfor other instruction architectures such as ARM
At this time these technique are only implemen@mdSPARC instruction set. We wish to
implement each technique for other instruction ieckures such as ARM. This requires modifying

each technique to support different architectures.

6. Implement tag cache simulator and add it to the tag engine for each technique
Accessing tags in the memory is neither cheap ast. By implementing the tag cache
simulator, we can store the tags for the recentssmd memory locations and registers and access
them as needed. | already implemented the simutziohe inside SIS. By adding the tag cache

simulator we can recalculate the overhead of mernagget and check.

83

Chapter 9. Bibliography

1] B. R. Rowe and I. D. Pokryshevskiy, "Economic Asayof Inadequate Cyber
Security Technical Infrastructure,” wikibert N. Link, University of North Carolina i
Greensboro, Douglas S. Reeves, North Carolina Staiteersity, 3040 E. Cornwallis
Road, Research Triangle Park, NC 27790, Februat$.20

2] "Heartbleed OpenSSL vulnerability,” National Cylemgrity and Communications
Integration Center, April 2014.

3] J. Steinberg, "Massive Internet Security Vulneiigibit Here's What You Need To
Do," 10 April 2014. [Online]. Available:
http://www.forbes.com/sites/josephsteinberg/2014/0Anassive-internet-security-
vulnerability-you-are-at-risk-what-you-need-to-d@ccessed May 2014].

4] B. M. (MITRE), M. B. (SANS), A. P. (SANS) and D. KSANS), "2011
CWE/SANS Top 25 Most Dangerous Software Errors g THTRE Corporation, 13
September 2011. [Online].

5] D. S. Henson, "Support for TLS/DTLS heartbeats,D&tember 2011. [Online].

6] S. M. Kerner, "Heartbleed SSL Flaw's True Cost Wake Time to Tally - See
more at: http://www.eweek.com/security/heartbleglidflaws-true-cost-will-take-time-
to-tally.html#sthash.qLJdmngZ.dpuf,” 19 April 201@nline].

7] G. E. Suh, J. W. Lee, D. Zhang and S. Devadas ut8gmogram execution via
dynamic information flow tracking Acm Sigplan Noticespl. 39, no. 11, ACM 2004.

8] R. Hastings and B. Joyce, "Purify: Fast detectibmemory leaks and access
errors,” inln Proc. of the Winter 1992 USENIX Conference

9] J. Clause, I. Doudalis, A. Orso and M. Prvulovigfféctive memory protection
using dynamic tainting," iln proceeding of the 22nd International Conferenoe
Automated Software Engineering, 2007

10] The SPARC Architecture Manu&tentice Hall, Englewood Cliffs, New Jersey
07632, 1992.

11] sis - SPARC instruction set simulator version 3.Buropean Space Research and
Technology Centre, 1999.

84

12] M. Ramstrom, J. Hoglund, B. Enoksson and R. Sveyssion, "32-BIT
MICROPROCESSOR AND COMPUTER DEVELOPMENT PROGRAMMEZ97.

13] TSCG691E Integer Unit User's Manual for Embedded Re& 32—bit Computer
(ERC32),TEMIC Semiconductors.

14] M. Ramstrom, B. Térnberg and R. Svennings$86BC Device Specification,
TEMIC Semiconductors, 1997.

15] "NIST National Institute of Standards and Techngldgst Suits,” [Online].
Available: http://samate.nist.gov/SARD/testsuit@.ph

