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Abstract

The evolution of technological progress continually presents new information security chal-

lenges for large enterprises. Organizations must actively implement security policies to miti-

gate modern threats. Access control policies which define the way in which an organization’s

principals can interact with a system are particularly vital to enforce and verify. Accordingly,

this thesis demonstrates that policies from an enterprise Linux implementation of a manda-

tory access control scheme can be used to populate a useful and efficient policy model. This

model can be queried from a high-level to verify proper implementation of policies across

one or more devices in a networked environment. It provides the user with both 1) a graph-

ical representation of one or more policy implementations and 2) a means for an analyst to

ensure whether specified actions between subjects and objects are permitted or not, aiding

in providing them with an intuitive understanding of the higher-level organizational security

policy.
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CHAPTER 1

Introduction, Research Problem, and Overview

This chapter introduces some of the key challenges that large enterprises face in the ongoing

process of implementing and verifying information security policies in a highly-dynamic

environment. It then lays out the research problem that is particular to the work in this

thesis, namely, how to construct a high-level formal model out of low-level Security-Enhanced

Linux mandatory access control policy configurations. It concludes with an overview of the

thesis content detailing the approach and solutions used to construct this thesis work, ideas

for future work, and conclusions implied by the work.

1.1 Introduction

The evolution of information technology poses a continual stream of security-related chal-

lenges for large enterprises. Enterprises need to balance these challenges while still remaining

productive and operational. At present, there is a clear need for a paradigm shift in the way

in which these organizations manage information security. Traditionally, information security

concerns were thought to lie only within the realm of the technical means that practitioners

routinely implemented to mitigate vulnerabilities within an organization’s network. Now,

the burgeoning amount and capability of connected devices necessitates a higher-level, more

meaningful engagement with the process on the part of an organization’s managerial and

administrative staff. This will inevitably involve many employees who lack domain-specific

knowledge of the technologies put into effect to secure the organization’s network [2].

The need for a higher-level of engagement exists largely in part due to today’s distributed

network protocols and the technological environment within which sensitive resources are

more accessible than ever. To exert control over these resources, analysts must design and

implement policies that ensure that an enterprise’s resources are not subject to any unau-

thorized accesses [3]. Policies are high-level requirements that specify the nature of how an
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access is managed in terms of who may access a resource and in what manner they may do so

[4]. Specifying and implementing polices is not a one-time event. Once implemented, poli-

cies must be actively maintained, which is a complicated process unto itself–as organizations

grow, the effects of altering individual policies become more subtle, making their overall effect

difficult to discern. Therefore, there is a need for security researchers to develop solutions

that readily demonstrate the effect of altering policies in order to make the consequences of

the changes evident to those who have to administer and manage them. Accordingly, there

is a need for administrators to have a means to understand which policies are implemented

within their system and what their overall effect is from a high-level vantage point [3].

One key factor that makes efforts to develop holistic policy mapping solutions in large-

scaled networked systems such a daunting task lies in the fact that the inner workings of

disparate system components such as routers, firewalls, and host-based operating systems

are diverse in scope and, accordingly, at the device level, they must be configured in different

ways from each other. The configurations and the associated data garnered from each class

of component is outputted into a format specific to that class, hampering efforts to efficiently

analyze unified policy enforcement across the components that comprise a system [5]. An

effective solution to this problem is to create a model, a formal representation of the theoret-

ical boundaries of a system given the set of security policies it employs [4]. Models cut down

on the complexity within a large-scale networked environment by creating an abstraction of

the system’s various device configurations and a set of relevant potential interactions that

may occur between the devices [5].

Mandatory Access Control (MAC) is a widely-implemented access control scheme that

helps exhibit the complexities of policy implementation and analysis. When implemented

properly, MAC is effective at prohibiting unauthorized accesses of system resources. However,

it is difficult to properly specify and maintain MAC policies. This is due to the fact that,

although MAC policies can span multiple applications and system components, no standard

that exists to specify them at this time. As such, MAC policies are prone to faults that
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are a result of misconfiguration, creating major vulnerabilities for the systems that they are

implemented within. These issues are then rapidly compounded as the system expands [4].

1.2 Research Problem

Accounting for the issues outlined above, the work in this thesis tackles the problem of

formally modeling low-level system configurations into a high-level formal policy model. The

focus lies on the problem of populating a useful model for an access control policy scheme

that is actually applied to the technologies that comprise a large enterprise. In particular,

it explores how this task can be carried out across an access control scheme enforced by

the Security-Enhanced Linux mandatory access control mechanism commonly included and

used in conjunction with enterprise Linux distributions such as Fedora Red Hat Linux and

the open source CentOS Linux distribution.

Work in this thesis also seeks to address how to go about using the populated high-level

formal model in a useful and intuitive way, aiming to aid an organization’s managerial staff in

analyzing implemented policies effectively and thus to narrow the information security risks

associated with employing many devices and policies within a modern, large-scale, enterprise

networked environment.

1.3 Overview

The remainder of this thesis is organized as follows: Chapter 2, Background provides back-

ground information for various access control schemes and the Security-Enhanced Linux

mechanism used to enforce or augment them. Chapter 3, The Hierarchical Policy Model

(HPol) and the High-level, Easily Reconfigurable Machine Environment Specification (HER-

MES) High-Level Policy Description Language is an exposition of the work researchers have

already accomplished with the Hierarchical Policy Model and HERMES, its associated high-

level policy description language. Chapter 4, Related Work outlines other projects that
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cover the same scope as the HPol library and the parser and query script demonstrated

within this thesis document. Chapter 5, Research Questions expands on the research prob-

lem focused on by this thesis and breaks the problem down into three components, each

of which represents a contribution of this thesis. Chapter 6, Formalizing Enterprise Linux

Mandatory Access Control Policies Using HPol provides details and results derived from

translating SELinux configurations into HPol models. Chapter 7, Contribution 2: Interac-

tively Answering Queries About SELinux Device Policies details the process of interactively

querying SELinux HPol models once they have been constructed. Chapter 8, Contribution

3: Policy Merging for Multiple Device Policy Violation Detection details this thesis project’s

addition to the HPol library that allows for merging and verification of multiple HPol poli-

cies. Chapter 9, Future Work, provides multiple avenues for future research on the efforts

detailed herein. Finally, Chapter 10, Summary and Conclusions summarizes the content

of the thesis, details possibilities for the future work it gives rise to, and provides a brief

conclusion. A bibliography follows.
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CHAPTER 2

Background

This chapter describes discretionary, mandatory, role-based access control, and multilevel se-

curity: common access control schemes that enterprises use to shape their security policies.

It also covers Security-Enhanced Linux, an operating system-layer mechanism which allows

administrators to implement and enforce access control schemes. This will provide the nec-

essary background information to understand the systematic context that the contributions

of this thesis are modeled and verified within.

2.1 Access Control

According to the Internet Security Glossary, the term information security covers “[m]easures

that implement and assure security services in information systems, including computer sys-

tems”. Along the same lines, and viewed from a slightly lower level, computer security

requires “measurements to implement and assure security services in a computer system,

particularly those that assure access control service” [6]. Likewise, Stallings and Brown [7]

state that access control is the central focus of computer security. Access control systems

are comprised of mechanisms that sit between users and computing resources with the aim

to determine whether certain interactions are permitted between the two. Thus, the access

control policies that are specified for these systems specify who can use what computing

resources in what manner. The goal of access control measures is to allow for designated

users to access organizational resources in accordance with their authorized actions while

simultaneously denying unauthorized uses of resources by both malicious and legitimate

users. These systems work in tandem to allow smooth operation for business functions while

helping to assure that organizational information security goals are met [7].

There are a variety of access control schemes available to define an organization’s high-

level security policy. Common access control schemes include discretionary, mandatory, role-
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based access control and multilevel security. Though they vary in their focus and scope, they

share many of the same basic characteristics. In particular, these schemes are all comprised of

subjects, objects, and actions (also referred to as access rights). Subjects in a policy include

a system’s users or user processes (e.g. “Alice”, /bin/passwd, or an administrator role).

Objects are the resources that may be accessed by subjects (e.g. directories, databases, and

network appliances). Actions are the access right attributes associated with subjects that

are used to determine which interactions are permitted between subjects and objects (e.g.

read, write, or execute). Thus, an example of a single access control policy would be the

specification that a subject, an employee named “Bob”, has the access right to execute files

located in the directory /bin/, the object being acted upon [7].

Under discretionary access control (DAC), the ability to alter permissions to act upon

an object are granted to specific users, groups, and user processes by resource “owners” [8].

For example, in a traditional Linux environment, an administrator can grant one subject

“read” access on a particular file, but not the ability to write to the file. Thus, under this

scheme, owners use their discretion to provide access rights to other subjects at will. This

type of scheme can work well for smaller systems with a relatively small amount of subjects,

but the task becomes more daunting as organizations grow, especially if the organization’s

operations require more finely-grained access rights (e.g. cordoning off data in accordance

to a certain trust level) [7]. Despite its limitations, DAC serves alongside other schemes to

provide another layer of overall security [8].

The shortcomings of DAC are particularly evident when viewed in light of the process

of implementing a high-level, administrator-defined policy. Since many permissions are at

the discretion of individual users, exerting control in an over-arching, system-wide fashion is

nearly impossible. DAC relies only on user identity and ownership, to the exclusion of other

vital information including the user’s role in the system, whether or not an application a

user is going to run is trusted, and how sensitive the data is that a user is trying to access.

Further, each process a user initiates inherits all of his or her same permissions, creating a



7

major vulnerability if user processes get compromised by unauthorized users. If the process

is malicious, it has the same discretionary ability as the user, and thus may interfere with

and take control of other processes (e.g. in the case of a privilege escalation attack). This

level of uncertainty and lack of control runs counter to the goal of establishing a high-level,

hierarchical organizational security policy. To better protect a system, an access control

scheme needs to account for as much context-specific information as is feasible [9].

Unlike DAC, mandatory access control (MAC) is not centered around ownership and

prohibits any subject’s ability to have or grant arbitrary access rights to files or processes. If

the intended policy is such that a particular subject may alter access rights, it is a mandatory

requirement that he or she must be explicitly granted that privilege [7]. In the strictest

application of MAC, MAC policies require that each potential action that a subject can

perform on an object must be explicitly specified if that action is to be permitted, otherwise

it will be denied by default. However, this is not practicable in a large-scale operational

environment. Typically, a more flexible MAC or DAC policy is enacted so that innocuous,

routine tasks can be carried out with minimal interference from the mechanism [10].

Role-based access control (RBAC) schemes define a set of rules that lay out a series of

potential actions between subjects and objects and associate them with a “role”. Attempted

accesses for privileged functions are then only granted by an RBAC mechanism then when

they match up with the user’s role within the organization and the system [7]. For example,

if an RBAC system were employed in a bank, a user with the role of “teller” could be granted

the right to process deposits, pay out withdrawals, and furnish account balances, but not

the right to view loan applications, an access belonging to an employee associated with the

“loan officer” role. Thus, privileged accesses are segregated to trusted roles.

Another major access control scheme, multilevel security (MLS), is especially useful for

organizations that are responsible for managing data of varying degrees of sensitivity, such

as governmental agencies that manage data that are labeled with security clearances (e.g.

Secret, Top Secret, etc.). With MLS, subjects may only act on objects with the same or
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lower level of classification. Thus, each subject, action, and object are associated with a

particular classification. Then, the access control mechanism must only grant the access to

data of a particular classification if the different entities involved required by the interaction

possess the same (or higher) level of classification. For example, if a government agency that

is responsible for classified and unclassified data and has an MLS-enforcing mechanism in

place, the ability to read “Secret” data will only be granted to a subject whose clearance

level is “Secret” or higher [8].

A classic multilevel access control scheme is the Bell-LaPadula model outlined in [11].

In order to ensure that certain resource objects are kept confidential in a Bell-LaPadula

implementation, they are assigned a privilege level. Subjects in this model then can access

resource objects either in accordance with their own privilege level or one of those below

it. They cannot access any resource objects assigned with higher privilege levels, but they

may write to them. Likewise, they also may not write down to a lower privilege level. In

short, under Bell-LaPadula, in addition to accesses associated with their specified privilege

level, the subject may also “write up” or “read down” on resources with other privilege level

designations [11].

Correctly specifying access control policies is a complex task because of the dynamic

nature of organizations and systems. Individuals, components, and uses of a system change

throughout an organization’s life cycle making it a daunting process to keep track of these

changes. Further, system and enterprise-specific information needs to be incorporated into

the policy design process. Policy designers must understand what information is available to

them and decide on how much of it they need to incorporate. They also need to understand

typical usage of their systems so they can best craft a policy that will not unduly inhibit

user interactions with the system that do not pose a high probability of a vulnerability.

The research problem that this thesis work considers is focused on high-level, device-

independent modeling of low-level mandatory access control policies. However, RBAC is

simulated in the model to display the associations between user roles and subjects in the
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system. Also, a Bell-LaPadula MLS simulation is also provided to illustrate the ability to

merge policies from multiple MAC devices. Discretionary access control provides the basis

for understanding access control, especially as it pertains to file system permissions, and is

also an important policy factor consideration for enterprise Linux distributions. Chapter 9

covers how future iterations of this work can incorporate a DAC dimension when modeling

enterprise Linux policies.

2.2 Security-Enhanced Linux (SELinux)

After specifying a written, high-level security policy and choosing one or more access control

schemes, organizations still need to find the best means of actually enforcing the policy in

an operational setting. One robust solution for enterprise Linux environments is Security-

Enhanced Linux (SELinux), a flexible, open source mandatory access control mechanism

residing in the Linux kernel [8]. SELinux is enabled by default on Red Hat Enterprise Linux

and the open-source CentOS Linux distribution [9] [12].

SELinux has three basic states: enforcing, permissive, and disabled. When SELinux

is enforcing, all the policy modules it has loaded are put into effect. In a permissive state,

SELinux allows all accesses (as long as they are allowed by the operating system and any other

access control mechanisms), but keeps a log of all interactions that are denied in accordance

with the SELinux policy. When SELinux is disabled, all access rights on the operating system

rely on traditional Linux DAC [9]. When SElinux is enforced, all interactions with files or

processes are intercepted by SELinux Linux Security Module in the kernel [8]. There, access

decisions are made based on the SELinux policy placed into effect. Accordingly, SELinux

does not rely only on user identity and ownership, its policy can be applied on resources

down to the independent object level within the Linux kernel itself [9].
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2.3 SELinux Policies and Type Enforcement

By operating under the notion that the best way to secure an operating system is to secure as

many components as possible, SELinux augments application-level security mechanisms that

are already in place. At its core, it is a mandatory access control mechanism, but also has the

ability to allow administrators to implement role-based and multilevel security access control

schemes. Additionally, it enforces policies alongside, and independent of, a traditional Linux

discretionary access control configuration (e.g. one with file owners, permissions, etc) [8].

Whenever an interaction with the operating system is initiated by a subject, it must first be

permitted, if at all, by Linux-based DAC. If the action is permitted, then it can and must

be vetted by SELinux [9]. Since SELinux policies and Linux DAC are employed in tandem,

it is possible for an access to be allowed under one mechanism, but not the other [8].

SELinux policies may be strict or targeted. Strict policies are a complete application of

mandatory access control. As such, every possible interaction between subjects and objects

must be explicitly specified in order to be allowed. For most organizations, this level of

specification is excessive. Thus, employing the targeted policy is often a more balanced

solution. The targeted policy protects key processes, while keeping interference with the

user’s experience to a minimum [12]. It allows most subjects and objects to run under

traditional Linux discretionary policies, but targets the behavior of specific daemon processes

that are known to be particularly vulnerable to attack. The goal of this policy is to confine

the behavior of an exploited daemon to a minimal domain to prevent contagion to the entire

operating system. This is the standard Fedora SELinux policy and is supported by Red

Hat [10]. Non-targeted processes may run in the “unconfined” domain which lightens the

restrictions placed upon them [12].

While strict, multilevel security capabilities are useful for assuring that data is kept confi-

dential, they can be too simplistic for common use cases. For example, in many organizations,

subjects will generally be attempting innocuous accesses (e.g. reading their email), regard-
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less of privilege level. For this reason, SELinux provides a more flexible and finely-grained

mandatory access control mechanism to better fit different organizational needs while incor-

porating as much system context information as is deemed necessary by the organization’s

principals themselves. To implement this capability, SELinux relies on type enforcement. Un-

der type enforcement, all of the operating system’s resources and capabilities are abstracted

into SELinux types. For example, bin t would be the type representing the /bin/ directory

and ls exec t would be the type representing the ability to execute the ls program. Types

are independent of standard kernel operation, so organizations can specify an SELinux policy

to specify how subjects, action, and objects may interact in accordance with their types or

attributes (associations of types) without having to consider Linux kernel architecture [8].

When user processes in the operating system are labeled with a type, the type also defines

a domain for that process to run within. Under SELinux, each process runs in a separate

domain to allow the mechanism to have finer control over the capabilities for each process.

When one process is running in its domain, no other processes may have access to the files it

is accessing without a specific provision in the policy that allows them to do so. In addition,

by default, SELinux denies processes from accessing other processes, unless there is a rule

that specifically permits them to. Separating processes in accordance with their domain is

key to avoiding privilege escalation attacks. It also limits the scope of the damage to the

overall operating system if one process does happen to be compromised maliciously. If a

malicious process tries to access another process, but no SELinux policy rules allow for the

interaction, the malicious process cannot assume that attack vector [9].

2.4 SELinux “Access Vector” Rules

Most allowable interactions between different SELinux types are enshrouded within its policy

configuration in the form of SELinux access vector (AV) rules. AV rules include: allow,

which specifies how two types may interact, auditallow and dontaudit, which specify

parameters about how events are logged, and neverallow, which specifies what interactions
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are not permitted between types. The most common AV rule is the allow rule. The

neverallow rule is seldom used. Allow rules are likely the most common because auditallow

and dontaudit focus on aspects of logging. Few neverallow rules are included in the

targeted policy. Actions that are not laid out in an allow rule are denied by default [8].

Constraints, which are defined by boolean expressions, can also be applied within an

SELinux policy to nullify specified allowed interactions under different circumstances. Mul-

tilayer security constraints may also be added to bolster system security [8]. For the purpose

of a general modeling of SELinux mandatory access control policies, this thesis assumes

that accesses that are not specifically laid out in an allow rule are not allowed. Constraints

and MLS are likewise not accounted for in this work, but are simulated in the forthcoming

Bell-LaPadua example in Chapter 8.

SELinux AV rules take the form:

<AV Rule> <Source> <Target> : <Object Class> <Permission(s)>; [8]

where the sources and targets are SELinux types, the object class is the type of object being

acted on (e.g. a file) and the permissions are the interactions allowed between the source,

target, and object.

Thus, for example, the allow rule:

allow user_t bin_t : dir {read execute getattr}; [8]

allows Linux user processes associated with the SELinux user type to read, execute, and

get system attributes for files associated with the SELinux bin type [8].

A typical SELinux policy may include thousands of types so that it can represent all

the resources found within the operating system. Since accesses are denied by default in

SELinux, every possible action between two types intended by the high-level policy would

each require its own allow rule. This creates the possibility of having to specify hundreds of

allow rules just to allow a simple interaction to occur. This would make for a verbose and

unwieldy security policy that would be difficult to manage and analyze. To simplify this

process, SELinux allows types to be assumed into attributes, collections of types that may
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be incorporated into allow rules. Types can be included in more than one attribute, as is

required by the intended policy [8].

Mayer [8] provides an example of a situation where attributes can be useful when used

within allow rules. In this example, there is an application that can back up the entire file

system. In SELinux, this application is labeled with the type backup_t. Since an operating

system has many files, backup_t would need an allow rule to have read access for each type

associated with a file. Instead, by using attributes, all files are associated with an SELinux

attribute, file_type. Then, the following allow rule may be written and enforced:

allow backup_t file_type : file read; [8]

This rule provides the application with read access to all files associated with the file_type

attribute. This cuts down on the need to specify many allow rules, and makes it easier

for an analyst to manage the policy. If an analyst needs to drill down further in order to

understand what types are associated with an attribute, SELinux provides the command

line tool seinfo which makes the association clearer to discern [8].

The specification of types, attributes, and access vector rules provides for implementing

more flexible access control policies than using standard Linux discretionary access control

policies alone. By assigning types to files and processes, rules can be written to specifically

delineate what interactions are permitted between system users and objects. This takes

away the ability for users to arbitrarily assign permissions to resources and makes it easier

to implement system-wide, administrator-defined high-level policies.

2.5 SELinux Domain Transitions

In some cases, untrusted types need access to types associated with privileged processes. For

example, if a user wishes to change his or her Linux user password, he or she will have to

execute the Linux passwd program which requires access to files owned by the root user.

To allow the user’s type purpose-specific, limited interaction with the privileged process,

SELinux domain transitions can be placed within allow rules to enable this access. The
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following steps demonstrate this domain transition and are illustrated in Mayer [8]:

The first rule is a straightforward allow rule allowing a user type, user_t, the ability

to execute using the passwd execute type, passwd_exec_t (note that a the passwd_exec_t

type has been specifically defined for this type of interaction):

allow user_t passwd_exec_t : file {getattr execute}; [8]

Then, the following rule is used to create an “entrypoint” between the passwd executable

and its associated executable type which allows the executable type enter passwd’s domain:

allow passwd_t passwd_exec_t : file entrypoint; [8]

This final rule grants the user’s type the permission to enter passwd’s domain:

allow user_t passwd_t : process transition; [8]

When considered together, the three rules then allow the user to enter the privileged domain,

execute passwd, and change their Linux user password.

Role-based access control is also supported by SELinux. The heart of SELinux is still

type enforcement, but roles may be simply laid on top of type enforcement by associating

roles with types. For example, the SELinux association:

role user_r types user_t; [8]

will allow a subject belonging to the user role all accesses provided to the user type, user_t

[8]. Thus, for example, an administrator role could be created and associated with sensitive

tasks that an enterprise’s non-administrative employees would not need to carry out.
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CHAPTER 3

The Hierarchical Policy Model (HPol) and the High-level, Easily

Reconfigurable Machine Environment Specification (HERMES)

High-Level Policy Description Language

This chapter introduces the HPol project and outlines the progress University of Idaho

researchers have already achieved up until this point with the modeling of various exemplar

systems. Also included is the introduction of HERMES, the high-level policy description

language that expresses HPol output and queries [13] [14].

3.1 The Hierarchical Policy Model

The goal for access control policies and holistic organizational security policies are the same:

to determine what users may access which resources in what manner. Policies implemented

using device-level mechanisms require technical resources to ensure that the rules laid out in

the enterprise’s high-level policy are properly enforced. This process requires time, resources,

and device-specific technical expertise. However, these requirements can be impossible to

meet and difficult to comprehend for managers who need useful, accurate information on a

timely basis. Beyond enforcement, the dynamic nature of the cybersecurity problem space

also makes it vital to speed up this process. The Hierarchical Policy Model (HPol) offers

a higher-level of abstraction that serves to provide management with the ability to verify

different system interactions and receive sensible, intuitive output, for high-level organiza-

tional policies that are intended to be enforced across multiple devices within an enterprise’s

network [15].

HPol is a framework and associated tool set that allows for formal modeling, verification,

and visualization of system security policies. It serves to verify that an organization’s high-

level security policy (i.e. the intended policy) is implemented as intended in lower-level
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system components where policies are typically and actually enforced (i.e. the implemented

policy). HPol was developed at the University of Idaho Center for Secure and Dependable

Systems and is part of an ongoing research effort [15].

System configuration-to-HPol model translations have been carried out across three “ex-

emplar” systems in order to demonstrate its usefulness and extensibility. These include the

OpenStack Cinder distributed storage system, a Cisco router-based virtual private network

tunneling interaction [16], and the SELinux mandatory access control mechanism detailed

herein [15]. The HPol project includes parsers to translate all of these exemplars’ configura-

tions into high-level models and visual graphs.

Formal policy models need to represent a system’s behavior as accurately as possible.

However, there is a trade-off between the simplicity of the model and the ability to represent

specific security goals for the system. Therefore, security goals and models need to be

carefully crafted such that the model may be analyzed to ensure that the goals are met

while still faithfully maintaining the system’s semantic characteristics within the model [5].

To best map out a system component’s characteristics, HPol policy models are built

from the ground up. The library uses elements from low-level configurations (e.g. those that

control a router or those specified in an SELinux policy) to populate a model of hierarchical

system security policies with little loss of integrity during the translation. Once the formal

model is constructed, its output may be saved to a PyGraphViz [17] .dot file for visualization

in various purpose-specific graph viewers and/or in a high level policy description language

as detailed in Section 3.2 below. Formal operations and querying may also be applied to

the model. For example, this thesis demonstrates an effective use of policy merging to fuse

disparate policies from disparate SELinux machines. Once the model is established, an

analyst can verify if a policy is implemented correctly by constructing a query to determine

whether a certain action would be permitted between subjects and objects found across the

merged policy models [15].

The group of researchers initially responsible for developing HPol determined that the
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best way to display policy data groupings was to model them with directed acyclic graphs

(DAGs) that grow vertically and policy links that populate them horizontally. Accordingly,

a component-to-HPol parser begins by first constructing an overall HPol DAG comprised of

three smaller DAGs: an individual DAG each for subjects, actions, and objects. Subjects,

actions, and objects of a particular component are then populated in accordance with the

researcher’s interpretation of how the peculiar features and use cases for that system fit

within the HPol paradigm. Then, in a similar manner, policy links are drawn across the

model to indicate complete, distinct allowable interactions. All policies begin with a master

HPol start node and end with a master HPol end node. Wildcard links (i.e. “all” links) not

associated with specific, named policies are allowed as well [15].

Figure 3.1 provides a sample graph of a basic HPol model. In this model, the Subjects

DAG is populated with a Linux user, Alice. The Objects and Actions DAGs are populated

with file system objects and interactions. Policies begin with the HPolStart node and

terminate with HPolEnd node that are both independent of the DAGs. The policies indicated

by links 1001 and 1002 demonstrate that Alice may read and write on objects associated with

the /home/alice directory. Thus, each potential interaction between subjects and objects

is mapped within a single policy. However, in an implementation it would be possible, and

sometimes useful, for the researcher to make a single node serve as an abstraction of many

nodes, but must keep in mind that they are portraying the information in a way that is most

suitable to the particular context in which they are modeling.

3.2 High-level, Easily Reconfigurable Machine Environment Spec-

ification (HERMES) Output of HPol Models

The HPol library includes a method that will output policy information in the High-level,

Easily Reconfigurable Machine Environment Specification (HERMES) format. HERMES is

a high-level policy description language developed at the Center for Secure and Dependable
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Figure 3.1: HPol Model: Alice Read/Write Example
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Systems at the University of Idaho, for the initial purpose of describing high-level web

browser policy specifications [13] [14]. HERMES provides a clear format that an analyst may

use to see what components and policies make up different systems and policies, including

HPol policies. Once an HPol model’s policies are encoded in HERMES output, XSB Prolog

modules developed at the Center for Secure and Dependable Systems may be used to query

the output to aid in policy verification. The abbreviated HERMES output found in Listing

3.1 details policies found within the example HPol model generated in Figure 3.1. Listing 3.2

displays a HERMES representation of a portion of the structure of the same model. Once

generated, this HERMES output can be read directly by special parsers using XSB Prolog.

3.3 HERMES Queries with XSB Prolog

In order to query an HPol model using HERMES output and XSB Prolog, the following

workflow is necessary:

1. Generate an HPol model and use the library function convert2hermes().

This method writes node and policy information to a file called hermes.out.

2. Open an interactive window for XSB Prolog.

3. Type [main]. and press return.

This loads the HERMES output parser.

4. Type parse_and_convert(hermes.out). and press return.

This parses the HPol HERMES output into a format that can be used by the XSB

Prolog evaluator associated with this project.

5. Open a text editor and generate the desired query in HPol format.

Create a file called query.herm and enter the query in the form found in Listing 3.3.
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6. Return to the XSB Prolog interactive window, type parse_and_convert(query.herm)

and press return.

7. Type [evaluate]. and press return.

This loads the module XSB Prolog uses to evaluate the parsed output from hermes.out

and query.herm.

8. Type eval_query(A, B). and press return.

This method evaluates the query generated in HERMES. It can run one query at a

time. Pressing return will result in either yes for a successful query or a message

reading Query failed.

9. Type halt. and press enter.

This terminates the XSB Prolog interactive session.

While none of these nine steps is difficult to apply, it would be cumbersome for an analyst

to walk-through all of them for each query. They would also need to possess HERMES

and XSB Prolog technical knowledge to complete the query. To simplify this process, an

interactive script to automatically generate a query and execute the XSB Prolog portion of

the query makes up the contribution detailed in Chapter 7.
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Listing 3.1: HERMES Policy Output for the Example HPol Model

1

2 Pol i cy : p1001
3 {
4 Desc r ip t i on : ‘ ‘ HPol Pol icy ’ ’ ;
5 Status : Enabled ;
6 Path : [ HPolStart , Al ice , read , a l i c e , HPolEnd ] ;
7 }
8

9 Pol i cy : p1002
10 {
11 Desc r ip t i on : ‘ ‘ HPol Pol icy ’ ’ ;
12 Status : Enabled ;
13 Path : [ HPolStart , Al ice , wr ite , a l i c e , HPolEnd ] ;
14 }

Listing 3.2: HERMES Node Output for the Example HPol Model

1

2 Node : d i r
3 {
4 Desc r ip t i on : ‘ ‘ d i r ” ;
5 Path : ‘ ‘ HPol/ Act ions /FS/ d i r ” ;
6 ID : ‘ ‘3028190526064582664088867455944794154599
7 9070383499869330901586244101170854817”;
8 Type : Act ions ;
9 Chi ldren : [ read , wr i t e ] ;

10 }

Listing 3.3: HERMES Query of the Example HPol Model

1

2 Query : 1
3 {
4 Allow : yes ;
5 Contains : [ Al ice , read , a l i c e ] ;
6 }
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CHAPTER 4

Related Work

This chapter details work by other researchers within a similar scope as this thesis. Other

policy models and other work involving SELinux policies, as well as brief comparisons be-

tween them and HPol, are included.

4.1 Other Policy Modeling and SELinux-Related Projects

Guttman and Herzog [5] applied “rigorous automated network security management” to

model a small network in order to verify policies relating to distributed packet distribution

and filtering and, additionally, to IP Security protocol enforcement. Their model incor-

porated an undirected and bipartite graph to represent the flow of packets back-and-forth

across its nodes. Its nodes were comprised of network devices and locations and its edges

were comprised of packet filtering interfaces. Security goals within this model included re-

stricting the flow of specific packets through the network and ensuring the authenticity and

confidentiality of other packets that passed filtering. They represented behavior as a func-

tion of various system configurations and the output of the model consisted of algorithms

that could predict possible consequences of different system configurations. Once these al-

gorithms were obtained, administrators could write a program to verify that security goals

were met, to provide examples of which ones were not met, or even to generate a set of

optimal configurations for the network.

Since network devices made up the operative core of Guttman and Herzog’s model, their

approach varies materially from HPol modeling. For instance, they employed an undirected

graph to model packets flowing back-and-forth between nodes. They found that this did not

scale to networks including more than a trivial amount of nodes [5]. HPol’s directed acyclic

graphs and policy links may be comprised of thousands of nodes and edges and thus can

already scale to larger representations of systems. In addition, the end results of their model
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were predictive algorithms, leaving administrators to then craft a program to assume and

interpret them on their own. The HPol model provides HERMES output which represents

policies that can be directly queried. Unlike Guttman and Herzog’s model, the interactive

policy querying contribution of this thesis demonstrates a program which may be used to

query results and free administrators from this requirement. Both approaches construct

formal models that may be used against desired predicates prior to the problem-solving

stage, making them highly-efficient.

Guttman, Herzog, et al. [18] also formalized a subset of SELinux to determine information

flow security goals. In this work, they modeled covert security channels on an SELinux web

server. As in [5], this approach can verify security goals by checking them against the formal

model. This model’s approach differs from the HPol approach because this work is using

SELinux to model mandatory access control overall. Conversely, a general purpose model

for mandatory access control has been constructed that does not explicitly cover SELinux,

but it provides an abstraction of system components, rather than directly mapping to the

components themselves [4].

Another noteworthy SELinux policy effort is Lobster, a domain-specific language for

describing SELinux policies [1]. The researchers who created Lobster note that SELinux

policies can be understood as information flows between domains. The goal of Lobster is to

aid policy designers in confirming whether the information flows laid out in their intended

policy match up with how they are implemented within SELinux policies. Ultimately, Lob-

ster is supposed to compile SELinux policy statements from Lobster thus generating the

SELinux configuration itself. An example Lobster policy appears in Listing 4.1.
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Listing 4.1: Sample SELinux Policy Statements Written in Lobster [1]

domain p = Process ( ) ;
domain f = F i l e ( ‘ ‘ / tmp/ f i l e ” ) ;
p . a c t i v e −− f . read ;

The rule written in Lobster specifies the SELinux types p_t and f_t and allows p_t to

read a file of type f_t. The Lobster compiler breaks this down into the following SELinux

allow rule:

allow p_t f_t : file read; [1]

No current HPol examplars actually create the configurations from the high-level policy in

the format of their own paradigm.

One more policy model to consider is Margrave, a “general-purpose policy analyzer”

that has been applied to different exemplars including role-based access control [3] and

firewall configuration [19]. In terms of role-based access control, Margrave processes system

configurations and outputs them into XACML, an XML-derivative, to express access control

policies. Margrave consists of two major components: (1) a verification system that accepts

a policy and a property to determine whether they match up (i.e. a query) and (2) a system

for “change-impact analysis” that can take multiple policies as input and summarize the

differences between them. It also includes support for policy and query combinations. For

efficiency, Margrave does not explicitly represent a system’s data, but uses uninterpreted

symbols to simulate reasoning about its exemplar’s data [3].

Margrave and HPol vary in terms of how they ingest access control data because HPol

explicitly incorporates data directly from its system exemplars whereas Margrave uses higher-

level symbol abstraction. The HPol approach avoids as much information loss as possible

when translating configuration information into a model. It also allows HPol to scale to a

larger system than exhibited in [3]. HPol does not yet include capabilities for compound

policy querying. Both models output policies into a markup representation that may be
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queried, but the query mechanism detailed in this thesis allows administrators to skip the

step of having to analyze the markup as it applies to the SELinux-to-HPol variant.

The efforts outlined in this chapter, as well as the work completed with HPol thus far,

demonstrate that researchers have been successful in many cases at constructing and analyz-

ing formal models using configurations from actual systems. However, the need still exists

for a more developed holistic model to formalize system security policies as implemented

such that they can be represented at a high-level abstraction that can be formally verified

against the intended security policies. This need remains due to the countless permutations

of possible network configurations and the additional system components these methods

must be applied to.
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CHAPTER 5

Research Question and Contributions

This chapter outlines the major question this research seeks to answer. It then breaks the

main question down into three components which map directly to the three contributions of

this thesis to the HPol project.

5.1 Research Question

The particular issues encountered when abstracting low-level policies into higher level mod-

els, along with the particularities of implementing HPol and its related tools, give rise to

many interesting questions. Since this thesis is especially concerned with applying HPol to

model and query SELinux policies, the central question is, necessarily:

Can a high-level formal model for policy verification be constructed from low-

level SELinux mandatory access control policy configurations?

To answer this question in the affirmative, it is important to demonstrate that the HPol

model can be applied to SELinux policies in a useful and effective manner, especially as it

would be used by managers in a large enterprise.

5.2 Thesis Contributions

The crux of this thesis maintains that, for HPol to be successfully applied to an SELinux

MAC policy, three requirements must be met: (1) the ability to translate SELinux MAC

policies into an HPol model, (2) the ability to query that model, and (3) the ability to merge

and query multiple SELinux-to-HPol models. The contributions of this thesis that address

these requirements are outlined as follows:
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1. Formalizing Enterprise Linux Mandatory Access Control Policies Using

HPol

This requirement is met in terms of an SELinux-to-HPol parser that constructs an HPol

model congruent with other HPol models already described. First, an HPol model that

incorporates SELinux subjects, actions, and objects into HPol directed acyclic graphs.

Policy links must also be populated.

Although technically, mandatory access control schemes need to have every possible

class of access specified, most enterprises will lack the time and resources necessary

to specify every possible access between subjects and objects. For this reason, the

standard “targeted” SELinux policy is enabled by default, and then configured from

there, if at all. Therefore, an SELinux-to-HPol parser needs to successfully parse the

targeted policy with respect to mandatory access control.

2. Interactively Answering Queries About SELinux Device Policies

Since one goal of HPol is to make it easier to make sense of disparate system component

policies, it follows that querying the model should be a straight-forward process that

does not require technical expertise for specific system components (e.g. SELinux

access vector rule details) or the nine-step process outlined in Section 3.3. A front-end,

interactive mechanism to query policies using only subject, actions, and object names

makes up the second contribution, providing an intuitive way to verify the policies.

3. Merging Policies for Multiple Device Policy Violation Detection

Another goal of HPol is to abstract policies derived from a variety system components

(e.g. a router, a workstation, and a storage system). The first step to accomplish this

is to merge policies that originate from the same system components. In terms of the

SELinux-to-HPol translation, the merge operation combines two SELinux policies such

that each model retains its particular attributes and such that the merged model may

be visualized and queried in the same manner as a single model.
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CHAPTER 6

Contribution 1: Formalizing Enterprise Linux Mandatory Access

Control Policies Using HPol

The SELinux-to-HPol policy parser outlined in this chapter demonstrates that an HPol

hierarchical policy model for an enterprise Linux mandatory access control policies can be

constructed. This parser was written in Python 2.7.5 using the HPol library. It was deployed

on CentOS Linux 7 (64-bit) with the Linux 3.10 kernel in a virtual machine with a quad-core

CPU and 5GB of RAM.

In the first portion of this chapter, the base SELinux-to-HPol parser created for this

thesis work will be introduced. Then, in first cast study, the normal parsing workflow will

be walked through to demonstrate that it works in accordance with the sample model and

queries found in Chapter 3. Once this basis is established, the second case study demonstrates

a full parsing of the standard SELinux targeted policy.

The portion of nodes that make up the foundation of any SELinux-to-HPol policy (e.g.

ObjectTypeAttr, SELinuxClassPerms, and RoleType) are manually-coded into all models.

The DAG nodes comprising the example passwd policies and policy merging examples are

hard-coded into the application. Above the base SELinux-to-HPol policy foundation, the

DAGs for the targeted policy model outlined in Section 2.2 are populated programmatically

using flat files. Actual policies for all models are parsed using code in the script. Role-based

access control is a major component of SELinux, but is simulated herein to make querying

more coherent. To simulate basic RBAC interactions within the model, each named policy

begins with user “alice”. Similarly, since most users in the targeted policy are associated with

the unconfined_t type, it serves as the starting point for Subjects. The parser also includes

the functionality to output mappings between policy link numbers and device names. This

is useful for policy merging for multiple devices.

Allow rules are stored in av_rules.txt and used to populate the HPol model’s policy
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links. Listing 6.3 demonstrates how allow rules typically contain multiple permissions. To

aid in providing the model with finer granularity, the SELinux-to-HPol parser populates

separate policies for each permission in the rule. For example, the HPol model will have

three separate policy links for a single AV rule with read, write, and execute permissions.

Thus, the HPol representation of an SELinux implementation will contain more full policies

than allow rules.

6.1 Case Study 1: Parsing of an SELinux Policy with Domain

Transitions

To demonstrate the basic operation of the SELinux-to-HPol parser, this section revisits the

SELinux passwd domain transition policy outlined in Chapter 3. Figure 6.1 provides the

graph for this policy. This case study assumes that the targeted policy is active. The DAGs

in this model were hard-coded into the script based on the SELinux-to-HPol semantics and

the information contained within the relevant allow rules. This selection of allow rules was

actually parsed in order to demonstrate the feasibility of translating this entire transaction.

Policy link creation for the policy’s allow rules will be broken down piece-by-piece to

provide the following policy path walk-through:

1. allow unconfined_t passwd_exec_t : file {getattr execute};

This allow rule provides the user type the ability to perform the actions necessary to

execute passwd. This ability is associated with the passwd_exec_type. The asso-

ciation between the two is modeled with named policies 1001 and 1002. Label (A)

demonstrates where the policies begin.

2. allow passwd_t passwd_exec_t : file entrypoint;

Then, passwd_exec_type is associated to the passwd domain. Note that there is no

direct link between the user’s type and the privileged process itself. The association of
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the passwd executive type with passwd ’s domain is demonstrated in Figure 6.1 in the

red “all” link located between passwd_exec_t and passwd_t. Label (B) shows where

this file entrypoint occurs.

3. allow unconfined_t passwd_t : process transition;

To complete the domain transition, named policies 1003 and 1004 show how the user

type unconfined_t is allowed to enter the passwd domain in accordance with the

actions permitted in the first allow rule in the set. Label (C) shows where these

policies end.
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Figure 6.1: Abbreviated HPol Model Demonstrating the passwd Domain Transition
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6.2 Case Study 1: Findings

Figure 6.1 shows an abbreviated, but fundamentally complete HPol model of an SELinux

policy. Note on this figure that all types emanate from the Types node in the Objects DAG

and later connect to their associated attribute, file_type. The SELinux DAGs were con-

structed in this manner for two reasons: 1) so all types have an absolute path to identify

them and 2) because a type may be associated with multiple attributes. Thus, the secondary

hierarchical links are added after the types are already populated. Roles and users are pop-

ulated in a similar manner, but it is not readily evident here since this parser assumes that

“alice” is the only user.

Once the HPol model’s DAGs are properly populated, it is trivial to populate the bulk

of the SELinux allow rules. New policies are created, provided with a policy number, and

links are drawn through the relevant nodes. Thus, the first two policies that are a result

of the first allow rule in the passwd domain transition are straight-forward to parse. For

the accesses permitted between unconfined_t and passwd_exec_t, two links are added in

addition to the policy’s starting and ending links: one between the subject and the action

and another between the action and the object acted on. This represents a full named policy

because there is a complete subject-action-object interaction.

The file entrypoint and domain transition allow rules represent special cases for policy link

creation and require additional logic to be incorporated into the model accurately. In both

cases, they appear as regular allow rules representing a subject-action-object interaction

since they do not appear differently than other allow rules. However, the process of the

domain transition does not work in that way.

The file entrypoint rule does not, in and of itself, result in a named policy. Thus, when

the parser encounters a file entrypoint in an allow rule, it does not create a new policy and

does not connect the associated types with an endpoint. Instead, a single wildcard link is

created between the two types listed. This link runs in the opposite direction as the policy
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links already demonstrated. This is because the allow rule:

allow passwd_t passwd_exec_t : file entrypoint;

means, in this case: create a file entry point between the passwd_exec_t type and the

passwd_t type. The link must be a wildcard link because domain transitions that possibly

represent multiple interactions will need to create links for full policies that need to use the

wildcard link multiple times.

The domain transition rule provides additional challenges because it contains little infor-

mation about all the policies it implies:

allow unconfined_t passwd_t : process transition;

This process transition serves to allow all permitted policy interactions between unconfined_t

and passwd_t to be allowed. The HPol model lends itself well to populating these policies:

using internal HPol library methods, the parser can find all the links between the two types

and create new policies for those. This is the reason that creating the file entrypoint be-

tween passwd_exec_t and passwd_t was important. Since the first two policies linking

unconfined_t and passwd_exec_t were already populated, the file entrypoint provided a

complete path between unconfined_t and passwd_t. This path is vital to represent the

ability for the user to change their password using passwd_t.

Once the parser can find all the links between two types, it can create complete policies,

even with the limited information provided by the process transition allow rules. To find

the links, some basic graph querying functionality needed to be added to the HPol library

itself. This is because HPol graphs are constructed internally using the networkx library

[20] to construct directed graphs with multiple edges. The graph object for the HPol model

may only be accessed via private methods within the library source itself in order to prevent

graph manipulation and unwanted side-effects. Accordingly, the isPathBetweenNodes()

and getPathsBetweenNodes() external methods were created for this thesis work within the

library itself in order to accomplish the tasks necessary for this challenge. These methods

were relatively straight-forward to implement because they take advantage of the application
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programmer interface of the networkx library itself.

With the implementation of the node querying methods, it is possible to find out whether

there are any paths connecting the two types delineated in the process transition. For each

process transition, the parser includes logic to find out whether there is a path between the

nodes. If so, it finds all the paths. All these paths should include a subject, action, and

object. Then, for each path, a new policy is created, and all policy links can be populated.

In the case of the passwd domain transition illustrated here, the process would now be

complete. This is because the whole transaction was parsed in the ideal order: the initial

links were created first, then a file entry point was added, and then all possible paths were

found. In the actual compilation of allow rules, however, the rules are not necessarily placed

in this proper order. If, for example, the process transition were parsed before the rules

allowing the desired accesses, no paths would be found, and no associated new policies would

be created–even if they were specified elsewhere in the policy. To avoid this problem, this

parser populates SELinux process transitions only after all other accesses and entry points

have already been populated. To do this, whenever a process transition is being parsed, its

associated information is stored in a dictionary to be used later. This dictionary uses the

source of the rule as its key and the destination of the rule as its value. Then, once all other

allow rules have been parsed, the dictionary is used to find all the policies allowed by the

process transitions (e.g. all the paths between HPolStart and HPolEnd nodes between them

using networkx methods) and processes them accordingly. In this case, the two paths were

found were the ones used to populate policies 1003 and 1004.

Once all the allow rules are properly parsed accounting for domain transitions, it is

possible to derive the model’s HERMES output. Listing 6.1 demonstrates the policy portion

of the HERMES output for the passwd domain transition.

Policies p1003 and 1004 demonstrate that the user type, unconfined_t may perform

both actions specified in the allow rules indirectly with passwd_t. Thus, the domain tran-

sition steps taken within the parser and described in this section were a success.



35

Listing 6.1: HERMES Policy Output for the passwd Domain Transition

1

2 Pol i cy : p1001
3 {
4 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
5 Status : Enabled ;
6 Path : [ HPolStart , a l i c e , unconf ined t , g e ta t t r ,

passwd exec t , HPolEnd ] ;
7 }
8

9 Pol i cy : p1002
10 {
11 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
12 Status : Enabled ;
13 Path : [ HPolStart , a l i c e , unconf ined t , execute ,

passwd exec t , HPolEnd ] ;
14 }
15

16 Pol i cy : p1003
17 {
18 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
19 Status : Enabled ;
20 Path : [ HPolStart , a l i c e , unconf ined t , g e ta t t r ,

passwd exec t , passwd t , HPolEnd ] ;
21 }
22

23 Pol i cy : p1004
24 {
25 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
26 Status : Enabled ;
27 Path : [ HPolStart , a l i c e , unconf ined t , execute ,

passwd exec t , passwd t , HPolEnd ] ;
28 }

6.3 Case Study 2: Parsing the Default Red Hat Targeted SELinux

Policy

Up to this point, only example HPol models for demonstrative purposes have been provided

and analyzed. To prove the robustness of the SELinux-to-HPol parser, this case study shows
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that the parser also works at scale when provided with a real-world policy covering an in-

stance of an entire operating system’s functions. The full policy that was parsed was the

Red Hat targeted SELinux policy, which is the default policy for enterprise Linux distribu-

tions. Thus, the results from the parsing of the targeted policy provide a rough idea of what

populating HPol models using large-scale SELinux policies might look like in an operational

setting.

The full parsing does not differ materially from the abbreviated parsing of the smaller

examples. The only difference is that it incorporates all nodes and allow rules from the

SELinux seinfo and sesearch utilities. The DAGs were populated with the results from

the subjects, roles, action, attributes, and types dictionaries emanating from files created

within a policy directory. Specifically, the parser populates the HPol model using SELinux

policies and components stored in flat (i.e. “.txt”) files. This method necessarily means that

contextual information for the device that hosts SELinux is lost along the way (e.g. the

Linux DAC permissions). However, it does allow the parser to be used on different machines

that are independent of the target machine. This is a reasonable trade-off because a goal

of HPol is to free policy information from independent components to allow for systematic

implementation and verification of security policies. An example of the flexibility that this

approach allows is exhibited by the the ability to merge HPol models representing different

devices as described in Chapter 8 which details the HPol policy merging contribution of this

thesis.

SELinux policy components are compiled by running the seinfo command line argument.

Running the command for specific components along with the -x option provides a tiered

mapping between the component and the most relevant component it is associated with. For

example, the following command and resulting output demonstrate the relationship between

the confined_admindomain which includes types for sensitive processes entrusted to an

admin role and the types themselves (see Listing 6.2).

Roles are provided by seinfo -r, users and their associated roles by seinfo -u -x,
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Listing 6.2: Attribute and Type Output from the seinfo Utility

breaklines

$ seinfo --attribute=confined_admindomain -x

confined_admindomain

logadm_t

secadm_t

sysadm_t

dbadm_t

auditadm_t

object classes and their associated permissions by seinfo -c -x, object attributes and their

associated types by seinfo -a -x, types and their associated attributes by seinfo -t -x,

and types by themselves with the command seinfo -t. Command output for these is stored

in roles.txt, user.txt, action.txt, object.txt, attr.txt and type.txt, respectively.

Together, the files populated from seinfo represent a complete representation of all the

resources within the operating system as well as all potential interactions for the purpose of

constructing the hierarchical portion of the high-level HPol model from an SELinux config-

uration. These files can be placed in a directory which can then be easily loaded into the

parser. From these files, the parser compiles these various resources and interaction repre-

sentations into dictionary data structures where the key is the primary component and the

associated component is the value. This makes it simple to populate the Subject, Action,

and Object DAGs. The associations also aid in populating the policies, especially in the case

of domain transitions which were described above.

To build a model using a complete SELinux policy, it is also necessary to incorporate

all of the allowed accesses, in the form of allow rules, between the nodes in the DAGs. To

compile all the SELinux policies for HPol, the sesearch command line tool provides all

the SELinux access vector rules that have been specified in the system’s policy modules.

Since this work focuses only on SELinux allow rules, sesearch -all is ran to provide all

allow rules for the SELinux implementation. For example, Listing 6.3 shows the following
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Listing 6.3: Allow Rule Output from the sesearch Utility

breaklines

$ sesearch -A -s confined_admindomain | head -5

Found 1627 semantic av rules:

allow sysadm_t security_t : security { compute_av

compute_create check_context compute_relabel

compute_user setsecparam read_policy } ;

allow sysadm_t security_t : filesystem getattr ;

allow sysadm_t security_t : file { ioctl read write

getattr lock append open } ;

allow sysadm_t semanage_t : process transition ;

command and output providing the first five results of an sesearch execution for allow rules

in which types belonging to the confined_admindomain attribute are the source. Note that,

even though none of the source types are labeled confined_admindomain, these types are

associated with it as shown in Listing 6.2. Although confined_admindomain may be used

in place of the type itself, it then would represent many types having the specified accesses.

6.4 Case Study 2: Findings

This parser successfully incorporated all information included within the policy flat files.

Listing 6.4 displays the statistics generated by the full parsing. In all, over 6,000 nodes were

populated in the model’s DAGs and over 2,000,000 links were created. The policy consisted

of 95,604 allow rules broken down into 537,553 individual HPol policies. It took less than

two hours to parse on a quad-core CentOS virtual machine with 5GB of RAM.

Up until this case study, the solution was complete for all file and process types. However,

the need to parse SELinux attributes yielded additional considerations when parsing the

targeted policy. SELinux attributes are able to represent many types as the backup_t

example illustrated earlier:

allow backup_t file_type : file read;

The attribute file_type can be comprised of many types. In accordance with the reason
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Listing 6.4: HPol Results from Parsing the SELinux Targeted Policy

breaklines

populating subjects at: 21:01:06.978904

populating actions at: 21:01:07.060726

populating objects at: 21:01:08.789825

adding policy links at: 21:02:37.226885

adding transitions at: 22:40:25.704490

No paths found between sepgsql_ranged_proc_t and

sepgsql_client_type or their associated attributes.

394 transitions attempted 393 were successful

537553 allow rules and components parsed

graphing model at 22:43:07.357749

SHOWING HPOLICY STATISTICS

Name: TargetedPolicy

Type: SELinux

NUMBER of NODES:

6192

NUMBER of EDGES:

2221768

finished at 22:43:18.239398

that SELinux has attributes to begin with, namely, simplicity, this parser also does not

draw links through every possible interaction with a type, but through the attribute itself.

This choice greatly simplifies the model while letting it remain congruent with the operation

of SELinux. However, it complicates the search for paths between types. This is because

one allow rule can specify that an attribute can act on other types, but another one may

include a process transition that only names the type, but not its attribute. This means the

process transition only applies to the type, but that, if a process transition between it and

a privileged type is granted, it is able to carry out all actions that are associated with its

attribute on the priveleged type.

The process transition code found in Figure 6.2 makes the process needed to account for

attributes evident. These conditions apply to all key-value pairs of types and attributes that
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foundPaths = []

if hpol.isPathBetweenNodes(fromTypePath , toTypePath):

# e . g . between f r o m t and t o t

foundPaths = hpol.getPathsBetweenNodes(fromTypePath ,

toTypePath)

elif hpol.isPathBetweenNodes(fromTypePath , toAttrPath):

# e . g . between f r o m t and t o t y p e

foundPaths = hpol.getPathsBetweenNodes(fromTypePath ,

toAttrPath)

elif hpol.isPathBetweenNodes(fromAttrPath , toTypePath):

# e . g . between f r o m t y p e and t o t

foundPaths = hpol.getPathsBetweenNodes(fromAttrPath ,

toTypePath)

else:

failures+=1

print ' No paths found between ' , key, ' and ' ,proc trans[key

], ' or their associated attributes. '

Figure 6.2: SELinux-to-HPol Parser Code Demonstrating Path Finding for Domain Transi-

tions

were stored in the process transition dictionary during the first round of AV rule parsing. The

first conditional takes care of the case where there is a process transition, but no attributes

are involved. The HPol method getPathBetweenNodes() uses networkx to find all paths

between the SELinux types. The result, stored in foundPaths is then later used to populate

additional full policies into the model. The second conditional covers the case in which the

source of the allow rule is a type, but the target is an attribute. This works the same as

the first conditional, except now all links between the single type and its target attribute
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Listing 6.5: An Extraction of HERMES Policy Output from Parsing the SELinux Targeted
Policy

1

2 Pol i cy : p1021
3 {
4 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
5 Status : Enabled ;
6 Path : [ HPolStart , l 2 tpd t , read , l 2 tpd va r run t , HPolEnd

] ;
7 }
8

9 Pol i cy : p1022
10 {
11 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
12 Status : Enabled ;
13 Path : [ HPolStart , l 2 tpd t , write , l 2 tpd va r run t , HPolEnd

] ;
14 }
15

16 Pol i cy : p1023
17 {
18 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
19 Status : Enabled ;
20 Path : [ HPolStart , l 2 tpd t , c reate , l 2 tpd va r run t ,

HPolEnd ] ;
21 }

are accounted for. In the third conditional, the converse of the same process takes place.

The only difference is that, in this case, the source of the allow rule is an attribute, and the

target is a single type. Notably, there is no path search between “from” attributes and “to”

attributes. A process transition this general should not be permitted unless it is explicitly

specified. This makes sense since process transitions aim to confine unprivileged access to

privileged processes. Also, if it were the case that both the source and destination of a

domain transition were attributes, the first “if” clause would cover that case.

An extraction of HERMES output from parsing the targeted policy is presented in Listing

6.5.
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6.5 Case Study 2: Visualization

This thesis work did not focus on the problems associated with graph visualizations of

SELinux HPol models. However, this section includes some sample graphs from parsing

selections of allow rules from the targeted policy. This demonstrates an idea of the size

and scope of a full SELinux policy and associated HPol model. Figure 6.3 shows a zoomed-

in screenshot of the dir object class and its associated permissions once populated into a

Gephi viewer graph. Figure 6.4 shows the initial view of a graph populated with all its

nodes. Since this is impractical to view, Figure 6.5 shows the graph with the ForceAtlas2

algorithmic layout and 10,000 allow rules.
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CHAPTER 7

Contribution 2: Interactively Answering Queries About SELinux

Device Policies

HERMES output may be queried using the form demonstrated in Chapter 3. However,

this requires domain-specific knowledge of HERMES and XSB Prolog and the consequent

nine-step process detailed in Section 3.3. Since HPol aims to remove an analyst from

domain-specific knowledge as much as possible, the need to learn these paradigms is counter-

productive. Ideally, an analyst would need only to know the policy’s subject, action, and

object in order to attempt to query the HPol model output. This would turn the nine-step

process into a two-step process: (1) build the model and run the convert2hermes() method

and (2) run hermes_query.py using the hermes.out file generated in step (1).

To simplify the querying workflow, the second contribution of this thesis is a HER-

MES/XSB Prolog front-end that 1) interactively elicits query information from the analyst,

2) constructs the query in proper HERMES format, and 3) executes the query. Additionally,

if the query script is provided with a mapping between policy link numbers and device names,

it outputs which device and policy link triggered the query result if the query is answered in

the affirmative. This script eases the process involved in verifying policy enforcement.

The operative portion of HERMES output from the passwd domain transition docu-

mented in Chapter 6 is provided in Listing 7.1. By running the HPol interactive querying

script using the HERMES output file and policy path mappings from the SELinux-to-HPol

parser, the query output presented in Listing 7.2 is generated.

Policies p1003 and p1004 were the operative policies in this example because they include

the entire interaction that was intended to be achieved by the domain transition to begin

with. Since the user is “alice” and passwd is associated with passwd_t, the model should

answer in the affirmative if queried about whether “alice” may execute the passwd program.

This result ultimately is what shows the analyst that the domain transition was a success.
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Listing 7.1: Operative HERMES Policy Output for Querying the passwd Domain Transition

1

2 Pol i cy : p1003
3 {
4 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
5 Status : Enabled ;
6 Path : [ HPolStart , a l i c e , unconf ined t , g e ta t t r ,

passwd exec t , passwd t , HPolEnd ] ;
7 }
8

9 Pol i cy : p1004
10 {
11 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
12 Status : Enabled ;
13 Path : [ HPolStart , a l i c e , unconf ined t , execute ,

passwd exec t , passwd t , HPolEnd ] ;
14 }

An analyst seeking to find out whether Alice can execute passwd on a particular HPol

model can just enter “alice execute passwd” and, if successful, the script will output a success

message. In this case, the script was provided with the policy and device mapping generated

by the SELinux-to-HPol parser, so the output displays them as well. Chapter 8 provides a

more expanded querying example using this same script.

This parser may also be used to verify the policies within the HERMES output for

the targeted policy generated by the parser in Chapter 6. Thus, the following sample policy

extracted from the targeted policy HERMES output shown in Listing 7.3 may also be queried

successfully with the interactive script (see Listing 7.4).

These query results demonstrate that HPol HERMES output can be successfully queried.

This interactive script saves an analyst from having to follow a drawn-out set of steps, making

it easier to verify policy implementation. Additionally, the subject-action-object form that

the script takes as input lines up with the basic characteristics of any access control policy.

At present, this script has been successfully testing on small sample policies only. This is

because the XSB Prolog parser does not yet scale to large HERMES files in a timely manner.
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Listing 7.2: Output from Querying HERMES Policy Output from the passwd Domain Tran-
sition

breaklines

subject action object > alice execute passwd

[XSB Prolog Output Removed]

Query successful on policy: p1003

subject action object > alice getattr passwd

[XSB Prolog Output Removed]

Query successful on policy: p1004

Listing 7.3: A Sample Policy from Parsing the SELinux Targeted Policy

1

2 Pol i cy : p1032
3 {
4 Desc r ip t i on : ‘ ‘ HPol Po l i cy ” ;
5 Status : Enabled ;
6 Path : [ HPolStart , s t a f f t , send msg , blueman t , HPolEnd ] ;
7 }

Listing 7.4: Query Result for the Sample Policy from the SELinux Targeted Policy

breaklines

subject action object > staff send_msg blueman

[XSB Prolog Output Removed]

Query successful on policy: p1032
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CHAPTER 8

Contribution 3: Policy Merging for Multiple Device Policy

Violation Detection

In order for the HPol model to abstract policies from multiple devices, it must include formal

operations to do so. For this contribution, abbreviated SELinux policies were successfully

merged and queried. The policies retain all initial attributes from their state prior to merging,

thus there was no information lost along the way. Policy merging has only been attempted

with the SELinux HPol exemplar, but its functionality is now part of the library and should

readily apply to other component-to-HPol parsers.

As in the sample SELinux domain transition policy detailed in Chapter 6, policy merging

work completed for this contribution used abbreviated SELinux policy models. In these

models, each individual policy represents a selection of nodes and policies from a stand-

alone device (i.e. a single workstation with an active SELinux policy). Merged policies and

models consist of two or more abbreviated device models. The next step in this area will be

to address the merging of full SELinux policies.

To begin the process of merging multiple SELinux-to-HPol models, individual models

were populated one-by-one per the same process used in Chapter 6. A merged policy must

have distinct labeled policies (e.g. policy 1004 cannot be used in both Device 1 and Device

2). Distinct HPol models have an internal policy dictionary that represents policies that have

already been populated. Thus, to ensure contiguouos numbering, each new model’s policy

dictionary was updated to include all prior policy dictionary entries before new policies were

added. The setPolicyDict() method was added to the HPol library to allow the individual

parser to accomplish this task since updating policy dictionaries is a method internal to the

library itself.

Once each individual HPol model was populated, merging could take place using the

mergePolicies() method added to the HPol library as part of this contribution. To use
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for i in range(0, len(hpols)):

hpol = hpols[i]

# graph compos i t ion o p e r a t i o n merging graphs o f models

self. nxMultiDiGraph = nx.compose(self. nxMultiDiGraph ,

hpol. nxMultiDiGraph)

# add new r o o t node f o r merged p o l i c i e s

self. nxMultiDiGraph.add edge(self. rootNode , hpol.

rootNode)

# e l i m i n a t e p r i o r s t a r t and end l i n k s

# ( merged model has ' master ' s t a r t / end l i n k f o r a l l

p o l i c i e s )

self. nxMultiDiGraph.remove node(hpol. ppStartNode)

self. nxMultiDiGraph.remove node(hpol. ppEndNode)

Figure 8.1: Policy Merging Code from the mergePolicies() Method of the HPol Library

mergePolicies(), a new HPol model representing a merged policy was created. Then, its

policy dictionary was updated to reflect all policies that were populated in the pre-merged

models. Merging took place using the mergePolicies() method following this step.

Figure 8.1 demonstrates the portion of the mergePolicies() code where the initial steps

of the HPol model merging takes place. This code iterates through all the individual models

populated by the SELinux-to-HPol parser and passed to the method with the hpols object.

With each iteration, individual models are merged into the new merged HPol model using

a graph composition compose() method for multi-digraphs from the networkx library [20].
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pol path mappings = []

# p o p u l a t e s t a r t i n g / ending nodes f o r a l l named p o l i c i e s

for i in range(0, len(endPaths)):

for polID, path in endPaths[i].iteritems():

pol path mappings.append(str(polID)+ ': '+str(path

).split( '/ ')[0])

pol name = path.split( '/ ')[0]

self.addStartLinkToPolicyPath(ppID=polID, toNode=

self.hpolName+ '/ '+pol name+usr path)

self.addEndLinkToPolicyPath(ppID=polID, fromNode=

self.hpolName+ '/ '+path)

return pol path mappings

Figure 8.2: Code to Connect the Merged Start and End Node to the Named Policies from

the mergePolicies() Method of the HPol Library

After composition, the individual model is incoporated with the merged model with all

its links, but it is not connected to the root node of the merged model. The networkx

add_edge() method connects the recently-populated device model with the merged model.

Then, the networkx remove_node() method is used to remove the device model’s start and

end policy nodes. These are removed because a single HPol policy contains only a single

start and end node. Accordingly, in the merged model, all policies originate and terminate

in the start and end nodes belonging to the merged model.

When policy start and end nodes were removed from the individual device models during

merging, policies belonging to the individual models were left without being anchored to the

master merged policy start and end nodes. Figure 8.2 provides the code used to populate

the links between the merge model’s start and end nodes, and all the policies that populate
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the merged model. This code iterates through all named policies and associated paths

stored in endPaths. First, the association between the named policy’s ID and the initial

device it belonged to are stored as a string in pol_path_mappings which is later returned

by mergePolicies(). This associated can be used by an administrator to determine what

device a policy query was successful on when used by a script such as the one demonstrated

in Chapter 7. Then, the master start and end links from the merged model are connected

to the individual policies, completing the merging process.

To demonstrate a practical example of SELinux policy merging, assume a scenario in

which an organization wishes to implement a simple Bell-LaPadula model. For this purpose

they have assigned a high privilege level to one machine and a low privilege level to the

other. The user Alice may log in to either machine, but only given the privilege associated

with that machine. The high machine has a project diretory associated with the high_t

type in SELinux. Similarly, the low machine has a low_t directory with a low privilege.

In accordance with Bell-LaPadula [11], when Alice uses the high machine she may read

or write to high_t. Also she may read from low_t, but cannot write to it. Likewise, on the

low privilege machine, Alice may read or write to low_t. Also, she may write to high_t,

but cannot read from it.

In this scenario, an analyst, Bob, wishes to find out whether Bell-LaPadula is properly

in place when this system is considered in its entirety. He knows that if Alice can read on

high_t and write on low_t, then the Bell-LaPadula model is not enforced correctly. His

analysis will only consider the device policies at face value. The result of his queries will be

independent of other means to enforce the model, such as a ban on thumb drives within the

organization.

First, Bob must model and query the high and low machines separately to ensure that

Bell-LaPadula is in effect on either one. Figures 8.3 and 8.4 shows the HPol model for the

low and high machines constructed separately. The query output found in Listings 8.1 and

8.2 shows that Bell-LaPadula is properly enforced on the separate machines: Alice cannot
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Listing 8.1: Query Results for the Low Privilege HPol Model

breaklines

subject action object > alice write low

[XSB Prolog Output Removed]

Query successful on policy: p1003

subject action object > alice read high

[XSB Prolog Output Removed]

Query failed.

Listing 8.2: Query Results for the High Privilege HPol Model

breaklines

subject action object > alice write high

[XSB Prolog Output Removed]

Query successful on policy: p1002

subject action object > alice write low

[XSB Prolog Output Removed]

Query failed.

read high_t on the low machine and she cannot write to low_t on the high machine.

To complete his inquiry, Bob must merge the high and low machine policies into one

and ensure that Bell-LaPadula holds. Listing 8.3 demonstrates that, when both systems are

taken into account, Bell-LaPadula does not hold: Alice can read high and then write low.

Granted, the example policy in this section is simple to a fault. Taking that into con-

sideration, it serves to demonstrate the ability to properly merge two separate HPol models

and to query them successfully with no information loss during the process. Further, large

enterprises are comprised of massive networks of workstations and even simple queries can
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Listing 8.3: Query Results for the Merged HPol Models

breaklines

subject action object > alice read high

[XSB Prolog Output Removed]

Query successful on policy: p1004

subject action object > alice write low

[XSB Prolog Output Removed]

Query successful on policy: p1003

be illustrative of proper policy enforcement or its absence. Along these lines, Figure 8.6

demonstrates the successful merging of three separate policies. This method may merge n

separate policies, given enough memory and time.
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HPolStart

alice

1001 1002 1003

low_t

HPolEnd

1002 1003
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CHAPTER 9

Future Work

This chapter presents some ideas for future work that may be carried out in any of the

directions presented by the contributions of the thesis.

9.1 Visualization

As it relates to SELinux-to-HPol parsing, the two biggest areas HPol efforts are intended to

focus on are policy querying and policy visualization. The current parser focuses mostly on

the querying problem. Further, while the model can be visualized with the current parser,

graphs quickly become cumbersome when parsing large-scale policies that will necessarily

end up including thousands of nodes and edges. There needs to be a sleeker, smarter way to

display HPol models with many nodes. This will probably involve the usage of a different

viewer or a higher-level abstraction for node and interaction display. The current parser

already accounts for SELinux’s attributes which are collections of types. Other HPol-specific

solutions may also be possible.

9.2 Selective Parsing

A slightly tangential issue to visualization is that of the management of many nodes. While

it is important to populate an entire SELinux policy in HPol, most actual uses of it will

probably only require a subset of that information to achieve querying and modeling for

specific problem domains. For example, an administrator interested in mapping out policies

for network daemons will not have a need for information from the file types and associated

permissions associated with the operating system. Thus, the model could include more func-

tionality for dynamically culling irrelevant nodes within the hierarchical DAGs and policies

that do not apply to the task at hand. To this end, a selective parser could be built to only
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parse the relevant node and policy data.

9.3 Incorporation of Linux Filesystem Policies

Another issue to tackle with the SELinux-to-HPol parser is that of mapping out disparities

between traditional Linux discretionary access control and SELinux policies. Since an action

may be permitted in SELinux, but not on the operating system’s file system (and vice versa),

an incomplete view of the subject’s capabilities on the given device is given under the current

approach. An even more detailed model would include a means for incorporating all Linux

file system ownership data, as well as all SELinux policy information. Then, there would be

more assurance that policies stretching across the whole operating system were parsed and

accounted for.

9.4 Creating SELinux Configurations Using a High-level Policy

Decription Language

The ability to use HPol to create actual SELinux configurations a la Lobster [1] would help

ensure that the intended policies were put into effect. Using a high-level policy description

language that is easily-discernible to policy designers and free of component-specific knowl-

edge would lessen the need to spend resources verifying that the correct policies were drafted

at the component configuration level. This task would be the realization of an ultimate goal

of HPol which is to be able to not only model policies for disparate devices, but to carry

about policy implementation across the devices from a higher-level.

9.5 Expansion of the Interactive HERMES Querying Script

The interactive querying script is limited in the way that it can evaluate queries in that it

can only handle a single query at a time. This limitation is largely dictated by the current

iteration of HERMES and the back-end XSB Prolog modules that the script relies on. An
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ideal querying script would also allow for compound queries. Operations included within the

queries could also be useful; even a basic “and” operation would drastically cut down on the

time it takes an analyst to process a query. For example, instead of writing separate queries

to check whether alice can read and write on a file (e.g. alice write file), an and operation

could take the form alice read and write file.

9.6 Merging Policies for Additional Types of Devices

A major goal of HPol is to allow for high-level operations between high-level formal policy

models. The first steps to achieve this goal have been taken with the merging of multiple

HPol policy models in this thesis. Though this functionality has been implemented within

the HPol library itself, testing and application needs to be carried out across other HPol

exemplars and on full SELinux policies. In order for this to scale well, it needs to be tested

on an enterprise-grade machine and optimized accordingly.
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CHAPTER 10

Summary and Conclusion

This final chapter summarizes the problem that this thesis addressed and the contributions

made to address it.

10.1 Summary

In order to adequately secure their domain from unauthorized accesses and uses, large or-

ganizations are tasked with developing a security policy in which they determine who can

access which resources in what manner. To verify that specific policies are implemented

properly, technicians typically need to test them on a device-by-device basis, requiring sig-

nificant resource consumption and domain-specific technical knowledge for staff members.

These requirements limit the timeliness with which policies can be verified. They also pro-

vide only a partial view of overall policy coverage. These constraints can serve to inhibit

administrators from making effective policy decisions in an informed and timely manner.

The goals of the HPol project are to provide higher assurance of policy coverage and to

help eliminate the gap in understanding security policies as they are specified versus how

they are actually implemented in disparate system components. This thesis demonstrated an

application of this high-level, hierarchical security policy model for an exemplar mandatory

access control implementation for enterprise Linux workstations equipped with the SELinux

mandatory access control mechanism. With the help of an SELinux-to-HPol parser, and

its related scripts, SELinux models were constructed, both for finer-grained policies (a user

executing passwd) and for an operating system’s combined policies (the default SELinux

“targeted” policy). Models constructed by the parser can be visualized using several different

graphing programs. In addition, their output can be queried in an intuitive and interactive

way. By evaluating the responses from HPol queries, administrators verify which security

polices are in effect in a timely manner with minimal domain-specific knowledge.
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Beyond SELinux, this thesis demonstrated an addition to the HPol library which allows

for merging of multiple HPol policy models. When an administrator can construct a merged

HPol model, he or she can treat it as a holistic model of several system components incor-

porated into one. This saves him or her from having the spend time and resources learning

domain-specific knowledge for deciphering the ramifications of policies from individual com-

ponents. Instead, he or she can focus on whether policies are implemented as they were

intended to be from a higher-level.

10.2 Conclusion

The work described in this thesis demonstrates that a high-level policy model be constructed

from low-level SELinux policies. The scripts used to carry out this task do not represent a

complete translation of SELinux configurations to the HPol format. For example, SELinux

features like the ability to constrain allow rules or its ability to implement multilevel security

were not included. In addition, querying and visualization in the current approach fall short

in cases where scalability and resource limits prevent optimal solutions.

Instead, the work of this thesis demonstrated that a useful HPol model of SELinux

mandatory access configurations is possible to construct. It accomplished this by showing

different example tasks that would improve the ease and efficiency of understanding and

verifying a model by administrators. It showed that typical SELinux policies can be suc-

cessfully converted into an HPol model that can be verified in an intuitive way by querying

model output interactively. Finally, separate component policies were merged into one, with

no information loss, creating a higher layer of abstraction for policy verification.
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