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ABSTRACT 

DNA sequencing technologies address problems, the solutions of which were not 

possible before, such as whole genome sequencing or microbial community 

characterization without pre-cultivation. Current High-Throughput Sequencing (HTS) 

techniques allow genomic studies in small labs as well as in large genomic centers. 

Together with modern computational software, HTS becomes a powerful tool, which 

allows researchers to answer important biological questions in novel ways. 

Despite the advantages of modern HTS technologies, large amounts of data and 

accompanying noise in HTS library confound bioinformatic analysis. Data preprocessing 

is needed in order to prepare data for subsequent analysis. Data preprocessing includes 

noise removal as well as techniques such as data reduction. 

In this dissertation I present a set of software tools that may be used in genomic 

studies in order to prepare HTS data for subsequent bioinformatic analysis. The first two 

chapters in this dissertation describe preprocessing tools developed for data denoising. In 

the last two chapters I explore the use of multiple genomic markers in 16S data analysis 

with a meta-amplicon analysis algorithm, which facilitates usage of all the information 

that can be obtained with 16S amplicon sequencing. Meta-amplicon analysis represents 

improvements on current methods used to characterize bacterial composition and 

community structure. 
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INTRODUCTION 

High-throughput sequencing technologies are now a routine part of research in 

biology and medicine, often allowing researchers to address important biological 

questions in new ways, such as analysis of the whole genome and cultivation-

independent microbial community characterization [1-5]. Together with modern 

computational tools, scientists can perform genomic and metagenomic studies in small 

labs as well as in state-of-the art genome centers [6-10]. 

High-Throughput Sequencing (HTS) produces many short sequences or “reads”. A 

typical HTS library may contain billion reads (x106), 8 billion for an Illumina MiSeq for 

example. Important problems in genomic studies with HTS data are the large amount of 

sequence data and accompanying noise [11-13]. Raw sequence data needs to be correctly 

prepared for any subsequent analysis in order to fully take advantage of the data.  

Preprocessing is needed to reduce noise in raw sequence data. There are two main 

types of noise in raw sequence data: 1) Technical noise caused by sequencing errors, 

remnants of sequencing adapters, vectors, contaminants or imprecision in the instrument 

itself; 2) Biological noise, which originates from sequences that are irrelevant to the 

question, i.e. sequences that do not convey information relevant to the question of 

interest [14,15]. 

Technical noise is one of the major problems in sequence analysis. In this 

dissertation technical noise is divided into two parts: technical noise caused by adapters, 

poly A/T tails, chimeric sequences and low quality regions; and biological technical 

noise that includes contaminants and vector remnants. All of these artifacts may 

significantly degrade bioinformatics analysis. Several application tools have been 
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proposed to reduce the technical noise in sequence data, from simple trimming of low-

quality bases [11], to sophisticated error-correction [13,14]. However, many of these 

proposed tools do not have desirable capabilities, including the identification of more 

than one kind of noise and the ability to process sequence data from different 

technologies. 

In Chapter 1 several aspects of sequence pre-processing problems that address 

reduction of technical noise are considered. I present and evaluate a comprehensive 

preprocessing software tool, SeqyClean. SeqyClean reduces most technical noise, which, 

in turn, facilitates comprehensive sequence cleaning, making the downstream analysis 

more accurate. 

Biological noise confounds downstream analysis when one needs to work with 

reads originating from relatively small discrete units of interest (such as single genes, 

mitochondria or plasmids), as in exome capture data [16-18], and transcriptomes 

[19,20]. Researchers in this case can apply any general-purpose mapper, such as some 

BLAST-like tool [26-31], to recruit all reads that are similar to particular target of 

interest. This preprocessing task can be a difficult problem, requiring sophisticated 

algorithms to detect the reads of interest and discard the others. These reads are to be 

grouped together into a sub-genome unit for downstream analysis. When one needs only 

the reads similar to the unit of interest, using a general-purpose mappers often is not an 

optimal choice, because: (1) a general-purpose mapper aligns the whole sequence library 

to the reference and outputs all reads regardless of alignment to the resulted file, which 

will require additional work to identify only the reads that align perfectly; (2) most 

mappers provide no option that would address the read’s similarity to the provided 
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reference; (3) general-purpose mappers usually do not handle reads that belong to the 

borders of the reference unit of interest.  

Chapter 2 develops, implements, and evaluates a reference-based, alignment-free 

read recruiter tool for high-throughput sequence data using sloppy mapping. This 

software tool, SlopMap, is developed to serve these purposes. Unlike traditional 

alignment software, this read-recruiting tool only recruits reads that are similar to the 

reference unit and can be grouped together. This tool discards irrelevant reads 

and, in turn, provides more accurate, fast and robust analysis, which is relevant 

to a specific target. This leads to reduction of biological noise, assembly complexity 

and analysis time. 

Current preprocessing techniques do not take full advantage of data that can be 

obtained from current HTS technologies in analysis of microbial data. Currently, there 

are three approaches to analysis of microbial communities: (1) metagenomic analysis, 

used for characterizing community functional potential; (2) metatranscriptomic analysis, 

used for describing active gene expression; and (3) 16S rRNA gene sequencing used for 

characterizing microbial community composition and structure. The first two techniques 

are not addressed in this work. 

In 16S rRNA gene sequencing, researchers apply “molecular fingerprinting”: 

extract total microbial DNA from a sample, and then sequence single, highly conserved 

and vertically transmitted marker regions that all microbial species likely share. 

There are two current approaches to fingerprinting analysis: phylogenetic and 

OTU  (Operational Taxonomic Unit) based.  
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The phylogenetic approach uses marker sequences to identify likely taxonomies 

for each organism in a sample. Taxonomic units are identified with a naïve 

Bayes classifier or BLAST-like search against existing microbial databases such as Silva 

[21], RDP [22], or GenBank. Taxonomic resolution in phylogenetic approach is often 

limited to the genera or even family level. 

The traditional OTU approach clusters marker sequences by similarity. 

Clustering is highly dependent on the clustering algorithm chosen, the metric, and the 

threshold that defines the taxonomic unit. It also possible that phylogenies estimated 

from different markers can differ substantially from phylogenies deduced from known, 

complete 16S rRNA genes, since clustering can be different for different markers and no 

single region of a gene carries as much information as the full gene.  

These all are important issues in microbial community analyses that can be 

addressed using multiple markers. This extends traditional OTU analysis techniques from 

single to multiple markers. In most studies a single marker region is used for community 

analysis. But data needs to be prepared for subsequent analysis since it becomes non-

trivial to combine data sequenced with different markers. 

In Chapter 3, Meta-Amplicon analysis, an algorithm for combining sequencing data 

from different markers is presented. This algorithm utilizes phylogenetic estimates for 

microbial populations with known genomes. This in turn represents improvements on 

current methods used to characterize bacterial composition and community structures. 

The algorithm is highly interdisciplinary, borrowing techniques from image processing, 

data ordination, and sequence comparison. 
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Chapter 4 presents the software tool “MetAmp” developed for microbial 16S data 

analysis with multiple markers. This tool implements the meta-amplicon analysis 

algorithm presented in the previous chapter, and it works with different types of HTS 

data. 

Chapter 1 is a manuscript in preparation for journal submission: “SeqyClean: a 

pipeline for high-throughput sequence data preprocessing” by Ilya Y. Zhbannikov, 

Samuel S. Hunter, James A. Foster and Matthew L. Settles is currently being prepared for 

publication. Chapter 2 was published in a Special Issue on "Bioinformatics for High-

throughput Sequencing” of the Journal of Data Mining in Genomics & Proteomics as 

“SlopMap: a software application tool for quick and flexible identification of similar 

sequences using exact k-mer matching”, Ilya Y. Zhbannikov, Samuel S. Hunter, Matthew 

L. Settles, and James A. Foster, 2013. Chapter 3 is a manuscript in preparation for 

journal submission: “Analysis of High-Throughput Microbial Amplicon Sequence Data 

Using Multiple Markers” by Ilya Y. Zhbannikov, Janet E. Williams and James A. Foster. 

Chapter 4 was published as “MetAmp: combining amplicon data from multiple markers 

for OTU analysis,” Ilya Y. Zhbannikov, James A. Foster, Bioinformatics 2015; doi: 

10.1093/bioinformatics/btv049. 

To summarize, this dissertation is organized as follows. Chapter 1 presents 

SeqyClean, a preprocessing software tool for reduction of technical noise in sequence 

data. Chapter 2 presents SlopMap, a specific mapping tools that choses sequences 

relevant to the user’s research question. Chapters 3 and 4 present the meta-amplicon 

analysis algorithm and corresponding software tool MetAmp, developed for 

preprocessing microbial 16S data sequenced with multiple genomic markers. 
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Chapter 1 

SEQYCLEAN: A PIPELINE FOR HIGH-THROUGHPUT SEQUENCE DATA 

PREPROCESSING 

Chapter 1 describes SeqyClean, a software application written in C++ with the main 

purpose of pre-processing HTS data in order to prepare it for downstream analysis. 

SeqyClean performs comprehensive HTS data denoising and is able to work with 

Illumina, Roche 454 and Ion Torrent sequence libraries. SeqyClean is open source and 

available at: http://bitbucket.org/izhbannikov/seqyclean 

The manuscript titled “SeqyClean: a pipeline for high-throughput sequence data 

preprocessing” by Ilya Y. Zhbannikov, Samuel S. Hunter, James A. Foster and Matthew 

L. Settles is currently being prepared for publication. 

	
  

1.1 Abstract 

Background 

Important problems in genomic studies are a very large amount of sequence data, 

and accompanying noise. Although a plethora of preprocessing software applications has 

been developed in order to reduce the sequence noise, many of them are not able to 

handle data from multiple technologies, and only a few are able to provide the reduction 

of more than one type of noise, thereby limiting the applicability of majority of 

preprocessing applications. 

Results 

We developed SeqyClean, a comprehensive preprocessing software pipeline to 

alleviate these limitations. SeqyClean effectively removes most noise in HTS sequence 

data and, according our tests, outperforms other best available preprocessing tools. 
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Conclusions 

SeqyClean provides the most complete sequence preprocessing solution, offering 

all sequence preprocessing aspects (except chimeric filtering). We are constantly working 

on optimization of the algorithms used in SeqyClean. We hope that the scientific 

community will benefit from using SeqyClean. 

1.2 Background 

With the ability to easily outsource genome scale DNA sequencing and advances in 

modern computation tools, small labs are able to handle research tasks that were 

previously available only to large genome centers [1]. However, analysis of high-

throughput DNA sequence data (HTS) is a non-trivial problem itself. Raw data from 

high-throughput sequencing machines contain various types of artificial inclusions 

(sequencing adapters, vectors, contaminants), and sequence errors caused by instrument 

imprecision, and using the raw data often leads to a poor quality of analysis. Therefore 

there is a need for data preprocessing before downstream analysis tasks such as mapping 

and assembly. Aggressive preprocessing of HTS data, before mapping and/or assembly, 

in order to remove a majority of inclusions (vectors, adapters and contaminants) and 

potentially erroneous nucleotides is important because it can improve the quality, speed 

and reliability of analysis [2]. 

Preprocessing of HTS data can include a number of stages to identify and remove 

non-experimental artifacts. These include: (1) Identification and trimming of various 

kinds of DNA sequencing adapters. Sequencing technologies use known short sequences 

added during library preparation, known as adapters. Untrimmed adapters can lead to a 

fragmented genome assembly (See Figure 1G from Supplementary Materials). (2) Filter 
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out non-experimental contaminant sequences. Sequence contamination can come from 

many sources including, those derived from sample collection and preparation, lab 

equipment/reagents, or from the sequencing process. As an example, the Anolis 

Carolinensis k51:5946385 transcribed RNA sequence (GenBank ID GAGG011006923.1, 

~5.3 kb) is most likely the sequence for Phi-X174 phage (99% identity, according to 

NCBI BLAST), a common spike-in library for Illumina sequencing [28]. Had the reads 

been screened for this contaminant prior to assembly, this erroneous transcript would 

most likely not have been reported (3) Filter and trim vector sequences when a BAC 

method was used during sample preparation. Such methods insert a DNA fragment of 

interest into bacterial plasmid (“vector”). Bacterium with such plasmid yielding multiple 

copies of itself and their plasmid DNA are then sequenced. However, it is likely that 

plasmid and bacterial fragments are still present in reads. (4) Left and Right read edge 

trimming of poor quality bases (low quality scores and ‘N’ bases) produced by 

instrument imprecision. (5) Combine/join overlapping Illumina paired-end reads. 

Sequencing library fragments, which are shorter than the overall number of cycles being 

sequenced, can be overlapped and joined to produce a single, longer read. Combining 

paired-end reads reduces data abundance and base redundancy, thereby potentially 

reducing analysis time and errors [5]. (6) Trimming poly A/T tails. When sequencing 

RNA samples poly A/T sequence is not a part of the original genome and may interfere 

with a read’s ability to map. And finally, (7) Removal of PCR duplicates, which do not 

convey any new information, but largely increase amount of data and thereby, analysis 

time. 
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Current sequence preprocessing tools are divided into tools that perform a single 

preprocessing stage and those that provide several preprocessing stages packaged 

together. Many of them have only some of the stages described above, or lack the ability 

to process multiple sequence data file formats from different sequencing technologies. 

Roche Life Sciences 454 systems and Life Technologies Ion Torrent/Proton systems use 

the SFF (Standard Flowgram Format), a binary file format [6], while Illumina, and 

others, use the FASTQ plain text file format to store both sequenced bases and quality 

information for each nucleotide and each read. FASTA/QUAL formats are similar but 

contain only sequence bases or quality scores (numeric) respectively. Table 1G from 

Supplementary Materials provides a summary of file formats and capabilities for a 

representative set of other preprocessing applications. Briefly, the applications TrimEST 

[7] (removes poly A/T tails from sequence), VectorStrip [8] and VecScreen [9] (both trim 

vector sequences) are designed to perform one preprocessing task. Lucy [10] and 

AlienTrimmer [2], FASTX-Toolkit [27], SeqTrim [11], Ea-Utils [12], AdapterRemoval 

[13], Skewer [14], Trimmomatic [15], Btrim [16], Cutadapt [17], Sickle [18] are 

examples of applications that perform multiple preprocessing stages, mostly adapter and 

quality trimming. Lucy is a preprocessing pipeline for quality, poly A/T and vector 

trimming. It was designed for lower-throughput Sanger sequence data and does not 

accept as input the modern SFF and FASTQ file formats or Illumina paired-end libraries. 

AlienTrimmer accepts both single-end and paired-end reads in FASTQ format, providing 

adapter and quality trimming. AlienTrimmer does not accept SFF files, requiring the user 

to first convert them to FASTQ format. FASTX-Toolkit is a bundle of individual 

preprocessing software tools that perform a set of preprocessing stages. FASTX-Toolkit 
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provides quality and adapter but also does not handle SFF files or vector/contaminants 

screening. SeqTrim is a tool for vector, contaminants and quality trimming. SeqTrim 

utilizes the BLAST algorithm for discovery of adapters, vectors and contaminants. 

SeqTrim accepts only FASTA/QUAL format and requires standalone BLAST application 

to be installed on the user’s machine. Btrim performs quality and adapter trimming, but 

no vector and contaminants screening, poly-A/T removal or other preprocessing stages. 

Ea-Utils performs a number of stages, including quality, poly-A/T, adapter and vector 

and contaminants screening. It also accepts single- and paired-end reads and, moreover, it 

performs merging of overlapping paired-end reads. But does not process SFF binary files. 

Skewer, Trimmomatic, Cutadapt, AdapterRemoval and Sickle perform adapter and 

quality trimming of single- and paired-end reads. However, none of these applications 

incorporate all of the stages mentioned above into a single preprocessing pipeline. 

Therefore there is a need for a universal preprocessing tool that incorporates all of the 

important preprocessing stages described above and is flexible enough to work on the 

most common types of data formats available. 

In this paper we present SeqyClean, a comprehensive preprocessing software 

pipeline for high throughput sequence data. The purpose of SeqyClean is to incorporate 

all of the sequence preprocessing stages together into one bioinformatics pipeline that 

works with the two most common sequence data formats, SFF and FASTQ files (both 

single-end and paired-end). SeqyClean successfully recognizes and removes 

technological components, contaminants and vectors. Further, SeqyClean provides 

quality trimming, poly A/T trimming, overlapping of paired-end reads and PCR-duplicate 

detection and removal. Further, SeqyClean allows the user to choose which stages to 
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perform and to adjust the default parameters within stages, as the experimental 

conditional may need. We show that SeqyClean greatly improves both genome de-novo 

assembly and genome mapping. SeqyClean has been extensively used in our lab with 

continued improvement and we believe that the research community can also benefit 

from its use. 

1.3 Implementation 

SeqyClean is an open-source software application that requires only the GNU 

C/C++ compiler installed and is available for download from the following link: 

http://bitbucket.org/izhbannikov/seqyclean. A workflow diagram is shown in Figure 1.1 

and comprises of the following stages: (1) Input data preprocessing; (2) PCR-Duplicates 

removal; (3) Overlapping and adapter removal for paired-end reads; (4) Trimming poly 

A/T tails; (5) Vector trimming; (6) Contaminant removal; (7) Adapter trimming for 

single-end reads (454, Illumina single-end); (8) Quality trimming; (9) Establishing final 

trim points; (10) Generating output files and summary statistics. An advantage of 

SeqyClean is its modular structure, in which the user can specify different preprocessing 

strategies, rather than a strictly determined workflow. It also incorporates all of the 

preprocessing stages described in the Background section into single bioinformatics 

application, providing the most powerful sequence cleaning. 

We describe each preprocessing stage in detail in the following sections. SeqyClean 

also has a number of additional utility functions that may be useful in preprocessing HTS 

data, such as minimum read length filtering, and conversion from the newer CASAVA 

v1.8 style FASTQ read IDs to the older pre-CASAVA 1.8 style read IDs. Refer to the 

user manual for additional information. 
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  Removal PCR-duplicates from sequence data 

During library preparation, the amount of DNA is typically amplified using a 

polymerase chain reaction (PCR) step. If library complexity is low, these duplicated 

templates are often sequenced multiple times, but because all of the sequenced reads 

originate from the same template they do not provide any additional information.  

Identification and removal of reads that are likely the result of PCR duplication reduces 

the pool of redundant sequence before assembly and mapping, which can potentially 

reduce both errors and analysis time. In our algorithm we define PCR duplicates as reads 

originating from the same parent molecule. For paired-end reads, PCR duplicates are 

identified if they share the same 35bp window (default) starting from basepair 10 

(default) from the 5’ end (70bp total must be an identical matches, 35bp from each read) 

and ending at base 45 from the 5’ end of each pair. For single-end reads (Roche 454 of 

single-end Illumina) 35bp must be identical. The window size, start position and 

maximum number of allowed duplicates can be adjusted by changing parameters 

‘startdw’ (starting position, 10 by default) and ‘sizedw’ (window size, 35bp by default) 

and ‘maxdup’ (maximum number of duplicates to keep in preprocessed librar, 1 by 

default). 

Poly A/T tail trimming for RNA sequence data 

SeqyClean provides trimming of poly-A/T of RNA sequence data by implementing 

the approach previously introduced in the Lucy application [10]. The algorithm begins by 

searching for the first minimum occurrence of 10bp (by default) or longer of poly-T (or 

poly-A) fragment within the first initial search range of 50bp, from both the 5’ and 3’ 

ends of sequence, and then attempts to extend this poly-T (poly-A) seed outward, 
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allowing for no more than the maximum (default=3) mismatches between every min span 

(default=10bp) consecutive T (A) bases in the search region. 

Contaminant and vector detection and trimming 

To identity contaminants and vectors we use exact k-mer matching, which works as 

follows: supplied contaminant references sequences are sampled into consecutive k-mers 

(15 bases long by default), each k-mer is stored in a hash table; Searching for a 

contaminant, or vector, is performed by sampling each read into consecutive k-mers 

(15bp length by default) and then performing a hash table lookup for each k-mer in a 

read. For flexibility, the distance (difference between starting position of the first k-mer 

and starting position of the second k-mer) between tandem k-mers in a read can be 

adjusted (default distance is one base). In the case of vector sequences, matches are first 

approximately found via consecutive k-mer matching, and then the exact coordinates are 

obtained by extending with a pairwise alignment between the read and corresponding 

region in a reference vector sequence. The read is trimmed of vector sequence if the 

match occupies less than 80% of the read and discarded otherwise. In case of 

contaminants screening the whole read is discarded as soon as it meets three (by default, 

can be adjusted) consecutive successful k-mer matches. In order to identify contaminant 

and vector sequences, reference sequence of expected contaminant/vectors must be 

provided in FASTA format. 

Adapter identification and combining overlapping Illumina paired-end sequences 

To trim adapters in single-end and reads compressed in SFF files [6], we use the 

SSAHA algorithm [20] for detection of Roche 454 RL MID adapters in SFF files and 

Illumina Truseq adapters in single-end reads, by default; however the user can supply 
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custom adapters. SSAHA is a hashing algorithm used for mapping reads, but 

implemented for use in adapter identification here. 

In the case of paired-end reads, reads that contain adapter sequence will also 

contain a high quality, interior overlapping alignment where the overhangs are the 

adapter sequences. This technique is also described in AdapterRemoval [13] and 

Trimmomatic [15] and is based on the following assumption. If an adapter is found in 

one paired-end read, the corresponding adapter should also be present in the 

corresponding pair, while the interior sequences (non-adapter sequence) are reverse 

complements of each other. Otherwise, the read is free of adapter sequence. The 

algorithm is shown in Figure 2G in the Supplementary Materials and is described as 

follows: 

• First, the read pairs (read 1 and the reverse-complement of read 2) are fully 

overlapped (Figure 2G(a)) and an overlap score is computed according to the 

following equation: 

  (1) 

• Then reads are shifted by one base (to the interior), relative to each other (Figure 

3G(b)) and overlap scores are computed after each shift. If an overlap score 

reaches a pre-defined threshold (0.75 by default), the overlap position is recorded, 

the algorithm terminates and adapters are trimmed (Figure 2G(c)). Otherwise, the 

algorithm proceeds until the min overlap (=16 bases by default) is achieved. 

A potential benefit of the paired-end paradigm is the possibility to join paired-end 

reads into single, longer sequence with a length up to nearly twice the length of the 

individual reads, which can reduce assembly complexity. This is implemented as part of 

Score = #matches
overlap_ length
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the paired-end adapter-trimming algorithm described previously, except it contains an 

additional consensus calling stage, in which the paired-end reads are combined into 

longer single read (‘consensus read’) with re-computed bases and quality scores.  If 

disagreements are identified while constructing the consensus, the nucleotide call with 

the higher quality score is selected and the quality is set to the difference in quality 

scores between the two calls. In cases where quality scores are equal for unmatched calls, 

the residue for read 1 is reported with a quality of 2. 

Quality trimming 

SeqyClean utilizes the approach used in the Lucy quality and vector trimming 

application [10]. Briefly, (1) the quality trimming algorithm searches for the longest 

region from both the 5’ and 3’ ends with average error lower than a predefined 

bracket_error threshold. To do this, a sliding window is applied with size of 10 bp by 

default. Low-quality regions, which do not meet the criteria, are trimmed from each end; 

(2) At the next step, a quality algorithm identifies regions within a sequence that have 

high error rates. To do this, two types of windows are applied: first, a large window of 50 

bp (default) is applied. Second, a smaller window of size 10 bp (default) is used to 

identify small low-quality regions that were missed using the larger window. (3) The 

largest high-quality region with average error lower than maximum_average_error 

(MAE) is then chosen as a candidate for the final high quality range; (4) The last step is 

to check the last two bases from each end of the read. If they have an average error larger 

than the maximum_error_at_ends (MEE) parameter, trim them off. Parameters 

maximum_average_error and ‘maximum_error_at_ends’ are each set to 0.01 (20 Phred) 

by default and represent the quality trimming threshold. In SeqyClean bracket_error is 
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set to 0.794 and the default maximum average error for both windows (50 and 10 bp) is 

also set to 0.794. 

Final Trim Points 

Trim points are positions on the 5’ and 3’ ends of the read and define the good-

quality region that passed the quality trimming stage and are free from adapters, vector 

and polyA/T sequences. 

Output files and summary statistics 

This includes processed sequence data, and log files that record all parameters and 

flags used in preprocessing, summary statistics such as the number of discarded 

sequences, adapters found, etc., and statistics for each read (adapter position, read length, 

etc.). 
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Evaluation 

We chose to evaluate SeqyClean by comparing de-novo genome assembly and 

mapping statistics using both original and processed reads. Our goals were to (1) identify 

a set of optimal quality parameters for general sequence preprocessing tasks; (2) to 

evaluate the influence of different pre-processing stages on de-novo genome assembly 

and genome mapping and (3) compare the preprocessed datasets of SeqyClean to other 

tools. We use the QUAST analytic tool [24] to extract statistics across all tests. 

Datasets 

We evaluated SeqyClean on three HTS shotgun datasets, in order to compare 

SeqyClean to other available HTS preprocessing tools and determine the optimal quality 

parameters for most sequence preprocessing tasks. The first is a public dataset consisting 

of 400,596 Illumina MiSeq paired-end 250bp reads sequenced from the E. coli K-

12/MG1655 bacterial genome (SRR519926). The second is a Roche 454 pyrosequencing 

dataset containing 621,578 reads and 327,471,374 bases derived from E. coli. K-

12/MG1655. The third also consisted of Illumina MiSeq paired-end 250bp reads 

sequenced from the eukaryotic genome of Saccharomyces cerevisiae (Yeast) W303 with 

a total of 3,875,453 reads. Roche 454 E. coli and Illumina S. cerevisiae datasets were 

sequenced in the University of Idaho IBEST Genomics Resources Core. For reference 

sequences, we used E. coli str. K-12 substr. MG1655 strain [GenBank accession number 

NC000913.3] and S. cerevisiae W303-K60001 strain [GenBank accession number 

ALAV00000000.1] for the E. coli and S. cerevisiae datasets respectively [26]. 
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Optimal quality trimming parameters 

We conducted 39 preprocessing experiments both on the E. coli 454 and S. 

cerevisiae Illumina libraries, in which we applied SeqyClean to these libraries using 

quality error thresholds ranging from 0.794 (Phred of 1) to 0.000126 (Phred of 39, 

inclusive). In these tests, we simultaneously changed the maximum_average_error 

(MAE) parameter and maximum_error_at_ends (MEE). A value of 0.794 indicates a 

79.43% chance that the base was read incorrectly and a value of 0.000126 indicates a 

0.0126% chance that a nucleotide base was read incorrectly. Complete Phred quality 

values and corresponding error rates are in Table 1F of Supplementary Materials. All 

other parameters were left at their defaults. Detailed execution commands are given in 

Supplementary Materials. Optimal quality trimming parameters were inferred from de-

novo assemblies and mappings of preprocessed E. coli pyrosequence library and S. 

cerevisiae paired-end Illumina libraries. 

Optimal parameters for Roche 454 preprocessing were estimated from de-novo genome 

assembly 

We performed 39 de-novo assemblies of raw and SeqyClean processed 454 data, 

using the Roche GS De Novo Assembler (Newbler) v2.9 using assembly parameters 

given in the Supplementary Materials, section C). We also evaluated Roche’s native clip 

points by supplying a library file to the assembler “as is”, letting the assembler determine 

the optimal preprocessing strategy from clipping information encoded in the SFF file (E. 

coli pyrosequence library only). We used the following assembly assessment statistics: 

(1) N50 [30]; (2) total number of contigs; (3) average read length; (4) read coverage; (5) 

insertions/deletions (INDELs); (6) total length of the assembly. 
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Optimal parameters estimated from genomic mapping 

To evaluate the effects of quality and adapter trimming on genomic mapping, we 

used the same E.coli and S. cerevisiae test libraries preprocessed with SeqyClean as 

described above. We estimated the number of single-nucleotide polymorphisms (SNPs) 

and insertions/deletions (INDELs) and then performed a comparison to the mapping of 

raw data and data preprocessed with clipping information obtained from the SFF file (not 

applicable to Illumina libraries). We used Bowtie2 [23] aligner and SAMtools [22] in 

order to extract SNPs and INDELs. All parameters we used for mapping tests are given 

in Supplementary Materials. 

Evaluation of effects of different pre-processing stages on genome assembly and mapping 

We assembled the (1) E. coli Illumina, the (2) S. cerevisiae Illumina paired-end 

datasets and mapped the processed reads onto the corresponding reference sequence We 

evaluated the following stages: de-duplication, merging paired-end reads, quality and 

adapter trimming. We performed five assembly tests: (1) including all these stages; (2) 

excluding de-duplication; (3) excluding de-duplication and merging paired-end reads 

(only adapter and quality trimming are left); (4) excluding de-duplication, merging and 

quality (only adapter trimming remained); (5) assembling all the raw data. We used N50, 

total length of assembly, number of large and total contigs and assembly time in order to 

compare results. For mapping we only used percentage of mapped reads (paired- and 

single-end reads). Assemblies were performed with Roche 454 Newbler 2.9 assembler on 

32-core (64 threads) Unix machine (for these tests we used 4 threads) and mapping was 

performed with the Bowtie 2 mapping tool using 16 threads, on the same machine. 
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Comparison of SeqyClean to other preprocessing tools 

We compared SeqyClean to Lucy, AlienTrimmer, Btrim, and Ea-Utils, using the E. 

coli Roche 454 dataset. We compared it to AlienTrimmer, Ea-Utils, Skewer, 

Trimmomatic, AdapterRemoval, and Sickle using the E. coli and S. cerevisiae Illumina 

data. We preprocessed each library using the default/suggested parameters provided by 

authors of each application. For preprocessing with SeqyClean we used the same 

parameters found in tests from previous section. The complete set of parameters used for 

these tests is given in Supplementary Materials. After preprocessing we performed de-

novo assemblies with Newbler We compared the following assembly statistics: N50, 

number of large contigs (length of contig >= 1000 bp), total number of contigs, largest 

contig length, largest alignment and total length of the assembly. We also performed 

mapping with Bowtie2 [23]. We used 16 threads and other parameters were left at their 

defaults. For mapping we compared the number of reads aligned for each application, 

assuming that higher percentage of aligned reads indicates better preprocessing. 

1.4 Results and Discussion 

In this paper we have introduced SeqyClean, a comprehensive data pre-processing 

tool that facilitates de-noising of high-throughput sequence libraries. Data de-noising is a 

necessary step before analyzing sequence data and SeqyClean is especially designed to 

perform the most complete sequence cleaning. To test SeqyClean, we: (1) determined 

optimal default parameters for SeqyClean by determining the effects of quality and 

adapter trimming on genome assembly and mapping of typical datasets; (2) evaluated of 

effect of different pre-processing stages on de novo assembly and genome mapping; (3) 

compared the effectiveness of SeqyClean to other pre-processing tools. 
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Optimal quality trimming parameters for the majority sequence preprocessing tasks 

Effects of quality and adapter trimming on assembly of the E. coli pyrosequence library 

The maximum N50 (from 106,740 bp to 117,486 bp) is achieved when SeqyClean 

trims reads with quality trimming threshold between 0.126 and 0.005 (19 and 23 Phred), 

Figure 1.2(a). When the quality trimming threshold is below 0.063 (12 Phred), the N50 of 

the assembly of data preprocessed with SeqyClean is slightly larger than the N50 of 

assembly using only clipping information from SFF library and significantly larger than 

assemblies of raw (unprocessed) data. N50 then peaks at around 0.01 (20 Phred) and then 

quickly drops to zero as the quality trimming threshold becomes more stringent, due to 

discarding too many reads, reducing overall coverage. 

The lowest number of INDELs (from 0.31 to 0.46) is seen for a quality trimming 

threshold between 0.01 and 0.0025 (20 and 26 Phred), Figure 1.2(b). Assembly recovers 

fewer INDELs per 100kb with a more stringent quality and far fewer than with raw, 

untrimmed data. Low-quality bases can produce false-positive INDELs, removing low-

quality nucleotides and low-quality regions can then potentially decrease false-positives. 

On the other hand, the read coverage should be high enough in order to obtain proper 

estimates of INDELs. Any quality trimming should not be too stringent in order to avoid 

significant data loss. 

The total number of contigs is fewest (varies from 127 to 155) for the quality 

trimming threshold set between 0.0126 and 0.0032 (19 and 25 Phred), Figure 1.2(c). It is 

generally better to have a fewer large contigs with total length close to the expected size 

rather than many relatively short contigs. 

Effects of quality and adapter trimming on mapping of the E. coli pyrosequence library 
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The total number of INDELs and SNPs is lowest (25-30 for SNP, 95-196 for 

INDELs) for quality trimming threshold between 0.0032 and 0.0016 (25 and 28 Phred), 

Figure 1.4(a). In this dataset, there are significantly more INDELs than SNPs since 

Roche 454 technology tends to form homopolymers [25]. The number of INDELs and 

SNPs decreases significantly after threshold 0.0032 (25 Phred) as coverage becomes too 

low for proper SNP/InDel calling (Figure 1.4(c)). 

Effects of quality and adapter trimming on assembly of the S. cerevisiae Illumina paired-

end library 

The total N50 for the S. cerevisiae Illumina library is highest (77,197 bp – 83,992 

bp) for error trimming threshold of 0.020 to 0.01 (17-20 Phred), Figure 1.3(a)). The 

average read length of the first and second paired end reads (PE1 and PE2) does not 

change until the quality trimming threshold achieves 0.020 (18 Phred), Figure 1.3(f). The 

anticipated coverage decreases after the trimming quality threshold achieves the value of 

0.025 but does not change before this value (Figure 1.3(e)). The number of INDELs for 

S. cerevisiae data is lower after trimming than with raw data, except when a trimming 

error threshold greater than 0.001 (Figure 1.3(b)). 

Effects of quality and adapter trimming on mapping of the S. cerevisiae Illumina paired-

end library 

Optimal quality trimming parameters (MAE and MEE) are within the interval 0.01-

0.0032 (20-25 Phred) according to results in Figure 1.4(b). This opposite of the E.coli 

pyrosequence test library situation: the number of variance (SNPs) is higher than number 

of InDels (Figure 1.4(b)). This was expected, since Illumina data have fewer erroneous 

homopolymers than Roche 454 technology. 
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Optimal parameters 

In summary, a quality trimming parameters (MAE and MEE) should be set between 

0.01 (20 Phred) and 0.0032 (25 Phred). In general, when the quality threshold becomes 

greater than 0.0032 (25 Phred), the preprocessing tends to discard potentially good-

quality data therefore setting up MAE and MEE below 0.0025 (26 Phred and higher) in 

generally not recommended. To summarize this, the recommended settings for MAE and 

MEE are: 

• 0.005 (23 Phred) for Roche 454 data. 

• 0.01 (20 Phred) for Illumina MiSeq data. 
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Figure 1.4: Mapping E.coli and S. cerevisiae data sets.  (a) INDELs and SNP for the E. coli data. Note 
the number of INDELs is significantly higher then SNPs indicating that pyrosequence technology 
produced many unnecessary homopolymers; (b) INDELs and SNPs for the S. cerevisiae data set. In 
this case there is a reverse pattern, in which number of INDELs is lower than SNPs; (c) and (d) 
represent expected coverage for E.coli and S. cerevisiae data sets. 
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Effects of different pre-processing stages on genome assembly and mapping 

E. coli Illumina MiSeq data 

For the E. coli Illumina MiSeq data (2x250bp reads, 400,596 total reads), quality 

trimming has the greatest impact on assembly and mapping (Table 2G and 3G from 

Supplementary Materials). De-duplication has little effect on the E. coli paired-end 

library, which represents shotgun sequencing of the whole genome at less than 60x 

coverage, so only a few duplicated sequences were found (85 duplicates in total). 

However, this could impact datasets whose coverage is high. Merging paired-end 

sequences also has a significant effect on assembly, but has little or no effect on 

mapping. 

Adapter trimming has a little impact as it is seen from this particular dataset, where 

a few (13.45% of reads) contained adapters. The four tests were identical in their ability 

to detect adapters and retain reads. In the first test (all preprocessing stages were 

included), 13.45% of TruSeq adapters were found, 85 duplicated reads were found, and 

~86.8% of total reads were kept (59.91% paired-end, 13.45% perfectly merging reads and 

13.44% were unmerged unpaired reads), 13.2% of total reads were discarded.  

The second test (without duplicates screening) shows the same results (due to only 

85 duplicates that were found in the previous test, which has a little impact on results). In 

the third test (excluded stages: duplicates screening, merging paired-end reads by 

overlap), 13.45% of adapters and 86.8% of data were kept (72.93% paired reads, 13.87% 

unpaired reads) and 13.2% (total) reads were discarded. The fourth and final test (without 

duplicates, read overlapping and quality trimming), 13.45% of adapters were found and 

100% (paired-end) reads kept (no single unpaired reads). 
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The best assembly results are from data preprocessed with SeqyClean at all stages 

of the pipeline (Table 2G from Supplementary Materials). SeqyClean pre-processing 

results in the largest N50 (82,666), a total assembly length close to reference, the fewest 

contigs (117 large/170 total), and a relatively low assembling time (4min, 14 sec). 

Assembling times for non-overlapping reads are slightly higher (5min, 47 sec) than those 

produced from merged pair-end reads, where the overlapping option was ‘on’. This 

shows that the assembler does a better job, and does it more quickly when paired 

sequences can be merged. Unsurprisingly, the lowest assembly quality is from raw, 

unprocessed reads. 

The best mapping results were also obtained with data preprocessed with all de-

noising stages. Quality trimming made the most difference. By contrast, de-duplication 

and merging paired-end reads had little effect on mapping. Trimming adapters also had 

little effect, due to low presence of adapters in the library (13.45%). The worst results 

were from data with trimmed adapters only and unprocessed data. 

E. coli Roche 454 pyrosequence data 

For the E. coli Roche 454 pyrosequence data (621,578 single-end reads in total), 

quality trimming has the greatest impact on assembly quality, and quality and adapter 

trimming has the greatest impact on mapping quality (Table 4G and 5G from 

Supplementary Materials) as well. 

De-duplication significantly influences assembly time (5min 38sec against 7min 

33sec without), 8,923 duplicates were found (Table 4G from Supplementary). De-

duplication also affects assembly quality, producing better statistics than without de-
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duplication. De-duplication reduces complexity for an assembler, allowing it to form 

fewer and longer contigs with total size close to the reference size. 

Adapter trimming (96.2% reads were found with 5’ adapters and 99.8% of the reads 

found with 3’ adapters) has a small impact on assembly quality, producing roughly the 

same N50 (82,861bp against 82,669bp) and other statistics in comparison to assembly 

from raw data. But assembly time for data, preprocessed with only adapter trimming 

stage is lower (11min 3 sec) that for assembly performed from unprocessed reads (14min 

9 sec). 

Mapping statistics is concordant to the assembly one (Table 5G from 

Supplementary). The best mapping results were obtained from data preprocessed with all 

stages (de-duplication, quality and adapter trimming), with 88.40% of properly mapped 

reads. Without de-duplication (only quality and adapter trimming), there are 88.35% of 

reads aligned. This may indicate that duplicated sequences had low quality thereby 

decreasing amount of mapped reads. 

With adapter trimming only (no de-duplication, no quality trimming) we have 

84.02% reads properly mapped, which indicates that quality trimming has significant 

impact on mapping results. But adapter trimming itself still has significant impact on 

mapping results because the worth results were obtained from mapping of raw reads: 

81.06% (roughly 4% difference). 

S. cerevisiae Illumina MiSeq data 

For this library (2x250bp paired-end data with 3,875,453 paired reads): the best 

assembly was seen from data preprocessed with all stages: de-duplication, combining 

paired reads, quality and adapter trimming, see Table 6G from Supplementary. 3,966 
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reads were recognized and discarded as duplicates, 19.72% of total reads contained 

adapters, and the same amount of reads were combined into longer single-end sequences. 

De-duplication and combining paired reads provided big impact on assembly speed 

and quality, providing shortest assembly time: 10 and 11hrs, in comparison to 32 and 

47hrs in other tests. As in previous, de-duplication and combining paired reads decrease 

amount of data to assembly but still preserving enough for producing good quality 

results. 

Quality trimming has also significant impact on assembly time and quality. N50 is 

83,571bp against 80,595bp from data preprocessed with adapter trimming flag only. 

Assembly from data preprocessed with adapter and quality trimming flags also provided 

relatively low assembly time: 32hrs versus 47hrs in comparison to adapter trimming 

only. 

For the raw data, assembler could not finish the task in reasonable time; thereby we 

had to stop ongoing assembly process. 

The best mapping results were obtained from data preprocessed with all stages (de-

duplication, merging overlapping paired reads, quality and adapter trimming), see Table 

7G from Supplementary Materials. In this case there are 98.92% of mapped reads. 

Without de-duplication (combining paired reads, quality and adapter trimming), 

there are 98.88% of reads properly mapped. Again, this may indicate that left duplicates 

had low quality thereby slightly decreasing mapping quality. 

Without overlapping and de-duplication, mapping quality is still high in comparison 

to the two previous tests: 98.90% (which is slightly higher than from data preprocessed 

with merging overlapping reads option). This can indicate that even if we keep lower 
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quality duplicates in a library, we can still have good results using the advantage of 

paired-end paradigm, where one pair support another (using the insert size) even if that 

pair not properly mapped. 

With adapter trimming only we have 98.32% reads properly mapped, which 

indicates that quality trimming has no such great impact on mapping quality (19.72% 

reads with adapters were found). Again, in this case we may observe advantage of paired-

end method. 

Mapping of raw reads indicates only 92.67% of mapped reads. This is significant 

difference in comparison to the previous test: 5.65%. Thereby, adapter trimming 

significantly affects mapping quality even if 19.72% of adapters were found. 

Comparison of SeqyClean to other preprocessing tools 

Among the best HTS data preprocessing tools, SeqyClean is the most 

comprehensive and precise, developed to serve most user’s needs. We performed 

evaluation of two E. coli libraries: Roche 454 pyrosequence library and Illumina MiSeq 

library and one S. cerevisiae Illumina library in order to compare results with tools that 

work with single and cannot work with several technologies.  

De-novo assembling of the E. coli pyrosequence library preprocessed with SeqyClean 

and other tools 

According to the results (see Table 1.1), SeqyClean provides the largest N50 

(111,928 bp). Assembly time is significantly lower in comparison to Lucy and 

AlienTrimmer (4 minutes versus 4 and 13 hours). This indicates that the untrimmed 

artifacts (adapters) left in a library, introduce additional complexity to the assembler. 

Assembly from data preprocessed with Btrim and AlienTrimmer have N50 of 97,590 bp 
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and 88,443 bp respectively, indicating second- and third-largest N50s. Among contig 

metrics, preprocessing with Btrim provides the smallest number of contigs (large/total) of 

176 large/548 total and SeqyClean provides the second smallest number 362 large/1294 

total.  

Reads assembled from preprocessing with Lucy provide the third smallest number 

of contigs (549 large/1372 total). Preprocessing with Ea-utils and Btrim tools produced 

the closest total length to the reference (4,686,639 bp and 4,723,675 bp), and 

preprocessing with SeqyClean produced the fifth closest result (5,164,984 bp). Pre-

processing with SeqyClean also produced the third smallest assembly time of 10 minutes, 

versus 4 (Btrim) and 6 minutes (Ea-utils). The assembly time for Ea-utils is lower in 

comparison to SeqyClean, but Ea-utils produced a very fragmented assembly (more than 

3,000 contigs). SeqyClean outperforms the other preprocessing applications in terms of 

N50. 
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Application 

 

N50 

 

Large (>1000bp)/Total 

Contigs 

Total 

Length 

Assembly 

Time 

(HH:MM:SS) 

Reference 

length 

Lucy 84,206 549/1372 5,148,220 04:00:01 4,641,652 

AlienTrimmer 88,443 554/1365 5,150,261 13:00:03 4,641,652 

Btrim 97,590 176/548 4,723,675 00:04:12 4,641,652 

Ea-utils 2,214 2561/3439 4,686,639 00:06:20 4,641,652 

SeqyClean 111,928 362/1294 5, 164,984 00:10:11 4,641,652 

 

Application 

 

N50 

 

Large (>1000bp)/Total 

Contigs 

Total 

length 

Assembly 

Time 

(HH:MM:SS) 

Reference 

length 

SeqyClean 82,666 117/170 4,555,814 00:04:23 4,641,652 

AlienTrimmer 53,598 160/218 4,558,242 00:03:35 4,641,652 

Ea-utils 59,473 131/183 4,556,869 00:20:21 4,641,652 

Skewer 69,502 128/172 4,555,815 00:04:08 4,641,652 

Trimmomatic 62,574 130/179 4,557,781 00:05:40 4,641,652 

AdapterRemoval 62,382 134/180 4,556,466 00:04:21 4,641,652 

Sickle 54,771 139/187 4,556,851 00:04:18 4,641,652 

Table 1.1: Assembly comparison: SeqyClean against other applications. Test library - E. coli 454 
pyrosequence library (E.coli K-12/MG1655 454 pyrosequence data, 621,578 reads, 327,471,374 
bases). 

Table 1.2: Assembly comparison: SeqyClean against other applications. Test library - E. coli Illumina 
library (E. coli K-12/MG1655 Illumina data (SRR519926, a 2 x 250 bp run, sequenced on an MiSeq)). 



	
   39 

De-novo assembling of the E. coli paired-end library preprocessed with SeqyClean and 

other tools 

SeqyClean provides the largest N50 (82,666 bp, see Table 1.2) and outperforms the 

other applications among other parameters: the number of contigs having lengths 

>=1,000bp,/total contigs (117/170); total length of large contigs (4,555,814 bp); total 

length of the assembly. Skewer produced the second-largest N50 (69,502 bp) and 

Trimmomatic the third (62,574 bp). Total assembly length is the same for all tools. Also, 

data preprocessed with SeqyClean produced the smallest number of large/total contigs 

(117/130), though it led to a relatively large assembly time (04:23 min). Base on these 

results we can assume that the SeqyClean is at least comparable to these tools in terms of 

adapter and quality trimming. 

Mapping of E. coli pyrosequence and Illumina libraries preprocessed with SeqyClean 

and other tools 

According to Table 1.3, the SeqyClean outperforms the other evaluated 

applications, except Btrim, providing the second-highest percentage (88.40%) of mapped 

reads. We assume this happens due to slightly better adapter removal with SSAHA 

algorithm, implemented in SeqyClean. All alignment tests ran quickly (from 0.5 to 1 

min). The best results given by Btrim: 91.02%, Lucy provided 85.89% and AlienTrimmer 

provided 85.49%; and the worst, Ea-utils: 44.44%. 

For Illumina libraries, according to results shown in Table 1.4, SeqyClean provides 

the best results among all statistics and outperforms other tools in all modes: paired-end 

reads (PE), unpaired single-end reads (SE) and combined pair- and single-end reads 

(PE+SE). For quality trimming we used the following parameters: MAE=0.01 (20 Phred), 
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MEE=0.01. Other parameters were left at their defaults. For other tools we used their 

recommended parameters. SeqyClean outperforms other tools in PE+SE (combined 

paired- and single-end reads) mode and provides 99.43% aligned sequences. 

Trimmomatic and Sickle provide only 92.83% and 92.70% of aligned reads. SeqyClean 

also slightly outperforms other tools in PE (paired-end) mode, having 99.91% aligned 

reads against 99.89% from Trimmomatic and 99.65% from Skewer. In SE (single-end 

reads) mode, 97.25% reads were aligned, versus 66.73% from Trimmomatic and 37.93% 

from Sickle. 

This indicates better removal of TruSeq adapters in single- and, especially, in 

paired-end modes in comparison to other tools. A high number (more than 99%) of 

aligned paired-end reads that were preprocessed with other tools in comparison to low 

rate of alignment of single-end reads (66.73% for Trimmomatic, 37.93% for Sickle, other 

tools discard single-end reads) makes us to assume these tools do not perform 

comprehensive de-noising of single-end reads. SeqyClean performs de-noising both 

paired- and single-end reads (by ‘single-end’ we define a situation when one read has lost 

its pair due to low quality of bases of it). This potentially makes SeqyClean to be one of 

the leading applications for sequence preprocessing for subsequent analysis. 
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Application Reads mapped/Reads total, % 

SeqyClean 88.40 

AlienTrimmer 85.49 

Lucy 85.89 

Btrim 91.02 

Ea-utils 44.44 

Application PE+SE, % PE, % SE, % 

SeqyClean 99.43 99.91 97.25 

AlienTrimmer NA 99.44 NA 

Ea-utils (fastq-mcf) NA 99.57 NA 

Skewer NA 99.65 NA 

Trimmomatic 92.83 99.89 66.73 

AdapterRemoval NA 99.13 NA 

Sickle 92.70 99.30 37.93 

Table 1.3: Comparison of Bowtie2-mapping: SeqyClean against other applications. Test 
library - for E. coli Roche 454 pyrosequence library (E. coli K-12/MG1655 454 
pyrosequence data, 621,578 reads, 327,471,374 bases). 

Table 1.4: Comparison of Bowtie2-mapping: SeqyClean against other tools. Test library: E. 
coli Illumina library E. coli K-12/MG1655 Illumina data (SRR519926, a 2 x 250 bp run, 
sequenced on an MiSeq). PE – paired-end reads; SE – single-end reads; PE+SE – aligned 
combined PE and SE; PE – only PE, SE – only SE; NA – application does not report SE after 
cleaning. 
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De-novo assembling of the S. cerevisiae paired-end library preprocessed with 

SeqyClean and other tools 

SeqyClean provides the largest N50 (85,803 bp), minimum number of large/total 

contigs (304/644) and lowest assemble time (10hrs, 14 min, 21 sec), see Table 1.5. The 

second best N50 comes from Skewer (83,993 bp) and the third best N50 from 

AlienTrimmer (80,620 bp). The total length of the assembly from data processed with 

SeqyClean is the fourth-largest (11,631,506 bp), where the largest (and most close to the 

reference) comes from Ea-utils (11,637,616 bp). 

Mapping of the S. cerevisiae paired-end library preprocessed with SeqyClean and 

other tools 

Mapping results also suggest that SeqyClean outperforms the other tools (Table 

1.6). Data processed with SeqyClean shows the highest percentage of mapped paired-end 

reads (98.99%), single-end reads (98.53%) and second-highest percentage of combined 

paired- and single-end reads (98.91%). The highest percentage of mapped of combined 

paired- and single-end reads comes from data processed with Trimmomatic (98.93%). 

These results also indicate that SeqyClean outperforms other applications. 
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Application PE+SE, % PE mapped, % SE, % 

SeqyClean 98.91 98.99 98.53 

AlienTrimmer NA 97.39 NA 

Ea-utils (fastq-mcf) NA 96.73 NA 

Skewer NA 98.51 NA 

Trimmomatic 98.93 98.78 97.83 

AdapterRemoval NA 98.74 NA 

Sickle 94.10 94.18. 87.13 

 
  

Application 

 

N50, bp 

 

Large 

(>1000bp)/T

otal Contigs 

Total 

Length, bp 

Assembly 

Time 

(HH:MM:SS) 

Reference 

Length, bp 

SeqyClean 85,803 304/644 11,631,506 10:14:21 12,154,788 

AlienTrimmer 80,620 328/713 11,553,641 11:31:18 12,154,788 

Ea-utils 59,473 323/732 11,637,616 36:58:00 12,154,788 

Skewer 83,993 303/718 11,631,846 43:58:31 12,154,788 

Trimmomatic 73,759 334/668 11,623,905 10:31:26 12,154,788 

AdapterRemoval 74,435 323/760 11,552,722 40:14:47 12,154,788 

Sickle 79,319 314/755 11,639,914 52:22:47 12,154,788 

Table 1.5. Assembly comparison: SeqyClean against other applications. Test library - S. 
cerevisiae Illumina paired-end data (a 2 x 250 bp run, sequenced on an MiSeq, 3,875,453 
reads). 

Table 1.6. Comparison of Bowtie2-mapping: SeqyClean against other tools. Test library: S. 
cerevisiae (a 2 x 250 bp run, sequenced on an MiSeq, 3,875,453 reads). PE – paired-end reads; 
SE – single-end reads; PE+SE – aligned combined PE and SE; PE – only PE, SE – only SE; NA – 
application does not report SE after processing. 
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Runtime and memory 

Memory consumption directly depends on the size of reference genome and 

sequence library. Table 8G from Supplementary materials shows memory (RAM) 

footprints needed to store genomes of model organisms into a hash table. Using 2-bit 

DNA compression can significantly reduce memory consumption. In vector/contaminant 

trimming mode, the runtime of SeqyClean depends both on the reference and sample 

library size. In the future we consider applying the Burrows-Wheeler [23] transformation 

in order to further reduce memory. Runtime depends on the size of the NGS library and 

on typical machine (4-24 cores, 8-128 GB of RAM) speed is: 1,251 reads/sec (799 sec for 

106 reads) to process typical pyrosequence library (~600,000 – 1,000,000 reads) and 

3,623 reads/sec (276 sec for 106 reads) to process typical Illumina library (~10,000,000 

(HiSeq) … ~200,000,000 (MiSeq) paired-end reads). 

1.5 Conclusions 

Sequence quality greatly affects on quality of analysis. With SeqyClean we 

preprocessed two different NGS libraries: E. coli (Roche 454, Illumina) and S. cerevisiae 

(Illumina MiSeq). We have shown that the quality of sequence data is greatly important 

for both genome assembly and genome mapping. In particular, adapter and quality 

trimming bring significant improvement of quality of assembly and mapping. As 

mapping quality increases false-positive INDELs and SNPs are reduced. Such false-

positive variants can be mistakenly recognized as good, which leads to poor results. If the 

sequence library contains contaminants or vector sequence, it is necessary to perform 

vector and contaminant filtering in order to further improve the quality of analysis. 

Overall SeqyClean is a valuable improvement over existing preprocessing tools since it 
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provides the most complete sequence preprocessing solution, offering all sequence 

preprocessing aspects. We are constantly working on optimization of the algorithms used 

in SeqyClean.  

1.6 Availability and requirements 

• Project name: SeqyClean 

• Project home page: http://bitbucket.org/izhbannikov/seqyclean 

• Operating system(s): OS X, Linux 

• Programming language: C++ 

• Other requirements: none 

• License: GPL 

• Any restrictions to use by non-academics: none 

SeqyClean is available under GPL from the following link: 

http://bitbucket.org/izhbannikov/seqyclean and requires GNU C/C++ compiler installed. 

SeqyClean developed for OS X and Linux users only. 
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Chapter 2 

SLOPMAP: A SOFTWARE APPLICATION TOOL FOR QUICK AND FLEXIBLE 

IDENTIFICATION OF SIMILAR SEQUENCES USING EXACT K-MER MATCHING 

Chapter 2 presents SlopMap, an application, written in C++ with the main purpose 

of searching for the reads originating from some genomic region of interest, such as 

single gene or a plasmid. SlopMap is user-friendly, command-line application tool, which 

is able to work with Illumina, Roche 454 and Ion Torrent sequence libraries. SlopMap is 

open source and available at: http://bitbucket.org/izhbannikov/slopmap. 

 This chapter was published in a Special Issue on "Bioinformatics for High-

throughput Sequencing” of the Journal of Data Mining in Genomics & Proteomics as 

SlopMap: a software application tool for quick and flexible identification of similar 

sequences using exact k-mer matching, Ilya Y. Zhbannikov, Samuel S. Hunter, Matthew 

L. Settles, and James A. Foster, 2013. 

	
  

2.1 Abstract 

With the advent of Next-Generation (NG) sequencing, it has become possible to 

sequence an entire genome quickly and inexpensively. However, in some experiments 

one only needs to extract and assemble a portion of the sequence reads, for example 

when performing transcriptome studies, sequencing mitochondrial genomes, or 

characterizing exomes. With the raw DNA-library of a complete genome it would appear 

to be a trivial problem to identify reads of interest. But it is not always easy to 

incorporate well-known tools such as BLAST, BLAT, Bowtie, and SOAP directly into a 

bioinformatics pipelines before the assembly stage, either due to incompatibility with the 

assembler’s file inputs, or because it is desirable to incorporate information that must be 
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extracted separately. For example, in order to incorporate flowgrams from a Roche 454 

sequencer into the Newbler assembler it is necessary to first extract them from the 

original SFF files. 

We present SlopMap, a bioinformatics software utility, which allows rapid 

identification similar to provided target sequences from either Roche 454 or Illumnia 

DNA library. With a simple and intuitive command-line interface along with file output 

formats compatible with assembly programs, SlopMap can be directly embedded in 

biological data processing pipeline without any additional programming work. In 

addition, SlopMap preserves flowgram information needed for Roche 454 assembler. 

2.2 Introduction 

New methodologies enabled by Next Generation Sequencing (NGS) that are of 

particular interest to us include transcriptome analysis for RNA research [4] and 

mitochondrial sequencing from exome data [3]. Such applications include those in which 

the researcher is interested in assembling only specific content within a genome of 

interest, using a set of targets to initialize the assembly process. It may seem trivial to 

identify the reads of interest among those produced by NGS hardware, using well-known 

general-purpose alignment or mapping tools such as Blat [7], Bowtie2 [8], BWA [9], and 

SOAP [5]. But even an efficient tool may be difficult to incorporate directly into a 

bioinformatics pipeline before the assembly stage, since it may be necessary to convert 

data to a different file format. For example, existing mappers usually use the SAM/BAM 

[6] file format as output. None use SFF format files [1] as both input and output, and 

none but Bowtie2 support FASTQ output, and it is supported only in a limited sense. 
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Moreover, it is difficult to use existing mapping software tools when it necessary to 

establish a similarity threshold, i.e. when one wants reads that are 50%, 70% or 85% 

similar to the target (Figure 2.1). Relying only on input parameters such as gap penalties 

and seed size, which most well-known aligners have, it is difficult to achieve flexible 

mappings with require percentage of similarity. On the other hand, it often desirable to 

find reads that are at least 90% similar to the provided target, and to discard the rest. 

Another problem arises if there is insufficient data on the edge of the target located 

within a reference genome (Figure 2.1). In this situation the whole read (marked red) can 

potentially be discarded due to lack of data on the edge, even if a part of the read has 

significant similarity to the target. 

We present SlopMap, a bioinformatic software utility that quickly and flexibly 

identifies sequence reads that are within a given percent similarity to a target sequence. 

SlopMap is not a sequence alignment mapper, but rather identifies reads, which may have 

been derived from the target region. Unlike traditional alignment software, a SlopMap 

only report reads that are similar to the provided target. SlopMap selects reads for 

downstream analysis, such as assembly of sub-genome targets i.e. bacterial plasmids, 

virae, mitochondria, exome capture data, chloroplasts, transcriptomes, etc. It employs 

exact k-mer matching, which we call sloppy mapping, without conducting the 

computationally expensive alignment stage of traditional mappers.  

SlopMap can be directly embedded in biological data processing pipelines before 

an assembly stage, since it maintains file format and preserves the original information 

such as bases, quality scores, and flowgrams (in the case of SFF files). SlopMap accepts 

both SFF (Roche 454 or Life Sciences Ion Torrent/Proton) and FASTQ (Illumina) file 
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for- mats. SlopMap is a simple, easy to use and robust tool that can be used with percent 

similarity to targets as low as 5% (95% dissimilar). 

SlopMap along with its user manual is freely available under GPL from Bitbucket: 

http://bitbucket.org/izhbannikov/slopmap. 

  



	
   53 

 

 

 

 

 

 

 

 

 

  

Figure 2.1: Situation when the general-purpose mapper can discard red reads on the edge of 
the target. Green reads can still be reported. 

Figure 2.2: Sampling the target with constant pre-defined k-mer size k and a distance d between 
two consecutive k-mers. 
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2.3 Method 

SlopMap is fully implemented and optimized in C++ for efficiency. This is a 

command line application with all the input parameters specified on the command line. 

SlopMap is tunable via input parameters for k-mer size k, percentage of similarity t and 

distance between two consecutive k-mers d. It also supports flexible input and output file 

formats: FASTQ, FASTA, SFF and TXT. 

Input Files 

Target 

The target library file, also known as a “database”, is a FASTA formatted file that 

contains one or multiple records. Each record consists of two parts: a header and a 

sequence string. The header must contain a name, which is a unique identifier of the 

record. The sequence string is DNA sequence which specifies the target of interest. 

DNA Query Library Files 

The DNA query library files are data from the NGS machines. SlopMap can take 

either Roche 454 SFF or FASTQ formatted files, or Illumina paired- or single-end reads. 

SlopMap computes the similarity of each read in a query library file to record in a target 

library. 

Search procedure 

SlopMap employs a multi-k-mer search approach with single-base overlap (that can 

be increased) between two consecutive k-mers in order to quickly determine the 

similarity to the target record. The algorithm is simple and straightforward: 

(1) Compute a dictionary from the given target library.  

(2) For each query sequence (”read”) in the DNA query library: 
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 • Compute a set of consecutive k-mers.  

 • Calculate the read’s similarity to the set of target sequences. 

(3) Output summary statistics and files. 

Dictionary 

The first step is to build a dictionary indexed with k-mers by sampling the given 

target (Figure 2.2). The k-mers are short (usually 9-15 bases long) substrings 

representing the contiguous target. The target library sequences are sampled with the 

following pre-defined parameters: k-mer size and a distance representing the constant 

overlap between consecutive k-mers. These parameters remains unchanged throughout 

program execution. All k-mers are hashed and associated with the offset position in the 

target string and a target record id. By default SlopMap uses k-mer size of 15 bases. 

Google Dense Hash Map [2] that allows far fast data retrieval and memory efficiency is 

used as a data structure for the k-mer dictionary. 

K-mer matching 

Query strings are sequentially sampled, so each query string contained within a 

given DNA query library is handled individually. K-mer size and a distance between two 

consecutive k-mers remains the same for all reads in the query library. For each read 

taken from the query library, a dictionary search is performed and similarity between the 

read and the target is calculated as follows: 

S = number of shared bases
Min_length(query string, reference string)

, 0 ≤ S ≤1   (1) 

Where number shared bases is the total length of k-mers shared between the target 

and query string, Min length(query string, target string) is the minimum length, either of 

the query or target. Those reads that meet the pre-specified similarity threshold 
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(parameter “−t” in SlopMap, by default it is set to 0.75) are then saved in output files, 

others are ignored. The values of S range from 40, having no similar k-mers to the target, 

to 1, having all k-mers shared between the read and target. 

Output files  

The output files are: 

• A report file that contains all information about the reads, including similarity, 

positions of first and last match within the target, bases and quality scores. 

• One or two FASTQ formatted file(s), depending on whether the data are from 

single- or paired-end library. 

• Optionally, an SFF formatted file, which contains only those Roche 454 

sequences similar to the provided target. 

2.4 Validation 

To validate SlopMap we compared it to several alternative DNA mapping tools: 

Bowtie2, BWA, Blat, on two different query DNA libraries: 621,578 Roche 454 Esheria 

coli K12 W583 reads; and 3,875,453 Illumina Yeast Saccharomyces cerevisiae W303-

K6001 reads. For the target sets, we randomly chose ten genes with various lengths from 

both genomes, each of which has over 4000 genes: thrA, thiQ, cydD, ycgB, dhaR, alkA, 

yfgF, yphE, mscS, parC (E-coli, GenBank accession number: U00096.2); YNL095C, 

YNL094W, YNL093W, YNL092W, YNL091W, YNL090W, YNL089C, YNL088W, 

YNL087W, YNL085W (Yeast, GenBank accession number: AF458977.1). 

We estimate the number of reads found by SlopMap with various thresholds and k-

mers in order to: 

• Estimate the effect of threshold to the number of reads found by SlopMap. 
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• Suggest values of t and k for optimal read recovery. 

• Estimate the effect of various values of d (distance between two consequtive 

kmers) to the number of reads found by SlopMap against various threshold values 

allowing us to determine the range of optimal values for d. 

• Compare the number of reads found by SlopMap to the number of reads found by 

other tools. In particular, to answer the question: what are the threshold values 

where read sets found by other tools are still subsets of reads found by SlopMap. 

All tests were performed on a Linux server with Dual-Core AMD Opteron 8216 2.4 

GHz processors (32 processors total) and 1 TB of shared memory and a laptop with 

single Intel Core i3 processor (four cores) with 4GB of memory. 

2.5 Results and discussion 

We calculated the number of found reads using various threshold values and k-mer 

sizes and compared our results to existing read mappers. These results are presented in 

Figure 2.3, which shows the number of reads against various distances between two 

consecutive k-mers. Further comparisons are made to compare the overlap between 

recovered read sets. These results are presented as Venn diagrams in Figures 2.5 and 2.6. 

We also provided recommendation for optimal values of parameters k and d. 
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Figure 2.3: Number of reads found by SlopMap versus various percent identity threshold values t and 
different k-mer lengths k. At the left side of the plot there is large amount of reads found for k ≤ 9 and t ≤ 
0.2 showing that these parameter values may result in many false-positives. Larger values of k and t can be 
used to be more selective in read recruitment, or in situations where the reference is highly similar to the 
sequenced reads. Roche 454 E. coli K12 W583 DNA library (621,578 reads) was used as a query library for 
this test. 
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Figure 2.3 shows the number of reads found by SlopMap using different kmer sizes 

and threshold values. From this plot its easy to see that for kmer values k, of 7, 8, 9 along 

with threshold value less than 0.1 (10% of similarity), large amount of reads were found. 

These values of k should be used only in such situations where the reference sequence is 

very divergent from the sequenced sample. Low values of t and k result in high 

sensitivity at the expense of specificity and should be used carefully to avoid multiple 

false positive hits. 

Values of k within the range 10...15 can be used to generate more specific matches 

and are recommended for general usage. Higher values of k will result in less false 

positive mapping, SlopMap will not match k-mers with mismatches, and will fail match 

reads at higher values of k. This is especially true in situations where reads have errors or 

adapters, which will generate false k-mers and where there are real variants between the 

target and sequenced sample. 

Number of reads found by SlopMap using various threshold values and distances 

between two consecutive k-mers 

In order to examine how different values of parameter d (the distance between two 

consecutive k-mers in a read) impacts to the number of reads found by SlopMap and 

propose the optimal value for d, we provided a set of tests with k-mer size k = 11 and 

threshold values t = 0.1...1.0 (i.e. from 10% to 100% similarity). This is shown in Figure 

4.2. We find that in this data set, d has minimal impact on read recruitment. However we 

observe a higher recruitment rate for lower d, suggesting higher sensitivity. Using a small 

d results in slower performance however, so in cases where target and reference are 

highly divergent, a low d should be used, while a higher d can be used for more similar 
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sequences. With these considerations in mind, we have set the default value of d to 3, and 

allow the user to change it using the command-line parameter d = N. Our 

recommendations for the parameter d value to be no more than k-mer length. Otherwise 

there may not be sufficient coverage. The values for the d from 1 to 5 are optimal for k = 

11 bases, since they give number of reads significantly higher than other tools within t ≤ 

0.5 (t = 0.75 is set by default in SlopMap). 

Sensitivity test: comparison the number of reads reported by SlopMap and other 

tools 

Gaps occur when part of the query aligns to one part of the reference and another 

part aligns close to the first part but with a gap of one or more bases. Such gaps are 

usually well recognized by some widely used aligners. Another type of gap can occur at 

the end of a target sequence, when part of the query matches the target, resulting in an 

end gap. SlopMap can find such reads and thereby identify more similar sequences than 

some other alignment tools. In order to compare the sensitivity of SlopMap to a set of 

other mappers (BWA, Blat, Bowtie2), we conducted several tests using Roche 454 reads 

from E. coli mapped against ycgB gene sequence. We are interested what is the cut-off 

point when reads found by alignment tools are still subsets of reads found by SlopMap. 

We can roughly say that the set of reads reported by one application is a subset of reads 

reported by another application if there is more 95% overlap between these two sets. For 

two k-mer lengths (10 and 15 bases) and threshold values (0.1...1 with step of 0.1) we 

computed Venn diagrams that show overlap sets reported by SlopMap and other tools. 

From these diagrams we conclude that for threshold values below 0.3 (30% similarity) 

and for both k-mer sizes (10 and 15), the reads found by Blat is a subset of number of 
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reads found by SlopMap. Threshold values when reads reported by Bowtie 2 and BWA 

are still subsets of number of reads reported by SlopMap are 0.7 and 0.3 (70% and 30% 

similarity) for k-mer size 10 and 15 respectively. Results are shown in Figures 2.5 and 

2.6. 

Non-consecutive matches 

When we compute the similarity of reads we do not assume that k-mer matches are 

consecutive. Non-consecutive matching may occur in situations, which are biologically 

possible such as exon shuffling, inversion, etc. In Figure 2.7, the read and a target are 

shown along with k-mers shared between them. In this situation, k-mer 1, 2 and 3 match 

corresponding k-mers in a target but in different order (non-consecutive). The read can 

be still considered as similar to the target. SlopMap identifies and reports this read as 

being similar to the target, despite the rearrangement. 

Timing considerations 

Figure 2.8 displays the execution time required to complete each search. We 

compare execution times for various threshold values of SlopMap (other parameters were 

set to default) with other tools. 

SlopMap is faster then Bowtie2 and BWA, but slower than Blat, which is the fastest 

of the mappers we tested. However, Blat requires that the input be in FASTA format, and 

does not support writing output in FASTA or FASTQ format, making it necessary to 

perform additional steps, both before and after using the program. Post-mapping 

conversion work is also required for BWA and Bowtie2. Bowtie2 writes all sequences to 

the SAM file, and write unmapped or discordantly mapped reads to files using command 

line parameters to output mapped sequences in FASTQ file format.  
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Figure 2.4: Number of reads found by SlopMap against various threshold values and different 
distances between two consecutive kmers. Roche 454 E. coli K12 W583 DNA library (621,578 reads) 
mapped against a single bacterial gene ycgB(1583 bp) was used as a query library for this test. When 
threshold value t is 100%, SlopMap does not find any reads similar to the target sequence. This is 
expected because reads can contain base-call errors, homopolymers and other artefacts that introduce 
noise into sequences. 
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Figure 2.5: Number of reads reported by SlopMap and other tools depending on threshold values t and 
kmer sizes k = 10 bases. When t = 0.3 (the top-right figure), only 19 reads reported by Blat do not 
overlap with SlopMap, and those are also reported by BWA; reads reported by BWA and Bowtie2 are 
subsets of reads reported by SlopMap until t ≥ 0.7. These tests were conducted on Roche 454 E. coli 
K12 W583 DNA library used as a query set. 
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Figure 2.6: Number of reads reported by SlopMap and other tools depending on percent similarity 
threshold values t and k-mer size k = 15 bases. 

Figure 2.7: Non-consecutive k-mer matching is still when using a target and query where 
rearrangements may have occurred. SlopMap identifies and reports these matches. 
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Figure 2.8: Search duration: comparison of execution time between search tools. SlopMap is 
consistently fast across a range of threshold values (t), and perform somewhat faster than Bowtie2, and 
significantly faster than BWA while using the same amount of CPU resources. 
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Memory requirements 

SlopMap is fast and requires very little memory (2-200MB, depending on target 

size). The memory consumption of SlopMap during searching grows linearly with the 

number of sequences and also depends on the k-mer size defined by the user. For 

example, when the E. coli data set containing sequences with a mean length of 450 

characters was indexed on 15-mers, 50 kB of memory was utilized for every 20,000 

bases. 

2.6 Conclusion and future work 

SlopMap provides researchers with a high-throughput choice for searching large 

sets of reads against target sequences. The software presented is faster than some well-

known aligners, sensitive to low-similarity matches when desired, and flexible enough to 

allow similarity comparison for DNA (and potentially RNA and proteins). SlopMap is 

specifically designed for matching queries against large (more than 500,000 sequences) 

query sets. Three of SlopMaps beneficial attributes are its speed, flexibility and ease of 

use. Despite being fast and efficient mapper, we plan to further improve SlopMap by 

adding support for multicore execution and by exploring more space and time efficient 

methods for storing and looking up kmers. 

We believe that the biological research community will benefit from using SlopMap. 
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Chapter 3 

ANALYSIS OF HIGH-THROUGHPUT MICROBIAL AMPLICON SEQUENCE DATA 

USING MULTIPLE MARKERS 

Chapter 3 presents a meta-amplicon analysis algorithm developed for multi-marker 

analysis of 16S amplicon data. This allows researchers to better characterize microbial 

community composition using multiple genomic markers. The corresponding application, 

MetAmp is open source and available at http://izhbannikov.github.io/MetAmp. 

The manuscript titled “Analysis of High-Throughput Microbial Amplicon Sequence 

Data Using Multiple Markers” by Ilya Y. Zhbannikov, Janet E. Williams and James A. Foster 

is currently being prepared for publication. 

	
  

3.1 Abstract 

16S gene amplicon sequencing is widely used in microbial studies to infer 

community diversity. However, the drawback of this is reduced resolution down to 

genera or even family level, rather than the species or strain level, due to using PCR 

primers that are imperfect and unable to produce enough product, and sequence errors. 

We present a novel approach and corresponding application, MetAmp, to combine 

amplicon data from multiple genomic markers for clustering next generation sequences 

into Operational Taxonomic Units (OTUs) for microbial community analysis. This 

proposed approach calibrates the reads using data from known reference microbial 

genomes. This represents potential improvements on current amplicon clustering methods 

used to characterize bacterial community composition and structure. We tested the 

accuracy of our proposed algorithm using both simulated and real 16S datasets, and 

compared results to the best available tools, namely UPARSE, QIIME and Mothur. 
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Results suggest that MetAmp outperforms other tools and opens new possibilities for 

multi-marker data analysis of 16S empirical amplicon data. Meta-amplicon analyses 

works best with at least three markers, and is applicable to non-bacterial analyses and to 

non-16S markers. However, our application and testing have been limited to 16S analysis 

of microbial communities. 

Software, documentation and test datasets are available via the following link: 

http://izhbannikov.github.io/MetAmp  

Contact: ilyaz@uidaho.edu, foster@uidaho.edu, janetw@uidaho.edu 

 

3.2 Introduction 

It has become standard practice to characterize microbial community composition 

and structure with cultivation-independent, high-throughput sequencing of all microbial 

DNA in a sample. Techniques for analyzing large sequence datasets vary with the type of 

data and the questions under investigation. In general, the goal is either to approximate 

entire genomes or gene products, or to characterize phylogenetic diversity or ecological 

structure. Metagenomic sequencing and analysis addresses the first class of problems. 

The most common technique for answering the second class of problems is to sequence 

specific marker regions of the DNA, producing sequences known as amplicons (or 

fingerprints). Different markers have different, often unknown, biases and limitations. 

Thereby cluster differently [3]. We hypothesize that it would be worthwhile to be able to 

combine amplicon sequences from multiple marker regions, reducing the risk of choosing 

the “wrong” marker for a specific question. However, no method currently exists for 

combining amplicons from multiple markers, preparatory to downstream analysis. In this 
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paper, we present a new methodology, “Meta-Amplicon analysis”, and a program, 

MetAmp, to do just that. 

Ideal marker regions are highly conserved and vertically transmitted, so that that all 

microbes of interest are likely to have homologous sequences. However, ideal markers 

should also contain regions with sufficient variability to resolve relevant comparative 

phylogenetic or taxonomic questions. The most commonly used markers have been, and 

continue to be, so-called hypervariable regions of the 16S rRNA gene, a deeply 

conserved housekeeping gene with loops in the secondary structure that provide 

variability. Amplicons form the raw data for downstream bioinformatics analyses, such 

as rarefaction analysis, using such software as SEED [15], the R-package ‘vegan’ [8], or 

QIIME [13]. We focus on the analysis of 16S rRNA amplicon data, though our approach 

can be potentially useful for any amplicon data from any homologous region with 

sufficient variability. 

There are two current approaches to amplicon analysis of microbial communities: 

phylogenetic- and OTU-based. The phylogenetic approach uses marker sequences to 

identify taxonomies for each amplicon, using maximum likelihood estimation, most 

commonly with a Naive Bayes classifier, or by BLAST searches against existing 

microbial databases such as SILVA, RDB, or GenBank [4,5]. This has the advantage of 

characterizing the likely evolutionary relationships between populations in each 

community and, potentially, community functions [14]. But it relies on existing sequence 

data, which is biased by historical emphasis on populations that can be cultivated or that 

are relevant to human activities. These are serious limitations, since most populations are 

still unknown and unsequenced, and often highly diverged from known species. The 
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taxonomic resolution is also often at the genera/family level [6], which is insufficient for 

many important questions.  

The OTU approach clusters marker sequences by similarity and assigns all 

sequences that cluster together to a single operational taxonomic unit (OTU) [3, 7], after 

first cleaning the data by denoising and removing adapters/barcodes, contaminants, and 

chimeric sequences. The OTU approach is limited by the fact that amplicon sequence 

similarity is often not a good proxy for population similarity, and by potentially poor 

congruence between OTUs and taxonomies. OTU-clustering is highly dependent on the 

clustering algorithm chosen, the metric for sequence similarity and how well it 

recapitulates evolutionary relationships between populations, and the threshold that 

defines the operational taxonomic unit (usually 97% sequence identity). Despite these 

limitations, the OTU approach to amplicon analysis is very common in practice, largely 

because it can handle unknown and highly diverged populations. MetAmp is tailored to 

OTU analysis.  

It is important to choose the appropriate marker regions for amplicon analysis, 

whether phylogenetic- or OTU-based. Due to processes such as rate heterogeneity, 

different marker regions evolve at different rates relative to each other and between 

species. Moreover, amplicons from some markers may reflect phylogenetic differences in 

a sample only at the genus, and sometimes the family level [3]. Even perfectly designed 

primers can miss the majority of species within the sample [16]. Since some important 

phenotypes, such as virulence, may vary at the strain level, this is a serious limitation. 

Most studies use only a single marker region for amplicon based community 

analysis.  The best currently available software tools for amplicon OTU analysis, such as 
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UPARSE [18], CD-HIT [19], QIIME [13], Mothur [14], assume amplicon are from a 

single marker, and so cannot analyze data from multiple markers. Consequently, the 

choice of marker region compels downstream analysis to suffer from the disadvantages 

of that choice, which we have described above. 

We propose a novel amplicon analysis approach that uses known complete genes 

that include multiple markers to build a reference space in which it is possible to 

combine amplicons from different markers. Once one can combine amplicons from 

different markers into a common space, where they are all comparable, one can cluster 

sequences into OTUs, thereby combining the advantages of some markers in order to 

overcome the weakness in others. This, in turn, increases taxonomic resolution, which 

leads to better classifications and assignments. 

We call this approach “meta-amplicon analysis”, by analogy with metagenomic 

analysis. We implemented this approach in the MetAmp software package [23], which is 

freely available. The unique, primary contribution of MetAmp is its ability to combine 

multiple marker amplicons prior to clustering. MetAmp makes clustering possible, but it 

not itself a clustering tool. This paper describes the approach, presents data to validate its 

correctness and utility, and compares it to current alternative software applications for 

OTU-based amplicon analysis. 

3.3. Materials and methods 

Meta-amplicon analysis algorithm. The core of meta-amplicon analysis algorithm 

borrows techniques from image registration algorithms. Commonly, image registration is 

identification of known reference points (“registration marks”) in several images and 

mapping them onto known features in a reference image, transforming other pixels 
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accordingly [20]. In meta-amplicon analysis, marker sequences (in this case whole 16S 

sequences) play the role of registration marks, and amplicon sequences are pixels. The 

method comprises four consecutive stages. 

1. MetAmp builds a 2D reference topology of microbial populations (Figure 3.1(a), top 

plane) in which points correspond to known, full 16S gene sequences, and the distances 

between the points approximates the distances between the corresponding full 16S 

sequences regions (reference points: green on top plane). Later steps will use this 

topology as a “gold standard” onto which MetAmp will map similar amplicon-induced 

topologies for each marker sequence. To do this, MetAmp: 

a. Computes the pairwise distances of a set of known, full-length 16S gene sequences 

in a global alignment; and 

b. Maps the sequences onto a 2D plane (reference points, green on top plane) using 

Sammon Nonlinear Multi-Dimensional Scaling (SNMDS) [21]. 

2. MetAmp then builds a separate guided empirical topology for each marker sequence. 

These 2D topologies contain both anchor points (“registration marks” in the image 

processing literature) and the user’s empirical amplicon sequences, with distances in the 

plane approximating distances between the underlying sequences. To do this, for each 

marker, MetAmp: 

a. Extracts the marker sequences from the full 16S sequences used in the reference 

topology, to use as anchor points (Figure 3.1(a, b, c), hollow green circles). 

MetAmp extracts the marker sequences bioinformatically using same forward and 

reverse primers that define the marker regions. In essence, this is a digital PCR of 

marker regions from known full-length 16S genes, with perfect primer matching. 
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b. Adds the empirical amplicon sequences (Figure 3.1(b, c), filled blue circles), which 

the user acquired by from high throughput sequencing. Current sequencing 

technologies produce so many sequences that MetAmp currently performs a data 

reduction step, replacing the library of all reads with a smaller library of concensus 

sequences (details below). In this manuscript, and in the MetAmp documentation, 

“empirical sequences” refers to this reduced set of consensus sequences rather than 

to the set of all reads from high throughput sequencing.  

c. Builds a distance matrix from global pairwise alignment of both anchor and 

empirical sequences combined, using the same methodology as in building the 

reference topology above. 

d. Maps both anchor and empirical amplicon sequences onto a 2D plane in a distance-

approximating way using SNMDS. This guided empirical topology now contains 

user sequence data embedded into a topology with anchor points, which will guide 

the next step (Figure 3.1(c), smaller planes). 

3. MetAmp then maps each guided empirical plane, one for each marker, onto the reference 

plane. In this mapping, the anchor points map onto their corresponding reference points, 

and the empirical points map into the reference plane with the same convolution as in the 

anchor-to-reference mapping (Figure 3.1(b, c), arrows). Currently, the mapping is an 

affine transformation, similar to that used to map pixels in images with registration marks 

onto a reference image [20]. Empirical points that are mapped into the reference plane are 

called “normalized” empirical points. 

4. The resulting plane now contains reference sequences corresponding to known 16S genes 

and normalized empirical points corresponding to user amplicon sequences (Figure 3.1 
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(c)). The distances between the empirical points correspond to distances between the user 

amplicon sequences, using the best available (full length 16S) sequence data to correct for 

distortions caused by the choice of individual markers. The points in the resulting plane 

are therefore ready for clustering and downstream OTU analysis. 

Below we show each step in details. 
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Figure 3.1: Illustration of “meta-amplicon” analysis algorithm. (a) and (b) illustrate the first three 
steps of the proposed algorithm. In computing the reference topology we use full-length 16S reference 
sequences. Reference sequences are then pairwise aligned and placed on to the ‘reference’ 2D plane 
with multidimensional scaling. To build anchors for empirical reads, marker regions are extracted from 
corresponding reference 16S sequences and placed on to the plane with the same methodology used 
above. Next, we add empirical amplicon sequences (solid blue circles), aligned and scaled with the 
same methodology. Then reference sequences (hollow green circles) are mapped back to the whole 16S 
space (central plane), carrying empirical sequences  (solid blue circles). (c) The whole process 
described is repeated for each marker region. In the end, we cluster all points from the reference plane 
into final OTUs. 
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Step 1, Building reference and guided empirical topologies. Reference sequences 

come from a reference database (by default we use a dataset containing the 

ChimeraSlayer reference database in the Broad Microbiome Utilities [24], version 

microbiomeutil-r20110519. We use this dataset because it contains full forward and 

reverse-complemented 16S gene sequences and is free of duplicates. At the time of 

writing this dataset contains approximately 5100 reference 16S bacterial rRNA). We 

compute dissimilarities with global pairwise alignment via the following equation: D = 1 

- PID, where PID is the pairwise percent sequence identity provided by alignment 

software USEARCH v7, since it allows the fastest pairwise alignment in comparison to 

other similar tools. To align sequences, USEARCH employs techniques, similar to 

BLAST algorithm and uses banded global alignment in order to compute a percent 

sequence identity. A percent sequence identity is computed using the following 

parameters (default for USEARCH): Interior gap open = 10 nucleotides; End gap open = 

1; Interior gap extend = 1; End gap extend = 0.5. Hence, we have a distance R x R matrix 

(where R is the number of reference sequences, currently 5,181). To place sequences onto 

the plane, we use Sammon’s Non-linear Multidimensional Scaling (SNMDS), where each 

reference sequence represents so-called "reference" point (solid green circles in Figure 

3.1(a)). Unlike Principal Component Analysis which is commonly used in 

Multidimensional Scaling, Sammon’s mapping minimizes the differences between 

corresponding inter-point distances in the two spaces, that is it approximately conserves 

the distance between each pair of points, preserving the topology. 

Step 2, Adding empirical amplicon sequences. High-throughput sequencing 

produces a very large number of reads (an Illumina MiSeq library may contain billions of 
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reads), so it is necessary to reduce the number of reads before processing. Tools such 

AbundantOTU [9], USEARCH and CD-HIT allow "compression" of the original 

sequence library into a set of consensus sequences. By default, MetAmp uses USEARCH 

v7 with default parameters to replace the full set of sequencing reads with a much smaller 

set of consensus sequences. MetAmp places these consensus sequences onto the 

empirical plane along with anchor sequences (Figure 3.1(a), bottom, hollow blue circles). 

Mapping between reference and guided empirical topologies. This represents a key 

step of the meta-amplicon analysis algorithm, which allows "moving" empirical 

sequences to the reference 16S plane, using “anchor” sequences as a support, which in 

turn, clusters empirical amplicons together on a reference plane. Such normalized 

amplicons then clustered together into OTUs. In order to bring empirical sequences back 

the reference plane, we compute mapping between reference and anchor points and then 

apply computed mapping to each of empirical amplicon sequence. In the end, amplicon 

sequences from different marker regions (but obtained from the same species) form dense 

clusters on reference 16S plane. We use affine transformation between reference points 

and anchor points. In image registration, affine transformation is used when one needs to 

map pixels in images with registration marks onto a reference image, therefore we use it. 

However, we anticipate that some other transformations exist to be used for this purpose. 

Computing affine transformation between all reference and guide points introduces 

undesirable distortion; therefore, we perform triangulation of both reference and 

empirical planes, where reference and corresponding guide points are vertices (see Figure 

3.2).  
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Step 3, Mapping between reference and guided empirical topologies. This is the key 

step of the meta-amplicon analysis algorithm, which makes it possible to "move" 

empirical sequences to the reference 16S plane using “anchor” sequences as a support in 

order to make clustering into OTUs possible. In order to bring empirical sequences back 

the reference plane, we compute the mapping between reference and anchor points and 

then apply the same transformation to each of empirical amplicon sequence. In the end, 

amplicon sequences (reads) from different marker regions that derive from closely 

related populations form dense clusters on the reference plane. To compute this 

transformation efficiently, we first form a triangulation of both reference and empirical 

planes, where reference and corresponding guide points are vertices using the Delaunay 

algorithm [25]. We then apply affine transformations between regions bounded by 

triangles of reference points and anchor points (Figure 3.2).  
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Figure 3.2: An illustration of triangulation where both planes (reference, top plane and empirical, 
bottom plane) are spitted into triangles and affine transformations are computed between 
corresponding triangles. We call this a piece-wise mapping between reference and empirical plane. 
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Step 4, Clustering points. Each empirical point is an empirical amplicon sequence 

or a consensus sequence bioinformatically formed from several thousands of amplicons 

(data reduction). After normalization, these points form "clouds", which may or may not 

be close to reference points. The purpose of clustering is to detect these clouds, which 

then form the OTUs for downstream analysis. 

MetAmp clusters with DBSCAN [22]. Of course, users might prefer to use a 

different clustering method on the distance information in the normalized plane. 

DBSCAN automatically determines the optimal number of clusters for correctly chosen 

parameters. MetAmp supply two parameters to DBSCAN: Eps, which is a relative 

density and MinPts, which is the minimum number of points in a cluster that can be 

density-reachable. By default, MinPts = 1. MetAmp estimates Eps (Epsilon) as the first 

percentile of a pairwise distance between reference points, derived from the average 

density of points in a cluster. 

 Three types of clusters can be present on the reference plane: (1) clusters that 

contain both reference and empirical points (upper right hand corner of Figure 3.1(c)); 

(2) clusters that contain only empirical points (such as lower right hand corner of Figure 

3.1(c)); and  (3) clusters that contain only reference points (not shown). In the first case, 

circumscribed reference points are potential identifiers for the empirical reads in the 

cluster, since they came form known sequences. In the second case, the OTU represents a 

potentially novel population that can be analyzed with other tools. The third case has no 

relevance for the empirical data, other than to say that those known populations are not 

well represented. Note that some “cluster” may be isolated points, or contain very few 

points. In these cases, it is likely that the corresponding amplicons do not represent the 
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population well, since amplicons from other markers from the same population have 

clustered elsewhere. The most conservative strategy is to discard these clusters. 

Software. MetAmp is our implementation of meta-amplicon analysis of 16S 

sequence data. MetAmp is a ready-to-use set of scripts and packages, which requires 

Python 2.7, R (3.1 or better) and GCC (4.2 or better). MetAmp is available at: 

http://izhbannikov.github.io/MetAmp/ MetAmp is compatible with Illumina and Roche 

454 HTS libraries, though it is no limited to any particular sequencing technology. To 

run the program, identify sample and reference libraries, and execute the python script 

metamp.py with the appropriate (or default) options. For the majority of tasks most 

MetAmp parameters can be left to their defaults. Detailed documentation is available 

from the download site.  

Validation methodology. We validated the meta-amplicon approach as 

implemented in the MetAmp software, and quantified its accuracy relative to other tools. 

The accuracy of an algorithm in this context is the number of actual OTUs that the tool is 

able to recover with default parameters. Granted, one could optimize parameters for each 

tool, but this is a non-trivial task, and we set the defaults for MetAmp to work well in all 

but the most extreme cases. We tested accuracy on empirical and simulated amplicon 

sequences, as described below. We also determined the number of reference sequences 

that led to the best tradeoff between MetAmp performance and accuracy, using these 

simulation datasets. 

Test 1, accuracy on empirical data. We used Human Mock Community (HMC-

Mock) empirical data obtained from Human microbiome project (HMP). The HMC-Mock 

and sequencing protocols are described at HMPDACC (www.hmpdacc.org). We used 
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reads obtained with sequencing V13, V35, and V69 primers (Roche 454 GS FLX 

Titanium platform) and the following community types: Even, where all species have 

roughly equal concentration (SRR053818, SRR072220, SRR072239), and Staggered, 

where some species had significantly higher concentration that others (SRR072221, 

SRR072223, SRR072237). These are datasets of 21 known bacterial species that was 

established by the Human Microbiome Project as a benchmark [18] for sequencing. At 

the time of this publication, only Roche 454 sequence data were available. We estimated 

the number of OTUs with MetAmp, UPARSE, Mothur and QIIME. Ideally, the number 

of OTUs estimated should equal the (known) number of species. Table 3.1 describes 

these datasets in more detail. This approach was published with UPARSE [18]. 
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Test 2, accuracy on simulated sequence data. The empirical datasets of HMC data 

above were not sufficient for evaluating the ability of multiple markers to discover rare 

species. HMC has only 21 microbial populations, while typical empirical sample contain 

hundreds to thousands, with very different abundances. Therefore, we used simulated 

data to test the accuracy of MetAmp. The general strategy was to randomly select known 

full length 16S gene sequences from a high quality database (the Gold ChimeraSlayer 

dataset version microbiomeutil-r20110519 mentioned above. These sequences serve as 

known reference populations. Next, we extract the relevant marker regions from these 

known references to serve as ideal amplicon sequences for the known populations. 

However, actual reads from high throughput sequencers have errors, and the type and 

distribution of errors varies with the technology. We reproduce this effect by simulating 

variants of the ideal amplicons above with a bioinformatics tool that captures the 

appropriate sequence variation for Illumina paired-end reads. The number of reads for 

each population varied according to a geometric distribution, to approximate the rank 

abundance curves one would expect from a natural dataset [17]. This produces a large set 

of sequences that simulate reads from known populations that exhibit the type of 

variation and copy number one would expect had these known populations been sampled 

from nature and sequenced using these markers and this technology. 

Specifically, we randomly selected 100, 500 and 1000 full 16S sequences from the 

Gold ChimeraSlayer data set to serve as known microbial populations. We extracted 

sequences for variable regions V13, V35, and V69 from the full sequences to serve as 

anchor points (registration marks). For each of these anchor points, we generated up to 5 

million (see Table 3.4 for detail) artificial Illumina paired-end reads with lengths of 250 
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bp, using the sequence simulation tool ART [23] (see Supplementary Materials, 

Appendix A, for details), with copy numbers drawn from a geometric distribution with 

p=0.001. We shuffled the 10% most abundant anchor points (10, 50, and 100 anchor 

points) when determining abundances for the different variable regions, to simulate 

different markers having different resolution for different abundant species while leaving 

a common set of rare species. See Figure 3.3 for typical rank abundance curves for 

simulation data, and Table 5 from Supplementary Materials for species selected. 

To summarize, these simulation datasets represent thousands of Illumina amplicon 

reads that should form 100, 500, and 1000 OTUs with known identities. Using these 

simulation datasets in place of empirical reads, and the original full length sequences as 

target “known” populations, we determined the number of OTUs using MetAmp, 

UPARSE, QIIME, and Mothur. Table 7 shows the percentage of actual OTUs that each 

tool was able to recover. 

Test 3, optimizing number of reference sequences. Clearly, having more reference 

sequences should improve algorithm accuracy. More reference sequences provide the 

normalization process with more information, essentially shrinking the size of 

triangulated regions that must be transformed. However, too many reference sequences 

will add computational expense without improving results significantly. To quantify this 

tradeoff, we compare the accuracy of MetAmp as a function of the number of reference 

sequences. The error induced by MetAmp and the choice of markers is the distance from 

normalized reads to known, correct positions., which is a function of the number of 

reference sequences and hence the number of triangles subject to affine transformations.  

We defined the accuracy of MetAmp on these datasets as 
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Where (xi
t, yi

t) is the 2D coordinate of the full length 16S sequence on the reference plane 

(the “true” position) and (xi
e, yi

e) is the 2D coordinate of the corresponding “empirical” 

sequence after normalization, and PDT is the set of pairwise distance between points on 

reference plane. Thus, Accuracy is the median Euclidean distance from normalized points 

to their true location, normalized to the median distances between reference points. 

For test datasets, we built five test sets by drawing sequences at random from the Gold 

dataset,with 110, 200, 600, 1100 and 5100 total full-length 16S sequences. We divided 

these sets into reference and empirical sequences with a ratio of approximately 10 

reference sequences to 1 empirical sequence, with one set of empirical sequences for 

each marker (V13, V35, and V69). See Table 3 (“Accuracy results”) from Supplementary 

Materials for details of these data sets. These datasets were large enough to provide 

useful data, but small enough to be processed efficiently. See Figure 3.4 for results, 

which are discussed below. 

  

Accuracy =
median (xe

i − xt
i )2 + (ye

i − yt
i )2( )

median(PDT )
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3.4 Results 

The number of OTUs recovered by MetAmp is close to the actual number of 

species in the community, and compares favorably to other tools, using empirical 

data. Table 3.2 shows the ratio of average number of OTUs to actual number of 

populations detected for MetAmp, UPARSE, Mothur, and QIIME using single and 

multiple 16S rRNA markers on human microbiome mock communities, with equal 

(Even) and varying population sizes (Staggered), using 97% sequence similarity and 

average neighbor agglomerative clustering. A perfect score would be 1.0, with larger 

values ”recognizing” populations that aren’t there, and smaller values failing to recognize 

some that are. Only MetAmp is capable of using multiple markers, so Table 3.2 shows 

results for MetAmp with three markers, and with three different single markers, 

compared with the other tools using single markers. These results for the other tools are 

comparable with those reported in the literature [18]. 

 We refer to the ratio of recovered OTUs to the actual number of OTUs as the 

recovery rate, which is ideally 1. For the Even community, the recovery rate for is 1.01 

when using three markers (V13, V35 and V69), and an average of 0.93 with any single 

marker. The best results with other tools were produced with UPARSE (1.62). Mothur 

and QIIME performed worse, with recovery rates of 9.6 and 42.9.  

For the Staggered community, the recovery rate for MetAmp was 1.0 with three 

markers, and an average of 0.85 individual markers. Other tools produced higher 

recovery rates: 1.39 (UPARSE), 10.18 (Mothur), and 43.3 (QIIME).  
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Community type  MetAmp 1  MetAmp 2  UPARSE 2  Mothur 2  QIIME 2  

Even  1.01  0.93  1.62  9.6  42.9  

Staggered  1.0  0.85  1.39  10.18  43.3  

1 Combined markers: V13, V35, V69; 2 Average from each of single marker: V13, V35, V69 

Marker regions Actual No. of species in the 

community 

MetAmp UPARSE QIIME Mothur 

% Of species detected 

V13 + V35 + V69 100 100 - - - 

V13 - 57 44 49 

V35 - 45 47 52 

V69 - 38 33 31 

V13 + V35 + V69 500 78 - - - 

V13 - 35 34 31 

V35 - 33 37 36 

V69 - 31 28 24 

V13 + V35 + V69 1000 52 - - - 

V13 - 15 12 13 

V35 - 11 11 8 

V69 - 9 7 4 

 

Table 3.2: Ratio of average number of OTUs to actual number of populations detected for 
MetAmp, UPARSE, Mothur, and QIIME using single and multiple 16S rRNA markers on 
human microbiome mock communities. 

Table 3.3: Percentage of detected species for different applications and datasets of 100, 500 and 
1000 species. Rank abundances were simulated using geometric distribution. This experiment shows 
how tested software tools are able to detect rare species. Parameters for each tool are provided in 
Supplementary Materials. 
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MetAmp finds significantly more OTUs from simulation data sets than the 

other tools. Table 3.3 shows the average percentage of discovered OTUs using MetAmp, 

UPARSE, QIIME and Mothur. We ran MetAmp with three markers and other tools with a 

single marker since none of them is capable to use multiple markers.  

For data set of 100 OTUs, MetAmp detects 84% of OTUs and outperforms other 

applications, which use only one marker. Those tools were able to detect no more than 

57% (UPARSE) of OTUs. This shows the importance of using multiple markers in 

microbial studies, even for low-complexity communities. QIIME detected 47% of OTUs 

and Mothur detected 40%. For data set of 500 OTUs, MetAmp recovers approximately 

65%, more than UPARSE (35%), QIIME (37%), and Mothur (36%). For large data sets 

of 1000 OTUs, MetAmp recovers only approximately 32, more than UPARSE (15%), 

QIIME (12%), and Mothur (13%). 

MetAmp accuracy greatly depends on the number of reference sequences. 

Figure 3.4 plots the relative error for different numbers of reference sequences (raw data 

are in Table 6 from Supplementary Materials). This plot shows the accuracy for 10, 100, 

500 and 1000 reference points for three markers (V13, V35 and V69) and 100 pseudo-

empirical sequences across all tests. The number of pseudo-empirical sequences (100) 

was the same for all tests. Increasing the number of reference points increases precision. 

At least 500 reference sequences should be used for meta-amplicon analysis in general, 

since that is where error starts to reach an asymptote in Figure 3.4. 

Computational efficiency significantly depends on the sizes of the reference 

database and the empirical library. Using the ChimeraSlayer dataset of 5,181 reference 

bacterial species (forward and reverse complemented whole 16S sequences) and Human 
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Mock Community data, MetAmp used approximately 7 hours (clock time) on an Intel i5 

MacBookPro laptop with 8GB of RAM. This is the maximum time we have observed. 

There are two potential bottlenecks that reduce algorithm's performance: (1) computing 

pairwise alignments for sequence similarity; and (2) calculating the mapping between 

reference and anchor points. The total asymptotic complexity of the meta-amplicon 

algorithm is 𝑂((𝑁! + 𝑁!)!), where NR is the number of reference sequences and NA is the 

number of empirical amplicon sequences. Detailed execution time for different reference 

sets are presented in Table 3.4. 
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Figure 3.4: Relative difference between 'empirical' and 'true' positions. Here E_V13, E_V35, E_V69 – are 
‘errors’, i.e. median difference between ‘empirical’ and ‘true’ positions divided by the median distance 
between points of the ‘true’ plane. E_Tot – is the average of EV13, EV35 and EV69. 
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MetAmp runs slower than other applications. UPARSE was able to complete tests 

in approximately 15 minutes, on average. QIIME ran for approximately 40 minutes and 

Mothur approximately 1.5 hours. Detailed execution times for each of the data set are 

given in Table 3.4.  

Analysis of the execution time and memory footprint for different data sets 

(empirical and simulated) indicates that execution time greatly depends on the size of 

reference dataset (Table 3.4). For a small reference dataset of 21 sequences, its execution 

time varies from 33 seconds to 1 minute and 33 seconds. For a middle-size reference data 

set of 1,500 sequences, its execution time varies between 36 min to 1h 6 min. For large 

data set of 5,100 species it runs for approximately 7 hours. 

3.5 Discussion 

This meta-amplicon analysis method makes it possible to use multiple markers for 

clustering 16S amplicon data into OTUs. However, as with any new bioinformatics 

technique, using MetAmp requires attention to some technical details, and the resulting 

analyses depend on specific research questions. We discuss potential limitations and 

pitfalls in this section. 

The relationship between OTUs and taxonomic units is not a simple one. Ideally, 

one would compare the ability of different OTU clustering techniques to recover 

underlying taxonomic units by comparing their results on datasets with known microbial 

community composition. The Human Microbiome Consortium mock community datasets 

are standards in human microbiome research. However, they represent very small 

communities, so that they are not stringent tests. It would be preferable to test MetAmp 
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and other common OTU analysis software on much larger, more complex synthetic 

communities. 

All pipelines that cluster sequences require the user to fix many parameters. But 

published comparisons often use default parameters, which may explain the poor 

showing of QIIME and Mothur in Table 3.3 and in published comparisons using the 

HMC mock communities. In particular, the number of OTUs per detectable species, and 

in general any estimate of population diversity from OTUs, depends on the chosen 

sequence similarity threshold chosen, the quality of the data, and the specific clustering 

algorithm. Depending on the research question, one might choose a similarity threshold 

other than the commonly used 97% for species level discrimination, with relaxed 

thresholds leading to fewer OTUs and more strict ones to more OTUs. Sequence errors 

and PCR artifacts can also significantly affect results. Distance based clustering 

algorithms are infeasible with modern datasets, since they require unreasonably large 

distance matrixes. But heuristic clustering algorithms may fail to scale to very large 

datasets, or may produce clustering artifacts that are difficult to interpret.  

Regardless of the OTU analysis algorithms chosen, there are still remain question 

to be answered regarding the discovery of rare species and species not perfectly targeted 

by the selected primers. It is not clear how many markers one would need to address 

these problems, let alone what they would be. Our tests with simulation data show the 

potential of multi-marker sequencing when one variable region is not a good estimate of 

species richness. These data also indicate that a minimum of three markers, and therefore 

at least three guided amplicon topologies, can double the rate at which the algorithm 

recovers OTUs. One can improve multiple marker cluster calling with a simple majority 
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vote mechanism, though the current version of MetAmp does not implement this. 

Suppose two normalized empirical amplicon sequences from different markers that 

originated from the same 16S rRNA are close to each other on the reference plane, but a 

third normalized empirical sequence from the same 16S gene is placed far away from the 

reference (probably due to sequencing error or evolutionary divergence). We can still use 

these two and discard the outlier. Essentially, two sequences that cluster reinforce the 

evidence that they belong together, and isolated sequences lack such reinforcement. So, 

isolated points in the normalized plane are likely to indicate errors, rather than divergent 

populations.  

There are problems with discarding isolated reads, too. Ideally, one would have the 

same number of reads for each marker region, and the number of reads in an OTU would 

indicate the diversity of the underlying population. However, discarding reads effectively 

reduces the number of reads in the remaining OTUs. This may reduce diversity estimates. 

However, keeping the isolated points would inaccurately inflate diversity estimates by 

representing a single underlying population twice. 

Any OTU based analysis of 16S amplicon data has inherent limitations. For 

example, estimates of microbial community structure and diversity from OTU data has 

limited application to estimating community functions. This is a prerogative of 

metagenomic analysis [1]. PiCrust estimates community functions from OTU analysis 

using reference genomes and statistical ancestral-state phylogenetic. But for majority of 

microbial species whole reference genomes are still unsequenced and not. It is also 

notoriously difficult to estimate population abundance, as opposed to diversity, using 16S 

data, since 16S genes vary significantly between different bacterial populations and the 
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number of reads is sensitive to PCR bias. In short, using multiple markers will not be a 

benefit if OTU analysis itself is inappropriate.  

It is not always appropriate to use multiple markers, even when OTU analysis is 

appropriate. Single-marker amplicon sequencing sometimes allows relatively quick and 

inexpensive identification to genus or even down to species level, especially for small or 

simple communities. On the other hand, different markers have different amplification 

rates even with perfectly designed PCR primers. So, it is possible to miss even highly 

abundant species, or to have biased sequence sampling, in any PCR based approach. 

Unfortunately, it is difficult to empirically explore these potential problems, or to 

validate MetAmp extensively, since there are no existing datasets from single studies 

with amplicons from multiple markers. We are currently gathering such a dataset, using 

four markers on human microbiome data.  

Of course, sequencing the entire 16S gene will provide more information than any 

set of markers. This is currently beyond the reach of high throughput sequencing, 

however. Moreover, sequencing the entire genomes of each population would provide 

even more information. 

Since sequence normalization depends on anchor points, it is important to use an 

appropriate set of reference sequences. If the set of reference sequences is not 

representative of one’s actual data, there is a risk that normalized amplicon sequences are 

placed quite away from their “true” positions, producing what we call “distortion”. This 

can reduce the accuracy of OTU clustering, and lead to a situation when a normalized 

empirical amplicon sequence is assigned to the wrong reference sequence. On the other 

hand, it requires more computational resources than necessary if many reference 
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sequences are only distantly related to the empirical data.  For this study, we randomly 

selected reference sequences from all the full length 16S gene sequences that are 

currently available. But we have also prepared four targeted reference sets: soil, human, 

marine microbial, and all of these sets. These datasets may provide more accurate 

clustering or use fewer computational resources for very specific studies.  

Combining data from different studies is non-trivial and risky activity that is 

inappropriate for MetAmp analyses. Two different types of data can potentially be 

combined: (1) sequence data from different genes, such as 16S, 18S, and ITS; (2) data 

from different sequencing technologies, such as Roche and Illumina. Our algorithm 

cannot work on data from different domains. As an example, 16S and 18S are not only 

different genes but also different molecules. In such cases, analysis should be performed 

separately for 16S and 18S data. Combining data from different technologies is only 

useful when the technologies have similar error rates. Technologies with higher error 

rates introduce bias that will distort OTU determination. However, it may be possible to 

combine amplicon libraries from different studies for meta-amplicon analysis, if they are 

from similar technologies. 

 There are several algorithmic details in MetAmp that deserve further exploration. 

For example, choosing the correct number of dimensions in multi-dimensional scaling 

remains an open question. MetAmp uses two dimensions. In our tests (not presented 

here), the results from 3D and 2D mappings were very similar. So, we did not test higher 

than 4D mappings. Also, there may be better image transformation methods than affine 

transformation of triangulated points. Even simple triangulation itself presents 

difficulties, such as how to triangulate points on the “outside”, the convex hull of all 
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reference points. We chose the current methodology because it is widely used in the 

image processing community, and it is relatively efficient. Also, there may be better 

ways to perform data reduction of raw reads than clustering into consensus sequences. 

Also, there are more sophisticated methods for computing sequence similarity than 

simple Hamming distances. Finally, several points in the algorithm, such as piecewise 

affine transformation of triangles, may benefit from parallelization. Each of these issues 

provides fodder for future research, and may affect the tradeoff between algorithm 

efficiency and effectiveness. 

It remains unclear what is the best clustering algorithm to use in meta-amplicon 

analysis. In general, clustering is a non-trivial problem. The number of clusters is not 

pre-defined, as it needs to be for some supervised clustering methods such as k-means. 

MetAmp uses the non-supervised clustering algorithm DBSCAN, which requires an 

epsilon parameter, which can be difficult to determine. MetAmp estimates epsilon with a 

new heuristic (not described here), since there is no known exact algorithm. Detailed 

evaluation of clustering methods in order to obtain the most valuable method for meta-

amplicon analysis is the topic of future work. 

In this manuscript we have described meta-amplicon analysis, which makes it 

possible for the first time to compare clusters of amplicons from multiple markers. This 

approach builds a common reference space from known sequences of the gene or genome 

in which the markers reside, then maps individual amplicons of (potentially unknown) 

species onto it. Meta-amplicon analysis makes it possible to extend current analysis 

techniques from single to multiple markers, taking advantage of the strengths of different 
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markers in different contexts. We also present validation studies for our implementation 

of meta-amplicon analysis, MetAmp, which is freely available. 
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Chapter 4 

METAMP: COMBINING AMPLICON DATA FROM MULTIPLE MARKERS FOR 

OTU ANALYSIS 

Chapter 4 presents an application MetAmp that was developed for multi-marker 

analysis of 16S amplicon data. This allows researchers to better characterize microbial 

community composition using multiple genomic markers. MetAmp is open source and 

available at http://izhbannikov.github.io/MetAmp. 

This MetAmp application note was published in the Oxford Journal of 

Bioinformatics. The published manuscript is reprinted here. License information and 

reprinting permission is shown in the Appendix and citation information is shown below.  

Ilya Y. Zhbannikov, James A. Foster, “MetAmp: combining amplicon data from multiple 

markers for OTU analysis”, Bioinformatics 2015; doi: 10.1093/bioinformatics/btv049 

	
  

4.1 Abstract 

Motivation 

We present a novel method and corresponding application, MetAmp, to combine 

amplicon data from multiple genomic markers into Operational Taxonomic Units (OTUs) for 

microbial community analysis, calibrating the markers using data from known microbial 

genomes. When amplicons for multiple markers such as the 16S rRNA gene hypervariable 

regions are available, MetAmp improves the accuracy of OTU-based methods for 

characterizing bacterial composition and community structure. MetAmp works best with at 

least three markers, and is applicable to non-bacterial analyses and to non-16S markers. Our 

application and testing have been limited to 16S analysis of microbial communities.  

Results 
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We clustered standard test sequences derived from the Human Microbiome Mock 

Community (HMMC) test sets and compared MetAmp and other tools with respect to their 

ability to recover Operational Taxonomic Units (OTUs) for these benchmark bacterial 

communities. MetAmp compared favorably to QIIME, UPARSE and Mothur using amplicons 

from one, two, and three markers.  

Availability 

MetAmp is available at http://izhbannikov.github.io/MetAmp  

Contact: ilyaz@uidaho.edu, foster@uidaho.edu  

Supplementary information 

 Available at Bioinformatics online.  

4.2 Introduction 

High-throughput sequencing technologies allow researchers to characterize microbial 

community composition and structure without first cultivating the microbes. There are two 

current techniques for analyzing microbial communities: metagenomic and genomic marker 

sequencing. Metagenomic analysis fragments and sequences all DNA in a sample, and then 

optionally assembles and maps genes into annotated genomes. One often uses metagenomic 

analysis to characterize metabolic potential. 

Marker sequencing amplifies and sequences conserved but variable genomic regions, 

usually hypervariable regions of the essential 16S rRNA gene. One then clusters these 

sequences, known as amplicons, into Operational Taxonomic Units (OTUs). This approach 

can handle unknown and highly diverged populations, provided that the OTUs correspond 

with sufficient accuracy to relevant ecological units. Metagenomic and amplicon analysis 

therefore answer different research questions. MetAmp targets only amplicon analysis.  
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Most marker-based studies use amplicons of just one marker, and it is difficult to know 

which marker to select a priori. Amplicons from different markers in a given sample, or even 

from a single species, can cluster differently, giving very different pictures of the underlying 

microbial community. Different markers may also lead to very different phylogenies and 

taxonomies, which can differ substantially from those deduced from known genomes. 

Unfortunately, current bioinformatics techniques assume a single marker. This is true of the 

best currently available software for amplicon OTU analysis, such as UPARSE [1], QIIME 

[2], and Mothur [4]. We introduce the “Meta-amplicon analysis” technique, MetAmp, which 

makes it possible to clusters and analyze amplicons from multiple markers.  

4.3 Methods and algorithms 

MetAmp borrows from image registration algorithms in image processing. These 

identify known reference points, called “registration marks”, in several images and map them 

onto known features in a reference image, transforming other pixels accordingly [5]. In 

MetAmp, marker sequences play the role of registration marks, and amplicon sequences that 

of pixels. MetAmp works as follows:  

1. MetAmp builds a 2D reference topology of microbial populations (Figure 4.1(a), top 

plane) in which points correspond to known, full 16S gene sequences and the 

distances between the points approximates the distances between the corresponding 

full 16S sequences region (reference points: green on top plane). Later steps will use 

this topology as a “gold standard” onto which MetAmp will map similar amplicon-

induced topologies for each marker. To do this, MetAmp:  

a. Computes the pairwise distances of a set of known, full-length 16S gene 

sequences in a global alignment; and   
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b. Maps the sequences onto a 2D plane (reference points, green on top plane) 

using Sammon Nonlinear Multi-Dimensional Scaling (SNMDS) [3].   

2. MetAmp then builds a separate guided empirical topology for each marker sequence. 

These 2D topologies contain both anchor points (“registration marks” in the image 

processing literature) and the user’s empirical amplicon sequences, with distances in 

the plane approximating distances between the underlying sequences. To do this, for 

each marker, MetAmp:   

a. Extracts the marker sequences from the full 16S sequences used in the 

reference topology, to use as anchor points (Figure 4.1(a, b, c), hollow green 

circles). MetAmp extracts the marker sequences  bioinformatically using same 

forward and reverse primers that define the marker regions. In essence, this is a 

digital PCR of marker regions from known full length 16S genes, with perfect 

primer matching.  

b. Adds the empirical amplicon sequences (Figure 4.1(b, c), filled blue circles), 

which the user acquired by from high throughput sequencing.  

c. Builds a distance matrix from global pairwise alignment of both anchor and 

empirical sequences combined, using the same methodology as in building the 

reference topology above.   

d. Maps both anchor and empirical amplicon sequences onto a 2D plane in a 

distance-approximating way using SNMDS. This guided empirical topology 

now contains user sequence data embedded into a topology with anchor points, 

which will guide the next step (Figure 4.1(c), smaller planes).   
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3. MetAmp then maps each guided empirical plane, one for each marker, onto the 

reference plane. In this mapping, the anchor points map onto their corresponding 

reference points, and the empirical points map into the reference plane with the same 

convolution as in the anchor-to- reference mapping (Figure 4.1(b,c), arrows). 

Currently, the mapping is an affine transformation, similar to that used to map pixels 

in images with registration marks onto a reference image.   

4. The resulting plane contains reference sequences corresponding to known 16S genes 

and empirical points corresponding to user amplicon sequences (Figure 4.1 (c)). The 

distances between the empirical points correspond to distances between the user 

amplicon sequences, using the best available (full length 16S) sequence data to correct 

for distortions caused by the choice of individual markers. The points in the resulting 

plane are therefore ready for clustering and downstream OTU analysis.   

4.4 Validation 

We validated MetAmp by performing OTU analysis on two amplicon datasets from the 

Human Microbiome Mock Community www.hmpdacc.org/HMMC, namely the ”Even” 

(SRR072220, SRR072239), and the ”Staggered” communities (SRR072221, SRR072223, 

SRR072237). These two datasets include amplicons from three marker regions (V13, V35, 

and V69) from Roche 454 GS FLX Titanium sequencing of two communities with 22 known 

species. Illumina paired end sequences were not available for the HMMC at the time of this 

writing. 

These experiments test the ability of standard OTU analysis pipeline to recover known 

OTUs, both with and without multiple marker data that has been pre-processed with MetAmp. 

We computed the average number of OTUs formed by clustering these data using MetAmp, 
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UPARSE, Mothur, and QIIME and report the ratio of this average to the known number of 

populations (22). Table 1 reports typical results (see Supplementary Data for full results). A 

perfect score would be 1.0, with larger values ”recognizing” populations that aren’t there, and 

smaller values failing to recognize some that are. We tested each tool on V13, V35, V69 

individually, and additionally tested MetAmp on pairs and triplets of these markers. MetAmp 

ran for about 8 hours using the whole reference data set (abut 5.1k genes) on Intel Core i5 

Macbook Pro laptop.  
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Figure 4.1: Illustration of the MetAmp algorithm for combining amplicons from multiple marker sequences. 
See the user manual and supplementary materials for more on the analysis workflow, algorithmic 
complexity, parameters, and examples. 

Table 4.1: Ratio of average number of OTUs to actual number of populations detected for MetAmp, 
UPARSE, Mothur, and QIIME using single and multiple 16S rRNA markers on human microbiome mock 
communities, using 97% sequence similarity.  

Community type  MetAmp 1  MetAmp 2  UPARSE 2  Mothur 2  QIIME 2  

Even  1.06  0.93  1.62  9.6  42.9  

Staggered  1.0  0.85  1.39  10.18  43.3  

1 Combined markers: V13, V35, V69; 2 Average from each of single marker: V13, V35, V69  
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CONCLUSIONS AND FUTURE DIRECTIONS 

This dissertation describes three projects developing effective preprocessing 

algorithms and software for preparing HTS data for subsequent bioinformatic analysis. 

In Chapter 1, I presented SeqyClean, a HTS data preprocessing software tool for data 

denoising, which is one of the most important stages in bioinformatic pipelines. 

SeqyClean is a modular pipeline, which filters most sequencing noise, according to 

evaluation tests and user feedback. SeqyClean is simple to use, and is one of the most-

comprehensive HTS data preprocessing applications. 

There are several concerns with SeqyClean that should be addressed when designing future 

studies. First, the quality of vector and contaminant filtering directly depends on how well the 

chosen reference vector and contaminant genomes recapitulate those presented in a library of 

interest. It is possible to miss a majority of vector sequences due to an incorrectly chosen 

reference; therefore using right reference genomes is critical. Second, potential users should 

be familiar with command-line interface. This can be alleviated with a convenient GUI 

(Graphical User Interface), which is a topic for future work. SeqyClean is actively 

maintained and I am considering adding new options, such as dust score and chimera filtering. 

Chapter 2 presents a preprocessing read-recruiter tool, SlopMap. The outcome of 

SlopMap is a set of reads similar to the provided target (reference). This set of reads can 

be in two common data formats: FASTQ for paired- and single-end sequences and SFF 

for Roche 454 libraries. As is often the case with bioinformatics tools, the quality of the 

output is sensitive to the parameters that the user chooses. For example, the reference 

genomes for SlopMap must be chosen correctly, to be relevant to the research question.  

 



	
  113 

Due to its simplicity, SlopMap performs (for correctly chosen parameters) at least as 

quickly and accurately as most existing general-purpose alignment tools. However, 

several types of optimization are still possible. These may include using more efficient 

dictionaries and hash-tables; loop unrolling; removing data dependencies; or even low-

level programming. It will also be useful to add multi-processing system support, lower 

memory usage, better detection of similar sequences, user-friendlier interface. SlopMap is 

actively maintained and the second version is under development.  

The last two chapters (Chapter 3 and 4) demonstrate a novel method for analyzing 

microbial communities with multi-marker 16S data, the meta-Amplicon analysis 

algorithm, as implemented in the MetAmp tool. The primary contribution of this tool is 

that it makes it possible to use multiple markers for OTU-based 16S data analysis. 

However, there are many concerns regarding our meta-amplicon algorithm that should be 

addressed in the future. 

The first potential problem is that the algorithm can still be confounded by rate 

heterogeneity when different variable regions evolve with different rates. Such cases 

should be tracked and reported, so that they can be addressed by for future work. 

Another potential concern is computational efficiency. In particular, the time required 

for pairwise sequence alignment (all against all) could be extremely large for reference 

sets of more than 5,000 OTUs. Therefore, it may be possible to improve performance by 

applying more efficient pairwise alignment tools. This is the most significant bottleneck 

of our algorithm and must be addressed in the future. 

MetAmp currently uses two-dimensional ordination. But it is unclear how many 

dimensions best avoids the distortion introduced by the ordination method itself. The 
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nonmetric multidimensional scaling (NMDS) [37] can potentially be applied but this still 

requires significant exploratory work. 

Finally, MetAmp currently clusters with DBSCAN, which requires knowledge of 

parameters such as Epsilon (related to density of points) and MinPts (a minimum number 

of points in a cluster). In this work, I proposed a heuristic method for estimating values 

for these parameters, but it is not guaranteed to be optimal. Finding optimal values of 

these parameters still remains an open question. 

Sequencing costs less time and money than ever before. Consequently, researchers 

have significantly more data and analysis options than before. Developing efficient 

preprocessing tools for analyzing sequence data helps us answer important biological 

questions. I hope that this thesis makes progress toward that end. 
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APPENDICES 

Appendix A: Application parameters and commands used in validation 
	
  

MetAmp 
 
Three markers (V13, V35, V69): 
	
  
python metamp.py -r data/gold21/gold21.fasta -r1 data/gold21/gold21_V13V31.fasta -l1 
data/even/SRR072220_V13V31_relabeled.fastq -r2 data/gold21/gold21_V35V53.fasta -l2 
data/even/SRR072220_V35V53_relabeled.fastq -r3 data/gold21/gold21_V69V96.fasta -l3 
data/even/SRR072239_V69V96_relabeled.fastq -o testV13V35V69 

 
Single marker (V13): 
 
python metamp.py -r data/gold21/gold21.fasta -r1 data/gold21/gold21_V13V31.fasta -l1 
data/even/SRR072220_V13V31_relabeled.fastq -o testV13 

	
  
Single marker (V35): 
 
python metamp.py -r data/gold21/gold21.fasta -r1 data/gold21/gold21_V35V53.fasta -l1 
data/even/SRR072220_V35V53_relabeled.fastq -o testV35 

	
  
Single marker (V69): 
 
python metamp.py -r data/gold21/gold21.fasta -r1 data/gold21/gold21_V69V96.fasta -l1 
data/even/SRR072239_V69V96_relabeled.fastq -o testV69 

 
UPARSE 

	
  
(markers V13, V35, V69 were clustered separately): 
	
  
# Denoising: 
usearch7 -fastq_filter raw_lib.fastq -fastaout denoisedlib -
fastq_truncqual 15 -fastq_trunclen 250 
# Dereplication: 
usearch7 -derep_fulllength denoised_lib –output drep_lib -sizeout 
# Pre-clustering: 
usearch7 -cluster_smallmem drep_lib –centroids preclust_lib -sizeout -id 
0.99 -maxdiffs 1 
# Sorting (remove singletons): 
usearch7 –sortbysize preclust_lib -output sort_lib -minsize 2 
# Clustering: 
usearch7 -cluster_otus sort_lib –otus cluster_lib -minsize 2 
# Filtering chimeric sequences: 
usearch7 -uchime_ref cluster_lib –db gold.fa -strand plus –nonchimeras 
nochimeric_lib 
# Final otus: 
python python_scripts/fasta_number.py nochimeric_lib OTU_ > finalotus 
# Assign reads to OTUS: 
usearch7 -usearch_global denoised_lib –db final_otus -strand plus -id 
0.97 –uc maptable	
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Mothur 
 
We analyzed 454 reads following the procedure described at 
http://www.mothur.org/wiki/Schloss_SOP	
  	
  
	
  
sffinfo(sff=reads.sff, flow=T) 
trim.flows(flow=reads.flow, oligos=oligos.txt, pdiffs=2, 
bdiffs=1,processors=4) 
shhh.flows(file=reads.flow.files, processors=4) 
trim.seqs(fasta=reads.v35.shhh.fasta, name=reads.v35.shhh.names, 
oligos=oligos.txt, pdiffs=2, bdiffs=1, maxhomop=8, minlength=200, 
flip=T, processors=4) 
unique.seqs(fasta=reads.v35.shhh.trim.fasta, 
name=reads.v35.shhh.trim.names) 
align.seqs(fasta=reads.v35.shhh.trim.unique.fasta, 
reference=silva.bacteria.fasta, processors=4) 
screen.seqs(fasta=reads.v35.shhh.trim.unique.align, 
name=reads.v35.shhh.trim.unique.names, group=reads.v35.shhh.groups, 
end=27659, optimize=start, criteria=95, processors=4) 
filter.seqs(fasta=reads.v35.shhh.trim.unique.good.align, vertical=T, 
trump=., processors=4) 
unique.seqs(fasta=reads.v35.shhh.trim.unique.good.filter.fasta, 
name=reads.v35.shhh.trim.unique.good.names) 
pre.cluster(fasta=reads.v35.shhh.trim.unique.good.filter.unique.fasta, 
name=reads.v35.shhh.trim.unique.good.filter.names, 
group=reads.v35.shhh.good.groups, diffs=2) 
chimera.uchime(fasta=reads.v35.shhh.trim.unique.good.filter.unique.precl
uster.fasta, 
name=reads.v35.shhh.trim.unique.good.filter.unique.precluster.names, 
group=reads.v35.shhh.good.groups, processors=4) 
remove.seqs(accnos=reads.v35.shhh.trim.unique.good.filter.unique.preclus
ter.uchime.accnos, 
fasta=reads.v35.shhh.trim.unique.good.filter.unique.precluster.fasta, 
name=reads.v35.shhh.trim.unique.good.filter.unique.precluster.names, 
group=reads.v35.shhh.good.groups) 
system(cp 
reads.v35.shhh.trim.unique.good.filter.unique.precluster.pick.names 
final.names) 
system(cp 
reads.v35.shhh.trim.unique.good.filter.unique.precluster.pick.fasta 
final.fasta) 
dist.seqs(fasta=final.fasta, cutoff=0.15, processors=4) 
cluster(column=final.dist, name=final.names) 
get.oturep(column=final.dist, name=final.names, fasta=final.fasta) 
quit() 

	
  
QIIME 

I used the methodology described in http://qiime.org/tutorials/tutorial.html “454 
Overview Tutorial: de novo OTU picking and diversity analyses using 454 data”. 

 
ART (for simulation of artificial Illumina reads) 

 
./art_illumina -amp -sam -i ../metamp_data/gold100_V13.fasta -l 50 

-c 10000 -o  ../metamp_data/amplicon_pair_dat 
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Appendix B: Complexity of the meta-amplicon algorithm 

	
  
I use big-O notation, which is asymptotic and considers worst case of time. 
 

1. Pairwise alignment of reference sequences: 𝑂(𝑁!!), where 𝑁! represents total 
number of reference species. 

 
2. Pairwise alignment of marker sequences & empirical amplicon reads: 𝑂((𝑁! +

𝑁!)!), where 𝑁! is total number of empirical amplicon reads. 
 

3. Triangulation: 𝑂 𝑁! = 𝑂(𝑁!), where 𝑁! represents total number of triangles, 
𝑁! = 𝑁! − 2. 

 
4. Affine transformation: 𝑂 𝑁! = 𝑂(𝑁!), (for simplicity we say that it takes 

constant time), where 𝑁! = 𝑁! − 2 is a number of triangles. 
 

5. DBSCAN algorithm complexity:  𝑂 𝑁!log  (𝑁!) , where 𝑁! represents total 
number of clustering points: 𝑁! = 𝑁! + 𝑁!. 

6. Total asymptotic complexity will be: 𝑂((𝑁! + 𝑁!)!) 
	
  
	
  
	
  

 

 

 

 

 


