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Abstract 

This thesis proposes a method for mathematical modeling of human movements by using 

deep artificial neural networks, with application in modeling patient exercise episodes 

performed during physical therapy and rehabilitation sessions. The generative adversarial 

network (GAN) structure is adopted, whereby a discriminative and a generative model are 

trained concurrently in an adversarial manner. The capacity of GAN models for generating 

synthetic data offers a potential to artificially augment the size of datasets for biomedical 

applications, where collecting large datasets is notoriously challenging, due to the need for 

access to patients, as well as due to privacy, safety, and ethics concerns. Synthetically 

augmented datasets have demonstrated improved robustness and overall performance of 

machine learning models across various data formats and modalities. The thesis examines 

different network architectures, with the discriminative and generative models structured as 

deep subnetworks of hidden layers comprised of convolutional or recurrent computational 

units. The models are validated on a dataset of physical rehabilitation movements recorded 

with an optical motion tracker. The results demonstrate an ability of GAN network 

architectures for generation of movement examples that resemble the recorded rehabilitation 

movement sequences, and for classification of unseen instances of the movements.  
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CHAPTER 1: INTRODUCTION     

1.1 Physical Rehabilitation and Patient Compliance 

Patients recovering from stroke, surgery, nerve damage or bone fracture are regularly 

enrolled in physical therapy and rehabilitation programs to regain muscle strength, relieve 

pain, and improve range of motion. Both long–term and short–term physical therapy provide 

positive results in treating musculoskeletal trauma and functional movement disorders [1], 

[2]. However, rehabilitation treatment imposes a substantial economic burden on patients 

and healthcare systems [3]–[5]. For instance, the annual cost of physical rehabilitation 

programs in the US exceeds 13.5 billion dollars, based on the Medical Expenditure Panel 

Survey generated by the US federal government [4]. The annual expenditure was produced 

by nearly 9 million adults during approximately 88 million physical rehabilitation episodes. 

In physical therapy and rehabilitation programs, clinicians prescribe to patients a set of 

exercises and task them with performing a recommended number of repetitions of the 

exercises for a certain period of time. The patients typically perform the prescribed regimen 

initially in a clinical setting under direct supervision by a medical professional. This type of 

rehabilitation treatment is restricted by the availability of trained clinicians and it places 

demands on patients’ schedules. To increase the flexibility of rehabilitation programs, 

home-based rehabilitation is often employed as a subsequent supplement to clinic-based 

programs. In home-based regimens, patients perform the recommended exercises in their 

residence following the given instructions by the clinician, while recording their daily 

progress in a logbook; the patients visit the clinic periodically for progress assessment. 

The efficiency of physical rehabilitation programs is highly related to patient adherence to 

prescribed exercises [6]. On the other hand, in a home-based setting, it is difficult to 
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determine if a patient complies with the therapy program, because most of the patients do 

not acknowledge the incompliance [7]. Indeed, medical sources report low levels of patient 

motivation and adherence to the prescribed exercise regimens in home-based rehabilitation, 

which results in prolonged treatment duration and increased healthcare costs [6], [8]. 

Although many factors that reduce patient motivation and engagement in rehabilitation 

training have been identified, the lack of timely feedback and real-time supervision by a 

healthcare professional in an at-home setting is often cited as the most influential factor [9]. 

Poor motivation and supervision promote further risk because patients may perform 

exercises incorrectly as a result of those factors, which increases the risk of re-injury [6]. 

1.2 Movement Modeling using Machine Learning 

The latest progress in machine learning offers a potential to identify incorrect performance 

of physical rehabilitation exercises and provide instantaneous feedback to the patient. 

Further, it can also provide a basis for the healthcare professionals to be proactive and take 

early corrective actions, if needed. Efficient application of machine learning for evaluation 

of patient performance requires corresponding datasets of therapy movements for algorithm 

training purposes, and formulation of robust mathematical models of human body 

trajectories executed during physical therapy exercises.  

Modeling human movements has been an essential research topic in various fields and 

disciplines. Congruent models of human movements furnish great benefits to ergonomic 

design [10], visual surveillance [11], transfer of human skills to robotic learning systems 

[12], etc. However, mathematical modeling of human movements remains an open research 

problem, due to the challenges associated with the complex stochastic and nonlinear 

character of the data. First, human movements are inherently random, because of the 

stochastic nature of processing motory commands by the brain (e.g., we cannot re-create 
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identical movements or draw perfectly straight lines). Second, human movements are 

marked with a high degree of variability across individuals’ characteristics, such as age, 

gender, weight, fatigue, or even pain. Third, the uncertainties introduced by sensory 

measurement and processing errors add to the complexity in movement modeling. 

A current trend in machine learning related to the implementation of deep artificial neural 

networks (NNs) for modeling and representation of complex nonlinear data across various 

domains [13] has paved a promising path to human motion modeling. Within the published 

literature on modeling human movements using machine learning approaches, most works 

focus on recognition and classification of movements into a particular movement type. To 

that end, a variety of traditional machine learning algorithms have been applied, including 

support vector machines, hidden Markov models, and k-nearest neighbors. In recent years, 

a body of research emerged based on the implementation of artificial NNs for the task at 

hand. Encoder-decoder NNs have been a commonly employed means for extraction of 

salient attributes in movement trajectories of captured skeletal data [14], [15]. NNs with 

convolutional computational units have been designed for recognition of human movements, 

for example, in surveillance videos [16]. Another network architecture that employs 

recurrent connections between the computational units has been extensively used for 

modeling sequential data in general [17], [18], and human motions in particular [19], [20]. 

Beside for movement classification task, machine learning methods have also been 

employed for prediction of future motion patterns, e.g., fall detection in seniors [21], or 

automated anticipation of driver activities [22].  

Analogously, in the domain of physical therapy and rehabilitation several researchers 

employed machine learning for classification of patient movements [23] and for counting 

the number of repetitions in each exercise [24]. In reference [25], an intelligent robotic 

assistant employs machine learning for planning the next therapy session based on the 
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patient’s current progress. Similarly, machine learning-based assistants have been integrated 

into virtual reality therapy systems for monitoring patient performance and customizing the 

treatment plan according to the patient’s progress [26]–[28]. In the treatment of phantom 

limb pain, it was found that the combination of machine learning, augmented reality, and 

gaming produces improved outcomes in comparison to traditional treatment approaches 

[29]. Another class of therapy tools employs a motion capturing camera and it displays in 

real-time on a screen the executed movements by the patient, and simultaneously a graphical 

avatar is displayed on the side of the screen that demonstrates the correctly performed 

movements as recommended by the physical therapist [30], [31]. These tools are excellent 

examples of innovative solutions and systems in support of home-based physical therapy, 

as they can potentially improve patient adherence to prescribed therapy programs, and 

subsequently, lead to reduced rehabilitation period, reduced time to functional recovery, and 

reduced healthcare costs.  

1.3 Motion Capture Systems 

To address the challenges associated with home-based and in-clinic rehabilitation programs, 

the development of systems that can reliably capture human movements is crucial. Although 

standard vision cameras have been used as a motion sensor in several related works, they 

provide only 2-dimensional information about the captured scene and the lack of the third 

dimension’s information imposes limits on the evaluation accuracy. To cope with this 

deficiency, optical motion tracking systems have often been used for this task. These 

systems employ a set of markers attached to strategic locations on a patient’s body that are 

tracked by multiple high-resolution cameras. Optical motion trackers rely on computational 

algorithms to reconstruct the 3-dimensional scene by comparing and aligning the images 

taken by the set of multiple cameras. Furthermore, recent technology for 3-dimensional 

scene reconstruction based on vison/depth cameras has become popular due to the low cost 
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and ease of use. Among the commercial vision/depth sensors, Microsoft Kinect has been 

the preferred choice in most related works. Inertial sensors and accelerometers have also 

been extensively used for motion tracking and evaluation, due to their low cost and simple 

principles of operation. The provision of low-cost sensors with integrated functionality for 

tracking human motions furnishes an opportunity for the development of home-based 

systems for rehabilitation programs. Combined with efficient computational algorithms for 

modeling and analyzing human motions, these technologies can play an important role in 

the future management of rehabilitation regimens and for monitoring patient performance 

and progress.  

1.4 GANs for Movement Modeling 

This thesis presents a novel method for modeling and evaluation of physical rehabilitation 

exercises based on an NN architecture known as Generative Adversarial Networks (GANs). 

Introduced by Goodfellow et al. in 2014 [32], GANs represent a deep learning model 

comprised of two competitive subnetworks: a generative subnetwork (commonly referred 

to as a generator) and a discriminative subnetwork (i.e., a discriminator). The two 

subnetworks are trained in an adversarial mode, where the generator improves in producing 

data that resemble the real input data, and the discriminator improves in distinguishing real 

input data from the data samples provided by the generator. GAN models have had 

tremendous success in the domain of image processing, e.g., for generating super resolution 

photo-realistic images from text [33], face aging images in entertainment [34], blending of 

objects from one picture into the background of another picture, as well as in other 

applications, such as generating hand-written text, and music sequence generation [35].  

This thesis investigates the capacity of GAN models for generating human movement data 

related to physical therapy exercises. It was motivated by the research by Hyland et al. [36] 
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where the authors designed a GAN model for generating synthetic medical data resembling 

the records from an intensive care unit. In general, almost all research on GANs is directed 

toward generating images, and only a few works have applied GANs for generating time-

series data. On the other hand, the provision of means for synthesizing realistic time-series 

data can benefit several application areas. For the considered problem, the ability to produce 

movement sequences that resemble patient therapy exercises has a potential to augment the 

datasets of recorded therapy exercises and to lead to improved movement models. 

Consequently, this work presents an evaluation of different GAN architectures for 

generating synthetic movement sequences. Additionally, the performance of GAN networks 

for assessment of the level of correctness of therapy movements is evaluated. For that 

purpose, soft labels are introduced for the movement repetitions based on the average 

deviation from a set of consistently performed movements. The study found that GANs are 

suitable for both generation and evaluation of therapy movement sequences.  

1.5 Thesis Organization 

The thesis is organized as follows. Chapter 2 introduces GAN models and provides an 

overview of several GAN architectures that are relevant for the considered task of 

rehabilitation episodes. Chapter 3 describes the movement data related to physical therapy 

exercises that are used for training and validation of the NNs. The investigated architectures 

of the GAN models are presented in Chapter 4. Chapter 4 also presents the experimental 

results of using GANs for generating movement data and for evaluating exercise 

performance. Chapter 5 briefly summarizes the work and concludes the thesis. 
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CHAPTER 2: GENERATIVE ADVERSARIAL NETWORKS 

2.1 GANs Basics 

As stated in the Introduction chapter, GANs consist of two subnetworks: a discriminator D, 

and a generator G subnetwork. The discriminator maps the input data to class probabilities, 

i.e., it models the probability distribution of the output labels conditioned on the input data. 

On the other hand, the generator models the probability distribution of the input data, which 

allows generating new data instances by sampling from the model distribution. Both 

subnetworks D and G are trained simultaneously in an adversarial manner, where the 

generator G attempts to improve in creating synthetic data that approximate the input data, 

and the discriminator D attempts to improve in differentiating the real data from the 

synthetically generated data.  

Let x denotes the input to the network, where 
rx , and 

r
 denotes the probability 

distribution of the real input data. The goal of the generator in GANs is to learn a model 

distribution g  that approximates the unknown distribution of the real data 
r

. For that 

purpose, a random variable z sampled from a fixed (e.g., uniform or Gaussian) probability 

distribution is used as the input to the generator, as illustrated in Figure 2.1. During the 

training phase, the parameters of the generator are iteratively varied in order to reduce the 

distance, or divergence, between the distributions g  and 
r

. The output of the generator 

is denoted x  here, i.e., the generator mapping is :G z x . 

To solve the described problem, a network loss function H is introduced in the form of a 

cross-entropy,  

( ) ( )( ) ( )( ), log log 1
r gx x

H D G D x D x   = + −    .                                  (1) 
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In the above equation    is the expected value operator with respect to a distribution ,

( )D x  is the output of the discriminator subnetwork on real input data, and ( )D x  denotes 

the output of the discriminator on synthetically generated data. 

 

Figure 2.1. A GAN model consists of a generator and a discriminator. The generator takes random 

noise as input and attempts to produce synthetic data x  that resemble the real data x . The 

discriminator attempts to discriminate real data from the synthetic data produced by the generator. 

The discriminator is trained to maximize the loss function H, and the generator is trained to 

minimize the loss function H, i.e., the goal is 

( )min max ,
G D

H D G .                                                           (2) 

In the game theory, this is called a minimax game. The two subnetworks are trained in a 

competitive two-player scenario, where both the generator and discriminator improve their 

performance until a Nash equilibrium is reached. One can note that minimizing the function 

in Eq. (1) is equivalent to minimizing the Jensen-Shannon (JS) divergence between the real 

data distribution 
r

 and the model distribution g . 

In the case of binary classification, the discriminator is trained to maximize H by forcing 

( )D x  to approach 1 and ( )D x  to approach 0 (Figure 2.1). Contrarily, the generator is 

trained to minimize H by forcing ( )D x  to approach 1. Backpropagation is employed for 
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updating the parameters of both the discriminator and generator during training, with the 

distribution g  becoming more and more similar to 
r

. 

The main disadvantage of GANs is the training instability. More specifically, if the 

generator is trained faster than the discriminator, a mode collapse (also known as a Helvetica 

scenario) can occur, where the generator maps many values of the random variable z to the 

same value of x, and reduces its capacity to learn the distribution of the real data 
r

. Besides, 

the model does not allow for explicit calculation of ( )G x , and as a result, the quality of the 

generated data (e.g., images, as the most common data in GANs) is typically evaluated by 

visual observation and comparison to the actual input data. Another shortcoming of GANs 

is the presence of noise (and blur in the case of image data), due to the introduced random 

noise z as input to the generator.  

Based on the instant success of the GANs model, a large number of GAN variants have been 

developed since the original work. A body of works addressed some of the above-described 

shortcomings [37]–[40], and other variants were designed specifically for domain-specific 

solutions [41], [42]. For example, in conditional GANs [41] the data is conditioned on the 

class labels, which allows generating images with the desired class (e.g., specific digits of 

the MNIST dataset). InfoGAN introduced a novel type of regularization in GANs based on 

the mutual information learned between the incompressible noise component and the latent 

code of the generator. BiGAN [43] introduced an encoder sub-network to the original 

generator-discriminator architecture, which allows projecting the data back to the latent 

space. The authors demonstrated that the ability to obtain the inverse mapping was useful 

for learning improved feature representations. BigGAN [44] applied orthogonal 

regularization to the generator which improved the scalability of the model, as well as the 

authors demonstrated that truncating the latent space resulted in improved robustness. 
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Consequently, the proposed architecture reduced the training instabilities while showing a 

capacity for generating impressive synthetic images. CycleGAN [45] was designed for 

transforming images from one domain to another. The transformation is achieved by two 

GANs that are trained in such a way that consistency is maintained in the transformation of 

an image from one domain to another domain, as well as in the backward transformation of 

images from the target domain to the source domain. Such transformation is referred to as 

being cycle consistent. 

In the ensuing subsections, a brief overview of several GAN architectures is presented that 

are relevant for the considered problem of modeling time-series data related to patient 

therapy movement episodes.  

2.2 Deep Convolutional GANs 

Deep Convolutional GANs (DCGANs) [37] introduce several constraints and modifications 

to the original GAN architecture for improved stability and performance. As the name 

implies, the generator and discriminator subnetworks are composed of multiple layers of 

convolutional computational units, as opposed to the multilayer perceptron (MLP) networks 

proposed in the original GAN paper [32]. The modifications in DCGANs are as follows. 

First, the network structure in DCGANs replaces pooling layers with strided convolutions, 

which allows the subnetworks to adjust the spatial down-sampling and up-sampling based 

on the input data. Second, it eliminates fully connected layers that are commonly used after 

convolutional layers in deep NNs, and it relies solely on convolutional layers. Third, the 

DCGANs model employs batch normalization, to stabilize the gradients increase during 

training and reduce the possibility of a mode collapse. Batch normalization is applied to all 

layers, except for the output layer of the generator and the input layer of the discriminator. 

Fourth, ReLU activation function is used for all layers in the generator, except for the last 
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layer where a Tanh activation function is applied. For the discriminator, leaky ReLU 

activation function is suggested for all layers. By applying the above recommendations, the 

authors have demonstrated improved classification performance on various datasets of 

images, and capabilities of generating complex and visually realistic images. 

2.3 Wasserstein GANs 

Wasserstein GANs (WGANs) [38] introduce a new loss function for training the generator 

and discriminator subnetworks. The loss function is based on the Wasserstein distance (also 

known as Earth Mover distance) between the real data distribution r  and the model 

distribution 
g

 learned by the generator, 

( )
( ) ( ),,

, inf
x yr g

r gW x y


=  −   .                                                (3) 

In Eq. (3), ( ),r g  denotes the set of joint distributions ( ),x y  whose marginals are 
r

 

and g . In simpler terms, ( ),x y  defines the amount of earth mass that needs to be moved 

from a point x to a point y in order 
r

 and g  to be identical. Accordingly, the proposed 

loss function is derived as an approximation to the Wasserstein distance  

 ( ) ( ) ( ),
r gx x

H D G D x D x= −       .                                  (4) 

Such distance function induces a weaker topology than the Jensen-Shannon (JS) divergence 

used in the original GANs and given in Eq. (1), and the Kullback-Leibler (KL) divergence 

commonly used in maximum likelihood estimation. The weaker topology provides a lever 

for the convergence of the probability distribution of the model g  to the real distribution 

of the data 
r

. If the discriminator ( )D x  is a K- Lipschitz function, it was proven that the 
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proposed loss function in Eq. (4) is continuous and differentiable, and produces stable 

gradients during training, thereby improving the problem of training instability in GANs.  

In addition, the values of the adopted loss function H in Eq. (4) are correlated to the quality 

of the generated data samples by the generator, and with that WGANs provide a basis for 

quantifying the performance of the generator, rather than relying on visual observation of 

the generated samples. Accordingly, during the network training, the loss function in Eq. (4) 

is used to evaluate the training convergence, i.e., to identify if the network is being trained. 

To enforce a Lipschitz constraint on the discriminator, it was proposed to apply clipping of 

the network parameters into a range  ,c c− +  after each gradient update, where c is a 

referred to as a clipping constant. The suggested value for c in the WGANs paper [38] is 

0.01. 

Unlike GANs, the output of the discriminator in WGANs is not a probability; instead, it is 

an estimate of the Wasserstein distance between the distributions. Therefore, the authors use 

the term critic in the article, rather than discriminator, due to the similarity with the actor-

critic methods in reinforcement learning.  

2.4 Recurrent GANs 

Recurrent GANs (RGANs) [36] are an alternative GAN model that is designed for handling 

multi-dimensional time-series data. For that purpose, recurrent computational units are 

employed for the discriminator and generator. More specifically, a layer of unidirectional 

Long Short-Term Memory (LSTM) computational units [17] is used for both subnetworks 

in the RGANs paper.  

The proposed approach with RGANs was applied to medical records data from an intensive 

care unit. The authors investigated the ability of RGANs to generate synthetic medical data 
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samples and the potential for use in data augmentation in cases of insufficiency of real data 

for training deep learning models. In the article, RGANs were also implemented for 

processing synthetic sine waves sequences, as well as images. The authors claimed that 

RGANs are more suitable for dealing with time-series data in comparison to the proposed 

GANs alternatives composed of layers of convolutional kernels. 
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CHAPTER 3: PHYSICAL REHABILITATION MOVEMENTS DATA SET 

3.1 Data Description 

The introduced GAN models are validated on the University of Idaho – Physical 

Rehabilitation Movements Data (UI–PRMD) set. The full description of the dataset is 

provided in [46]. A group of 10 healthy subjects performed 10 repetitions for 10 

rehabilitation movements. In addition, the subjects performed 10 repetitions for each 

movement in an incorrect fashion, simulating performance by patients enrolled in physical 

therapy programs. The data collection for UI–PRMD was approved by the Institutional 

Review Boards at the University of Idaho on April 26, 2017, under the identification code 

IRB 16-124. The movement data were collected in the Integrated Sports Medicine 

Movement Analysis Laboratory (ISMMAL) with the Department of Movement Sciences at 

the University of Idaho. The movement data were categorized, organized and posted on a 

dedicated web site for free public access. Potential benefits of publicly posting the UI-

PRMD set include the potential to serve as a benchmark for comparison of future research 

in physical therapy and rehabilitation, and to streamline the process of establishing 

consistent metrics for evaluation of patient progress in rehabilitation programs. 

The demographic information of the 10 subjects who participated in the data collection is 

provided in Table 3.1. The average age of the subjects was 29.3 years, with a standard 

deviation of 5.85 years. The exclusion criteria included musculoskeletal injuries, pregnancy, 

neurological disorders that affect balance, less than 6 months post-orthopedic surgery, less 

than 2 months post-visceral surgery, contagious illnesses, and taking medications that affect 

proprioceptive capabilities. In addition, the study did not include children under the age of 

18. 
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Table 3.1. Demographic information for the subjects. 

Subject ID Gender Height (cm) Weight (kg) BMI Dominant side Age 

s01 Female 169.0 69.4 24.3 Right 23 

s02 Male 180.0 83.0 25.6 Right 31 

s03 Male 169.5 64.8 22.6 Right 44 

s04 Female 178.5 79.4 24.9 Right 31 

s05 Male 185.5 148.6 43.2 Right 28 

s06 Female 164.6 53.6 19.8 Right 27 

s07 Female 166.1 53.1 19.2 Left 24 

s08 Male 170.5 77.3 26.6 Right 29 

s09 Female 164.0 56.0 20.8 Right 26 

s10 Male 174.2 94.7 31.2 Left 26 

 

The recorded time-series sequences related to two common training movements in physical 

therapy exercises—a deep squat, hereafter Movement 1, and a standing shoulder abduction, 

hereafter Movement 2—are used in this work. A brief description of the two movements is 

provided in Table 3.2. Examples of the performed movements by one of the subjects are 

shown in Figure 3.1.  

Table 3.2. Movement description and incorrect performance. 

Movement  Description Non-Optimal Movement 

Deep squat Subject bends the knees to descends the 

body toward the floor with the heels on 

the floor, the knees aligned over the feet, 

the upper body remains aligned in the 

vertical plane 

Subject does not maintain upright trunk 

posture, unable to squat past parallel, 

demonstrates knee valgus collapse or 

trunk flexion greater than 30° 

Standing 

shoulder 

abduction 

Subject raises one arm to the side by a 

lateral rotation, keeping the elbow and 

wrist straight  

Subject unable to maintain upright trunk 

posture or head in neutral position, lift 

arm does not remain in plane of motion, 

less than 160° of abduction 
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(a)     (b) 

Figure 3.1. Examples of the performed movements by one of the subjects: (a) Deep squat movement; 

(b) Standing shoulder abduction movement. 

A Vicon optical tracking system was used for the data collection, which employs eight high-

resolution cameras for tracking the position of 39 reflective markers attached to strategic 

locations on a subject’s body. The locations for attaching the reflective markers [47] are 

shown in Figure 3.2. The optical tracking system captured the executed motions at 100 

frames per second, while a dedicated software program assembled the recorded data into 

sequences of joint angle positions. The output data by the motion capture system are time-

series consisting of 117–dimensional vectors of joint angle displacements. The order of 

measurements for the Vicon system is presented in Table 3.3. The joints for which the 

measurements are absolute are given with respect to the coordinate system of the sensory 

system and are indicated in the parenthesis in the table. For the remaining joints, the 

measurements are relative, and are given with respect to the parent joint in the skeletal model. 

The angle outputs for all joints are represented with the YXZ triplet of Euler angles in 

degrees.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.2. Locations on the body for attaching the Vicon markers. (a) Front view of the upper body; 

(b) Back view of the upper body; (c) Front view of the lower body; (d) Back view of the lower body. 

The pictures are taken from [47]. Copyright: © 2016 Vicon Motion Systems Limited.  
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Table 3.3. Order of positions and angles in the data set for the Vicon optical tracker. 

Joint order Vicon Positions Vicon Angles 

1 LFHD - Left head front Head (absolute) 

2 RFHD - Right head front Left head 

3 LBHD – Left back head Right head 

4 RBHD - Right back head Left neck 

5 C7 - 7th cervical vertebra Right neck 

6 T10 - 10th thoracic vertebra Left clavicle 

7 CLAV - Clavicle Right clavicle 

8 STRN - Sternum Thorax (absolute) 

9 RBAK – Right back Left thorax 

10 LSHO - Left shoulder Right thorax 

11 LUPA - Left upper arm Pelvis (absolute) 

12 LELB - Left elbow Left pelvis 

13 LFRM - Left forearm Right pelvis 

14 LWRA - Left wrist A Left hip 

15 LWRB - Left wrist B Right hip 

16 LFIN - Left finger Left femur 

17 RSHO - Right shoulder Right femur 

18 RUPA - Right upper arm Left knee 

19 RELB - Right elbow Right knee 

20 RFRM - Right forearm Left tibia 

21 RWRA - Right wrist A Right tibia 

22 RWRB - Right wrist B Left ankle 

23 RFIN - Right finger Right ankle 

24 LASI - Left ASIS Left foot 

25 RASI - Right ASIS Right foot 
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26 LPSI - Left PSIS Left toe 

27 RPSI - Right PSIS Right toe 

28 LTHI - Left thigh Left shoulder 

29 LKNE - Left knee Right shoulder 

30 LTIB - Left tibia Left elbow 

31 LANK - Left ankle Right elbow 

32 LHEE - Left heel Left radius 

33 LTOE - Left toe Right radius 

34 RTHI - Right thigh Left wrist 

35 RKNE - Right knee Right wrist 

36 RTIB - Right tibia Left upper hand 

37 RANK - Right ankle Right upperhand 

38 RHEE - Right heel Left hand 

39 RTOE - Right toe Right hand 

 

The single repetitions of each movement were separated, by identifying the beginning and 

end time steps of each repetition. Consequently, this resulted in a dataset consisting of 100 

instances of correctly performed repetitions, and 100 instances of incorrectly performed 

repetitions, for each movement. By elimination of poorly recorded repetitions, as well as 

elimination of the data of subjects who performed the standing shoulder abduction exercise 

with their left arm (versus the rest of the subject who used their right arm), the final number 

of repetitions was reduced to 90 samples for Movement 1, and 63 samples for Movement 2. 

The number of correct and incorrect repetitions was kept equivalent for the two movements.   

The angular movements of a single sequence for each exercise after the segmentation are 

shown in Figure 3.3. One can note that a majority of the 117 dimensions for both movements 

exhibit little to no variation throughout the exercise. This is more noticeable in the standing 

shoulder abduction in Figure 3.3(b), as the exercise involves only the movement of one of 
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the subject’s arms. As a result, both movements can be represented by only a few of the 117 

dimensions, and therefore modeling of said movements can be achieved by the extraction 

and evaluation of these key components through dimensionality reduction. The 

corresponding length of the sequences for the two movements is 240 and 230 time steps, 

respectively.   

 

(a) 

 

(b) 

Figure 3.3. Single sequence representation of all 117 dimensions for: (a) Deep squat movement; (b) 

Standing shoulder abduction movement. 
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3.2 Data Notation 

The number of repetitions of a movement is denoted N, and the sequence of measurements 

by the optical tracking system for each correctly performed repetition is denoted 
nU , where 

n is used to index the individual sequences. The set of correct repetitions of a movement 

forms  
1

N

n n=
= U . Each sequence 

nU  contains M temporally ordered vectors 

( ) ( ) ( )( )1 2
, , ,

M

n n n n=U u u u , where each temporal measurement is a D-dimensional vector, i.e., 

( )m D

n u . The adopted notation employs bold fonts for vectors and matrices.  

Similarly, the set of incorrect repetitions of the movements is denoted  
1

N

n n=
= W . Each 

movement sequence nW  consists of M vectors 
( )m D

n w , for 1, 2, ...,m M= . 

3.3 Data Preprocessing and Labeling 

The data preprocessing included scaling of the angular displacement measurements in the 

range  1, 1− + . More specifically, all sequences in the correct and incorrect movement sets 

were divided by the maximum absolute value of the correct set, i.e., ( )( )max
m

nu  for 

1, 2, ...,n N= , 1, 2, ...,m M= . In addition, each movement sequence 
nU  and 

nW  was 

zero-mean shifted. Although it is commonly recommended to normalize the inputs to NNs 

into data vectors with a variance of 1, this is not applicable to the movement data since the 

variability of the individual dimensions is an important attribute of the data and needs to be 

preserved. Finally, the movement sequences for both exercises were aligned utilizing a 

temporal linear alignment method based on cubic interpolation of the data points. This was 

accomplished by determining the mean sequence length for each exercise and applying the 

mean sequence length to all remaining sequences.  
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As one of the goals of the considered task is to evaluate the level of correctness in the 

execution of movement repetitions during rehabilitation exercises, soft labels are assigned 

to each repetition instance. Root-mean-squared (RMS) deviation was adopted here as a 

metric for assessment of the repetition consistency. For this purpose, the RMS distance 

between each correct sequence 
nU  and the entire set  is calculated, i.e., 

( ) ( )( )
2

1 1

1 1N M
i m

i n n
n iN M


= =

= −  u u , for 1, 2, ...,i N= .                          (5) 

Similarly, the RMS distance between each incorrect repetition 
nW  and the set of correct 

movements  is calculated as  

( ) ( )( )
2

1 1

1 1N M
i m

i n n
n iN M


= =

= −  w u , for 1, 2, ...,i N= .                          (6) 

One can note that in Eq. (6) the RMS deviation is calculated with respect to the set of correct 

movements.   

Soft labels are assigned next to each of the correct and incorrect data sequences as follows:  

1 i
il

 



− −
= , 

1 i
il

 



− −
= , for 1, 2, ...,i N= ,                       (7) 

The resulting soft labels for the two movements are shown in Figure 3.4. In Eq. (7),   

denotes the average value of the set of distances  . The parameter τ in Eq. (7) is a 

normalization factor that was empirically assigned the value of 100 for Movement 1 and 

200 for Movement 2. The labels in Eq. (7) were set with a goal to be distributed in the range 

 0, 1+ , and to retain a separation boundary between the correct and incorrect movements. 

It can be noticed in Figure 3.4 that several of the correct movements are performed in an 

inconsistent manner, and they are less similar to the remaining correct set of movements 
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than some of the incorrectly performed movements. That was one motivation to introduce 

soft labels for the movement instances, instead of employing hard labels of 1’s for the 

correct movements and 0’s for the incorrect movements.  

 

(a) 

 

(b) 

Figure 3.4. Soft labels for: (a) Deep squat movement; (b) Standing shoulder abduction movement. 

The labels for both correct and incorrect sequences for the movements are shown in the figure. 

Furthermore, as stated earlier, one of our objectives is to assess the potential of GANs for 

evaluation of the level of correctness of therapy movements. The provision of soft labels 

allows to train an NN on a set of correct and incorrect movements, and to validate the trained 

networks on another set of correct and incorrect movements. Also, with the use of soft labels, 

the problem was cast from binary classification into a one-class classification, where all data 
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instances belong to the same class of movement but have varying levels of movement 

quality. Additionally, we believe that the use of soft labels provides richer information of 

the input data and a basis for improved performance of both the generator and discriminator 

subnetworks.  

One final note regarding the above procedure for applying soft labels to the motion data is 

that RMS deviation is probably a suboptimal metric for quantifying the distance between 

the high-dimensional data sequences. Although it was adopted here for proof of concept, 

the selection of metrics for the task at hand is one of the authors’ topics for future research. 
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CHAPTER 4: EXPERIMENTAL RESULTS 

4.1 Network Architectures 

The thesis investigates the GAN variations presented in Chapter 2 (and their sub-variants in 

one case). A basis for comparison of the considered architectures is the DCGAN model 

depicted in Figure 4.1. The generative subnetwork consists of one fully connected layer and 

three padded convolutional layers. Following the guidelines in the DCGAN paper [37], 

ReLU activation functions are used in the generator except in the last layer that uses Tanh 

activation, and strided convolutions are utilized instead of pooling layers. As illustrated in 

Figure 4.1, the discriminative subnetwork has three padded convolutional layers. Leaky 

ReLU activation functions are introduced in the discriminator, and a dropout rate of 20% 

was applied to prevent overfitting. Adam optimizer was the choice in both subnetworks. 

The investigated GAN models are fully described in Table 4.1. The structures of the 

networks are based on the DCGAN model presented in Figure 4.1. The networks are 

explained in more detail in the next section.   

 

Figure 4.1. DCGAN model layers consisting of a generator and discriminator subnetworks 

composed of convolutional and MLP layers of hidden computational units. 
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Table 4.1. GANs network architectures with descriptions of generator and discriminator layers.  

Acronyms: LR – Leaky ReLU activation, R – ReLU activation, TH – Tanh activation, S – Sigmoid 

activation, BN – Batch normalization, US – Upsampling, D – Dropout, St – Strides, SGD – 

Stochastic Gradient Descent. 

Network Generator Discriminator 

GAN 
50 (LR) × 100 (LR) × 200 (LR) × M = 

260, D = 10 (TH): Adam 

100 (LR,D) × 50 (LR,D) × 1 (S): Adam 

DCGAN-1 

100 (R, BN) × M = 260, D = 10 (R, BN) 

× Conv1D (40, 5, R, BN) × US(2) × 

Conv1D (20, 5, R, BN) × US(2) × 

Conv1D (D = 10, 5, TH): Adam 

Conv1D (20, 5, LR, D, St:2) ×  Conv1D 

(40, 5, LR, D, BN) × Conv1D (80, 5, 

LR,D, BN) × 1 (S): Adam 

DCGAN-2 

100 (LR, BN) × M =260, D = 10 (LR) × 

Conv1D (40, 5, LR) × US(2) × Conv1D 

(20, 5, TH) × US(2) × Conv1D (D = 10, 

5, TH): Adam 

Conv1D (10, 5, LR, D, St:2) × Conv1D 

(20, 5, LR, D) × Conv1D (40, 5, LR,D) × 

50 (LR,D) × 1 (S): Adam 

WGAN 

100 (LR) × M = 260, D = 10 (LR) × 

Conv1D (40, 5, LR) × US(2) × Conv1D 

(20, 5, LR) × US(2) × Conv1D (D = 10, 

5, TH): Adam 

Conv1D (10, 5, LR, D, St:2) × Conv1D 

(20, 5, LR, D) × Conv1D (40, 5, LR,D) × 

50 (LR,D) × 1 (S): SGD 

RGAN (M = 260,5) × LSTM(100) : Adam LSTM(100) × 1 (S): SGD 

 

4.2 Movement Generation  

The performance of the GAN representations listed in Table 4.1 is examined in relation to 

their capacity to generate data samples that resemble the time-series data of the actual 

physical therapy movements.  

A subset of the data with reduced dimensionality is first considered, where 10 dimensions 

with the largest variation are extracted and used as input to the network. Several examples 

of the sequences for Movement 1 are presented in Figure 4.2(a).  
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One undesirable effect in the synthetic data samples produced by the GAN models is the 

distortion of the ends and beginnings of the generated sequences. To reduce the effect of the 

distortions, 10 time steps of synthetic data were added at the beginning and at the end of 

each sequence. The beginning 10 time steps were set equal to the first vector in each 

sequence, and the ending 10 time steps were set equal to the last vector in the sequence. 

Consequently, for Movement 1 the number of time steps M was increased from 240 to 260, 

and for Movement 2 the length M was increased from 233 to 250 time steps.  

The GAN architectures in Table 4.1 are related to processing the input data for Movement 

1, with the number of time steps M = 260, and dimensionality D = 10. The NNs for 

Movement 2 and the presented cases with different dimensionality have the same structure 

as the GANs presented in Table 4.1, and only the parameters M and D are varied. 

For Movement 1, the subset for training purposes includes 70 correct and 70 incorrect 

movement repetitions, and the validation subset consists of the remaining 20 correct and 20 

incorrect sequences. Similarly, for Movement 2, the training and validation subsets have 98 

and 28 sequences of correct and incorrect repetitions, respectively.  

The sequences generated with the original GAN model [32] based on the structure outlined 

in Table 4.1 and consisting of MLP layers of computational units are shown in Figure 4.2(b). 

Conclusively, the data is quite noisy, and the network experiences a mode collapse early in 

the training, failing to refine the output of the generator. The next examined model is 

DCGAN-1 from Table 4.1, which implements the network structure recommended by the 

authors in reference [37]. However, the model was not able to produce data that resemble 

the real motion sequences. One potential reason is that the DCGAN network design reported 

in [37] is more applicable to image data. The suggested batch normalization of the hidden 

layers was the main contributing factor for the network failure with the human movement 
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input data. Nevertheless, a variant of the model listed in Table 4.1 as DCGAN-2 provided 

realistic synthetic data. This network employs convolutional layers in a slightly altered 

architecture in comparison to the recommended DCGAN-1 model. Several representative 

examples of the generated sequences by DCGAN-2 are shown in Figure 4.2(c). Next, 

instances of the synthetic data generated with WGAN [38] are shown in Figure 4.2(d). The 

quality of the data is comparable to the sequences generated with DCGAN-2. Overall, 

WGAN model exhibited improved stability during training and, to a certain extent, visually 

improved the quality of generated data. The last investigated model is RGAN [36] with the 

network structure presented in Table 4.1, consisting of recurrent LSTM computational units. 

A set of generated data is displayed in Figure 4.2(e). The RGAN model created the 

smoothest synthetic sequences for Movement 1, and it outperformed the other models that 

are based on convolutional and MLP layers of hidden units.  

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 

Figure 4.2. (a) Samples of 10-dimensional Movement 1 sequences as recorded with the optical 

tracking system. (b) Examples of generated sequences with the GAN network from Table 4.1. (c) 

Examples of generated sequences with the DCGAN-2 network from Table 4.1. (d) Examples of 

generated sequences with the WGAN network from Table 4.1. (e) Examples of generated sequences 

with the RGAN network from Table 4.1. 
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Another validation case is presented next for Movement 2, related to the standing shoulder 

abduction exercise. In this case, the time-series dimensionality is reduced to the three 

dimensions with the largest variance. Considering the strong correlation between the joint 

angular displacements in human movements, a body of work in the literature relied on only 

several most important dimensions for motion modeling. As expected, for the considered 

exercise, the dimensions with the largest variability correspond to the angular displacements 

of the upper arm, lower hand, and the wrist. Two movement repetitions as acquired by the 

optical tracker are displayed in Figure 4.3(a). Similar to the first validation case, the 

networks presented in Table 4.1 are employed for modeling the movements and generating 

synthetic data samples. Instances of the generated sequences with the conventional GAN 

model are shown in Figure 4.3(b), and similar to Figure 4.2(b), the sequences are quite noisy. 

Examples of the generated data with the DCGAN-2 and WGAN models are shown in 

Figures 8(c) and (d), respectively. The quality of the GAN-generated sequences is visually 

appealing, and one can notice that the networks demonstrated improved performance in the 

case of low-dimensional input data. Conversely, the samples generated with DCGAN-2 are 

less smooth for this movement. The generated data with RGAN are presented in Figure 

4.3(e). 

In summary, the RGAN model produced the smoothest and visually attractive synthetic 

sequences for the two movements. The GAN models based on layers of convolutional 

kernels were also able to generate data sequences of comparable and acceptable quality. The 

synthetic data samples produced with the original GAN model are the least smooth when 

compared to the other cases, although the model was able to learn the general pattern of the 

movement sequences.  
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e)

Figure 4.3. (a) Samples of 3-dimensional Movement 2 sequences as recorded with the optical 

tracking system. (b) Examples of generated sequences with the GAN network from Table 4.1. (c) 

Examples of generated sequences with the DCGAN-2 network from Table 4.1. (d) Examples of 

generated sequences with the WGAN network from Table 4.1. (e) Examples of generated sequences 

with the RGAN network from Table 4.1. 

4.3 Movement Classification 

Next, the ability of the GANs presented in Table 4.1 to classify therapy movement 

repetitions is evaluated. For comparing the performance of the models, a metric is adopted 

which sums the absolute differences between the predicted probabilities of the discriminator 

and the soft labels for the data instances kX  in the validation subset 
kl , i.e., 

( )
1

K

k k
k

C l
=

= − X ,                         (8) 

where K denotes the number of validation sequences.  

The values of the metric C for the considered GAN models are presented in Table 4.2. 

Presented in the table also are the performance scores of NNs consisting only of the 

discriminator subnetwork (i.e., without a generator subnetwork). In Table 4.2, the 

corresponding NNs have an extension “-Disc.” The values of the metric for the WGAN 

model are not presented in the table, as the outputs of its discriminator are not probabilities 

(but instead are values of the Wasserstein distance). Table 4.2 contains the distances C for 

cases of 3-dimensional (3D) and 10-dimensional (10M) movement sequences.    
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For the discriminative NNs in Table 4.2, the presented numbers correspond to the average 

value of the parameter C based on five runs of the models. The values in the parenthesis 

preceded with the symbol S are the respective standard deviations. Early stopping of 100 

epochs was employed in the training phase. 

For the GAN models, the presented values of the parameter C in Table 4.2 are based on a 

single run of the networks. In particular, the values in the parenthesis preceded with the 

symbol M are the minimum values of the parameter C, whereas the upper numbers represent 

the average values of the parameter C based on the preceding 25 epochs and the succeeding 

25 epochs relative to the minimum value. Averaging was employed in order to filter out the 

significant oscillations in the obtained C values with the GAN models. 

Table 4.2. Classification accuracy results for GANs and the corresponding discriminative models.  

Notation: M – minimum value; S – standard deviation; Disc – a discriminator model only without 

a generator. 

Network 

Movement 1 Movement 2 

3-dimensional 10-dimensional 3-dimensional 10-dimensional 

GAN 2.220 (M1.82) 2.097 (M1.79) 0.801 (M0.58) 0.797 (M0.60) 

GAN-Disc 2.254 (S±0.05) 2.683 (S±0.14) 1.008 (S±0.10) 0.922 (S±0.04) 

DCGAN-1 3.965 (M2.60) 2.237 (M2.00) 1.136 (M0.98) 0.789 (M0.61) 

DCGAN-1-Disc 3.251 (S±0.63) 2.413 (S±0.05) 0.866 (S±0.02) 0.852 (S±0.22) 

DCGAN-2 3.649 (M1.86) 1.999 (M1.33) 0.836 (M0.74) 0.793 (M0.64) 

DCGAN-2-Disc 2.309 (S±0.16) 2.057 (S±0.31) 0.799 (S±0.01) 0.947 (S±0.00) 

RGAN-Disc 2.637 (S±0.16) 2.446 (S±0.45) 1.336 (S±0.14) 0.878 (S±0.04) 
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One example of the performance of the considered models is depicted in Figure 4.4. The 

figure shows the soft labels calculated based on Eq. (7) and the output probabilities of the 

DCGAN-1-Disc model. Figure 4.4(a) displays the scores for Movement 1, which has a 

validation set of 40 sequences. In the figure, the first 20 sequences are drawn from the set 

of correct movements, and the last 20 sequences are drawn from the set of incorrect 

movements. One can notice that the network evaluates the correct movements very 

accurately, and that for the incorrect movements the network predictions are close to the 

assigned labels. Similarly, Figure 4.4(b) presents the labels and the network predictions for 

Movement 2, for which the validation set consists of 28 data sequences. The predicted labels 

for the movement repetitions for this case also approximate the actual labels. 

From the results in Table 4.2 regarding the discriminative NNs, it can be concluded that 

DCGAN-2-Disc achieved the lowest cumulative deviation between the input soft labels and 

the predicted labels, in comparison to the other discriminative models. Overall, the 10-

dimensional sequences provided richer discriminative information of the movements and 

produced better results in comparison to the 3-dimensional sequences. The discriminators 

of the original GAN and DCGAN-1 also achieved comparable classification accuracy. 

 
(a) 
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(b) 

Figure 4.4. Soft labels and predicted labels by the DCGAN-1-Disc model for: (a) Deep squat 

movement; (b) Standing shoulder abduction movement.  

In comparison to the discriminative NNs, the predicted labels of the movements by the GAN 

architectures are characterized by lower deviation values C in relation to the input labels. 

The obtained values are shown with a bold font in Table 4.2. Almost in all cases, the GAN 

models outperformed the discriminative NNs. The discriminator based on recurrent 

computational units RGAN-Disc produced lower or comparable classification accuracies, 

compared to the models with convolutional units. The RGAN demonstrated lower 

classification accuracy and the results are not shown in the table. 

Among the drawbacks of employing GANs for this task is the computational expense, as 

the GAN networks took significantly longer to train in comparison to the discriminative 

NNs, and in some cases, the GAN models required an additional fine-tuning of the 

hyperparameters to obtain the reported classification accuracy.   

4.4 Movement Augmentation 

Data augmentation is a fundamental technique for addressing the problem of limited data in 

machine learning. The objective is to boost the diversity of data for model training, which 

consequently, can reduce the possibility for overfitting, as well as it can improve model 
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robustness. Unlike most image processing applications that take advantage of large-scale 

open datasets of annotated general-purpose images, biomedical human movement 

applications do not have access to large datasets, and therefore, data augmentation is 

indispensable for processing movement data with machine learning models. In image 

processing applications, data augmentation is commonly implemented by applying image 

translation and rotation, and various other image operations, such as applying a small 

amount of random noise to images, rescaling the pixels’ intensity, adjusting the gamma 

value of image brightness, adjusting the sigmoid value of image contrast, and similar. 

Differently, time-series data are sparser than images, and thus, there are reduced 

opportunities for augmentation in comparison to image data. 

This section investigates augmentation of the recorded sets of rehabilitation movement 

sequences by adding a small amount of noise to the time-series data. For a movement 

sequence 
nX  (which can represent either correct or incorrect repetitions of a movement), 

new synthetic sequences are generated by 

ˆ
n n q= + X X ν  for 1,2,...,n N= ,                         (9) 

where ~ (0,1)Vν  denotes a sequence of random numbers sampled from a uniform 

probability distribution V  and with the same dimensionality as the sequence 
nX , and q  is 

a constant with a value that is varied within a range, as explained in the subsequent text.  

Three deep learning models are adopted for data augmentation evaluation, hereafter referred 

to as CNN, RNN, and HNN. CNN is an architecture containing convolutional hidden layers, 

RNN is based on recurrent hidden layers, and HNN has a hierarchical network structure. 

For the three models, we conducted a grid search to finetune the hyperparameters consisting 

of combinations of NN layers, numbers of layers, nodes per layer, filter size, and batch size. 

The resulting NNs architectures are presented in Table 4.3.  
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The resulting CNN model has three convolutional layers, two fully connected layers, and 

an output layer with linear activations. The convolutional layers contain strided 1D 

convolutional filters, leaky ReLU activation functions, and a dropout rate of 0.2.  

The RNN model contains two bidirectional layers of LSTM units, a fully connected layer, 

and an output layer. The fully connected layer contains Leaky ReLU activation functions 

with a dropout rate of 0.5. The recurrent layers apply a recurrent dropout of 0.5 and are 

followed by a dropout layer with 0.25 dropout rate.  

Table 4.3. Architectures of CNN, RNN, and HNN models. 

Acronyms: Conv1D (NK, NS,…) – Layer with one-dimensional convolutional units with NK kernels 

of size NS, FC (…) – Fully connected layer, BiLSTM (…) – Layer with bidirectional LSTM units, 

BiRNN – Layer with bidirectional simple recurrent units, LR – Leaky ReLU activation, D – Dropout, 

RD – Recurrent dropout, St – Stride, L – linear activation, TH – Tanh activation, → Merged layers. 

Networks Layers 

CNN Conv1D (60, 5, LR, D:0.2, St:2) × Conv1D (30, 3, LR, D:0.2, St:2) 

× Conv1D (10, 3, LR, D:0.2) × FC (200, LR, D:0.2) × FC (100, LR, 

D:0.2) × FC (1, L) : Adam 

RNN BiLSTM (20, RD:0.5, D:0.25) × FC (30, LR, D:0.5) × BiLSTM (10, 

RD:0.5, D:0.25) × FC (1, L) : Adam 

HNN {BiRNN (10, TH, RD:0.5) * 5} → × {BiRNN (20, TH, RD:0.5) * 4} 

→ × {BiRNN (20, TH, RD:0.5) * 2} → × BiLSTM (30, TH, RD:0.5) 

× FC (1, L) :  Adam 

 

The HNN model [19] has a hierarchical structure that contains five sub-networks with RNN 

layers. The five sub-networks take as inputs joint displacement data of the left arm, right 

arm, left leg, right leg, and torso, respectively. Such a hierarchical structure of HNN has the 

advantage of enabling low-level spatial information from joint coordinates to be leveraged 

for obtaining a high-level representation of the body parts’ movements. The model consists 
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of three bidirectional layers with recurrent units, a bidirectional layer with LSTM units, and 

an output layer. The recurrent dropouts are 0.5, and the activation functions are Tanh in the 

bidirectional layers, and linear activations in the output layer.  

The effect of data augmentation for the above three NNs was explored for the deep squat 

movement. Four different values for the parameter q in Eq. (9) were selected, i.e., 

{0.01,0.03,0.05,0.07}q , that add different intensities of noise to the original data. By 

adding random noise to the instances of the deep squat exercise, additional instances were 

artificially generated, which resulted in a four-fold increase of the dataset. The NNs were 

trained using the original dataset and augmented dataset containing both the original and 

synthetic data. For training, we used mean-squared-error for minimizing the loss function, 

and Adam optimizer was selected for the parameters update. The batch size was set to 5, 

and early stopping regularization was applied to prevent overfitting. The inputs to the 

models were 117-dimensional sequences of joint displacements representing a single 

repetition of the deep squat movement. A linear activation function was applied to the output 

layer to regress a numerical value representing a movement quality score for an input 

repetition. The results are summarized in Table 4.4, indicating that for all three NNs the 

average absolute deviation dropped more than 50% when using the augmented datasets in 

comparison to the training only with the original data.  

Table 4.4. Average absolute deviation for the deep squat exercise. 

Data type CNN RNN HNN 

Original data 0.01357 0.01670 0.03010 

Augmented data 0.00656 0.00688 0.01404 
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Predicted outputs by the CNN model for the deep squat exercise are depicted in Figure 4.5. 

The input data includes 90 correct and 90 incorrect repetitions. A random set of 124 of the 

repetitions was used for training and the remaining 56 were used for validation. To obtain 

movement quality scores for the individual repetitions, the set of correct sequences was first 

modeled with a Gaussian mixture model. Afterward, movement scores were calculated by 

using the likelihood that individual repetition data were drawn from the Gaussian mixture 

model as a performance metric [48]. The values of the likelihood were mapped to 

normalized values in the range [0, 1].  

The input quality scores and the predictions for the training and validation sets are shown 

in Figure 4.5(a) and (b), respectively. The green squares in the figures represent ground truth 

scores from the Gaussian mixture model, and the red circles symbolize the predictions by 

the CNN model. The first half in both figures shows the corrected repetitions (and as 

expected, they have higher quality scores with values close to 1) and the second half in both 

figures shows the incorrect repetitions (having lower quality scores). Based on the figure, it 

can be concluded that the model correctly predicted the quality scores for almost all 

repetitions with a small deviation from the ground truth values used for training.  

This demonstrates the potential of deep learning models for assessment of the level of 

performance of patients enrolled in physical rehabilitation programs. Such models can be 

used for providing real-time feedback to patients enrolled in home-based rehabilitation. Also, 

the models can be used for assisting clinicians by providing objective movement quality 

scores during the evaluation of patient performance in a clinic-based environment. 
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(a) 

 

(b) 

Figure 4.5. (a) CNN predictions on the training set for exercise for deep squat movement; (b) CNN 

predictions on the validation set for the exercise. 
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CHAPTER 5: CONCLUSION 

The thesis employs GANs for modeling and evaluation of physical rehabilitation 

movements and for generating synthetic movement sequences. Four GAN models are 

considered, which include: GAN, DCGAN, WGAN, and RGAN. We selected these four 

models due to their relevance to the considered problem, or because they are popular GAN 

variations used for modeling spatial or time-series data. The ability of the networks to 

generate data instances that resemble two sets of physical therapy movements is evaluated. 

Further, the classification accuracy of the GANs and the ability to predict the level of 

performance of the exercises is evaluated based on introduced soft labels for the movement 

sequences. The results demonstrate the capacity of the considered GAN models to learn the 

underlying structure of the movement sequences, and with that, to generate realistic 

synthetic movement data, and to predict the level of performance consistency on a set of 

unseen movement sequences. These capabilities furnish a potential for augmentation of 

datasets of therapy movements with synthetically generated samples for improved 

movement modeling, and for utilization in automated monitoring and evaluation of the level 

of correctness of patient movements in home-based therapy programs. Also, the provision 

of means for synthesizing realistic time-series data can benefit other related application 

areas. We envision a real-world application of the investigated deep learning models on 

movement data collected with a vision-depth motion capture sensor.  
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