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Abstract 

Availability of real-time location sharing devices that use global navigation satellite system (GNSS) 

positioning paired with radio frequency (RF) transmission (GNSS-RF) and wearable devices 

equipped with inertial measurement unit (IMU) and other sensors provide opportunities to improve 

occupational safety in forestry using new techniques and methodologies based on human activity 

recognition. Forestry is among the most hazardous professions in the United States. In particular, 

logging and wildland firefighting occur in remote, off-grid environments that often lack traditional 

cellular communications infrastructure and involve frequent interactions among ground workers, 

heavy equipment, and dynamic terrain- and weather-related hazards. GNSS-RF location sharing, 

geofencing, mesh networking, and wearable-based human activity recognition modeling can increase 

situational awareness (SA) among these workers. The overall goals of this dissertation are to assess 

the factors affecting the performance and accuracy of a variety of location sharing networks and to 

demonstrate the feasibility of using wearable sensors to quantify forestry work activities. The work 

consists of four chapters. In the first, I develop the concept of GNSS-RF mobile geofences and model 

the intersections of mobile and stationary geofences in order to characterize the factors affecting the 

timing of intersection alerts. This field study provides the basis for evaluating the feasibility of using 

real-time safe work areas and incident avoidance alert systems for person-to-person and machine-to-

machine interactions in dynamic forestry environments. The second chapter evaluates the effects of 

forest stand characteristics, topography, and line-of-sight (LOS) obstructions on radio signal 

propagation, positional accuracy, and geofence alert timing using a network of GNSS-RF 

transponders. The third chapter assesses the overall performance of smartphone-based GNSS-RF 

mesh networks and develops Dirichlet regression models to predict network connectivity using lidar 

and satellite remote sensing data. In the final chapter, I present the first use of wearable sensors to 

develop human activity recognition models that quantify occupational work in forestry using machine 

learning. Collectively, this research provides the basis for using real-time GNSS-RF based location 

sharing, geofencing, and wearable-based human activity recognition systems to improve SA and 

inform smart alerts to reduce fatal and near-fatal incidents among natural resource professionals.
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Chapter 1: Introduction 

1.1 Logging and Wildland Firefighter Safety 

Farming, fishing, and forestry occupations are among the most hazardous occupations in the 

United States, with fatal work injury rates ranging from 20.9 to 27.0 cases per 100,000 full-time 

equivalent workers between 2010 and 2020 (U.S. Bureau of Labor Statistics 2021). With between 

68.9 and 135.9 fatal occupational injuries per 100,000 full-time equivalent workers between 2010 and 

2020, logging is particularly dangerous. As a result, logging is consistently ranked as one of the most 

dangerous occupations in the United States, with the highest fatal work injury rate from 2012 to 2016 

and in 2018 and the second highest fatal work injury rate in 2010, 2011, 2017, 2019, and 2020 

(Figure 1.1). Fosbroke et al. (1997) performed an in-depth analysis of national fatality data from the 

National Institute for Occupational Safety and Health (NIOSH) National Traumatic Occupational 

Fatalities (NTOF) surveillance system (Fosbroke et al. 1997). They calculated the lifetime risks for 

the most hazardous occupations in the United States and found logging to have the highest risk of 

fatal injury (Fosbroke et al. 1997). Some dangers associated with timber harvesting stem from the 

hazards posed by adverse weather and uneven terrain (Sygnatur 1998), but many injuries result from 

being struck by objects such as trees, limbs, or machines as well as exertion (Lefort et al. 2003). 

While the increasing mechanization of logging has contributed to a decrease in injury rates (Axelsson 

1998; Bell 2002; Bonauto et al. 2019), ground crew members working alongside equipment, hand 

fallers manually felling trees with chainsaws, and choker setters working on cable logging operations 

remain at high risk (Shaffer and Milburn 1999; Lefort et al. 2003; Lagerstrom et al. 2017). In 

particular, logging in the Inland Northwest often occurs on steep slopes and necessitates the use of 

cable systems (Keefe et al. 2014a), which creates numerous high-risk safety situations such as manual 

felling, the potential for rolling logs, and the close proximity of ground crews and heavy equipment. 

Many cable logging accidents are the result of low visibility between yarder operators and the ground 

crew (Keefe and Eitel 2013). 
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Figure 1.1. Fatal work injury rates for civilian occupations with some of the highest rates of fatal injuries from 2010 to 2020. 

 

Wildland firefighting is also a high-risk occupation, with 480 fatalities between 1990 and 

2016 (Risk Management Committee 2017). From 2001 to 2012, the leading causes of death among 

wildland firefighters were vehicle- and aviation-related incidents as well as medical events, such as 

strokes and heart attacks (Butler et al. 2017). Fire entrapments are another frequent cause of fatalities 

among firefighters (Butler et al. 2017; Risk Management Committee 2017). Heart attacks, vehicle and 

aircraft accidents, and entrapments represented 79% of the 170 wildland firefighter deaths between 

2007 and 2016 (Risk Management Committee 2017). Efforts have been made to increase safety and 

reduce injuries and fatalities among firefighters (Risk Management Committee 2017) and most 

recently, the 2019 John D. Dingell, Jr. Conservation, Management, and Recreation Act required 
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implementation of a system to monitor the locations of all Federal type 1 wildland fire resources in 

the United States to improve safety (Murkowski 2019). Both logging and wildland firefighting 

involve frequent interactions among ground workers, heavy equipment, and dynamic terrain- and 

weather-related hazards. Additionally, this work occurs in remote, off-grid environments that often 

lack traditional cellular communications infrastructure. Thus, the use of real-time positional 

information as well as wearable-based activity recognition modeling have the potential to mitigate 

hazards by enhancing communication, safety, and situational awareness (SA) on active timber sales 

and in wildland firefighting. 

 

1.2 Real-time Positioning for Situational Awareness 

Advances in location- and data-sharing technologies such as real-time positioning systems, 

geofencing, activity recognition, and mesh networking have a range of potential applications in 

natural resources (Keefe et al. 2019a). The Global Positioning System (GPS) is a radio navigation 

system that became fully functional in 1993 (Mai 2015). GPS consists of 24 satellites which were 

launched by the Department of Defense and are configured such that at least four satellites are always 

visible at any point on Earth (Johnson and Barton 2004). Global navigation satellite system (GNSS) 

positioning is a more general term that encompasses all global satellite-based positioning systems 

such as GPS, GLONASS, Galileo, and BeiDou. Real-time GNSS tracking has become an integral part 

of various industries, such as precision agriculture (Stafford 2000; Zhang et al. 2002; Liaghat and 

Balasundram 2010), livestock management (Kawamura et al. 2005; Spink et al. 2013; Fogarty et al. 

2018), and transportation (Mintsis et al. 2004; Higuera de Frutos and Castro 2014; Van Brummelen et 

al. 2018). In natural resources, previous applications of GNSS technology have largely focused on 

wildlife (Moen et al. 1996; Ryan et al. 2004; Lewis et al. 2007; Tomkiewicz et al. 2010; Brown et al. 

2012; Quaglietta et al. 2012; Wall et al. 2014; Zeller et al. 2014; Kays et al. 2015), cattle grazing 

(Turner et al. 2000; Swain et al. 2008; Handcock et al. 2009), and a range of forest management 

applications, including locating forest inventory plots (Evans et al. 1992; Bilodeau et al. 1993), 

delineating harvest unit boundaries (Bilodeau et al. 1993), locating (Bilodeau et al. 1993) and 

planning (Cavalli and Grigolato 2010) forest roads, tracking harvesting equipment and log trucks 

(Veal et al. 2001; Devlin and McDonnell 2009; Spinelli et al. 2015), assessing site disturbance of 

harvesting machines (McDonald et al. 2002), calculating productivity from time-study data 

(McDonald and Fulton 2005; Gallo et al. 2013; Strandgard and Mitchell 2015), and quantifying 

production efficiency (Becker et al. 2017). 
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While traditional GNSS receivers allow users to see their own positions, GNSS-RF devices 

link GNSS positional information with radio frequency (RF) transmission of coordinates to enable 

real-time positioning among individuals and equipment in remote areas (Grayson et al. 2016; Becker 

et al. 2017; Wempe and Keefe 2017). GNSS-RF transponders include recreational or public safety 

devices, military-grade units designed for defense applications, and smartphone-based solutions that 

enable voice or text communication in areas lacking cellular service. Recently, consumer-grade 

GNSS-RF systems have been promoted as a possible solution to monitor the current safety status and 

location of individuals relative to workplace hazards in order to improve SA on logging operations 

(Keefe et al. 2014b; Grayson et al. 2016; Wempe and Keefe 2017; Newman et al. 2018; Wempe et al. 

2019). Many newer GNSS-RF units form mesh networks, in which each device can relay data to 

other nodes in the network (Marina and Das 2001; Tseng et al. 2002). This enables communication 

among users who do not have a direct line-of-sight (LOS) connection (Tseng et al. 2002), which may 

offer more robust network connections in rugged, vegetated terrain. Before real-time positioning 

systems are implemented on active logging operations, in wildland firefighting, and for other 

applications in natural resources, the accuracy of GNSS-RF transmitters must be evaluated in order to 

determine appropriate and inappropriate uses for the technology. 

The expansion of GNSS services has facilitated the development of geofencing, in which 

virtual perimeters are used to mark geographic zones (Reclus 2013). Mobile objects are tracked in 

real-time as they move around the zone and the geofence can detect proximity of these mobile objects 

to the virtual perimeter (Reclus 2013). While geofences have been used for agricultural (Anderson et 

al. 2004; Butler et al. 2006; Luxhøj 2015), wildlife (Gill et al. 2006; Licht et al. 2010; Monteiro et al. 

2010; Wall et al. 2014; Sheppard et al. 2015; Weise et al. 2019), construction (Carbonari et al. 2011; 

Song and Eldin 2012), transportation (Reclus and Drouard 2009; Oliveira et al. 2013), and marketing 

(Greenwald et al. 2011) applications, they have only been implemented in forestry to a very limited 

extent (Grayson et al. 2016; Daniel et al. 2017; Wempe and Keefe 2017). There are a variety of 

situations on active logging operations in which it may be appropriate to deploy geofences around 

people, vehicles, equipment, or other objects in motion, in addition to stationary objects or areas. For 

example, mobile geofences could define safe working areas around manual fallers, log loaders and 

processors, and the skyline carriages on cable harvesting operations. Stationary geofences could mark 

harvest unit boundaries, streamside management zones, and hazardous terrain features. When other 

ground workers or equipment operators carrying GNSS-enabled personal location devices (PLDs) 

come into contact with these zones, alerts could be triggered. Thus, the use of both mobile and 

stationary geofences could ultimately improve safety by increasing general SA among workers on 

harvest units. 
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1.3 Wearable-based Human Activity Recognition 

In addition to real-time positioning information available from GNSS-RF systems and 

geofences, data from wearable sensors in smartphones and smartwatches may also provide 

opportunities for quantifying occupational tasks in forestry (Keefe et al. 2019b) to ultimately improve 

health and safety as well as precision forestry. The high-resolution data collected by these sensors can 

be used for activity recognition modeling, in which the device automatically detects different human 

physical activities (Chen et al. 2012). While purpose-built sensors exist, inertial measurement units 

(IMUs) have become smaller, more accurate, and less expensive in recent years, and they have been 

widely integrated into common wearable devices, such as smartphones and smartwatches (Chen and 

Shen 2017). Inertial sensors have been used to develop a variety of human activity recognition 

models for everyday activities, recreation, and fitness applications (Bao and Intille 2004; Mathie et al. 

2004; Ermes et al. 2008; Wu et al. 2012; Mitchell et al. 2013; Stöggl et al. 2014; Micucci et al. 2017), 

but very little activity recognition based on wearable sensors has focused on workplace activities 

(Ward et al. 2006; Stiefmeier et al. 2008; Joshua and Varghese 2011; Akhavian and Behzadan 2016; 

Valero et al. 2016). Utilizing wearable sensors to develop occupational activity recognition models in 

forestry represents an initial step toward quantifying work activities on logging operations with much 

higher frequency and resolution than has been previously accomplished. These model predictions 

could be leveraged to increase situational awareness by informing loggers and equipment operators of 

their own and their coworkers’ job activity status in near real-time. Wearable-based human work 

activity recognition in forestry is a novel approach that could supplement GNSS positional 

information to further improve communication and safety on logging operations. Future pairing of 

activity recognition model predictions, personal health metrics, and real-time location sharing could 

foster the development of smart alerts in the context of incident prevention, notification, or response. 

 

1.4 Dissertation Objectives 

The overall goal of my research is to evaluate the factors that affect the positioning and 

communication quality of GNSS-RF devices and to characterize the ability of wearable sensors to 

predict work activities on active logging operations. In order to determine how real-time positioning, 

geofencing, mesh networking, and wearable technology could be implemented to improve safety on 

logging operations and in wildland firefighting, this dissertation addresses four main research 

objectives: 1) develop the concept of GNSS-RF mobile geofences and model the intersections of 

mobile and stationary geofences as mixtures of bivariate normal error distributions; 2) evaluate the 
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effects of forest stand characteristics, topography, and other LOS obstructions on the radio signal 

propagation quality, positional accuracy, and time-to-signal accuracy of geofence crossings for a 

network of GNSS-RF transponders; 3) characterize and predict the connectivity of smartphone-based 

GNSS-RF mesh networks using lidar- and satellite-derived terrain and vegetation metrics; and 4) 

create smartwatch-based human activity recognition models for rigging crew workers on cable 

logging operations to support and inform the optimal use of wearable devices that quantify 

occupational work activities in forestry. 

By addressing these four objectives, this research provides insight into opportunities for the 

use of location sharing networks and wearable-based human activity recognition for occupational 

safety applications in forestry. In related research not included in the dissertation (Keefe et al. 2019b), 

I also conducted analysis to develop the first human activity recognition models for hand fallers using 

smartphone IMU sensors. Ultimately, GNSS-RF communication, mobile and stationary geofences, 

mesh networking, and human activity recognition are important advances that comprise a real-time 

location- and data-sharing system that functions off the grid, increasing communication and SA in 

remote, forested environments to improve safety. While these studies are focused on logging and 

wildland firefighting, there are many opportunities to use similar real-time positioning and human 

activity recognition techniques in a variety of applications in natural resources, including emergency 

response, defense, wildlife ecology and management, transportation, and recreation. 
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2.1 Abstract 

Logging is one of the most hazardous occupations in the United States. Real-time positioning 

that uses global navigation satellite system (GNSS) technology paired with radio frequency 

transmission (GNSS-RF) has the potential to reduce fatal and non-fatal accidents on logging 

operations through the use of geofences that define safe work areas. Until recently, most geofences 

have been static boundaries. The aim of this study was to evaluate factors affecting mobile geofence 

accuracy in order to determine whether virtual safety zones around moving ground workers or 

equipment are a viable option for improving situational awareness on active timber sales. We 

evaluated the effects of walking pace, transmission interval, geofence radius, and intersection angle 

on geofence alert delay using a replicated field experiment. Simulation was then used to validate field 

results and calculate the proportion of GNSS error bearings resulting in early alerts. The interaction of 

geofence radius and intersection angle affected safety geofence alert delay in the field experiment. 

The most inaccurate alerts were negative, representing early warning. The magnitude of this effect 

was largest at the greatest intersection angles. Simulation analysis supported these field results and 

also showed that larger GNSS error corresponded to greater variability in alert delay. Increasing 

intersection angle resulted in a larger proportion of directional GNSS error that triggered incorrect, 

early warnings. Because the accuracy of geofence alerts varied greatly depending on GNSS error and 

angle of approach, geofencing for occupational safety is most appropriate for general situational 

awareness unless real-time correction methods to improve accuracy or higher quality GNSS-RF 

transponders are used. 

 

2.2 Introduction 

Logging involves frequent interactions among ground workers, heavy equipment, and 

dynamic terrain- and weather-related hazards, leading to many high-risk safety situations. As a result, 
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logging is consistently ranked as one of the most hazardous occupations in the United States [1]. 

Fosbroke et al. analyzed national fatality data from the National Institute for Occupational Safety and 

Health (NIOSH) National Traumatic Occupational Fatalities (NTOF) surveillance system for the 

years 1990 and 1991 and found logging to have the highest lifetime risk of fatal injury [2]. Logging 

also has high rates of fatal and non-fatal injuries internationally [3,4]. The increasing mechanization 

of logging has been shown to reduce accident frequency, primarily by protecting workers in enclosed 

cabs from falling trees [5,6]. However, fatal injuries remain common, despite mechanization and 

stricter safety standards imposed by the U.S. Occupational Safety and Health Administration (OSHA) 

[7,8]. According to the U.S. Bureau of Labor Statistics, logging had the highest fatal work injury rate 

of civilian occupations in 2015 [9]. Direct contacts with trees and logs are responsible for a large 

portion of fatal injuries to loggers [1]. In particular, cable logging leads to many accidents resulting 

from manual falling with chainsaws, rolling logs, and close proximity of ground crews and heavy 

equipment. Low visibility between yarder operators and the ground crew contributes to many cable 

logging accidents [10]. 

Global navigation satellite system (GNSS) technology is used widely in positioning, 

navigation and timing (PNT). Utilizing real-time GNSS positioning information has the potential to 

mitigate hazards by enhancing communication and situational awareness on active timber sales. 

However, canopy cover in forested environments reduces GNSS accuracy, which has hindered 

widespread adoption of real-time positioning in forestry [11]. Sources of error in GNSS 

measurements include the number and arrangement of GNSS satellites as well as signal obstruction 

by forest canopy, topography, and buildings [12]. Of the three commonly recognized classes of GNSS 

receivers (survey-, mapping-, and recreation-grade), recreation-grade receivers are the least 

expensive, but also tend to provide the least accurate GNSS positional information [13]. We chose to 

work with a recreation-grade receiver because of the low cost and potential for widespread adoption. 

Previous studies have reported on the horizontal positional accuracy of stationary recreation-grade 

GNSS units. Using six recreation-grade GNSS units, Wing determined that the average error of the 

most accurate receiver was 2 m or less in open conditions, 3 m or less in young forest, and 9 m or less 

in closed canopy [14]. In a similar study, Wing calculated average errors of 2.5 m, 5.5 m, and 3.8 m 

in open, young, and mature stands, respectively [15]. Andersen et al. reported root mean squared error 

(RMSE) values of 3–7 m in a range of stand conditions in Alaska [16]. Bettinger and Fei calculated 

mean RMSE of 11.9 m and 6.6 m in young and mature loblolly pine stands, respectively, and 7.9 m in 

mature oak-hickory forest [13]. 
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The expansion of GNSS services has led to the development of geofencing, which consists of 

delineating a geographic zone with a virtual perimeter [17]. This boundary can be a fixed radius 

around a designated point of interest or a polygon whose corners are defined by the user [18]. As 

tracked mobile objects move across the geofence, alarms may be signaled [18]. This system has great 

potential for monitoring the movement of people, equipment, vehicles and other mobile assets [19]. 

Currently, geofencing is used in fields such as transportation and logistics [19], fleet management 

[20], and mobile marketing and social networking [21]. Geofencing services have also been proposed 

for use in mobile tourism, through which visitors may receive personalized notifications based on 

their location within defined areas [22]. Song and Eldin proposed using geofencing to monitor heavy 

equipment and construction events in real-time on building construction and worksite operations [23]. 

Pestana et al. found that geofences can support airport operations by improving safety and efficiency 

[24] and Wawrzyniak and Hyla evaluated the use of geofencing technology to assist navigation of 

inland waterways [25]. Finally, in the defense and security sector, some governments have analyzed 

the potential for using geofences as tools to prevent terrorist attacks involving hazardous material 

transport [19]. 

In natural resources, geofence alerts have been suggested as a way to monitor fishing activity 

near exclusive economic zones (EEZ) [26] and as an indicator of marine protection areas [27]. Licht 

et al. described the use of geofences in real-time animal tracking [28] and Sheppard et al. proposed 

the use of geofencing to reduce bird mortalities at wind farms [29]. Wall et al. developed software for 

a real-time wildlife monitoring system that utilizes multiple movement algorithms [30]. In 

agriculture, Butler et al. developed a dynamic virtual fence algorithm as a fenceless method for 

herding cows [31] and Anderson et al. used a patented method called Directional Virtual Fencing to 

contain cattle within a moving virtual paddock [32]. Geofence techniques are also being considered to 

minimize potential collisions among Unmanned Aircraft Systems used in precision agriculture [33]. 

Other industries have investigated the use of real-time positioning and geofences for safety 

applications. Carbonari et al. developed a safety system for construction using ultra-wideband 

tracking and virtual fencing to warn workers of hazardous areas [34]. Information derived from 

GNSS units has been considered as a tool for improving operational monitoring and time studies in 

forest operations [35,36]. Combined global navigation satellite system-radio frequency transmission 

(GNSS-RF) systems integrate GNSS with radio transmission of location coordinates to facilitate 

position sharing among individuals and equipment working in the woods [37,38]. The use of multi 

transmitter GNSS-RF systems has been proposed for logging safety as well as for other applications 

in forest operations [37–39]. 
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There are many situations on active logging operations, in wildland firefighting, 

transportation, recreation, and bioenergy fields in which it may be appropriate to deploy geofences 

around people, vehicles, equipment, animals, or other objects in motion, rather than around stationary 

objects or areas. For many of these safety applications in natural resources, the situational awareness 

of workers or recreationists could be improved if geofences were used in a mobile rather than 

stationary context. This is especially true in logging and wildland firefighting, two occupations that 

involve numerous interactions among ground workers, heavy equipment and dynamic terrain- and 

weather-related hazards. For example, mobile geofences could define safe working areas around 

manual fallers, log loaders and processors on ground-based logging operations, as well as around 

skyline carriages when using cable systems. When other ground workers or equipment operators 

wearing GNSS- or radio frequency identification (RFID)-enabled personal location devices (PLDs) 

pass into hazard zones delineated by geofences, alarms could be triggered so that equipment operators 

are aware of their presence. Mobile geofences might also be used to define early warning perimeters 

around log trucks to indicate their location driving on active haul roads or around vehicles carrying 

hazardous materials. Few studies have documented the accuracy of geofence alerts concerning their 

use in logging applications. Grayson et al. performed a replicated field experiment to determine how 

speed, intersection angle, and distance between the tracked object and GNSS receiver affect fixed 

location geofence accuracy using speeds corresponding to log trucks and skidders [38]. 

Until recently, geofences have primarily been used as static boundaries. A few exceptions 

include Guo et al., who developed a model for dynamic geofences centered on moving vehicles for 

use in accident prevention [40], as well as the algorithms described in Butler et al. and Anderson et al. 

[31,32]. There also is limited data on the effects of speed and transmission interval on mobile GNSS 

accuracy in forestry. Veal et al. measured the accuracy of tracking forest machines using GPS and 

found that equipment speed did not affect position accuracy [41]. However, the difference among 

equipment speeds evaluated was relatively small [41]. Grayson et al. found larger error associated 

with geofence crossing delays at slower speeds [38]. Piedallu and Gégout found that recording 

interval had a small effect on GPS accuracy and observed improved accuracy when moving from a 1-

s to 5-s recording interval [42]. They observed smaller improvements in accuracy moving from 5-s to 

10-s to 15-s recording intervals and this effect was mainly noticeable in closed canopy rather than in 

the open [42]. However, other studies have found either increases in location time [43], larger 

positional errors [44], or lower fix success rates [45] associated with longer intervals between 

recordings. 
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In this paper, we expand on the concept of mobile geofences based on GNSS-RF technology 

for use in forestry as moving, circular safety zones around people and heavy equipment on active 

logging operations, a concept illustrated in Figure 2.1. We considered both traditional proximity 

alerts, as well as the overlap among multiple circular geofences of varying radii. To do this, a 

replicated experiment on the University of Idaho Experimental Forest was conducted to test the null 

hypothesis that walking pace, transmission interval, geofence size (radius), and the angle at which a 

geofence intersects a stationary point do not affect geofence alert delay. Our focus was primarily on 

the development of mobile safety geofences for manual fallers on logging operations due to the high 

number of fatal accidents that continue to occur during hand falling of timber. In order to provide a 

general method for analysis of mobile GNSS points in motion and associated geofences, simulation 

was used to describe the properties of circular geofences of varying sizes as they pass near one 

another or overlap, and the associated safety warning signals. We assumed GNSS error arises from a 

bivariate normal probability density. Our objective in doing so was to determine whether geofences 

and geofence alerts associated with recreation-grade GNSS-RF systems are suitable for occupational 

safety uses in remote, natural resource environments. 

 

Figure 2.1. Illustration of the potential use of global navigation satellite system (GNSS) technology paired with radio 

frequency transmission (GNSS-RF) on a timber sale. GNSS-RF personal location devices (PLDs) receive positional 

information from GNSS satellites and send that information to nearby units using radio frequency transmission. In this 

figure, geofences with radii of approximately two tree lengths surround the manual fallers, delineating virtual perimeters 

associated with occupational hazards. Audible or sensory (e.g., vibration) alerts are triggered when other PLDs cross into the 

hazard areas, which move with individual workers. 

 



20 

 

2.3 Materials and Methods 

Two Garmin Alpha 100 handheld GNSS-RF units (Garmin, Olathe, Kansas, USA) were used 

with seven T5 transponders serving as PLDs to collect position measurements. T5 PLDs receive 

GNSS coordinates and relay them to handheld devices via radio frequency at user-defined intervals 

ranging from 2.5 to 120 s. The Garmin Alpha 100 units plot and record the positions of the PLDs, as 

well as their own positions at these same time intervals. 

The experiment was carried out in Stand 358 of the East Hatter Creek unit of the University 

of Idaho Experimental Forest. Stand 358 has been managed using the seed tree regeneration method 

and was treated (harvested) in the year 2000. There were approximately 15–20 seed trees per hectare 

at 50-cm or greater diameter at breast height (DBH) in the residual overstory and 800 trees per 

hectare at 10-cm DBH in the regenerating cohort. The canopy was open and the terrain was gently 

rolling. Within the stand, a manual faller carrying a saw walked repeatedly along a fixed 300-m route 

with a T5 PLD recording the path, as shown in Figure 2.2. 

 

Figure 2.2. Illustration showing field experiment setup. The manual faller carried a T5 transponder (PLD) and a chainsaw 

along a 300-m route. Alpha 100 units recorded the GNSS data and were located at the start and end of the route. The six 

stationary PLDs located perpendicular to the route are shown. This figure shows the manual faller surrounded by mobile 

geofences of three radii, illustrating three possible intersection angles. 

The route was oriented north-south in order to minimize variation in the longitudinal 

coordinates associated with unit resolution. Six T5 PLDs were placed 1 m above the ground on 

wooden stakes perpendicular to the designated route. PLD 1 was located in the middle of the route 

150 m from the start point. Moving due east from PLD 1, PLDs 2–6 were placed in 30-m increments. 

Two Alpha 100 handheld units mounted on wooden stakes 1 m above the ground recorded the PLD 

data during the experiment. One Alpha 100 was located at the start point and the second was at the 

end point. The experiment was an incomplete randomized block design. The manual faller walked 
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along the route at three different paces as dictated by a digital metronome (30 bpm, 45 bpm, and 60 

bpm), in combination with three different PLD transmission intervals (2.5 s, 5 s, and 10 s). The 

experiment was conducted over the course of three days, with each day representing one block. Each 

of the nine pace and transmission interval combinations appeared once per block and treatments were 

assigned at random. The manual faller was surrounded by seven different geofence radii (30, 45, 60, 

75, 90, 105, and 120 m). These seven geofence radii combined with the six PLD locations described 

above resulted in 23 unique combinations of geofence radii and intersection angles, after excluding 

factor-level combinations that were not realized (Table 2.1). Intersection angle is the difference in 

azimuth formed between the vector heading of the walking path and the vector connecting the moving 

faller and stationary PLD at the time of intersection. Figure 2.2 shows three radius-angle 

combinations and illustrates how intersection angle is defined. 

Table 2.1. Table showing the seven different mobile geofence radii and their intersections with the six different PLDs. The 

resulting intersection angles are shown. 

PLD Radius (m) Angle (Degrees) 

1 30 0 

2 30 90 

1 45 0 

2 45 42 

1 60 0 

2 60 30 

3 60 90 

1 75 0 

2 75 24 

3 75 53 

1 90 0 

2 90 19 

3 90 42 

4 90 90 

1 105 0 

2 105 17 

3 105 35 

4 105 59 

1 120 0 

2 120 14 

3 120 30 

4 120 49 

5 120 90 

 

Beginning at the start point, the route was marked by brightly-colored pin flags every 10 m 

using a compass and 91-m fiberglass tape. Because the Garmin system does not support mobile 

geofencing, all of the locations at which the mobile geofence (at all seven radii) would first 

theoretically intersect each stationary PLD point were calculated. Prior to data collection, a fiberglass 

tape was used to flag these intersection points along the route. The locations of all flagged points 
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along the route and of the six stationary PLDs were recorded at the beginning of the experiment using 

a survey-grade Topcon GR-3 GNSS base station and rover (Topcon Positioning Systems, Tokyo, 

Japan). This system has a specified accuracy of 10 mm. As the manual faller walked the route, the 

time at which he or she passed each flag was recorded using a custom script running in the R 

statistical programming environment [46] on a Windows tablet. 

Intersection times recorded in the field represented the times at which the mobile geofence 

should have first intersected the stationary PLDs. The predicted times of intersection were calculated 

based on the ellipsoid distance between the GNSS coordinates recorded by the manual faller’s PLD 

and the stationary PLDs using the distGeo function in the R geosphere package [47]. In order to 

quantify the magnitude of signal delay, intersection times observed in the field were subtracted from 

the predicted intersection times using the following formula: 

𝐷𝑖 = 𝑃𝑖 − 𝑂𝑖, (1) 

where Di is the delay for the ith intersection, Pi is the predicted intersection time for the ith 

intersection calculated using the recorded GNSS coordinates, and Oi is the field-recorded National 

Institute of Standards and Technology (NIST) time when the faller crossed the ith intersection point. 

Using this method, positive time delays indicate geofence crossing alerts that would have 

occurred after the faller had actually crossed the geofence. Likewise, negative delays represent alerts 

that would have been triggered prior to the faller crossing the geofence. A linear mixed-effects model 

was used to account for correlation within each block and within each pass along the route because 

the assumption of within-block independence of errors was not satisfied for conventional analysis of 

variance (ANOVA). The mixed-effects model was fit using the lme function in the R nlme package 

[48]. The model was fit using all factor-level combinations as fixed effects and the block and pass 

along the route as random effects. The pass along the route was nested within each block. The error 

correlation was incorporated using an autoregressive structure. ANOVA was used to determine the 

significance of the fixed effect terms in the model. Normality was an issue with the initial model, so a 

square root transformation was applied to the intersection delay such that negative delays remained 

negative and positive delays remained positive. 

A simulation script was also written in R to evaluate the geofence alert delay as a mobile 

geofence intersected a stationary geofence. Eight mobile geofence radii (50, 60, 70, 80, 90, 100, 110, 

and 120 m) were combined with 91 stationary PLD locations (0–180 m, in 2-m increments) 

perpendicular to the midpoint of a 500-m route. Each stationary PLD was surrounded by a 50-m 

radius geofence. The center point of the mobile geofence was advanced in 2-m increments along the 
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route, with 1000 cycles per treatment. Both the fixed PLD locations and the moving center point of 

the mobile geofence were assumed to have bivariate Gaussian probability density, such that their 

intersection was a mixture of the two distributions. This error was applied in R using five standard 

deviations (1, 2, 3, 4, and 5 m) representing varying levels of GNSS accuracy. To characterize the 

simulation results, the nls function in R [46] was used to fit a non-linear exponential model of the 

following form: 

𝐷𝑖𝑗𝑘𝑙 = 𝛽0 + 𝛽1 ∗ 𝑒(𝛽2∗𝑎𝑗) + 𝛽3 ∗ 𝑠𝑘 + 𝛽4 ∗ 𝑟𝑙 + 𝜀𝑖, (2) 

where Dijkl is ith time delay, aj is the jth intersection angle, sk is the kth standard deviation, and rl is the 

lth geofence radius. 

To better understand the results from both the field experiment and simulation, the proportion 

of error bearings resulting in early alerts was calculated for the intersection of a mobile geofence with 

a stationary geofence. We assumed that a GNSS point is equally likely to be moved in 360 directions 

(bearings) from its true location due to error. Thus, a certain proportion of those potential errors might 

move the point (and thus the geofence surrounding it) in a way that would cause an early intersection 

alert. This proportion depends on geofence radius, approach angle, true distance between the two 

GNSS points, and error magnitude. For our calculations, both geofences had 50-m radii. The mobile 

and stationary geofences were oriented such that the angle at the true intersection point would be 0°, 

22.5°, 45°, 67.5°, and 90°. Within each of these five approach orientations (intersection angles), we 

placed the mobile geofence at four starting locations (1, 4, 7, and 10 m from the true intersection 

point) and moved each three distances (1, 3, and 5 m) from this initial location along vectors with 

bearing angles from 0° to 359°. For each factor-level combination, the proportion of these 360 error 

angles that resulted in an early alert was calculated. 

 

2.4 Results 

2.4.1 Field Results 

Incorporating an autoregressive correlation structure into the mixed-effects model of the field 

results resulted in an improved model with a lower Akaike Information Criterion (AIC) and lower log 

likelihood (p < 0.0001) (Table 2.2). ANOVA on this model showed that the interaction between 

radius-angle combination and pace (p < 0.0001) as well as the radius-angle combination (p < 0.0001) 

affected intersection delay. However, the assumption of normality was not met so the model was refit 

using a square root transformation of the delay. In the resulting model, ANOVA indicated that only 

the radius-angle combination affected intersection alert delay (p < 0.0001) (Table 2.3). 
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Table 2.2. Analysis of variance (ANOVA) results comparing models with and without autoregressive error structure. Model 

1 was fit without correlated errors while Model 2 was fit with autoregressive error structure. 

Model DF 1 AIC 2 BIC 3 Log Lik 4 Test L Ratio 5 p-Value 6 

1 

2 

210 

211 

4394.911 

4162.837 

5325.49 

5097.848 

−1987.456 

−1870.418 

- 

1 vs. 2 

- 
234.074 

- 

<0.0001 

1 Model degrees of freedom; 2 Akaike Information Criterion; 3 Bayesian Information Criterion; 4 Restricted log likelihood; 5 

Likelihood ratio; 6 p-value associated with likelihood ratio statistic. 

Table 2.3. ANOVA results from the full model showing all main effects and interactions. The response was the square root 

of the alert delay and the model was fit using autoregressive error structure. 

Model Term Num DF 1 Den DF 2 F-Statistic 3 p-Value 4 

(Intercept) 1 396 8.43367 0.0039 

Rad Ang 22 396 76.00023 <0.0001 

Pace 2 16 1.24997 0.313 

TI 2 16 1.16111 0.3382 

RadAng: Pace 44 396 0.937 0.5896 

RadAng: TI 44 396 0.83993 0.7571 

Pace: TI 4 16 0.60202 0.6667 

RadAng:Pace: TI 88 396 1.24072 0.0874 

1 Numerator degrees of freedom; 2 Denominator degrees of freedom; 3 F-statistic for Wald tests for model terms; 4 p-value 

associated with Wald tests for model terms. 

Alert delay for the entire field experiment ranged from −73 s to 54 s. The most inaccurate 

alerts tended to be negative and were observed at the slower paces and largest angles. Figure 2.3 

illustrates the geofence alert delay as a function of the radius-angle combinations grouped by the three 

levels of walking pace (30, 45, and 60 bpm). It shows a more negative alert delay, meaning an earlier 

alert, as the angle of intersection increases. There also appears to be greater variability in the 

intersection alert delay at slower paces. Finally, the alert delay is less negative at faster paces with the 

most negative delays occurring at the slowest pace at the largest angles. These more negative delays 

correspond to earlier hazard alerts. 



25 

 

 

Figure 2.3. Box-and-whisker plot of field results showing geofence intersection alert delay as a function of the geofence 

radius-intersection angle combinations. The panels are grouped by pace (30, 45, and 60 bpm). 

To relate the magnitude of alert delay to distance, Figure 2.4 shows the distance traveled over 

time as a function of the mean observed speed for each level of walking pace used in the field 

experiment. For the most positive delay observed (54 s), the faller would have walked 29.4, 42.6, or 

56.8 m past the geofence at the 30-, 45-, and 60-bpm paces, respectively. For the most negative delay 

observed (−73 s), an alert would have been received when the faller was 39.8, 57.6, or 76.8 m from 

reaching the geofence boundary at the 30-, 45-, and 60-bpm paces, respectively. 
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Figure 2.4. Distance traveled over time as a function of walking pace. The slope of each line corresponds to the mean 

observed speed for each level of pace. Positive distances indicate how far the faller has walked into or past the geofence 

boundary when the alert is generated (i.e., a positive, late warning). Negative distances indicate how far ahead of the 

intersection point the faller is when the alert is generated (i.e., a negative, early warning). 

 

2.4.2 Simulation Results 

Simulation analysis supported field results, illustrating the effect of intersection angle on 

geofence alert delay. Figure 2.5 shows the geofence alert delay as a function of intersection angle 

grouped by radius and GNSS standard deviation. There is more error in the alert delay associated with 

higher standard deviations and there is a general trend toward more negative delays (earlier alerts) as 

standard deviation increases. This trend is most noticeable at the larger angles. Also, more negative 

delays (earlier alerts) occur as intersection angle increases. This pattern is clearest at the larger 

standard deviations. Finally, in terms of geofence radius, slightly more negative delays were 

associated with larger radii at the largest intersection angles. 
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Figure 2.5. Box-and-whisker plot of simulation results showing geofence alert delay as a function of intersection angle 

grouped by radius and GNSS standard deviation. To improve clarity, the figure is a subset of factor-level combinations, 

representing three geofence radii (r = 50, 80, and 110 m) and three standard deviations (s = 1, 3, and 5 m). Upper panel 

numbers are GNSS standard deviation and lower panels represent geofence radii. 

Table 2.4 shows the results from the exponential model fitted to the simulation data. All 

model coefficients had p-values less than 2 × 10−16. 

Table 2.4. Summary of the exponential model (Equation (2)) fitted to the simulation results showing the estimate of each 

model coefficient, standard errors and p-values. 

Parameter Estimate 1 Std. Error 2 t-statistic 3 p-value 4 

b0 3.86 × 100 1.35 × 10-2 286.41 <2 × 10-16 

b1 −5.79 × 10-2 3.64 × 10-4 −159.06 <2 × 10-16 

b2 6.92 × 10-2 7.33 × 10-5 944.50 <2 × 10-16 

b3 −2.00 × 100 2.03 × 10-3 −985.52 <2 × 10-16 

b4 −4.29 × 10-3 1.27 × 10-4 −33.76 <2 × 10-16 
1 Estimated model coefficient; 2 Standard error of estimated model coefficient; 3 t-statistic for each model coefficient; 4 p-

value associated with the t-statistic for model coefficients. 

Figure 2.6 illustrates how the bearing angle at which error occurs triggers early alerts 

depending on the intersection angle of stationary and mobile geofences. It is evident in the figure that 

there is an interaction among circle geometry and the directionality of GNSS error that affects alert 

timing. There are more possible error bearing angles that result in early alerts as intersection angle 

increases from 0° to 90°. 
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Figure 2.6. Visualization of GNSS error bearings resulting in early alerts. In each cell, the black circle is a stationary 

geofence and the blue circle represents a mobile geofence located 20 m from its initial intersection point with the stationary 

geofence. In the first column, the geofence intersection angle will be 0°. In the second and third columns, the intersections 

will occur at 45° and 90°, respectively. The red circle in each cell illustrates the location of the mobile geofence if it were 

moved 20 m from its true location, with each row representing one of eight possible directions in which that 20-m error 

might occur. Arrows in each cell indicate the directionality of error, with light blue arrows indicating movements that result 

in early intersection alerts. Black arrows indicate movements that do not result in early intersection alerts. The top row 

depicts all eight error directions in each column below and summarizes which of those directions result in early alerts. 

To better demonstrate this effect, additional simulation results shown in Figure 2.7 illustrate 

the proportion of error bearing angles that result in early alert as a function of the intersection angle 
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grouped by four starting locations (1, 4, 7, and 10 m from the true intersection point) and three GNSS 

standard deviations (1, 3, and 5 m). In all cases, the 90° angle has the highest proportion of directional 

error movements that result in early warning. The difference in this proportion is greatest when the 

starting location is further from the intersection point. The difference in proportions also varies 

indirectly with the magnitude of GNSS standard deviation. This is most noticeable at the closest 

starting locations. 

 

Figure 2.7. Proportion of error bearing angles that result in early alert plotted as a function of the intersection angle. 

Calculations were done for five intersection angles (0°, 22.5°, 45°, 67.5°, and 90°). The upper panel labels represent the four 

starting locations (d = 1, 4, 7, and 10 m from the true intersection point) and the lower panels are the three GNSS standard 

deviations (s = 1, 3, and 5 m). 
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2.5 Discussion 

Results from the field experiment indicate that the realized geofence radius-intersection angle 

combinations had a significant effect on the alert delay. Similarly, simulation results illustrated the 

effect of intersection angle on alert delay. Because of the way in which intersection angles were 

calculated, a 0° angle means the mobile geofence approached the PLD or stationary geofence 

straight-on, while a 90° angle means the mobile geofence approached alongside the PLD or stationary 

geofence. In both the field experiment and the simulation, the delay was closest to 0 s at smaller 

angles. As the angle increased to 90°, delay decreased (became more negative), meaning that an 

earlier alert was signaled. This effect appears to result from a phenomenon that is evident in Figure 

2.7, in which the proportion of directional GNSS error that triggers an early warning depends on 

angle of intersection approach. In other words, when a mobile geofence approaches a point of interest 

(PLD) straight-on (i.e., at a 0° angle), only a small proportion of all potential GNSS error results in an 

early warning. However, when a mobile geofence approaches alongside a PLD (i.e., at a 90° angle), a 

larger proportion of all potential GNSS error results in early warning. This result has important 

implications for use of mobile geofences in logging safety because approach angles are constantly 

changing on active timber sales. This means the accuracy of any alert will vary as worker or 

equipment positions move around one another at different angles. For instance, if a worker 

surrounded by a mobile geofence moves straight toward a piece of equipment, the intersection alert 

may occur with relatively high accuracy. However, if the same worker were to approach alongside the 

equipment, intersection alert generation may have lower accuracy. 

Because of the geofence radii and PLD locations used in the field experiment, not all factor-

level combinations of geofence radius and intersection angle were realized. However, simulation 

results indicate the effect intersection angle has on alert delay, independent of radius. On the other 

hand, the effect of radius is not as clear. It seems that larger geofence radii trigger slightly earlier 

alerts at the largest angles but future research is necessary in order to understand this relationship 

more clearly. 

In the field experiment, the delay was more negative at the slowest pace (30 bpm) and 

became closer to 0 s at the fastest pace (60 bpm). This was primarily noticeable at the largest 

intersection angles. While this effect was not statistically significant in the mixed-effects model, a 

moderate influence of pace seems evident graphically in Figure 2.3. A clearer effect of pace on 

geofence alert timing was observed previously in Grayson et al. [38]. Transmission interval also did 

not affect delay in the mixed-effects model used to analyze field results, and there were no noticeable 
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trends in delay at the three transmission intervals evaluated. This result is counterintuitive and may be 

a consequence of the range of intervals considered. 

To continue to advance the use of mobile geofences for delineation of safe work zones in 

logging and other hazardous occupations with many moving parts, correction methods that account 

for the effect of intersection angle, and possibly other factors, may be needed. In our study, the 

absolute point at which GNSS-RF transponders crossed geofence boundaries was assumed to be the 

appropriate time for a hazard alert to be triggered. However, in practice, alerts would be triggered at 

earlier warning thresholds in order to provide information about approaching hazards with sufficient 

time for equipment operators or ground workers to slow down or change course. In further 

developing the use of mobile geofences to define hazard boundaries and associated safe work areas 

around workers and equipment, the effect of intersection angle identified in this study will need to be 

coupled with use of early warning thresholds based on the speed and distance relationships shown in 

Figure 2.4. 

Although the focus of this study was on use of mobile geofences as tree falling hazard zones 

around manual fallers, there are many other potential safety applications on active logging operations 

for which mobile geofences could be deployed. For example, mobile geofences could be used to 

indicate the relative locations of ground workers working at the log landing adjacent to loading and 

processing equipment, or to indicate the relative proximity of rigging crew workers to the skyline 

carriage on cable logging operations. As with self-driving vehicle technology used in other fields, an 

eventual application of mobile geofences to indicate and reduce work-related hazards may be the use 

of technology not only to provide warnings to ground workers or equipment operators, but to slow or 

stop equipment function when occupational hazards are imminent. 

 

2.6 Conclusions 

Logging continues to be one of the most dangerous occupations in the United States. Real-

time positioning has the potential to improve communication and situational awareness on active 

timber sales. Geofences are an important component of real-time positioning systems. While mobile 

geofences may be useful in alerting workers when they get too close to jobsite hazards, the accuracy 

of these alerts may vary depending on angle of approach and GNSS accuracy. Because accuracy and 

intersection angle change frequently on active logging operations, relying on mobile geofences 

without application of correction methods is not advised for fine resolution delineation of safe work 

areas. However, uncorrected mobile geofences may still be appropriate for increasing general 
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situational awareness among workers at coarser spatial scales. A better understanding of the effects of 

these factors could inform the development of correction methods to improve alert accuracy and 

recommendations for use of real-time positioning technology in occupational safety. 
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3.1 Abstract 

Real-time positioning on mobile devices using global navigation satellite system (GNSS) 

technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on 

logging operations by increasing situational awareness. However, GNSS positional accuracy for 

ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other 

factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) 

obstruction in remote, forested areas. The objective of this study was to characterize the effects of 

forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio 

signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a 

network in a range of forest conditions. Because most previous research with GNSS in forestry has 

focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal 

accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho 

Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, 

and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error 

(RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested 

environments. Mixed-effects models used to analyze the data showed that stand characteristics, 

topography, and obstructions in the LOS affected the odds of missed radio signals while stand 

variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of 

geofence alerts. 

3.2 Introduction 

Since the Department of Defense launched its first Navigation System with Timing and 

Ranging (NAVSTAR) satellite in 1978, global positioning system (GPS) technology has become an 

integral component of national defense, homeland security, civilian life, and scientific research [1]. 

Global navigation satellite system (GNSS) positioning is a more general term that encompasses all 
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global satellite-based positioning systems such as GPS, GLONASS, Galileo, and BeiDou. Initial 

research evaluating the practicality of GNSS technology in forested landscapes indicated the potential 

use of GNSS for a range of operational and research uses in natural resources [2]. Early assessments 

of GNSS for forestry found it could be used to locate forest inventory plots [3,4], quickly determine 

timber harvest unit boundaries [4], locate forest roads [4], and track wheeled skidders [5]. Various 

other studies tracked harvest equipment with GNSS and used this information to assess site 

disturbance and to calculate productivity from time-study data [6,7]. More recent studies related to 

forest operations have analyzed the potential for GNSS data to quantify production efficiency [8], 

track log trucks [9], improve operational monitoring [10], and increase efficiency and calibrate 

remotely-sensed inventory data using GNSS-derived harvester head positions [11]. 

The accuracy of GNSS coordinate readings is dependent upon the number and geometry of 

satellites visible to a GNSS unit at any point in time. Positional dilution of precision (PDOP) is an 

index of the influence of satellite geometry on GNSS measurements [12]. In general, a lower PDOP 

value indicates an arrangement of satellites providing higher measurement reliability and values less 

than 2 are desirable [12]. PDOP values can be calculated for user-defined locations using GNSS 

mission planning software [13]. Another factor that could potentially affect GNSS accuracy in 

forested conditions is aspect. The Wide Area Augmentation System (WAAS) provides real-time 

GNSS data correction [14]. GNSS receivers need a clear view of a geostationary communications 

satellite (GEO) in order to receive WAAS correction signals [14]. GNSS receivers in the northern 

United States usually need an unobstructed view to the south of less than 20 degrees to receive 

WAAS signals because GEO satellites are low on the horizon [14]. This leads to a potential for 

increased error on slopes without a clear view to the south [14]. Few studies have evaluated the effect 

of aspect on GNSS performance, and while two studies found higher GNSS fix rates and lower 

location error on south aspects, these differences were not statistically significant [15,16]. 

GNSS use in forestry is often affected by error associated with satellite signal obstruction by 

the canopy or other solid objects and the reflection or diffraction of satellite signals from nearby 

objects or surfaces, an error known as multipathing [13,17]. Previous studies have shown that forest 

stand structural characteristics and terrain affect GNSS accuracy [5,18–23]. Holden et al. developed a 

method to model GNSS precision using three canopy descriptor variables (percentage of sky 

obstruction, maximum canopy hole radius, and fragmentation of sky view) [21]. Lewis et al. modeled 

the proportion of 3D GNSS fixes, PDOP, and location error using the percent canopy cover and 

satellite view (to represent terrain obstruction) [22]. Newer studies have taken advantage of the 

correlation between GNSS signal strength and forest stand characteristics by evaluating the potential 
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to predict and map forest parameters using GNSS signals [24,25]. GNSS receiver type (survey-, 

mapping-, or recreation-grade) also affects the accuracy of position measurements [5,26–30]. Survey-

grade receivers are capable of sub-centimeter accuracy in the open and sub-meter accuracy under 

mature forest conditions [30,31]. At the other end of the spectrum, recreation-grade units are the least 

expensive and have accuracies ranging from 2 – 5 m in the open [13,32–34] to 3.8 – 12 m in mature 

forests [13,30,32–34]. 

Advances in positioning technology for remote environments have emerged simultaneously 

for several uses, ranging from recreation to public safety and defense. These devices link GNSS 

positional information with radio frequency (RF) transmission of location coordinates (GNSS-RF) to 

form ad-hoc networks in which the locations of all units can be monitored on mobile phones or 

tablets. Like traditional GNSS devices, each GNSS-RF transponder determines its coordinates using 

one or more satellite-based positioning systems. However, the RF transmission is a second 

component that allows those coordinates to be sent to other, nearby GNSS-RF units at user-defined 

intervals. GNSS-RF transponders include consumer-grade units for recreational use like the Garmin 

Rino and Garmin Alpha 100, devices such as the Raveon Atlas PT marketed for public safety, a 

variety of military-grade GNSS radios designed for defense applications, and consumer-grade 

mobile-based solutions from goTenna and Beartooth that turn smartphones into two-way radios for 

voice or text communication in areas without cellular service. While traditional GNSS devices allow 

users to see their own positions, GNSS-RF devices enable real-time positioning through location 

sharing among individuals and equipment in remote locations [8,23,35–37]. Thus, either the device’s 

native screen or an attached tablet can display the location of other devices in the network moving in 

real-time. 

Many GNSS-RF transponders support geofencing, in which a virtual boundary is defined 

around a user-defined geographic zone. Geofences are either circular or polygonal in shape, can vary 

widely in size depending on intended application, and can be stationary or mobile. Alert notifications 

are triggered as tracked mobile objects cross into or out of the geofence, and this functionality may be 

useful for a range of operational forestry applications such as detecting the amount of time workers 

spend near cable logging hazards [23], signaling when log skidders or log trucks cross harvest unit 

boundaries [36], and delineating tree falling hazard zones around manual fallers [37]. GNSS-RF real-

time positioning and geofences have the potential to improve communication and situational 

awareness on logging operations, in wildland firefighting, transportation, and recreation. In this study, 

our focus was on logging safety, as logging is consistently ranked as one of the most hazardous 

occupations in the United States [38], with the highest fatal work injury rate of civilian occupations in 
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2015 [39]. By increasing situational awareness, the active display of real-time positioning logistics 

may be able to reduce hazards posed by the frequent interactions among ground workers, heavy 

equipment, and irregular terrain that are common on active logging operations. 

GNSS-RF and related technologies pose new challenges for quantifying positional accuracy 

because positional error is associated with both the accuracy of GNSS locations and successful 

propagation of radio signals between devices. In other words, the accuracy of GNSS-RF position 

sharing depends not only on factors that influence GNSS accuracy as described above, but also on 

factors that affect radio signal propagation and attenuation. Radio signals experience diffraction, 

scattering and reflection as they travel through vegetation [40–42]. Leaf state and vegetation depth 

and density influence radio signal attenuation [42–45]. Attenuation can also be affected by wind 

[42,43,46], humidity [47,48], rain [46], and terrain [49,50]. It is unclear whether the same factors 

affect both the GNSS and RF components of emerging technologies, or if different forest stand 

characteristics and topographic factors affect one or the other. 

The purpose of this study was to characterize the factors affecting real-time positioning on 

irregular, forested terrain through analysis of the effects of forest stand characteristics, topography 

and other line-of-sight (LOS) obstructions on the GNSS accuracy and radio signal propagation quality 

of multiple Raveon Atlas PT GNSS-RF transponders (Raveon Technologies, Vista, California, USA) 

functioning as a network. Until recently, most previous research evaluating GNSS for forestry 

applications has focused on stationary units. Recent studies characterizing GNSS units in motion 

include work by Kaartinen et al. and Liu et al. [11,24], while others have quantified mobile GNSS 

units paired with RF-based transmission [8,23,36,37]. To further our understanding of location 

sharing among mobile GNSS units, we evaluated the time-to-signal accuracy of geofence crossing 

alerts in 21 randomly-selected stands on the University of Idaho Experimental Forest, under a wide 

spectrum of stand and topographic conditions. Time-to-signal accuracy refers to the difference 

between when a person or object crosses a geofence and when the alert is generated and shared with 

other, nearby GNSS-RF devices. Specifically, we tested three hypotheses. Our first null hypothesis 

was that neither forest stand characteristics, topography, nor the presence of obstructions in the line-

of-sight affected the probability of successful radio signal propagation between GNSS-RF units. We 

tested this by analyzing the odds of missed radio signals within each stand using mixed-effects 

logistic regression. Our second null hypothesis was that neither stand characteristics, topography, nor 

physical obstructions affected the stationary positional accuracy of GNSS-RF units. To test this, we 

used linear mixed-effects models to determine which factors most affected root mean squared error 

(RMSE) of the PT. Our third null hypothesis was that neither stand characteristics, topography, nor 
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physical obstructions affected the time-to-signal accuracy of geofence crossings. We tested this by 

using linear mixed-effects models to determine which factors most affected geofence intersection 

alert delay. 

3.3 Materials and methods 

3.3.1 Field experiment 

Five Raveon Atlas PT GNSS-RF transponders collected positional data during the field 

experiment. As GNSS-RF units, the PTs receive their coordinates and then transmit that information 

to other PTs using radio frequency. The units can be attached to tablets or computers, which allows 

ground workers and equipment operators on logging operations to see all other positioning devices in 

real-time. PTs receive their coordinates from NAVSTAR GPS satellites only and have a specified 24-

hour static accuracy of < 2.5 m for 50% of measurements and of < 5 m for 90% of measurements 

[51]. Depending on terrain, the devices can communicate up to 48 km away and position updates can 

be transmitted as frequently as one signal per second [51]. PTs can be used with Raveon RavTrack 

software, which has several options for geofencing, including different notification options. 

In this study, real-time geofence alert signals were evaluated in a random sample of 21 stands 

on the University of Idaho Experimental Forest (UIEF) (Figure 3.1A). Only stands ≥ 2.02 hectares (5 

acres) in size were selected. Within each stand, the timing of geofence alerts was characterized for a 

manual faller entering a 100 m × 300 m rectangular geofence (Figure 3.1B). In addition to placing 

one stationary PT at the geofence intersection point (Atlas PT X in Figure 3.1B) to record data, a 

compass and 100-m fiberglass tape were used to place three other PTs 100 m from the virtual 

boundary intersection point at angles forming the vertices of an equilateral triangle (Atlas PTs A, B, 

and C at triangle points A, B, and C, respectively, in Figure 3.1B). The first of these stationary PTs 

(PT A) was placed at a randomly selected bearing from the intersection point (triangle point A). The 

bearing was sampled from the set of whole numbers between 1 and 360, with replacement. The 

remaining two stationary PTs (PTs B and C) were placed 120° and 240° clockwise, respectively, from 

this first PT (triangle points B and C, respectively). All stationary PTs were zip-tied to wooden stakes 

such that the bottoms of their antennas were 1 m above the ground surface. Each stationary PT was 

attached to a Windows 10 Dell Venue 8 Pro tablet running Raveon RavTrack software. Finally, maps 

for each stand were loaded onto the tablets using 1-m resolution National Agriculture Imagery 

Program (NAIP) images downloaded from The National Map website [52] and all tablets were 

synced with the National Institute of Standards and Technology (NIST) time server [53] each day. 
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Figure 3.1. Map of the stand locations on the UIEF and illustration of the experimental setup. (A) The 21 stands are 

delineated according to total basal area (m2/ha) and the UIEF unit boundaries are shown in blue. Background map is 1-m 

NAIP imagery. (B) Illustration of global navigation satellite system (GNSS) technology paired with radio frequency (RF) 

transmission (GNSS-RF). GNSS-RF transponders (Atlas PTs) receive positional information from GNSS satellites and relay 

this information to one another using radio frequency transmission. Atlas PT X is located at the geofence intersection point, 

while Atlas PTs A, B, and C are located at the triangle points A, B, and C, respectively. The manual faller carried a PT 

attached at the hip (Atlas PT F). 

The orientation of geofence crossing in each stand was also randomly selected from the 

sample of whole numbers between 1 and 360, with replacement. A rectangular geofence was 

established in each stand using a Suunto sight-through azimuth compass, fiberglass tape, and an Eos 
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Arrow 100 GNSS unit (Eos Positioning Systems, Terrebonne, Quebec, Canada) with a specified 

accuracy of < 0.6 m [54]. One side of the geofence was centered at the geofence intersection point 

and was oriented perpendicular to the crossing direction. The geofence was 100 m wide at the 

crossing point and 300 m long. 

In each stand, a manual faller carrying a PT attached at the belt crossed the geofence once by 

walking a 90-m route oriented perpendicular to the geofence (i.e., in the chosen geofence crossing 

direction), starting and ending 45 m from the intersection point. For consistency, the manual faller 

walked at a pace of 45 bpm, as dictated by a digital metronome. The route was established using a 

compass and 50-m fiberglass tape and was marked with pin flags. The observed time at which the 

faller crossed the geofence was recorded in the field using a custom script in R [55] running on a 

Windows 10 Dell Venue 8 Pro tablet synced with the NIST time server. The predicted intersection 

times were recorded by the tablets attached to each stationary PT (PTs A, B, C, and X). All PTs were 

set to collect and transmit their coordinates at a rate of once per second. 

Within each stand, topographic, physical, and vegetative obstructions present along each LOS 

path between the geofence intersection point and the PTs located at triangle points A, B, and C were 

quantified during setup using a modification of the FIREMON line intercept method [56]. To mark 

the LOS path, a 100-m fiberglass tape was attached to two metal stakes. One stake was located at the 

intersection point and the second was located where the stationary PT would be placed during the 

experiment. The tape was secured to these two stakes and stretched taught 1 m above the ground to 

match the location of the stationary PT antenna height. This height was approximately equal to that of 

a PT when worn by a ground worker on a belt clip. The start of the tape was attached to the stake at 

the intersection point while the end was attached to the stake at the triangle point. For each LOS path, 

three 5-m sections were randomly selected from the segments shown in Figure 3.2 and all vegetative 

obstructions in these sections were classified using the key in Table 3.1. Only obstacles physically 

touching the fiberglass tape were quantified. To measure each obstacle, two meter sticks were used to 

hold the tape 1 m above the ground. The first meter stick was located 1 m before the start of the 

obstacle and the second meter stick was located 1 m past the end of the obstacle. Once the fiberglass 

tape was in position, the two locations at which the obstacle first and last contacted the tape were 

recorded to the nearest centimeter. Obstacles less than 5 cm in size (as measured along the LOS path) 

were not quantified. When gaps were present between nearby obstacles, the obstacles were treated as 

two separate obstacles only when the gap was greater than 25 cm. Obstructions less than 1 m tall were 

not quantified and trees that were less than 12.5-cm diameter at breast height (DBH) were classified 
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as coniferous vegetation. To simplify analysis, vegetative obstructions within the three measured 5-m 

sections were summarized using Eq (1): 

𝑉𝑖 = 𝑆𝑖 + 𝐶𝑖 + 𝑇𝑖 + 𝑊𝑖 + 𝑆𝐶𝑖 + 𝑆𝑊𝑖 + 𝐶𝑊𝑖 (1) 

Where Vi is the measured distance of all vegetative obstructions recorded for the three 5-m sections 

along the ith LOS path. Si, Ci, Ti, Wi, SCi, SWi, and CWi represent the distance of vegetative 

obstructions defined in Table 3.1 as measured in the three 5-m sections along the ith LOS path. Then, 

to account for the fact that only 15 m of each 100-m LOS path was measured, the total distance of 

vegetation along each path was calculated using Eq (2): 

𝑇𝑉𝑖 =
𝑉𝑖

0.15
(2) 

Where TVi represents the total distance of vegetation along the entire ith LOS path and Vi is the 

measured distance of all vegetative obstructions recorded in the three 5-m sections along the ith LOS 

path (Eq (1)). Lastly, all boulders, streams, and forest roads were recorded as present or absent along 

each LOS path, regardless of their location on the path. These were recorded because of the effects 

they may have as terrain changes. However, because only one boulder was measured in the LOS 

paths, we removed it from analysis. 

 

Figure 3.2. LOS path sections. Each LOS path was divided into 20 5-m sections and three sections were randomly selected 

for each LOS path. This figure shows the 20 sections and their locations along the LOS path. Sections highlighted in green 

represent the three randomly selected sections for which all vegetative obstructions were measured using the key in Table 

3.1. 

 

Table 3.1. Obstacle list and key. 

Obstacle ID Vegetative Obstruction 

S Deciduous shrub 

C Coniferous vegetation 

T Tree (stem) 

W Coarse woody debris (CWD) 

SC Deciduous shrub/coniferous vegetation 

SW Deciduous shrub/CWD 

CW Coniferous vegetation/CWD 

 

Once all obstructions were quantified and recorded, each LOS path was walked carrying a 

Garmin Alpha 100 GNSS-RF unit (Garmin, Olathe, Kansas, USA) to record the vertical elevation 
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profile. Using the Garmin data, each LOS path was classified in terms of the presence or absence of 

concavity and convexity. A LOS path was concave if the minimum elevation along the path was at 

least 3 m below the lower of the two path endpoints. A LOS path was convex if the maximum 

elevation along the path was at least 3 m above the higher of the two path endpoints. The 

classification criteria for concavity and convexity is illustrated in Figure 3.3. The percent slope and 

aspect were also measured at the geofence intersection point. Aspect was measured as a continuous 

circular variable, but was reclassified as either N (316° – 45°), E (46° – 135°), S (136° – 225°), or W 

(226° – 315°). Trimble’s GNSS mission planning website [57] was used to determine the predicted 

PDOP values for each day during the experiment. Sampling was only conducted during times with 

predicted PDOP values less than 4.5 to ensure consistency. 

 

Figure 3.3. Illustration of slope classification as concave, convex, or both. Blue dots represent the higher of the two LOS 

endpoints while red dots represent the lower of the two LOS endpoints. Green lines represent the ground surface along the 

LOS path. 

To quantify forest stand characteristics, a 0.03-hectare fixed-area plot was established in each 

stand, centered at the intersection point. The DBH, total height, and height to the base of the live 

crown were quantified for all trees ≥ 12.5-cm DBH within the plot. Using these measurements, total 

basal area (TBA), trees per hectare (TPH), mean height (Ht), and quadratic mean diameter (QMD) 

were calculated for each stand and used as variables representing forest stand characteristics during 
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analysis. Quadratic mean diameter is a commonly used metric in forestry that refers to the diameter of 

the tree of mean basal area (stem cross-sectional surface area), as measured at breast height (1.37 m). 

QMD is calculated as the square root of the squared stem diameters divided by the number of stems 

sampled, as defined in Eq (3): 

𝑄𝑀𝐷 = √∑
𝐷𝑖

2

𝑛

𝑛

𝑖=1
(3) 

Where Di is the DBH of the ith tree and n is the number of trees sampled. 

To quantify missed radio signals in each stand, the number of missed position updates 

transmitted from the faller’s PT (PT F) to the three PTs at the triangle points (PTs A, B, and C) was 

calculated for the 90-s interval centered on the observed geofence intersection time. Because all units 

were set to transmit their coordinates at 1-s intervals, 90 position updates would have been received in 

this time period in the absence of missed signals. 

Stationary GNSS accuracy was summarized using RMSE, which is a common measure of 

GNSS positional error and represents the difference between the predicted and observed coordinates 

of a GNSS unit. In each stand, the predicted coordinates were obtained using the stationary PT 

located at the geofence crossing point (denoted as Atlas PT X in Figure 3.1B). These coordinates 

were collected once per second for 5 min prior to the time of geofence crossing. The observed (true) 

coordinates for each of these PTs were obtained using the Eos Arrow 100 GNSS unit described 

above. All coordinates were converted to the Universal Transverse Mercator (UTM) projection and 

then the RMSE for each stationary PT was calculated using Eq (4): 

𝑅𝑀𝑆𝐸𝑖 = √∑ ((𝑥𝑖 − 𝑥𝑖𝑗)2 + (𝑦𝑖 − 𝑦̂𝑖𝑗)
2

)/𝑛
𝑛

𝑖=1
(4) 

Where RMSEi is the RMSE value in the ith stand, xi is the observed easting value in the ith stand (i.e., 

the Arrow 100 easting coordinates), x̂ij is the jth predicted easting value in the ith stand (i.e., the PT 

easting coordinates), yi is the observed northing value in the ith stand (i.e., the Arrow 100 northing 

coordinates), ŷij is the jth predicted northing value in the ith stand (i.e., the PT northing coordinates), 

and n is the total number of PT signals received in the ith stand. 

The overall geofence intersection alert delay for each stand was derived by averaging the 

time-to-signal delay calculated at each of the three triangle points (A, B, and C) (Eq (5)): 
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𝐷𝑖 =
(𝑃𝑖𝑗  −  𝑂𝑖) + (𝑃𝑖𝑘  −  𝑂𝑖) + (𝑃𝑖𝑙  −  𝑂𝑖)

3
(5) 

Where Di is the overall delay for the geofence intersection in the ith stand and Oi is the observed time 

at which the faller crossed the geofence in the ith stand, as recorded in the field. Pij is the predicted 

intersection time in the ith stand at the jth triangle point, represented by the recorded alert at triangle 

point A. Pik is the predicted intersection time in the ith stand at the kth triangle point, represented by 

the recorded alert at triangle point B. Pil is the predicted intersection time in the ith stand at the lth 

triangle point, represented by the recorded alert at triangle point C. Using this formula, positive 

delays indicate geofence crossing alerts that were triggered after the faller crossed the geofence and 

negative delays indicate geofence crossing alerts that occurred before the faller intersected the 

geofence. We used time-to-signal delay as an integrated measure of the accuracy of mobile GNSS 

units sharing their locations, which differs from RMSE calculated by Kaartinen et al. using known 

reference points along a path [11]. 

3.3.2 Analysis of missed radio signals 

To test the null hypothesis that the probability of successful GNSS-RF signal propagation 

was not related to forest stand characteristics, topography, or obstructions in the line-of-sight, a 

binomial generalized linear mixed-effects model was used to evaluate relationships between the odds 

of missed signals as a function of vegetative LOS obstructions, topography, and forest stand 

characteristics. The model was fitted using the glmer function in the R lme4 package [58]. Variables 

included as fixed effects were the total distance of vegetation along each LOS path (TVi), TBA, TPH, 

Ht, QMD, slope, aspect, and the presence or absence of forest roads, streams, convex slopes, and 

concave slopes (Table 3.2). These variables were included because of their potential effect on the 

successful propagation of radio signals. To avoid errors with model convergence, the TPH variable 

was multiplied by a scalar of 0.01. The stand was used as a random effect to account for unobserved 

variation between stands. The response was the log odds of missed position updates along each LOS 

path during the 90-s interval centered around the observed geofence intersection time. 

Table 3.2. Model parameters. 

Variable Category 

TVi
a LOS obstruction 

TVmean
b LOS obstruction 

TBA Forest stand characteristic 

TPH Forest stand characteristic 

Ht Forest stand characteristic 

QMD Forest stand characteristic 

Slope Topography 

Aspect Topography 

Presence/absence of forest roads Topography 
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Presence/absence of streams Topography 

Presence/absence of convex slopes Topography 

Presence/absence of concave slopes Topography 
a TVi was used only in the analysis of missed radio signals. 

b TVmean was used only in the analysis of RMSE and geofence intersection alert delay. 

 

3.3.3 Analysis of RMSE 

A linear mixed-effects model was also used to test the null hypothesis that neither forest stand 

characteristics, topography, nor physical obstructions affected GNSS accuracy. The model was fitted 

using the lmer function in the R lme4 package [58] using the day on which sampling occurred as a 

random effect to account for variation between days, as might occur due to changing satellite 

availability and geometry. Variables included as fixed effects in this model were total vegetation 

(TVmean), TBA, TPH, Ht, QMD, slope, aspect, and the presence or absence of forest roads, streams, 

convex slopes, and concave slopes (Table 3.2). TVmean for each stand was calculated by averaging the 

total distance of vegetation (TVi) from the three LOS paths within each stand. Also, because variables 

recorded as either present or absent (forest roads, streams, convex slopes, and concave slopes) were 

quantified along each LOS path, these variables were also considered to be present in this stand-level 

analysis if they were present along any of the LOS paths. The response variable was the PT RMSE in 

each stand (RMSEi) calculated using Eq (4). 

3.3.4 Analysis of geofence intersection alert delay 

To test the null hypothesis that neither forest stand characteristics, topography, nor physical 

obstructions affected the time-to-signal accuracy of geofence crossings, a linear mixed-effects model 

was used to quantify relationships between the magnitude of geofence intersection alert delay as a 

function of forest stand characteristics, topographic structure, and vegetative LOS obstructions. The 

model was fitted using the lmer function in the R lme4 package [58] using the day on which sampling 

occurred as a random effect to account for variation between days, as might occur due to changing 

satellite availability and geometry. Variables included as fixed effects were total vegetation (TVmean), 

TBA, TPH, Ht, QMD, slope, aspect, and the presence or absence of forest roads, streams, convex 

slopes, and concave slopes (Table 3.2). TVmean for each stand was calculated by averaging the total 

distance of vegetation (TVi) from the three LOS paths within each stand. Also, because variables 

recorded as either present or absent (forest roads, streams, convex slopes, and concave slopes) were 

quantified along each LOS path, these variables were also considered to be present in this stand-level 

analysis if they were present along any of the LOS paths. The response variable was the overall 

intersection alert delay in each stand (Di) calculated using Eq (5). 
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3.3.5 Model selection 

For each of the three analyses, a full model was first fitted to the data using all fixed effect 

terms. These fixed effects were removed one at a time in order of highest p-values. The aictab 

function in the R AICcmodavg package [59] was used to compare all resulting models and the model 

with the lowest corrected Akaike Information Criterion (AICc) was selected. In terms of the geofence 

alert delay model, the first two models with the lowest AICc had fixed effect terms that were not 

significant (p-values > 0.05), in which case the model with the third lowest AICc was selected as the 

final model because all fixed effects had p-values ≤ 0.05. Inferences about all three final models were 

made using the lincon function in the R trtools package [60], which provides point estimates, standard 

errors, 95% confidence intervals, and p-values for each model term. In the case of the logistic 

regression model, the point estimates, standard errors, and confidence intervals were exponentiated to 

represent the effect of each variable on the odds of getting a missed signal. 

 

3.4 Results 

3.4.1 Analysis of missed radio signals 

The proportion of missed radio signals ranged from 0/90 to 20/90, with a mean of 3.30/90. 

The mixed-effects logistic regression model with the lowest AICc had total distance of vegetation 

along the LOS path (TVi), TPH*0.01, convex, stream, road, and aspect as fixed effects (Table 3.3). 

All fixed effects affected the odds of missed signals (p ≤ 0.05). The odds of a missed signal decreased 

by a factor of 0.93 per unit increase in TVi (p = 5.65 × 10−7), while the odds of a missed signal 

increased by a factor of 1.10 per unit increase in TPH*0.01 (p = 1.45 × 10−3). The odds of a missed 

signal were 1.61 times higher when a slope was convex vs. not convex (p = 3.58 × 10−2) and 2.00 

times higher in the presence of roads (p = 2.34 × 10−5). In the presence of streams, the odds of a 

missed signal decreased by a factor of 0.66 (p = 3.16 × 10−2). The odds of a missed signal were 1.05 

times higher on east, 2.17 times higher on north, and 2.92 times higher on west aspects (as compared 

to south aspects), although this effect was only significant on north (p = 9.99 × 10−3) and west (p = 

1.65 × 10−4) aspects. 

Table 3.3. Summary of mixed-effects logistic regression model using stand as a random effect and the odds of missed 

position updates as the response. 

Model term Estimate SE Lower CI Upper CI t-value DF p-value 

(Intercept) 0.0187 0.2759 0.0109 0.0321 −14.4247 Inf 3.6198 × 10−47 

TVi 0.9331 0.0138 0.9082 0.9588 −5.0028 Inf 5.6502 × 10−07 

TPH*0.01 1.1048 0.0313 1.0391 1.1747 3.1837 Inf 1.4539 × 10−03 

Convexa 1.6084 0.2264 1.0320 2.5067 2.0989 Inf 3.5823 × 10−02 

Streama 0.6552 0.1967 0.4455 0.9634 −2.1495 Inf 3.1597 × 10−02 

Forest roada 2.0042 0.1644 1.4522 2.7659 4.2298 Inf 2.3395 × 10−05 
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Aspect (E) 1.0531 0.3147 0.5683 1.9515 0.1644 Inf 8.6941 × 10−01 

Aspect (N) 2.1718 0.3011 1.2038 3.9182 2.5761 Inf 9.9911 × 10−03 

Aspect (W) 2.9186 0.2843 1.6719 5.0950 3.7679 Inf 1.6464 × 10−04 

Coefficient estimates, standard errors, and lower and upper bounds have been exponentiated to be on the odds scale. 

a Indicator variables represent the presence of each respective feature. 

 

3.4.2 Analysis of RMSE 

RMSE ranged from 1.81 m to 16.69 m, with a mean of 6.61 m. For the RMSE analysis, the 

mixed-effects model with the lowest AICc had Ht and QMD as fixed effects, both of which affected 

RMSE (p ≤ 0.05) (Table 3.4). The RMSE increased as Ht increased (p = 9.15 × 10−6) but varied 

indirectly with QMD (p = 3.02 × 10−3). Figure 3.4 illustrates the relationships between predicted 

RMSE as a function of the two explanatory variables included in the final mixed-effects model. 

 

Figure 3.4. Mixed-effects model predictions for PT RMSE. Predicted RMSE as a function of the two model variables (Ht 

and QMD). Predictions for each variable were made using the mean of the other predictor. 95% confidence intervals 

computed using the bootstrap are shown as colored bands. Points on each plot represent partial residuals. 

 

Table 3.4. Summary of mixed-effects linear regression model using day as a random effect and RMSE as the response. 

Model term Estimate SE Lower CI Upper CI t-value DF p-value 

(Intercept) 3.7528 1.2790 1.2461 6.2595 2.9343 Inf 3.3435 × 10−03 

Ht 0.6276 0.1415 0.3503 0.9048 4.4363 Inf 9.1526 × 10−06 

QMD −0.2737 0.0923 −0.4547 −0.0928 −2.9653 Inf 3.0243 × 10−03 
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3.4.3 Analysis of geofence intersection alert delay 

Geofence intersection alert delay ranged from −5.33 s to 66 s, with a mean of 18.62 s. The 

final mixed-effects model used to analyze the delay had TBA, concave, and aspect as fixed effects 

(Table 3.5). This model had the third lowest AICc, but was chosen because the two models with 

lower AICc values each had model terms that were not significant (p > 0.05). The geofence 

intersection alert delay increased as TBA increased (p = 6.49 × 10−4) and was also higher in the 

presence of concave slopes when compared to slopes that were not concave (p = 2.46 × 10−2). Finally, 

the delay was smaller on east, north, and south aspects (as compared to west aspects), although this 

effect was only significant on east aspects (p = 1.83 × 10−2). Figure 3.5 illustrates the relationships 

between the predicted alert delay as a function of the three explanatory variables included in the final 

mixed-effects model. 

 

Figure 3.5. Mixed-effects model predictions for geofence intersection alert delay. Predicted delay as a function of the three 

model variables (TBA, concave, and aspect). Predictions for each variable were made using the mean of the other predictors. 

95% confidence intervals computed using the bootstrap are shown as colored bands. Points on each plot represent partial 

residuals. 

 

Table 3.5. Summary of mixed-effects linear regression model using day as a random effect and geofence intersection alert 

delay as the response. 

Model term Estimate SE Lower CI Upper CI t-value DF p-value 

(Intercept) 11.9425 8.5931 −4.8998 28.7847 1.3898 Inf 1.6460 × 10−01 

TBA 0.4988 0.1463 0.2121 0.7855 3.4104 Inf 6.4876 × 10−04 

Concavea 13.5946 6.0494 1.7381 25.4512 2.2473 Inf 2.4622 × 10−02 

Aspect (E) −19.0832 8.0855 −34.9306 −3.2359 −2.3602 Inf 1.8267 × 10−02 

Aspect (N) −15.7249 9.4249 −34.1974 2.7475 −1.6684 Inf 9.5227 × 10−02 

Aspect (S) −12.5487 9.5119 −31.1916 6.0942 −1.3193 Inf 1.8708 × 10−01 
a Variable indicating the presence of concave slopes. 
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3.5 Discussion 

Analysis of missed radio signals indicated that forest stand characteristics, topography, and 

LOS obstructions affected the odds of missed signals. The odds of missed radio signals varied 

directly with stand density (TPH) and varied indirectly with LOS obstructions (TVi). Because 

previous work has shown that radio signal attenuation increases with greater vegetation depth and 

density, this result is somewhat counterintuitive [42–45]. However, the magnitude of these effects on 

the odds ratio was relatively small and may be a result of an interaction between stand density and 

vegetation in the LOS and/or external influences from wind or humidity [42,43,46–48]. Furthermore, 

topography influenced radio signal propagation, as convex slopes, aspect, and the presence of forest 

roads and streams affected the odds of missed signals. The mean number of missed signals during the 

observed 90-s interval was small, suggesting that relatively few position updates are missed at short 

distances (100 m). 

Analysis of the PT RMSE indicated that only stand variables affected stationary GNSS 

accuracy. RMSE varied directly with Ht, but decreased with increasing QMD. Because characteristics 

associated with increasing forest stand density, such as canopy cover, are known to reduce GNSS 

accuracy, we expected that both predictors would have positive relationships with RMSE. Thus, this 

result is counterintuitive and may be an artefact of the data. A few sampled stands had relatively open 

canopies with large, mature trees at low density that may have affected the relationship between 

RMSE and QMD. 

Both stand and topographic variables affected geofence intersection alert delay. Because of 

the way time delays were calculated, positive delays represent late alerts while negative delays 

represent early alerts. The alert delay varied directly with TBA and was higher in the presence of 

concave slopes. Aspect also affected alert delay, with delay being smaller on east slopes compared to 

west slopes. Taken together these results show that the time-to-signal accuracy of GNSS-RF geofence 

crossings is affected by both GNSS accuracy and radio signal propagation. 

The relationships among the response and predictor variables were not strong for any of the 

three models. In the case of the missed radio signals, this could be due to the fact that the proportion 

of missed signals was generally low and the distance between radios fairly small (100 m). In terms of 

alert delay and RMSE, it is important to note that PTs receive coordinates from NAVSTAR GPS 

satellites only. Newer GNSS devices receive coordinates from multiple satellite constellations (i.e., 

from GPS, GLONASS, and BeiDou), which may improve accuracy and reliability in forested 
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environments [61,62]. We collected data for a single geofence crossing in each stand, and RMSE 

measurements were collected for 5 min at each location. It is possible that clearer relationships would 

be evident if RMSE was determined using data collected over a longer period of time. Furthermore, 

future work should perform similar experiments using GNSS-RF transponders capable of processing 

multiple satellite constellations, as this may yield stronger patterns. 

Our results suggest that GNSS-RF radio signal propagation is related to stand density, 

topography, and obstructions in the line-of-sight and that geofence alert timing is related to stand 

characteristics and topography. This indicates that the accuracy and successful sharing of GNSS 

coordinates may change depending on stand conditions and topography, both of which vary on active 

timber sales. Thus, real-time positioning based on consumer-grade GNSS-RF units may improve 

general communication and situational awareness on logging operations by allowing ground workers 

and equipment operators to view the relative positions of nearby workers and machines in real-time 

on mobile devices. However, high-resolution, mission-critical safety applications of this technology 

(e.g., geofencing) are not yet advisable under mature forest conditions. Future work should focus on 

the development of correction methods that account for the effects of forest stand characteristics on 

GNSS accuracy and geofence alert delay. Previous work has shown that adjustments should also be 

made for the angle and speed at which a tracked object approaches a geofence [36,37]. Such 

correction methods may improve reliability and enable a broader range of uses of GNSS-RF 

technology for safety applications in natural resources, especially if combined with GNSS-RF 

transponders that communicate with multiple satellite systems. Moreover, phone-based GNSS 

positioning that incorporates inertial navigation system (INS) capabilities has the potential for 

improving positioning accuracy. When paired with emerging Bluetooth-based augmentation 

technologies to create ad-hoc networks, these mobile-based solutions may be promising alternatives 

to dedicated GNSS-RF units for real-time positioning in remote environments. 
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4.1 Abstract 

Real-time data- and location-sharing using mesh networking radios paired with smartphones 

may improve situational awareness and safety in remote environments lacking communications 

infrastructure. Despite being increasingly used for wildland fire and public safety applications, there 

has been little formal evaluation of the network connectivity of these devices. The objectives of this 

study were to 1) characterize the connectivity of mesh networks in variable forest and topographic 

conditions; 2) evaluate the abilities of lidar and satellite remote sensing data to predict connectivity; 

and 3) assess the relative importance of the predictive metrics. A large field experiment was 

conducted to test the connectivity of a network of one mobile and five stationary goTenna Pro mesh 

radios on 24 Public Land Survey System sections in northern Idaho. Dirichlet regression was used to 

predict connectivity using 1) both lidar- and satellite-derived metrics (LIDSAT); 2) lidar-derived 

metrics only (LID); and 3) satellite-derived metrics only (SAT). On average the full network was 

connected only 32.6% of the time and the mobile goTenna was disconnected from all other devices 

18.2% of the time. RMSE for the six connectivity levels ranged from 0.101 to 0.314 for the LIDSAT 

model, from 0.103 to 0.310 for the LID model, and from 0.121 to 0.313 for the SAT model. 

Vegetation-related metrics affected connectivity more than topography. Developed models may be 

used to predict the expected performance of real-time mesh networks to support wildland firefighting, 

forestry, and public safety. However, safety professionals should be aware of the impacts of 

vegetation on connectivity. 

 

4.2 Introduction 

Use of new mesh radio devices that pair with smartphones using Bluetooth can facilitate 

global navigation satellite system - radio frequency (GNSS-RF) sharing of locations among people 

and equipment in remote environments. This type of technology has potential applications in public 

safety when communications infrastructure is absent by enabling communication of location-aware 

geospatial information among wildland firefighters, search and rescue (SAR), and other emergency 
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personnel to improve situational awareness (SA) (CoE 2018a, 2018b, 2019; Keefe et al. 2019a). This 

technology may be useful for disaster communications in healthcare (Goldberg et al. 2021) and for 

digital safety applications in forestry (Wempe et al. 2019). Wildland firefighting is a particularly 

strenuous and hazardous occupation, with 480 fatalities between 1990 and 2016 (Risk Management 

Committee 2017). Vehicle- and aviation-related incidents, medical events, such as strokes and heart 

attacks, and fire entrapments were among the leading causes of wildland firefighter fatalities from 

2001 to 2012 (Butler et al. 2017) as well as between 2007 and 2016 (Risk Management Committee 

2017). To address this, efforts have been made to increase safety and reduce injuries and fatalities 

among wildland firefighters (Risk Management Committee 2017). Section 1114 of the John D. 

Dingell, Jr. Conservation, Management, and Recreation Act signed into law in 2019 required 

implementation of a system to monitor the locations of all active wildland fire resources used by 

Federal Type 1 incident management teams in the United States (Murkowski 2019). As part of the 

enacted legislation, interagency Dingell Act Resource Tracking (DART) teams were required to 

conduct pilot projects to evaluate available resource tracking technologies that could be used on type I 

incidents (U.S. Department of Agriculture 2020; DART Team 2021). One tracking system evaluated 

by the DART Team was the Team Awareness Kit (TAK) smartphone app paired with goTenna Pro X 

mesh networking radios (goTenna Inc, Brooklyn, NY, USA), which allow communication in areas 

lacking cellular service (DART Team 2021). goTenna Pro mesh radios pair with smartphones using 

Bluetooth and enable automatic sharing of GNSS coordinates, text messages, points, and shapes 

within the TAK app via radio frequency (DART Team 2021). Previous evaluations of these devices 

have reported on their general performance and potential for increasing SA (CoE 2018a, 2018b, 2019; 

Keefe et al. 2019a; Wempe et al. 2019) and their ability to transmit to a stationary repeater (DART 

Team 2021). However, there has not been a comprehensive, replicated study evaluating the 

connectivity of networks of goTenna Pro mesh radio devices operating in a range of forest vegetation 

and terrain types in the Northern Rocky Mountain region. 

In addition to improved SA in wildland firefighting, GNSS-RF positioning, geofencing, mesh 

networking, and human activity recognition have a range of other possible applications in natural 

resource safety and management (Keefe et al. 2019a). For example, by monitoring the current safety 

status and location of individuals relative to workplace hazards, real-time positioning has been 

evaluated as a tool for improving SA and safety on logging operations (Wempe and Keefe 2017; 

Zimbelman et al. 2017; Newman et al. 2018; Zimbelman and Keefe 2018; Wempe et al. 2019). 

Additionally, human activity recognition using wearable and mobile device sensors can be used to 

quantify occupational tasks in forestry (Keefe et al. 2019b; Zimbelman and Keefe 2021), which could 



60 

 

 

ultimately improve health and safety as well as precision forestry and fire management. The use of 

these technologies, together with the increasing availability of remote sensing and big data in forestry, 

represent aspects of smart forestry and Forestry 4.0 (Gingras and Charette 2017; Müller et al. 2019; 

Zou et al. 2019; Feng and Audy 2020; Keefe et al. 2022). Forestry 4.0 is based on the adoption of 

Industry 4.0 concepts in forestry, such as the digitalization, automation, and increase in precision in 

the forestry supply chain (Gingras and Charette 2017; Müller et al. 2019; Feng and Audy 2020). 

Recent advances in GNSS-RF mesh and mobile ad hoc networks (MANETs) have made it possible to 

share the locations obtained from the GNSS chip in phones with other paired phones and devices. 

Depending on the particular technology, users may share locations, send texts, and even make voice 

calls in the absence of cellular networks or base stations (Wu et al. 2000; Marina and Das 2001; 

Tseng et al. 2002). Furthermore, many of these technologies also form mesh, or multi-hop, networks, 

in which each node in the network can relay data to other nodes (Marina and Das 2001; Tseng et al. 

2002). Unlike traditional radios, mesh networking allows information to be routed through other 

nodes to enable communication between users who may not have a direct line-of-sight (LOS) 

connection (Tseng et al. 2002). 

A mesh network is considered connected if a path exists between each pair of nodes (Wang et 

al. 2010). One way to evaluate mesh networks is to calculate the connectivity probability, which is the 

proportion of time the network is connected over a specified observation period (Wang et al. 2010). 

Traditional approaches to studying landscape-scale connectivity of radio networks have relied heavily 

on computer-intensive methods that simulate routing protocols (Hong et al. 1999; Royer and Toh 

1999; Marina and Das 2001; Pathak and Dutta 2011), mobility models (Hong et al. 1999; Jardosh et 

al. 2003; Aschenbruck et al. 2009; Wang et al. 2010, 2019; Papageorgiou et al. 2012; Schwamborn 

and Aschenbruck 2013), and radio signal propagation models (Stepanov and Rothermel 2008; 

Kamarudin et al. 2010; Galvan-Tejada and Duarte-Reynoso 2012). Radio propagation models can be 

either theoretical or empirical, and many are derived using both analytical and empirical methods 

(Rappaport 2002; Alsayyari et al. 2014). Because they are based on actual measurements, empirical 

models can account for all the known or unknown environment-related factors that affect radio wave 

propagation, but they may not be valid in different environments or at different transmission 

frequencies (Rappaport 2002). There is also a tradeoff in computational complexity between 

empirical models and more realistic models that account for geography, terrain, or vegetation 

(Stepanov and Rothermel 2008). 
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Early research on near-ground communication and radio transmission in forested 

environments demonstrated the ability of empirical radio propagation models that account for foliage 

to predict measured VHF and UHF path loss in vegetation (Joshi et al. 2005; Meng et al. 2010). More 

recently, wireless sensor networks (WSNs), which rely on near-ground peer-to-peer propagation and 

share similar features with MANETs used for public safety, have been evaluated for environmental 

monitoring and communication in remote vegetated environments (Gay-Fernández et al. 2010; 

Kamarudin et al. 2010; Gay-Fernández and Cuiñas 2013; Anastassiu et al. 2014; Smith et al. 2016). 

Olasupo and Otero proposed a variety of path loss models based on WSN nodes deployed in jungle 

environments and compared these to theoretical models, most of which were found to under-predict 

path loss (Olasupo and Otero 2020). To move beyond empirical predictions that used only distance 

and frequency to estimate path loss, Azevedo and Santos developed empirical models that accounted 

for forest stand parameters including tree density, tree diameter, canopy diameter, and foliage density 

(Azevedo and Santos 2011, 2017). Anastassiu et al. developed computational models based on tree 

geometry and the electrical characteristics of air, soil, and vegetation (Anastassiu et al. 2014). 

Kotz et al. noted that most simulations evaluating wireless networks assume propagation 

along a flat plane and use outdoor experiments to show that future research should account for radio 

propagation in 3D terrain (Kotz et al. 2004). To incorporate the effects of terrain when simulating 

static ad hoc networks, Durkin’s propagation model (Edwards and Durkin 1969) has been used with 

digital elevation models (DEMs) or triangulated irregular networks (TINs) to show that terrain can 

decrease the number of links between nodes (Filiposka et al. 2013) and change network connectivity 

(Nguyen et al. 2016). Simulations using mobile nodes together with Durkin’s model and DEMs have 

shown that incorporating terrain results in more realistic estimates of network performance, 

demonstrating that terrain can both degrade and improve performance (Filiposka and Trajanov 2011) 

and that some performance metrics may decrease with increasing moving speed (Lin et al. 2013). Loo 

et al. used a 3D terrain model based on DEMs to estimate path loss and found that the terrain profile 

between nodes was an important predictor (Loo et al. 2017). DEMs have also been used to develop 

methods that optimize the placement of WSNs for wildfire monitoring (Teguh et al. 2014). 

As is evident in prior literature, the majority of past research has emphasized use of 

simulation modeling methods that require assumptions about network propagation and routing 

protocols. An alternative approach to studying the connectivity of mesh networks in complex, 

forested landscapes that has received comparatively little attention is the use of remote sensing to 

characterize and map connectivity. Al-Turjman et al. mention using lidar to characterize trees and 
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forests in order to determine potential node positions for optimal network deployment (Al-Turjman et 

al. 2009). To link remote sensing data to measured radio frequency path loss, Jiang et al. used the 

Normalized Difference Vegetation Index (NDVI) derived from Landsat 8 satellite imagery to predict 

the path loss exponent (Jiang et al. 2014). Demetri et al. expanded on the model presented by 

Azevedo and Santos (Azevedo and Santos 2011) to propose a method for predicting signal 

attenuation using lidar, and validated predictions using WSN deployments in forests (Demetri et al. 

2015). This model was subsequently used to develop an automated approach to identifying optimal 

node placement in forested environments (Demetri et al. 2019). Oroza et al. developed a machine 

learning program that uses lidar data to identify potential locations for snow sensors (Oroza et al. 

2016). Additionally, RSSI measurements from the American River Hydrologic Observatory were 

used to train a path loss model using machine learning (Oroza et al. 2017). A variety of independent 

variables were used in the model, including path ground distance, canopy coverage, terrain 

complexity, and path angle, many of which were extracted from DEMs or the National Land Cover 

Database (Oroza et al. 2017). Prediction error was lower using machine learning when compared to 

traditional empirical path loss model approaches (Oroza et al. 2017). 

The effects of terrain and vegetation on mesh network connectivity have been evaluated 

independently, but the potential interactions and relative importance of the two have not been 

quantified. In this study, we developed a method to predict mesh network connectivity using remote 

sensing data without relying on traditional network simulators. We performed a large field 

experiment to test the connectivity of a network of goTenna Pro devices paired with Google Pixel 

smartphones. Dirichlet regression was used to predict connectivity using terrain and vegetation 

metrics as predictors. The metrics were derived from lidar data, satellite imagery, and a combination 

of the two. Our first research objective was to characterize the connectivity of mesh networks in 

variable forest and topographic conditions in the northern Rocky Mountain region of the United 

States. Our second objective was to evaluate the abilities of lidar and satellite remote sensing data to 

predict connectivity, as evident in useful predictive regression relationships. We hypothesized that 

using both lidar- and satellite-derived metrics would improve model predictions. Our third objective 

was to assess the relative importance of the different predictive metrics. In doing so, we hypothesized 

that terrain-related metrics would be more important than the vegetation metrics for predicting 

connectivity, as indicated by how frequently these two types of variables were selected for inclusion 

in final models. This work will inform use of goTenna Pro and other ad hoc mesh radio networks for 

resource monitoring in wildland firefighting, forestry and public safety and allow others to predict the 

connectivity of these networks using publicly available remote sensing data. 
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4.3 Materials and Methods 

4.3.1 Field study 

In order to evaluate the terrain and vegetation factors affecting the connectivity of VHF-based 

mesh networks, a designed field experiment was conducted on 24 sections delineated by the Public 

Land Survey System (PLSS). Sections are approximately one square mile in size and were selected 

from within the boundary of the Clearwater–Nez Perce 3DEP 2016 lidar acquisition covering 2,662 

square miles in northwestern Idaho and southeastern Washington (Idaho Lidar Consortium). In an 

effort to categorize airborne lidar datasets, the National Enhanced Elevation Assessment (NEEA) 

defined five elevation data Quality Levels (QLs) characterized by horizontal resolution and vertical 

accuracy (Dewberry 2012). The United States Geological Survey (USGS) National Geospatial 

Program (NGP) established the 3D Elevation Program (3DEP) based on the NEEA recommendations 

(Heidemann 2018). Of the five quality levels, Quality Level 1 (QL1) and Quality Level 2 (QL2) are 

considered acceptable for 3DEP and the standard national DEM available through The National Map 

(Heidemann 2018). QL1 data has an aggregate nominal pulse spacing of ≤ 0.35 m and aggregate 

nominal pulse density of ≥ 8.0 pls/m2 (Heidemann 2018). QL2 data has an aggregate nominal pulse 

spacing of ≤ 0.71 m and aggregate nominal pulse density of ≥ 2.0 pls/m2 (Heidemann 2018). Both 

QL1 and QL2 have vertical accuracies (RMSEz) of ≤ 10 cm (Heidemann 2018). Both QL1 and QL2 

lidar was flown for the Clearwater–Nez Perce acquisition between October 29, 2016, and November 

13, 2016, with the QL1 data covering 847 square miles and the QL2 data covering 1,815 square 

miles. This study was confined to the area covered only by QL1 data (Figure 4.1). The QL1 data was 

flown at an altitude of 1,900 m with a 60° field of view. The resulting area had an average point 

density of 9.5 pts/m2 and average point spacing of 0.35 m. Quantum Spatial (St. Petersburg, FL, 

USA) processed the QL1 data into a 0.5-m hydro-flattened bare earth raster DEM. All lidar data was 

downloaded using the Globus Web App (University of Chicago 2022). 
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Figure 4.1. Map of the area covered by the entire Clearwater–Nez Perce 3DEP 2016 lidar acquisition, highlighting the QL1 

data boundaries and the 24 randomly-selected PLSS sections. 

 

In order to capture variability in terrain, sections were selected based on the rumple index, 

which can be used to characterize ground roughness (Blanchette et al. 2015). The 0.5-m DEMs were 

used to calculate the rumple index using the rumple_index function from the lidR package (Roussel 
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and Auty 2021) in the R statistical programming environment (R Core Team 2021). This function 

calculates the ratio between a surface’s area and its projected area on the ground. A rumple index was 

calculated for each section covered completely by the QL1-derived 0.5-m DEMs. Rumple indices for 

sections covered by the entire QL1 dataset ranged from 1.005996 – 1.291691, although sections with 

rumple indices > 1.19 were excluded due to limited accessibility. Sections were visually inspected in 

Google Earth, and sections that 1) appeared to be less than 25% forested; 2) had major river 

crossings; or 3) included any urban areas were removed from consideration. While PLSS sections are 

supposed to be one square mile (260 hectares [ha]) in area, the actual areas vary and only sections that 

were within 10% (26 ha) of this were included. After filtering sections by these criteria, the number of 

eligible sections was reduced from 626 to 286, with rumple indices ranging from 1.005997 – 

1.188209. This reduced range was divided into five categories (1.005997 – 1.042439; 1.042439 – 

1.078882; 1.078882 – 1.115324; 1.115324 – 1.151767; 1.151767 – 1.188209) and five sections from 

each category were randomly selected (Figure 4.1). Sections were located on a mix of public and 

private land, and only sections where landowner permission was granted were utilized. Only seven of 

the 286 eligible sections fell into the highest rumple category (1.151767 – 1.188209). Two of these 

were located on private land, and landowner permission was not granted. A third section was 

inaccessible due to hunting restrictions, weather, and its remote location. This resulted in only four 

eligible sections in the highest rumple category and meant a total of 24 sections were used in the 

study. 

Field data was collected between June 14, 2019, and November 1, 2019. Within each section, 

five goTenna Pro units paired with Google Pixel smartphones were placed in randomly-selected 

locations. In order to ensure goTennas were not too close together, the distance between all goTenna 

locations within each section was calculated prior to sampling and new locations were randomly 

selected whenever the distance between devices was less than 75 m. goTenna Pros operate on tunable 

VHF frequencies between 142 – 175 MHz, with options to configure both control and data channels. 

For this study, the Pros were set up with two control channels (151.7000 MHz and 151.7600 MHZ) 

and one data channel (151.5125 MHZ) licensed to our lab group. Power output was set to 5 W and the 

bandwidth was 11.8 kHz. When paired with a smartphone, users can send text messages and share 

locations (acquired from the smartphone’s GNSS chip) through the goTenna. All Pro/Pixel pairs were 

mounted 1 m above the ground on wooden stakes and were set to transmit their coordinates to each 

other every 30 seconds. Data was recorded using the Android Team Awareness Kit – Civil Use 

(ATAK-CIV) app, version 3.8.1 (TAK Product Center 2018) and the goTenna ATAK-CIV Plugin. 

Because of the way in which ATAK-CIV records location data, it is impossible to detect missed 
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locations unless you know the tracked unit is moving and expect a change in coordinates every 30 s. 

Thus, a sixth goTenna Pro paired with a Pixel was carried on a belt by a volunteer who traversed each 

section once diagonally. The path began at a randomly-selected corner of the section and the 

volunteer walked for at least one hour. Due to the variable nature of the terrain and vegetation, the 

time it took to traverse each section varied. As a result, the number of total transmissions in each 

section ranged from 129 to 327. The true coordinates of this mobile unit were considered to be the 

coordinates recorded locally and were used to determine whether each new location was successfully 

transmitted to the five stationary Pros. Thus, for each section we calculated the proportion of the total 

transmitted locations that were received by each of the stationary Pros. Additionally, there were 

occasional instances when the mobile goTenna did not record a change of coordinates for 30 s or 

longer, such as when GNSS signal quality was poor or when the volunteer stopped moving for a brief 

period. This would then be detected as an incorrect missed signal when looking at the data recorded 

by the stationary units. To avoid this, the dataset was visually inspected to ensure that all missed 

signals were due to missed transmissions, and not due to a lack of change of coordinates from the 

mobile unit. Finally, one of the stationary goTenna Pros turned off for an unknown reason during data 

collection in one PLSS section. This occurred when the volunteer carrying the mobile goTenna was 

more than halfway through traversing the section and as a result, connectivity data was calculated 

only up until the point at which the stationary goTenna turned off. 

4.3.2 Remote sensing data processing 

4.3.2.1 Lidar metrics 

In order to predict connectivity, a variety of metrics were derived from the QL1 lidar data as 

well as from Landsat 8 satellite imagery in order to represent the potential effects of terrain, 

vegetation, and canopy cover. All lidar data was processed in R, version 4.1.2 (R Core Team 2021) 

and a variety of metrics based on the DEMs, canopy height models (CHMs), point cloud, and voxels 

were calculated. To characterize terrain roughness, the 0.5-m DEMs were used to calculate the 

rumple index for each section as described above, the surface relief ratio (SRR), as well as the mean 

and standard deviation of slope, topographic position index (TPI), roughness, flow direction, 

hierarchical slope position (HSP), McNab’s curvature, terrain ruggedness index (TRI), heat load 

index (HLI), and dissection (Table A.1 in Appendix A). Vegetation height was calculated by 

normalizing the z-values of the lidar point cloud using the normalize_height function in the R lidR 

package (Roussel and Auty 2021) together with the 0.5-m DEMs. The normalized point cloud was 

cropped for each section and used to calculate a variety of metrics to characterize vegetation and 

canopy cover. First, the point cloud was visualized for each section, and any remaining obvious 
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outliers were removed manually. The normalized point cloud was then used to create a 0.5 m pit-free 

CHM using the lidR grid_canopy function, using only first vegetation returns ≥ 0.27 m in height. The 

lidR rumple_index function was then used with the resulting CHM to calculate a rumple index for the 

canopy, in order to characterize the irregularity and topography of the canopy surface (Parker et al. 

2004; Blanchette et al. 2015). The percentage of returns classified as “ground” was also calculated 

using the lidR cloud_metrics function using all vegetation returns ≥ 0.27 m and the lidR LAD 

function was used to calculate leaf area density using 1 m height bins up to 30.5 m using all, first, and 

last vegetation returns ≥ 0.27 m (Table A.1 in Appendix A). Finally, custom functions (Blackburn 

2021) developed by Blackburn et al. (Blackburn et al. 2021) were used to calculate a variety of cloud- 

and voxel-based metrics (Table A.1 in Appendix A). Both the point cloud, or area-based, and voxel-

based variables summarized aspects of point density, height, and intensity across each section. 

Voxels, or volumetric pixels, are created by dividing the lidar point cloud along the horizontal and 

vertical axes, and voxel-based metrics are then calculated by summarizing the points encompassed by 

each voxel (Pearse et al. 2019). The Blackburn std_cloud function (Blackburn 2021) was used within 

the lidR cloud_metrics function to calculate a variety of cloud-based metrics using all, first, and last 

vegetation returns ≥ 0.27 m (Table A.1 in Appendix A). The Blackburn std_voxel and vox_mt 

functions (Blackburn 2021) were modified slightly and used within the lidR cloud_metrics function 

to calculate a variety of voxel-based metrics at 3 m, 4 m, and 5 m resolutions using all vegetation 

returns ≥ 0.27 m (Table A.1 in Appendix A). Specifically, the original skewness and kurtosis 

calculations within both the std_voxel and vox_mt functions were replaced with the skewness and 

kurtosis functions in the R moments package (Komsta and Novomestky 2015) and the height 

thresholds and height bins used to calculate canopy closure (cc_abovez_res) and mean percentage 

canopy closure (p_cc_res) were modified for each resolution (Table A.1 in Appendix A). In total, 919 

lidar metrics were calculated. These lidar DEM-, point cloud-, and voxel-derived metrics were 

included because they have been shown to be correlated with forest structural parameters (Gobakken 

and Næsset 2008; Popescu and Zhao 2008; Woods et al. 2008; Falkowski et al. 2010; Latifi et al. 

2010; van Ewijk et al. 2011; González-Ferreiro et al. 2012; Hudak et al. 2012, 2016; Hyyppä et al. 

2012; Lu et al. 2012; Pope and Treitz 2013; Blanchette et al. 2015; Ehbrecht et al. 2016; Kim et al. 

2016; Pearse et al. 2017, 2019; Phua et al. 2017; Tenneson et al. 2018; Blackburn et al. 2021). 

4.3.2.2 Landsat 8 satellite metrics 

Landsat 8 Operational Land Imager (OLI) Collection 2 Tier 1 Level-2 Science Product 

(L2SP) scenes covering the 24 sections were downloaded from USGS EarthExplorer (U.S. 

Geological Survey 2022) using an acquisition date range from June 1, 2019 to November 1, 2019 and 
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cloud cover for the entire scene from 0% to 20%. Landsat data was processed in R. Eligible scenes 

for each section were cropped using the section boundary, and these resulting images were then used 

to ensure that less than 5% of the imagery for each section was “not clear” (using the Pixel QA bands) 

and that less than 5% of the section was classified as high or medium aerosols (using the Aerosol QA 

bands). After selecting for these criteria, the scene acquired closest in time to the sampling date for 

each section was ultimately chosen to be used to calculate a variety of metrics for each section. L2SP 

surface reflectance scenes for bands 1–7 were rescaled using multiplicative and additive band-specific 

scale factors (U.S. Geological Survey 2020) in order to calculate percentage reflectance values. These 

scenes were then masked using the Pixel QA and Aerosol QA bands to remove pixels that were not 

clear or were classified as high or medium aerosols. Basic surface reflectance metrics (mean and 

standard deviation) for each section were calculated for bands 1–7 of the resulting masked scenes 

(Table 4.1). Mean and standard deviation of NDVI were also calculated for each section using the 

masked scenes (Table 4.1). NDVI was calculated using Eq (1): 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
(1) 

Where Red is the red band (Landsat 8 OLI band 4) reflectance and NIR is the near-infrared band 

(Landsat 8 OLI band 5) reflectance. 

Finally, grey-level co-occurrence matrix (GLCM) texture metrics were calculated for each 

section using the glcm function in the R glcm package (Zvoleff 2020) and the masked Landsat scenes. 

Specifically, the mean and standard deviation of eight texture measures (mean, variance, 

homogeneity, contrast, dissimilarity, entropy, second moment, and correlation) were calculated for 

bands 1–7 using four window sizes (3, 5, 7, and 9) and 64 grey levels (Table 4.1). A total of 464 

satellite metrics were calculated. These satellite-derived metrics were included because they have 

been shown to be correlated with forest structural parameters (Pocewicz et al. 2004; Hudak et al. 

2006; Kayitakire et al. 2006; Gasparri et al. 2010; Gonzalez et al. 2010; Latifi et al. 2010; Gómez et 

al. 2012; Lu et al. 2012; Kelsey and Neff 2014; Dube and Mutanga 2015; Phua et al. 2017). 

Table 4.1. Satellite-derived metrics. 

Variable Description 

SR_stat_B Surface reflectance statistics (stat = mean and standard deviation) for each band (B = 1–7), 

calculated for each section 

NDVI_stat NDVI statistics (stat = mean and standard deviation) calculated for each section 

GLCM_stat_B_win Eight GLCM texture metrics (GLCM = mean, variance, homogeneity, contrast, dissimilarity, 

entropy, second moment, and correlation) were calculated for each section using four 

window sizes (win = 3, 5, 7, 9) for each band (B = 1–7), then two statistics (stat = mean and 

standard deviation) were calculated for each metric 
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4.3.3 Model development 

4.3.3.1 Connectivity 

Connectivity was calculated as the proportion of the total number of transmitted signals sent 

from the mobile goTenna that were received by five, four, three, two, one, or zero stationary 

goTennas (Table 4.2, Figure 4.2). Specifically, the proportion of total signals received by all five 

stationary goTennas (Con_6) represented the proportion of time the full network of six devices (i.e., 

the five stationary goTennas and one mobile goTenna) was connected. The proportion of total signals 

received by zero stationary goTennas (Con_1) represented the proportion of time none of the 

stationary goTennas were connected to the mobile goTenna. This resulted in a compositional dataset, 

where the dependent variables for each section were the proportions of the six connectivity levels, 

which summed to one. A common problem in compositional data analysis occurs when the dataset 

contains zero values, since both traditional log-ratio analysis and Dirichlet regression cannot handle 

zero values in any of the compositional responses. Zeros can be considered to be rounded, essential, 

or count zeros (Martín-Fernández et al. 2003, 2015). Rounded zeros can occur when a component is 

present but below a detection limit, and it is often suitable to replace rounded zeros by a small value 

(Martín-Fernández et al. 2003). Essential zeros represent the true absence of that portion of the 

composition, and it is generally not appropriate to replace these zeros (Martín-Fernández et al. 2003). 

Instead, various approaches such as combining categories, have been suggested (Martín-Fernández et 

al. 2003). Count zeros are considered to represent values that may have been observed if a different 

sampling design or larger number of trials had been utilized (Martín-Fernández et al. 2015). Zero 

values in our dataset were considered to be count zeros and were replaced using the cmultRepl 

function in the R zCompositions package (Palarea-Albaladejo and Martín-Fernández 2015), which 

imputes zeros in compositional count datasets based on Bayesian-multiplicative replacement (Martín-

Fernández et al. 2015; Palarea-Albaladejo and Martín-Fernández 2015). Specifically, this method 

imputes zero counts and then multiplicatively adjusts the remaining non-zero components to produce 

a set of proportions that still sum to one (Martín-Fernández et al. 2015; Palarea-Albaladejo and 

Martín-Fernández 2015). 
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Figure 4.2. Example locations of the one mobile and five stationary goTenna Pros that may result in each of the six 

connectivity levels. The mobile goTenna is shown at various locations along the diagonal walking path within a PLSS 

section. Panels A–F represent connectivity levels Con_6–Con_1, respectively. These connectivity levels correspond to 

instances in which five, four, three, two, one, or zero stationary devices are connected to the mobile goTenna Pro, 

respectively. 

 

Table 4.2. The six compositional response variables representing the six connectivity levels and calculation methods. 

Variable Description Calculation 

Con_6 Proportion of time the full network of six devices 

(i.e., all five stationary goTennas and one mobile 

goTenna) were connected 

# of signals received by all five stationary goTennas 

/ # of total transmitted signals sent from mobile 

goTenna 

Con_5 Proportion of time five devices (i.e., four 

stationary goTennas and one mobile goTenna) 

were connected 

# of signals received by four stationary goTennas / # 

of total transmitted signals sent from mobile 

goTenna 

Con_4 Proportion of time four devices (i.e., three 

stationary goTennas and one mobile goTenna) 

were connected 

# of signals received by three stationary goTennas / 

# of total transmitted signals sent from mobile 

goTenna 

Con_3 Proportion of time three devices (i.e., two 

stationary goTennas and one mobile goTenna) 

were connected 

# of signals received by two stationary goTennas / # 

of total transmitted signals sent from mobile 

goTenna 



71 

 

 

Con_2 Proportion of time two devices (i.e., one stationary 

goTenna and one mobile goTenna) were 

connected 

# of signals received by one stationary goTenna / # 

of total transmitted signals sent from mobile 

goTenna 

Con_1 Proportion of time zero stationary goTennas were 

connected to the mobile goTenna 

# of signals received by zero stationary goTennas / # 

of total transmitted signals sent from mobile 

goTenna 

 

4.3.3.2 Dirichlet regression 

Dirichlet regression is a multivariate generalization of beta regression and can be used to 

analyze compositional data (Gueorguieva et al. 2008). It has been used in forestry to model 

compositional data, specifically to predict forestry planned end products (Hickey et al. 2015), species 

proportions for forest inventories (Puliti et al. 2017), and biomass component proportions (Poudel and 

Temesgen 2016; Zhao et al. 2016; Eker et al. 2017; Poudel et al. 2019). In the common 

parameterization of the Dirichlet distribution, there is a shape parameter αc for each of the c 

components. The expected value of any given component yc is 𝐸[𝑦𝑐] = 𝛼𝑐/𝛼0, where α0 is the sum of 

all αc’s. The αc’s are modeled using explanatory variables with a log link using Eq (2): 

log(𝛼𝑖𝑗) = 𝑎𝑖 + 𝛽𝑖𝑧𝑗 (2) 

Where zj are the explanatory variables for the jth observation (j = 1, …, n), ai are the intercepts for the 

ith component (i = 1, … c), and βi are the regression coefficients for the ith component (i = 1, … c). 

The expected values of αc are then derived as 𝛼̂𝑖𝑗 = exp (𝑎̂𝑖 + 𝛽̂𝑖𝑧𝑗). The DirichReg function in the R 

DirichletReg package (Maier 2014, 2021) was used to fit Dirichlet regression models with the 

common parameterization to the lidar- and satellite-derived terrain and vegetation metrics in order to 

predict connectivity. Models were created using 1) both lidar- and satellite-derived metrics 

(LIDSAT); 2) lidar-derived metrics only (LID); and 3) satellite-derived metrics only (SAT). All lidar- 

and satellite-derived predictor variables were normalized using the maximum and minimum values of 

each variable. Because so many predictor variables were calculated using the remote sensing data, the 

Boruta algorithm implemented in the R Boruta package was used to select candidate predictors for 

each normalized variable set (LIDSAT, LID, SAT) (Kursa and Rudnicki 2010). The Boruta algorithm 

is a feature selection method based on the random forest algorithm (Kursa and Rudnicki 2010) and 

has been used effectively with high dimensional remote sensing data (Leutner et al. 2012; Blackburn 

et al. 2021). The Boruta algorithm was run 100 times for each of the six proportion responses (i.e., 

connectivity levels) and for each of the three variable sets using a maximum number of 1000 runs 

each time. The number of times each variable was selected by the algorithm was summed across the 

100 iterations. After Boruta feature selection, the number of predictor variables for the six 
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connectivity levels ranged from 17 to 75 for the LIDSAT dataset, 2 to 69 for the LID dataset, and 5 to 

27 for the SAT dataset. Because many of these Boruta-selected variables were highly correlated, 

variables that had correlations > |0.7| were removed and all remaining variables were used to build the 

initial models. Because each component is allowed to have different explanatory variables when 

fitting Dirichlet regression models under the common parameterization, all initial models were built 

using the uncorrelated Boruta-selected variables specific to each connectivity level. As a result, the 

initial model built with the LIDSAT dataset had between 3 to 12 predictors for each proportion 

response, the initial model built with the LID dataset had between 1 to 10 predictors for each 

proportion response, and the initial model built with the SAT dataset had between 2 to 5 predictors 

for each proportion response. For each of the three initial models, variables were removed one at a 

time in order of highest p-values until arriving at the null model with only intercepts for each 

proportion level. All models created for each dataset were arranged in order of increasing number of 

parameters and were compared using analysis of variance (ANOVA), which when used in the 

DirichletReg package uses a likelihood ratio test to perform pairwise tests of Dirichlet regression 

models. Models were iteratively removed through ANOVA until a final model for each dataset was 

selected. These three final models were evaluated by four statistics using leave-one-out cross 

validation (LOOCV): mean absolute error (MAE), root mean squared error (RMSE), mean bias, and 

mean relative bias (bias%) using Eqs (3–6). 

𝑀𝐴𝐸 =
∑ |𝑌𝑖 − 𝑌̂𝑖|𝑛

𝑖=1

𝑛
(3) 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖−𝑌̂𝑖)
2𝑛

𝑖=1

𝑛
(4) 

𝑏𝑖𝑎𝑠 =
∑ (𝑌𝑖 − 𝑌̂𝑖)𝑛

𝑖=1

𝑛
(5) 

𝑏𝑖𝑎𝑠% =
𝑏𝑖𝑎𝑠

𝑌̅
(6) 

Where n is the number of observations, Yi is the ith observed proportion, Ŷi is the ith predicted 

proportion from the model fitted using the (n–1) data, and Ȳ is the mean of the observed proportions. 
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4.4 Results 

Summary statistics of the six connectivity levels showed that the mean proportion of time all 

five stationary devices were connected to the mobile goTenna (Con_6) was 0.326 (s = 0.332), the 

mean proportion of time four of the stationary devices were connected to the mobile goTenna 

(Con_5) was 0.141 (s = 0.157), the mean proportion of time three of the stationary devices were 

connected to the mobile goTenna (Con_4) was 0.106 (s = 0.133), the mean proportion of time two of 

the stationary devices were connected to the mobile goTenna (Con_3) was 0.110 (s = 0.121), the 

mean proportion of time one of the stationary devices was connected to the mobile goTenna (Con_2) 

was 0.136 (s = 0.168), and the mean proportion of time zero stationary devices were connected to the 

mobile goTenna (Con_1) was 0.182 (s = 0.125) (Table 4.3). 

Table 4.3. Summary statistics of the six connectivity levels of the dependent variable (proportion of time connected). 

Connectivity level Mean SD Range 

Con_6 0.326 0.332 0.000-0.905 

Con_5 0.141 0.157 0.000-0.506 

Con_4 0.106 0.133 0.008-0.500 

Con_3 0.110 0.121 0.004-0.406 

Con_2 0.136 0.168 0.000-0.559 

Con_1 0.182 0.125 0.000-0.445 

 

There was high variability in the number of times variables in each category were selected by 

the Boruta algorithm for each connectivity level over the 100 iterations (Figure 4.3). For Con_1, lidar 

voxel height-related metrics were selected most frequently for both the LIDSAT and LID datasets and 

satellite GLCM texture metrics were selected most frequently for the SAT dataset. For Con_2, only 

satellite-based GLCM texture and surface reflectance metrics were selected for the LIDSAT and SAT 

datasets, and only lidar voxel height metrics were selected for the LID dataset. For both Con_3 and 

Con_4, lidar voxel point density-related metrics were selected most frequently for the LIDSAT and 

LID datasets. For the SAT dataset, both GLCM texture and surface reflectance metrics were selected 

relatively frequently for Con_3 and GLCM texture metrics were selected most frequently for Con_4. 

For Con_5, lidar-derived voxel intensity and cloud intensity metrics were selected most frequently for 

the LIDSAT dataset, while lidar-derived voxel intensity, cloud intensity, and cloud height metrics 

were all selected relatively frequently for the LID dataset. Only satellite GLCM texture metrics were 

selected for the SAT dataset for Con_5, and relatively infrequently. For Con_6, lidar voxel point 

density and voxel height metrics as well as satellite GLCM texture metrics were selected most 

frequently for the LIDSAT dataset, while voxel point density and voxel height metrics were selected 
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most frequently for the LID dataset. For the SAT dataset, GLCM texture metrics were selected most 

frequently for Con_6. Additionally, among the categories, lidar voxel point density metrics were 

selected much more frequently than variables in other categories. These metrics were selected most 

frequently for Con_3 and Con_4. Satellite GLCM texture metrics were also selected very frequently 

and for all six connectivity levels, but most often for Con_3. 

 

Figure 4.3. Bar chart of the number of times variables in each category were selected by the 100 iterations of the Boruta 

algorithm for the LIDSAT, LID, and SAT datasets. 

 

There was also variability in the number of unique variables from each category that were 

selected by the Boruta algorithm for each connectivity level over the 100 iterations (Figure 4.4). For 
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Con_1, a large number of lidar voxel height and lidar cloud point density metrics were selected for 

the LIDSAT and LID datasets. There were also many satellite GLCM texture metrics selected for 

Con_1 for the LIDSAT and SAT datasets. For Con_2, there were more satellite GLCM texture 

metrics selected than surface reflectance metrics for both the LIDSAT and SAT datasets, while only a 

few lidar voxel height metrics were selected for the LID dataset. For Con_3, there were many lidar 

voxel point density-related metrics selected for both the LIDSAT and LID datasets, and many GLCM 

texture metrics selected for the SAT dataset. For Con_4, a large number of voxel point density 

metrics and satellite GLCM texture metrics were selected for the LIDSAT dataset and many voxel 

point density metrics were selected for the LID dataset. For the SAT dataset, a large number of 

GLCM texture metrics were selected for Con_4. For Con_5, there were many lidar voxel intensity 

metrics selected for both the LIDSAT and LID datasets and a relatively smaller number of GLCM 

texture metrics selected for the SAT dataset. For Con_6, there were a large number of lidar voxel 

point density metrics selected for both the LIDSAT and LID datasets, and quite a few GLCM texture 

metrics selected for both the LIDSAT and SAT datasets. 
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Figure 4.4. Bar chart of the number of variables from each category that were selected by the 100 iterations of the Boruta 

algorithm for the LIDSAT, LID, and SAT datasets. 

 

The final LIDSAT model fitted to the entire dataset had between one and four predictor 

variables for each proportion (Table 4.4). Parameters for all predictor variables were significant (p ≤ 

0.05). Four of these variables were satellite GLCM texture metrics, two were lidar voxel height 

metrics, four were lidar voxel intensity metrics, three were lidar voxel point density metrics, and one 

was a lidar point cloud intensity metric. All predictors are related to vegetation, rather than 

topography. 
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Table 4.4. Summary of LIDSAT Dirichlet model regression coefficients for each of the six connectivity levels. Coefficients 

in bold are significant (p ≤ 0.05). 

Variable Model term Estimate SE z-value p-value 

Con_6 (Intercept) -2.118 0.473 -4.481 7.446E-06 

variance_Mean_B6_5 1.278 0.431 2.961 3.062E-03 

variance_SD_B5_3 2.817 0.534 5.276 1.320E-07 

z_IQR_kurt_4m 1.540 0.552 2.788 5.297E-03 

Con_5 (Intercept) -0.471 0.402 -1.172 2.412E-01 

i_cv_var_3m 3.431 0.609 5.635 1.753E-08 

contrast_SD_B5_9 -1.474 0.739 -1.994 4.617E-02 

Con_4 (Intercept) -2.905 0.858 -3.386 7.090E-04 

i_skew_kurt_4m 2.264 0.689 3.287 1.013E-03 

npoints_above_mean_4m 2.400 0.959 2.503 1.232E-02 

icum_qHt_15_last 2.260 0.902 2.507 1.218E-02 

Con_3 (Intercept) -0.363 0.239 -1.518 1.291E-01 

npoints_above_IQR_3m 1.325 0.520 2.550 1.077E-02 

Con_2 (Intercept) -1.474 0.388 -3.801 1.440E-04 

dissimilarity_Mean_B1_9 3.466 0.714 4.850 1.232E-06 

Con_1 (Intercept) 1.859 0.554 3.359 7.821E-04 

z_skew_mean_3m -4.285 1.371 -3.126 1.769E-03 

i_var_kurt_3m -2.389 0.965 -2.475 1.331E-02 

i_skew_IQR_4m 2.059 0.868 2.371 1.775E-02 

P_Di_sd_4m -1.620 0.717 -2.260 2.383E-02 

 

The final LID model fitted to the entire dataset had three predictor variables for Con_6, one 

predictor each for Con_5, Con_4, Con_3, and Con_1, and only an intercept for Con_2 (Table 4.5). 

The parameters for six of the seven predictor variables were significant (p ≤ 0.05), while the 

parameter for one predictor for Con_6 (SRR) was not (p = 0.08). Three of these variables were lidar 

voxel intensity metrics, two were lidar voxel point density metrics, and two were lidar DEM-based 

metrics. The five voxel-based metrics are related to vegetation while the two DEM-based metrics 

(SRR and HLI_Mean) are related to topography. 

Table 4.5. Summary of LID Dirichlet model regression coefficients for each of the six connectivity levels. Coefficients in 

bold are significant (p ≤ 0.05). 

Variable Model term Estimate SE z-value p-value 

Con_6 (Intercept) 1.126 0.724 1.556 1.197E-01 

i_sd_kurt_3m 2.848 0.823 3.462 5.371E-04 

npoints_above_var_5m -1.637 0.818 -2.001 4.544E-02 

SRR -1.574 0.904 -1.740 8.179E-02 
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Con_5 (Intercept) -0.794 0.316 -2.514 1.194E-02 

i_skew_var_3m 2.021 0.667 3.030 2.444E-03 

Con_4 (Intercept) -0.791 0.313 -2.527 1.150E-02 

i_skew_kurt_4m 1.330 0.652 2.040 4.139E-02 

Con_3 (Intercept) -0.527 0.244 -2.161 3.073E-02 

npoints_above_IQR_3m 1.219 0.545 2.237 2.529E-02 

Con_2 (Intercept) -0.272 0.189 -1.438 1.504E-01 

Con_1 (Intercept) 1.013 0.394 2.568 1.023E-02 

HLI_Mean -2.143 0.935 -2.292 2.188E-02 

 

The final SAT model fitted to the entire dataset had one predictor variable each for Con_6, 

Con_5, Con_2, and Con_1 and only an intercept for Con_4 and Con_3 (Table 4.6). Parameters for all 

four predictors were significant (p ≤ 0.05), and all were GLCM texture metrics related to vegetation. 

Table 4.6. Summary of SAT Dirichlet model regression coefficients for each of the six connectivity levels. Coefficients in 

bold are significant (p ≤ 0.05). 

Variable Model term Estimate SE z-value p-value 

Con_6 (Intercept) -1.308 0.339 -3.862 1.125E-04 

variance_SD_B5_3 3.201 0.592 5.409 6.323E-08 

Con_5 (Intercept) 0.325 0.301 1.081 2.797E-01 

contrast_SD_B5_3 -1.398 0.656 -2.131 3.306E-02 

Con_4 (Intercept) -0.442 0.192 -2.304 2.123E-02 

Con_3 (Intercept) -0.352 0.191 -1.848 6.457E-02 

Con_2 (Intercept) -0.977 0.335 -2.919 3.514E-03 

contrast_Mean_B1_3 1.857 0.739 2.512 1.200E-02 

Con_1 (Intercept) 0.741 0.347 2.131 3.305E-02 

mean_Mean_B5_3 -1.573 0.696 -2.258 2.396E-02 

 

LOOCV showed that MAE ranged from 0.082 to 0.249 for the LIDSAT model, from 0.081 to 

0.258 for the LID model, and from 0.102 to 0.256 for the SAT model (Table 4.7). RMSE ranged from 

0.101 to 0.314 for the LIDSAT model, from 0.103 to 0.310 for the LID model, and from 0.121 to 

0.313 for the SAT model (Table 4.7). Bias ranged from -0.048 to 0.073 for the LIDSAT model, from 

-0.030 to 0.083 for the LID model, and from -0.029 to 0.092 for the SAT model (Table 4.7). Bias% 

ranged from -26.2% to 22.5% for the LIDSAT model, from -27.1% to 25.5% for the LID model, and 

from -19.6% to 28.2% for the SAT model (Table 4.7). Bias was negative for Con_5, Con_4, Con_3, 

and Con_1 in all three final models and for Con_2 in the SAT model (Table 4.7), meaning these 

models tended to overpredict the proportion. Bias was positive for Con_6 in all three final models and 
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for Con_2 in the LIDSAT and LID models (Table 4.7), meaning these models tended to underpredict 

the proportion. 

Table 4.7. Accuracy metrics calculated for each connectivity level using LOOCV. 

  
Connectivity level 

Metric Model Con_6 Con_5 Con_4 Con_3 Con_2 Con_1 

MAE LIDSAT 0.249 0.083 0.084 0.082 0.119 0.123 

LID 0.258 0.106 0.093 0.081 0.137 0.091 

SAT 0.256 0.116 0.107 0.102 0.130 0.104 

RMSE LIDSAT 0.314 0.117 0.110 0.101 0.157 0.159 

LID 0.310 0.133 0.111 0.103 0.173 0.110 

SAT 0.313 0.145 0.129 0.122 0.162 0.121 

bias LIDSAT 0.073 -0.005 -0.019 -0.019 0.017 -0.048 

LID 0.083 -0.019 -0.021 -0.030 0.013 -0.026 

SAT 0.092 -0.019 -0.015 -0.022 -0.007 -0.029 

bias% LIDSAT 22.5 -3.7 -17.8 -16.8 12.5 -26.2 

LID 25.5 -13.2 -20.3 -27.1 9.5 -14.3 

SAT 28.2 -13.7 -14.0 -19.6 -4.8 -16.2 

 

Boxplots of the observed and predicted proportions calculated using the final LIDSAT, LID, 

and SAT models fitted to the entire dataset illustrate the wide variability in the data, especially for the 

Con_6 connectivity level (Figure 4.5). The boxplots further illustrate how the three final models 

tended to overpredict the Con_5, Con_4, Con_3, and Con_1 connectivity levels (Figure 4.5). The 

boxplots also show how all three final models tended to underpredict the Con_6 connectivity level 

(Figure 4.5). 
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Figure 4.5. Boxplots of observed and predicted proportions of the six connectivity levels. Predictions were obtained using 

the final LIDSAT, LID, and SAT models fitted to the entire dataset. 

 

4.5 Discussion 

In this study, we characterized the connectivity of smartphone-based goTenna mesh radio 

networks for location sharing in forests using lidar and satellite remote sensing data and developed 

Dirichlet regression models to predict the connectivity of these networks over a range of vegetation 

and topographic conditions. Our results showed that for a network of six devices with one mobile 

device and five deployed at randomized, stationary locations over PLSS sections approximately 260 

ha in area, the full network was connected, on average, only 32.6% of the time and the mobile 
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goTenna Pro was disconnected from all other devices 18.2% of the time. There was also a wide range 

in the proportion of time all six devices were connected (0.000–0.905). The network was never fully 

connected in some sections, while in others, the full network was connected 90.5% of the time. 

Similarly, the mobile goTenna was not connected to any other device between 0% and 44.5% of the 

time, depending on the section. This high variability in network connectivity has important 

implications for wildland fire incident command and other public health and safety applications of 

mesh networks in forests. Wildland fire managers, search and rescue personnel, forestry and logging 

workers, and others relying on these networks for improved situational awareness and safety should 

anticipate gaps in connectivity during which one or more individuals may not be able to communicate 

or share locations on the network. 

The variables most commonly chosen by the Boruta variable selection algorithm were lidar 

voxel point density metrics as well as voxel intensity metrics for the two datasets with lidar data 

(LIDSAT and LID). The lidar DEM-based topography variables were selected much less frequently 

than the lidar point cloud and voxel predictors more related to vegetation. Satellite GLCM metrics 

were selected more frequently by the Boruta algorithm compared to the surface reflectance and NDVI 

metrics for the two datasets with satellite data (LIDSAT and SAT). The majority of predictors in the 

final LIDSAT model were lidar voxel metrics, which represented aspects of lidar intensity, point 

density, and canopy height. However, a variety of satellite GLCM texture variables were also present 

in the final LIDSAT model, suggesting that both lidar and satellite data were important or 

complementary predictors of connectivity. Most of the predictors in the final LID model were lidar 

voxel metrics representing aspects of intensity and point density. However, this model also had two 

lidar DEM variables related to topography, which is in contrast to the LIDSAT model that depended 

primarily on vegetation. The final SAT model only had GLCM texture variables, suggesting that 

these were better predictors of connectivity than surface reflectance or NDVI. While we had 

anticipated that topography would be an important predictor of connectivity, the relatively minor 

presence of DEM predictors in both the Boruta variable selection and final models shows that 

vegetation more directly affected network connectivity. This could in part be due to the relationship 

between the size of each PLSS section and the number of devices deployed. For example, it is 

possible that using a network of six devices in an approximately 260-ha area was enough to overcome 

some of the effects of topography on radio signal attenuation, and that vegetation, which is known to 

affect near-ground peer-to-peer radio signal propagation (Meng et al. 2010; Galvan-Tejada and 

Duarte-Reynoso 2012; Gay-Fernández and Cuiñas 2013; Anastassiu et al. 2014; Smith et al. 2016), 



82 

 

 

most impacts connectivity. Future work should evaluate the relationship between connectivity, 

number of devices, and study area. 

Both the final LID and SAT models had connectivity levels without a predictor variable, 

which suggests that some connectivity levels may have been related only to the lidar or satellite data. 

In particular, Con_2 was modeled with only an intercept in the final LID model, but had a significant 

satellite predictor in both the LIDSAT and SAT models. This suggests that this level of connectivity 

(i.e., the proportion of time that the mobile goTenna was connected to just one stationary device) 

could be modeled with satellite data better than lidar data. Both Con_3 and Con_4 only had intercepts 

in the SAT model but had significant lidar-based predictors in both the LIDSAT and LID models, 

indicating that these two levels of connectivity (i.e., the proportion of time the mobile goTenna was 

connected to either two or three stationary devices) could be modeled with lidar data better than 

satellite data. This is somewhat surprising based on the Boruta results, in which satellite GLCM and 

surface reflectance metrics were selected commonly for Con_3 and satellite GLCM metrics were 

selected commonly for Con_4, both in terms of the number and frequency of variable selection. In 

contrast to the LID and SAT models, the LIDSAT model had significant predictors for each 

connectivity level, suggesting that using both data sources may be more useful than using just lidar or 

satellite data for prediction. 

MAE, RMSE, and bias were all worse for the Con_6 connectivity level compared to the other 

connectivity levels for all three final models. Bias% was worse for the Con_1, Con_3, and Con_6 

connectivity levels for the LIDSAT, LID, and SAT models, respectively, compared to the other 

connectivity levels. These accuracy metrics were slightly better for the LIDSAT model compared to 

the other two for most proportion levels, but worse than the other two models for the Con_1 

connectivity level. This suggests that both the LID and SAT models predicted the proportion of time 

that the mobile goTenna Pro was not connected to any other device somewhat better than the model 

using both data sources, but that the LIDSAT model predicted the proportion of time that the mobile 

device was connected to one or more stationary devices slightly better than either the LID or SAT 

model in most cases. Finally, all three models tended to underpredict the proportion of time that the 

mobile goTenna Pro was connected to all five stationary devices (Con_6) and to overpredict the 

proportion of time the mobile goTenna Pro was not connected to any other device (Con_1). 

In practice, wildland fire incident command teams may place a device on a high point such as 

an overhead aircraft to serve as a relay node and potentially improve connectivity. The effect of 

utilizing dedicated overhead relay nodes was not evaluated in our study. Future work should 



83 

 

 

investigate the potential for improved transmission by using relay nodes as well as a higher density of 

devices. In particular, using a relay node may affect whether devices primarily transmit to one another 

either horizontally with cumulative vegetation effects on path loss, or vertically through forest canopy 

vegetation. It is important to note, however, that mesh radios used during Initial Attack on small fires 

may not have aircraft present to support a dedicated relay node. 

The connectivity data used in this study were compositional data that were nonnegative 

proportions of time that different numbers of devices were connected. The unit-sum constraint of 

compositional data restricts the types of analytical approaches that are appropriate. By using Dirichlet 

regression, our approach guaranteed that the predictions of all proportional components summed to 

one. One limitation to our study was the sample size (n = 24) in relation to the number of 

components, or connectivity levels, which was determined by the number of devices in the mesh 

network (six). Considerations for future work should include further evaluation of the relationship 

between sample size and the number of network components. In particular, a larger sample size may 

be necessary to investigate networks with more than six devices, as those would result in more 

components and thus a larger number of estimated model parameters. 

 

4.6 Conclusions 

This is the first study reporting the connectivity of smartphone-based goTenna Pro mesh 

networks replicated across a wide range of terrain and vegetation conditions. The results show that 

remote sensing can successfully be used to characterize network connectivity. Vegetation affected 

connectivity more than topography, and the performance of these networks varied widely across sites. 

Initial Attack crews responding to wildland fires should anticipate gaps in real-time location tracking 

required on Type I fires in the United States under the Dingell Act. The Dirichlet regression models 

we have developed may be used to predict connectivity over large spatial extents outside of our study 

areas using available lidar and satellite data as predictors. One important consideration is that most of 

the lidar metrics used in our models were voxel-based rather than point cloud- or DEM-based. This 

means computation time should be considered, since voxel-based calculations tend to be more 

computationally complex than point cloud and DEM calculations. Ultimately, predicting connectivity 

in similar conditions outside the study area can be used to develop maps that forecast how well 

similar networks are expected to perform for wildland fire management, forestry, or other safety 

applications. 
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5.1 Abstract 

Analysis of high-resolution inertial sensor and global navigation satellite system (GNSS) data 

collected by mobile and wearable devices is a relatively new methodology in forestry and safety 

research that provides opportunities for modeling work activities in greater detail than traditional time 

study analysis. The objective of this study was to evaluate whether smartwatch-based activity 

recognition models could quantify the activities of rigging crew workers setting and disconnecting log 

chokers on cable logging operations. Four productive cycle elements (travel to log, set choker, travel 

away, clear) were timed for choker setters and four productive cycle elements (travel to log, unhook, 

travel away, clear) were timed for chasers working at five logging sites in North Idaho. Each worker 

wore a smartwatch that recorded accelerometer data at 25 Hz. Random forest machine learning was 

used to develop predictive models that classified the different cycle elements based on features 

extracted from the smartwatch acceleration data using 15 sliding window sizes (1 to 15 s) and five 

window overlap levels (0%, 25%, 50%, 75%, and 90%). Models were compared using multiclass area 

under the Receiver Operating Characteristic (ROC) curve, or AUC. The best choker setter model was 

created using a 3-s window with 90% overlap and had sensitivity values ranging from 76.95% to 

83.59% and precision values ranging from 41.42% to 97.08%. The best chaser model was created 

using a 1-s window with 90% overlap and had sensitivity values ranging from 71.95% to 82.75% and 

precision values ranging from 14.74% to 99.16%. These results have demonstrated the feasibility of 

quantifying forestry work activities using smartwatch-based activity recognition models, a basic step 

needed to develop real-time safety notifications associated with high-risk job functions and to 

advance subsequent, comparative analysis of health and safety metrics across stand, site, and work 

conditions. 
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5.2 Introduction 

Cable logging operations consist of felling, yarding, processing, and loading work phases [1], 

with the yarding phase often characterized as six distinct cycle elements (outhaul, lateral out, hookup, 

lateral in, inhaul, and unhook) [2]. Many of the yarding tasks, such as pulling the cable laterally as 

well as hooking and unhooking logs, are manual, which can cause physiological strain [3]. Logging 

workers are often fatally injured when struck by objects such as falling trees, limbs, or machines [4–

10]. Contact with objects and equipment accounted for 70.9% of fatalities among logging workers in 

2017 [9] and 82.1% of fatalities among logging workers in 2018 [10]. Hand fallers and choker setters 

are particularly susceptible to these “struck-by” incidents, which accounted for 51.3% of injuries 

among hand fallers and choker setters between July 2010 and June 2015 in Montana and Idaho [8]. In 

an analysis of cable logging accidents, Tsioras et al. [11] found that broken spar and anchor trees, 

bouncing cables, and falling objects contributed to the majority of accidents and most incidents 

occurred when workers were struck by or struck against an object. While the increased mechanization 

of logging has generally led to a decrease in injury rates, ground crew members working alongside 

machines, rigging crew workers, and hand fallers are still at risk [4,6,8,12] and may benefit from the 

use of a variety of positioning and wearable sensor-based technologies that increase situational 

awareness and reduce accidents. 

Monitoring the current activities, safety status and location of individuals relative to 

workplace hazards on logging operations could be accomplished through (1) real-time location-

sharing methods based on GNSS-RF (global navigation satellite system (GNSS) positioning paired 

with radio frequency (RF) transmission) for use in remote areas [13–17], (2) activity recognition 

modeling and incident detection, or (3) a combination of both. Human activity recognition involves 

using wearable sensors to distinguish between human physical activities. Most activity recognition 

models have been developed for everyday activities, such as walking, sitting, lying, standing, and 

other common physical movements referred to as activities of daily living (ADLs) [18–21], as well as 

for recreation and fitness applications [22–24]. Many smartphones and smartwatches are equipped 

with a variety of embedded sensors such as GNSS chips, accelerometers, gyroscopes, barometers, 

magnetometers, thermometers, decibel meters (microphones), and optical heart rate sensors [25–30]. 

Although a variety of purpose-built sensors have been developed, smartphones [26,28,31] and 

smartwatches [27,29,32–35] are popular for activity recognition modeling because they are 

ubiquitous and unobtrusive. Leveraging a variety of wearable and positioning sensors to develop 

occupational activity recognition models in forestry is a first step toward active monitoring that 

utilizes subsequent model predictions to help inform algorithms identifying falls or high-risk 
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activities. Real-time prediction of work cycle elements represents an initial step toward informing 

smart, location- and activity-aware algorithms and alerts associated with detecting incidents and 

periods of elevated health and safety concern. 

Development of activity recognition models generally consists of data collection, 

preprocessing, feature extraction and selection, and model development (Figure 5.1) [28,36,37]. Due 

to the advent of microelectromechanical systems (MEMS), inertial sensors have become smaller, 

more accurate, and less expensive and have been integrated into a variety of wearable sensors [38]. 

Data from these sensors is collected while users perform the activities of interest and is typically 

annotated with observed start and stop times. Preprocessing commonly consists of median filtering to 

remove noise spikes [39] and low pass or high pass filtering to isolate acceleration due to gravity 

from body acceleration [39–41]. To extract features for model development, a moving, or sliding, 

window is advanced through the dataset, defining subsets of the data from which relevant time (e.g., 

mean, median, variance, standard deviation, range, skewness and kurtosis) or frequency (e.g., Fast 

Fourier Transform and Discrete Transform coefficients) domain features are calculated [30,31,42,43]. 

In order to reduce dimensionality and select the most useful features, a variety of techniques such as 

principal component analysis (PCA), singular value decomposition (SVD), linear discriminant 

analysis (LDA), or kernel discriminant analysis (KDA) can be used [41,44,45]. Finally, the extracted 

features are used to develop activity recognition models, often using machine learning algorithms 

such as Decision Trees, Random Forests (RFs), Support Vector Machines (SVMs), k-Nearest 

Neighbors (k-NN), Naïve Bayes, k-means, Hidden Markov Models (HMMs), Gaussian Mixture 

Models (GMMs), artificial neural networks (ANNs), and multilayer perceptron (MLP) [28,31,43,46]. 

More recently, deep learning methods such as Restricted Boltzmann Machine, Autoencoders, 

Convolutional Neural Networks, and Recurrent Neural Networks have been shown to improve human 

activity recognition model performance compared to classical machine learning algorithms [47–50]. 

While deep learning can overcome some of the drawbacks of traditional machine learning by 

automatically extracting features and using more complex features [48–50], they are generally more 

computationally expensive and thus have not been widely implemented on resource-limited devices 

such as smartwatches and smartphones [47]. 
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Figure 5.1. Outline of the general activity recognition model development process. Steps involved typically include (1) 

collecting time study data to pair with wearable sensor measurements, (2) preprocessing the data through filtering, (3) 

extracting time and/or frequency domain features using a sliding window and then selecting relevant features with which to 

build models, and (4) developing activity recognition models using machine learning or deep learning techniques. 

Ultimately, models may be programmed into apps on smartphones and smartwatches and subsequently used to characterize 

work activities in real-time to inform health and safety notifications. 

 

Model accuracy is thus affected by a variety of factors, such as the type and quality of sensors 

in the devices, sampling rate, device location on the body, machine learning algorithms employed for 

model development, features used for classification, and sliding window size used to extract these 

features [31,42,51]. In terms of window size, there is a tradeoff between detection times and 

recognition performance since smaller windows allow faster recognition speed [51] but longer 

windows have been shown to improve recognition performance for more complex, less repetitive 

activities [34]. In evaluating this tradeoff, Banos et al. [51] compared activity recognition models 

created with windows ranging in size from 0.25 s to 7 s and found that windows of 1–2 s provided the 

best accuracy while allowing for quick detection times. The amount of overlap between successive 

sliding windows also affects model accuracy, with larger overlap often leading to better model 

performance but at the cost of increased computational load [45]. Models with 50% overlap are 

common [20,40,52–55], but high accuracies can be obtained using nonoverlapping windows 

[29,34,51,56]. Recently, “online” activity recognition, which refers to implementing the entire 

classification process (i.e., data collection and pre-processing, feature extraction, and classification) 

locally on the device, has been investigated to attain near real-time classifications [31,42]. Online 

recognition systems have been shown to have classification accuracies of 45.4–98.1% [42,57,58]. 

While most activity recognition models are specific to ADLs, the high-resolution data 

collected by these devices may also be useful for quantifying work activities. A limited number of 

studies have developed activity recognition for occupational activities based on wearable sensors, 

primarily for construction [59–63], while others have used visual observation or vision sensors to 
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detect activities in the workplace [64,65]. In natural resources, this approach has recently been 

proposed by Keefe et al. [30] and Pierzchała et al. [66] developed a method of automatically 

distinguishing between work phases in cable yarding by fusing data from multiple sensors. New 

GNSS-enabled smartwatches may offer lightweight alternatives to smartphone-based activity 

recognition models and may provide additional data that could supplement and improve these models. 

These types of wearable-based predictive models that quantify work activities on logging operations 

could inform loggers and equipment operators about their own or their coworkers’ job activity status 

in near real-time, helping to increase situational awareness and safety on active timber sales. New, 

inexpensive mesh network communications technologies, such as those from goTenna Inc (Brooklyn, 

NY, USA), enable location- and data-sharing by connecting to smartphones via Bluetooth and 

allowing users to communicate through radio frequency. In addition to facilitating off-the-grid 

location-sharing, these devices may also be useful for sharing worker safety status derived from 

activity recognition models. The record of high-resolution data that results from activity recognition 

may also form the basis for quantifying occupational health and safety conditions in comparative 

analyses that span forest stand, site, and work conditions. 

Time and motion studies [67] have been used extensively in conventional forest operations 

research to quantify productive work cycle elements and delay [2,68–73]. By defining and analyzing 

the individual work cycle elements performed by equipment or by individuals engaged in motor-

manual operations, an objective of time study research is often to identify opportunities for improving 

occupational production rates and reducing delay time [1,2,71,72,74]. Time study analyses are used 

as the basis for regression [1,2,69,71,74,75] and machine learning [76,77] models that predict work 

cycle time as a function of stand or site conditions. In order to estimate logging costs per unit wood 

volume, machine rate estimates determined using methods outlined by Miyata [78] and Brinker et al. 

[79] are paired with these cycle time prediction models [1,71,74,75,80]. In recent years, GNSS has 

been used in time studies to automate the estimation of cycle times [81], calculate machine 

productivity [82], characterize machine movements [83], and improve operational monitoring [84]. 

Additionally, time and motion studies have been conducted using both GNSS receivers and 

accelerometers to monitor tree planting [85], characterize manual felling using brush cutters [86], 

distinguish between chipping tasks [87], and monitor tilt and motion of various harvesters and 

forwarders in order to analyze operating conditions [88]. The availability of high-resolution sensor 

data collected seamlessly from GNSS-enabled mobile and wearable devices in real-time provides an 

opportunity to further model forestry work activities in greater detail than has been done using 
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traditional methods, while simultaneously providing the basis for improved characterization of digital 

health and safety. 

Prior research evaluating use of wearable sensors to monitor and model forestry work 

activities includes a small body of recent literature. Fitness and sleep bands have been used (1) to 

monitor the physical activity and sleep patterns of forestry workers in order to understand how these 

factors may contribute to workplace hazards [89], and (2) to predict forestry worker fatigue by 

comparing heart rate and step count data to reaction and decision-making times [90]. Smartwatches 

paired with heart rate monitor chest straps have been used to evaluate workload associated with 

manual tree felling [91], while external accelerometers attached to machines have been used to 

develop ANNs that classify the activities of manually-driven bandsaws [92] and recognize activities 

associated with manual felling [93]. Preliminary activity recognition models have been developed for 

cable yarding work phases using a combination of smartphone sensor (global positioning system 

(GPS) and inertial measurement unit (IMU)) and camera data [66]. However, activity recognition 

models have yet to be developed for other forestry work positions, such as rigging crew workers 

setting and disconnecting log chokers. Furthermore, smartwatches have not previously been used in 

forestry activity recognition, so it is unknown how the prediction accuracy of models developed using 

these devices will compare to smartphone-based models. Specifically, smartwatches may record 

different movement patterns than smartphones due in part to different device locations on the body 

(i.e., wrist vs. hip) [27,34]. In this study, we developed smartwatch-based activity recognition models 

for rigging crew workers on cable logging operations in order to address two specific research 

objectives. Our first objective was to develop models that predict choker setter rigging crew work 

activities with at least 80% sensitivity. Our second objective was to develop models that predict 

chaser rigging crew work activities with at least 80% sensitivity. Random forest machine learning 

was used to develop watch-based activity recognition models based on time and motion study data 

collected on five active timber sales in North Idaho, USA. Model accuracy was calculated based on 

the percent of time work elements were predicted correctly. 

 

5.3 Materials and methods 

5.3.1 Ethics statement 

Fourteen loggers voluntarily participated in this study. Prior to data collection, the 

experimental protocol was approved by the University of Idaho Institutional Review Board (IRB 

number: 18-202). Participants received both oral and written information regarding the study design 
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and provided their written, informed consent. Participants were selected based on available, 

operational cable-logging activities occurring in the North Idaho region during the sampling period 

and reflect the general demographics of the study population. While we did not collect demographic 

information from our participants, recent sampling in the region has shown that 55.4% of the logging 

workforce in Idaho is 50 or more years of age [17]. However, rigging crew workers are generally 

younger than the median age. 

5.3.2 Data collection and processing 

Time and motion study (i.e., observational elemental time analysis) data was collected in 

conjunction with GNSS watch sensor data using two days of sampling on each of five timber sales. 

Timber sales occurred on state and industrial cable logging operations. Choker setters (who are 

responsible for setting chokers on logs to be yarded) and chasers (who are responsible for 

disconnecting chokers from yarded logs) were observed visually. Four productive cycle elements 

(travel to log, set choker, travel away, clear) were timed for the choker setters and four productive 

cycle elements (travel to log, unhook, travel away, clear) were timed for the chasers (Table 5.1). For 

the choker setter activities, travel to log began when the choker setter started walking toward the 

carriage to grab the chokers. Set choker began when the choker setter arrived at a log and began 

preparing chokers. Travel away began when the choker setter finished setting chokers and started to 

walk away from the log. Clear began when the choker setter stopped walking away from the log and 

was “in the clear”. For the chaser activities, travel to log began when the chaser started walking 

toward the landed logs. Unhook began when the chaser reached for the chokers to begin unhooking 

them. Travel away began when the chaser finished unhooking the chokers and started to walk away 

from the log(s). Clear began when the chaser stopped walking away from the logs and was “in the 

clear”. For both the choker setter and chaser, clear included everything workers did outside of the 

other three work elements. In order to develop a generalized model for functional use, minor delay 

events were included within the relevant work element during which they occurred. The clock on a 

Google Pixel smartphone was used to record the true start and stop times for each work activity cycle 

using the TimeStamp application (version 0.4.0) [94]. Workers wore Garmin Fenix 5S Plus watches, 

which record GNSS locations, heart rate, and raw accelerometer data, on their non-dominant wrist. 

All sensor data was recorded on the Garmin watches using the RawLogger application (version 

1.0.20190520a) [95] from Garmin Connect. The accelerometer sensor data was collected at a 25-Hz 

frequency, while other sensors were recorded at a 1-Hz frequency, which are the default frequencies 

within the RawLogger application. All sensor data was exported as a Garmin FIT file and 
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subsequently converted into a *.csv file. Only the watch accelerometer data, collected at 25 Hz and 

recorded in thousandths of a gravity (mgn), was used in model development. 

 

Table 5.1. Summary of productive cycle elements for choker setter and chaser work activities. 

Position Activity Activity begins when subject: 

Choker setter Travel to log Initiates walking toward carriage to acquire chokers 

Set choker Arrives at log  

Travel away Finishes setting choker 

Clear Stops walking away when safely “in the clear” 

Chaser Travel to log Initiates walking toward the landed logs 

Unhook Reaches for the chokers to begin unhooking  

Travel away Finishes unhooking chokers 

Clear Stops walking away when safely “in the clear” 

 

All data processing, analysis and model development was done in the R statistical 

programming environment, version 4.0.0 [96]. After data collection, all observations in the datasets 

were labeled according to the manually recorded start and stop times. Specifically, each observation 

whose timestamp fell within the start and stop time for a particular activity cycle was assigned a label 

for that activity element (i.e., travel to log, set choker, travel away, clear, etc.). Delay times were 

included as the corresponding productive work element because the majority of delays fell within 

clear, included a diverse range of physical movements associated with the workers, and because of 

the intended final use of a general model in continuous, real-time prediction. After labeling, the raw 

acceleration values (in the x, y, and z dimensions) were filtered using a Finite Impulse Response 

(FIR) bandpass filter of order 8. Filter band edges were 0.5 and 0.9. Rather than using the x, y, and z 

values of the acceleration sensor, the acceleration magnitude was calculated using Eq (1) and used in 

an effort to reduce the effects of orientation on recognition performance: 

𝐴𝑚𝑎𝑔 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2 (1) 

Where Amag is the filtered overall acceleration magnitude, and Ax, Ay, and Az are the filtered 

acceleration sensor values in the x, y, and z dimensions, respectively. 

5.3.3 Activity recognition model development 

Ten time domain features (mean, standard deviation, maximum, minimum, median absolute 

deviation, mean absolute deviation, skewness, interquartile range, range, and kurtosis) were extracted 
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from the filtered acceleration magnitude values from both the choker setter and chaser work activity 

data using 15 different sizes of sliding windows (ranging from 1 to 15 s). For example, using a 3-s 

window and data recorded at 25 Hz, features were calculated using the previous 75 observations 

(representing 3 s of data) each time the window was advanced. Windows with 0%, 25%, 50%, 75%, 

and 90% overlap were used, resulting in five feature extraction methods for each window size. For 

instance, using 25% overlap meant that the next window did not begin until the current window was 

75% complete. After filtering and applying sliding windows, the resulting datasets were separated 

into 2/3 training and 1/3 testing data. Data was separated randomly, but the relative ratios of each 

activity were preserved because the data was highly imbalanced. The randomForest function in the R 

randomForest package (version 4.6-14) [97] was used to create random forest models to predict the 

four work cycle elements of both the choker setter and chaser based on the sensor measurements 

(Figure 5.2). Because the data was imbalanced, models were created using stratified sampling 

according to activity, with sample size based on the number of instances of the least common activity. 

In terms of the choker setter models, the least common activity was travel away. The least common 

chaser activity was travel to log. Random forest models can be tuned via a variety of parameters, such 

as the number of trees to grow (ntree) and the number of predictor variables randomly selected at each 

node (mtry) [97,98]. In this study, random forest models were created using 150 trees, since previous 

work has suggested that using 64–128 trees is appropriate for balancing performance and processing 

time [99]. Because varying mtry generally does not have a significant effect on model performance 

[97,100], models in this study were built with the default value of mtry (the square root of the total 

number of variables). The relationship between the number of trees and model accuracy was 

evaluated using the out-of-bag (OOB) sample error rates calculated internally by the random forest 

algorithm. 
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Figure 5.2. Overview of a hypothetical choker setter activity recognition model running on a smartwatch. The activity 

recognition model depicted is using a 5-s window with 50% overlap to predict the four work activities. The figure shows 

filtered acceleration magnitude data, which is colored according to the actual work cycles. Each time a window (shown as 

rectangles with dashed lines) is used to extract features, the model predicts the work cycle (shown as labels above the 

windows). 

 

Initially, choker setter and chaser models were created for the 15 window sizes using 90% 

overlap and all ten features, but model accuracy was poor. Thus, principal component analysis (PCA) 

was used to reduce the number of features in the models. The same ten time domain features 

described above were calculated for each activity cycle for both the choker setter and chaser datasets 

using the filtered acceleration magnitude values. PCA was performed on these ten features for both 

the choker setter and chaser datasets. Principal components (PCs) that accounted for > 95% of the 

variation in each dataset were considered and individual variables with loadings > |0.4| within these 

PCs were used as predictors in the final models. 

After selecting model predictors, a total of 75 choker setter models and 75 chaser models 

were created using the 15 window sizes for each of the five levels of overlap. Models were created 

using the training datasets and the confusionMatrix function in the R caret package (version 6.0-85) 
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[101] was used to calculate a variety of model accuracy metrics based on the testing datasets. All 

models were initially evaluated using sensitivity, specificity, and precision to compare the effects of 

overlap levels and window sizes. Sensitivity, specificity, and precision were calculated using Eqs (2–

4): 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(3) 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4) 

Where Se is the sensitivity, Sp is the specificity, and Pr is the precision. TP is the number of true 

positives (i.e., the number of correctly classified instances of a given class), TN is the number of true 

negatives (i.e., for a given class, the number of instances of all other classes that are classified as 

anything other than the class of interest), FP is the number of false positives (i.e., the number of 

instances that are incorrectly classified as belonging to a given class), and FN is the number of false 

negatives (i.e., the number of instances of a given class that are incorrectly classified as a different 

class). Sensitivity, specificity, and precision were then converted to and reported as percentages. 

Sensitivity, or recall, is the true positive rate and represents the percentage of correctly identified 

activities of a particular class [102]. Specificity is the true negative rate and measures the percentage 

of correctly detected negative occurrences of a particular class [102]. Precision, or positive predictive 

value, measures the percentage of detected instances of an activity that represents a real occurrence 

[102]. Finally, the multiclass area under the Receiver Operating Characteristic (ROC) curve, or AUC, 

was calculated for each model. The AUC corresponds to the probability that a classifier will rank a 

randomly chosen positive instance higher than a randomly chosen negative instance, with higher 

AUC values indicating better performance [103]. AUC is a common criterion for evaluating the 

performance of classification algorithms [104,105]. It has also been shown to be relatively robust to 

data imbalance [106–108]. The multiclass.roc function in the R pROC package (version 1.16.2) [109] 

was used to compute the multiclass AUC according to the method defined by Hand and Till [110]. 

The multiclass AUC value was then used to compare models and choose the best window size and 

overlap level for the choker setter and chaser models. Final models were evaluated based on the three 

metrics described previously (sensitivity, specificity, and precision) as well as F1 values and balanced 

accuracy. F1 values and balanced accuracy were calculated using Eqs (5–6): 



109 

 

 

𝐹1 =
2 ∗ 𝑃𝑟 ∗ 𝑆𝑒

𝑃𝑟 + 𝑆𝑒
(5) 

𝐵𝐴 =
𝑆𝑒 + 𝑆𝑝

2
(6) 

Where F1 is the F1 value and BA is the balanced accuracy. Pr is the precision, Se is the sensitivity, and 

Sp is the specificity. The F1 value represents the harmonic mean of precision and recall (sensitivity) 

and is generally thought to be more robust when dealing with imbalanced classes [51]. It ranges from 

zero to one, with zero representing no capacity for recognition and one corresponding to perfect 

recognition [51]. The F1 value was calculated using the rate of precision and sensitivity (rather than 

the percent). Balanced accuracy is simply the mean of sensitivity and specificity and was calculated 

using the percentage values of these two metrics. 

 

5.4 Results 

5.4.1 Work activity cycle times 

For the choker setter work activities, travel to log averaged 17.27 s (s = 12.30 s), set choker 

averaged 19.80 s (s = 16.06 s), travel away averaged 13.11 s (s = 6.83 s), and clear averaged 220.31 s 

(s = 519.17 s) (Table 5.2). For the chaser work activities, travel to log averaged 4.59 s (s = 4.42 s), 

unhook averaged 8.00 s (s = 6.42 s), travel away averaged 6.69 s (s = 3.73 s), and clear averaged 

264.48 s (s = 481.49 s) (Table 5.2). Mean work activity cycle times for the chaser were generally 

shorter than the mean cycle times for the choker setter, and the maximum cycle times tended to be 

slightly longer for the choker setter activities compared to the chaser activities (Table 5.2). When 

expressed as a percentage of the mean elemental time for individual work cycles other than clear, the 

coefficient of variation (CV) ranged from 52.11% to 81.09% for the choker setter and from 55.70% to 

96.28% for the chaser (Table 5.2). Clear was the only element for which the CV > 100% for both the 

choker setter and chaser (Table 5.2). 
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Table 5.2. Summary statistics (in seconds) of cycle times for choker setter and chaser work activities. 

Position Activity Mean 

(s) 

SD (s) CV 

(%) 

Range (s) Median 

(s) 

1st Quartile 

(s) 

3rd Quartile 

(s) 

Choker 

setter 

Travel to log 17.27 12.30 71.23 0.72-105.56 13.96 9.06 21.82 

Set choker 19.80 16.06 81.09 1.14-188.21 14.73 9.46 24.61 

Travel away 13.11 6.83 52.11 2.5-55.74 11.87 8.74 15.44 

Clear 220.31 519.17 235.65 5.7-8441.34 120.22 93.55 166.14 

Chaser Travel to log 4.59 4.42 96.28 0.54-89.92 3.85 2.74 5.49 

Unhook 8.00 6.42 80.31 0.86-71.58 6.52 4.17 10.07 

Travel away 6.69 3.73 55.70 1.19-26.14 5.61 3.95 8.85 

Clear 264.48 481.49 182.06 4.93-8238.2 174.55 144.49 229.41 

 

5.4.2 Participant data 

Due to the observational nature of data collection, the amount of data used to train and test 

the random forest models varied between participants. The average amount of data per choker setter 

ranged from 0.80 hrs (s = 0.01 hrs) to 6.74 hrs (s = 0.05 hrs) for training and from 0.40 hrs (s = 0.01 

hrs) to 3.31 hrs (s = 0.05 hrs) for testing. The average amount of data per chaser ranged from 0.80 hrs 

(s = 0.02 hrs) to 4.59 hrs (s = 0.04 hrs) for training and from 0.39 hrs (s = 0.02 hrs) to 2.26 hrs (s = 

0.04 hrs) for testing. When expressed as a percentage of the mean training and testing sample times 

for individual choker setters, the standard deviation ranged from 0.69% to 1.65% of the training 

sample times and from 1.39% to 3.34% of the testing sample times. Similarly, for individual chasers, 

the standard deviation ranged from 0.93% to 2.04% of the training sample times and from 1.90% to 

4.10% of the testing sample times. 

5.4.3 Principal component analysis 

In terms of the choker setter, the first PC accounted for 98.13% of the variation in the dataset 

and the only variables with loadings > |0.4| in the first PC were the acceleration maximum and range 

(Table 5.3). Similarly, in terms of the chaser, the first PC accounted for 97.92% of the variation in the 

dataset and the only variables with loadings > |0.4| in the first PC were the acceleration maximum and 

range (Table 5.3). Thus, acceleration maximum and range were selected as predictors in the final 

models for both workers. Biplots of the first two PCs for both the choker setter and chaser datasets 

illustrate the strong effect of acceleration maximum and range on the two datasets (Figure 5.3). 
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Figure 5.3. Biplots of PCs 1 and 2 for the choker setter and chaser datasets. The color of points on each plot indicates work 

cycle element categories. 

 

Table 5.3. Summary of choker setter and chaser PCA results. 

 
Position Choker setter Chaser 

 
PC PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

 
Percent of Variance 98.13% 1.77% 0.05% 0.03% 97.92% 1.83% 0.14% 0.08% 

V
a

ri
a

b
le

 

Mean -0.038 0.554 0.235 -0.303 -0.030 0.527 -0.221 0.029 

Standard deviation -0.054 0.398 -0.686 -0.353 -0.053 0.443 0.395 -0.624 

Maximum -0.705 -0.036 0.056 -0.062 -0.705 -0.024 -0.014 0.028 

Minimum 0.000 0.039 0.092 -0.158 0.000 0.041 -0.042 -0.002 

Median absolute 

deviation 

-0.021 0.356 0.354 0.163 -0.014 0.321 -0.299 0.285 

Mean absolute 

deviation 

-0.031 0.329 -0.264 -0.063 -0.028 0.349 0.125 -0.278 

Skewness -0.001 -0.009 0.010 -0.036 -0.001 -0.011 -0.020 -0.022 

Interquartile range -0.035 0.524 0.296 0.345 -0.025 0.501 -0.323 0.284 

Kurtosis -0.009 -0.131 0.422 -0.771 -0.020 -0.208 -0.763 -0.607 

Range -0.705 -0.074 -0.036 0.096 -0.705 -0.064 0.028 0.030 
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The percentages of variance for the first four PCs as well as the individual loadings for each variable for the first four PCs 

are shown. Numbers in bold indicate variables with loadings > |0.4|. 

 

5.4.4 Number of trees 

At the 90% overlap level, the classification accuracies determined internally by the random 

forest algorithm for both the choker setter and chaser models leveled off after 25–50 trees for most 

window sizes (Figure 5.4), and similar trends were observed for the other overlap levels (not shown). 

This suggests that building our models with 150 trees was sufficient. 

 

Figure 5.4. Choker setter and chaser random forest model accuracy as a function of the number of trees. The plots are 

grouped by worker type (choker setter or chaser) and window size. Line color indicates overall model (OOB) accuracy as 

well as accuracy for the work cycle elements. Only the 90% overlap of the 1-, 5-, 10- and 15-s windows are shown. 

 

5.4.5 Choker setter models 

The sensitivity, specificity, and precision of the choker setter models were highest when 

using sliding windows with 90% overlap for all activities and window sizes (Figure 5.5). Using 

sliding windows with 75% overlap resulted in the second-highest values of these same metrics for all 
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activities and window sizes (Figure 5.5). The remaining overlap levels (50%, 25%, and 0%) resulted 

in the lowest values of these metrics (Figure 5.5). Finally, sensitivity, specificity, and precision 

generally did not vary noticeably between window sizes for most activities (Figure 5.5). 

 

Figure 5.5. Choker setter sensitivity, specificity, and precision as a function of window size. The plots are grouped by metric 

and work activity. Line color indicates window overlap level. 

 

5.4.6 Chaser models 

The sensitivity, specificity, and precision of the chaser models were highest when using 

sliding windows with 90% overlap for all activities and window sizes (Figure 5.6). Using sliding 

windows with 75% overlap resulted in the second-highest values of these same metrics for many 
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activities and window sizes (Figure 5.6). The remaining overlap levels (50%, 25%, and 0%) generally 

resulted in the lowest values of these metrics Figure 5.6). Additionally, sensitivity tended to decrease 

as window size increased for most activities (Figure 5.6, first row) while specificity decreased slightly 

with increasing window size for the travel to log activity but did not show much variation with 

window size for the other three activities (Figure 5.6, second row). Precision decreased with 

increasing window size for the travel to log and unhook activities at the higher overlap levels but did 

not vary as noticeably for the travel away and clear activities (Figure 5.6, third row). 

 

Figure 5.6. Chaser sensitivity, specificity, and precision as a function of window size. The plots are grouped by metric and 

work activity. Line color indicates window overlap level. 
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5.4.7 Model selection 

The multiclass AUC plot indicates that the 90% overlap level resulted in the highest AUC 

values across all window sizes for both the choker setter and chaser models (Figure 5.7). AUC did not 

vary much with window size for the choker setter models (Figure 5.7, top row). For the chaser 

models, AUC decreased with increasing window size for the 90% and 75% overlap levels but varied 

less with window size for the other overlap levels (Figure 5.7, bottom row). A 3-s window with 90% 

overlap had the highest AUC (94.42%) for the choker setter models (Figure 5.7, top row) and a 1-s 

window with 90% overlap had the highest AUC (93.62%) for the chaser models (Figure 5.7, bottom 

row). Thus, these two models were chosen as the optimal choker setter and chaser models. 

 

Figure 5.7. Choker setter and chaser multiclass AUC as a function of window size. The plots are grouped by worker type 

(choker setter or chaser). Line color indicates window overlap level. 

 

Sensitivity for the selected choker setter model (3-s window, 90% overlap) ranged from 

76.95% to 83.59% for the four activities (Table 5.4). Precision for this model ranged from 41.42% to 

97.08% for the four activities, specificity ranged from 91.36% to 94.73%, F1 values ranged from 0.55 

to 0.86, and balanced accuracy ranged from 85.02% to 88.90% (Table 5.4). The confusion matrix for 

the selected choker setter model (3-s window, 90% overlap) illustrates that the set choker activity was 
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most often confused with travel to log (Table 5.5). Travel away was somewhat equally confused with 

the other three activities (set choker, travel to log, and clear), while travel to log was most often 

confused with either set choker or clear (Table 5.5). Finally, clear was most often confused with 

either set choker or travel to log (Table 5.5). 

 

Table 5.4. Accuracy metrics for the best choker setter model (created with a 3-s window and 90% overlap). 

Activity Sensitivity (%) Precision (%) Specificity (%) F1 Balanced Accuracy (%) 

Travel to log 78.42 51.68 91.63 0.62 85.02 

Set choker 83.59 57.82 91.36 0.68 87.48 

Travel away 83.06 41.42 94.73 0.55 88.90 

Clear 76.95 97.08 93.72 0.86 85.33 

 

Table 5.5. Confusion matrix for the best choker setter model (created with a 3-s window and 90% overlap). 

 
Actual 

Set choker Travel away Travel to log Clear 

Predicted Set choker 18655 455 1898 11254 

Travel away 888 6409 554 7622 

Travel to log 1743 365 14455 11407 

Clear 1031 487 1526 101095 

 

Sensitivity for the selected chaser model (1-s window, 90% overlap) ranged from 71.95% to 

82.75% for the four activities (Table 5.6). Precision for this model ranged from 14.74% to 99.16% for 

the four activities, specificity ranged from 89.76% to 92.43%, F1 values ranged from 0.25 to 0.83, and 

balanced accuracy ranged from 81.97% to 86.54% (Table 5.6). The confusion matrix for the selected 

chaser model (1-s window, 90% overlap) shows that clear was most often confused with travel away 

but was also frequently mistaken for unhook (Table 5.7). Travel away was most often confused with 

either unhook or clear, while travel to log was most often mistaken for clear (Table 5.7). Finally, 

unhook was most often confused with either clear or travel away (Table 5.7). 

 

Table 5.6. Accuracy metrics for the best chaser model (created with a 1-s window and 90% overlap). 

Activity Sensitivity (%) Precision (%) Specificity (%) F1 Balanced Accuracy (%) 

Travel to log 78.53 14.74 92.43 0.25 85.48 

Unhook 82.75 20.66 90.34 0.33 86.54 
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Travel away 81.93 16.75 89.76 0.28 85.84 

Clear 71.95 99.16 91.99 0.83 81.97 

 

Table 5.7. Confusion matrix for the best chaser model (created with a 1-s window and 90% overlap). 

 
Actual 

Clear Travel away Travel to log Unhook 

Predicted Clear 366814 972 1022 1099 

Travel away 53458 11028 372 978 

Travel to log 39715 409 7061 714 

Unhook 49828 1052 536 13385 

 

5.5 Discussion 

Our results show that activity recognition models based on smartwatch accelerometers can 

characterize work activities for rigging crew workers setting and disconnecting log chokers on cable 

logging operations, with the best model sensitivities ranging from 76.95% to 83.59% for choker 

setters and from 71.95% to 82.75% for chasers. While not all activities met our objective of 80% 

sensitivity, these values are consistent with models based on smartwatches and wrist-worn 

accelerometers developed for other activities in previous studies [27,29,32,33,35,54–56]. The 

benchmark of 80% sensitivity was established ahead of time as part of project development. While 

we recognize that a combination of metrics may be more suitable for future use, particularly when 

dealing with imbalanced datasets, this was a pilot study intended to help establish methods prior to a 

larger modeling effort. 

In contrast to the fairly high sensitivity values, precision was poor for most activities for both 

the choker setter and chaser models. This may be due to the imbalanced nature of the data. The 

proportions of choker setter activities were 10.26% travel to log, 12.41% set choker, 4.29% travel 

away, and 73.04% clear. The proportions of chaser activities were 1.64% travel to log, 2.95% 

unhook, 2.45% travel away, and 92.95% clear. Furthermore, the high CV values in Table 5.2 suggest 

there was high variability within individual work cycle elements, especially within the clear activity 

for both the choker setters (CV = 235.65%) and chasers (CV = 182.06%), which likely resulted at 

least in part from the inclusion of delay time in work elements. Additional variability may have been 

introduced to the clear activity due to the fact that clear encompassed everything workers did outside 

of the other three work elements. The combination of this variability with the large proportion of time 

workers spent in the clear likely reduced prediction accuracy and could account for the generally low 
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precision and F1 values. Since this form of analysis is very new in natural resources work, there is 

relatively little prior research on how delay, misclassified activities, or low precision in general may 

impact real-time summaries of work, or worker health and safety considerations, when interpreted in 

practice. Rather than a shortcoming of our study, we feel this is an important consideration for 

subsequent research and for development of wearable-based digital health and safety analytics for 

operational forestry. Additionally, conventional time study analysis distinguishes between quantifying 

individual productive cycle elements and quantifying overall productive and delay components of 

occupational work. Future modeling studies may benefit from distinguishing sampling efforts to 

quantify these separately. This may influence the way in which low precision and high false positive 

rates affect metrics such as productivity that may be calculated from model predictions in real-time. 

Thus, future work should consider how clear is defined and whether delay times are included in 

sampling and developed models in an effort to improve precision. Future work should also address 

issues of low precision through improved data collection, processing, and modeling (e.g., utilizing 

video recording, faster sampling rates, different sensors, deep learning, additional features, etc.), all of 

which are discussed below. 

The best model performance metrics for both workers were obtained using the highest level 

of window overlap (90%) and smaller window sizes. The increasing accuracy we obtained with 

higher levels of window overlap is consistent with previous work [45]. However, many wrist-based 

models developed with either no overlap [27,29,56] or 50% overlap [54,55] have achieved high 

accuracies. In terms of window size, previous work has suggested that simpler, more repetitive 

activities may be accurately captured with shorter windows, while more complex, less repetitive 

activities may need longer windows [34,55]. In general, we observed slightly decreasing performance 

metrics with increasing window size. While some previous studies have found improved accuracies 

with increasing window size [34,56], others have observed that increasing window size did not result 

in significant model improvement [55] and have developed accurate wrist-based models using smaller 

window sizes [35,54,55]. 

Smartwatches, smartphones, and other wearables generally have limited resources in terms of 

battery power, memory, storage, and computational power, so the effects of window size, window 

overlap, and sampling rate must be considered when designing and implementing occupational 

activity recognition models [31,42,111,112]. For instance, using longer windows [45,111], higher 

levels of window overlap [45], and faster sampling rates [31,42] requires more computational 

resources during implementation. In our study, the difference between the 90% and 75% overlap 
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levels was noticeable for many of the model accuracy metrics. While lower levels of overlap may be 

preferable for real-time implementation on resource-limited devices such as smartwatches, the 

improved accuracies observed with the higher overlap levels seem to justify the additional 

computational power needed. On the other hand, our results suggest that the highest accuracies for 

both the choker setter and chaser models can be obtained with smaller window sizes, which indicates 

real-time implementation may be achieved with relatively minimal computational complexity and fast 

detection rates. Finally, future work should evaluate the effects of different sampling rates. While 

previous work has shown that higher frequencies can lead to improved accuracies [42,111], others 

have achieved high performance using lower sampling rates such as 2-Hz [111] and 10-Hz [30]. The 

RawLogger application used to record the watch sensor data in this study did not allow us to adjust 

the sampling frequency, and Garmin Connect allows a maximum rate of 25-Hz for the accelerometer. 

However, different devices could be used in future work to assess whether higher frequencies may 

improve performance and whether lower sampling frequency may achieve similar performance, as 

this would have the benefit of reducing power consumption on the device. 

Other considerations related to performance and resource consumption on wearable devices 

are the types of features used for classification and the tradeoffs between classical machine learning 

and deep learning methods. We chose to use time domain features primarily because they are less 

computationally complex and consume less energy during implementation [42,113]. Additionally, it 

has been shown that the use of frequency domain features should be paired with faster sampling rates 

in order to achieve high model performance [42]. However, the use of frequency domain features 

should be investigated as a potential method of improving model performance [114]. Similarly, we 

chose to use a traditional machine learning approach because deep learning methods are generally 

more computationally expensive [47]. As devices become more powerful, deep learning offers 

opportunities to overcome some of the limitations of classical machine learning [48–50]. 

Activity recognition models based on wearables such as smartphones and smartwatches have 

practical applications for quantifying productivity and reporting work analytics to support digital 

health and safety. In terms of rigging crew productivity, models may inform the real-time reporting of 

productive work elements such as mean time per turn, number of chokers set or disconnected per 

turn, and related analytics. Models developed using conventional time studies in forestry have been 

limited to very specific operations and time periods under consideration, or deployed broadly in 

generalized predictive models (e.g., Bell et al. [115]). Utilizing our activity recognition models and 

subsequent, improved models using similar approaches makes it possible to quantify work day-in, 
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day-out over the course of the work week and indefinitely in the future when incorporated into 

predictive apps on smartwatches. This is a major advancement and opens new possibilities for 

analysis of big data accumulated over time. For example, when summarized at the individual and 

group level, this information could be used to improve productivity, reduce costs, and enhance work 

quality and worker safety by allowing workers to adapt treatment methods in near real-time. 

Furthermore, in broader meta-analysis, use of wearables to quantify productivity with greater 

temporal resolution than traditional time study techniques may provide opportunities for improving 

estimates of work productivity and treatment costs across various stand and site conditions and spatial 

scales. To better quantify worker health and safety, activity recognition model predictions may be 

paired simultaneously with fall detection algorithms to inform smart alerts indicating lack of 

movement associated with potential incidents. These alerts may then be sent to coworkers at the 

jobsite using emerging technologies designed to facilitate communication and data-sharing to 

improve safety in remote work areas. Model predictions may also be combined with other health-

related data, such as heart rate, heat stress, and sleep metrics, to develop alerts that would be triggered 

when demanding work activities occur in conjunction with high physical exertion levels, increased 

heat stress, excess workload, or a combination of these factors. Finally, pairing activity recognition 

model predictions with real-time location information may be used to inform safety alerts related to 

proximity to coworkers, jobsite hazards such as snags or falling trees, and heavy equipment. This 

information could also be used in post-hoc analyses to better characterize the activities and other 

location- and health-related factors preceding accidents and near miss events. 

One limitation to our study was reduced visibility when observing workers. Choker setters 

commonly work on steep hillsides, often among shrubs and other vegetation. At times, this made it 

difficult to visually observe start and stop times for component work cycle elements with precision. 

Chasers working at the landing were occasionally difficult to see when the yarder’s movement 

shielded the chaser from view. A related limitation was a slight difference between the internal clocks 

of the smartwatches and the phones used to record the start and stop times for each activity. While 

these differences were small, there was no practical way to correct them in the field as they 

occasionally shift within a 24-hour period. This introduced additional error when assigning labels to 

the watch sensor data and is an important consideration in future remote occupational digital health 

applications, particularly for mobile and wearable devices that sync National Institute of Standards 

and Technology (NIST) time via internet connectivity. 
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Another limitation to the study was the short duration of many of the work activity cycles, 

primarily for the chaser. The chaser often runs in to and away from the yarded logs (both of which 

may last only a few seconds), and unhooking can be very quick (i.e., 3–5 s). This makes it difficult to 

visually detect and record accurate start and stop times for the rapid cycle elements that result. While 

this may explain why the shorter window lengths generally resulted in higher accuracies, it also made 

the activities more difficult to capture and model. Development of subsequent wearable- and mobile-

based activity recognition for occupational safety may benefit from use of video concurrently with 

smartwatch sensor data collection rather than direct visual observation, in order to improve work 

element detection and support model training. For example, use of body camera videography coupled 

with post-hoc analysis to quantify work elements for low visibility tasks in forestry may improve 

model development. 

A few areas that should be considered in future research include evaluating additional 

sensors, utilizing devices on different body parts, and incorporating more mechanistic approaches to 

modeling. The Garmin watches used in this study were only capable of recording raw accelerometer 

data. However, the incorporation of gyroscope sensor measurements into model development in 

future studies could potentially help to strengthen predictive power. While previous research has 

indicated that watch accelerometers perform better than watch gyroscopes for activity recognition 

[29], others have found that using both accelerometers and gyroscopes increases accuracy for 

smartphone-based models [52] and watch-based models [32]. Additionally, previous studies have 

shown that hip-mounted accelerometers may recognize activities like running better than wrist-

mounted accelerometers [27] and that using sensors in multiple positions, such as the wrist and 

pocket, can improve model performance [34]. Thus, future work should evaluate how placing devices 

on different body parts affects model predictions. For instance, it is possible that using sensors on the 

torso or feet may more accurately recognize the movements of choker setters and chasers as they 

travel to and from logs, while wrist-based sensors may be better suited to detecting activities that 

involve hand motions, like setting and disconnecting chokers. Another consideration when evaluating 

device locations is that previous research has shown that participants may prefer wrist-worn devices 

compared to hip-worn devices [116], which has implications for designing a relatively unobtrusive 

system for real-world adoption. Lastly, use of the random forest machine learning algorithm to model 

the occupational activities of rigging crew workers is highly empirical and doesn’t necessarily help to 

foster understanding of the underlying processes affecting work productivity and safety. In future 

studies, a more mechanistic approach to modeling work movements may better lend itself to 

identifying causal relationships associated with safety incidents and possible interventions. 



122 

 

 

Because logging operations are highly variable and our sampling was observational, the 

amount of data collected from each participant varied. We chose to randomly separate the entire 

dataset into 2/3 training and 1/3 testing since utilizing either leave-one-subject-out or k-fold cross-

validation implemented at the participant level would have meant creating models with varying 

quantities of data in each iteration. Thus, because our validation methods may randomly include data 

from participants in both training and testing, the quality of predictive models presented may be 

overly optimistic. Future research developing similar models may benefit from a different approach 

that avoids cross-over of participant data in training and testing subsets. Additionally, traditional time 

and motion and actigraphy analysis in forestry work has generally been based on relatively small 

studies. Because use of IMU sensors to quantify work in real-time is relatively new, it is unknown 

whether the mean and variability of data in our study would be fully representative of the broad range 

of field sites, forest stand conditions, equipment, and weather impacts that affect worker movements 

in the profession overall. While we believe the quantity of data from each participant used to train and 

test the models was sufficient, future studies may benefit from collecting a more balanced sample of 

data from a wider variety of participants. Our goals in this study were to evaluate, at a broad level, the 

potential for wearable devices to model real-time occupational rigging crew work activities and to 

provide an example of the methods, modeling approaches, and sampling considerations that are 

important for developing libraries of generalized forestry work activity recognition models. Prior to 

use in occupational settings, predictions from real-time models developed, regardless of the statistical 

validation methodology used in model fitting and analysis, should be further evaluated using data 

collected independently as part of different field operations reflecting variability in site conditions, 

weather, workers, and other factors. 

Ultimately, future work should include coding the best models developed in this study into a 

smartwatch application to support real-time characterization of work activities and further validate 

model predictions in a variety of conditions. Pairing of fall detection with activity recognition model 

predictions may help to inform development of improved smart alerts to coworkers notifying them of 

potential jobsite incidents, particularly when paired with real-time GNSS mapping in remote forestry 

work environments. To advance digital health and safety more broadly, the data resulting from our 

predictive models, as well as from models developed subsequently for other common forestry work 

tasks, may be used to quantify day-to-day occupational forestry job functions in high resolution. The 

resulting work effort data provide a fundamental mechanism through which it may be possible to 

better quantify factors associated with incident occurrence across forest stand, site, weather, air 



123 

 

 

quality, and other work conditions, particularly when paired with readily available, wearable-based 

personal health metrics such as sleep activity, heart rate, and heat stress. 
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Conclusion 

The use of real-time positioning information available from global navigation satellite system 

- radio frequency (GNSS-RF) devices and data from wearable sensors offers opportunities for 

improving occupational safety in forestry. Geofences are an important component of GNSS-RF 

location sharing systems and can alert workers of jobsite hazards. Results from Chapter 2 indicated 

that the angle of approach among geofences affects the timing of associated alerts. The field 

experiment and simulation showed that alert latency was closest to 0 s when a mobile geofence 

approached a stationary geofence or point of interest straight on (i.e., at a 0° angle). When the mobile 

geofence approached alongside a stationary point or geofence (i.e., at a 90° angle), the delay 

decreased, meaning that an earlier alert was triggered. This effect appears to result from the 

relationship between the angle of approach and the proportion of possible GNSS error directions that 

can trigger early warnings. This suggests that the accuracy of geofence alerts varies as worker or 

equipment positions move around one another at different angles, which has important implications 

for using geofences to define safe work areas on logging operations. Future work should focus on 

developing correction methods that account for the effect of intersection angle. While our results did 

not show a significant effect of either walking pace or GNSS-RF transmission interval, future work 

advancing the use of mobile geofences should consider integrating these factors into potential 

correction methods. For example, in practice, early warning thresholds may be established by 

integrating approach angle correction methods, pace, transmission interval, and GNSS location in 

order to provide equipment operators or ground workers with sufficient time to slow down or change 

course. Thus, while uncorrected mobile geofences may be useful for increasing general situational 

awareness (SA) among workers at coarse spatial scales, they are not advised for delineating safe work 

areas at high resolution unless correction methods are applied. 

GNSS-RF accuracy depends on both the GNSS positioning quality and the successful 

propagation of radio signals between devices. To address this, in Chapter 3 we evaluated the effects 

of forest stand characteristics, topography, and line-of-sight (LOS) obstructions on 1) the odds of 

missed signals sent between Atlas PT GNSS-RF devices; 2) the root mean squared error (RMSE) of 

Atlas PTs; and 3) the time-to-signal accuracy of safety geofence crossings in forests. Results from 

this chapter showed that stand characteristics, topography, and LOS obstructions affected the odds of 

missed radio signals. Only stand characteristics affected RMSE and both stand and topographic 

variables affected the accuracy of geofence alerts. This suggests that the accuracy and successful 

sharing of GNSS coordinates depends on stand conditions and topography. Because both of these 
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characteristics vary on active timber sales, high-resolution safety applications of consumer-grade 

GNSS-RF devices such as geofencing are not yet advisable in mature forests. However, utilizing this 

technology on logging operations may allow ground workers and equipment operators to view the 

relative positions of nearby workers and machines in real-time to improve general SA and 

communication. In order to advance the use of GNSS-RF real-time positioning for additional safety 

applications in natural resources, future research should develop and assess methods that correct for 

the effects of forest stand characteristics on both GNSS accuracy and geofence alert delay. One 

important consideration regarding Chapter 3 is that the Atlas PT GNSS-RF devices only receive 

coordinates from Global Positioning System (GPS) satellites while many newer devices communicate 

with multiple satellite constellations, which may improve accuracy and reliability in forests. 

Ultimately, correction methods that account for stand characteristics and geofence intersection angle, 

as well as the use of multi-constellation GNSS-RF devices, may enable a broader range of GNSS-RF 

safety applications in natural resources. 

While conventional GNSS-RF positioning relies on direct LOS connection between radios, 

mesh networking allows each device in the network to relay data to other nodes, enabling 

communication between users who do not have a direct LOS connection. The recent development of 

Bluetooth-based devices that form GNSS-RF mesh networks when paired with smartphones offers 

new opportunities to facilitate real-time location- and data-sharing in off-grid forested environments. 

In Chapter 4, I developed Dirichlet regression models to predict the connectivity of goTenna 

smartphone-based mesh networks using lidar- and satellite-derived terrain and vegetation metrics in 

order to determine the factors affecting connectivity and to evaluate overall network performance 

across a range of forest and topographic conditions. On average the full network was connected only 

32.6% of the time and the mobile goTenna was disconnected from all other devices 18.2% of the 

time. Vegetation-related metrics affected connectivity more than topography in all final models, 

which was a somewhat unexpected result. One potential explanation for this may be that using a 

network of six devices in sections that were approximately 260 ha in size overcame significant radio 

signal attenuation due to topography. Future work should consider how connectivity may depend on 

the number of devices and study area size. The models developed in Chapter 4 could be used to 

predict connectivity beyond the study area using lidar and satellite remote sensing data in order to 

provide information regarding the expected performance of these networks. Ultimately, this 

technology has a range of applications in wildland firefighting, forestry, natural resources, and public 

safety by enabling communication in remote settings where traditional infrastructure is absent. 
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In addition to real-time positioning utilizing GNSS-RF systems and geofences, wearable 

sensor data offers additional opportunities for monitoring the current activities, safety status, and 

location of individuals relative to workplace hazards. In Chapter 5, we used random forest machine 

learning to develop smartwatch-based activity recognition models for rigging crew workers on cable 

logging operations. We showed that these models could predict choker setter work activities with 

sensitivity values ranging from 76.95% to 83.59% and precision values ranging from 41.42% to 

97.08%. Our results also showed that these models could predict chaser work activities with 

sensitivity values ranging from 71.95% to 82.75% and precision values ranging from 14.74% to 

99.16%. In order to advance the development of wearable-based human activity recognition modeling 

for occupational safety, future studies should consider quantifying individual productive cycle 

elements separately from the overall productive and delay components of work. This may impact the 

interpretation of real-time summaries of work and the analysis of worker health and safety metrics. 

Additional considerations for future work include utilizing video recording of worker activities to 

overcome visibility issues when sampling in settings common on cable logging operations as well as 

coding predictive models into a smartwatch application to support real-time characterization of work 

activities. This application could facilitate the collection of independent datasets to further validate 

model predictions in a variety of site conditions. This study is among the first to demonstrate the 

feasibility of quantifying forestry work activities using smartwatch-based human activity recognition. 

Ultimately, the future pairing of activity recognition model predictions, personal health metrics such 

as sleep activity, heart rate, and heat stress, and real-time location sharing could foster the 

development of real-time smart safety notifications associated with high-risk job functions. 

GNSS-RF real-time positioning, geofencing, mesh networking, and wearable-based human 

activity recognition modeling are emerging technologies that provide a range of opportunities for 

increasing the safety, efficiency, and productivity of forestry and natural resource professionals 

through increased situational awareness. Together with the widespread availability of remote sensing 

and big data in forestry, these mobile technologies represent aspects of smart forestry and enable 

advances in digitalization and automation as well as improved precision. The work presented in this 

dissertation provides an assessment of the factors affecting the performance and accuracy of a variety 

of location sharing networks and demonstrates the feasibility of using wearable sensors to quantify 

forestry work activities. In the case of smartwatch-based human activity recognition and closely 

related smartphone-based activity recognition not included in the dissertation, these contributions 

represent the first uses of human activity recognition in natural resources for smartwatch and 

smartphone devices, respectively. Integrating real-time positioning with activity recognition model 
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predictions has strong potential to improve occupational safety in off-grid forested environments and 

to advance the way fundamental work tasks in forestry are quantified and evaluated, opening new 

possibilities for analyzing big data related to health and safety that is accumulated over time through 

longitudinal surveillance. For this reason, the methodologies presented in this work contribute to both 

near-term solutions to reduce incidents, such as real-time safety alerts for lone forestry workers, and 

the creation of long-term surveillance data that can be used to identify longitudinal and population-

level health and safety trends at resolutions and scales not previously possible. 
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Appendix A: Lidar Metrics for Chapter 4 

 

Table A.1. Lidar DEM-, point cloud-, and voxel-derived metrics. RT: all = all vegetation returns ≥ 0.27 m; first = first 

vegetation returns ≥ 0.27 m; last = last vegetation returns ≥ 0.27 m 

Variable Description Source Classification 

DEM-based 

Rumple_index DEM was used to calculate a rumple index for 

each section using the rumple_index function in 

the R lidR package (Roussel and Auty 2021) 

DEM Topography 

SRR DEM was used to calculate the surface relief ratio 

(SRR) for the entirety of each section as: 

(mean(x) - min(x)) / (max(x) - min(x)), where x 

represents the DEM elevation values (Pike and 

Wilson 1971) 

DEM Topography 

Slope_Mean and Slope_SD DEM was used to create slope rasters for each 

section in degrees using eight neighbors using the 

terrain function in the R terra package (Hijmans 

2021), then the mean and standard deviation of 

these rasters were calculated for each section 

DEM Topography 

TPI_Mean and TPI_SD DEM was used to create topographic position 

index (TPI) rasters for each section using the 

terrain function in the R terra package (Hijmans 

2021), then the mean and standard deviation of 

these rasters were calculated for each section. TPI 

is the difference between the value of a cell and 

the mean value of its eight surrounding cells 

(Weiss 2001; Wilson et al. 2007; Hijmans 2021) 

DEM Topography 

TRI_Mean and TRI_SD DEM was used to create terrain ruggedness index 

(TRI) rasters for each section using the terrain 

function in the R terra package (Hijmans 2021), 

then the mean and standard deviation of these 

rasters were calculated for each section. TRI is 

the mean of the absolute differences between the 

value of a cell and the value of its eight 

surrounding cells (Wilson et al. 2007; Hijmans 

2021) 

DEM Topography 

Rough_Mean and Rough_SD DEM was used to create roughness rasters for 

each section using the terrain function in the R 

terra package (Hijmans 2021), then the mean and 

standard deviation of these rasters were calculated 

for each section. Roughness is the difference 

between the maximum and the minimum value of 

a cell and its eight surrounding cells (Wilson et al. 

2007; Hijmans 2021) 

DEM Topography 

Flow_Mean and Flow_SD DEM was used to create flow direction (of water) 

rasters for each section using the terrain function 

in the R terra package (Hijmans 2021), then the 

mean and standard deviation of these rasters were 

calculated for each section. Flow direction is the 

direction of the greatest drop in elevation (or the 

smallest rise if all neighbors are higher) (Hijmans 

2021) 

DEM Topography 
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HSP_Mean and HSP_SD DEM was used to create hierarchical slope 

position (HSP) rasters for each section using the 

hsp function in the R spatialEco package (Evans 

2021), then the mean and standard deviation of 

these rasters were calculated for each section. 

HSP is the hierarchical scale decomposition of the 

topographic position index and was calculated 

using rectangular windows ranging in size from 3 

cells to 27 cells in 4-cell increments (Murphy et 

al. 2010; Evans 2021) 

DEM Topography 

Curv_Mean and Curv_SD DEM was used to create McNab’s curvature 

rasters for each section using the curvature 

function in the R spatialEco package (Evans 

2021), then the mean and standard deviation of 

these rasters were calculated for each section. 

This is a variant of the surface curvature 

(concavity/convexity) index and is confined to the 

view of a 3 x 3 window (McNab 1989; Evans 

2021) 

DEM Topography 

HLI_Mean and HLI_SD DEM was used to create heat load index (HLI) 

rasters for each section using the hli function in 

the R spatialEco package (Evans 2021), then the 

mean and standard deviation of these rasters were 

calculated for each section. This function 

calculates the McCune and Keon 2002 heat load 

index which estimates potential annual direct 

incident radiation (McCune and Keon 2002; 

Evans 2021) 

DEM Topography 

Diss_Mean and Diss_SD DEM was used to create dissection rasters for 

each section using a window size of three and the 

dissection function in the R spatialEco package 

(Evans 2021), then the mean and standard 

deviation of these rasters were calculated for each 

section. This function calculates Martone’s 

modified dissection (Evans 1972, 2021) 

DEM Topography 

CHM-based 

rumple_index_chm Point cloud was used to create a 0.5 m pit-free 

canopy height model (CHM) using the lidR 

grid_canopy function, using only first vegetation 

returns ≥ 0.27 m in height. The lidR 

rumple_index function was then used with the 

resulting CHM to calculate a rumple index for the 

canopy (Roussel and Auty 2021) 

CHM Height 

Point cloud-based 

pground_veg27 Percentage of returns classified as “ground” 

calculated using the lidR cloud_metrics function 

using all vegetation returns ≥ 0.27 m (Roussel and 

Auty 2021) 

Point 

cloud 

Point density 

LAD_x_RT lidR LAD function was used to calculate leaf area 

density using 1 m height bins (x = 2.5, 3.5, 4.5, 

…, 30.5 m) for a given return type (RT = all, first, 

last) (Roussel and Auty 2021) 

Point 

cloud 

Point density 

Point cloud-based, calculated using std_cloud function from Blackburn et al. (Blackburn 2021; Blackburn et al. 

2021) 

per_RN_x_RT Percent of points from a given return number (x = 

return numbers 1–7) and return type (RT = all, 

last) (Blackburn et al. 2021) 

Point 

cloud 

Point density 
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zstat_RT Height-based descriptive statistics of the point 

cloud within a section for a given return type 

(RT). Statistics (stat) = max, mode, mean, 

quadratic mean, standard deviation, variance, 

coefficient of variation, IQR, average absolute 

deviation, skewness, kurtosis, entropy, L-

Moments (2-4), L-moment skewness, and L-

moment kurtosis. RT = all, first (except for max), 

last (except for mode) (Blackburn et al. 2021) 

Point 

cloud 

Height 

qHt_x_RT Height quantiles (x = 1, 5, 10, 15, 20, 25 …, 95, 

99) for a given return type (RT = all, first, last) 

(Blackburn et al. 2021) 

Point 

cloud 

Height 

decilex_RT Deciles (x = 2, 3, …, 9) for height distributions 

within a section for a given return type (RT = all, 

first, last) (Woods et al. 2008; Pearse et al. 2019; 

Blackburn et al. 2021) 

Point 

cloud 

Height 

dcumx_RT Cumulative deciles (x = 1, 2, …, 9) for height 

distributions within a section for a given return 

type (RT = all, first, last) (Woods et al. 2008; 

Pearse et al. 2019; Blackburn et al. 2021) 

Point 

cloud 

Height 

pHtBin_x_RT Percent of points within height bins (x = ≤ 5, 5-

10, 10-15, 15-20, …, > 50) for a given return type 

(RT = all, first, last) (Pearse et al. 2019; 

Blackburn et al. 2021) 

Point 

cloud 

Point density 

pz_1r_RT Percent of first returns above a given height (z = 

2m, 10m, 20m, mean height, mode height) for a 

given return type (RT = all, last [except for 

percent above mode height]) (Blackburn et al. 

2021) 

Point 

cloud 

Point density 

pz_RT Percent of all returns above a given height (z = 

2m, 10m, 20m, mean height, mode height) for a 

given return type (RT = all, first, last [except for 

percent above mode height]) (Blackburn et al. 

2021) 

Point 

cloud 

Point density 

istat_RT Intensity-based descriptive statistics of the point 

cloud within a section for a given return type 

(RT). Statistics (stat) = total, min, mean, 

quadratic mean, standard deviation, variance, 

coefficient of variation, IQR, average absolute 

deviation, skewness, kurtosis, and entropy. RT = 

all, first, last (Blackburn et al. 2021) 

Point 

cloud 

Intensity 

icum_qHt_x_RT Cumulative intensity returned below quantiles (x 

= 1, 5, 10, 15, 20, 25 …, 95, 99) for a given return 

type (RT = all, first, last) (Blackburn et al. 2021) 

Point 

cloud 

Intensity 

LCV_RT Coefficient of L-variation for a given return type 

(RT = all, first, last). Calculated as: LCV = 

second L-moment of heights / first L-moment of 

heights 

Point 

cloud 

Height 

Voxel-based, calculated using std_voxel and vox_mt functions from Blackburn et al. (Blackburn 2021; Blackburn 

et al. 2021) 

z_ s1_s2_res Height-based descriptive statistics within a voxel 

(s1) and summarized at the section level (s2) for a 

given resolution (res = 3m, 4m, 5m). Statistics (s1 

and s2) = median, mean, variance, standard 

deviation, coefficient of variation, IQR, skewness, 

and kurtosis (Pearse et al. 2019; Blackburn et al. 

2021) 

Voxel Height 
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i_s1_s2_res Intensity-based descriptive statistics within a 

voxel (s1) and summarized at the section level 

(s2) for a given resolution (res = 3m, 4m, 5m). 

Statistics (s1 and s2) = median, mean, variance, 

standard deviation, coefficient of variation, IQR, 

skewness, and kurtosis (Pearse et al. 2019; 

Blackburn et al. 2021) 

Voxel Intensity 

P_Di_s2_res Section-level descriptive statistics (s2) of the 

number of returns below each voxel for a given 

resolution (res = 3m, 4m, 5m). Statistics (s2) = 

median, mean, variance, standard deviation, 

coefficient of variation, IQR, skewness, and 

kurtosis (Pearse et al. 2019; Blackburn et al. 

2021) 

Voxel Point density 

npoints_above_s2_res Section-level descriptive statistics (s2) of the 

number of returns above each voxel for a given 

resolution (res = 3m, 4m, 5m). Statistics (s2) = 

mean, variance, standard deviation, coefficient of 

variation, IQR, skewness, and kurtosis (Kim et al. 

2016; Blackburn et al. 2021). 

Voxel Point density 

FR_Di_s2_res Section-level descriptive statistics (s2) for the 

frequency ratio of the number of returns above a 

voxel to the total returns for a given resolution 

(res = 3m, 4m, 5m). Statistics (s2) = mean, 

variance, standard deviation, and IQR (Kim et al. 

2016; Pearse et al. 2019; Blackburn et al. 2021) 

Voxel Point density 

pct_fill_vox_res Percent of voxels with at least one point in the 

section for a given resolution (res = 3m, 4m, 5m) 

(Blackburn et al. 2021) 

Voxel Point density 

ENL_HN_res Effective number of layers (ENL) measured 

through different Hill-Numbers (HN = 0D, 1D, 

2D) for a given resolution (res = 3m, 4m, 5m) to 

quantify vertical structure (Ehbrecht et al. 2016; 

Pearse et al. 2019; Blackburn et al. 2021). 

Computing ENL consists of classifying voxels as 

empty/not empty and then calculating various 

diversity indices based on the proportion of filled 

voxels in each layer in relation to all filled voxels 

(Ehbrecht et al. 2016; Pearse et al. 2019) 

Voxel Point density 

cc_abovez_res Canopy closure at different heights based on the 

percentage of empty voxels above different 

heights for a given resolution (res = 3m, 4m, 5m) 

(Pope and Treitz 2013; Pearse et al. 2019; 

Blackburn et al. 2021). Height thresholds for 3-m 

resolution (z) = 3, 6, 9, ..., 24 m. Height 

thresholds for 4-m resolution (z) = 4, 8, 12, ..., 24 

m. Height thresholds for 5-m resolution (z) = 5, 

10, 15, 20, 25 m. 

Voxel Point density 

p_cc_res Mean percentage canopy closure based on the 

ratio of height bin point density to the overall 

point density within a section for a given 

resolution (res = 3m, 4m, 5m) (Griffin et al. 2008; 

Pearse et al. 2019; Blackburn et al. 2021). Height 

bins for 3-m resolution = 1, 3, 6, 9, …, 21 m. 

Height bins for 4-m resolution = 1, 4, 8, 12, 16, 

20 m. Height bins for 5-m resolution = 1, 5, 10, 

15, 20 m 

Voxel Point density 

 


