

Modified SPARC Instruction Simulator (SIS) to Support Experimental

Tagging Architectures

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Saeede Zakeri

Augest 2014

Major Professor: Jim Alves-Foss, Ph.D.

ii

Authorization to Submit Thesis

This thesis of Saeede Zakeri, submitted for the degree of Master of Science with a Major in

Computer Science and titled “Modified SPARC Instruction Simulator (SIS) to Support

Experimental Tagging,” has been reviewed in final form. Permission, as indicated by the

signatures and dates given below, is now granted to submit final copies to the College of

Graduate Studies for approval.

Major Professor __________________________________Date______________
 Dr. Jim Alves-Foss

Committee
Members __________________________________Date______________
 Dr. Robert Rinker

 __________________________________Date______________
 Dr. Daniel Conte de Leon

Computer Science
Department
Administrator _________________________________Date______________
 Dr. Gregory Donohoe

Discipline's
College Dean,
College of
Engineering ________________________________Date_______________
 Dr. Larry Stauffer

Final Approval and Acceptance by the College of Graduate Studies

 ________________________________Date_______________
 Dr. Jie Chen

iii

Abstract

This thesis is a part of an Air Force Research Laboratory (AFRL) project focused on

developing a framework based on existing security tagging techniques. These techniques are

developed to prevent or lower the overhead of known security vulnerabilities. Critical to prevent

these security vulnerabilities is choosing techniques that target the most disruptive attacks such as

buffer overflow, out of bound memory accesses and uninitialized memory access. For instance, over

the last five years, buffer overflow vulnerability was the cause of non-deterministic failures and

security breaches. The other main vulnerability is insufficient validated user inputs, which lead to

dangerous security flaws such as format string, SQL command injection and path traversal. The

flaws are exploitable when user input is passed to vulnerable programs without sufficient validation.

Buffer overflows and Insufficient validated user inputs are among the top 25 software errors

according to the CWE/SANS list of “Top 25 Most Dangerous Software Errors”.

This study presents research focused on evaluating hardware implementation of security

tagging techniques. Run time hardware based taint tracking is an effective technique which controls

data propagation during execution of an application. These techniques associate security tags with

user provided data and track tags during program execution. To keep tags updated, the techniques

intercept every attempt to access application and process data. A detection of a misuse of data will

result in a security exception. Each technique has a different approach for intercepting and isolating

instructions to prevent possibly difficult classes of vulnerabilities. The focus of this research is to

understand the nature of security tagging as a foundation for developing a framework for simulating

the different security tagging techniques to determine how well they can detect software flaws and

vulnerable programs with minimum overhead. An additional objective of this work is to compare the

efficiency of different proposed tagging technique. The AFRL project uses ERC32 (radiation-

tolerant 32-bit RISC Processor) which is a SPARC variant based computer systems. Accordingly a

SPARC Instruction Simulator is adopted to develop security techniques.

iv

Acknowledgements

This project would not have been possible without support of many people. I would like to

express my gratitude to my advisor, Dr. Jim Alves-Foss, whose expertise, understanding, and

patience, added considerably to my graduate experience. I would like to thank the other members of

my committee, Dr. Robert Rinker and Dr. Conte de Leon, for agreeing to serve on my committee.

I would like to thank the department chair, Dr. Gregory Donohoe, and Mrs. Darby Baldwin,

Mrs. Rhonda Zenner, Ms. Arvilla Allen, and other staff members in the department of Computer

Science for their help during my study in the department. I would like to thank all the staff of the

College of Graduate Studies for their help and support throughout my study at UI.

I wish to acknowledge the United States Air Force Research Laboratory (AFRL) and

Defense Advanced Research Projects Agency (DARPA), for supporting me during the course of my

graduate studies through grant number FA8750-11-2-0047.

I am indebted to all of the team members who worked with me in the past and present. I

would like to thank Cindy Song, Stu Steiner and Abhay Patil for their input at various stages of my

research.

Last, but certainly not least, I would also like to thank my family for the support they

provided me through my entire life and in particular, I must acknowledge my husband and best

friend, Mahdi, without whose love, encouragement and editing assistance, I would not have finished

this thesis.

v

Dedication

This thesis is dedicated to my husband, Mahdi Salavatian. You are the love of my life, my

strength and support. I also want to dedicate this to my amazing parents and beloved grandma.

vi

Table of Contents

Abstract ... iii

Acknowledgements ... iv

Dedication .. v

Table of Contents ... vi

Table of Figures .. xi

Table of Tables ... xiii

Chapter 1. Introduction .. 1

1.1. Problem Area .. 2

1.2. Research Objectives ... 6

1.3. Thesis Overview ... 8

Chapter 2. Background and Framework Overview ... 9

2.1. Dynamic Information Flow Tracking Background .. 9

2.1.1. DIFT initialization and propagation phase .. 10

2.1.2. DIFT checking phase ... 10

2.2. Memory Bound Checking technique Background ... 11

2.2.1. BC initialization phase .. 12

2.2.2. BC propagation phase ... 12

2.2.3. BC checking phase .. 13

2.2.4. BC implementation at Hardware ... 14

2.3. Uninitialized Memory Checking Background.. 14

vii

2.3.1. UMC initialization phase ... 15

2.3.2. UMC propagation phase .. 15

2.3.3. UMC checking phase .. 16

2.4. Framework Overview ... 16

2.5. Conclusion .. 18

Chapter 3. Background in SIS ... 19

3.1. SPARC Instruction Simulator (SIS) ... 19

3.2. Integer Unit (IU) ... 21

3.2.1. Integer Unit General Purpose and Windows Register ... 21

3.2.2. Integer Unit Control and Status Registers ... 23

3.3. Data Types .. 26

3.4. IU Instruction Set ... 27

3.5. Instruction Format and Addressing .. 28

3.5.1. LOAD/STORE instructions .. 31

3.5.2. Arithmetic and Logic instructions ... 32

3.5.3. Control Transfer .. 32

3.6. MEmory Controller (MEC) .. 33

3.7. Coprocessor .. 34

3.8. Conclusion .. 35

Chapter 4. Implementation of DIFT Tagging Schemes in SIS .. 36

4.1. DIFT Initialization of Tag Engine .. 37

viii

4.2. DIFT Propagation Rules ... 37

4.2.1. Rules for Group 2 Instructions .. 38

4.2.2. Rules for Group 3 instructions .. 39

4.2.3. Rules for Group 4 instructions .. 43

4.2.4. Rules for Group 5 instructions .. 45

4.3. DIFT checking rules ... 45

4.3.1. Rules for Group1 instructions ... 45

4.4. Conclusion .. 47

Chapter 5. Implementation of Memory Bound Checking technique in SIS 48

5.1. BC Initialization of Tag Engine ... 48

5.2. BC Propagation rules ... 49

5.2.1. Rules for Group 1 instructions .. 50

5.2.2. Rules for Group 2 instructions .. 51

5.2.3. Rules for Group 3 instructions .. 51

5.2.4. Rules for Group 4 instructions .. 52

5.2.5. Rules for Group 5 instructions .. 53

5.2.6. Rules for Group 6 instructions .. 54

5.2.7. Rules for Group 7 instructions .. 54

5.2.8. Rules for Group 8 instructions .. 55

5.2.9. Rules for Group 9 instructions .. 56

5.3. BC checking rules .. 57

ix

5.4. Conclusion .. 57

Chapter 6. Implementation of Uninitialized Variable tagging technique in SIS 58

6.1. UMC Initialization of Tag Engine .. 58

6.2. UMC propagation Rules ... 59

6.2.1. Rules for Group 2 instructions .. 59

6.3. UMC checking rules ... 60

6.3.1. Rules for Group 1 instructions .. 60

6.3.2. Rules for Group 3 instructions .. 61

6.3.3. Rules for Group 4 instructions .. 61

6.3.4. Rules for Group5 instructions ... 62

6.4. Conclusion .. 63

Chapter 7. Evaluation and Analysis .. 64

7.1. Implementation Testing and test case design ... 64

7.1.1. DIFT Rule- verification Testing .. 65

7.1.2. UMC Rule- verification Testing .. 68

7.1.3. MBC Rule- verification Testing .. 69

7.2. Performance evaluation .. 75

7.2.1. Performance Evaluation for DIFT ... 75

7.3. Analysis and Results .. 77

7.4. Conclusion .. 78

Chapter 8. Conclusion ... 79

x

8.1. Conclusion .. 79

8.2. Future Research .. 80

Chapter 9. Bibliography ... 83

xi

Table of Figures

Figure 1-1: Heartbleed code vulnerability ... 4

Figure 3-1: Cicular Stack of Register Window ... 23

Figure 3-2: Change of the Register Window ... 24

Figure 3-3: Processor State Register ... 25

Figure 3-4: Icc bits .. 25

Figure 3-5: Format 1 (op = 1): CALL Instruction ... 29

Figure 3-6: Format 2 (op = 0): BRANCH Instruction .. 30

Figure 3-7: Format 2 (op = 0): SETHI Instruction ... 30

Figure 3-8: Format 3 (op = 2, 3): Integer and load/store Instructions .. 30

Figure 3-9: Format 3 (op = 2): FP/CP Instructions .. 30

Figure 4-1: DIFT tag data structure ... 37

Figure 5-1: MBC Tag data structure ... 49

Figure 6-1: UMC tag engine data structure ... 59

Figure 7-1: Sample C code for Testing ... 66

Figure 7-2: Corresponding Assembly code for the test ... 66

Figure 7-3: Result of running C code inside DIFT tag engine .. 67

Figure 7-4: Buffer Overflow test ... 67

Figure 7-5: Buffer Overflow result ... 68

Figure 7-6: UMC tag propagation test .. 68

Figure 7-7: UMC tag propagation Assembly code.. 69

Figure 7-8: UMC tag propagation result ... 69

Figure 7-9: Inline Assembly code general format ... 70

Figure 7-10: sample BC code improper handling tag for Frame Pointer 71

xii

Figure 7-11: Assembly code for corresponding C code .. 72

Figure 7-12: Result of improper handling tag for Frame Pointer .. 72

Figure 7-13: C code proper handling tag for Frame Pointer ... 73

Figure 7-14: Results of proper handling tag for Frame Pointer .. 74

Figure 7-15: C code for out of bound memory access .. 74

Figure 7-16: Results of out of bound memory access ... 75

Figure 7-17: Performance evaluation for DIFT running RTEMS applications 76

Figure 7-18: Performance evaluation for BC running RTEMS applications 76

Figure 7-19: Performance evaluation for UMC running RTEMS applications 76

Figure 7-20: Tag engine overhead ... 78

xiii

Table of Tables

Table 1-1: 2011 CWE/SANS top 25 most dangerous software errors .. 3

Table 3-1: SPARC register set .. 22

Table 3-2: SPARC Data Types ... 27

Table 3-3: OP and OP2 encoding .. 28

Table 4-1: Implemented ALU instructions ... 38

Table 4-2: Rules for ALU instructions .. 39

Table 4-3: Implemented LOAD instructions ... 40

Table 4-4: Implemented STORE instructions ... 41

Table 4-5: Implemented LOAD-STORE and SWAP instructions .. 42

Table 4-6: New CPOP1 instructions ... 43

Table 4-7: New CPOP2 instructions ... 44

Table 4-8: Implemented CALL, BRANCH, JUMP and RETURN instructions 46

Table 5-1: Implemented MUL, DIV, OR and XOR instructions .. 50

Table 5-2: Rules for Group1 Instructions .. 50

Table 5-3: Implemented SUB instruction ... 51

Table 5-4: Rules for Group 2 instructions ... 51

Table 5-5: Implemented ADD instruction ... 52

Table 5-6: Rules for Group 3 instructions ... 52

Table 5-7: Implemented AND instruction ... 52

Table 5-8: Rules for Group 4 instructions ... 53

Table 5-9: Implemented LOAD instruction .. 53

Table 5-10: Implemented STORE instruction ... 54

Table 5-11: Implemented Load/Store and SWAP instruction ... 55

xiv

Table 5-12: New CPOP2 instructions ... 56

Table 6-1: Implemented STORE instructions ... 60

Table 6-2: Implemented LOAD instructions ... 60

Table 6-3: Implemented LDSTUB and SWAP instructions ... 61

Table 6-4: New CPOP2 instructions ... 62

1

Chapter 1. Introduction

Computer security has become a very important economic and social problem. There has been

a lot of research conducted to develop new ways to protect systems over the past three decades. This

research has been conducted with the goal of preventing the ever-growing catastrophic effects of

security vulnerabilities. According to estimates, cyber security attacks directly cost US companies

tens of billions of dollars a year and much more in indirect cost to companies and individuals.

“General Keith Alexander, Chief of the U.S. Cyber Command and Director of the National

Security Agency, points out that the United States saw a 17-fold increase in cyber attacks

between 2009 and 2011.” [1].

Every year new security vulnerabilities and attacks emerge. Today almost everything relies on

worldwide network communications, so having vulnerable code will cause serious worldwide

impacts and losses of billions of dollars. In the past two years several companies and government

organizations have been victims of hacker’s attacks. Some of these attacks exploited software

vulnerabilities which caused buffer over flow and out of bound memory accesses. Other attacks

exploited vulnerabilities at a high level such as SQL (Structured Query Language) injection,

command injection, CSS (Cross Site Scripting) and so on. These vulnerabilities are further discussed

in section 1.1.

As an example of vulnerable code we can mention a bug called Heartbleed which was publicly

announced on April 1st, 2014. This bug is a good sample of how a vulnerable code can have a

worldwide affect. Heartbleed is a security bug in Open Secure Socket Layer (SSL) library. This bug

can be exploited if either client or server uses a vulnerable OpenSSL instance. National Cyber

security and Communications Integration Center (NCCIC) states that using Heartbleed vulnerability,

attackers can decrypt previously encrypted information and stole servers’ private keys and users

session cookies and passwords [2].

2

 Over half a million secure web servers were vulnerable to this bug. Several groups called the

Heartbleed bug "catastrophic". Forbes cyber security columnist Joseph Steinberg wrote, "Some

might argue that [Heartbleed] is the worst vulnerability found since commercial traffic began to flow

on the Internet." [3] .

There are tools such as firewalls and anti-viruses that can be used to reduce the damage caused

by Heartbleed types of attacks. But research shows that the security tools do not provide a reliable

protection against ever-increasing attacks and viruses that exploit low level programming errors.

One approach to enhance security is to use hardware-bases security tagging techniques to cope

with the security vulnerabilities. These techniques usually deploy security tags to support memory

access control. In this thesis we evaluate the use of security tags associated with data to reduce the

damages of vulnerable code.

This current Research is a part of an Air Force Research Laboratory Project focused on the

framework development of different security tagging techniques inside SPARC Instruction

Simulator. The goal of this thesis is to develop and implement a framework to test and evaluate

hardware-based security tagging techniques. In this chapter section 1.1 introduces some of the

common problem areas and basic concepts of security tagging and security tagging schemes. Section

1.2 introduces the motivation and objectives of this research. Section 1.3 concludes with an overview

of the remaining parts of the thesis.

1.1. Problem Area

 Table 1-1 lists the 2011 Common Weakness Enumeration/SysAdmin, Audit, Network,

Security (CWE/SANS) top 25 most dangerous software weaknesses [4] .

3

Rank ID Category Name
1 CWE-89 1 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
2 CWE-78 1 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
3 CWE-120 2 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
4 CWE-79 1 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
5 CWE-306 3 Missing Authentication for Critical Function
6 CWE-862 3 Missing Authorization
7 CWE-798 3 Use of Hard-coded Credentials
8 CWE-311 3 Missing Encryption of Sensitive Data
9 CWE-434 1 Unrestricted Upload of File with Dangerous Type
10 CWE-807 3 Reliance on Untrusted Inputs in a Security Decision
11 CWE-250 3 Execution with Unnecessary Privileges
12 CWE-352 1 Cross-Site Request Forgery (CSRF)
13 CWE-22 2 Improper Limitation of a Pathname to a Restricted Directory ('Path

Traversal')
14 CWE-494 2 Download of Code Without Integrity Check
15 CWE863 3 Incorrect Authorization
16 CWE-839 2 Inclusion of Functionality from Untrusted Control Sphere
17 CWE-732 3 Incorrect Permission Assignment for Critical Resource
18 CWE-676 2 Use of Potentially Dangerous Function
19 CWE-327 3 Use of a Broken or Risky Cryptographic Algorithm
20 CWE-131 2 Incorrect Calculation of Buffer Size
21 CWE-307 3 Improper Restriction of Excessive Authentication Attempts
22 CWE-601 1 URL Redirection to Untrusted Site ('Open Redirect')
23 CWE-134 2 Uncontrolled Format String
24 CWE-190 2 Integer Overflow or Wraparound
25 CWE-759 3 Use of a One-Way Hash without a Salt

 Table 1-1: 2011 CWE/SANS top 25 most dangerous software errors

These weaknesses are divided into three categories:

1- insecure interaction between components

2- risky resource management

3- porous defenses

Each category as well as its relevant weakness and rankings are shown in Table 1-1.

The weaknesses in the insecure Interaction between components category 1, are caused by

improper data exchange between systems, programs or processes. As we can see in Table 1-1, this

category largely deals with SQL injection attacks and CSS attacks.

4

The second category weaknesses are caused by the improper handling of systems resources.

This category includes different buffer overflow attacks, directory traversal, format strings and so on.

The third and last category of these weaknesses mostly deals with misused defensive techniques [4].

As we can see in Table 1-1, the first category of attacks exploits vulnerabilities at a high level

such as Structured Query Language (SQL) injection, command injection, Cross Site Scripting, etc.

These vulnerabilities allow malicious users to launch attacks by executing arbitrary code or stealing

sensitive data. SQL injection is a technique for exploiting web applications which ask for user’s data

in SQL queries. Web applications provide the ability for users to store and retrieve information to

and from databases over the internet. This information includes user’s credentials, bank account

information and so on. SQL injection attacks can send SQL commands to the back end database

through web application. The attacker can then view, alter or remove user’s data through these SQL

commands.

Weaknesses in the second and third categories in Table 1-1 are related to buffer overflow

attacks, out of bound memory accesses and so on. These categories are also dangerous and harmful.

The newly emerged Heartbleed vulnerability can be classified in the out-of-bounds memory access

attack group. The vulnerable code for this attack is shown in Figure 1-1 [5].

 Figure 1-1: Heartbleed code vulnerability

 C Code:
if (hbtype == TLS1_HB_REQUEST)
unsigned char *buffer, *bp;
int r;
buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;
/* Enter response type, length and copy payload */
*bp++ = TLS1_HB_RESPONSE;
 s2n(payload, bp);

memcpy(bp, pl, payload);
 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payloa

d + padding);

5

In the SSL Heartbeat protocol one of the SSL users sends a request to the other with a

payload of data and a size. The end user is supposed to copy the payload and send it back. However

the size of the payload specified in the message is never checked. Since attackers can lie, they can

request a return of a large amount of data and the end user will comply, copying data from main

memory including possible encryption keys and user passwords. This is an example of category 2

vulnerabilities that could cause at least 500 Million dollars [6].

Companies use defensive and preventive measures to prevent or lower the cost of corruption

or theft of their information. Defensive measures include firewalls, cryptography, Intrusion detection

Systems and antivirus programs. Preventive measures include penetration testing, authentication and

verification.

The problem in most of the mentioned defensive measures is that they usually take a look at

the symptoms of the attack rather than its source; we know that it’s almost impossible to write

perfectly secure code. Some hardware developers have come up with the idea of using hardware

based protection to prevent these attacks or if not preventing them, at least to stopping the attacks

from going farther. Among the proposed techniques, security tagging schemes exist to prevent

attacks by adding security tags to the data. One example of security tagging schemes is Dynamic

Information Flow Tracking (DIFT).

The DIFT technique was developed to prevent buffer overflow and format string attacks.

DIFT was proposed to prevent the majority of attacks that change the flow of programs in order to

gain control or unauthorized access. It prevents attacks by associating security tags to data, marking

data as malicious and tracking it as it goes through the system. Malicious data is defined as any data

that comes from malicious I/O. By assigning a security tag, the DIFT security engine can track data

that attempt to transfer control of the system. Based on the implementation dependent rules in the

DIFT tag engine, if tainted data is used in a way that it changes the control flow of the program or

logic of the program, the tag engine hardware triggers an exception and pops back to the operating

system. DIFT will be described in further details in Chapter 2 [7].

6

Several techniques have been developed based on hardware protection. However most of the

existing techniques use simple applications which are tested in small scale.

The designed tests only show that the detection occurs. The tests do some simulations to

determine performance, overheads, but most of the simulation and experimentation is done at the

register transfer level which is really slow. Accordingly, the developed techniques have never been

evaluated in full experiments. Having the capability of comparing and contrasting the logic, security

behavior and functionality of the techniques can fulfill this shortcoming. This capability can be

achieved by running known vulnerable applications through multiple security techniques. We

accomplished this by simulating the techniques in an instruction simulator.

1.2. Research Objectives

The purpose of this thesis is to develop a framework, in which we can plug-in different

hardware tagging schemes. The framework is used to evaluate the effectiveness and functionality of

tagging schemes. The proposed framework has been used to implement three different tagging

schemes: Dynamic Information Flow Tracking (DIFT), memory Bound Checking (BC) and

Uninitialized Memory Checking (UMC). As described before, the DIFT technique is developed to

associate data with security tags. In this simulated the DIFT tagging engine. The engine will be

responsible for moving and checking tags through the execution of each instruction. The engine also

includes an exception handler in the case of security exception.

The UMC technique targets uninitialized memory. This technique intercepts each memory

access to check if memory is initialized during loading a value from memory. UMC associates each

memory word with a tag. Memory tags are first all initialized to zero, indicating that memory block

is not initialized. Then during each memory store instruction, memory tags for the corresponding

memory location will be set. During loading a value from memory, the tag value will be checked to

prevent uninitialized access. This technique is described in further detail in Chapter 6 [8].

7

The BC technique has characteristics of both DIFT and UMC. Each memory word and

processor register is associated with a tag. These tags get propagated based on the BC tag engine

rules. During memory access, tags are checked to see if the tag value falls in the memory boundary

range. If not, the BC tag engine will cause security exception. We will describe this technique in

further detail in Chapter 5 [9].

The objectives of this thesis are as follow:

• Objective 1: Introduce DIFT, UMC and BC security techniques. To be able to

implement these techniques, we need to look in depth in each of these techniques. We

will give an extensive background on each of these techniques at the instruction level in

Chapter 2.

• Objective 2: Apply these techniques to SPARC (Scalable Processor Architecture) using

SIS (SPARC Instruction Simulator). In this objective we group SPARC instructions to

different categories for each technique. We then implement tagging rules for each

technique. We also introduce new instructions to control the tag engine and manipulate

tags for registers and memory for each technique. Having the new instructions gives us

more control over the tag engines.

• Objective 3: Develop a framework for testing different security tagging techniques in

the instruction level hardware simulator SIS. After implementing each technique we

develop test cases to test techniques and compare the results.

Implementing all three techniques in one framework makes it easy to compare each

technique to another. This framework helps estimate specific features and the upsides and downsides

of each technique.

8

1.3. Thesis Overview

This thesis is organized as follow. Chapter 2 provides a background and survey on DIFT,

UMC and BC security tagging schemes as well as a overview of how to add these techniques to the

framework. Chapter 3 gives details about the SPARC architecture and SIS. In Chapter 4 we describe

DIFT technique implementation in SIS. In Chapter 5 we describe BC implementation in SIS and in

Chapter 6 we describe UMC implementation in SIS. We discuss different experiments, tests, results

and evaluation of each technique in Chapter 7. Then we give the conclusion and future work in

Chapter 8.

9

Chapter 2. Background and Framework Overview

In this Chapter we present an extensive background for DIFT, BC and UMC security tagging

techniques. We then describe the whole design idea of the framework and how we can integrate each

technique to the simulator. We introduce each technique by describing how it works at the source

code level. Each technique is capable of detecting specific sort of security attacks. For instance DIFT

is capable of detecting buffer overflow attacks. UMC is capable of detecting uninitialized memory

accesses. BC is capable of detecting out of bound memory and illegal memory accesses. Having

these techniques implemented in a framework, we will be able to detect and prevent vast majority of

security vulnerabilities.

2.1. Dynamic Information Flow Tracking Background

DIFT, designed by Suh et al. [7], is a hardware security tagging technique which assigns

security tags to data and checks the data manipulation in instructions to restrict the use of untrusted

input. DIFT was developed to prevent a vast class of software security vulnerabilities such as buffer

overflows. DIFT prevents security attacks by identifying and restricting the malicious information

flow at runtime. DIFT implements a security tagging engine which includes the logic for book

keeping and checking of security tags.

To take control of a program, attackers modify the contents of memory in a vulnerable

program space with either malicious code or a pointer to a malicious code. To modify content of

memory, they need to insert a value from input channels. DIFT marks untrusted input and output

channels with a one bit tag. By tracking the untrusted data, it traps malicious manipulation of the

data. In general, malicious use of the data can be defined as any disallowed manipulations of the data

based on the permitted security policies. DIFT defines malicious use of data as using tagged data as a

10

jump or branch target address. DIFT security policy generates a trap in the case of this use. If the

operation is not allowed based on the permitted security policy, the trap handler terminates the

operation.

DIFT rules are defined to prevent executing of malicious code or transforming control of a

program using malicious data. The key concern here is how to identify malicious code from

legitimate code. The operating system makes the decision which means it initializes the untrusted

channels as malicious data. Then operating system tracks malicious data.

2.1.1. DIFT initialization and propagation phase

To identify legitimate and malicious data, DIFT uses a one bit tag for each register in the

processor and each byte of memory. Memory address and registers’ tags are initialized to zero in the

initialization phase of the tag engine. The operating systems tags data with the value one only if the

data comes from a malicious input source.

The DIFT tag engine defines a set of rules to propagate tags through program execution.

These rules can be categorized into three groups. The first group is defined as instructions which

have either one or two operands and none of the operands are tagged. The result of running first

group of instructions is an untagged value. The second group of instructions has at least one tagged

operand. The result tag for the second group of instructions is a tagged value. Finally the third group

of instructions has two operands which are both tagged. Running the instructions result in a tagged

value.

The above three groups of propagation rules can apply to ALU, Load and Store instructions.

Not all of the SPARC instructions propagate DIFT tags. We will describe in details how propagation

rules are implemented for each set of SPARC instructions in Chapter 4.

2.1.2. DIFT checking phase

The DIFT tag engine defines two policies for instructions’ tag checking. First policy tracks

Load and Store instructions’ tags. Loading from and storing, using an address in a register that is

11

marked as malicious is not allowed based on DIFT rules. Therefore every time load or store

instructions get executed, the tag engine will intervene to check tags of source operands.

The second policy tracks Branch and Jump instructions. DIFT rules stops execution of the

instruction which uses a tagged value as jump target address. These policies do not apply to other

instructions such as ALU instructions. ALU instructions can be executed with having tagged

operands. Recall that the tags are still propagated.

2.2. Memory Bound Checking technique Background

The main focus in the BC technique is on memory faults that occur by memory accesses

through pointers. Illegal Memory Accesses (IMA) can be classified as memory faults which arise

when a memory region is accessed with a pointer that is not initially assigned for that region. BC

also covers vulnerabilities such as out of bound memory accesses [9].

The BC technique uses limited number of tags to associate with data. Tags can be 1-bit, 4-

bits or 8-bits long. The BC technique associates tags with memory blocks and pointers. When the

memory “m” is allocated, BC associate tags with “m”. Later when a pointer “p” is created, which

points to “m” address, “p” is tainted with the same taint mark that is associated with the memory

“m”. During execution of program, pointer tags get propagated. Finally when a memory region is

accessed using a pointer, the BC technique checks both tags for memory and pointer in order to see if

they match or not. The more bits BC uses, the more likely it will detect inappropriate use of pointer.

Memory taints never get propagated but pointer taint mark gets propagated as the program

executes. However the BC tag engine separates memory locations’ tags from pointers’ tags. The

process of implementing the BC technique breaks down into initialization, propagation and checking

steps.

12

2.2.1. BC initialization phase

There are two type of memory allocation: static and dynamic. Static memory allocation can

be referred to as defining global and local variables. In static memory allocation the technique

identifies the memory location used for storing variables. Therefore it can initialize the taint marks

for the specific memory locations. In dynamic memory allocation the technique identifies the amount

of memory that should get the taint marks through communication with the allocation functions such

as malloc. After that, the specific memory locations get the same fresh taint marks. No too adjacent

allocated regions get the same taint mark.

In pointer initialization, pointers get the taint mark base on the memory location they point

to. For example pointers that point to dynamically allocated memory intercept the function call to

malloc and use the return value to get the same tag as the dynamically assigned memory. Since

finding out the starting addresses of this type of memory is straight forward, initializing the taint

marks for pointers that point to statically allocated memory is easier than dynamically allocated

memory. In both cases after finding out the address for memory location, pointer and memory

location will get the same taint mark.

2.2.2. BC propagation phase

 The BC technique doesn’t define rules for control instructions, so, data flow instructions are

responsible for propagating tags in this technique. The BC technique treats tag propagation for

memory and pointer differently. Memory location tags are never propagated. Memory location’s tags

get initialized at the beginning of program and cleared at the end of program or start and end of a

function call for variables on the stack. During the deallocation of a memory location, this technique

intercepts the function call to lower level memory-deallocation function to figure out the proper

address in order to erase the taint marks. Also the associated pointer taint mark for this memory

address should get erased. Otherwise it conveys a concept like a dangling pointer. Calling the

deallocation function with an initial address as a parameter frees dynamically allocated memory, so

13

intercepting this function gives us the memory location whose taint mark should be erased.

Returning from a function call will also deallocate statically allocated memory, so the intercepting

function exits gives us the memory location whose taint mark should be erased.

Pointer taint marks are responsible for propagation rules during execution of the program.

Every operation has a propagation rule defined for calculating the result of the taint mark based on

the operands’ taint marks. The rules for pointer tag propagation are developed based on patterns

found in the software subjects and underlying machine languages. These rules are finely developed

to remove cases that cause false negatives because of the underlying language and function

implementation.

These rules handle different sets of instructions differently. For example, in addition and

subtraction operations, if both operands are not tainted, then the result remains untainted. In some

cases where just one of the operands is tainted, then the taint mark will propagate and the resulting

taint mark gets the taint mark of the tainted operand. In cases that both operands are tainted,

operations decide the propagation rule. For example during the addition operation, the result tag is

the sum of the two operands’ taint marks [9].

In operations like multiplication and division the result is never tainted. In bitwise AND

operation if both operands are tainted or untainted the result is untainted. But if just one of the

operands is tainted the result gets the taint mark of the tainted operand [9].

Propagation rules for bitwise NOT can be derived from addition and subtraction propagation

rules. Accordingly the result gets the negative value of taint mark of the operand. In bitwise OR and

XOR instruction the result is always untainted [9].

2.2.3. BC checking phase

The checking rules for BC technique intercept any memory access. If the taint mark of the

memory location and its corresponding pointer location are the same, it is considered as a valid

14

memory access. Any scenario other than this is considered as an illegal memory access and it throws

security exception.

Since the main goal in this technique is to implement the approach in hardware, the number

of taint bits plays an important role on the performance overhead and design complexity of

hardware. The problem with a small number of bits for the taint mark is that some memory locations

have the same taint marks. So it causes an undetected IMA. The probability of detecting IMAs with

having 4 bits of taint mark is 94% [9]. Also by using different strategies the probability of two

memory locations having the same taint mark can be reduced. This is feasible by assigning different

taint marks for adjacent regions of memory.

2.2.4. BC implementation at Hardware

When a technique is implemented in hardware, there is not enough information about

statically allocated memory. So by reducing the precision of the technique, the technique taints all of

the statically allocated region of the memory with same taint mark, Therefore the technique is not

capable of detecting IMA’s in local variables, but it still can detect IMA’s between statically

allocated variables and dynamically allocated memory.

2.3. Uninitialized Memory Checking Background

Reading from or writing to uninitialized memory is another type of error that causes the

system to stop working or crash. Due to the nature of these errors, they are most likely to go

undetected. Another type of error is a memory leak which happens because a block of memory has

not been released. Memory leaks also produce errors that are hard to find and also harder to fix. The

UMC technique helps find memory leaks and access errors such as reading from uninitialized

memory or out of bound access of arrays. This technique helps find errors that happen at runtime [8].

15

The way this technique is implemented is that it will keep a tag for each memory address. It

then intervenes each memory access and looks for the tag value of the corresponding memory

address tag. Then the technique decides whether the access is authenticated or not.

UMC calls a specific function before any memory access function such as load and store.

The implemented function for tags is responsible to make sure that memory address tag is the same

as expected tag. This technique holds two bits representing state code for each byte in memory. This

technique represents three different states that the memory can be in.

1. Unallocated state:

The unallocated state represents the unallocated memory. In this state memory bytes

can neither be read from nor written to.

2. Allocated and initialized state:

The memory that is allocated and initialized is in this state. Each memory byte which is

in this state is allowed to be written to and read from.

3. Allocated but uninitialized state:

In this state we are able to write to allocated memory, but we are not able to read from

it.

2.3.1. UMC initialization phase

UMC keeps one bit tag for each byte of memory. The tag value shows the state of that

memory location. These tags are initialized at the beginning of the program with tag value zero. Tag

value zero indicates that the specific memory region is not initialized or allocated.

2.3.2. UMC propagation phase

 Executing store instruction changes the memory state from either unallocated or allocated

but not initialized state to the allocated and initialized state. During executing store instruction, UMC

16

technique sets the tag value of memory. This instruction is the only one that can propagate tags and

set tags for memory regions.

2.3.3. UMC checking phase

 The check function intervenes with every access to the variables through the load instruction

and compares the status tag with the expected tag. Loading a value can only be performed from

allocated and initialized state. If a memory location is in this state, it has tag value of one. If memory

is in any other state, meaning that its tag is zero, UMC technique stops the execution of instruction

and halt program.

2.4. Framework Overview

We have added a new module to the SIS simulator – the tagging engine. This module is

designed to simulate the behavior of the tagging coprocessor. Within the SIS simulator we have

added hooks to enable execution of the coprocessor. The first set of hooks defines the operations of

CPOP instructions (coprocessor operations). The CPOP1 format instructions are used to control

operation of the coprocessor (e.g., turn it on and off). The CPOP2 format instructions are used to

manipulate the specific tags (e.g., set a tag of a register or memory location). In addition, we have a

hook from the simulator that calls the tag-dispatch-instruction() function. This function

is the framework used to specify the execution behavior of each instruction, or more specifically the

execution behavior of the tag engine for each instruction. This function is called prior to actual

execution of the instructions to ensure that the simulator simulates the throwing of a security

exception prior to completion of the instruction. For each instruction, as illustrated in the following

chapters, we implement specific tag checking and propagation rules.

To add techniques to the SIS simulator, we chose a tagging mechanism and defined tag

formats for it. We determined the items that need to be tagged and formulas for tag propagation and

17

checking for each technique. Then we assigned a rule that specifies how the tag engine can initiate

its work.

We specified list of data structures need for the tag engine part of each mechanism. This data

structure includes the storage of tags, management of tag engine and placeholder for tag engine state

information. We characterized a process which is used for initialization of data structures and

variables of tag engine. We then defined set of functions that can have access to the data structure for

necessary modifications.

We determined tag propagation and checking rules in terms of data structure for the tag

engine based on the chosen mechanism. We defined the propagation and checking rules that shows

how tags can be access and what functions can operate on tags. We then specified API’s for both

propagation and checking functions that include tag manipulation and propagation operation.

In some cases tag checking rules cause a trap. Checking rules for each technique is

implemented differently to be able to detect different a set of attacks. So running different

instructions in different technique may lead to trap caused by tag checking rule of tag engine.

To handle traps we defined a trap interface, we specified set of information and the procedure to

pass the information to the trap handler. We defined trap specific interface function API and it’s data

structure.

We designed the interface for RTEMS to communicate with the simulator and the memory

addresses for communicating with the trap engine. We defined set of control functions and data

needed for the control functions. We then specified the API’s for interface within the tag engine for

each control function and the process that can access the control functions and communicate with

them. We write library for supporting the new control functions and API’s for interface within the

tag engine for each control functions.

18

To do the testing and evaluation we conducted a design review for data structures, APIs and

list of functions. We conducted a unit testing on all modules and functions. These tests are

standalone tests to ensure each module behave correctly. We then designed set of generic test suits

that can be used for each tagging technique.

2.5. Conclusion

In this chapter we have discussed three different hardware-based tagging techniques that we

implement in our simulator. There are server techniques that have been discussed in the literature,

but most of them are similar to the once review here. We then bring a whole overview of the

framework and how each technique can be integrated to the simulator.

19

Chapter 3. Background in SIS

In Chapter 2 we introduced DIFT, MBC and UMC security tagging techniques. We gave an

overview of how these techniques work and how they can prevent security vulnerabilities. To

implement these techniques at the assembly instruction level, it’s necessary to know the details of the

underlying system where these techniques are implemented. In this thesis the tagging techniques are

implemented in the Scalable Processor ARChitecture (SPARC) using the SPARC Instruction

Simulator (SIS). SIS is a SPARC instruction simulator which is capable of emulating ERC32

(radiation-tolerant 32-bit RISC Processor). ERC32 is a SPARC variant based computer system

implements SPARC version 7 [10].

This chapter provides details about SIS, SPARC instruction level and assembly level details.

It also gives details about important features and components of the ERC32. The purpose of using

ERC32 is that it provides high performance computation for embedded real time devices. The

simulated ERC32 only implements memory and application specific peripherals, although other

functionalities are supported by the core. ERC32 support neither MMU nor cache memory.

Therefore it needs to access memory directly to run store and load instructions.

3.1. SPARC Instruction Simulator (SIS)

SIS is a SPARC Instruction simulator which simulates the CPU board for the ERC32 based

computer systems. ERC32 based computer system is a 32-bit RISC processor which implements

SPARC Version 7. All the ERC32 instructions have a 32-bit constant length [11].

The ERC32 incorporates different functionalities implemented in its own computing core.

The main ERC32 board functionalities are ERC32 core and ERC32 peripherals. ERC32 core

includes Processor and MEmory Controller (MEC) while ERC32 peripherals include EDAC, wait

20

state generator, timer, interrupt handler, watch dog and UART. ERC32 core Processor consists of

three components including IU, FPU and implementation dependent CoProcessor (CP). These

components form the 32-bit embedded ERC32 processor [12].

The SIS simulator simulates ERC32 processor, MEC and 32-bit wide instructions. The IU

part of the processor is responsible for computing portion of ERC32 and is explained in Section 4.2.

FPU executes single and double precision floating point instructions. FPU instructions can be

executed concurrently with the IU instructions. The Implementation dependent CP can also be

accessed through specific instructions. CP implementation dependent registers can also be accessed

through CP instructions. All of these three units in ERC32 processor can work concurrently.

Different naming convention exists for each processor component registers. Registers that are used

in the IU called “r” registers, those that are used in the FPU “f” registers and those that are used in

CP are called “c” registers. There are also control and status registers implemented to keep track of

the status of events in the processor [12].

SIS simulates RAM and PROM for ERC32. By default the ERC32 chip has 32 MB RAM

and 4 MB PROM which is used as the default amount for SIS simulated RAM and PROM. SIS

provides functionalities to simulate ERC32 different applications. Since RAM and ROM sizes are

configurable through SIS, these applications can update processor memory sizes.

To run applications using SIS, we can attach SIS to the GNU DeBugger (GDB) like a remote

target so it can be used to debug application through GDB [11].

Two versions of SIS has been developed to make it capable of simulating different

applications. These versions are named SIS and SIS64. SIS is capable of simulating time up to 232

clock ticks which can run about 5 minutes at 14MHz frequency. SIS 64 is capable of simulating time

up to 264 clock ticks which provides almost unlimited time of simulation but it is 20% slower than the

previous version of SIS. Running ERC32 applications with security tag engines does not require

unlimited time of simulation, so we chose SIS version for our implementation.

21

3.2. Integer Unit (IU)

Instruction execution and computation is done in the IU. The IU is capable of executing one

instruction in each cycle. The IU contains 136 general purpose registers and manages the operations

that occur in the processor. The IU keeps track of the Program Counter (PC) during execution of

each instruction. It is also responsible for performing integer arithmetic and logic instructions and

computes memory addresses for load and store instructions. All of the ALU instructions are register

to register operations; and only load and store instruction access memory. The following section

describes the register model, data types of the IU, control and status registers [13].

3.2.1. Integer Unit General Purpose and Windows Register

There are total of 140 32-bit registers available for the IU. While 136 32-bit registers are

general purpose registers, the rest of them are control/status registers. General purpose registers are

divided into 8 global registers and 128 window registers. The 128 window registers are then divided

into 8 sets of windows registers on a circular stack. The circular stack contains 24 r registers. The

SPARC register file model is known as a register window [10].

There are 32 general purpose registers visible to a program at any given time:

• %g0 to %g7 global registers for storing global data.

• %l0 to %l7 local registers for storing local data.

• %i0 to %i7 in registers for storing incoming arguments.

• %o0 to %o7 out registers for storing arguments to subroutines.

The 8 global registers are mapped to physical registers and the remaining 24 registers are

mapped to one of the overlapping register windows. Each register window has local registers, in

registers and out registers. These registers are shown in Table 3-1.

22

Register Name Register Number

Ins r[24] to r[31]

Locals r[16] to r[23]

Outs r[8] to r[15]

Globals r[0] to r[7]

Table 3-1: SPARC register set

Global registers are shared among all of the windows; with %g0 register hardwired to zero.

Local registers belong only to the current window and they are not shared among other windows.

They are usually used for storing temporary and local values. The current PC is stored in %l1 and

Next PC (NPC) is stored in %l2 when a trap occurs.

The in and out registers in the register window are shared with adjacent windows. They are

used for passing parameters and storing incoming arguments. Among the in registers %i0 is used to

store the return argument, %i6 is used for storing frame pointer (%fp) and %i7 is used for storing the

return address. Within the out registers, registers %o0-%o5 are used to store the arguments that are

passed to a function. %o6 stores the stack pointer (%sp) and %o7 stores the return address. There

exists a Current Window Pointer (CWP) which always points to the current active window. This

register changes during executing TRAP, SAVE and RESTORE instructions to adjust its content in

order to point to the right window [10].

Upon a subroutine call, the return address will be stored in %o7. The new window will be

activated and the out registers of the current window become in registers of the next window as

shown in Figure 3-1 (adapted from SPARC International Inc.). Save instruction decrements the CWP

by one to activate next window. The subroutine’s calling procedure’s out-registers becomes the

callee’s procedure in the registers. In this way parameters passed directly. A program needs its own

register window to return from a subroutine. The RESTORE instruction increments CWP to restore

the caller’s window. In this way the previous window becomes the current window. By the nature of

23

circular stack, the last register window is adjacent to the first one as shown in Figure 3-2 (adapted

from SPARC International Inc.).

Figure 3-1: Cicular Stack of Register Window

3.2.2. Integer Unit Control and Status Registers

The control/status registers are 32-bit registers including:

• Processor state registers (PSR)

• Windows Invalid Mask (WIM)

• Trap Base Register (TBR)

• Multiply/Divide register(Y)

• Program Counter (PC, nPC)

At any given time the program has access to

Processor State Register (PSR). Register window

Windows Invalid Mask (WIM) register.

4. Processor State Register (PSR)

At any given time the program has access to the current window through CWP

(PSR). Register window overflow and underflow can be detected with

(WIM) register.

Figure 3-2: Change of the Register Window

Processor State Register (PSR)

24

through CWP field of

overflow and underflow can be detected with

The Processor State Register holds data that controls the processor or shows the status of the

processor. There are several instructions that can modify

and RESTORE.

Figure

 Each of the implementation and ver

to the processor implementation number and Integer Unit version

The icc field holds the

and logic instructions whose mnemonic

PSR. There are also BICC and TICC instructions

icc. The icc field itself contains bits for

These bits are set or reset base

shown in Figure 3-4.

The reserved bits (bits 14 through 19)

at this time. The Enable Coprocessor (EC) bit,

or not. If it is not enabled or the coprocessor does not exist then this bit

Floating Point Unit (EF) flag is bit 12 and it indicates

the EC, if the Floating Point U

this bit will set to zero. The Processor Interrupt Level (IPL) iden

egister holds data that controls the processor or shows the status of the

processor. There are several instructions that can modify the PSR. These instruction

Figure 3-3: Processor State Register

of the implementation and version fields are 4 bits long and hold information regard

the processor implementation number and Integer Unit version number respectively.

the four condition codes for the Integer Unit. There are several arithmetic

whose mnemonic end with cc. These instructions can modify the icc bits in

PSR. There are also BICC and TICC instructions that cause control transfer based

contains bits for negative (N), zero (Z), overflow (V) and carry (C)

set or reset based on the results of arithmetic and logic instruction. The icc fields

 Figure 3-4: Icc bits

(bits 14 through 19) are reserved for future use and they are all set to zero

The Enable Coprocessor (EC) bit, which is bit 13, indicates if the coprocessor is enabled

or not. If it is not enabled or the coprocessor does not exist then this bit is set to zero.

flag is bit 12 and it indicates if the floating point unit is enabled or not. Like

Unit (FPU) is not enabled or the processor does not support FPU

The Processor Interrupt Level (IPL) identifies the level of

25

egister holds data that controls the processor or shows the status of the

PSR. These instructions include SAVE

sion fields are 4 bits long and hold information regarding

number respectively.

here are several arithmetic

end with cc. These instructions can modify the icc bits in

 on different bits of

negative (N), zero (Z), overflow (V) and carry (C) flags.

on the results of arithmetic and logic instruction. The icc fields are

and they are all set to zero

if the coprocessor is enabled

set to zero. The Enable

if the floating point unit is enabled or not. Like

cessor does not support FPU then

tifies the level of current the

26

interrupt. The processor will accept any interrupt which has the priority equal or greater than the

value that IPL defines. The Supervisor (S) bit is set to 1 when the processor is in the supervisor

mode. The Previous Supervisor (PS) bit holds the value of the S bit when a trap occurs. Enable Traps

(ET) bit indicates if traps are enabled or disabled. In the case of disabled traps, all the traps will be

ignored. The CWP holds the index of the current active window 0 to 31. These 5 bits CWP can be

modified by TRAP, SAVE and RESTORE instructions.

5. Trap Base Register (TBR)

This register provides the address of the trap table. Branch instructions read contents of this

register when flow of program execution causes trap.

6. Windows Invalid Mask Register (WIM)

The WIM register is controlled by operating system’s software and used in the hardware to

determine register window overflow or underflow. WIM is 32 bits wide while each bit corresponds

to one of the 32 register window. If one bit is set in the WIM, it indicates that the corresponding

register window is invalid.

The trap occurs in the case of register window overflow or underflow, in the case of

execution of SAVE or RESTORE/RETT instruction respectively. In the case of a trap, the CWP

points to an invalid window indicated in the WIM register. Every time SAVE, RESTORE, or RETT

instruction executes, CWP compares the decremented and incremented CWP against the WIM to

check for window overflow or underflow.

3.3. Data Types

The IU unit of the ERC32 supports eleven data types. The three basic data formats and

supporting width for each format are shown in Table 3-2. Single precision floating points uses 32 bit

format; double precision floating points uses 64 bit format. The minimum size of each register is 32

bit wide. If the data written to the register is less than 32 bits, it’s written to memory starting from

27

LSB. Depending whether the data is signed or unsigned, the remaining bits are zero extended or sign

extended. For 32 bit data, whether it is unsigned or signed, data is simply loaded from or stored to

the memory. Double word operands read from or load to two consequent registers [10].

The organization of data in memory follows the big-Endian convention which means lower

addresses contains the higher order bytes.

Table 3-2: SPARC Data Types

3.4. IU Instruction Set

The ERC32 processor reads an instruction from a specific memory address provided by the

PC. Instructions can be executed, annulled or trapped by the processor. In the case of a trap

occurrence, the operating system forwards control based on the trap table. Trap table contains the

trap handler addresses. The trap handler’s base address is set by the operating system. In the case that

an instruction’s execution doesn’t cause a trap, the address for the next instruction is copied from

DATA

FORMATS

SUPPORTING WIDTH

signed Integer Byte(8 bits), Halfword (16 bits), Word (32 bit),Tagged Word(30 bits

with 2 bit tag), Doubleword (64 bit)

unsigned

integer

Byte(8 bits), Halfword (16 bits), Word (32 bit), Tagged Word(30 bits

with 2 bit tag), Doubleword (64 bit)

floating point Word (32 bit), Tagged Word(30 bits with 2 bit tag), Doubleword (64

bits), Quadword(128 bits)

28

NPC to PC. The normal address for the next instruction is generated by incrementing the PC address

by 4. This address is copied to the NPC register and is used in the next cycle of instruction execution.

3.5. Instruction Format and Addressing

Instructions are categorized into three different format categories. The first format is CALL

instruction. The second format is BRANCH and SETHI instructions. The third format is logical and

arithmetic instructions as well as memory instructions. Format 3 also supports floating point and

coprocessor instructions. We will not give details about Floating Point instructions since the tested

security techniques are not applied to Floating Point instructions. However, since we want to use the

coprocessor as a major component for the security tag engine in our design we give details of the

coprocessor instructions. Formats for all instructions are shown in Figure 3-5 through Figure 3-9

[11].

The address for operands of each instruction are either located in the instruction itself or

calculated from displacement bits. The OPeration code (OP) field is a 2-bit field which determines

the instruction types and encodes the 3 major instruction formats. OP2 is a 3-bit field which encodes

instructions in format 2. The instruction encodings through OP and OP2 are shown in Table 3-3.

Format OP OP2 Instruction
 1 1

Unimplemented CALL

2 0 0 Unimplemented
1 Unimplemented
2 Bicc
3 Unimplemented
4 SETHI
5 Unimplemented
6 FBcc
7 CBcc

3 2
Unimplemented Memory instructions

3 3
Unimplemented

Arithmetic, logical,
shift and remaining

Table 3-3: OP and OP2 encoding

29

The other fields in the instructions shown in Figure 3-5 through Figure 3-9 are encoded as

below:

- Rd field: is a 5-bit field stores the address for source or destination register. This address is

used by IU, FPU or CP.

- imm22 field: It’s a 22-bit field is constant and is used by SETHI instruction to calculate the

destination register.

- cond: It’s a 4-bit field that chooses the condition code for branch instructions.

- a: It’s a i-bit field in the branch instructions that annuals the instruction execution based on the

type of branch.

- op3: It’s a 6-bit field that encodes format 3 instructions.

- i: it’s a 1-bit field that selects the second operand for arithmetic and load/store instructions.

- disp22 and disp30: these are 22-bit and 30-bit fields. They are used as PC-relative

displacement for call or branch instructions.

- Address Space Identifier (ASI): it’s an 8-bit field which is used by load/store alternate

instruction. ASI is sent to the system memory for memory accesses. It is used to control supervisor/

user mode accesses to memory instruction and data.

- rs1: It’s a 5-bit field. It shows the address of first source operand in r, f or c register.

- rs2: It’s a 5-bit field. It shows the address of second source operand in r, f or c register when i

field is 0.

- simm13: it’s a 13-bit field. It has 13-bit immediate value used in the case that I field is 1 as the

second source operand.

- opf: it’s a 9-bit field that encodes floating point instructions or coprocessor instructions.

Figure 3-5: Format 1 (op = 1): CALL Instruction

30

Figure 3-6: Format 2 (op = 0): BRANCH Instruction

Figure 3-7: Format 2 (op = 0): SETHI Instruction

Figure 3-8: Format 3 (op = 2, 3): Integer and load/store Instructions

Figure 3-9: Format 3 (op = 2): FP/CP Instructions

SPARC instructions can be further categorized into 6 different categories:

• Load/Store instructions – Format 3, opcode 3

• Arithmetic and logic instructions - Format 3, opcode 2

• Control transfers – Format 1 and 2, opcode 0 and 1

• Floating Point Instructions – Format 3, opcode 2

• Coprocessor instructions – Format 3, opcode 2

31

Since SPARC is a load/store architecture, load and store instruction are the only instructions

which have access to memory. There are three different scenarios in which memory addresses for

load and store instructions can be generated. The first scenario uses two registers indicated by rs1

and rs2 fields of an instruction. The value in these two registers is added to create the address for

load and store instructions. The second scenario uses an immediate value. In this scenario the i field

is 1, rs1 field is used as the first source operand and the imm13 used as the second source operand.

The address is calculated by adding the content of rs1 to the sign-extended value of imm13 field of

the instruction. The third scenario is a special case of the second scenario. In this case we want to

create the address by only using imm13 field in the instruction. For the third scenario the imm13

field value will be added to the rs1 register which is set to %g0. Since %g0 is hardwired to 0 the

resulting address value will be only the sign extended value of imm13 field. In this scenario we can

have an absolute addressing mode.

We can also use the program counter to calculate the address. The CALL and BRANCH

instructions use the program counter as one of the sources for generating the target address. As we

saw in Figure 3-5, in the CALL instruction format, the 30-bit displacement is the second source for

calculating the address. Note that the ERC32 is a delayed control transfer machine. The PC gets the

NPC before the control transfer instruction. After the address is calculated, NPC gets the new

address. This means that the instruction following the call or branch instruction is executed before

the call or branch is taken.

As we see in instruction format 2 in Figure 3-6, the BRANCH instruction uses the PC as

well as a 22-bit displacement to calculate the target address.

3.5.1. LOAD/STORE instructions

Load and store instructions move data to/from registers from/to memory. As discussed

earlier the address for load and store instruction is calculated based on different fields of the

instruction. The destination field defines where the result is going to be loaded from or stored to.

32

This field can be any of the system registers or FP and CP registers. There are also two special

load/store instructions, SWAP and LDSTUB (atomic load and store instruction). These instructions

are atomic instructions meaning they cannot be interrupted. SWAP instruction swaps the contents of

a register with a word in memory. LDSTUB reads from memory into a register and fills out the

memory location with 1’s.

3.5.2. Arithmetic and Logic instructions

Arithmetic and logic instructions take two operands as a source, perform the specific

operation on them and save the result in the specified destination register. These two operands can be

either two registers in the case that i field is 0, or it can be one register and a 13-bit immediate value

in the case that i is equal to 1.

Most arithmetic and logic instructions can be categorized into two sub-categories. The first

category can set the icc bits in the icc field of the instruction as well as performing the instruction.

This category of instructions has cc at the end of the name of each instruction. The second category

only performs the arithmetic and logic calculation and never touches the icc bits.

Arithmetic and logic instructions are divided into arithmetic, logic, shift, SETHI, multiply,

divide and tagged add/subtract. In this study, these tagged instructions are defined by SPARC and

they are not related to the security tags.

The SETHI instruction is used to create a 32-bit constant value, by using SETHI along with

an arithmetic instruction. The 22-bit immediate value in the SETHI instruction is loaded in the upper

bits of destination register.

3.5.3. Control Transfer

The Control Transfer instructions set the value of NPC to the desired target address. There

are five different sets of instruction in this category, which include conditional Branch, call, Jump,

trap, return from trap, SAVE and RESTORE. ERC32 also supports delayed control transfer.

33

Branch instructions use the icc bits, set by arithmetic instruction, to decide to take branch or

not. There are two branch instructions BA (Branch Always) and BN (Branch Never) that are not

decided based on the icc bits. The result of these two instructions are always or never branch,

respectively. Traps are also occur or not based on the condition codes. In the case of the occurrence

of a trap the following sequence happens. Traps are disabled, the state of the processor is saved, and

current windows pointer is changed to point to the next windows. The address of the trap base

register is copied to PC and the NPC gets the value of PC+4. In the case of returning from a trap,

CWP is restored, the return address is calculated and trap conditions is enabled. State of the

processor is restored and NPC gets the target address.

 The address for the target of a CALL instruction is calculated base on the rules we’ve

discussed. Jump however uses two registers as operands or one register plus 13-bit displacement to

calculate the target address. The return address of the CALL instruction will be stored in %o register

of the current window. The return address for the JUMP instruction will be stored in the register

specified by the rd field of the instruction. SAVE instruction is used to save the current window of

the caller and the RESTORE instruction restores the called window.

3.6. MEmory Controller (MEC)

The MEC is designed to interface FPU and IU to memory and I/O devices. It supports

concurrent error detection and handling. MEC includes necessary system functions such as: [14]

• memory interface to RAM ranging from 256KB to 32MB

• memory interface to PROM ranging from 128KB to 4MB

• System clock

• I/O interface

• Address decoding

• EDAC

34

• wait state generator

• 2 32-bit timers

• interrupt handler

• watch dog

• two UARTs

• Block protection

• test and debug support

The MEC can be reprogrammed to interface with different sizes of RAM ranging from

256KB to 32MB. The default value for the RAM size is 256KB. By using MEC_MCR register, we

can divide RAM size up to 8 different blocks of memory. Each block is composed of 32-bit data,

parity bit and 7-bit check code. The default number of blocks is one.

MEC registers are writeable in the supervisor mode, but they can be read in the user mode.

MEC registers are all 32-bit registers. Each bit or group of bits can be used to perform functionality.

In some of the MEC registers not all 32-bits are used. The bits that are not used in these registers are

marked as reserved bits and will hold a fixed value which is generally a zero. These bits can be read

but they are write-protected.

3.7. Coprocessor

The SPARC architecture uses the IU as the main processing core, but the capability of

adding two coprocessor extensions is also provided. These extensions can be implemented by using

instruction set extensions. The coprocessor extensions are designed so that it can operate

concurrently with the IU and FPU. To support the user-defined coprocessor, the coprocessor should

include an internal register set and a status register as defined by the SPARC architecture.

 The coprocessor register model is defined by SPARC architecture. A coprocessor has up to

32 x 32-bit registers called c registers. All of the operands for the coprocessor instruction are loaded

35

from “c” registers and results are stored in them. Using coprocessor load and store instructions, the

content of these registers can be loaded or stored, to or from memory [11].

The processor can also execute coprocessor instructions which are defined by CPOP1 and

CPOP2 opcodes. CPOP1 and CPOP2 opcodes define instructions that can perform calculation inside

coprocessor. CPOP1 and CpOP2 instructions are encoded via type 3 format.

Coprocessor control/status registers includes Coprocessor State Register (CSR) and

Coprocessor Deferred-Trap Queue (CQ). CSR contains the status of coprocessor and can be checked

upon execution of Coprocessor instructions. Coprocessor exception deferred trap is handled using

CQ.

3.8. Conclusion

In this chapter we discussed features of SPARC instruction simulator that simulates ERC32

processor. We introduced different categories of SPARC instructions set and its register window. We

discussed ERC32 simulated components such as IU, FPU and CP. SIS has lot of functionalizes

implemented in it. We chose set of functionalities that can be used by each tagging technique.

36

Chapter 4. Implementation of DIFT Tagging

Schemes in SIS

Chapter 2 provided background on three different security tagging techniques including

DIFT. This chapter explains the implementation details for the DIFT technique for SPARC. DIFT is

implemented at the instruction level in SIS. In our work, we classify the SPARC instructions base

on the rules for DIFT. The tagging rules are defined for each group of instructions as classified

below:

• Group 1 defines the BRANCH and CALL instructions

• Group 2 defines 35 ALU instructions

• Group 3 defines LOAD, STORE and SWAP instructions

• Group 4 defines CPOP1 and CPOP2 instructions

• Group 5 defines the rest of the instructions

Base on the rules for the DIFT technique, all of the memory locations and registers are

initialized with zero tag value represents untainted tag value. During the instructions execution, tags

are retrieved, manipulated, set in registers’ tags and saved in the memory tags. To perform get and

set of the tag values for the registers and memory locations key functions have been used. The key

functions are called from inside the propagation and checking functions to modify or return the tag

values from the tag data structure [7].

In our framework we decided that tags should be checked before execution of the

instruction. This allows any security exception to prevent instruction execution. To simulate this, we

created the tag_dispatch_interface() function. The tag_dispatch_interface()

function contains the propagation and checking rules needed for all five instruction groups

introduced above. Tag_dispatch_interface() function is called at the beginning of the

37

dispatch_instruction_interface() function of SIS so that the tags are checked and

propagated before execution of instructions.

In a real machine this would be accomplished in parallel with an error preventing completion

of the instruction. Since error detection happens before completion of the instruction, a close

evaluation of the hardware implementation is provided.

4.1. DIFT Initialization of Tag Engine

The DIFT technique keeps a 1-bit location tag for each word in the memory and each

register. The data structure for tags in this technique is shown Figure 4-1. This structure will be

changed for each tagging technique.

C code:
Typedef struct tag
{
 Char dift_tag ;

 } tag_t ;

typedef struct
{
 tag_t r[128] ;
 tag_t g[8] ;
 tag_t pc, cc, cwp, y;
 } UI_TAGS ;

UI_TAGS tags ;

Figure 4-1: DIFT tag data structure

4.2. DIFT Propagation Rules

Propagation rules are rules that are responsible for the tags propagation in different

instructions. Propagation rules are defined for the Groups 2, 3 and 4 of the SPARC instruction as

explained hereafter. Each separate tagging technique will have its own propagation rules.

38

4.2.1. Rules for Group 2 Instructions

Group 2 includes arithmetic, logic and shift instructions as shown in Table 4-1. Propagation

rules for this group of instructions are defined in Table 4-2. The propagation rules state that using

tainted data in arithmetic, logic and shift instructions produce tainted result. All of the instructions in

this group can either have one or two operands. In the case of two operands, rules are described in

Table 4-2. In the case of having one operand, the result’s taint mark is the taint mark for the only

operand.

 For example, executing instruction SUB %g1, %g2, %g3, subtracts the content of %g1 from

the content of %g2 and stores the result in %g3. If either of %g1 or %g2 is tainted then %g3 is

tainted. For instructions which modify the condition codes, propagation rules are exactly the same

regardless of the result of the icc bits evaluation.

Opcode Name
SMUL (SMULCC) Signed Integer Multiply (and modify icc)
UMUL (UMULCC) Unsigned Integer Multiply (and modify icc)
SDIV (SDIVSCC) Signed Integer Divide (and modify icc)
UDIV (UDIVCC) Unsigned Integer Divide (and modify icc)
XNOR (XNORCC) Exclusive Nor (and modify icc)
XOR (XORCC) Exclusive Or (and modify icc)
OR (ORCC) Inclusive Or (and modify icc)
ORN (ORNCC) Inclusive Or Not (and modify icc)
ANDN (ANDNCC) And Not (and modify icc)
AND (ANDCC) And (and modify icc)
SUB (SUBCC) Subtract (and modify icc)
SUBX (SUBXCC) Subtract with Carry (and modify icc)
TSUBCC Tagged Sub and modify icc
TSUBCCTV Tagged Sub and modify icc and Trap on
ADD (ADDCC) Add (and modify icc)
ADDX (ADDXCC) Add with Carry (and modify icc)
TADDCC Tagged Add and modify icc
TADDCCTV Tagged add and modify icc and Trap on
SSL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic

Table 4-1: Implemented ALU instructions

39

TADDCC, TADCCTV and TSUBCC, TSUBCCTV instructions are the same as ADDCC

and SUBCC respectively except that tagged instructions’ result depends on the result of ADDCC and

SUBCC instructions. If bits at location 0 or 1 of any of the operands are not zero, the tag overflow

occurs. Recall this is not a security tag. Also, if the result from an addition instruction causes

overflow then tag overflow occurs, which results is setting the overflow bit in PSR. In case that it

does not cause tag overflow, the overflow bit in PSR is cleared and the result of the calculation is

stored in the destination register. The difference between TADDCC and TADDCCTV or TSUBCC

and TSUBCCTV is that in TADDCCTV and TSUBCCTV is that if the tag overflow occurs,

execution of TADDCCTV and TSUBCCTV instructions cause a trap and the contents of the

destination register and icc bits remain unchanged. The propagation function for these instructions is

called before the tag overflow evaluation to make sure tag overflow doesn’t interfere with the

propagation rules. It would be useful to modify the propagation rules such that register clearing

operations including XOR %r1,%r1,%r1 do not propagate tags. However register cleaning operation

in runtime is not specified in the DIFT specification, therefore they are not implemented here.

 Op1 taint Mark Op2 taint Mark Result taint Mark

 1 0 1

 0 1 1

 1 1 1

0 0 0

Table 4-2: Rules for ALU instructions

4.2.2. Rules for Group 3 instructions

Group3 includes LOAD, STORE, Atomic load store and SWAP instructions. Group 3 can be

divided into three different sub groups according to the similarity of the DIFT propagation and

checking rules. The sub groups are:

• Subgroup 1 defines 12 LOAD instructions

40

• Subgroup 2 defines 8 STORE instructions

• Subgroup 3 defines LDSTUB and SWAP instructions

Following is the detailed description of each subgroup:

• Subgroup 1 defines 12 LOAD instructions

Opcode Name
LDD (LDDA) Load Double word (from Alternate space)
LDSB (LDSBA) Load Signed Byte (from Alternate space)
LDUB (LDUBA) Load Unsigned Byte (from Alternate space)
LDSH (LDSHA) Load Signe Halfword (from Alternate space)
LDUH (LDUHA) Load Unsigned Halfword (from Alternate
LD (LDA) Load Word (from Alternate space)

Table 4-3: Implemented LOAD instructions

Table 4-3 shows the Load instruction in the SPARC architecture. Load instructions copy a

byte, half word, word or double word from memory to the register rd. Load instructions are in

Format 3 instructions of SPARC. In case of a zero “i” field, the effective address to load from is

calculated by adding contents of the registers rs1 and rs2. If the “i” field equals one, the effective

address is calculated by adding the contents of register rs1 to the sign extended simm13. All of the

registers are 32-bits wide, so in the case of loading a byte or half word, the value is right justified in

the destination register. The rest of the bits in the rd register are sign extended if the instruction is

signed load. In the case of executing unsigned load the rest of the bits are filled with zeroes.

Checking rules for Load instruction is defined in such way that if load instructions’ address

is calculated using one register, the DIFT tag for that register is checked. If the value of the tag is

tainted then it causes a security exception. If the address is calculated using two registers, then DIFT

tags of both registers should be checked, and if either one of them is tainted, then program will cause

a security exception.

41

In the case that no exception occurs, the execution of the instruction proceeds to propagating

the tag. Propagation rules for the Load instruction set the tag of the register rd with the tag value of

the data structure of the memory address.

The Load Double Word instruction copies a double word from memory into a register pair.

The LDD instruction loads the contents of the most significant word into the register rd and the less

significant word into the register rd+1.

Checking rules for LDD is the same as other load instructions. Checking rules checks the tag

value of the source register which is used to calculate the target address. In addition source register

causes an exception if the tag value is tainted. However the tag propagation rules are different. The

tag value of the register rd gets the tag of the most significant memory address, and the tag for the

register rd+1 gets the tag of memory address+4. This choice was made since LDD is often used as an

optimization for the copying of large amount of contiguous data, where some adjacent words are

differently tagged.

• Subgroup 2 defines 8 STORE instructions

Opcode Name
ST (STA) Store Word (from Alternate space)
STB (STBA) Store Byte (from Alternate space)
STH (STHA) Store Halfword (from Alternate space)
STD (STDA) Store Doubleword (from Alternate space)

Table 4-4: Implemented STORE instructions

Store Instructions, which are in subgroup 2, are shown in Table 4-4. These instructions store

the contents of the register rd into the specified memory address. ST stores a word from rd into a

word of memory, STB stores the least significant byte of rd into memory and STH stores the lease

significant half word of rd into memory. The address used to store the result is calculated either by

using contents of the register rs1 or both registers rs1 and rs2. If rs1 is the only register that is used to

calculate the address, DIFT checking rules checks the tag for register rs1 to make sure that the

calculated target address does not come from tainted value. If rs1’s tag value is tainted then a

42

security exception occurs. If registers rs1 and rs2 are used to calculate the target address, both of the

tags of these two registers is checked and if either one of them is tainted, the program throw an

exception.

 If the checking phase passed in the two scenarios explained before, the program proceeds to

the propagation phase. In the propagation phase the memory address gets the tag value of the register

rd.

Store Double Word instruction, stores a value from the registers rd and rd+1 to the memory

at the effective address and effective address+4 respectively. The effective address is the address of

the most significant. The effective address is calculated using register rs1 or rs1 and rs2. The address

of less significant word is effective address+4. Therefore rs1 or rs1 and rs2 should be checked. If the

rs1 (in first case) or rs1 and rs2 (in second case) have zero tag value, tag propagation takes place.

Tag propagation copies the tag values of the registers rd and rd+1 to the effective address and

effective address+4 respectively.

• Subgroup 3 defines LDSTUB and SWAP instructions

Opcode Name
LDSTUB (LDSTUBA) Atomic Load-Store unsigned Byte (from
SWAP (SWAPA) Swap r Register with Memory (from Alternate

Table 4-5: Implemented LOAD-STORE and SWAP instructions

Subgroup 3 instructions are shown in Table 4-5. The LDSTUB instruction loads a byte from

memory to the register rd and then writes 1 to all of the bits in the address specified in the

instruction. The address to load from and store to, is either calculated using rs1 or rs1 and rs2. In the

checking rules for LDSTUB the tag value for the rs1 or rs1 and rs2 are checked. If any of the tag

values of rs1 or rs2 is tainted the program causes a security exception, otherwise tags are propagated.

Propagation rules are different based on the nature of the LDSTUB. For the load part of the

instruction, register rd gets the tag value of the specified memory byte. In the store part of the

43

instruction, since the memory byte is filled with 1’s which is a constant value, the tag of the memory

byte is cleared.

The SWAP instruction, like LDSTUB, consists of two instructions executed atomically. It

swaps the content of the register rd with a word in the memory. At first the effective address of the

specific word in the memory is calculated by using the register rs1 or registers rs1 and rs2. The

SWAP instruction loads content of the memory to a temporary register, following by storing content

of the register rd to memory which after the temp value is stored in the register rd. Checking takes

place for the registers which used to produce the memory address. The same thing happen for the tag

values, after calculating the effective address, the tag value for this address is stored in the temporary

value. The tag value of register rd will get overwritten to the tag value of the memory address and

the temporary tag value will be stored as the tag value of register rd.

4.2.3. Rules for Group 4 instructions

CPOP1 and CPOP2 instructions constitute group 4 instructions. CPOP1 and CPOP2

instruction are in Format 3 in the SPARC architecture instruction format. Although the

implementation of the CPOP is not in the SPARC architecture, we used these instructions by hard

coding functionalities. We used the Coprocessor to implement the tag engine and tag related function

inside the tag engine. The 9 bit opc field of the coprocessor provides the ability to define up to 29

different instructions for each one of the CPOP1 and CPOP2 instructions. In our implementation we

used CPOP1 to control tag engine by turning it on or off. We defined a set of instructions as shown

in Table 4-6.

CPOP1 Opc Field Value Address in HEX Format
CPOP_TURN_ON_TAGGIN 0 0x81B00000
CPOP_TURN_OFF_TAGGI 1 0x81B00020

Table 4-6: New CPOP1 instructions

The two inline assembly functions _rtems_tag_enable() and

_rtems_tag_disable() are created as an interface so that the CPOP tag engine can be turned

44

on and off respectively from users’ programs. If either of these instructions is executed by the user,

tag_dispatch_interface() executes the cpop1 instruction. In the beginning of execution of

each instruction in the tag_dispatch_interface() the cpop variable is checked. If cpop1 is

not set it means that no tagging instruction is allowed to execute unless the tag engine is on. If the

user requests to turn off the tag engine, the cpop variable value is set to false and all of the register

tags are cleared. If execution of an instruction causes an exception at any point of the execution in

the tag_dispatch_interface() , the cpop value will set to false and the program execution

will be forwarded to security exception handling.

CPOP2 instructions are responsible for manipulating tag values in the tag engine. These

instructions can set, clear and return the tag value for a specific memory location in the DIFT tag

engine.

Since these instructions are responsible for programming the coprocessor, CPOP1 and

CPOP2 instructions always execute whether the cpop flag is true or false.

CPOP1 Opc Field Value Address in HEX Format
CPOP_SET_DIFT_TAG 0 0x87B84002
CPOP_CLEAR_DIFT_TAG 1 0x87B84022
CPOP_GET_MEMORY_TA 2 0x87B84042

Table 4-7: New CPOP2 instructions

Executing CPOP2 instruction will yield to execution of the cpop function. Cpop function

takes the opc value of the CPOP2, the address whose tag needs to be manipulated and the result

register as an argument. Each value of the opc during the execution of cpop2 function provides

separate scenarios of the tag manipulation. These scenarios can be described as setting the tag for a

specific address, clearing the tag of a specific address, and returning the tag value of a specific

memory location.

CPOP2 instructions are executed as a result of any of the following function calls from the

user’s program:

• _rtems_set_dift_tag(addr)

45

• _rtems_clear_dift_tag(addr)

• _rtems_get_memory_tag(addr)

These three functions use the inline assembly routines to set, clear and return the tag values

for the specific address provided by the user.

4.2.4. Rules for Group 5 instructions

The rest of the instructions are floating point instructions, trap instruction and SETHI

instruction. Since we didn’t implement any of the tagging techniques for the floating point

instruction, execution of these instructions neither causes a security exception nor modifies the result

tag. The trap instruction follows the same rule as the floating point instruction meaning that it

doesn’t have any effect on the tag engine. However executing the SETHI instruction modifies the

result tag. As described in the SIS background chapter, executing SETHI instruction results in

writing a constant value to the destination register. Since the value written is a constant, the register

gets the tag value of zero. However, there are no checking rules for the SETHI instruction.

4.3. DIFT checking rules

Checking rules check the tag for specific instructions base on the DIFT rules. In the case of

illegitimate access, the checking function will cause a security exception. Checking rules are defined

for Group 1 of the SPARC instruction as defined in the remainder of this section.

4.3.1. Rules for Group1 instructions

Group 1 instructions are shown in Table 4-8. CALL and Branch instructions are in Format 1

and Format 2 of the SPARC instructions respectively. JMPL and RETT instructions are both in

Format 3 of the SPARC instructions. According to DIFT rules, data that carries tag value of one is

tainted data. If the calculated target address for Group 1 instructions is tainted, then execution of

46

these instructions is not allowed and state of the system will change to illegitimate state, which

causes a security exception. This group of instructions never propagates tags.

Opcode Name
CALL Call and Link
Bicc Branch on integer condition code
JMPL Jump and Link
RETT Return from Trap

Table 4-8: Implemented CALL, BRANCH, JUMP and RETURN instructions

In the Group 1 instructions the register NPC gets the result target address. This value is

passed to the tag_check(npc) function. This function checks the NPC’s tag. If the NPC has a

tainted tag value, execution of the instruction is forwarded to the exception handler. Different

scenarios for each instruction in Group 1 are defined here under:

CALL Instruction: The CALL instruction stores content of the PC into r[15] which is %o7.

Since CALL is Format 1 instruction of the SPARC, it takes the value of the disp30 field of

the instruction. It attaches 2 zero bits at the beginning of dsip30 to make it 32 bits. Then it

stores the value as a jump address in the NPC. After calculating jump target address,

tag_check_CALL() is called. The calculated address is passed as an argument to this

function so it can be evaluated.

Branch Instruction: Conditional branch instructions contain Branch Always (BA) and

Branch Never (BN) instruction. BN never takes the branch which means it is a NOP. BA

always takes the branch regardless of the status of icc field. Other branch instructions

evaluate the condition code in the icc register by using comparison and creates a result based

on the result of the comparison. This result can be either true or false. If the result of

evaluating icc for a Bicc instruction is true then tag_check_branch(npc) function is

called.

47

JUMP Instruction: JMPL instruction stores the contents of PC into a register specified in

the rd field of the Format 3 instructions. NPC gets the value of r[rs1]+r[rs2] in the case that

the “i” field is zero, or r[rs1]+sign-extended[simm13] if the “i” field is 1, as a jump target

address. After calculating jump target address, tag_check_JMPL() is called to evaluate

the target address’s tag value.

RETT Instruction: RETT instruction is used to return from a trap handler. NPC gets the

value of the r[rs1]+r[rs2] in the case that i field is zero, or r[rs1]+sign-extended[simm13].

After calculating jump target address, tag_check_RETT() is called and it checks the

contents of the tag for the target address.

As we mentioned, the Group 1 of instructions never sets a tag for any specific address so they

only check for the illegitimate use of data.

4.4. Conclusion

In this chapter we introduced instruction level rules for the DIFT tagging engine. We defined

the implemented data structure for the DIFT. We categorized SPARC instructions into different

groups and defined propagation and checking rules for each group. We then introduced the set of

new API’s that added to the DIFT tag engine inside coprocessor. These API’s are used to enable or

disable tag engine operations or manipulate tags.

48

Chapter 5. Implementation of Memory

Bound Checking technique in SIS

The Memory Bound Checking technique was implemented by using the coloring scheme

introduced by Clause et al. [9]. The BC technique assigns a tag to each memory location and

pointers. As we described in the background chapter, during memory allocation, the BC technique

assigns the same tag value of location and pointer color for the allocated memory. During the

program execution, the pointer tags is propagated and checked whenever a memory location is

needed to be accessed. If the pointer and memory tags do not match, program execution is forwarded

to the exception handler.

We implemented the Bound Checking technique in the SIS. The coprocessor maintains 4-

bits tag for pointer color for each register and word in memory. It also keeps 4-bits tag for location

color for each memory location. The tags set by special instructions implemented in the coprocessor.

Based on the instruction execution, the tags are propagated. The tag result is checked to see if the

pointer color matches the location color of the memory location. If these two values don’t match the

coprocessor throws an exception. A detailed description of implementing the BC technique is

explained in this chapter.

5.1. BC Initialization of Tag Engine

The BC technique keeps a 4-bit location color and pointer color tags for each word in

memory. It also keeps a 4-bit pointer color tag for each register. The data structure for tags in this

technique is in Figure 5-1:

49

C code:
Typedef struct tag
{
 Char location_color ;
 Char pointer_color ;
 } tag_t ;

typedef struct
{
 tag_t r[128] ;
 tag_t g[8] ;
 } UI_TAGS ;

UI_TAGS tags ;

Figure 5-1: MBC Tag data structure

As it’s shown in Figure 5-1, pointer color and location color are assigned to each memory

location and register. Location color for registers is not initialized or used during the program

execution, since location color is only associated with memory locations.

We defined a value for initializing untainted location and pointer colors. This value can be

any number outside the range of 0 to 15. In the beginning of the coprocessor initialization, all of the

words in memory and register location and pointer colors will be set to this value. Also we should

mention that untainted value is different from tag value 0. Tag values can be any value between 0

and 15.

One of the key points in initialization and propagation of the tags is their range. Tags are

stored in 4-bit Char locations so they cannot go below zero nor above 15. To ensure that, every time

a tag value is going to get set, we use mod 16 operation to prevent overflows or underflows.

5.2. BC Propagation rules

Tag propagation rules are implemented based on the rules described in Clause et al. [9]

paper. Based on the described propagation rules, we classified the SPARC instructions into 7 groups:

• Group 1 defines MUL, DIV, OR and XOR ALU instructions.

50

• Group2 defines SUB ALU instructions

• Group3 defines ADD ALU instructions

• Group 4 defines AND ALU instructions

• Group 5 defines LOAD instructions

• Group 6 defines STORE instructions

• Group 7 defines SWAP and LDSTUB instructions

• Group 8 defines CPOP1 and CPOP2 instructions

• Group 9 defines the rest of instructions

A common scenario exists among propagation rules for all groups of instructions. It is

possible that none of the operands are tainted. This case should be handled appropriately to prevent

any non deterministic behavior in the code.

5.2.1. Rules for Group 1 instructions

Opcode Name

SMUL (SMULcc) Signed Integer Multiply (and modify icc)

UMUL (UMULcc) Unsigned Integer Multiply (and modify icc)

SDIV (SDIVcc) Signed Integer Divide (and modify icc)

UDIV (UDIV) Unsigned Integer Divide (and modify icc)

MULScc Multiply Step (and modify icc)

DIVScc Divide Step (and modify icc)

IOR (ORcc) Inclusive-Or (and modify icc)

IORN (ORNcc) Inclusive-Or Not (and modify icc)

IXOR (XORcc) Exclusive-Or (and modify icc)
IXNOR (XNORcc) Exclusive-Nor (and modify icc)

Table 5-1: Implemented MUL, DIV, OR and XOR instructions

 Op1 taint Mark Op2 taint Mark Result taint Mark

 top1 Untainted Untainted

 Untainted top2 Untainted

 top1 top2 Untainted

Untainted Untainted Untainted

Table 5-2: Rules for Group1 Instructions

51

Multiply, Division, OR and XOR instructions are shown in Table 5-1. These instructions are

either conditional or unconditional. No matter if the input is tainted or not, the result will always be

untainted. This logic is shown in Table 5-2. Executing any of the Group1 instructions will make a

call to their specific propagation functions. This function will remove the tag for the specific

register’s pointer color.

5.2.2. Rules for Group 2 instructions

Opcode Name

SUB (SUBcc) Subtract (and modify icc)

SUBX (SUBXcc) Subtract with Carry (and modify icc)

TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on
overflow)

 Table 5-3: Implemented SUB instruction

 Op1 taint Mark Op2 taint Mark Result taint Mark

Untainted Untainted Untainted

 top1 Untainted top1

 Untainted top2 top2

 top1 top2 top1 - top2

 Table 5-4: Rules for Group 2 instructions

Arithmetic instruction Subtract is shown in Table 5-3. Instruction such as SUB %g2, %g1,

%g3 will subtract the value in %g2 from the value in %g1 and will store the result value in %g3.

According to the rules shown in Table 5-4, the pointer color of %g1 and %g2 are checked to

calculate the result pointer color of the %g3. In immediate type SUB instruction, the result pointer

color is the pointer color of the register. We also treat the instructions that change the conditional

code the same as the usual instructions, so the rules for these two types of instructions are the same.

5.2.3. Rules for Group 3 instructions

52

Opcode Name

ADD (ADDcc) Add (and modify icc)
ADDX (ADDXcc) Add with Carry (and modify icc)

TADDcc (TADDccTV) Tagged Add and modify icc (and Trap on
overflow)

 Table 5-5: Implemented ADD instruction

 Op1 taint Mark Op2 taint Mark Result taint Mark

Untainted Untainted Untainted

 top1 Untainted top1

 Untainted top2 top2

 top1 top2 top1 + top2

Table 5-6: Rules for Group 3 instructions

ADD instructions forms Group 3 of instructions shown in Table 5-5. These instruction

propagation rules shown in Table 5-6 are similar to propagation rules described for SUB instructions.

The main difference is caused by the way the technique calculates the result register’s pointer color.

In this group we add the two pointer color values of the register operands and in the case of

immediate value, the result pointer color is the pointer color of the register, whether it is an untainted

register or register with a pointer color.

5.2.4. Rules for Group 4 instructions

Opcode Name

IANDN (IANDcc) And Not (and modify icc)
IAND (IANDcc) And (and modify icc)

 Table 5-7: Implemented AND instruction

53

 Op1 taint Mark Op2 taint Mark Result taint Mark

Untainted Untainted Untainted

 top1 Untainted top1

 Untainted top2 top2

 top1 top2 Untainted

Table 5-8: Rules for Group 4 instructions

Group 4 instructions shown in Table 5-7. In instruction AND %g1, %g2, %g3 if both of

the %g1 and %g2 are tainted or untainted, %g3 will be untainted. In cases that one of %g1 and %g2

is tainted, %g3 will be tainted if it points to an address in the same memory area as the tainted

operand. The rules for this group of instruction are shown Table 5-8.This can be implemented by

using a heuristic. For example a check should be done to see if the first 16-bits of the value of %g3

and tainted register match each other. Otherwise it will be a situation such as masking a value by

performing AND to an operand and 0x0000 value.

5.2.5. Rules for Group 5 instructions

Opcode Name

LDSB (LDSBA) Load Signed Byte (from Alternate space)

LDSH (LDSHA) Load Signed Halfword (from Alternate space)
LDUB (LDUBA) Load Unsigned Byte (from Alternate space)
LDUH (LDUHA) Load Unsigned Halfword (from Alternate

space)
LD (LDA) Load Word (from Alternate space)
LDD (LDDA) Load Doubleword (from Alternate space)

 Table 5-9: Implemented LOAD instruction

Table 5-9 shows Load instructions in SPARC architecture. Load instructions copy a value

from memory space to a register. For example, the instruction LD [%fp-16], %o1 loads content

of the memory space [%fp-16] to %o1 register. The destination register pointer color gets the

pointer color of the address which is loaded a value from, whether this value is an untainted value or

any color in the range of 0 to 15.

54

We classified the Load Double word instruction in the same group as Load instructions.

These instructions are basically the same in our implementation. Load Double word instructions

move a double word from memory into a register pair. To implement these instructions, we perform

two calls to the load propagation function. In the first call the pointer color of the memory address is

copied to the pointer color of the specified register. In the second call the pointer color of the

adjacent memory location is copied to the pointer color of the next register in the register pair.

5.2.6. Rules for Group 6 instructions

Opcode Name

STB (STBA) Store Byte (into Alternate space)

STH (STHA) Store Halfword (into Alternate space)
ST (STA) Store Word (into Alternate space)
STD (STDA) Store Doubleword (into Alternate space)

Table 5-10: Implemented STORE instruction

Table 5-10 has a list of Store instructions in the SPARC architecture. Store instructions copy

a value from a register into memory. Store instructions propagation rules can be implemented the

way similar to Load instructions, except that the pointer color of the specific register will be copied

to the pointer color of the address. Store Double word instructions also copy a double word from

register pair into the memory. In this case same as the load double word, we use the same

propagation rules twice, so that the pointer color of the register pair is copied to the pointer color of

the adjacent memory locations.

5.2.7. Rules for Group 7 instructions

SWAP and LDSTUB instructions are from the type of load-store instructions. These

instructions are implemented as an atomic load and store instructions. We treat these two instructions

the same. We actually didn’t implement separate propagation rules. We used the load propagation

rules for the specific address and register, then we used the store propagation rules for the address

and a fixed untainted value for the pointer color of the register, so that storing a fixed value results in

an untainted value in memory.

55

Opcode Name

LDSTUB (LDSTUBA) Atomic Load-Store Unsigned Byte (in
Alternate space)

SWAP (SWAPA) Swap r Register with Memory (in Alternate
space)

 Table 5-11: Implemented Load/Store and SWAP instruction

5.2.8. Rules for Group 8 instructions

CPOP1 and CPOP2 are implemented for UMC to control the tag engine. The coprocessor

should be enabled at the beginning of execution of the UMC technique. The CPOP1 instruction is

responsible for enabling or disabling coprocessor. If execution of an instruction causes a security

exception, then coprocessor is turned off, so no other instruction can produce another exception and

gets executed after the security exception. Tag engine can be turned on and off from user’s program

by calling _rtems_tag_enable() and _rtems_tag_disable() functions. Calling the

_rtems_tag_enable() function from the user’s program will cause the execution of the

tag_dispatch_interface() . However calling the _rtems_tag_disable() function

will abort execution of tag_dispatch_interface() .

The CPOP2 instructions are responsible for manipulating the memory location tags and also

memory and pointer color tags. These instructions are technique specific, meaning that they are

hardcoded individually for each security tagging technique. We used the instructions provided in the

Table 5-12 to set/clear the BC tag or to return the tag value of a specific memory address.

CPOP1 and CPOP2 instructions always execute, whether the cpop flag is true or false, since

these instructions are responsible for programming the coprocessor.

CPOP2 instructions are executed as a result of any of the following function calls from the

user’s program:

• _rtems_set_pointer_color

• _rtems_set_location_color

• _rtems_clear_bc_pointer_color

56

• _rtems_clear_bc_location_color

• _rtems_get_memory_pointer_color

• _rtems_get_memory_location_color

• _rtems_set_register_pointer_color

CPOP2 Opc Field Value Address in HEX
CPOP2_SET_POINTER_COLOR 5 0x87B840A2
CPOP2_SET_LOCATION_COLOR 6 0x87B840C2
CPOP2_CLEAR_POINTER_COLOR 7 0x87B840E2
CPOP2_CLEAR_LOCATION_COLOR 8 0x87B84102
CPOP2_GET_MEMORY_LOCATION_COLOR 9 0x87B84122
CPOP2_GET_MEMORY_POINTER_COLOR 10 0x87B84142
CPOP2_SET_REGISTER_POINTER_COLOR 11 0x87B84162

 Table 5-12: New CPOP2 instructions

The above function calls are hardcoded functionalities that added to the tagging technique so

we can manipulate tags from user’s program. In a real implementation, the compiler would insert

these calls into the code. Execution of any of the instructions from user’s program sets the opc and

address field of the CPOP2 instruction. Then the arguments will be passed to a cpop2() function.

Based on the argument the cpop2() function decides to set/ clear the location color/pointer color,

or return the memory color.

5.2.9. Rules for Group 9 instructions

The rest of the instructions are floating point instructions, trap instruction, Branch and Call

instructions. Since we didn’t implement any of the tagging techniques for the floating point

instruction, execution of these instructions will neither cause a security exception nor modify the

result tag. Trap instruction also follows the same rule as the floating point instruction means it

doesn’t have any effect on the tag engine. Also base on BC’s rules, control dependency instructions

are disregarded. Therefore executing any of the control dependency instructions such as Branch and

Call have no effect on the flow of tag engine code.

57

5.3. BC checking rules

Checking rules for BC intercepts any memory access whether it is Load or Store through a

pointer. If memory location and the pointer which is used to access, have the same tag value,

checking is passed. Conversely, if memory location and pointer have different taint mark, program is

halted and it throws exception.

The load checking rule checks the tag value of the effective address for load instruction. The

effective address is calculated by adding the contents of two operand registers, if i field is zero, or it

is calculated by adding the content of register operand and sign extended immediate value, if i field

is one. The load checking rule extracts the pointer color associated with these two register operands

and adds them. In the next step the checking rules check to see if the specified address location color

matches the calculated pointer color. If the two values match then this access is considered legal

access. We should also mention that there are some special cases that both the value of the location

color of the address and calculated pointer color are the same but they are both untainted. We count

this scenario as an illegal access so it throws an exception in this case for both load and store

instructions. Checking rules for store instruction is also the same as load. Pointer color tags for

registers that are used to calculate the store address get checked. If they are the same as the location

color of memory which the result is going to be store into, then the access considered as a legal

access. In both load and store instructions, if pointer color and memory location color do not match,

IMA occurs and the program execution will be forwarded to the exception handler.

5.4. Conclusion

In this chapter we defined the instruction level implementation of BC technique tag engine.

We defined the data structure for memory locations and registers in the tag engine. We categorized

SPARC instructions into different groups and defined propagation and checking rules for each

group. We then defined the set of API’s that can enable or disable the tag engine. API’s also are

capable of manipulating tags for registers and memory locations.

58

Chapter 6. Implementation of Uninitialized

Variable tagging technique in SIS

Uninitialized Memory checking is a common technique implemented to prevent reading

from an unutilized memory. Chapter 2 gives background on this technique. In this chapter we

describe the implementation of a UMC technique in SIS. A one bit tag is associated with each

memory location for the UMC technique, which is initialized to zero at the beginning of execution of

the program.

Writing a value to a specific location using store instruction set the tag for the location.

Loading a value from the memory location performs a check on this tag to make sure it is initialized.

The tag value equal to zero indicates that the memory location is uninitialized; therefore the load will

result in a security exception. The UMC implementation configures SIS so that execution of the load

and store instructions is forwarded to the tag engine. The tag engine also implements some

intermediate instructions to set or get the tag value of the specific memory locations.

6.1. UMC Initialization of Tag Engine

Figure 6-1 shows the data structure of tags in the UMC technique. The tag value of a

memory location can be extracted by translating the memory address to the address of the

corresponding 1-bit tag in the tag engine data structure. For ease of implementation in the simulator,

we assigned a character to tags but we only use 1-bit of the character. The 1-bit memory address’s

tag is extracted by adding an index value to the base address of tag data structure. The index value is

equal to its corresponding memory index value from the memory base address. The functions that

perform the address resolution for setting and getting tag values are get_umc_tag() and

set_umc_tag() respectively.

59

Figure 6-1: UMC tag engine data structure

Implementing the UMC technique requires defining propagation and checking rules for load

and STORE instructions. The following list classifies each group of instructions for the UMC

technique.

• Group 1 defines load instructions

• Group2 defines store instructions

• Group3 defines load/store instructions

• Group 4 defines the rest of instructions

The UMC memory is the only place where affected by carrying, initializing and clearing

tags. Thereafter registers are not affected with the tags and do not need associated tagging rules.

In the beginning of the SIS execution, the one-time initialization function assigns the zero tag values

for each RAM memory location.

6.2. UMC propagation Rules

Tag propagation rules are implemented for store and load/store instructions which are

categorized in group 2 and 3 SPARC instructions. UMC tag propagation rules set the tag value of the

address accessed through store instruction.

6.2.1. Rules for Group 2 instructions

The store instructions set the tag for memory address. This group of instructions takes the

address of instruction and they set the tag value for the specific address to one. There are no

 C code:

struct tag
{
 char umc_tag;
};
typedef struct tag tag_t;
tag_t tag_ram[(RAM_END - RAM_START)>>2];

60

checking rules implemented for this group of instructions, so whenever the system wants to write a

value to a specific memory address, the tag value for the address is set.

Opcode Name

STB (STBA) Store Byte (into Alternate space)

STH (STHA) Store Halfword (into Alternate space)
ST (STA) Store Word (into Alternate space)
STD (STDA) Store Doubleword (into Alternate space)

Table 6-1: Implemented STORE instructions

6.3. UMC checking rules

Checking rules for UMC intercepts any memory load instruction. If memory location that is

used to load a value from is tagged, checking is passed. Conversely, if memory location is not

initialized hence not tagged, the program throws an exception. Checking rules are implemented for

Group 1 instructions. Also the load part of load/store instruction also gets checked using the same set

of rules for load.

6.3.1. Rules for Group 1 instructions

As described before, the load instruction checks the memory location’s tag value to see if it

is initialized or not. Instructions in this group never initialize or modify a tag, they only check the

tags. The checking rules for this group take the address from the instruction, translate the address to

get the tag value and check its tag value. If the tag value is not one, meaning the memory location is

uninitialized; it throws a security exception and doesn’t load the value.

Opcode Name

LDSB (LDSBA) Load Signed Byte (from Alternate space)

LDSH (LDSHA) Load Signed Halfword (from Alternate space)
LDUB (LDUBA) Load Unsigned Byte (from Alternate space)
LDUH (LDUHA) Load Unsigned Halfword (from Alternate

space)
LD (LDA) Load Word (from Alternate space)
LDD (LDDA) Load Doubleword (from Alternate space)

Table 6-2: Implemented LOAD instructions

61

6.3.2. Rules for Group 3 instructions

Group 3 instructions include the atomic load/store instruction and the swap instruction. The

proper way to handle the LDSTUB instructions is to check the tag value of the specific memory

location that is going to be used to load the value. Then LDSTUB sets the tag for the memory

location that will be written to. The swap instruction also consists of a load and store instruction. In

the load part, both memory locations should be checked. If either location is uninitialized, the swap

instruction is halted and security exception is raised. This group of instructions is the only group that

has both propagation and checking rules implemented. SWAP instruction, however, doesn’t need

the propagation rules since both the tags have to be set.

Opcode Name

LDSTUB (LDSTUBA) Atomic Load-Store Unsigned Byte (in
Alternate space)

SWAP (SWAPA) Swap r Register with Memory (in Alternate
space)

Table 6-3: Implemented LDSTUB and SWAP instructions

6.3.3. Rules for Group 4 instructions

CPOP1 and CPOP2 are implemented in UMC to control the tag engine. The coprocessor

should be enabled at the beginning of the UMC technique execution. The CPOP1 instruction is

responsible for enabling or disabling the coprocessor. If the execution of an instruction causes a

security exception, then the coprocessor is turned off. By turning off the coprocessor no other

instruction can produce another exception and all will be executed executed after the security

exception. Also, as we discussed before, tag engine can be turned on and off from user’s program by

calling _rtems_tag_enable() and _rtems_tag_disable() functions. Calling the

_rtems_tag_enable() function from the user’s program causes the execution of the

tag_dispatch_interface() . However calling the _rtems_tag_disable() function

aborts execution of tag_dispatch_interface() .

62

There are also some instructions added using the CPOP2 instruction format. These

instructions are technique specific, meaning that they are hardcoded individually for each security

tagging technique. We used the instructions provided in Table 6-4 to set or clear the UMC tag or to

return the tag value of a specific memory address.

CPOP1 and CPOP2 instructions always execute, whether the cpop flag is true or false, since

these instructions are responsible for programming the coprocessor.

CPOP1 Opc Field Value Address in HEX Format
CPOP_SET_UMC_TAG 3 0x87B84062
CPOP_CLEAR_UMC_TAG 4 0x87B84082
CPOP_GET_MEMORY_TAG 2 0x87B84042

Table 6-4: New CPOP2 instructions

CPOP2 instructions are executed as a result of any following function calls from the user’s

program:

• _rtems_set_umc_tag(addr)

• _rtems_clear_umc_tag(addr)

• _rtems_get_memory_tag(addr)

The above function calls are hardcoded functionalities that are added to the tagging

technique so we can manipulate tags from user’s program. Execution of any of the instructions from

user’s program sets the opc and address field of the CPOP2 instruction. Then the arguments are

passed to a cpop2() function. Based on these arguments the cpop2() function decides to set or

clear the UMC tag or return the memory tag.

6.3.4. Rules for Group5 instructions

All of the instructions except the Groups 1 to 4, doesn’t have any effect on the UMC tagging

technique, so execution of these instructions simply return from the

tag_dispatch_instruction() without modifying any tag.

63

6.4. Conclusion

In this chapter we defined the instruction level implementation of UMC technique tag

engine. We defined the data structure for memory locations and registers in the tag engine. We

categorized SPARC instructions into different groups and defined propagation and checking rules for

each group. We then defined the set of API’s that can enable or disable the tag engine. API’s also are

capable of manipulating tags for registers and memory locations.

64

Chapter 7. Evaluation and Analysis

The assumption of increasing the probability of catching malicious attacks by adding

security tags to the data is the foundation of current study, yet a set of test suits is needed to support

the basic assumption. The evaluation of this work with respect to several hardware and software

issues has been done by:

• Testing prevention of known vulnerable programs and real world vulnerabilities by

running them against each related techniques. Each technique is developed to prevent

special types of attacks. These attacks are described in the background section of each

technique. For example, we can validate the effectiveness of DIFT technique against

different types of buffer overflows. To demonstrate this, we have performed a series of

tests on the buffer overflow vulnerable code using DIFT technique to evaluate its

effectiveness.

• Evaluating the effectiveness of propagation and checking instructions that have been

developed based on the rules for each technique. This evaluation can be done by

designing a technique-based test suite and running it against the related technique.

• Running the RTEMS test suites for each of the techniques. In this way we are able to

compare the performance of DIFT, BC and UMC on the same set of test suites.

7.1. Implementation Testing and test case design

In this section, we describe each set of tests that has been developed to validate each

technique based on the desired implementation notes. We picked different groups of instructions as

65

described in each technique and ran the test against them. We also defined a set of propagation and

checking rules for each technique.

7.1.1. DIFT Rule- verification Testing

As we discussed in Chapter 4, DIFT rules are defined for 5 different categories of

instructions. We designed a set of test suites to cover all propagation and checking rules for these 5

categories. We also break down the testing into more precise testing. Precise testing feeds in all the

permutation of input tags to the test suite, calculates the output tag and compares it with the desired

output tag. Figure 7-1 shows a sample of test implemented for one of the category of instructions in

DIFT.

We test Category 1 branch and call instructions by implementing test cases that include

decision statements. We also implemented different test cases with multiple outcomes of decision

statements to verify that all propagation and checking rules for Category 1.

Category 2 which defines ALU instructions has the most instructions among the DIFT

categories. Although running each of the instruction in this category forwards the execution to the

same propagation and checking routine, we implemented different test cases to validate the

consistency in each instruction testing result. Each test case has a set of instructions which belong to

this category. Then we compared the results of each instruction with the desired DIFT result.

 Category 3 defines rules for load and store instructions. We tested this category by

manipulating arrays with both tagged and untagged values. In Figure 7-1 we can see a sample of

code that has both load and store instruction implemented. In Figure 7-2, we included the assembly

code for the highlighted portion of the C code. Through the highlighted code the tag engine is turned

on and a tagged value tries to access one element of an array. This case causes an exception since

this test case violates the DIFT rules.

66

 Figure 7-1: Sample C code for Testing

 Figure 7-2: Corresponding Assembly code for the test

 C code:

volatile uint32 value1 = 2;

int main(void)
{
 int array[3];

 tag_t tag1,tag2;
 tag_t new_tag;

 _rtems_set_dift_tag((addr_t)&value1);

 printf("Turning on the tag engine \n");

 asm(CPOP_TURN_ON_TAGGING);

 array[value1] = 4;

 asm(CPOP_TURN_OFF_TAGGING);

 return 0;

 Assembly code:

! 25 "test.c" 1
 .word 0x81B00000
! 0 "" 2
 .loc 1 27 0
 mov 4, %g2
 ld [%l0+%lo(value1)], %g1
 sll %g1, 2, %g1
 add %fp, %g1, %g1
 st %g2, [%g1-12]
 .loc 1 29 0
! 29 "test.c" 1
 .word 0x81B00020

67

 Figure 7-3: Result of running C code inside DIFT tag engine

7. Buffer overflow detection with DIFT

We ran different scenarios of buffer overflow tests to determine the effectiveness of DIFT.

We took samples of the buffer overflow code from “Diagnostic Test Suite for evaluating buffer

overflow detector” from software assurance reference database [15].

We also ran a couple of tests in a case that a tagged value has been used indirectly to

calculate the result address for storing data. DIFT rules also catch this type of tests. A sample of the

buffer overflow tests is shown in Figure 7-4 and the corresponding result for the code is shown in

Figure 7-5.

Figure 7-4: Buffer Overflow test

 Results:

in function tag_check_st_imm address for storing is : 1 and
dift tag for source1 is:1
EXCEPTION HAPPEND BECAUSE OF STORE INSTRUCTIONS WITH SOURCE2
AS IMMEDIATE
Unexpected trap (40) at address 0x020012B4

 C code:

volatile uint32 value1 = 123;
volatile uint32 value2 = 456;
int main(void)
{
 tag_t tag1,tag2;
 tag_t new_tag;
 _rtems_set_dift_tag((addr_t)&value1);

 uint32 *value1_ptr = &value1;
 _rtems_set_dift_tag((addr_t)&value2);

 asm(CPOP_TURN_ON_TAGGING);
 *(value1_ptr + value2) = 3;
 asm(CPOP_TURN_OFF_TAGGING);
}

68

 Figure 7-5: Buffer Overflow result

7.1.2. UMC Rule- verification Testing

Test suites are developed to evaluate UMC rules that are described in Chapter 6. One set of

test suites relates the tag propagation by initializing a variable through other initialized variable. In

Figure 7-6, the C code related to this example is shown. Figure 7-7 describes the assembly code for

the code section highlighted in Figure 7-6.

Note that using non volatile variables causes the system to do some optimization to remove

the need of initializing variables. To make sure that we fully tested the functionality of UMC testing

we should disable any compiler optimization by using volatile variables.

 Figure 7-6: UMC tag propagation test

 Results:

in function tag_check_st dift tag for source1 is:0 and dift
tag for source2 is:1
EXCEPTION HAPPEND BECAUSE OF STORE INSTRUCTIONS WITH SOURCE2
AS REGISTER
Unexpected trap (40) at address 0x020012C0

 C code:

int main (void)
{
volatile uint32 value1 ;
 value1 = 123;
 int new;

 _rtems_set_umc_tag((addr_t)&value1);

 asm(CPOP_TURN_ON_TAGGING);

new = value1;

asm(CPOP_TURN_OFF_TAGGING);
}

69

 Figure 7-7: UMC tag propagation Assembly code

Figure 7-8: UMC tag propagation result

The other set of tests for UMC are designed base on initializing arrays. We initialized the

first element in an array using _rtems_set_umc_tag() function. We used the first element in

the array to initialize the next element. Each element in an array is initialized with the content of

previous array element. We initialized the first element in an array and checked the tag value of the

last element to see how UMC tags get propagated. This test verifies a memory address initialization

results in initializing its corresponding tag value. Once a memory address is initialized; the

corresponding tag keeps its value throughout the program.

7.1.3. MBC Rule- verification Testing

Bound checking technique rules are some sort of combination of UMC rules and DIFT rules.

Memory access rules are implemented like UMC while the other instructions’ rules are implemented

like DIFT with modification.

 Assembly code:

 .word 0x81B00000
! 0 "" 2
 .loc 1 19 0
 ld [%fp-4], %g1
 st %g1, [%fp-8]
.LLVL1:
 .loc 1 21 0
! 21 "init.c" 1
 .word 0x81B00020

 Results:

In function _rtems_set _umc_tag, value1 address is: 33719404
cpop is set to true
cpop is set to false

the result tag for new is:1
TEST PASSED

70

Local variables are stored below the frame pointer [%fp] and are accessed with negative

offsets. Parameters start at [%fp + 68]. In the following test we implemented a case to copy content

of one array element to the other. Both arrays are initialized with the same location color and pointer

color. We used an inline assembly code in our test. The general format of using Inline assembly code

is shown in Figure 7-9.

 Figure 7-9: Inline Assembly code general format

In the inline assembly, having input/output operands and clobbered registers is optional. In

the inline assembly section of the code we performed a simple instruction which doesn’t affect any

other instruction. Running the instruction informs GCC about using all registers except frame pointer

and stack pointer. So GCC moved all active data from program out of these registers.

The assembly code in Figure 7-11 only has the corresponding code in between turning on

and off the tag engine. As we can see, it accesses the frame pointer to load a value. Since the frame

pointer hasn’t been initialized with the proper pointer color tag, the program throws exception. The

result is shown in Figure 7-12.

 Assembly code:

Asm (“assembly code”
: output operands
: input operands
:list of clobbered registers
);

71

Figure 7-10: sample BC code improper handling tag for Frame Pointer

 C code:

int main (void)
{

int a[30];
int b[30];

int i;

for (i=0 ; i<10 ; i++)
{
_rtems_set_location_color((addr_t)&a[i],3);
}

 for (i=0 ; i<10 ; i++)
{
_rtems_set_location_color((addr_t)&b[i],3);
}

 asm volatile("add %%l0,%%l0,%%l0\n\t"

 ::: "g0","g1","g2","g3","g4","g5","g6","g7",

 "l0","l1","l2","l3","l4","l5","l6","l7",

 "i0","i1","i2","i3","i4","i5","i7",

 "o0","o1","o2","o3","o4","o5","o7");

asm(CPOP_TURN_ON_TAGGING);

a[1] =b[1];

asm(CPOP_TURN_OFF_TAGGING);

exit(0);

}

72

 Figure 7-11: Assembly code for corresponding C code

Figure 7-12: Result of improper handling tag for Frame Pointer

In the next test, we slightly modified the above code by adding highlighted piece of inline

assembly code in Figure 7-13. The code in Figure 7-13 initializes frame pointer with the same color

tag value as both arrays.

 Assembly code:

 .word 0x81B00000
! 0 "" 2
 .loc 1 56 0
 ld [%fp-236], %g1
 st %g1, [%fp-116]
 .loc 1 58 0
! 58 "init.c" 1
 .word 0x81B00020

 Results:

EXCEPTION HAPPEND BECAUSE OF LOAD INSTRUCTIONS WITH SOURCE2
AS IMMEDIATE
...
 Hit vector 0x28!! @ PC = 0xopc is equal to:1
cpop is set to false
20012E4 with NPC = 0x20012E8

73

 Figure 7-13: C code proper handling tag for Frame Pointer

 C code:

int main (void)
{
int a[30];
int b[30];
int reg = 30;
int op2 = 3;
int i;

int reg = 30;
int op2 = 3;

for (i=0 ; i<10 ; i++)
{
_rtems_set_location_color((addr_t)&a[i],3);
}

 for (i=0 ; i<10 ; i++)
{
_rtems_set_location_color((addr_t)&b[i],3);
}

 asm volatile("add %%l0,%%l0,%%l0\n\t"

 ::: "g0","g1","g2","g3","g4","g5","g6","g7",

 "l0","l1","l2","l3","l4","l5","l6","l7",

 "i0","i1","i2","i3","i4","i5","i7",

 "o0","o1","o2","o3","o4","o5","o7");

 asm("mov %0, %%g1\n\t"
 "mov %1, %%g2\n\t"
 CPOP_SET_REGISTER_POINTER_COLOR
 :
 :"r"(reg),"r"(op2)
 :"g1","g2");

 asm(CPOP_TURN_ON_TAGGING);

a[1] =b[1];

asm(CPOP_TURN_OFF_TAGGING);
}

74

Figure 7-14: Results of proper handling tag for Frame Pointer

The highlighted code in Figure 7-13 is the part that was added to the previous test case. As

shown in Figure 7-14, this test case passed.

Another set of test cases relates to uninitialized memory. This test initializes an array then it

tries to access array element located outside boundaries of array.

 Figure 7-15: C code for out of bound memory access

 Results:

TEST PASSES !!

 C code:

int main (void)
{
int i;

int a;

volatile int b[10];
int reg, op2;

for(i= 0 ; i<10 ; i++)
{

_rtems_set_pointer_color((addr_t)&b[i],3);
_rtems_set_location_color((addr_t)&b[i],3);
b[i] = 5;
 }

reg = 30;op2 = 3;

asm(CPOP_TURN_ON_TAGGING);
a = b[11];

asm(CPOP_TURN_OFF_TAGGING);

exit(0);

}

75

Figure 7-16: Results of out of bound memory access

This is a good test case that shows how out of bound memory access can be tracked and

captured using memory bound checking technique.

7.2. Performance evaluation

To evaluate performance of each tagging technique, we added tagging statistics to SIS for

each technique. The common ground of all techniques is propagation and checking of memory and

registers tags during execution of instructions. So we added statistic counters for tag propagation, tag

check, memory tag check and memory tag set. Running each test case gives statistics for each one of

the values. We gathered the statistics data. The results show what percent of instructions are tag

propagation or tag check. Also what percentages of instructions try to access memory to either check

or set the tag values.

7.2.1. Performance Evaluation for DIFT

We ran tests for DIFT, BC and UMC on the same set of RTEMS applications. These

applications include check for uboot support in bsp and print application. We ran each set of test for

each technique. Then we calculate the percentage of tag propagation, tag check, memory tag set and

memory tag check for each application. We calculate the average of each of the statistics through

different applications. The results of study for DIFT, UMC and BC techniques are shown in Figure

7-17 through Figure 7-19 respectively. The Figures shows on the Y-axis the instructions percentage

for each technique. The X-axis shows set of instruction categories. The Figures show how each

technique spend resources.

 Results:

EXCEPTION HAPPEND BECAUSE OF LOAD INSTRUCTIONS WITH SOURCE2
AS IMMEDIATE
...
 Hit vector 0x28!! @ PC = 0xopc is equal to:1
cpop is set to false
2001310 with NPC = 0x2001314

76

Figure 7-17: Performance evaluation for DIFT running RTEMS applications

Figure 7-18: Performance evaluation for BC running RTEMS applications

Figure 7-19: Performance evaluation for UMC running RTEMS applications

0

20

40

60

80

100

Tag
Propagation

Tag Check Memory Tag
Set

Memory Tag
Check

%
 o

f
is

nt
ru

ct
io

ns

DIFT Results

0

20

40

60

80

100

Tag
Propagation

Tag Check Memory Tag
Set

Memory Tag
Check

%
 o

f
is

nt
ru

ct
io

ns

BC Results

0

20

40

60

80

100

Tag
Propagation

Tag Check Memory Tag
Set

Memory Tag
Check

%
 o

f
is

nt
ru

ct
io

ns

UMC Results

77

The highest percentage of instructions that executed in both DIFT and BC’s tag engine are

tag propagation. UMC tag propagation stat is the same as UMC memory tag set instructions. Also in

UMC memory tag check is the same as tag check since loading a value from memory is the only

instructions that uses tag check.

7.3. Analysis and Results

Figure 7-20 shows on the Y-axis the tag engine overhead percentage for each technique. The X-

axis shows different techniques. To calculate the overhead of running each technique, we first ran

RTMES applications and captured number of executed instructions in the absence of security

techniques. Then we enabled each technique and calculated RTEMS applications instruction

execution in the existence of each technique. Running the tests gives us the amount of overhead each

technique has. DIFT has overhead of 23.6 %, UMC has 7.9% and BC has 41.5%.

As we see BC has the highest overhead, since it has propagation and checking rules for memory

access checking as well as dataflow checking. UMC has only memory access checking so it has the

lowest amount of overhead among all techniques. DIFT has dataflow checking which includes

propagation of tags through ALU instruction and checking of tags through jump instructions. Since

BC has both features of UMC and DIFT, BC’s overhead is close to UMC and DIFT overhead

combined.

78

Figure 7-20: Tag engine overhead

7.4. Conclusion

In this chapter we showed set of test suites that test propagation and checking rules for each

technique. We then showed the result of running the real world attacks such as buffer overflow and

out of bound memory access for each technique. We then showed the result of running all techniques

on the same set of application. We represent the overhead of running each technique and then

compared the result of all technique.

0

20

40

60

80

100

DIFT UMC BC

%
 o

f
ta

g
en

gi
ne

 is
nt

ru
ct

io
n

ov
er

he
ad

Tag Engine Overhead

79

Chapter 8. Conclusion

8.1. Conclusion

Today with the explosive growth of computer and network technology, we rely on computer

systems to manage sensitive data and personal information. In recent years promising mechanisms

and techniques developed to enhance computer and network system security. Some of the existing

security techniques track instruction flow at run time.

Our goal was to design a framework which has run time security techniques to prevent

runtime attacks. As a first step toward this goal, this thesis gives an extensive background on the

most common run time security techniques such as DIFT, BC and UMC which are implemented to

prevent buffer overflows and illegal memory accesses. We then give a description of SPARC

Instruction Architecture and how security techniques can be implemented in SPARC using SPARC

instruction Simulator. The validation of security technique implementation is completed by running

test suites and RTEMS applications.

We developed tagging schemes that will be implemented the ERC32 processor, which is a

SPARC variant. The understanding of SPARC instruction architecture gives us a better view of how

each technique can be implemented for different instructions. According to each technique, we

divide instructions into different logical groups and then defined propagation and checking rules for

them. Dividing instructions into different groups gives us the ability to design test suites for each

group as well. So we were able to check how each technique propagates and check security tags.

We validate each technique by running test suites that are designed specifically for it. Recall

that each technique is capable of detecting set of attacks. We ran attacks for each technique to see if

the technique is able to capture it.

80

To evaluate performance of each tagging technique, we added tagging statistics for tag

propagation, tag check, memory tag check and memory tag set. Running each test case gives

statistics for each one of the values.

We ran tests each technique on the same set of RTEMS applications as well. Then we

calculate the average of each of the statistics of percent of instructions that got executed in the tag

engine to the whole executed instructions through different applications.

BC requires the biggest data structure among all techniques. It assigns each memory and

register with 4-bit location tag and 4-bit pointer tag. DIFT and UMC assign a 1-bit tag for memory

and registers. Running the test suites show that BC is capable of detecting more attacks. It also has

the highest overhead among all techniques. DIFT is capable of detecting buffer overflow attacks and

it comes in the second place in the matter of instruction overhead. UMC has the lowest overhead and

it is capable of detecting uninitialized memory accesses.

In summery the work presented in this thesis provides insight to the run time security

techniques. While we hope to see these techniques implemented in a frame work as an architecture

solution, we expect this research to be a useful resource for studying and evaluating security

techniques.

8.2. Future Research

The previous section has summarized the work of this thesis. However, as in any research

effort, there still are a number of areas where further work could enhance the prevention of misusing

code vulnerabilities. Runtime taint tracking will continue to be an important tool for the security

research. The evaluation that is conducted in the previous chapters revealed several opportunities to

improve the implemented framework. These are discussed below:

81

1. Run the SIS on a multi core processor or on multi-processor system

SIS simulator supports a single core processor. We wish to modify it to support simulation

of multi-core processor. This involves the design of multi-core simulator. Multi-core simulator will

include memory model, inter processor communication and simulating time.

2. Implement security tagging rules for trap instructions and trap handler

We currently didn’t implement propagation and checking rules for Ticc and RETT (trap

instructions). We need to evaluate these instructions to verify if we are able to implement rules for

them. At the same time we need to investigate what causes trap in the system to make sure that rules

are implemented correctly.

3. Implement security tagging rules for floating point instructions

We have assigned tagging rules to Integer Instructions in the SPARC architecture. But we

didn’t add the support for floating point instructions. We need further effort to implement tag engine

rules for DIFT, BC and UMC and evaluate each technique in the existence of Integer instructions’

rules as well as floating point instructions.

4. Add the capability of having a network or simulated network to test techniques in the

existence of network accesses.

At this time each test suite implemented for the technique manually set the tag values for

memory locations and registers. We wish to expand the simulator and add the capability of network

simulation to it. Having this capability, we are able to send traffic from network channels, and for

DIFT, we can label couple of network channels as malicious input. In this way we can verify how

DIFT can handle malicious IO channels.

82

5. Implement these techniques for other instruction architectures such as ARM

At this time these technique are only implemented for SPARC instruction set. We wish to

implement each technique for other instruction architectures such as ARM. This requires modifying

each technique to support different architectures.

6. Implement tag cache simulator and add it to the tag engine for each technique

Accessing tags in the memory is neither cheap nor fast. By implementing the tag cache

simulator, we can store the tags for the recent accessed memory locations and registers and access

them as needed. I already implemented the simulator cache inside SIS. By adding the tag cache

simulator we can recalculate the overhead of memory tag set and check.

83

Chapter 9. Bibliography

1]

B. R. Rowe and I. D. Pokryshevskiy, "Economic Analysis of Inadequate Cyber

Security Technical Infrastructure," with Albert N. Link, University of North Carolina at
Greensboro, Douglas S. Reeves, North Carolina State University, 3040 E. Cornwallis
Road, Research Triangle Park, NC 27790, February 2013.

2]

"Heartbleed OpenSSL vulnerability," National Cybersecurity and Communications

Integration Center, April 2014.

3]

J. Steinberg, "Massive Internet Security Vulnerability -- Here's What You Need To

Do," 10 April 2014. [Online]. Available:
http://www.forbes.com/sites/josephsteinberg/2014/04/10/massive-internet-security-
vulnerability-you-are-at-risk-what-you-need-to-do/. [Accessed May 2014].

4]

B. M. (MITRE), M. B. (SANS), A. P. (SANS) and D. K. (SANS), "2011

CWE/SANS Top 25 Most Dangerous Software Errors," The MITRE Corporation, 13
September 2011. [Online].

5]

D. S. Henson, "Support for TLS/DTLS heartbeats," 31 December 2011. [Online].

6]

S. M. Kerner, "Heartbleed SSL Flaw's True Cost Will Take Time to Tally - See

more at: http://www.eweek.com/security/heartbleed-ssl-flaws-true-cost-will-take-time-
to-tally.html#sthash.qLJdmngZ.dpuf," 19 April 2014. [Online].

7]

G. E. Suh, J. W. Lee, D. Zhang and S. Devadas, "Secure program execution via

dynamic information flow tracking," Acm Sigplan Notices, vol. 39, no. 11, ACM 2004.

8]

R. Hastings and B. Joyce, "Purify: Fast detection of memory leaks and access

errors," in In Proc. of the Winter 1992 USENIX Conference.

9]

J. Clause, I. Doudalis, A. Orso and M. Prvulovic, "Effective memory protection

using dynamic tainting," in In proceeding of the 22nd International Conference on
Automated Software Engineering, 2007.

10]

The SPARC Architecture Manual, Prentice Hall, Englewood Cliffs, New Jersey

07632, 1992.

11]

sis - SPARC instruction set simulator version 3.0.1, European Space Research and

Technology Centre, 1999.

84

12]

M. Ramström, J. Höglund, B. Enoksson and R. Svenningsson, "32-BIT

MICROPROCESSOR AND COMPUTER DEVELOPMENT PROGRAMME," 1997.

13]

TSC691E Integer Unit User's Manual for Embedded Real time 32–bit Computer

(ERC32), TEMIC Semiconductors.

14]

M. Ramström, B. Törnberg and R. Svenningsson, MEC Device Specification,

TEMIC Semiconductors, 1997.

15]

"NIST National Institute of Standards and Technology Test Suits," [Online].

Available: http://samate.nist.gov/SARD/testsuite.php.

