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Abstract 

This thesis is a part of an Air Force Research Laboratory (AFRL) project focused on 

developing a framework based on existing security tagging techniques. These techniques are 

developed to prevent or lower the overhead of known security vulnerabilities. Critical to prevent 

these security vulnerabilities is choosing techniques that target the most disruptive attacks such as 

buffer overflow, out of bound memory accesses and uninitialized memory access. For instance, over 

the last five years, buffer overflow vulnerability was the cause of non-deterministic failures and 

security breaches. The other main vulnerability is insufficient validated user inputs, which lead to 

dangerous security flaws such as format string, SQL command injection and path traversal. The 

flaws are exploitable when user input is passed to vulnerable programs without sufficient validation. 

Buffer overflows and Insufficient validated user inputs are among the top 25 software errors 

according to the CWE/SANS list of “Top 25 Most Dangerous Software Errors”. 

This study presents research focused on evaluating hardware implementation of security 

tagging techniques. Run time hardware based taint tracking is an effective technique which controls 

data propagation during execution of an application. These techniques associate security tags with 

user provided data and track tags during program execution. To keep tags updated, the techniques 

intercept every attempt to access application and process data. A detection of a misuse of data will 

result in a security exception. Each technique has a different approach for intercepting and isolating 

instructions to prevent possibly difficult classes of vulnerabilities. The focus of this research is to 

understand the nature of security tagging as a foundation for developing a framework for simulating 

the different security tagging techniques to determine how well they can detect software flaws and 

vulnerable programs with minimum overhead. An additional objective of this work is to compare the 

efficiency of different proposed tagging technique. The AFRL project uses ERC32 (radiation-

tolerant 32-bit RISC Processor) which is a SPARC variant based computer systems. Accordingly a 

SPARC Instruction Simulator is adopted to develop security techniques.  
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Chapter 1. Introduction 

 

Computer security has become a very important economic and social problem. There has been 

a lot of research conducted to develop new ways to protect systems over the past three decades. This 

research has been conducted with the goal of preventing the ever-growing catastrophic effects of 

security vulnerabilities. According to estimates, cyber security attacks directly cost US companies 

tens of billions of dollars a year and much more in indirect cost to companies and individuals. 

“General Keith Alexander, Chief of the U.S. Cyber Command and Director of the National 

Security Agency, points out that the United States saw a 17-fold increase in cyber attacks 

between 2009 and 2011.” [1]. 

Every year new security vulnerabilities and attacks emerge. Today almost everything relies on 

worldwide network communications, so having vulnerable code will cause serious worldwide 

impacts and losses of billions of dollars. In the past two years several companies and government 

organizations have been victims of hacker’s attacks. Some of these attacks exploited software 

vulnerabilities which caused buffer over flow and out of bound memory accesses. Other attacks 

exploited vulnerabilities at a high level such as SQL (Structured Query Language) injection, 

command injection, CSS (Cross Site Scripting) and so on. These vulnerabilities are further discussed 

in section 1.1.  

As an example of vulnerable code we can mention a bug called Heartbleed which was publicly 

announced on April 1st, 2014. This bug is a good sample of how a vulnerable code can have a 

worldwide affect. Heartbleed is a security bug in Open Secure Socket Layer (SSL) library. This bug 

can be exploited if either client or server uses a vulnerable OpenSSL instance. National Cyber 

security and Communications Integration Center (NCCIC) states that using Heartbleed vulnerability, 

attackers can decrypt previously encrypted information and stole servers’ private keys and users 

session cookies and passwords [2]. 
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 Over half a million secure web servers were vulnerable to this bug. Several groups called the 

Heartbleed bug "catastrophic".  Forbes cyber security columnist Joseph Steinberg wrote, "Some 

might argue that [Heartbleed] is the worst vulnerability found since commercial traffic began to flow 

on the Internet." [3] . 

There are tools such as firewalls and anti-viruses that can be used to reduce the damage caused 

by Heartbleed types of attacks. But research shows that the security tools do not provide a reliable 

protection against ever-increasing attacks and viruses that exploit low level programming errors.  

One approach to enhance security is to use hardware-bases security tagging techniques to cope 

with the security vulnerabilities. These techniques usually deploy security tags to support memory 

access control. In this thesis we evaluate the use of security tags associated with data to reduce the 

damages of vulnerable code. 

This current Research is a part of an Air Force Research Laboratory Project focused on the 

framework development of different security tagging techniques inside SPARC Instruction 

Simulator. The goal of this thesis is to develop and implement a framework to test and evaluate 

hardware-based security tagging techniques. In this chapter section 1.1 introduces some of the 

common problem areas and basic concepts of security tagging and security tagging schemes. Section 

1.2 introduces the motivation and objectives of this research. Section 1.3 concludes with an overview 

of the remaining parts of the thesis. 

 

1.1. Problem Area 

 Table 1-1 lists the 2011 Common Weakness Enumeration/SysAdmin, Audit, Network, 

Security (CWE/SANS) top 25 most dangerous software weaknesses [4] . 

 

 

 



3 
 

Rank ID Category Name 
1 CWE-89 1 Improper Neutralization of Special Elements used in an SQL 

Command ('SQL Injection') 
2 CWE-78 1 Improper Neutralization of Special Elements used in an OS 

Command ('OS Command Injection') 
3 CWE-120 2 Buffer Copy without Checking Size of Input ('Classic Buffer 

Overflow') 
4 CWE-79 1 Improper Neutralization of Input During Web Page Generation 

('Cross-site Scripting') 
5 CWE-306 3 Missing Authentication for Critical Function 
6 CWE-862 3 Missing Authorization 
7 CWE-798 3 Use of Hard-coded Credentials 
8 CWE-311 3 Missing Encryption of Sensitive Data 
9 CWE-434 1 Unrestricted Upload of File with Dangerous Type 
10 CWE-807 3 Reliance on Untrusted Inputs in a Security Decision 
11 CWE-250 3 Execution with Unnecessary Privileges 
12 CWE-352 1 Cross-Site Request Forgery (CSRF) 
13 CWE-22 2 Improper Limitation of a Pathname to a Restricted Directory ('Path 

Traversal') 
14 CWE-494 2 Download of Code Without Integrity Check 
15 CWE863 3 Incorrect Authorization 
16 CWE-839 2 Inclusion of Functionality from Untrusted Control Sphere 
17 CWE-732 3 Incorrect Permission Assignment for Critical Resource 
18 CWE-676 2 Use of Potentially Dangerous Function 
19 CWE-327 3 Use of a Broken or Risky Cryptographic Algorithm 
20 CWE-131 2 Incorrect Calculation of Buffer Size 
21 CWE-307 3 Improper Restriction of Excessive Authentication Attempts 
22 CWE-601 1 URL Redirection to Untrusted Site ('Open Redirect') 
23 CWE-134 2 Uncontrolled Format String 
24 CWE-190 2 Integer Overflow or Wraparound 
25 CWE-759 3 Use of a One-Way Hash without a Salt 

  Table 1-1: 2011 CWE/SANS top 25 most dangerous software errors 

These weaknesses are divided into three categories: 

1-  insecure interaction between components 

2-  risky resource management  

3- porous defenses 

Each category as well as its relevant weakness and rankings are shown in Table 1-1. 

The weaknesses in the insecure Interaction between components category 1, are caused by 

improper data exchange between systems, programs or processes. As we can see in Table 1-1, this 

category largely deals with SQL injection attacks and CSS attacks.  
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The second category weaknesses are caused by the improper handling of systems resources. 

This category includes different buffer overflow attacks, directory traversal, format strings and so on. 

The third and last category of these weaknesses mostly deals with misused defensive techniques [4].   

As we can see in Table 1-1, the first category of attacks exploits vulnerabilities at a high level 

such as Structured Query Language (SQL) injection, command injection, Cross Site Scripting, etc. 

These vulnerabilities allow malicious users to launch attacks by executing arbitrary code or stealing 

sensitive data. SQL injection is a technique for exploiting web applications which ask for user’s data 

in SQL queries. Web applications provide the ability for users to store and retrieve information to 

and from databases over the internet. This information includes user’s credentials, bank account 

information and so on. SQL injection attacks can send SQL commands to the back end database 

through web application. The attacker can then view, alter or remove user’s data through these SQL 

commands. 

Weaknesses in the second and third categories in Table 1-1 are related to buffer overflow 

attacks, out of bound memory accesses and so on. These categories are also dangerous and harmful. 

The newly emerged Heartbleed vulnerability can be classified in the out-of-bounds memory access 

attack group. The vulnerable code for this attack is shown in Figure 1-1 [5]. 

    Figure 1-1: Heartbleed code vulnerability 

 

 C Code: 
if (hbtype == TLS1_HB_REQUEST) 
unsigned char *buffer, *bp; 
int r; 
buffer = OPENSSL_malloc(1 + 2 + payload + padding);  
bp = buffer; 
/* Enter response type, length and copy payload */ 
*bp++ = TLS1_HB_RESPONSE; 
 s2n(payload, bp); 
 
memcpy(bp, pl, payload);   
 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer,  3 + payloa

d + padding); 
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In the SSL Heartbeat protocol one of the SSL users sends a request to the other with a 

payload of data and a size. The end user is supposed to copy the payload and send it back. However 

the size of the payload specified in the message is never checked. Since attackers can lie, they can 

request a return of a large amount of data and the end user will comply, copying data from main 

memory including possible encryption keys and user passwords. This is an example of category 2 

vulnerabilities that could cause at least 500 Million dollars [6]. 

Companies use defensive and preventive measures to prevent or lower the cost of corruption 

or theft of their information. Defensive measures include firewalls, cryptography, Intrusion detection 

Systems and antivirus programs. Preventive measures include penetration testing, authentication and 

verification.  

The problem in most of the mentioned defensive measures is that they usually take a look at 

the symptoms of the attack rather than its source; we know that it’s almost impossible to write 

perfectly secure code. Some hardware developers have come up with the idea of using hardware 

based protection to prevent these attacks or if not preventing them, at least to stopping the attacks 

from going farther. Among the proposed techniques, security tagging schemes exist to prevent 

attacks by adding security tags to the data. One example of security tagging schemes is Dynamic 

Information Flow Tracking (DIFT).  

The DIFT technique was developed to prevent buffer overflow and format string attacks. 

DIFT was proposed to prevent the majority of attacks that change the flow of programs in order to 

gain control or unauthorized access. It prevents attacks by associating security tags to data, marking 

data as malicious and tracking it as it goes through the system. Malicious data is defined as any data 

that comes from malicious I/O.  By assigning a security tag, the DIFT security engine can track data 

that attempt to transfer control of the system. Based on the implementation dependent rules in the 

DIFT tag engine, if tainted data is used in a way that it changes the control flow of the program or 

logic of the program, the tag engine hardware triggers an exception and pops back to the operating 

system. DIFT will be described in further details in Chapter 2 [7]. 
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Several techniques have been developed based on hardware protection. However most of the 

existing techniques use simple applications which are tested in small scale.  

The designed tests only show that the detection occurs. The tests do some simulations to 

determine performance, overheads, but most of the simulation and experimentation is done at the 

register transfer level which is really slow. Accordingly, the developed techniques have never been 

evaluated in full experiments. Having the capability of comparing and contrasting the logic, security 

behavior and functionality of the techniques can fulfill this shortcoming.  This capability can be 

achieved by running known vulnerable applications through multiple security techniques. We 

accomplished this by simulating the techniques in an instruction simulator. 

 

1.2. Research Objectives 

The purpose of this thesis is to develop a framework, in which we can plug-in different 

hardware tagging schemes. The framework is used to evaluate the effectiveness and functionality of 

tagging schemes. The proposed framework has been used to implement three different tagging 

schemes: Dynamic Information Flow Tracking (DIFT), memory Bound Checking (BC) and 

Uninitialized Memory Checking (UMC). As described before, the DIFT technique is developed to 

associate data with security tags. In this simulated the DIFT tagging engine. The engine will be 

responsible for moving and checking tags through the execution of each instruction. The engine also 

includes an exception handler in the case of security exception. 

The UMC technique targets uninitialized memory. This technique intercepts each memory 

access to check if memory is initialized during loading a value from memory. UMC associates each 

memory word with a tag. Memory tags are first all initialized to zero, indicating that memory block 

is not initialized. Then during each memory store instruction, memory tags for the corresponding 

memory location will be set. During loading a value from memory, the tag value will be checked to 

prevent uninitialized access. This technique is described in further detail in Chapter 6 [8]. 



7 
 

The BC technique has characteristics of both DIFT and UMC. Each memory word and 

processor register is associated with a tag. These tags get propagated based on the BC tag engine 

rules. During memory access, tags are checked to see if the tag value falls in the memory boundary 

range. If not, the BC tag engine will cause security exception. We will describe this technique in 

further detail in Chapter 5 [9]. 

The objectives of this thesis are as follow: 

 

• Objective 1: Introduce DIFT, UMC and BC security techniques. To be able to 

implement these techniques, we need to look in depth in each of these techniques. We 

will give an extensive background on each of these techniques at the instruction level in 

Chapter 2.  

• Objective 2: Apply these techniques to SPARC (Scalable Processor Architecture) using 

SIS (SPARC Instruction Simulator). In this objective we group SPARC instructions to 

different categories for each technique. We then implement tagging rules for each 

technique. We also introduce new instructions to control the tag engine and manipulate 

tags for registers and memory for each technique. Having the new instructions gives us 

more control over the tag engines. 

• Objective 3: Develop a framework for testing different security tagging techniques in 

the instruction level hardware simulator SIS. After implementing each technique we 

develop test cases to test techniques and compare the results. 

Implementing all three techniques in one framework makes it easy to compare each 

technique to another. This framework helps estimate specific features and the upsides and downsides 

of each technique.  
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1.3. Thesis Overview 

This thesis is organized as follow. Chapter 2 provides a background and survey on DIFT, 

UMC and BC security tagging schemes as well as a overview of how to add these techniques to the 

framework. Chapter 3 gives details about the SPARC architecture and SIS. In Chapter 4 we describe 

DIFT technique implementation in SIS. In Chapter 5 we describe BC implementation in SIS and in 

Chapter 6 we describe UMC implementation in SIS. We discuss different experiments, tests, results 

and evaluation of each technique in Chapter 7. Then we give the conclusion and future work in 

Chapter 8. 
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Chapter 2. Background and Framework Overview 

 

In this Chapter we present an extensive background for DIFT, BC and UMC security tagging 

techniques. We then describe the whole design idea of the framework and how we can integrate each 

technique to the simulator. We introduce each technique by describing how it works at the source 

code level. Each technique is capable of detecting specific sort of security attacks. For instance DIFT 

is capable of detecting buffer overflow attacks. UMC is capable of detecting uninitialized memory 

accesses. BC is capable of detecting out of bound memory and illegal memory accesses. Having 

these techniques implemented in a framework, we will be able to detect and prevent vast majority of 

security vulnerabilities.  

 

2.1. Dynamic Information Flow Tracking Background 

DIFT, designed by Suh et al. [7], is a hardware security tagging technique which assigns 

security tags to data and checks the data manipulation in instructions to restrict the use of untrusted 

input. DIFT was developed to prevent a vast class of software security vulnerabilities such as buffer 

overflows. DIFT prevents security attacks by identifying and restricting the malicious information 

flow at runtime. DIFT implements a security tagging engine which includes the logic for book 

keeping and checking of security tags.  

To take control of a program, attackers modify the contents of memory in a vulnerable 

program space with either malicious code or a pointer to a malicious code. To modify content of 

memory, they need to insert a value from input channels. DIFT marks untrusted input and output 

channels with a one bit tag. By tracking the untrusted data, it traps malicious manipulation of the 

data. In general, malicious use of the data can be defined as any disallowed manipulations of the data 

based on the permitted security policies. DIFT defines malicious use of data as using tagged data as a 
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jump or branch target address. DIFT security policy generates a trap in the case of this use. If the 

operation is not allowed based on the permitted security policy, the trap handler terminates the 

operation. 

DIFT rules are defined to prevent executing of malicious code or transforming control of a 

program using malicious data. The key concern here is how to identify malicious code from 

legitimate code. The operating system makes the decision which means it initializes the untrusted 

channels as malicious data. Then operating system tracks malicious data.  

2.1.1. DIFT initialization and propagation phase 

To identify legitimate and malicious data, DIFT uses a one bit tag for each register in the 

processor and each byte of memory. Memory address and registers’ tags are initialized to zero in the 

initialization phase of the tag engine. The operating systems tags data with the value one only if the 

data comes from a malicious input source.  

The DIFT tag engine defines a set of rules to propagate tags through program execution. 

These rules can be categorized into three groups. The first group is defined as instructions which 

have either one or two operands and none of the operands are tagged. The result of running first 

group of instructions is an untagged value. The second group of instructions has at least one tagged 

operand. The result tag for the second group of instructions is a tagged value. Finally the third group 

of instructions has two operands which are both tagged. Running the instructions result in a tagged 

value. 

The above three groups of propagation rules can apply to ALU, Load and Store instructions. 

Not all of the SPARC instructions propagate DIFT tags. We will describe in details how propagation 

rules are implemented for each set of SPARC instructions in Chapter 4. 

2.1.2. DIFT checking phase 

The DIFT tag engine defines two policies for instructions’ tag checking. First policy tracks 

Load and Store instructions’ tags. Loading from and storing, using an address in a register that is 
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marked as malicious is not allowed based on DIFT rules. Therefore every time load or store 

instructions get executed, the tag engine will intervene to check tags of source operands. 

The second policy tracks Branch and Jump instructions. DIFT rules stops execution of the 

instruction which uses a tagged value as jump target address. These policies do not apply to other 

instructions such as ALU instructions. ALU instructions can be executed with having tagged 

operands. Recall that the tags are still propagated. 

 

2.2. Memory Bound Checking technique Background 

The main focus in the BC technique is on memory faults that occur by memory accesses 

through pointers. Illegal Memory Accesses (IMA) can be classified as memory faults which arise 

when a memory region is accessed with a pointer that is not initially assigned for that region. BC 

also covers vulnerabilities such as out of bound memory accesses [9]. 

The BC technique uses limited number of tags to associate with data. Tags can be 1-bit, 4-

bits or 8-bits long. The BC technique associates tags with memory blocks and pointers. When the 

memory “m” is allocated, BC associate tags with “m”. Later when a pointer “p” is created, which 

points to “m” address, “p” is tainted with the same taint mark that is associated with the memory 

“m”. During execution of program, pointer tags get propagated. Finally when a memory region is 

accessed using a pointer, the BC technique checks both tags for memory and pointer in order to see if 

they match or not. The more bits BC uses, the more likely it will detect inappropriate use of pointer. 

Memory taints never get propagated but pointer taint mark gets propagated as the program 

executes. However the BC tag engine separates memory locations’ tags from pointers’ tags. The 

process of implementing the BC technique breaks down into initialization, propagation and checking 

steps. 
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2.2.1. BC initialization phase 

There are two type of memory allocation: static and dynamic.  Static memory allocation can 

be referred to as defining global and local variables. In static memory allocation the technique 

identifies the memory location used for storing variables. Therefore it can initialize the taint marks 

for the specific memory locations. In dynamic memory allocation the technique identifies the amount 

of memory that should get the taint marks through communication with the allocation functions such 

as malloc. After that, the specific memory locations get the same fresh taint marks. No too adjacent 

allocated regions get the same taint mark. 

In pointer initialization, pointers get the taint mark base on the memory location they point 

to. For example pointers that point to dynamically allocated memory intercept the function call to 

malloc and use the return value to get the same tag as the dynamically assigned memory. Since 

finding out the starting addresses of this type of memory is straight forward, initializing the taint 

marks for pointers that point to statically allocated memory is easier than dynamically allocated 

memory. In both cases after finding out the address for memory location, pointer and memory 

location will get the same taint mark. 

2.2.2. BC propagation phase 

  The BC technique doesn’t define rules for control instructions, so, data flow instructions are 

responsible for propagating tags in this technique. The BC technique treats tag propagation for 

memory and pointer differently. Memory location tags are never propagated. Memory location’s tags 

get initialized at the beginning of program and cleared at the end of program or start and end of a 

function call for variables on the stack. During the deallocation of a memory location, this technique 

intercepts the function call to lower level memory-deallocation function to figure out the proper 

address in order to erase the taint marks. Also the associated pointer taint mark for this memory 

address should get erased. Otherwise it conveys a concept like a dangling pointer. Calling the 

deallocation function with an initial address as a parameter frees dynamically allocated memory, so 
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intercepting this function gives us the memory location whose taint mark should be erased. 

Returning from a function call will also deallocate statically allocated memory, so the intercepting 

function exits gives us the memory location whose taint mark should be erased.  

Pointer taint marks are responsible for propagation rules during execution of the program. 

Every operation has a propagation rule defined for calculating the result of the taint mark based on 

the operands’ taint marks. The rules for pointer tag propagation are developed based on patterns 

found in the software subjects and underlying machine languages. These rules are finely developed 

to remove cases that cause false negatives because of the underlying language and function 

implementation. 

These rules handle different sets of instructions differently. For example, in addition and 

subtraction operations, if both operands are not tainted, then the result remains untainted. In some 

cases where just one of the operands is tainted, then the taint mark will propagate and the resulting 

taint mark gets the taint mark of the tainted operand. In cases that both operands are tainted, 

operations decide the propagation rule. For example during the addition operation, the result tag is 

the sum of the two operands’ taint marks [9]. 

In operations like multiplication and division the result is never tainted. In bitwise AND 

operation if both operands are tainted or untainted the result is untainted. But if just one of the 

operands is tainted the result gets the taint mark of the tainted operand [9]. 

Propagation rules for bitwise NOT can be derived from addition and subtraction propagation 

rules. Accordingly the result gets the negative value of taint mark of the operand. In bitwise OR and 

XOR instruction the result is always untainted [9]. 

2.2.3. BC checking phase 

The checking rules for BC technique intercept any memory access. If the taint mark of the 

memory location and its corresponding pointer location are the same, it is considered as a valid 
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memory access. Any scenario other than this is considered as an illegal memory access and it throws 

security exception. 

Since the main goal in this technique is to implement the approach in hardware, the number 

of taint bits plays an important role on the performance overhead and design complexity of 

hardware. The problem with a small number of bits for the taint mark is that some memory locations 

have the same taint marks. So it causes an undetected IMA. The probability of detecting IMAs with 

having 4 bits of taint mark is 94% [9]. Also by using different strategies the probability of two 

memory locations having the same taint mark can be reduced. This is feasible by assigning different 

taint marks for adjacent regions of memory. 

2.2.4. BC implementation at Hardware 

When a technique is implemented in hardware, there is not enough information about 

statically allocated memory. So by reducing the precision of the technique, the technique taints all of 

the statically allocated region of the memory with same taint mark, Therefore the technique is not 

capable of detecting IMA’s in local variables, but it still can detect IMA’s between statically 

allocated variables and dynamically allocated memory. 

 

2.3. Uninitialized Memory Checking Background 

Reading from or writing to uninitialized memory is another type of error that causes the 

system to stop working or crash. Due to the nature of these errors, they are most likely to go 

undetected. Another type of error is a memory leak which happens because a block of memory has 

not been released. Memory leaks also produce errors that are hard to find and also harder to fix. The 

UMC technique helps find memory leaks and access errors such as reading from uninitialized 

memory or out of bound access of arrays. This technique helps find errors that happen at runtime [8]. 
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The way this technique is implemented is that it will keep a tag for each memory address. It 

then intervenes each memory access and looks for the tag value of the corresponding memory 

address tag. Then the technique decides whether the access is authenticated or not. 

UMC calls a specific function before any memory access function such as load and store. 

The implemented function for tags is responsible to make sure that memory address tag is the same 

as expected tag. This technique holds two bits representing state code for each byte in memory. This 

technique represents three different states that the memory can be in.  

 

1. Unallocated state: 

The unallocated state represents the unallocated memory. In this state memory bytes 

can neither be read from nor written to.  

2. Allocated and initialized state: 

The memory that is allocated and initialized is in this state. Each memory byte which is 

in this state is allowed to be written to and read from. 

3. Allocated but uninitialized state: 

In this state we are able to write to allocated memory, but we are not able to read from 

it.  

2.3.1. UMC initialization phase 

UMC keeps one bit tag for each byte of memory. The tag value shows the state of that 

memory location. These tags are initialized at the beginning of the program with tag value zero. Tag 

value zero indicates that the specific memory region is not initialized or allocated. 

2.3.2. UMC propagation phase 

          Executing store instruction changes the memory state from either unallocated or allocated 

but not initialized state to the allocated and initialized state. During executing store instruction, UMC 
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technique sets the tag value of memory. This instruction is the only one that can propagate tags and 

set tags for memory regions.  

2.3.3. UMC checking phase 

         The check function intervenes with every access to the variables through the load instruction 

and compares the status tag with the expected tag. Loading a value can only be performed from 

allocated and initialized state. If a memory location is in this state, it has tag value of one. If memory 

is in any other state, meaning that its tag is zero, UMC technique stops the execution of instruction 

and halt program. 

 

2.4. Framework Overview 

We have added a new module to the SIS simulator – the tagging engine. This module is 

designed to simulate the behavior of the tagging coprocessor. Within the SIS simulator we have 

added hooks to enable execution of the coprocessor.  The first set of hooks defines the operations of 

CPOP instructions (coprocessor operations). The CPOP1 format instructions are used to control 

operation of the coprocessor (e.g., turn it on and off). The CPOP2 format instructions are used to 

manipulate the specific tags (e.g., set a tag of a register or memory location). In addition, we have a 

hook from the simulator that calls the tag-dispatch-instruction()  function. This function 

is the framework used to specify the execution behavior of each instruction, or more specifically the 

execution behavior of the tag engine for each instruction. This function is called prior to actual 

execution of the instructions to ensure that the simulator simulates the throwing of a security 

exception prior to completion of the instruction.  For each instruction, as illustrated in the following 

chapters, we implement specific tag checking and propagation rules.   

To add techniques to the SIS simulator, we chose a tagging mechanism and defined tag 

formats for it. We determined the items that need to be tagged and formulas for tag propagation and 
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checking for each technique. Then we assigned a rule that specifies how the tag engine can initiate 

its work.  

We specified list of data structures need for the tag engine part of each mechanism. This data 

structure includes the storage of tags, management of tag engine and placeholder for tag engine state 

information. We characterized a process which is used for initialization of data structures and 

variables of tag engine. We then defined set of functions that can have access to the data structure for 

necessary modifications. 

We determined tag propagation and checking rules in terms of data structure for the tag 

engine based on the chosen mechanism. We defined the propagation and checking rules that shows 

how tags can be access and what functions can operate on tags. We then specified API’s for both 

propagation and checking functions that include tag manipulation and propagation operation. 

In some cases tag checking rules cause a trap. Checking rules for each technique is 

implemented differently to be able to detect different a set of attacks. So running different 

instructions in different technique may lead to trap caused by tag checking rule of tag engine. 

To handle traps we defined a trap interface, we specified set of information and the procedure to 

pass the information to the trap handler. We defined trap specific interface function API and it’s data 

structure. 

We designed the interface for RTEMS to communicate with the simulator and the memory 

addresses for communicating with the trap engine. We defined set of control functions and data 

needed for the control functions. We then specified the API’s for interface within the tag engine for 

each control function and the process that can access the control functions and communicate with 

them. We write library for supporting the new control functions and API’s for interface within the 

tag engine for each control functions.  
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To do the testing and evaluation we conducted a design review for data structures, APIs and 

list of functions. We conducted a unit testing on all modules and functions. These tests are 

standalone tests to ensure each module behave correctly. We then designed set of generic test suits 

that can be used for each tagging technique. 

 

2.5. Conclusion 

In this chapter we have discussed three different hardware-based tagging techniques that we 

implement in our simulator. There are server techniques that have been discussed in the literature, 

but most of them are similar to the once review here. We then bring a whole overview of the 

framework and how each technique can be integrated to the simulator. 
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Chapter 3. Background in SIS 

 

In Chapter 2 we introduced DIFT, MBC and UMC security tagging techniques. We gave an 

overview of how these techniques work and how they can prevent security vulnerabilities. To 

implement these techniques at the assembly instruction level, it’s necessary to know the details of the 

underlying system where these techniques are implemented. In this thesis the tagging techniques are 

implemented in the Scalable Processor ARChitecture (SPARC) using the SPARC Instruction 

Simulator (SIS). SIS is a SPARC instruction simulator which is capable of emulating ERC32 

(radiation-tolerant 32-bit RISC Processor). ERC32 is a SPARC variant based computer system 

implements SPARC version 7 [10]. 

This chapter provides details about SIS, SPARC instruction level and assembly level details. 

It also gives details about important features and components of the ERC32. The purpose of using 

ERC32 is that it provides high performance computation for embedded real time devices. The 

simulated ERC32 only implements memory and application specific peripherals, although other 

functionalities are supported by the core. ERC32 support neither MMU nor cache memory. 

Therefore it needs to access memory directly to run store and load instructions. 

 

3.1. SPARC Instruction Simulator (SIS) 

SIS is a SPARC Instruction simulator which simulates the CPU board for the ERC32 based 

computer systems. ERC32 based computer system is a 32-bit RISC processor which implements 

SPARC Version 7. All the ERC32 instructions have a 32-bit constant length [11]. 

The ERC32 incorporates different functionalities implemented in its own computing core. 

The main ERC32 board functionalities are ERC32 core and ERC32 peripherals. ERC32 core 

includes Processor and MEmory Controller (MEC) while ERC32 peripherals include EDAC, wait 
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state generator, timer, interrupt handler, watch dog and UART. ERC32 core Processor consists of 

three components including IU, FPU and implementation dependent CoProcessor (CP). These 

components form the 32-bit embedded ERC32 processor [12]. 

The SIS simulator simulates ERC32 processor, MEC and 32-bit wide instructions. The IU 

part of the processor is responsible for computing portion of ERC32 and is explained in Section 4.2. 

FPU executes single and double precision floating point instructions. FPU instructions can be 

executed concurrently with the IU instructions. The Implementation dependent CP can also be 

accessed through specific instructions. CP implementation dependent registers can also be accessed 

through CP instructions. All of these three units in ERC32 processor can work concurrently. 

Different naming convention exists for each processor component registers. Registers that are used 

in the IU called “r” registers, those that are used in the FPU “f” registers and those that are used in 

CP are called “c” registers. There are also control and status registers implemented to keep track of 

the status of events in the processor [12]. 

SIS simulates RAM and PROM for ERC32. By default the ERC32 chip has 32 MB RAM 

and 4 MB PROM which is used as the default amount for SIS simulated RAM and PROM. SIS 

provides functionalities to simulate ERC32 different applications. Since RAM and ROM sizes are 

configurable through SIS, these applications can update processor memory sizes.  

To run applications using SIS, we can attach SIS to the GNU DeBugger (GDB) like a remote 

target so it can be used to debug application through GDB [11]. 

Two versions of SIS has been developed to make it capable of simulating different 

applications. These versions are named SIS and SIS64. SIS is capable of simulating time up to 232 

clock ticks which can run about 5 minutes at 14MHz frequency. SIS 64 is capable of simulating time 

up to 264 clock ticks which provides almost unlimited time of simulation but it is 20% slower than the 

previous version of SIS. Running ERC32 applications with security tag engines does not require 

unlimited time of simulation, so we chose SIS version for our implementation. 
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3.2. Integer Unit (IU) 

Instruction execution and computation is done in the IU. The IU is capable of executing one 

instruction in each cycle. The IU contains 136 general purpose registers and manages the operations 

that occur in the processor. The IU keeps track of the Program Counter (PC) during execution of 

each instruction. It is also responsible for performing integer arithmetic and logic instructions and 

computes memory addresses for load and store instructions. All of the ALU instructions are register 

to register operations; and only load and store instruction access memory. The following section 

describes the register model, data types of the IU, control and status registers [13]. 

3.2.1. Integer Unit General Purpose and Windows Register 

There are total of 140 32-bit registers available for the IU. While 136 32-bit registers are 

general purpose registers, the rest of them are control/status registers. General purpose registers are 

divided into 8 global registers and 128 window registers. The 128 window registers are then divided 

into 8 sets of windows registers on a circular stack. The circular stack contains 24 r registers. The 

SPARC register file model is known as a register window [10]. 

There are 32 general purpose registers visible to a program at any given time: 

• %g0 to %g7 global registers for storing global data. 

• %l0 to %l7 local registers for storing local data. 

• %i0 to %i7 in registers for storing incoming arguments. 

• %o0 to %o7 out registers for storing arguments to subroutines. 

 

The 8 global registers are mapped to physical registers and the remaining 24 registers are 

mapped to one of the overlapping register windows. Each register window has local registers, in 

registers and out registers. These registers are shown in Table 3-1. 
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Register Name Register Number 

Ins r[24] to r[31] 

Locals r[16] to r[23] 

Outs r[8] to r[15] 

Globals r[0] to r[7] 

Table 3-1: SPARC register set 

Global registers are shared among all of the windows; with %g0 register hardwired to zero. 

Local registers belong only to the current window and they are not shared among other windows. 

They are usually used for storing temporary and local values. The current PC is stored in %l1 and 

Next PC (NPC) is stored in %l2 when a trap occurs. 

The in and out registers in the register window are shared with adjacent windows. They are 

used for passing parameters and storing incoming arguments. Among the in registers %i0 is used to 

store the return argument, %i6 is used for storing frame pointer (%fp) and %i7 is used for storing the 

return address. Within the out registers, registers %o0-%o5 are used to store the arguments that are 

passed to a function. %o6 stores the stack pointer (%sp) and %o7 stores the return address. There 

exists a Current Window Pointer (CWP) which always points to the current active window. This 

register changes during executing TRAP, SAVE and RESTORE instructions to adjust its content in 

order to point to the right window [10]. 

Upon a subroutine call, the return address will be stored in %o7. The new window will be 

activated and the out registers of the current window become in registers of the next window as 

shown in Figure 3-1 (adapted from SPARC International Inc.). Save instruction decrements the CWP 

by one to activate next window. The subroutine’s calling procedure’s out-registers becomes the 

callee’s procedure in the registers. In this way parameters passed directly. A program needs its own 

register window to return from a subroutine. The RESTORE instruction increments CWP to restore 

the caller’s window. In this way the previous window becomes the current window. By the nature of 
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circular stack, the last register window is adjacent to the first one as shown in Figure 3-2 (adapted 

from SPARC International Inc.). 

 

 

Figure 3-1: Cicular Stack of Register Window  

3.2.2. Integer Unit Control and Status Registers 

The control/status registers are 32-bit registers including: 

• Processor state registers (PSR) 

• Windows Invalid Mask (WIM) 

• Trap Base Register (TBR) 

• Multiply/Divide register(Y) 

• Program Counter (PC, nPC) 



 

At any given time the program has access to 

Processor State Register (PSR). Register window

Windows Invalid Mask (WIM) register.

 

 

4. Processor State Register (PSR)

At any given time the program has access to the current window through CWP 

(PSR). Register window overflow and underflow can be detected with 

(WIM) register.  

Figure 3-2: Change of the Register Window 

Processor State Register (PSR) 
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through CWP field of 

overflow and underflow can be detected with 

 



 

The Processor State Register holds data that controls the processor or shows the status of the 

processor. There are several instructions that can modify

and RESTORE. 

 

Figure 

  Each of the implementation and ver

to the processor implementation number and Integer Unit version 

The icc field holds the 

and logic instructions whose mnemonic 

PSR. There are also BICC and TICC instructions

icc. The icc field itself contains bits for

These bits are set or reset base

shown in Figure 3-4. 

                                       

        

The reserved bits (bits 14 through 19)

at this time. The Enable Coprocessor (EC) bit, 

or not. If it is not enabled or the coprocessor does not exist then this bit 

Floating Point Unit (EF) flag is bit 12 and it indicates

the EC, if the Floating Point U

this bit will set to zero. The Processor Interrupt Level (IPL) iden

egister holds data that controls the processor or shows the status of the 

processor. There are several instructions that can modify the PSR. These instruction

Figure 3-3: Processor State Register 

of the implementation and version fields are 4 bits long and hold information regard

the processor implementation number and Integer Unit version number respectively.

the four condition codes for the Integer Unit. There are several arithmetic 

whose mnemonic end with cc. These instructions can modify the icc bits in 

PSR. There are also BICC and TICC instructions that cause control transfer based 

contains bits for negative (N), zero (Z), overflow (V) and carry (C)

set or reset based on the results of arithmetic and logic instruction. The icc fields 

 

     Figure 3-4: Icc bits 

(bits 14 through 19) are reserved for future use and they are all set to zero

The Enable Coprocessor (EC) bit, which is bit 13, indicates if the coprocessor is enabled 

or not. If it is not enabled or the coprocessor does not exist then this bit is set to zero.

flag is bit 12 and it indicates if the floating point unit is enabled or not. Like 

Unit (FPU) is not enabled or the processor does not support FPU

The Processor Interrupt Level (IPL) identifies the level of
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interrupt. The processor will accept any interrupt which has the priority equal or greater than the 

value that IPL defines. The Supervisor (S) bit is set to 1 when the processor is in the supervisor 

mode. The Previous Supervisor (PS) bit holds the value of the S bit when a trap occurs. Enable Traps 

(ET) bit indicates if traps are enabled or disabled. In the case of disabled traps, all the traps will be 

ignored. The CWP holds the index of the current active window 0 to 31. These 5 bits CWP can be 

modified by TRAP, SAVE and RESTORE instructions. 

5. Trap Base Register (TBR) 

This register provides the address of the trap table. Branch instructions read contents of this 

register when flow of program execution causes trap. 

6. Windows Invalid Mask Register (WIM) 

The WIM register is controlled by operating system’s software and used in the hardware to 

determine register window overflow or underflow. WIM is 32 bits wide while each bit corresponds 

to one of the 32 register window. If one bit is set in the WIM, it indicates that the corresponding 

register window is invalid. 

The trap occurs in the case of register window overflow or underflow, in the case of 

execution of SAVE or RESTORE/RETT instruction respectively.  In the case of a trap, the CWP 

points to an invalid window indicated in the WIM register. Every time SAVE, RESTORE, or RETT 

instruction executes, CWP compares the decremented and incremented CWP against the WIM to 

check for window overflow or underflow. 

 

3.3. Data Types  

The IU unit of the ERC32 supports eleven data types. The three basic data formats and 

supporting width for each format are shown in Table 3-2.  Single precision floating points uses 32 bit 

format; double precision floating points uses 64 bit format. The minimum size of each register is 32 

bit wide. If the data written to the register is less than 32 bits, it’s written to memory starting from 
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LSB. Depending whether the data is signed or unsigned, the remaining bits are zero extended or sign 

extended. For 32 bit data, whether it is unsigned or signed, data is simply loaded from or stored to 

the memory. Double word operands read from or load to two consequent registers [10]. 

The organization of data in memory follows the big-Endian convention which means lower 

addresses contains the higher order bytes. 

 

 

Table 3-2: SPARC Data Types 

 

3.4. IU Instruction Set 

The ERC32 processor reads an instruction from a specific memory address provided by the 

PC. Instructions can be executed, annulled or trapped by the processor. In the case of a trap 

occurrence, the operating system forwards control based on the trap table. Trap table contains the 

trap handler addresses. The trap handler’s base address is set by the operating system. In the case that 

an instruction’s execution doesn’t cause a trap, the address for the next instruction is copied from 

DATA  

FORMATS 

SUPPORTING WIDTH 

signed Integer Byte(8 bits), Halfword (16 bits), Word (32 bit),Tagged Word(30 bits 

with 2 bit tag), Doubleword (64 bit) 

unsigned 

integer 

Byte(8 bits), Halfword (16 bits), Word (32 bit), Tagged Word(30 bits 

with 2 bit tag), Doubleword (64 bit) 

floating point Word (32 bit), Tagged Word(30 bits with 2 bit tag), Doubleword (64 

bits), Quadword(128 bits) 
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NPC to PC. The normal address for the next instruction is generated by incrementing the PC address 

by 4. This address is copied to the NPC register and is used in the next cycle of instruction execution. 

 

3.5. Instruction Format and Addressing 

Instructions are categorized into three different format categories. The first format is CALL 

instruction. The second format is BRANCH and SETHI instructions. The third format is logical and 

arithmetic instructions as well as memory instructions. Format 3 also supports floating point and 

coprocessor instructions. We will not give details about Floating Point instructions since the tested 

security techniques are not applied to Floating Point instructions. However, since we want to use the 

coprocessor as a major component for the security tag engine in our design we give details of the 

coprocessor instructions. Formats for all instructions are shown in Figure 3-5 through Figure 3-9 

[11]. 

The address for operands of each instruction are either located in the instruction itself or 

calculated from displacement bits. The OPeration code (OP) field is a 2-bit field which determines 

the instruction types and encodes the 3 major instruction formats. OP2 is a 3-bit field which encodes 

instructions in format 2. The instruction encodings through OP and OP2 are shown in Table 3-3. 

Format OP OP2 Instruction 
 1 1 

Unimplemented CALL 

2 0 0 Unimplemented 
1 Unimplemented 
2 Bicc 
3 Unimplemented 
4 SETHI 
5 Unimplemented 
6 FBcc 
7 CBcc 

3 2 
Unimplemented Memory instructions 

3 3 
Unimplemented 

Arithmetic, logical, 
shift and remaining 

Table 3-3: OP and OP2 encoding 
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The other fields in the instructions shown in Figure 3-5 through Figure 3-9 are encoded as 

below: 

- Rd field: is a 5-bit field stores the address for source or destination register. This address is 

used by IU, FPU or CP.   

- imm22 field: It’s a 22-bit field is constant and is used by SETHI instruction to calculate the 

destination register. 

- cond: It’s a 4-bit field that chooses the condition code for branch instructions. 

- a: It’s a i-bit field in the branch instructions that annuals the instruction execution based on the 

type of branch. 

- op3: It’s a 6-bit field that encodes format 3 instructions.  

- i: it’s a 1-bit field that selects the second operand for arithmetic and load/store instructions.  

- disp22 and disp30: these are 22-bit and 30-bit fields. They are used as PC-relative 

displacement for call or branch instructions. 

- Address Space Identifier (ASI): it’s an 8-bit field which is used by load/store alternate 

instruction. ASI is sent to the system memory for memory accesses. It is used to control supervisor/ 

user mode accesses to memory instruction and data. 

- rs1: It’s a 5-bit field. It shows the address of first source operand in r, f or c register. 

- rs2: It’s a 5-bit field. It shows the address of second source operand in r, f or c register when i 

field is 0.  

- simm13: it’s a 13-bit field. It has 13-bit immediate value used in the case that I field is 1 as the 

second source operand. 

- opf: it’s a 9-bit field that encodes floating point instructions or coprocessor instructions. 

 

Figure 3-5: Format 1 (op = 1): CALL Instruction 
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Figure 3-6: Format 2 ( op = 0): BRANCH Instruction 

 

Figure 3-7: Format 2 ( op = 0): SETHI Instruction 

 

 

Figure 3-8: Format 3 ( op = 2, 3): Integer and load/store Instructions 

 

Figure 3-9: Format 3 ( op = 2): FP/CP Instructions 

 

SPARC instructions can be further categorized into 6 different categories: 

 

• Load/Store instructions – Format 3, opcode 3 

• Arithmetic and logic instructions -  Format 3, opcode 2 

• Control transfers – Format 1 and 2, opcode 0 and 1 

• Floating Point Instructions – Format 3, opcode 2 

• Coprocessor instructions – Format 3, opcode 2 
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Since SPARC is a load/store architecture, load and store instruction are the only instructions 

which have access to memory. There are three different scenarios in which memory addresses for 

load and store instructions can be generated. The first scenario uses two registers indicated by rs1 

and rs2 fields of an instruction. The value in these two registers is added to create the address for 

load and store instructions. The second scenario uses an immediate value. In this scenario the i field 

is 1, rs1 field is used as the first source operand and the imm13 used as the second source operand. 

The address is calculated by adding the content of rs1 to the sign-extended value of imm13 field of 

the instruction. The third scenario is a special case of the second scenario. In this case we want to 

create the address by only using imm13 field in the instruction. For the third scenario the imm13 

field value will be added to the rs1 register which is set to %g0. Since %g0 is hardwired to 0 the 

resulting address value will be only the sign extended value of imm13 field. In this scenario we can 

have an absolute addressing mode.  

We can also use the program counter to calculate the address. The CALL and BRANCH 

instructions use the program counter as one of the sources for generating the target address. As we 

saw in Figure 3-5, in the CALL instruction format, the 30-bit displacement is the second source for 

calculating the address. Note that the ERC32 is a delayed control transfer machine. The PC gets the 

NPC before the control transfer instruction. After the address is calculated, NPC gets the new 

address. This means that the instruction following the call or branch instruction is executed before 

the call or branch is taken. 

As we see in instruction format 2 in Figure 3-6, the BRANCH instruction uses the PC as 

well as a 22-bit displacement to calculate the target address.  

3.5.1. LOAD/STORE instructions 

Load and store instructions move data to/from registers from/to memory. As discussed 

earlier the address for load and store instruction is calculated based on different fields of the 

instruction. The destination field defines where the result is going to be loaded from or stored to. 
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This field can be any of the system registers or FP and  CP registers. There are also two special 

load/store instructions, SWAP and LDSTUB (atomic load and store instruction). These instructions 

are atomic instructions meaning they cannot be interrupted. SWAP instruction swaps the contents of 

a register with a word in memory. LDSTUB reads from memory into a register and fills out the 

memory location with 1’s. 

3.5.2. Arithmetic and Logic instructions 

Arithmetic and logic instructions take two operands as a source, perform the specific 

operation on them and save the result in the specified destination register. These two operands can be 

either two registers in the case that i field is 0, or it can be one register and a 13-bit immediate value 

in the case that i is equal to 1. 

Most arithmetic and logic instructions can be categorized into two sub-categories. The first 

category can set the icc bits in the icc field of the instruction as well as performing the instruction. 

This category of instructions has cc at the end of the name of each instruction. The second category 

only performs the arithmetic and logic calculation and never touches the icc bits. 

Arithmetic and logic instructions are divided into arithmetic, logic, shift, SETHI, multiply, 

divide and tagged add/subtract. In this study, these tagged instructions are defined by SPARC and 

they are not related to the security tags. 

The SETHI instruction is used to create a 32-bit constant value, by using SETHI along with 

an arithmetic instruction. The 22-bit immediate value in the SETHI instruction is loaded in the upper 

bits of destination register. 

3.5.3. Control Transfer 

The Control Transfer instructions set the value of NPC to the desired target address. There 

are five different sets of instruction in this category, which include conditional Branch, call, Jump, 

trap, return from trap, SAVE and RESTORE. ERC32 also supports delayed control transfer. 
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Branch instructions use the icc bits, set by arithmetic instruction, to decide to take branch or 

not. There are two branch instructions BA (Branch Always) and BN (Branch Never) that are not 

decided based on the icc bits. The result of these two instructions are always or never branch, 

respectively. Traps are also occur or not based on the condition codes. In the case of the occurrence 

of a trap the following sequence happens. Traps are disabled, the state of the processor is saved, and 

current windows pointer is changed to point to the next windows. The address of the trap base 

register is copied to PC and the NPC gets the value of PC+4. In the case of returning from a trap, 

CWP is restored, the return address is calculated and trap conditions is enabled. State of the 

processor is restored and NPC gets the target address. 

  The address for the target of a CALL instruction is calculated base on the rules we’ve 

discussed. Jump however uses two registers as operands or one register plus 13-bit displacement to 

calculate the target address. The return address of the CALL instruction will be stored in %o register 

of the current window. The return address for the JUMP instruction will be stored in the register 

specified by the rd field of the instruction. SAVE instruction is used to save the current window of 

the caller and the RESTORE instruction restores the called window.  

 

3.6. MEmory Controller (MEC) 

The MEC is designed to interface FPU and IU to memory and I/O devices. It supports 

concurrent error detection and handling. MEC includes necessary system functions such as: [14] 

• memory interface to RAM ranging from 256KB to 32MB 

• memory interface to PROM ranging from 128KB to 4MB 

• System clock 

• I/O interface 

• Address decoding 

• EDAC 
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• wait state generator 

• 2 32-bit timers 

• interrupt handler 

• watch dog 

• two UARTs 

• Block protection 

• test and debug support  

The MEC can be reprogrammed to interface with different sizes of RAM ranging from 

256KB to 32MB. The default value for the RAM size is 256KB. By using MEC_MCR register, we 

can divide RAM size up to 8 different blocks of memory. Each block is composed of 32-bit data, 

parity bit and 7-bit check code. The default number of blocks is one.  

MEC registers are writeable in the supervisor mode, but they can be read in the user mode. 

MEC registers are all 32-bit registers. Each bit or group of bits can be used to perform functionality. 

In some of the MEC registers not all 32-bits are used. The bits that are not used in these registers are 

marked as reserved bits and will hold a fixed value which is generally a zero. These bits can be read 

but they are write-protected.  

 

3.7. Coprocessor   

The SPARC architecture uses the IU as the main processing core, but the capability of 

adding two coprocessor extensions is also provided. These extensions can be implemented by using 

instruction set extensions. The coprocessor extensions are designed so that it can operate 

concurrently with the IU and FPU. To support the user-defined coprocessor, the coprocessor should 

include an internal register set and a status register as defined by the SPARC architecture. 

   The coprocessor register model is defined by SPARC architecture. A coprocessor has up to 

32 x 32-bit registers called c registers. All of the operands for the coprocessor instruction are loaded 
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from “c” registers and results are stored in them. Using coprocessor load and store instructions, the 

content of these registers can be loaded or stored, to or from memory [11]. 

The processor can also execute coprocessor instructions which are defined by CPOP1 and 

CPOP2 opcodes. CPOP1 and CPOP2 opcodes define instructions that can perform calculation inside 

coprocessor. CPOP1 and CpOP2 instructions are encoded via type 3 format.  

Coprocessor control/status registers includes Coprocessor State Register (CSR) and 

Coprocessor Deferred-Trap Queue (CQ). CSR contains the status of coprocessor and can be checked 

upon execution of Coprocessor instructions. Coprocessor exception deferred trap is handled using 

CQ. 

 

3.8. Conclusion 

In this chapter we discussed features of SPARC instruction simulator that simulates ERC32 

processor. We introduced different categories of SPARC instructions set and its register window. We 

discussed ERC32 simulated components such as IU, FPU and CP. SIS has lot of functionalizes 

implemented in it. We chose set of functionalities that can be used by each tagging technique. 
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Chapter 4. Implementation of DIFT Tagging               

Schemes in SIS 

 

Chapter 2 provided background on three different security tagging techniques including 

DIFT. This chapter explains the implementation details for the DIFT technique for SPARC. DIFT is 

implemented at the instruction level in SIS.  In our work, we classify the SPARC instructions base 

on the rules for DIFT. The tagging rules are defined for each group of instructions as classified 

below:  

• Group 1 defines the BRANCH and CALL instructions 

• Group 2 defines 35 ALU instructions 

• Group 3 defines LOAD, STORE and SWAP instructions 

• Group 4  defines CPOP1 and CPOP2 instructions 

• Group 5 defines the  rest of the instructions 

Base on the rules for the DIFT technique, all of the memory locations and registers are 

initialized with zero tag value represents untainted tag value. During the instructions execution, tags 

are retrieved, manipulated, set in registers’ tags and saved in the memory tags. To perform get and 

set of the tag values for the registers and memory locations key functions have been used. The key 

functions are called from inside the propagation and checking functions to modify or return the tag 

values from the tag data structure [7]. 

In our framework we decided that tags should be checked before execution of the 

instruction. This allows any security exception to prevent instruction execution. To simulate this, we 

created the tag_dispatch_interface()  function. The tag_dispatch_interface()  

function  contains the propagation and checking rules needed for all five instruction groups 

introduced above. Tag_dispatch_interface()  function is called at the beginning of the 
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dispatch_instruction_interface()  function of SIS so that the tags are checked and 

propagated before execution of instructions. 

In a real machine this would be accomplished in parallel with an error preventing completion 

of the instruction. Since error detection happens before completion of the instruction, a close 

evaluation of the hardware implementation is provided. 

 

4.1. DIFT Initialization of Tag Engine 

The DIFT technique keeps a 1-bit location tag for each word in the memory and each 

register. The data structure for tags in this technique is shown Figure 4-1. This structure will be 

changed for each tagging technique. 

C code: 
Typedef  struct tag 
{ 
               Char dift_tag ; 
                
               } tag_t ; 
 
typedef struct  
{ 
              tag_t  r[128] ; 
              tag_t  g[8] ; 
              tag_t  pc, cc, cwp, y; 
              } UI_TAGS ; 
 
UI_TAGS   tags ; 

Figure 4-1: DIFT tag data structure 

 

4.2. DIFT Propagation Rules 

Propagation rules are rules that are responsible for the tags propagation in different 

instructions. Propagation rules are defined for the Groups 2, 3 and 4 of the SPARC instruction as 

explained hereafter. Each separate tagging technique will have its own propagation rules. 
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4.2.1. Rules for Group 2 Instructions 

Group 2 includes arithmetic, logic and shift instructions as shown in Table 4-1. Propagation 

rules for this group of instructions are defined in Table 4-2. The propagation rules state that using 

tainted data in arithmetic, logic and shift instructions produce tainted result. All of the instructions in 

this group can either have one or two operands. In the case of two operands, rules are described in 

Table 4-2. In the case of having one operand, the result’s taint mark is the taint mark for the only 

operand. 

  For example, executing instruction SUB %g1, %g2, %g3, subtracts the content of %g1 from 

the content of %g2 and stores the result in %g3. If either of %g1 or %g2 is tainted then %g3 is 

tainted. For instructions which modify the condition codes, propagation rules are exactly the same 

regardless of the result of the icc bits evaluation. 

Opcode Name 
SMUL (SMULCC) Signed Integer Multiply (and modify icc) 
UMUL (UMULCC) Unsigned Integer Multiply (and modify icc) 
SDIV (SDIVSCC) Signed Integer Divide (and modify icc) 
UDIV (UDIVCC) Unsigned Integer Divide (and modify icc) 
XNOR (XNORCC) Exclusive Nor (and modify icc) 
XOR (XORCC) Exclusive Or (and modify icc) 
OR (ORCC) Inclusive Or (and modify icc) 
ORN (ORNCC) Inclusive Or Not (and modify icc) 
ANDN (ANDNCC) And Not (and modify icc) 
AND (ANDCC) And (and modify icc) 
SUB (SUBCC) Subtract (and modify icc) 
SUBX (SUBXCC) Subtract with Carry (and modify icc) 
TSUBCC Tagged Sub and modify icc 
TSUBCCTV Tagged Sub and modify icc and Trap on 
ADD (ADDCC) Add (and modify icc) 
ADDX (ADDXCC) Add with Carry (and modify icc) 
TADDCC  Tagged Add and modify icc  
TADDCCTV Tagged add and modify icc and Trap on 
SSL Shift Left Logical 
SRL Shift Right Logical 
SRA Shift Right Arithmetic 

Table 4-1: Implemented ALU instructions 
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TADDCC, TADCCTV and TSUBCC, TSUBCCTV instructions are the same as ADDCC 

and SUBCC respectively except that tagged instructions’ result depends on the result of ADDCC and 

SUBCC instructions. If bits at location 0 or 1 of any of the operands are not zero, the tag overflow 

occurs. Recall this is not a security tag. Also, if the result from an addition instruction causes 

overflow then tag overflow occurs, which results is setting the overflow bit in PSR. In case that it 

does not cause tag overflow, the overflow bit in PSR is cleared and the result of the calculation is 

stored in the destination register. The difference between TADDCC and TADDCCTV or TSUBCC 

and TSUBCCTV is that in TADDCCTV and TSUBCCTV is that if the tag overflow occurs, 

execution of TADDCCTV and TSUBCCTV instructions cause a trap and the contents of the 

destination register and icc bits remain unchanged. The propagation function for these instructions is 

called before the tag overflow evaluation to make sure tag overflow doesn’t interfere with the 

propagation rules. It would be useful to modify the propagation rules such that register clearing 

operations including XOR %r1,%r1,%r1 do not propagate tags. However register cleaning operation 

in runtime is not specified in the DIFT specification, therefore they are not implemented here. 

          

   Op1 taint Mark Op2 taint Mark Result taint Mark   

  1 0 1   

  0 1 1   

  1 1 1   

 

0 0 0 

     

  

  

Table 4-2: Rules for ALU instructions 

4.2.2. Rules for Group 3 instructions 

Group3 includes LOAD, STORE, Atomic load store and SWAP instructions. Group 3 can be 

divided into three different sub groups according to the similarity of the DIFT propagation and 

checking rules. The sub groups are: 

• Subgroup 1 defines 12 LOAD instructions 
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• Subgroup 2 defines 8 STORE instructions 

• Subgroup 3 defines LDSTUB and SWAP instructions 

Following is the detailed description of each subgroup: 

 

• Subgroup 1 defines 12 LOAD instructions 

Opcode Name 
LDD (LDDA) Load Double word (from Alternate space) 
LDSB (LDSBA) Load Signed Byte (from Alternate space) 
LDUB (LDUBA) Load Unsigned Byte (from Alternate space) 
LDSH (LDSHA) Load Signe Halfword (from Alternate space) 
LDUH (LDUHA) Load Unsigned Halfword (from Alternate 
LD (LDA) Load Word (from Alternate space) 

Table 4-3: Implemented LOAD instructions 

Table 4-3 shows the Load instruction in the SPARC architecture. Load instructions copy a 

byte, half word, word or double word from memory to the register rd. Load instructions are in 

Format 3 instructions of SPARC. In case of a zero “i” field, the effective address to load from is 

calculated by adding contents of the registers rs1 and rs2. If the “i” field equals one, the effective 

address is calculated by adding the contents of register rs1 to the sign extended simm13. All of the 

registers are 32-bits wide, so in the case of loading a byte or half word, the value is right justified in 

the destination register. The rest of the bits in the rd register are sign extended if the instruction is 

signed load. In the case of executing unsigned load the rest of the bits are filled with zeroes.  

Checking rules for Load instruction is defined in such way that if load instructions’ address 

is calculated using one register, the DIFT tag for that register is checked. If the value of the tag is 

tainted then it causes a security exception. If the address is calculated using two registers, then DIFT 

tags of both registers should be checked, and if either one of them is tainted, then program will cause 

a security exception. 
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In the case that no exception occurs, the execution of the instruction proceeds to propagating 

the tag. Propagation rules for the Load instruction set the tag of the register rd with the tag value of 

the data structure of the memory address.  

The Load Double Word instruction copies a double word from memory into a register pair. 

The LDD instruction loads the contents of the most significant word into the register rd and the less 

significant word into the register rd+1. 

Checking rules for LDD is the same as other load instructions. Checking rules checks the tag 

value of the source register which is used to calculate the target address. In addition source register 

causes an exception if the tag value is tainted. However the tag propagation rules are different. The 

tag value of the register rd gets the tag of the most significant memory address, and the tag for the 

register rd+1 gets the tag of memory address+4. This choice was made since LDD is often used as an 

optimization for the copying of large amount of contiguous data, where some adjacent words are 

differently tagged. 

• Subgroup 2 defines 8 STORE instructions 

Opcode Name 
ST (STA) Store Word (from Alternate space) 
STB (STBA) Store Byte (from Alternate space) 
STH (STHA) Store Halfword (from Alternate space) 
STD (STDA) Store Doubleword (from Alternate space) 

Table 4-4: Implemented STORE instructions 

Store Instructions, which are in subgroup 2, are shown in Table 4-4. These instructions store 

the contents of the register rd into the specified memory address. ST stores a word from rd into a 

word of memory, STB stores the least significant byte of rd into memory and STH stores the lease 

significant half word of rd into memory. The address used to store the result is calculated either by 

using contents of the register rs1 or both registers rs1 and rs2. If rs1 is the only register that is used to 

calculate the address, DIFT checking rules checks the tag for register rs1 to make sure that the 

calculated target address does not come from tainted value. If rs1’s tag value is tainted then a 
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security exception occurs. If registers rs1 and rs2 are used to calculate the target address, both of the 

tags of these two registers is checked and if either one of them is tainted, the program throw an 

exception. 

  If the checking phase passed in the two scenarios explained before, the program proceeds to 

the propagation phase. In the propagation phase the memory address gets the tag value of the register 

rd. 

Store Double Word instruction, stores a value from the registers rd and rd+1 to the memory 

at the effective address and effective address+4 respectively. The effective address is the address of 

the most significant. The effective address is calculated using register rs1 or rs1 and rs2. The address 

of less significant word is effective address+4. Therefore rs1 or rs1 and rs2 should be checked. If the 

rs1 (in first case) or rs1 and rs2 (in second case) have zero tag value, tag propagation takes place. 

Tag propagation copies the tag values of the registers rd and rd+1 to the effective address and 

effective address+4 respectively. 

• Subgroup 3 defines LDSTUB and SWAP instructions 

Opcode Name 
LDSTUB (LDSTUBA) Atomic Load-Store unsigned Byte (from 
SWAP (SWAPA) Swap r Register with Memory (from Alternate 

Table 4-5: Implemented LOAD-STORE and SWAP instructions 

Subgroup 3 instructions are shown in Table 4-5. The LDSTUB instruction loads a byte from 

memory to the register rd and then writes 1 to all of the bits in the address specified in the 

instruction. The address to load from and store to, is either calculated using rs1 or rs1 and rs2. In the 

checking rules for LDSTUB the tag value for the rs1 or rs1 and rs2 are checked. If any of the tag 

values of rs1 or rs2 is tainted the program causes a security exception, otherwise tags are propagated. 

Propagation rules are different based on the nature of the LDSTUB. For the load part of the 

instruction, register rd gets the tag value of the specified memory byte. In the store part of the 
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instruction, since the memory byte is filled with 1’s which is a constant value, the tag of the memory 

byte is cleared.  

The SWAP instruction, like LDSTUB, consists of two instructions executed atomically. It 

swaps the content of the register rd with a word in the memory. At first the effective address of the 

specific word in the memory is calculated by using the register rs1 or registers rs1 and rs2. The 

SWAP instruction loads content of the memory to a temporary register, following by storing content 

of the register rd to memory which after the temp value is stored in the register rd. Checking takes 

place for the registers which used to produce the memory address. The same thing happen for the tag 

values, after calculating the effective address, the tag value for this address is stored in the temporary 

value. The tag value of register rd will get overwritten to the tag value of the memory address and 

the temporary tag value will be stored as the tag value of register rd. 

4.2.3. Rules for Group 4 instructions 

CPOP1 and CPOP2 instructions constitute group 4 instructions. CPOP1 and CPOP2 

instruction are in Format 3 in the SPARC architecture instruction format. Although the 

implementation of the CPOP is not in the SPARC architecture, we used these instructions by hard 

coding functionalities. We used the Coprocessor to implement the tag engine and tag related function 

inside the tag engine. The 9 bit opc field of the coprocessor provides the ability to define up to 29 

different instructions for each one of the CPOP1 and CPOP2 instructions. In our implementation we 

used CPOP1 to control tag engine by turning it on or off.  We defined a set of instructions as shown 

in Table 4-6. 

CPOP1 Opc Field Value Address in HEX Format 
CPOP_TURN_ON_TAGGIN 0 0x81B00000 
CPOP_TURN_OFF_TAGGI 1 0x81B00020 

Table 4-6: New CPOP1 instructions 

The two inline assembly functions _rtems_tag_enable() and 

_rtems_tag_disable()  are created as an interface so that the CPOP tag engine can be turned 
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on and off respectively from users’ programs. If either of these instructions is executed by the user, 

tag_dispatch_interface() executes the cpop1 instruction. In the beginning of execution of 

each instruction in the tag_dispatch_interface()  the cpop variable is checked. If cpop1 is 

not set it means that no tagging instruction is allowed to execute unless the tag engine is on. If the 

user requests to turn off the tag engine, the cpop variable value is set to false and all of the register 

tags are cleared. If execution of an instruction causes an exception at any point of the execution in 

the tag_dispatch_interface() , the cpop value will set to false and the program execution 

will be forwarded to security exception handling. 

CPOP2 instructions are responsible for manipulating tag values in the tag engine. These 

instructions can set, clear and return the tag value for a specific memory location in the DIFT tag 

engine.  

Since these instructions are responsible for programming the coprocessor, CPOP1 and 

CPOP2 instructions always execute whether the cpop flag is true or false. 

CPOP1 Opc Field Value Address in HEX Format 
CPOP_SET_DIFT_TAG 0 0x87B84002 
CPOP_CLEAR_DIFT_TAG 1 0x87B84022 
CPOP_GET_MEMORY_TA 2 0x87B84042 

Table 4-7: New CPOP2 instructions 

Executing CPOP2 instruction will yield to execution of the cpop function. Cpop function 

takes the opc value of the CPOP2, the address whose tag needs to be manipulated and the result 

register as an argument. Each value of the opc during the execution of cpop2 function provides 

separate scenarios of the tag manipulation. These scenarios can be described as setting the tag for a 

specific address, clearing the tag of a specific address, and returning the tag value of a specific 

memory location. 

CPOP2 instructions are executed as a result of any of the following function calls from the 

user’s program: 

• _rtems_set_dift_tag(addr) 



45 
 

• _rtems_clear_dift_tag(addr)  

• _rtems_get_memory_tag(addr)  

These three functions use the inline assembly routines to set, clear and return the tag values 

for the specific address provided by the user. 

4.2.4. Rules for Group 5 instructions 

The rest of the instructions are floating point instructions, trap instruction and SETHI 

instruction. Since we didn’t implement any of the tagging techniques for the floating point 

instruction, execution of these instructions neither causes a security exception nor modifies the result 

tag. The trap instruction follows the same rule as the floating point instruction meaning that it 

doesn’t have any effect on the tag engine. However executing the SETHI instruction modifies the 

result tag. As described in the SIS background chapter, executing SETHI instruction results in 

writing a constant value to the destination register. Since the value written is a constant, the register 

gets the tag value of zero. However, there are no checking rules for the SETHI instruction. 

 

4.3. DIFT checking rules 

Checking rules check the tag for specific instructions base on the DIFT rules. In the case of 

illegitimate access, the checking function will cause a security exception. Checking rules are defined 

for Group 1 of the SPARC instruction as defined in the remainder of this section. 

4.3.1. Rules for Group1 instructions 

Group 1 instructions are shown in Table 4-8. CALL and Branch instructions are in Format 1 

and Format 2 of the SPARC instructions respectively. JMPL and RETT instructions are both in 

Format 3 of the SPARC instructions. According to DIFT rules, data that carries tag value of one is 

tainted data. If the calculated target address for Group 1 instructions is tainted, then execution of 



46 
 

these instructions is not allowed and state of the system will change to illegitimate state, which 

causes a security exception. This group of instructions never propagates tags. 

Opcode Name 
CALL Call and Link 
Bicc Branch on integer condition code 
JMPL Jump and Link 
RETT Return from Trap 

Table 4-8: Implemented CALL, BRANCH, JUMP and RETURN instructions 

In the Group 1 instructions the register NPC gets the result target address. This value is 

passed to the tag_check(npc)  function. This function checks the NPC’s tag. If the NPC has a 

tainted tag value, execution of the instruction is forwarded to the exception handler.  Different 

scenarios for each instruction in Group 1 are defined here under: 

CALL Instruction: The CALL instruction stores content of the PC into r[15] which is %o7. 

Since CALL is Format 1 instruction of the SPARC, it takes the value of the disp30 field of 

the instruction. It attaches 2 zero bits at the beginning of dsip30 to make it 32 bits. Then it 

stores the value as a jump address in the NPC. After calculating jump target address, 

tag_check_CALL()  is called. The calculated address is passed as an argument to this 

function so it can be evaluated. 

 

Branch Instruction: Conditional branch instructions contain Branch Always (BA) and 

Branch Never (BN) instruction. BN never takes the branch which means it is a NOP. BA 

always takes the branch regardless of the status of icc field.  Other branch instructions 

evaluate the condition code in the icc register by using comparison and creates a result based 

on the result of the comparison. This result can be either true or false. If the result of 

evaluating icc for a Bicc instruction is true then tag_check_branch(npc)  function is  

called.  
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JUMP Instruction: JMPL instruction stores the contents of PC into a register specified in 

the rd field of the Format 3 instructions. NPC gets the value of r[rs1]+r[rs2] in the case that 

the “i” field is zero, or r[rs1]+sign-extended[simm13] if the “i” field is 1, as a jump target 

address. After calculating jump target address, tag_check_JMPL()  is called to evaluate 

the target address’s tag value. 

 

RETT Instruction: RETT instruction is used to return from a trap handler. NPC gets the 

value of the r[rs1]+r[rs2] in the case that i field is zero, or r[rs1]+sign-extended[simm13]. 

After calculating jump target address, tag_check_RETT()  is called and it checks the 

contents of the tag for the target address.  

As we mentioned, the Group 1 of instructions never sets a tag for any specific address so they 

only check for the illegitimate use of data. 

 

4.4. Conclusion 

In this chapter we introduced instruction level rules for the DIFT tagging engine. We defined 

the implemented data structure for the DIFT. We categorized SPARC instructions into different 

groups and defined propagation and checking rules for each group. We then introduced the set of 

new API’s that added to the DIFT tag engine inside coprocessor. These API’s are used to enable or 

disable tag engine operations or manipulate tags. 
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Chapter 5. Implementation of Memory                             

Bound Checking technique in SIS 

 

The Memory Bound Checking technique was implemented by using the coloring scheme 

introduced by Clause et al. [9]. The BC technique assigns a tag to each memory location and 

pointers. As we described in the background chapter, during memory allocation, the BC technique 

assigns the same tag value of location and pointer color for the allocated memory. During the 

program execution, the pointer tags is propagated and checked whenever a memory location is 

needed to be accessed. If the pointer and memory tags do not match, program execution is forwarded 

to the exception handler. 

We implemented the Bound Checking technique in the SIS. The coprocessor maintains 4-

bits tag for pointer color for each register and word in memory. It also keeps 4-bits tag for location 

color for each memory location. The tags set by special instructions implemented in the coprocessor.  

Based on the instruction execution, the tags are propagated. The tag result is checked to see if the 

pointer color matches the location color of the memory location. If these two values don’t match the 

coprocessor throws an exception. A detailed description of implementing the BC technique is 

explained in this chapter. 

 

5.1. BC Initialization of Tag Engine 

The BC technique keeps a 4-bit location color and pointer color tags for each word in 

memory. It also keeps a 4-bit pointer color tag for each register. The data structure for tags in this 

technique is in Figure 5-1: 
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C code: 
Typedef  struct tag 
{ 
               Char location_color ; 
               Char pointer_color ; 
               } tag_t ; 
 
typedef struct  
{ 
              tag_t  r[128] ; 
              tag_t  g[8] ; 
              } UI_TAGS ; 
 
UI_TAGS   tags ; 

Figure 5-1: MBC Tag data structure 

As it’s shown in Figure 5-1, pointer color and location color are assigned to each memory 

location and register. Location color for registers is not initialized or used during the program 

execution, since location color is only associated with memory locations.  

We defined a value for initializing untainted location and pointer colors. This value can be 

any number outside the range of 0 to 15. In the beginning of the coprocessor initialization, all of the 

words in memory and register location and pointer colors will be set to this value. Also we should 

mention that untainted value is different from tag value 0. Tag values can be any value between 0 

and 15.  

One of the key points in initialization and propagation of the tags is their range. Tags are 

stored in 4-bit Char locations so they cannot go below zero nor above 15. To ensure that, every time 

a tag value is going to get set, we use mod 16 operation to prevent overflows or underflows. 

 

5.2. BC Propagation rules  

Tag propagation rules are implemented based on the rules described in Clause et al. [9] 

paper. Based on the described propagation rules, we classified the SPARC instructions into 7 groups: 

• Group 1 defines MUL, DIV, OR and XOR ALU instructions. 
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• Group2 defines SUB ALU instructions 

• Group3 defines ADD ALU instructions 

• Group 4 defines AND ALU instructions 

• Group 5 defines LOAD instructions 

• Group 6 defines STORE instructions 

• Group 7 defines SWAP and LDSTUB instructions 

• Group 8 defines CPOP1 and CPOP2 instructions 

• Group 9 defines the rest of instructions 

A common scenario exists among propagation rules for all groups of instructions. It is 

possible that none of the operands are tainted. This case should be handled appropriately to prevent 

any non deterministic behavior in the code. 

5.2.1. Rules for Group 1 instructions 

Opcode Name 

SMUL (SMULcc) Signed Integer Multiply (and modify icc) 

UMUL (UMULcc) Unsigned Integer Multiply (and modify icc) 

SDIV (SDIVcc) Signed Integer Divide (and modify icc) 

UDIV (UDIV) Unsigned Integer Divide (and modify icc) 

MULScc Multiply Step (and modify icc) 

DIVScc Divide Step (and modify icc) 

IOR (ORcc) Inclusive-Or (and modify icc) 

IORN (ORNcc) Inclusive-Or Not (and modify icc) 

IXOR (XORcc) Exclusive-Or (and modify icc) 
IXNOR (XNORcc) Exclusive-Nor (and modify icc) 

Table 5-1: Implemented MUL, DIV, OR and XOR instructions 

          

   Op1 taint Mark Op2 taint Mark Result taint Mark   

  top1 Untainted Untainted   

  Untainted top2 Untainted   

  top1 top2 Untainted   

 

Untainted Untainted Untainted 

     

  

  

Table 5-2: Rules for Group1 Instructions 
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Multiply, Division, OR and XOR instructions are shown in Table 5-1. These instructions are 

either conditional or unconditional. No matter if the input is tainted or not, the result will always be 

untainted. This logic is shown in Table 5-2. Executing any of the Group1 instructions will make a 

call to their specific propagation functions. This function will remove the tag for the specific 

register’s pointer color.  

5.2.2. Rules for Group 2 instructions 

Opcode Name 

SUB (SUBcc) Subtract (and modify icc) 

SUBX (SUBXcc) Subtract with Carry (and modify icc) 

TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on 
overflow) 

   Table 5-3: Implemented SUB instruction 

          

  Op1 taint Mark Op2 taint Mark Result taint Mark   

 

Untainted Untainted Untainted 

   top1 Untainted top1   

  Untainted top2 top2   

  top1 top2 top1 - top2   

    

  

  

   Table 5-4: Rules for Group 2 instructions 

Arithmetic instruction Subtract is shown in Table 5-3. Instruction such as SUB %g2, %g1, 

%g3 will subtract the value in %g2 from the value in %g1 and will store the result value in %g3. 

According to the rules shown in Table 5-4, the pointer color of %g1 and %g2 are checked to 

calculate the result pointer color of the %g3. In immediate type SUB instruction, the result pointer 

color is the pointer color of the register. We also treat the instructions that change the conditional 

code the same as the usual instructions, so the rules for these two types of instructions are the same. 

5.2.3. Rules for Group 3 instructions 
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Opcode Name 

ADD (ADDcc) Add (and modify icc) 
ADDX (ADDXcc) Add with Carry (and modify icc) 

TADDcc (TADDccTV) Tagged Add and modify icc (and Trap on 
overflow) 

   Table 5-5: Implemented ADD instruction 

          

   Op1 taint Mark Op2 taint Mark Result taint Mark 

 

 

Untainted Untainted Untainted 

   top1 Untainted top1 

   Untainted top2 top2 

   top1 top2 top1 + top2 

     

  

  

Table 5-6: Rules for Group 3 instructions 

ADD instructions forms Group 3 of instructions shown in Table 5-5. These instruction 

propagation rules shown in Table 5-6 are similar to propagation rules described for SUB instructions. 

The main difference is caused by the way the technique calculates the result register’s pointer color. 

In this group we add the two pointer color values of the register operands and in the case of 

immediate value, the result pointer color is the pointer color of the register, whether it is an untainted 

register or register with a pointer color. 

5.2.4. Rules for Group 4 instructions 

Opcode Name 

IANDN (IANDcc) And Not (and modify icc) 
IAND (IANDcc) And (and modify icc) 

   Table 5-7: Implemented AND instruction 
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   Op1 taint Mark Op2 taint Mark Result taint Mark   

 

Untainted Untainted Untainted 

   top1 Untainted top1   

  Untainted top2 top2   

  top1 top2 Untainted   

    

  

  

Table 5-8: Rules for Group 4 instructions      

Group 4 instructions shown in Table 5-7. In instruction AND %g1, %g2, %g3  if both of 

the %g1 and %g2 are tainted or untainted, %g3 will be untainted.  In cases that one of %g1 and %g2 

is tainted, %g3 will be tainted if it points to an address in the same memory area as the tainted 

operand. The rules for this group of instruction are shown Table 5-8.This can be implemented by 

using a heuristic. For example a check should be done to see if the first 16-bits of the value of %g3 

and tainted register match each other. Otherwise it will be a situation such as masking a value by 

performing AND to an operand and 0x0000  value. 

5.2.5.  Rules for Group 5 instructions 

Opcode Name 

LDSB (LDSBA) Load Signed Byte (from Alternate space) 

LDSH (LDSHA) Load Signed Halfword (from Alternate space) 
LDUB (LDUBA) Load Unsigned Byte (from Alternate space) 
LDUH (LDUHA) Load Unsigned Halfword (from Alternate 

space) 
LD (LDA) Load Word (from Alternate space) 
LDD (LDDA) Load Doubleword (from Alternate space) 

    Table 5-9: Implemented LOAD instruction 

Table 5-9 shows Load instructions in SPARC architecture. Load instructions copy a value 

from memory space to a register. For example, the instruction LD [%fp-16], %o1  loads content 

of the memory space [%fp-16]  to %o1 register. The destination register pointer color gets the 

pointer color of the address which is loaded a value from, whether this value is an untainted value or 

any color in the range of 0 to 15. 
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We classified the Load Double word instruction in the same group as Load instructions. 

These instructions are basically the same in our implementation. Load Double word instructions 

move a double word from memory into a register pair. To implement these instructions, we perform 

two calls to the load propagation function. In the first call the pointer color of the memory address is 

copied to the pointer color of the specified register. In the second call the pointer color of the 

adjacent memory location is copied to the pointer color of the next register in the register pair. 

5.2.6. Rules for Group 6 instructions 

Opcode Name 

STB (STBA) Store Byte (into Alternate space) 

STH (STHA) Store Halfword (into Alternate space) 
ST (STA) Store Word (into Alternate space) 
STD (STDA) Store Doubleword (into Alternate space) 

Table 5-10: Implemented STORE instruction 

Table 5-10 has a list of Store instructions in the SPARC architecture. Store instructions copy 

a value from a register into memory. Store instructions propagation rules can be implemented the 

way similar to Load instructions, except that the pointer color of the specific register will be copied 

to the pointer color of the address. Store Double word instructions also copy a double word from 

register pair into the memory. In this case same as the load double word, we use the same 

propagation rules twice, so that the pointer color of the register pair is copied to the pointer color of 

the adjacent memory locations. 

5.2.7. Rules for Group 7 instructions 

SWAP and LDSTUB instructions are from the type of load-store instructions. These 

instructions are implemented as an atomic load and store instructions. We treat these two instructions 

the same. We actually didn’t implement separate propagation rules. We used the load propagation 

rules for the specific address and register, then we used the store propagation rules for the address 

and a fixed untainted value for the pointer color of the register, so that storing a fixed value results in 

an untainted value in memory. 
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Opcode Name 

LDSTUB (LDSTUBA) Atomic Load-Store Unsigned Byte (in 
Alternate space) 

SWAP (SWAPA) Swap r Register with Memory (in Alternate 
space) 

  Table 5-11: Implemented Load/Store and SWAP instruction 

5.2.8. Rules for Group 8 instructions 

CPOP1 and CPOP2 are implemented for UMC to control the tag engine. The coprocessor 

should be enabled at the beginning of execution of the UMC technique. The CPOP1 instruction is 

responsible for enabling or disabling coprocessor. If execution of an instruction causes a security 

exception, then coprocessor is turned off, so no other instruction can produce another exception and 

gets executed after the security exception. Tag engine can be turned on and off from user’s program 

by calling _rtems_tag_enable()  and _rtems_tag_disable()  functions. Calling the 

_rtems_tag_enable()  function from the user’s program will cause the execution of the 

tag_dispatch_interface() . However calling the _rtems_tag_disable()  function 

will abort execution of tag_dispatch_interface() . 

The CPOP2 instructions are responsible for manipulating the memory location tags and also 

memory and pointer color tags. These instructions are technique specific, meaning that they are 

hardcoded individually for each security tagging technique. We used the instructions provided in the 

Table 5-12 to set/clear the BC tag or to return the tag value of a specific memory address.  

CPOP1 and CPOP2 instructions always execute, whether the cpop flag is true or false, since 

these instructions are responsible for programming the coprocessor. 

CPOP2 instructions are executed as a result of any of the following function calls from the 

user’s program: 

• _rtems_set_pointer_color 

• _rtems_set_location_color 

• _rtems_clear_bc_pointer_color 
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• _rtems_clear_bc_location_color 

• _rtems_get_memory_pointer_color 

• _rtems_get_memory_location_color 

• _rtems_set_register_pointer_color 

CPOP2 Opc Field Value Address in HEX  
CPOP2_SET_POINTER_COLOR 5 0x87B840A2 
CPOP2_SET_LOCATION_COLOR 6 0x87B840C2 
CPOP2_CLEAR_POINTER_COLOR 7 0x87B840E2 
CPOP2_CLEAR_LOCATION_COLOR 8 0x87B84102 
CPOP2_GET_MEMORY_LOCATION_COLOR 9 0x87B84122 
CPOP2_GET_MEMORY_POINTER_COLOR 10 0x87B84142 
CPOP2_SET_REGISTER_POINTER_COLOR 11 0x87B84162 

    Table 5-12: New CPOP2 instructions 

The above function calls are hardcoded functionalities that added to the tagging technique so 

we can manipulate tags from user’s program. In a real implementation, the compiler would insert 

these calls into the code. Execution of any of the instructions from user’s program sets the opc and 

address field of the CPOP2 instruction. Then the arguments will be passed to a cpop2()  function. 

Based on the argument the cpop2()  function decides to set/ clear the location color/pointer color, 

or return the memory color. 

5.2.9. Rules for Group 9 instructions 

The rest of the instructions are floating point instructions, trap instruction, Branch and Call 

instructions. Since we didn’t implement any of the tagging techniques for the floating point 

instruction, execution of these instructions will neither cause a security exception nor modify the 

result tag. Trap instruction also follows the same rule as the floating point instruction means it 

doesn’t have any effect on the tag engine. Also base on BC’s rules, control dependency instructions 

are disregarded. Therefore executing any of the control dependency instructions such as Branch and 

Call have no effect on the flow of tag engine code.  
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5.3. BC checking rules 

Checking rules for BC intercepts any memory access whether it is Load or Store through a 

pointer. If memory location and the pointer which is used to access, have the same tag value, 

checking is passed. Conversely, if memory location and pointer have different taint mark, program is 

halted and it throws exception. 

The load checking rule checks the tag value of the effective address for load instruction. The 

effective address is calculated by adding the contents of two operand registers, if  i field is zero, or it 

is calculated by adding the content of register operand and sign extended immediate value, if i field 

is one. The load checking rule extracts the pointer color associated with these two register operands 

and adds them. In the next step the checking rules check to see if the specified address location color 

matches the calculated pointer color. If the two values match then this access is considered legal 

access. We should also mention that there are some special cases that both the value of the location 

color of the address and calculated pointer color are the same but they are both untainted. We count 

this scenario as an illegal access so it throws an exception in this case for both load and store 

instructions. Checking rules for store instruction is also the same as load. Pointer color tags for 

registers that are used to calculate the store address get checked. If they are the same as the location 

color of memory which the result is going to be store into, then the access considered as a legal 

access. In both load and store instructions, if pointer color and memory location color do not match, 

IMA occurs and the program execution will be forwarded to the exception handler. 

5.4. Conclusion 

In this chapter we defined the instruction level implementation of BC technique tag engine. 

We defined the data structure for memory locations and registers in the tag engine. We categorized 

SPARC instructions into different groups and defined propagation and checking rules for each 

group. We then defined the set of API’s that can enable or disable the tag engine. API’s also are 

capable of manipulating tags for registers and memory locations. 
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Chapter 6. Implementation of Uninitialized                 

Variable tagging technique in SIS  

 

Uninitialized Memory checking is a common technique implemented to prevent reading 

from an unutilized memory. Chapter 2 gives background on this technique. In this chapter we 

describe the implementation of a UMC technique in SIS. A one bit tag is associated with each 

memory location for the UMC technique, which is initialized to zero at the beginning of execution of 

the program.  

Writing a value to a specific location using store instruction set the tag for the location. 

Loading a value from the memory location performs a check on this tag to make sure it is initialized. 

The tag value equal to zero indicates that the memory location is uninitialized; therefore the load will 

result in a security exception. The UMC implementation configures SIS so that execution of the load 

and store instructions is forwarded to the tag engine. The tag engine also implements some 

intermediate instructions to set or get the tag value of the specific memory locations.  

 

6.1. UMC Initialization of Tag Engine 

Figure 6-1 shows the data structure of tags in the UMC technique. The tag value of a 

memory location can be extracted by translating the memory address to the address of the 

corresponding 1-bit tag in the tag engine data structure.  For ease of implementation in the simulator, 

we assigned a character to tags but we only use 1-bit of the character. The 1-bit memory address’s 

tag is extracted by adding an index value to the base address of tag data structure. The index value is 

equal to its corresponding memory index value from the memory base address. The functions that 

perform the address resolution for setting and getting tag values are get_umc_tag()  and 

set_umc_tag()  respectively.  
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Figure 6-1: UMC tag engine data structure 

Implementing the UMC technique requires defining propagation and checking rules for load 

and STORE instructions. The following list classifies each group of instructions for the UMC 

technique. 

• Group 1 defines load instructions 

• Group2 defines store instructions 

• Group3 defines load/store instructions 

• Group 4 defines the rest of instructions 

The UMC memory is the only place where affected by carrying, initializing and clearing 

tags. Thereafter registers are not affected with the tags and do not need associated tagging rules. 

In the beginning of the SIS execution, the one-time initialization function assigns the zero tag values 

for each RAM memory location.  

 

6.2. UMC propagation Rules 

Tag propagation rules are implemented for store and load/store instructions which are 

categorized in group 2 and 3 SPARC instructions. UMC tag propagation rules set the tag value of the 

address accessed through store instruction. 

6.2.1. Rules for Group 2 instructions 

The store instructions set the tag for memory address. This group of instructions takes the 

address of instruction and they set the tag value for the specific address to one.  There are no 

 C code: 
 
struct tag 
{ 
 char umc_tag; 
}; 
typedef struct tag tag_t; 
tag_t tag_ram[(RAM_END - RAM_START)>>2]; 
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checking rules implemented for this group of instructions, so whenever the system wants to write a 

value to a specific memory address, the tag value for the address is set. 

Opcode Name 

STB (STBA) Store Byte (into Alternate space) 

STH (STHA) Store Halfword (into Alternate space) 
ST (STA) Store Word (into Alternate space) 
STD (STDA) Store Doubleword (into Alternate space) 

Table 6-1: Implemented STORE instructions 

 

6.3. UMC checking rules 

Checking rules for UMC intercepts any memory load instruction. If memory location that is 

used to load a value from is tagged, checking is passed. Conversely, if memory location is not 

initialized hence not tagged, the program throws an exception. Checking rules are implemented for 

Group 1 instructions. Also the load part of load/store instruction also gets checked using the same set 

of rules for load. 

6.3.1. Rules for Group 1 instructions 

As described before, the load instruction checks the memory location’s tag value to see if it 

is initialized or not. Instructions in this group never initialize or modify a tag, they only check the 

tags. The checking rules for this group take the address from the instruction, translate the address to 

get the tag value and check its tag value. If the tag value is not one, meaning the memory location is 

uninitialized; it throws a security exception and doesn’t load the value.  

Opcode Name 

LDSB (LDSBA) Load Signed Byte (from Alternate space) 

LDSH (LDSHA) Load Signed Halfword (from Alternate space) 
LDUB (LDUBA) Load Unsigned Byte (from Alternate space) 
LDUH (LDUHA) Load Unsigned Halfword (from Alternate 

space) 
LD (LDA) Load Word (from Alternate space) 
LDD (LDDA) Load Doubleword (from Alternate space) 

Table 6-2: Implemented LOAD instructions 
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6.3.2. Rules for Group 3 instructions 

Group 3 instructions include the atomic load/store instruction and the swap instruction. The 

proper way to handle the LDSTUB instructions is to check the tag value of the specific memory 

location that is going to be used to load the value. Then LDSTUB sets the tag for the memory 

location that will be written to. The swap instruction also consists of a load and store instruction.  In 

the load part, both memory locations should be checked. If either location is uninitialized, the swap 

instruction is halted and security exception is raised. This group of instructions is the only group that 

has both propagation and checking rules implemented.  SWAP instruction, however, doesn’t need 

the propagation rules since both the tags have to be set.  

Opcode Name 

LDSTUB (LDSTUBA) Atomic Load-Store Unsigned Byte (in 
Alternate space) 

SWAP (SWAPA) Swap r Register with Memory (in Alternate 
space) 

Table 6-3: Implemented LDSTUB and SWAP instructions 

6.3.3. Rules for Group 4 instructions 

CPOP1 and CPOP2 are implemented in UMC to control the tag engine. The coprocessor 

should be enabled at the beginning of the UMC technique execution. The CPOP1 instruction is 

responsible for enabling or disabling the coprocessor. If the execution of an instruction causes a 

security exception, then the coprocessor is turned off. By turning off the coprocessor no other 

instruction can produce another exception and all will be executed executed after the security 

exception. Also, as we discussed before, tag engine can be turned on and off from user’s program by 

calling _rtems_tag_enable()  and _rtems_tag_disable()  functions. Calling the 

_rtems_tag_enable()  function from the user’s program causes the execution of the 

tag_dispatch_interface() . However calling the _rtems_tag_disable()  function 

aborts execution of tag_dispatch_interface() . 
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There are also some instructions added using the CPOP2 instruction format. These 

instructions are technique specific, meaning that they are hardcoded individually for each security 

tagging technique. We used the instructions provided in Table 6-4 to set or clear the UMC tag or to 

return the tag value of a specific memory address.  

CPOP1 and CPOP2 instructions always execute, whether the cpop flag is true or false, since 

these instructions are responsible for programming the coprocessor. 

CPOP1 Opc Field Value Address in HEX Format 
CPOP_SET_UMC_TAG 3 0x87B84062 
CPOP_CLEAR_UMC_TAG 4 0x87B84082 
CPOP_GET_MEMORY_TAG 2 0x87B84042 

Table 6-4: New CPOP2 instructions 

CPOP2 instructions are executed as a result of any following function calls from the user’s 

program: 

• _rtems_set_umc_tag(addr) 

• _rtems_clear_umc_tag(addr)  

• _rtems_get_memory_tag(addr)  

The above function calls are hardcoded functionalities that are added to the tagging 

technique so we can manipulate tags from user’s program. Execution of any of the instructions from 

user’s program sets the opc and address field of the CPOP2 instruction. Then the arguments are 

passed to a cpop2()  function. Based on these arguments the cpop2()  function decides to set or 

clear the UMC tag or return the memory tag. 

6.3.4. Rules for Group5 instructions 

All of the instructions except the Groups 1 to 4, doesn’t have any effect on the UMC tagging 

technique, so execution of these instructions simply return from the 

tag_dispatch_instruction() without modifying any tag. 
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6.4. Conclusion 

In this chapter we defined the instruction level implementation of UMC technique tag 

engine. We defined the data structure for memory locations and registers in the tag engine. We 

categorized SPARC instructions into different groups and defined propagation and checking rules for 

each group. We then defined the set of API’s that can enable or disable the tag engine. API’s also are 

capable of manipulating tags for registers and memory locations. 
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Chapter 7. Evaluation and Analysis 

 

The assumption of increasing the probability of catching malicious attacks by adding 

security tags to the data is the foundation of current study, yet a set of test suits is needed to support 

the basic assumption. The evaluation of this work with respect to several hardware and software 

issues has been done by: 

• Testing prevention of known vulnerable programs and real world vulnerabilities by 

running them against each related techniques. Each technique is developed to prevent 

special types of attacks. These attacks are described in the background section of each 

technique. For example, we can validate the effectiveness of DIFT technique against 

different types of buffer overflows. To demonstrate this, we have performed a series of 

tests on the buffer overflow vulnerable code using DIFT technique to evaluate its 

effectiveness. 

 

• Evaluating the effectiveness of propagation and checking instructions that have been 

developed based on the rules for each technique. This evaluation can be done by 

designing a technique-based test suite and running it against the related technique. 

 

• Running the RTEMS test suites for each of the techniques. In this way we are able to 

compare the performance of DIFT, BC and UMC on the same set of test suites. 

 

7.1. Implementation Testing and test case design 

In this section, we describe each set of tests that has been developed to validate each 

technique based on the desired implementation notes. We picked different groups of instructions as 
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described in each technique and ran the test against them. We also defined a set of propagation and 

checking rules for each technique. 

7.1.1. DIFT Rule- verification Testing 

As we discussed in Chapter 4, DIFT rules are defined for 5 different categories of 

instructions. We designed a set of test suites to cover all propagation and checking rules for these 5 

categories. We also break down the testing into more precise testing. Precise testing feeds in all the 

permutation of input tags to the test suite, calculates the output tag and compares it with the desired 

output tag. Figure 7-1 shows a sample of test implemented for one of the category of instructions in 

DIFT. 

We test Category 1 branch and call instructions by implementing test cases that include 

decision statements. We also implemented different test cases with multiple outcomes of decision 

statements to verify that all propagation and checking rules for Category 1. 

Category 2 which defines ALU instructions has the most instructions among the DIFT 

categories. Although running each of the instruction in this category forwards the execution to the 

same propagation and checking routine, we implemented different test cases to validate the 

consistency in each instruction testing result. Each test case has a set of instructions which belong to 

this category. Then we compared the results of each instruction with the desired DIFT result. 

  Category 3 defines rules for load and store instructions. We tested this category by 

manipulating arrays with both tagged and untagged values. In Figure 7-1 we can see a sample of 

code that has both load and store instruction implemented. In Figure 7-2, we included the assembly 

code for the highlighted portion of the C code. Through the highlighted code the tag engine is turned 

on and a tagged value tries to access one element of an array. This case causes an exception since 

this test case violates the DIFT rules.  
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    Figure 7-1: Sample C code for Testing 

 

   Figure 7-2: Corresponding Assembly code for the test 

 

 

 C code: 
 
volatile uint32 value1 = 2; 
  
int main(void) 
{  
  int array[3]; 
 
  tag_t tag1,tag2; 
  tag_t new_tag; 
  
  _rtems_set_dift_tag((addr_t)&value1); 
 
 
  printf("Turning on the tag engine \n"); 
 
  asm(CPOP_TURN_ON_TAGGING); 
 
     array[value1] = 4; 
 
  asm(CPOP_TURN_OFF_TAGGING); 
 
  return 0;  

 Assembly code: 

 

! 25 "test.c" 1 
 .word 0x81B00000 
! 0 "" 2 
 .loc 1 27 0 
 mov 4, %g2 
 ld [%l0+%lo(value1)], %g1 
 sll %g1, 2, %g1 
 add %fp, %g1, %g1 
 st %g2, [%g1-12] 
 .loc 1 29 0 
! 29 "test.c" 1 
 .word 0x81B00020 
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   Figure 7-3: Result of running C code inside DIFT tag engine 

7. Buffer overflow detection with DIFT 

We ran different scenarios of buffer overflow tests to determine the effectiveness of DIFT. 

We took samples of the buffer overflow code from “Diagnostic Test Suite for evaluating buffer 

overflow detector” from software assurance reference database [15]. 

We also ran a couple of tests in a case that a tagged value has been used indirectly to 

calculate the result address for storing data. DIFT rules also catch this type of tests. A sample of the 

buffer overflow tests is shown in Figure 7-4 and the corresponding result for the code is shown in 

Figure 7-5. 

Figure 7-4: Buffer Overflow test 

 

 

 Results: 

 
in function tag_check_st_imm address for storing is : 1 and 
dift tag for source1 is:1  
EXCEPTION HAPPEND BECAUSE OF STORE INSTRUCTIONS WITH SOURCE2 
AS IMMEDIATE 
Unexpected trap (40) at address 0x020012B4  

 C code: 

 

volatile uint32 value1 = 123; 
volatile uint32 value2 = 456; 
int main(void) 
{     
  tag_t tag1,tag2; 
  tag_t new_tag; 
 _rtems_set_dift_tag((addr_t)&value1); 
   
 uint32 *value1_ptr = &value1; 
 _rtems_set_dift_tag((addr_t)&value2); 
  
 asm(CPOP_TURN_ON_TAGGING); 
 *(value1_ptr + value2) = 3; 
 asm(CPOP_TURN_OFF_TAGGING); 
}  
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    Figure 7-5: Buffer Overflow result 

7.1.2. UMC Rule- verification Testing 

Test suites are developed to evaluate UMC rules that are described in Chapter 6. One set of 

test suites relates the tag propagation by initializing a variable through other initialized variable. In 

Figure 7-6, the C code related to this example is shown. Figure 7-7 describes the assembly code for 

the code section highlighted in Figure 7-6.  

Note that using non volatile variables causes the system to do some optimization to remove 

the need of initializing variables. To make sure that we fully tested the functionality of UMC testing 

we should disable any compiler optimization by using volatile variables. 

 

   Figure 7-6: UMC tag propagation test 

 Results: 

 
in function tag_check_st dift tag for source1 is:0 and dift 
tag for source2 is:1 
EXCEPTION HAPPEND BECAUSE OF STORE INSTRUCTIONS WITH SOURCE2 
AS REGISTER 
Unexpected trap (40) at address 0x020012C0 
  

 C code: 
  
int main (void)  
{  
volatile uint32 value1 ;  
  value1 = 123; 
  int new;  
 
  _rtems_set_umc_tag((addr_t)&value1); 
 
 asm(CPOP_TURN_ON_TAGGING); 
 
new = value1; 
 
asm(CPOP_TURN_OFF_TAGGING); 
} 
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   Figure 7-7: UMC tag propagation Assembly code 

Figure 7-8: UMC tag propagation result 

The other set of tests for UMC are designed base on initializing arrays. We initialized the 

first element in an array using _rtems_set_umc_tag() function. We used the first element in 

the array to initialize the next element. Each element in an array is initialized with the content of 

previous array element. We initialized the first element in an array and checked the tag value of the 

last element to see how UMC tags get propagated. This test verifies a memory address initialization 

results in initializing its corresponding tag value. Once a memory address is initialized; the 

corresponding tag keeps its value throughout the program. 

7.1.3. MBC Rule- verification Testing 

Bound checking technique rules are some sort of combination of UMC rules and DIFT rules. 

Memory access rules are implemented like UMC while the other instructions’ rules are implemented 

like DIFT with modification.  

 Assembly code: 

 

 .word 0x81B00000 
! 0 "" 2 
 .loc 1 19 0 
 ld [%fp-4], %g1 
 st %g1, [%fp-8] 
.LLVL1: 
 .loc 1 21 0 
! 21 "init.c" 1 
 .word 0x81B00020 
  

 Results: 
 
In function _rtems_set _umc_tag, value1 address is: 33719404 
cpop is set to true  
cpop is set to false  
 
the result tag for new is:1 
TEST PASSED 
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Local variables are stored below the frame pointer [%fp] and are accessed with negative 

offsets. Parameters start at [%fp + 68]. In the following test we implemented a case to copy content 

of one array element to the other. Both arrays are initialized with the same location color and pointer 

color. We used an inline assembly code in our test. The general format of using Inline assembly code 

is shown in Figure 7-9. 

   Figure 7-9: Inline Assembly code general format 

In the inline assembly, having input/output operands and clobbered registers is optional. In 

the inline assembly section of the code we performed a simple instruction which doesn’t affect any 

other instruction. Running the instruction informs GCC about using all registers except frame pointer 

and stack pointer. So GCC moved all active data from program out of these registers. 

The assembly code in Figure 7-11 only has the corresponding code in between turning on 

and off the tag engine. As we can see, it accesses the frame pointer to load a value. Since the frame 

pointer hasn’t been initialized with the proper pointer color tag, the program throws exception. The 

result is shown in Figure 7-12.  

 

 

 

 

 

 

 

 Assembly code: 
 

Asm (“assembly code” 
: output operands 
: input operands 
:list of clobbered registers 
);  
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Figure 7-10: sample BC code improper handling tag for Frame Pointer 

 

 

 

 C code: 

 
int main (void)  
{  
 
int a[30]; 
int b[30]; 
 
int i;   
 
for (i=0 ; i<10 ; i++) 
{ 
_rtems_set_location_color((addr_t)&a[i],3); 
}  
 
 for (i=0 ; i<10 ; i++) 
{ 
_rtems_set_location_color((addr_t)&b[i],3); 
}  
 
   asm volatile("add %%l0,%%l0,%%l0\n\t"   
   
    ::: "g0","g1","g2","g3","g4","g5","g6","g7", 
   
    "l0","l1","l2","l3","l4","l5","l6","l7", 
   
    "i0","i1","i2","i3","i4","i5","i7", 
   
    "o0","o1","o2","o3","o4","o5","o7"); 
 
 
asm(CPOP_TURN_ON_TAGGING); 
 
a[1] =b[1]; 
 
asm(CPOP_TURN_OFF_TAGGING); 
 
 
exit(0); 
 
} 
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   Figure 7-11: Assembly code for corresponding C code 

Figure 7-12: Result of improper handling tag for Frame Pointer    

In the next test, we slightly modified the above code by adding highlighted piece of inline 

assembly code in Figure 7-13. The code in Figure 7-13 initializes frame pointer with the same color 

tag value as both arrays. 

 

 

 

 

 

 

 

 

 

 Assembly code: 

 .word 0x81B00000 
! 0 "" 2 
 .loc 1 56 0 
 ld [%fp-236], %g1 
 st %g1, [%fp-116] 
 .loc 1 58 0 
! 58 "init.c" 1 
 .word 0x81B00020  
 
  

 Results: 

 

EXCEPTION HAPPEND BECAUSE OF LOAD INSTRUCTIONS WITH SOURCE2 
AS IMMEDIATE 
...  
 Hit vector 0x28!! @ PC = 0xopc is equal to:1  
cpop is set to false  
20012E4 with NPC = 0x20012E8  
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  Figure 7-13: C code proper handling tag for Frame Pointer 

 C code: 

int main (void)  
{  
int a[30]; 
int b[30]; 
int reg = 30; 
int op2 = 3; 
int i;   
 
int reg = 30; 
int op2 = 3; 
 
for (i=0 ; i<10 ; i++) 
{ 
_rtems_set_location_color((addr_t)&a[i],3); 
}  
 
 for (i=0 ; i<10 ; i++) 
{ 
_rtems_set_location_color((addr_t)&b[i],3); 
}  
 
   asm volatile("add %%l0,%%l0,%%l0\n\t"   
   
    ::: "g0","g1","g2","g3","g4","g5","g6","g7", 
   
    "l0","l1","l2","l3","l4","l5","l6","l7", 
   
    "i0","i1","i2","i3","i4","i5","i7", 
   
    "o0","o1","o2","o3","o4","o5","o7"); 
 
 
  asm("mov %0, %%g1\n\t" 
   "mov %1, %%g2\n\t"  
   CPOP_SET_REGISTER_POINTER_COLOR 
    : 
   :"r"(reg),"r"(op2) 
   :"g1","g2"); 
 
 
 asm(CPOP_TURN_ON_TAGGING); 
 
a[1] =b[1]; 
 
asm(CPOP_TURN_OFF_TAGGING); 
} 
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Figure 7-14: Results of proper handling tag for Frame Pointer 

The highlighted code in Figure 7-13 is the part that was added to the previous test case. As 

shown in Figure 7-14, this test case passed. 

Another set of test cases relates to uninitialized memory. This test initializes an array then it 

tries to access array element located outside boundaries of array.  

 Figure 7-15: C code for out of bound memory access 

 

 

 Results: 

 
TEST PASSES !! 
 

 C code: 

 
int main (void)  
{  
int i;   
 
int a; 
 
volatile int b[10];  
int reg, op2; 
 
for(i= 0 ; i<10 ; i++) 
{ 
 
_rtems_set_pointer_color((addr_t)&b[i],3); 
_rtems_set_location_color((addr_t)&b[i],3); 
b[i] = 5; 
 } 
 
reg = 30;op2 = 3; 
 
asm(CPOP_TURN_ON_TAGGING); 
a = b[11]; 
 
asm(CPOP_TURN_OFF_TAGGING); 
 
exit(0); 
 
}  
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Figure 7-16: Results of out of bound memory access 

This is a good test case that shows how out of bound memory access can be tracked and 

captured using memory bound checking technique. 

 

7.2. Performance evaluation 

To evaluate performance of each tagging technique, we added tagging statistics to SIS for 

each technique. The common ground of all techniques is propagation and checking of memory and 

registers tags during execution of instructions. So we added statistic counters for tag propagation, tag 

check, memory tag check and memory tag set. Running each test case gives statistics for each one of 

the values. We gathered the statistics data. The results show what percent of instructions are tag 

propagation or tag check. Also what percentages of instructions try to access memory to either check 

or set the tag values.  

7.2.1. Performance Evaluation for DIFT 

We ran tests for DIFT, BC and UMC on the same set of RTEMS applications. These 

applications include check for uboot support in bsp and print application. We ran each set of test for 

each technique. Then we calculate the percentage of tag propagation, tag check, memory tag set and 

memory tag check for each application. We calculate the average of each of the statistics through 

different applications. The results of study for DIFT, UMC and BC techniques are shown in Figure 

7-17 through Figure 7-19 respectively. The Figures shows on the Y-axis the instructions percentage 

for each technique. The X-axis shows set of instruction categories. The Figures show how each 

technique spend resources. 

 Results: 

EXCEPTION HAPPEND BECAUSE OF LOAD INSTRUCTIONS WITH SOURCE2 
AS IMMEDIATE 
...  
 Hit vector 0x28!! @ PC = 0xopc is equal to:1  
cpop is set to false  
2001310 with NPC = 0x2001314  
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Figure 7-17: Performance evaluation for DIFT running RTEMS applications 

 

Figure 7-18:  Performance evaluation for BC running RTEMS applications 

 

Figure 7-19:  Performance evaluation for UMC running RTEMS applications 
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The highest percentage of instructions that executed in both DIFT and BC’s tag engine are 

tag propagation. UMC tag propagation stat is the same as UMC memory tag set instructions. Also in 

UMC memory tag check is the same as tag check since loading a value from memory is the only 

instructions that uses tag check. 

 

7.3. Analysis and Results  

Figure 7-20 shows on the Y-axis the tag engine overhead percentage for each technique. The X-

axis shows different techniques. To calculate the overhead of running each technique, we first ran 

RTMES applications and captured number of executed instructions in the absence of security 

techniques. Then we enabled each technique and calculated RTEMS applications instruction 

execution in the existence of each technique. Running the tests gives us the amount of overhead each 

technique has. DIFT has overhead of 23.6 %, UMC has 7.9% and BC has 41.5%.  

As we see BC has the highest overhead, since it has propagation and checking rules for memory 

access checking as well as dataflow checking. UMC has only memory access checking so it has the 

lowest amount of overhead among all techniques. DIFT has dataflow checking which includes 

propagation of tags through ALU instruction and checking of tags through jump instructions. Since 

BC has both features of UMC and DIFT, BC’s overhead is close to UMC and DIFT overhead 

combined. 
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Figure 7-20: Tag engine overhead 

 

7.4. Conclusion 

In this chapter we showed set of test suites that test propagation and checking rules for each 

technique. We then showed the result of running the real world attacks such as buffer overflow and 

out of bound memory access for each technique. We then showed the result of running all techniques 

on the same set of application. We represent the overhead of running each technique and then 

compared the result of all technique.   
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Chapter 8. Conclusion  

8.1. Conclusion 

Today with the explosive growth of computer and network technology, we rely on computer 

systems to manage sensitive data and personal information. In recent years promising mechanisms 

and techniques developed to enhance computer and network system security. Some of the existing 

security techniques track instruction flow at run time. 

Our goal was to design a framework which has run time security techniques to prevent 

runtime attacks. As a first step toward this goal, this thesis gives an extensive background on the 

most common run time security techniques such as DIFT, BC and UMC which are implemented to 

prevent buffer overflows and illegal memory accesses.  We then give a description of SPARC 

Instruction Architecture and how security techniques can be implemented in SPARC using SPARC 

instruction Simulator. The validation of security technique implementation is completed by running 

test suites and RTEMS applications. 

We developed tagging schemes that will be implemented the ERC32 processor, which is a 

SPARC variant. The understanding of SPARC instruction architecture gives us a better view of how 

each technique can be implemented for different instructions. According to each technique, we 

divide instructions into different logical groups and then defined propagation and checking rules for 

them. Dividing instructions into different groups gives us the ability to design test suites for each 

group as well. So we were able to check how each technique propagates and check security tags.  

We validate each technique by running test suites that are designed specifically for it. Recall 

that each technique is capable of detecting set of attacks. We ran attacks for each technique to see if 

the technique is able to capture it.  
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To evaluate performance of each tagging technique, we added tagging statistics  for tag 

propagation, tag check, memory tag check and memory tag set. Running each test case gives 

statistics for each one of the values.  

We ran tests each technique on the same set of RTEMS applications as well. Then we 

calculate the average of each of the statistics of percent of instructions that got executed in the tag 

engine to the whole executed instructions through different applications. 

BC requires the biggest data structure among all techniques. It assigns each memory and 

register with 4-bit location tag and 4-bit pointer tag. DIFT and UMC assign a 1-bit tag for memory 

and registers. Running the test suites show that BC is capable of detecting more attacks. It also has 

the highest overhead among all techniques. DIFT is capable of detecting buffer overflow attacks and 

it comes in the second place in the matter of instruction overhead. UMC has the lowest overhead and 

it is capable of detecting uninitialized memory accesses.  

In summery the work presented in this thesis provides insight to the run time security 

techniques. While we hope to see these techniques implemented in a frame work as an architecture 

solution, we expect this research to be a useful resource for studying and evaluating security 

techniques. 

 

8.2. Future Research 

The previous section has summarized the work of this thesis. However, as in any research 

effort, there still are a number of areas where further work could enhance the prevention of misusing 

code vulnerabilities. Runtime taint tracking will continue to be an important tool for the security 

research. The evaluation that is conducted in the previous chapters revealed several opportunities to 

improve the implemented framework. These are discussed below:  
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1. Run the SIS on a multi core processor or on multi-processor system 

SIS simulator supports a single core processor. We wish to modify it to support simulation 

of multi-core processor. This involves the design of multi-core simulator. Multi-core simulator will 

include memory model, inter processor communication and simulating time. 

 

2. Implement security tagging rules for trap instructions and trap handler 

We currently didn’t implement propagation and checking rules for Ticc and RETT (trap 

instructions). We need to evaluate these instructions to verify if we are able to implement rules for 

them. At the same time we need to investigate what causes trap in the system to make sure that rules 

are implemented correctly. 

 

3. Implement security tagging rules for floating point instructions 

We have assigned tagging rules to Integer Instructions in the SPARC architecture. But we 

didn’t add the support for floating point instructions. We need further effort to implement tag engine 

rules for DIFT, BC and UMC and evaluate each technique in the existence of Integer instructions’ 

rules as well as floating point instructions.  

 

4. Add the capability of having a network or simulated network to test techniques in the 

existence of network accesses. 

At this time each test suite implemented for the technique manually set the tag values for 

memory locations and registers. We wish to expand the simulator and add the capability of network 

simulation to it. Having this capability, we are able to send traffic from network channels, and for 

DIFT, we can label couple of network channels as malicious input. In this way we can verify how 

DIFT can handle malicious IO channels.  
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5. Implement these techniques for other instruction architectures such as ARM 

At this time these technique are only implemented for SPARC instruction set. We wish to 

implement each technique for other instruction architectures such as ARM. This requires modifying 

each technique to support different architectures. 

 

6. Implement tag cache simulator and add it to the tag engine for each technique 

Accessing tags in the memory is neither cheap nor fast. By implementing the tag cache 

simulator, we can store the tags for the recent accessed memory locations and registers and access 

them as needed. I already implemented the simulator cache inside SIS. By adding the tag cache 

simulator we can recalculate the overhead of memory tag set and check.  
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