

Acknowledgements

The staff of the IDAHO FORESTER would like to thank the many people who have made this year's magazine possible.

Special thanks go to Dean Wohletz and his secretarial staff for their support and many hours of work.

We would also like to thank the alumni, authors of articles, advertisers and fellow students for their cooperation and support. As editor, I would like to extend my gratitude to Professor Elwood Bizeau for his good advice and hours of extra work.

PHOTOGRAPHS

The front cover photo was contributed by Ernest Day. He has titled it "Castle Peak and Upper Part of Little Boulder Drainage". The back cover photo was donated by Professor Fred Johnson.

Staff

Thomas Miller .Chief Editor
James Sears
Business Manager
Robert Belden .Technical Editor
Steve Wilson School News Editor
Jon Bair Lay-out Editor
Elwood Bizeau Format Advisor
Richard Knight Organization Advisor
John Schenk .Business Advisor

TABLE OF CONTENTS

The Forestry Building 4
White Clouds - The Dilemma of Castle Peak Keith Whiting 6
The Real Question in the White Cloud Controversy Ernest Day 7
Reminiscences of Thirty Years at Idaho Dr. M. E. Deters 9
Progress in Breeding Blister Rust Resistant Western White Pine
R. T. Bingham 10
Point Springs
Dr. Lee A. Sharp 12
Summer Camp - 1969 15
Club Report 16
Dworshak Dam and Its Effect on the Environment Stuart L. Murrell 17
Forests, People, Cities, and Myths
Dr. Harry H. Caldwell 19
New Zealand - A Biological Battleground
Dr. K. E. Hungerford 21
Industrial Forest Management - 1970
Russell Hudson 23
Range Management Overseas
Dr. E. W. Tisdale 25
Alumni Directory 26

Editorial

Thomas B. Miller

The 1970 Idaho Forester marks the second year of publiction under a new format. This new format is distinguished by the increased emphasis on semi-technical content and less on social activities of the college.

Two questions that come to mind about the Idaho Forester are:

Why does it have a new format? and

What goals are the magazine moving toward?
The answer to the first of these questions lies in the student body of the College itself. The students who developed and successfully published the 1969 Idaho Forester under the new format correctly analyzed an increasing desire by the students for a magazine that would be more representative of their interests. The staff of the magazine felt that these interests could be best represented by semi-technical articles concerning research and management of forests, wildlife and range. Our assumptions are based on the increasing trend of establishing professionally oriented clubs within the College and the failure of past Idaho Foresters to capture student interests. However, recognizing that a format based entirely on semitechnical articles could be dry reading, we have tried to balance the content with some human-interest articles.

Our goal is to continue to produce a relevant student publication. The magazine should always adequately represent new developments and student interests in the fields of forestry, range and wildlife. The 1970 Idaho Forester is a significant step toward our goal of relevancy. With continued support from our readers, it can only improve.

JOSLYN MFG. AND SUPPLY CO. CEDAR DIVISION

WESTERN RED CEDAR POLES

Idaho Yards \& Treating Plants at

SANDPOINT AND BOVILL

The imaginative foresters of The Northwest Paper Company, a Potlatch subsidiary, have adapted a Canadian "tubeling" technique to the problems of Minnesota pulpwood reforestation. They annually grow and plant over a million and a half seedlings as their
part of our unswerving policy of growing more trees than are harvested. Conventional methods require nursery-grown seedlings two to four years old. Our test tubelings took less than six weeks from seed to forest planting and there may be other advantages.

When the day of the super-tree arrives, it will come from the super foresters. That includes us. Potlatch Forests, Inc., P. O. Box 3591, San Francisco, California 94119.

The Forestry Building

The Planning

The Beginning

The Construction

1969 Questionnaire Results

The changes included in the format and content of our 1969 issue were reflections of our own feelings as to what was lacking and what should be included in the Idaho Forester. Realizing that these reflections represent ideas of only six people, we circulated a questionnaire in all our magazines.
We received 26.6 per cent of the questionnaires that were sent. This resulted in 102 returns from which to draw our conclusions. The results can best be shown in the accompanying graphs.
When looking at the results of the questionnaire as a graph, the general conclusion could be that: given a choice, our readers do not want to see any exclusions from the magazine. The question that did receive the most negative response was the inclusion of faculty, or senior pictures. A change of title would be out of the question since only two answers in favor of a change were received.
We would like to thank those who wrote additional comments on the questionnaires. We have tride to take the comments into consideration in developing the content of the 1970 issue. Any further comments or suggestions from readers will be greatly appreciated.

IDAHO FORESTER Staff

QUESTIONS

1. Details about college and / or club activities.
2. Pictures of the faculty and / or seniors.
3. Articles of controversy and /or opinion by people outside our College.
4. Articles dealing with current natural resource problems by professionals in the field.
5. Articles by faculty members and degree candidates on projects and activities within the College.

A. Alumni directory
B. Outstanding accomplishments of alumni
C. More photography of general interest
D. More photographs with the articles
E. A new title

The Dilemma Of Castle Peak

Keith Whiting
American Smelting and Refining Company
January, 1970

For the past several months, White Cloud Peaks in central Idaho have been the subject of intense and continuing debate in the press and elsewhere. What began as a series of public hearings in Boise, Idaho Falls and Challis quickly escalated into a full-blown controversy.

According to American Forests magazines, "The majestic White Cloud Peaks, serene and beautiful, have become the latest symbol for conservationists all over the country who are determined to save such wilderness as remains as it is for posterity."

The White Cloud question should be placed in perspective because it focuses on a fundamental dilemma that is going to trouble Americans for all years to come, and, in fact, is going to become more acute and increasingly complex with each passing generation.

The question is:

How are we, a Nation, going to provide adequate and suitable living and recreational facilities for future generations while also providing, at the same time, for the goods and services they will need equally as well?

Both needs can be met from but a single resource - our lands.

Resolution of the question soon must be forthcoming or growth, progress, and our very pursuit of happiness will be in serious jeopardy as the population continues to explode and demand more materials and better facilities.

Clearly, discovery of minerals and their mining is vital to the present and future needs of the United States, and development of the molybdenum deposit in the White Cloud Peaks area of the Challis National Forest serves this interest. It has been demonstrated that mining properties can be operated in a manner fully consistent with sound ecological practices.

Public lands, such as the Challis National Forest, should be used in as many beneficial ways as their resources permit. Balanced multiple use of these lands is perhaps the only way, we in the mining industry feel, to develop much-needed recreation resources while continuing to meet our people's requirements for the metals and minerals that make their enjoyment possible. No area should be closed to exploration or to mining in the absence of a compelling national interest.

The multiple-use principle applied in this case would yield for Idaho the double benefits of desirable economic development as well as preserving and enhancing recreational features of the area. It is our policy to work with the Forest Service to achieve these goals and to conduct our operations so as to have the least practicable impact on all resource values of the area.

We believe we can do so within the framework of the proposed Sawtooth National Recreation Area, and that our activities could enhance the recreation potential of the area.

We, therefore, do not oppose including the White Cloud Peaks in the Sawtooth National Recreation Area.

Several misunderstandings surround the project and fears have been aroused that the mine will destroy Castle Peak and pollute Little Boulder Creek; that the access road will create serious erosion and sediment problems not only in the small stream but the Salmon River as well; that noise pollution will drive wildlife out of the area. It has been said that the mine isn't necessary in the first place.

With respect to necessity for the mine, Asarco is looking to the future when this nation will need metal for which we are exploring today. Molybdenum, an essential element of modern steel, is classified as a national strategic material. It is not in short supply today, but the Bureau of Mines estimates that United States need for the metal is expected to rise to 175 million pounds within 15 years and to 350 million pounds within 30 years. U. S. production in 1968 totalled only 94 million pounds.

The rough grandeur of the high peaks will not be disturbed since mining will not touch the slopes of Castle Peak, nor any of the White Cloud Peaks. When mining is finished, walls of the open pit will blend in with the slopes below the peaks and the open pit eventually will fill with water and form a lake.

Tailings - ground-up rock from which the metal has been extracted - will be impounded in a future lake formed by a dam constructed from natural material in Little Boulder Creek valley. If there is any excess water from rainfall or melting snow, it could be by-passed around the mine and mill. In one of our Western states, a trout hatchery operates below the tailings pond of a well-known molybdenum mine.

The access road will not cause erosion and sediment problems. It is surveyed and designed to Forest Service specifications which are expressly planned to avoid these ill effects. Several roads and trails were built by others during the summer of 1969 within the Challis National Forest, and the Forest Service bulldozed a motorcycle road by a scenic route to Frog Lake, two miles away from the molybdenum deposit.

Noise pollution will be insignificant since the walls of an open-pit mine reflect noise upward and the mill buildings will be designed so as to limit noise. As a result, outside of the immediate area, practically no sound will be audible. At times during the week during mining operations a dull "crumpp" like distant thunder may be heard if the wind is blowing in your direction.

The molybdenum deposit that precipitated the controversy reposes in an area of less than 1,000 acres, to the best of our knowledge, near Baker Lake northeast of Castle Peak, the summit of which is over a mile from the nearest of the ore bodies. The entire 1,000 acres is less than three-tenths of one percent of the Challis National Forest and less than two-
(Continued on page 8)

L
 OU
 DΓ

The Real Question In The White Clouds Controversy

Ernest E. Day
Idaho Environmental Council
National Wildlife Federation
January 1970

Sinply stated, the question is: Should a public asset of magnitude of the White Cloud area be written off permanently for a commodity which is in surplus supply?

The Road In - The Opening Wedge

The area involved east of the "spine" of the White Cloud range between Railroad Ridge on the north and the Chamberlain Lake chain is roughly eight by ten miles, a relatively small but uniquely beautiful segment of Idaho's choicest environment. Within this area are some fifty alpine lakes. Five of these are directly affected by being partly or completely surrounded by mining claims. The others would be vulnerable to bulldozer exploration should a road be constructed into this fragile area. One has to look no farther than the road dozed out in violation of U.S. Forest Service rules above the Livingstone Mine to see the horrible devastation wrought in dozer exploration on the slope just south of Railroad Ridge. This is not being done by either American Smelting and Refining Company nor by the Vernon Taylor Company of Denver, who are the two principal giants involved in the White Cloud controversy. It does, however, graphically illustrate what will probably follow once a road is built eight or ten miles into the east side of the White Clouds up Little Boulder Creek. The road, then, is the core of the problem when analyzed against the present inadequacies of the outdated 1872 Federal mining laws - the real villain of the piece.

The Open Pit Mine

The enormity of the proposed open pit mine cannot be glossed over. The ore body is very low grade. ASARCO's figures are that 20,000 tons a day for 360 days a year for up to twenty years must be processed for a profitable operation. It is stated that the lake formed by the pit and the dam will be from one and one-half to three miles long. This is in a valley which falls more than six hundred feet to the mile. An exceptionally high dam, or a vast cut, or a combination of both will result. Twenty thousand tons a day of finely ground spoil pile can simply not be swept under the rug.

Effects on Fish and Wildlife

What will be the probable effect on fish and wildlife? Dams around holding ponds do not have a good performance record, especially during the heavy run-off period. In jeopardy below is a good resident trout fishery. Perhaps of even more value are the spawning areas for anadromous fishes on the East Fork of the Salmon River. Siltation alone from the spoil pile above could wipe out these valuable piscatorial bedrooms much as spawning areas on the nearby South Fork of the Salmon River were destroyed by the abuses of man and nature several years ago. There remains the distinct possibility of poisonous leaching of minerals from the spoil pile when the exposed
minerals react to the air and water. This could poison the East Fork of the Salmon River in a manner similar to that of the cobalt operation on Panther Creek near Salmon, Idaho. Even if they are not poisoned, the redds could be silted with the same disastrous effect.

Mountain goats and big horn sheep abound in the White Clouds. Both need isolation from man and his machines. Blasting, gear-jamming and the roaring of trucks are an integral part of open pit mining. The big horns and mountain goats will simply be forced to evacuate to other areas which may not provide livable environment for them. Their loss will be an important part of the price paid for temporary economic gain in producing more surplus molybdenum.

The Molybdenum Surplus

"Moly" is in enormous surplus supply for our domestic needs. The estimate by the U. S. Bureau of Mines is that our known domestic reserves of molybdenum (prior to the White Clouds activity) "are more than adequate to meet our domestic requirements to the year 2000." Mr. Don Jackson writing in LIFE magazine in the January 9, 1970 issue stated that our reserves are adequate for over 100 years of domestic use at present consumption rates.

There is in fact a tremendous surplus of Moly on our market and ways are being sought to diminish the forty million pound ((Engineering and Mining Journal, March, 1969) stockpile without damaging the present market price. One has to but look at the open pit and ghost town of Stibnite to see the effects of a drop of a few cents a pound in the market price of a metal

Man most assuredly does not live by bread alone. If this mining operation were to take place in a far less desirable environment, the profit motive alone would be a justifiable criterion. If this Idaho-mined metal were vitally essential for our national defense and could not be obtained elsewhere, then sacrificing a public treasure of such high recreational value would certainly be worthy of consideration. But such is not the case.

Restoration Promises

ASARCO has voiced concern for restoration of this scenic resource "as far as possible." It may be that ASARCO makes this statement in good faith although their record on the Puget Sound, on Chesapeake Bay and in Arizona on pollution counts leaves grounds for honest concern. The Taylor Company, on the other hand, showed no appreciation for the resource nor public relations when they said that Little Boulder Lake No. 1 would not only be polluted but would disappear if they were to mine the area. And there are other mining interests with
(Continued on page 13)

(White Clouds - Whiting)

tenths of one percent of the proposed 508,000-acre Sawtooth National Recreation Area which would include the mine site.

The mine can be seen only from the air and two points on existing forest trails, both more than 500 yards away.

The Little Boulder Creek Valley is oriented in an east-west direction with the cirque at the west end. The elevation ranges from 8,000 to 10,000 feet at the cirque head below Castle Peak. The slopes of the valley contrast strikingly in their vegetation cover. The north slope (south-facing) supports a closed stand of Western sagebrush, with widely scattered small groves of aspen and lodgepole pine. The south slope (north-facing) is forested with a mosaic of stands: whitebark pine or spruce and fir at 9,000-9,500 feet, and lodgepole or Douglas fir lower down. Part of the valley floor is covered with a sedge meadow with willows around the margin. The heavily glaciated headwalls at higher elevations $(9,500$ to 11,000 feet) support sparse forest vegetation on ledges and very small meadows in depressions containing glacial till. The area receives enough winter snowfall to make it inaccessible most of the year.

The White Clouds Peaks can be reached by several public roads and a system of trails provide access to most drainages. Access to the Asarco claims is by horseback, by hiking along a Forest Service trail paralleling Little Boulder Creek, or by helicopter.

There are no developed recreation facilities in the high country and forage for recreation pack and saddle stock is very limited. The lack of easy access and remoteness of the area from centers of population severely restrict recreational opportunities.

At lower elevations, five local ranchers graze 700 head of cattle and 2,500 sheep for $21 / 2$ months a year in the rangelands in and around the White Cloud peaks, according to the Forest Service. There has been some minor timber harvesting. Nearby in the Big Boulder Creek - Livingston Creek drainage, one mine - the Livingston - has a history of silver and lead mining going back 80 years.

ASARCO interest in the area stemmed from a U.S. Geologic Survey publication released in 1965 which described the investigation of a molybdenum occurrence along Little Boulder Creek which had been made by the Geologic Survey and the U.S. Bureau of Mines in 1943. The Geologic Survey and the Bureau of Mines encourage and aid in finding and developing new mineral deposits in the United States and the Forest Services recognizes and supports bona fide prospecting and mining as a valid activity designed to utilize mineral deposits within the National Forests. The area in which the claims are located have not been withdrawn from mineral entry by the Government.

Study of the maps and records showed that the claims, which had been staked nearly 50 years ago, were in good standing. The owner, a prospector living in the area, was found, and permission to examine the property was obtained. An agreement to purchase the claims was negotiated in 1967and an exploration program of mapping, sampling, aerial photography, geological and geophysical surveying and scout diamonddrilling was commenced in 1968 and continued in 1969 at a cost to date of approximately $\$ 500,000$.

Results indicate the presence of a large deposit of low-grade molybdenite, and indications are that the property at Little Boulder Creek may have the potential, developed as an openpit mine, of producing 20,000 tons of ore per day for perhaps 20 years or longer. In such case, the mine and related mill could provide direct employment for some 350 men and indirect empoyment for another 500 , equivalent to support for approximately 2,500 people. Estimated county and state taxes at current rates would approach $\$ 1$ million annually.

Throughout our work in the Challis National Forest, we have exercised care to avoid unnecessary adverse effects on the recreation, watershed, wilderness and other values of the area. We have maintained a model campsite and cut a minimum of trees to accommodate the diamond drills and helicopter landing sites. The drills have been dismantled and moved by horses, tractor and helicopter from point to point on the mineralized area. The number of sites has been kept to a minimum by inclined drilling.

To help us in the protection of environmental values of the area, we have engaged ecologists with expertise in vegetation, wildlife and fresh-water biology who will observe the area at various times and under a variety of conditions. Consultations will continue throughout the course of work. Also, we will engage agronomists, landscape architects and other recognized authorities to advise us on how to minimize the impact of the mine on the natural environment.

As responsible citizens, we intend to continue our practice of cooperation and consultation with the Forest Service in development of plans for the area both during and following mining. We have begun planting certain grasses and legumes recommended for high elevations in order to revegetate drill sites and other prospecting areas as a result of some of these consultations with the Forest Service.

Visualize, if you will, the scene twenty or thirty years from now. None of the cathedral-like heights will have been altered; fish will still abound in the lakes; and antelope will be drinking from ponds of melted snow in the mined area which in time will provide an important new water resource for scenic, recreation and other purposes.

Developed in this fashion, we believe the mine area could achieve its full potential as a multiple-use resource. It is capable of yielding minerals worth an estimated half-billion to one-and-a-half billion dollars - three quarters of which would remain in Idaho. It will provide many years of employment for hundreds of people. It will furnish millions of tax dollars to Custer County and the State during its lifetime.

And, in addition, a large usable recreation facility and valuable water resource will have been created for posterity.

Under proper supervision, mining, grazing, lumbering, and recreation are compatible and can go forward together in our own time.

The best way to hold in trust the heritage of our great outdoors for our children and our children's children and offer them a life equal to or better than our own lies in the multipleuse concept of our public lands.

Spokane Machinery Co.

E. 3730 Trent Ph. KE 5-1576
P. O. Box 4306 Station B

DISTON KNIVES, SAWS \& PRODUCTS HEWITT ROBINS CHAINS CONVEYOR EQUIPMENT SAWMILL SUPPLIES

Reminiscences Of Thirty Years At Idaho

Dr. Merrill E. Deters
Professor of Forestry
University of Idano

Back in the summer of 1940 I was at the forestry summer camp of Michigan State University located near Sault Ste. Marie on the Upper Peninsula of Michigan. A long distance call from Dean Jeffers of the School of Forestry, University of Idaho conveyed the message, "would I be interested in joining the forestry staff at the University of Idaho?" An interview was arranged for the following week at Minneapolis and resulted in my decision to come to Idaho. The state was not entirely new to me, however, as the summer of 1926 was spent working in the forests of the Priest Lake country. This was a critical fire year and I recall fighting fires for 42 days straight, averaging 16 hours per day at 33 cents per hour. One fourth of the Kaniksu National Forest burned over that year.
In early September Mrs. Deters and I drove to Moscow via the Black Hills, Yellowstone Park, southern Idaho and the north-south highway. There was little pavement. The northsouth road was all graveled, narrow, dusty and with many hairpin curves. It was quite a thrill to negotiate Whitebird, Winchester and Lewiston hills back then.
The forestry faculty in 1940 consisted of Dean Jeffers and Professors Wohletz, White, Young, Stone, Ehrlich, Pierson and Graduate Assistants Gil Doll, Whiz Slipp, and Loren Baker. Prof. Pitkin was Nursery Superintendent and Prof. Pierson was also Extension Forester. Forestry occupied the third and a part of the fourth floors of Morrill Hall. The remainder, and main part, of the building was occupied by Agriculture. When the new Ag Science building was erected the old Ag headquarters became the forestry building. At first we didn't know what to do with all the room and parts of the building were shared with others. Gradually as the staff grew, forestry took over all offices and, of course, today we don't have nearly enough room to accommodate all activities.

The war years brought big changes. Dr. Ehrlich left to engage in antibiotic research. Dr. Stone left for industrial work. Dr. Young resigned to take over the range department at Texas A \& M. Prof. Pierson resigned to enter other work. That left Dean Jeffers, Wohletz, White and myself to take over all teaching work. Since Dr. White was assigned also to teaching in Chemistry, the burden of all forestry courses fell on the Dean, Wohletz and myself. In addition, we were asked to take teaching assignments in connection with certain armed forces programs. During one semester I recall having from 5 to 8 hours of classes each day. I don't recommend trying to talk for 8 hours a day or trying to work 18 hours a day for weeks at a time.

By 1944 classes were getting small, 10 to 15 with mostly 4-F students or veterans who had been discharged because of disability. On one occasion, the silviculture class was engaged by the Nez Perce National Forest to plant trees in Black Canyon on the Selway River out of the Fenn Ranger Station. Base camp was down next to the river and we arrived there Friday evening. At 6:00 A.M. Saturday morning, the gong rang. After breakfast the crews were organized with mattocks, planting bags, a supply of trees and lunch. Then came the climb up the 100% plus slope almost to the top. From here the men planted down hill toward the river which was reached about $6: 30$ P.M. a quarter mile below camp. A fine meal awaited the planters and by 7:30 everyone had finished. Within five minutes all had sacked out, dog tired from the rugged planting job. Again at 6:00 A.M. the gong sounded.

Elmer Skeje, one of the student planters, sat up, rubbed his eyes, looked around and remarked, "It didn't take very damn long to spend the night here."
A big game field trip to Yellowstone National Park was a regularly scheduled event in the forties. Dr. Young taught wildlife management as well as the range courses. University vehicles were few and far between so transportation was a problem and Dr. Young vigorously recruited other staff members to participate by supplying private cars for the field trip. As a result, I went on most of these big game trips. The park was a wonderful example of how not to manage game and land. The overstocked winter ranges were so overcrowded and overgrazed that vegetation was virtually annihilated. Dead and dying elk, deer and antelope littered the range. Coyotes and bear had a field day working on the carcasses.
The field trip was scheduled for the week prior to the opening of the park in spring and fishing in Yellowstone Lake was tops at that time of year. So someone always made a motion, readily seconded and unanimously voted, that Sunday should not be an official class day and that liberty be granted to all to pursue such activities as were deemed most appropriate. The result was that almost everyone went fishing and getting the limit of five good trout was no real problem.

It was usually a thrill to ride with Dr. Young. He greatly enjoyed the view of the landscape much more than that of the highway and he would often wax eloquent with one hand while driving with the other. It must be said, however, that some sixth sense always saved the day and brought his vehicle back from the very edge of disaster. One student once remarked, "I'm not going to worry anymore - the Lord must be on his side."
In May 1941 Dr. Young and I packed into the Middle Fork of the Salmon River to visit a graduate student, Gordon Ellis, who was making a study of bighorn sheep on a cooperative project with the State Fish and Game Department. The packer met us at Shoup with broncs fresh from the range, not having been ridden all winter. They were plenty skittish and we had an interesting trip into Stoddard Creek where Ellis was stationed. We arrived just at dusk and awaiting us was a wonderful, hot meal with a dozen trout that would go a pound each. This was beautiful primitive country. The horses were turned loose to graze on the abundant bunch grass and in the morning the packer went out to round them up. A bear had spooked them during the night, however, and getting the halter rope on them was not easy. Having placed the rope on my saddle bronc the packer tied it to a rock of about twenty pounds so that he could go after the other horses. Soon something spooked my bronc again and down the hill it started at a good clip, the big rock rolling along behind it. When the flat bench along the creek was reached, the momentum of the rock was slowed while the bronc was still at full speed. Quickly snubbed, the bronc turned a double summersault and neatly broke its neck. So I went out on mare's shank.

The end of the war brought in a flood of veterans under the G.I. bill. As a group they were more mature than the usual 18 -year-old freshman and pretty well knew what they wanted. They were serious and many of them were married and raising families. The forestry staff was kept very busy with them and gradually built up to better accommodate the increasing load.
(Continued on page 13)

Progress in Breeding Blister Rust Resistant Western White Pine

Richard T. Bingham
Principal Plant Geneticist
Intermountain Forest and Range Experiment Station, Forestry Sciences Laboratory. Moscow, Idaho

INTRODUCTION

Nowadays, we foresters can expect increasingly frequent "mandates" from the public concerning the preservation of wildlands we manage. We know that this trend of increasing public awareness and involvement is healthy - even though such active interest can temporarily upset established practices or delay ongoing programs.

In our attempt to prevent further deterioration of sensitive forest ecosystems (especially by pesticide accumulation), we foresters are placing renewed emphasis on biological, rather than chemical, control of forest pests. This paper explains the mechanics of one of these biological control methods, improvement of genetic resistance in western white pine to blister rust disease.

HISTORICAL

Blister rust disease in an incubation (hidden) stage on white pine nursery stock was introduced into western North America in 1910. By 1923, it had spread from Vancouver, B.C., into northern Idaho, and by 1941, the blister rust epidemic had spread to most of the Inland Empire's 3-million acres of western white pine.

Conventional rust control measures, e.g., mechanical and chemical eradication of alternate host plants (Ribes spp.) and other chemical (antibiotic) controls applied to the primary pine host, proved to be inadequate. Consequently, aside from research, attempts to control the disease in this region were abandoned in 1967.

We are now engaged in a massive salvage operation, seeking to harvest severely damaged, salable trees before they are lost. At present, our best hope of restoring western white pine to Inland Empire lands lies in development of genetic resistance, a slow but sure means.

Recognizing the high intrinsic and aesthetic values of western white pine, the Forest Service has become the leader and primary investor in research and development of blister rust resistant western white pine. We have refused to abandon a highly valuable and tractable species or to add it to what is becoming a dangerously long list of pest-threatened species. Implied in the genetic control we seek is the stabilizing influence of resistant types on sensitive forest environments, and the avoidance of environmental pollution.

THE RESEARCH JOB

The clear history of the rust's introduction from Europe and the severity of resulting epidemics in western white pine led to the assumption that this pine was undergoing its first exposure to blister rust. Host populations appeared to be
uniformly and highly susceptible. Soon, however, - unlike American chestnut trees, which appear to be consistently susceptible to chestnut blight - rare white pines were found to be disease-free, despite long exposure in heavily rusted stands. And, when such rust-free selections were mated, some really remarkable gross levels of resistance were noted in the first generation $\left(F_{1}\right)$ seedling progenies.

Resistance, What It Is

Resistance reactions were found to occur at a succession of sites in needles and bark, as follows:

1. In the needles, resistance reaction(s):
a. Limited penetration or establishment of the fungus and resulted in either a decrease or an absence of needle lesions; or
b. Slowed or prevented extension of the rust mycelium down the needles and into the bark, which resulted in fewer bark cankers per given number of needle lesions.
2. In the bark, where the same or other resistance reaction(s) resulted in:
a. The bark rapidly becoming necrotic in the immediate area of very young bark cankers at needlebundle bases; or
b. Lengthier "corking-out" syndromes involving well-established bark cankers.

From this series of reactions, we hypothesized that four or more resistance genes might be involved in the survival of test seedlings.

The sum total effect of these resistance reactions was a range of from 0 to 50 per cent survival of F_{1}, or firstgeneration, progenies. These survival levels seemed to follow normal distribution. This and the evidence on sites of reactions led to suggestions that (1) resistance may be controlled by several to many genes, and (2) survival level might be inherited quantitatively, as reported for many cereal rusts. Quantitative genetical analyses were undertaken.

Narrow-sense heritability (h_{2}) analyses of progeny survival percentages indicated that a high proportion (60 per cent) of the phenotypic variance, or total genetic and environmental variance in the system, was of the additive-genetic type. About one in four of the parents exhibited general combining ability for transmission of blister rust resistance (i.e., a number of F_{1} test crosses were consistently high in resistance). When both parents exhibited a general combining ability, their F_{1} crosses averaged $30 \pm$ per cent survival. Subsequent genetic gain analyses then showed that by breeding a second generation from the survivors of such crosses the survival level might reach $50 \pm$ per cent. With about one in four of some 400 selected, rust-free parents exhibiting general combining ability, a genetic base of $100 \pm$ trees was available for practical breeding work.

A blister rust resistant western white pine from near Fernwood, Idaho. One of 400 such trees tested by the Forest Service for transmission of suitable resistance.

Survival level, the gross effect of all resistance reactions, was considered a useful interim concept. However, studies were obviously needed to define individual resistance genes, pathogenic races (if any) of the fungus, and interactions of these that produce visible resistance reactions. Such research was planned, but not manned, until the late 1960's.

Practical, First-stage Breeding Work is Under Way

In our work, we observed levels of survival in F_{1} progenies and predicted levels of survival in the F_{2} generations were accepted as adequate to permit the use of F_{2} stocks for reforestation of select white pine lands. In 1957, we began a "first-stage" developmental work program, designed to produce about 10 -million F_{2} seeds and semi-resistant seedlings per year from 40 acres of F_{1}-seedling orchards. This program is underway and will have continued for 28 years before initial production of F_{2} seed in 1985. It is estimated that by that time, the program will have cost about $\$ 1$-million. In the 20 years following $1985,600,000$ acres of the best white pine lands will be restored to that species.

In undertaking this program, the Forest Service accepted two known risks. We realized that:

1. The resistance expressed by parental trees long exposed to the rust might be unrelated to that observed in their juvenile test progenies in the rust nursery, and vice versa;
2. That effects of most resistance genes would be shortlived, because they might have been or soon might be bypassed by various pathogenic races of the rust fungus.

Newer Research Results Indicate a Change of Direction for "Second-Stage" Work

The wheat breeder has been fighting leaf and other rusts of wheat for 50 years. It seems that no sooner does he produce an immune variety than the rust makes an end run and genetically altered races of the rust negate his hard-fought gain. This see-saw battle is economically sound in annual crops, but it is obvious that pines cannot be bred rapidly or economically enough to solve the rust race problem this way.

Agronomists are finding, however, that certain forms of genetic resistance (called uniform or horizontal) defy breakdown by genetically labile disease fungi. Corn breeders have been especially successful in accumulating and using uniform resistance as a basis for lasting resistance. In fact, the United States had never had a major, cataclysmic epidemic of corn leaf rust. This is what we want to accomplish in blister rust resistance research and development work.

Over the past 2 years, results of anatomical and genetical analyses based on resistance reactions have disclosed the existence of five discrete blister rust resistance genes in western white pine, and at least two pathogenic races of the blister rust fungus. All of this new knowledge concerns reactions occurring in western white pine foliage, through which the rust enters the pine. We expect equally important findings from analyses of disease reactions that occur after the rust enters the bark. Surprisingly, some of the resistance reactions we have noted in western white pine foliage and bark are also characteristic of reactions known to occur in Himalayan or Armand pines, two white pines that, in effect, have grown up with the rust and are little affected by its attack. It may be that certain single resistance genes identified in western white pine are much more stable than the single immunity-imparting genes that led to the downfall of the wheat breeder.

Only more research will provide answers to these questions. When we have the answers, we will be ready to take another large step, this time toward permanent resistance. We are now planning research in preparation for secondstage improvement of western white pine. We feel that with new knowledge from the agronomists and from the Cronartium resistance breeders, the development of new western white pine varieties with higher and more stable resistance to blister rust, plus improved growth, is only a matter of time.

FORESTRY STUDENTS \& GRADS WALES LUMBER CO.

Spokane, Wash.

Point Springs

Dr. Lee A. Sharp
Professor of Range Management

About 500 miles from the Moscow campus, almost on the Utah border, is an experimental area designated "Point Springs Seeding." The site is on public land administered by the Burley District of the Bureau of Land Management. The name for this seeded rangeland is derived from a spring located on a point of Black Pine Mountain about two miles south of the area.

Prior to 1952 , big sagebrush was the dominant vegetation and livestock carrying capacity was very low. The sagebrush was removed by plowing in the summer and fall of 1952 and crested wheatgrass was planted on approximately 7,500 acres. Livestock were not permitted to graze the area for two years following seeding so that the crested wheatgrass could become established.

Point Springs Seeding
The University of Idaho began an evaluation study of range improvement practices in 1953. A cooperative agreement was developed between the University and the Bureau of Land Management to use the Point Springs seeding for study. In 1954, a portion of the seeding was fenced into pasture units, water was piped to each pasture, corral facilities were constructed and a livestock scale was installed to weigh experimental animals. The project was under way in 1955 after a group of livestock producers from Malta, Idaho agreed to furnish yearling cattle for experimental grazing trials. These grazing studies are continuing and are providing information for use in developing range livestock management programs.

The original studies were confined to 960 acres. In 1964, the livestock producers using the remainder of the 7500 -acre seeding requested that the University suggest a management program for the total area. A plan of grazing management was developed and implemented in 1965. Evaluation of this program is now underway.

The purpose of the studies on the smaller area was to determine plant and animal response under varying intensities of grazing in different seasons of the year. Results to date show that crested wheatgrass rangeland can be grazed at a greater intensity than previously assumed. Livestock response is very good in the spring of the year, more than two pounds of gain per day per animal from May 1 to late June. Weight gains are acceptable in the fall also. This range land type can be grazed heavily at any season without losing the stand of grass. However, heavy spring grazing lowers forage production.

The studies since 1965 on the larger area are indicating that heavier stocking rates may be attained with rotational grazing than under continuous grazing. Calf crop and weaning weights have improved over the time of study. The potential for manipulating animals to achieve desired objectives is greatly improved where large areas are subdivided and fenced for rotational grazing. The results of this study apply to over one million acres of crested wheatgrass range land in Idaho and to a much greater acreage in the Western States.

The field experience in range land management provided to the many students that have assisted in gathering research data has been as important as the study results. The instructors for this field experience have been mother nature, the livestock producers and the cowboys who herded and helped weigh the livestock. Weighing days offer an experience for students of land management that would be difficult to obtain in any other way. The language is rough but descriptive and, although the exchanges between livestock ranchers, Federal agency personnel and University researchers are friendly, the conversations are sharply pointed toward problems of land use and land use regulations.

After weighing and sorting the animals, the group generally congregates for lunch in a cabin similar in size to the tent frames at the Forestry Summer Camp. Sourdough corn fritters, chili beans or "son-of-a-bitch stew" coupled with Jim Beam, Lucky Lager or other brands fill the stomach and produce interesting conversations. Fifteen to twenty people are commonly fed during these lunch sessions. Dean Wohletz, Dean Kraus and various other University staff members have had occasion to participate in these weighing and eating activities.

Many of the students who have assisted in the research work as undergraduate field assistants or graduate students on research projects have gone forth to make contributions in land management organizations and other fields. Some of those who gained field experience at Point Springs are Drs. Kendall Johnson, Fred Proshold, Rex Pieper, Jack Nelson, Don Foskett, and Jack McAninch. Students who assisted as undergraduates in the field work are LaForrest Twitchell, Delmar Vail, Keith Lilico, Paul Barnes, Bill Clifton, Dick Looney, Bill Riedeman, Bill Foster, Dale Turnipseed, Whitey Nelson, Ronald Dean and Tommy Gooch. Several students have worked on Master's degrees at Point Springs or have
used it as a headquarters to work adjacent areas. Among these are Arnold Bullock, Joe T. Helle, Leonard Burns, Leaford Windle, Jay D. McKendrick, Duane Andrews and Jerry Reese.

In addition to serving as a University student instructional area, Point Springs has been visited by several organizations on field trips, including the Idaho Section of the American Society of Range Management, the Research Committee of the Idaho Cattleman's Association, the Western Regional Research Committee. The Bureau of Land Management has used the area for Advisory Board trips and as a training area for new employees. Several foreign students have spent time with the research personnel at Point Springs.

Financial support for research work and student training has come from many sources. The Bureau of Land Management has provided financial support and technical assistance throughout the study. The ranchers of Malta (Glen Parke, Jack Pierce, Dale Pierce, Lindy Neddo, Ed Hitt, James R. Hitt, James B. Hitt, Bill Hitt, Grant Hitt, Shirley Hitt, Glen Kunau, Wilford Wrigley and others) have furnished the livestock, helped weigh the animals and assisted in a number of other ways. The University of Idaho through the Forest, Wildlife and Range Experiment Station, the Agricultural Experiment Station and Special Research Funds provided the project design and personnel for conducting the various studies.

As the author looks back over the fifteen years of research at Point Springs, the benefits in terms of better land use, student and professional training, and improved communications among agency personnel, livestock producers and the University far exceed the costs of achieving these benefits.

(Reminiscences - Deters)

Foreign aid and assistance programs also brought us a number of students from other lands. All of these were outstanding individuals, brilliant and so sincere. Many of them are now leaders in their own countries and I am sure provide an international understanding and good will that could not be achieved in any other way. The language barrier was the most difficult one to surmount. Usually about two years were required to gain the competency of language needed for highest achievement. Working with these students was a rewarding experience because they so deeply appreciated the opportunity to attend the University of Idaho and did their best to make good.

Dean D. S. Jeffers who succeeded Dean McCardle in 1935 reached retirement age in 1953 and our own "Smokey Joe" Wohletz was appointed to take over. I recently had a fine visit with Dean and Mrs. Jeffers at the A.A.F. meeting in Miami. They both looked unchanged from their last year at Idaho - truly remarkable people and still as spry as ever. There must be good genes as well as high ideals. Actually, the Dean served out more years of distinction at the Oregon State College of Forestry where he was visiting professor of forestry until several years ago. All of us who knew the Jeffers are richer for that experience.

There are many recollections of work on the University Forest. During my early years it was necessary to resurvey
and post the University Forest boundaries and re-establish the corners and then to cruise the forest to determine what we had. Mr. Walter West, a local resident, and fine woodsmen assisted with both these and other jobs on the University Forest, including a significant timber salvage operation following the tussock moth epidemic of 1946. A steady and increasing timber sales program has developed over the years. Many hours have been spent on timber stand improvement and setting up study, research and demonstration areas. I have always loved to be in the woods working with trees so this has been enjoyable work.

The most pointed memories, however, have been the experiences of working with so many forestry students through forty years of teaching, thirty of them at Idaho. This work has consumed most of my time. There is a huge satisfaction in seeing the students earn their professional degrees and step out into the world to do their part. It is a particular delight to attend local, regional, or national meetings and to see the many people whom you have helped to train. Foresters from Idaho are widely scattered over the nation. Many have made wonderful achievements and are leaders in many different fields.

(White Clouds - Day)

much less restoration capability waiting off stage with their dozers. Construction of the Little Boulder Creek road would provide a springboard for the land abuses which would surely follow.

It is painfully obvious that the 1872 mining laws do not provide the administering agencies with the clear power to control environmental abuse.

Economic Gain for Idaho

There will be no direct payments to Idaho for metal recovered. Neither is there any severance pay to the state and counties similar to payments from timber sales on National forests.

Idaho's economy will receive only the income tax on the miners' pay and corporate income tax (less an increased depletion allowance on Moly) and whatever Ad Valorum taxes are applicable

On the other side of the ledger, Custer county and the town of Challis will have to build new schools, hospitals, roads and bridges, furnish more law enforcement and other services. If the Climax operation in Colorado is any indicator, there will be periods of non-operation and labor-layoffs to be assimilated and for which State unemployment compensation will be sought.

Add to this the ever-present possibility of permanent closure if the price of Moly falls below profitable production costs in this low-grade operation. There is no guarantee involved in the law of supply and demand.

Mining operations here would be of relatively short economic duration. Preserved over the years the recreational value of this mountain paradise would inevitably increase in value as the need for quality recreation becomes more pressing. We are still fortunate. As someone has said "we are not so poor that we must destroy such a treasure. Nor are we so rich that we can afford to lose it."

PRODUCERS OF QUALITY KILN DRIED

PONDEROSA PINE

ENGELMANN SPRUCE

DOUGLAS FIR

WHITE FIR
P. O. BOX 153

TELEPHONE
208-983-1290

LARCH

CEDAR

Over 50 Years Manufacturing HAND MADE

Smoke Jumper and Forester

Send for Catalog

Times are changing

Or are they?

Summer Camp-1969

Club Report

The school year 1969-70 has been a very active year as far as the various groups and societies associated with the College of Forestry is concerned.

The Wildlife Society had one of its most active and successful years ever. It met its expressed objective of familiarizing "members with the general nature and the issues of the wildlife profession. ." by co-sponsoring with the Idaho Cooperative Wildlife Research Unit a slide presentation by Dr. John Craighead, University of Montana, entitled "The Grizzly - an Endangered Species." Perhaps the most important accomplishment of The Society was hosting the 2nd annual winter meeting of the Idaho Chapter of The Wildlife Society. During this meeting, a very pertinent panel discussion entitled "What's Happening to Idaho's Quality Environment?" was held. At the regularly scheduled meetings, the Society presented speakers from the University and the general northwest who spoke on a wide range of conservation topics and issues. The 2nd annual gun raffle was the major source of revenue for the Club.

Xi Sigma Pi has undertaken this year to get the students a voice in determining their own curriculum. They held elections to determine students who would serve on a student curriculum-advisory committee. Not only were students elected to this committee, but to a wide range of other committees designed to involve the student in an active role in his College.

As far as the Associated Foresters are concerned, 1969-70 was a year of evaluation. The Associated Foresters want to become a vital, informative organization which will be of service to its members. A committee has been formed to study a possible affiliation as a student chapter of the Society of American Foresters SAF. Such an affiliation would make professional programs available to student members. The main concern among student foresters is that this will amount to a change in name only, not service or benefit to the student. At the time of this publication, several alternate proposals are being presented for College approval.

All in all, 1969-70 reflected a growing concern of students and a desire to participate effectively in their professional and technical organizations.

IN THE LAND OF THE FORESTER IT'S NEL-SPOT

THE NELSON PAINT COMPANY

HECLA MINING COMPANY

WALLACE, IDAHO

An important producer of Gold, Silver, Copper, Lead, Zinc, Cadmium and Antimony.

Abstract

In Shoshone County's famous mining district Hecla's people contribute a significant part in providing metals required for maintaining our NATION'S METALS BASED CULTURE.

Dworshak Dam and Its Effect on the Environment

Stuart L. Murrell
Regional Conservation Educator
Clearwater Region
Idaho Fish and Game Department

Dworshak Dam under construction.
Dworshak Dam (formerly called Bruce's Eddy) has been a controversial project from its beginning. The original hearing was held in Orofino in November, 1953. The basic reason put forth for its construction at that time was flood control for the city of Portland. According to the Corps of Engineers' "Water Resource Development - Columbia River Basin" report of June, 1958, the flows from the North Fork of the Clearwater contributed about 5 percent of Portland's flood waters. This same report indicated that over half of the flood flows came from the Columbia, Kootenai, Clark Fork and Pend Oreille Rivers. The plan for power generation was minimal at that time. It has since been increased to a maximum of $1,060,000$ kilowatts, or the equivalent of one atomic power plant.

The dam is presently under construction. It is located 1.9 miles upstream from the mouth of the North Fork of the Clearwater River and will extend up the North Fork for 53 miles. It will be 717 feet high and flood 17,000 acres. The cost to the public is currently estimated at 248 million dollars.

Wildlife Studies

Wildlife studies by Elmer Norberg of the Idaho Fish and Game Department were begun in October, 1954 and completed in September, 1957. He studied the big game and their range in the North Fork, Selway and Lochsa drainages. Particular emphasis was placed on the effects of Bruce's Eddy Dam on the North Fork of the Clearwater and of Penny Cliffs Dam on the Middle Fork of the Clearwater. Norberg's findings were published in a report titled "Clearwater Game and Range Study," PR Report W-112-R. This report formed the basis for most of the recommendations on big game management for the Bruce's Eddy Project.

The Idaho Fish and Game Department and the U.S. Fish and Wildlife Service continued their studies on the effects of the proposed dam on wildlife and fisheries until authorization of the project in 1962 and through to the present. The Fish and Wildlife Service completed one report in June, 1960 titled "Bruce's Eddy Dam and Reservoir, North Fork Clearwater River" and another with the same title in August, 1962. Both reports indicated the U.S. Fish and Wildlife Service and Idaho Fish and Game Department were opposed to the project because of its adverse effects on fish and wildlife resources.

Effects of Dam on Fish and Wildlife

What are some of the predicted effects on the fish and wildlife which are part of the environment of the North Fork of the Clearwater River? Here are some facts taken from the 1962 report:

1. The project would cause loss of all steelhead trout, chinook salmon, and resident fish spawning habitat which presently lies within the reservoir area. This comprises about 717,000 square yards or 47 percent of the anadromous fish spawning habitat available in the North Fork drainage. Another 813,000 square yards lies upstream from the impoundment. The gravel in the North Fork would be sufficient to support 109,000 steelhead redds and 74,000 chinook salmon redds annually. A fish hatchery costing the tax payers $81 / 2$ million dollars was requested to replace this run. The annual operation cost of the hatchery is about $\$ 500,000$. This was a fishery that nature was providing at little or no cost and which could go on forever if managed properly. The life of Dworshak Reservoir is rated at $50-100$ years.
2. An even greater reduction in the fishery will result on the hundreds of miles of tributary streams which will lose their populations of steelhead smolts. These little downstream migrants are providing the majority of the trout fishing in the area at the present time. Sampling of fish populations reveals that approximately 70 to 80 percent are juvenile steelhead. A massive planting program will be required to release enough fish to replace this lost fishery, again at considerable taxpayer expense.
3. One effect which was not foreseen in the U. S. Fish and Wildlife Service reports was the clearing operation around the reservoir between high and low water levels. The clearing operation was performed rapidly with a serious effect on the environment and has resulted in excessive soil erosion caused by the skid roads running right down to the river; this exposed bare soils on almost perpendicular slopes. It has resulted in silt loads downstream which have silted spawning beds and reduced the suitability of the lower Clearwater River for steelhead fishing. Large landslides into the reservoir may occur when the water fluctuates the expected 150 feet annually on these steep slopes covered by unstable granitic soil. There has already been a giant earth slide near the Visitors View Point. Maximum drawdown could reach 255 feet between high and low water levels.
4. 15,000 acres of big game winter range will be inundated by the reservoir. Norberg's report indicated that all of the whitetail deer and about 25 percent of the elk censused by helicopter were counted downstream from Canyon Ranger Station in or just above the reservoir area. The U. S. Fish and Wildlife Service report in 1962 lists an expectea reduction of 40 percent of an estimated 3,000 whitetail deer when Dworshak Dam is constructed because the deer normally winter in the lowest part of the reservoir near Dent. An elk herd which was estimated at 12,000 animals in the late 50 's would be reduced by about 15 percent, the percentage of winter range within the pool area. This herd is supplying elk for two of the best elk-hunting Units in Idaho, Units 9 and 10.
5. It is expected that the disruption of elk migration routes by the reservoir in the upper limits of the pool will also contribute to herd decline. The reservoir will be drawn down during the fall and winter months leaving a series of ice shelves and other dangerous conditions for animals attempting to cross it. Trapping and tagging studies on Smith Ridge have revealed elk migration routes across the Little North Fork and main North Fork in the area of the upper limits of Dworshak pool.

The 50,000 Acre Block

It was recommended by wildlife agencies that a block of about 50,000 acres adjacent to the upper reservoir be managed to provide big game winter range in the reservoir area. This block of land consists of about 38,000 acres of state land and 12,000 acres of private land. There have been wildlife management agreements drawn up between the Idaho State Land Department concerning this tract, but the beneficial results from these agreements will not be realized for a number of years.

The 5,000 Acre Parcel

To provide more immediate help for the elk, the Idaho Fish and Game Department has requested that the Corps of Engineers purchase a 5,000 acre parcel of critical winter range on Smith Ridge for intensive habitat management for elk. To date, little has been done to provide for these animals and the dam is scheduled for completion in 1971.

Winter Forage Within the "Take" Line

In addition, the Idaho Fish and Game Department would like to have a portion of the 23,210 acres of land acquired by the Corps of Engineers around the margins of the reservoir, turned over to the Department for big game management. This is the land which lies between maximum pool level and the Corps' "take line".

Low Elevation Forage Important

To understand the problems associated with inundating big game winter range we must realize that the elevation lost in the pool area cannot be replaced. Even if we are able to provide opimum management on adjacent lands above the reservoir levels, in a severe winter these lands may not be usable by elk because of their higher elevation and deep snows.

We have lost thousands of miles of our most beautiful recreation lands along our river bottoms by dam construction in the United States. The North Fork of the Clearwater River is no exception. I floated through the reservoir site last summer and it struck me as having great potential for being one of the top family canoeing and rafting rivers in the nation. It has just enough rapids for excitement but the novice would be able to navigate them. We observed a group of Boy Scout canoeists camping on a white sandbar. They had come all the way from Oregon to float the river before it was dammed. The scenery is beautiful and with proper management the fishing could be great for the West Slope cutthroat, presently on the endangered species list. When the gates close at the dam, Idaho will lose what could have been a nation-wide tourist attraction.

The Drawdown

Try to visualize as a recreation attraction a reservoir with a 150 foot annual drawdown and potentially 255 feet. Raw mud banks will extend along the margins for people to fish from, picnic on, and view as they run their boats on the reservior. Campgrounds will be many vertical feet away from the water and boat docks will have to be constantly relocated as the water goes up and down.

Fishing Potential in the Reservoir

The reservoir may be productive for fishing for a while, but experience with other reservoirs of this type in the sterile, granitic soils of the Idaho Batholith has shown the fishery will probably be of poor quality in the reservoir. Even though the Idaho Fish and Game Department plans to conduct a control program for trash fish prior to the closure of the dam, there is the possibility of squawfish and other undesirable species taking over the reservoir. It is the shallow depths around the margins of other lakes and reservoirs that produce the food needed by fish to maintain good populations. With Dworshak's steep sides and wide fluctuations few such areas will be available.

The Specter of Lenore Dam

In addition to the loss of quality recreation in the reservoir area, there is the potential for destroying about half of the lower Clearwater River below the dam. During the prolonged fight between conservationists and the Corps of Engineers, there was no mention made of Lenore Dam. This dam, if authorized, would be constructed just upstream from the town of Lenore and would flood upstream to Ahsahka. Its purpose is to re-regulate the peaking flows released from Dworshak Dam at the $1,060,000$ kilowatt capacity for power.
The stretch of water between P.F.I. mill pond and the Dworshak Fish Hatchery at the mouth of the North Fork is one of the most heavily utilized rivers in Idaho by steelhead and bass fishermen, family picnicers, swimmers, boaters and rafters. Experience has shown steelhead and salmon are extremely difficult to catch in a reservoir situation. It is expected that Dworshak Fish Hatchery will be very successful and that steelhead will return to the hatchery from the ocean in large numbers. If Lenore Dam is built, Idaho fishermen will have left only 12 free-flowing miles of the Clearwater River in which to fish for these steelhead. In addition, there is the distinct possibility of confusing these steelhead in their migration back to Dworshak Fish Hatchery and possibly disrupting the hatchery operation. Conservationists are bitterly opposed to Lenore Dam and have the support of Senator Church in their stand.
With the increasing demand for quality recreation - with the other flood control projects being built on the Columbia River - with the alternative sources of power now available - with the fast-growing concern of the public over destruction of our natural environment, we can speculate that Dworshak Dam, if it were being presented to Congress for approval in 1970, would never make the grade.

If you like this magazine, tell a forester.

Forests, People, Cities, and Myths

Dr. Harry H. Caldwell
Chairman of Geography
University of Idaho

Population forecasts are notably tricky because of changes in values, behavior, economics and concentration patterns. Even in such an advanced country as the United States, 4 forecasts made in the period 1931-1947 for the Census of 1960 were all low by 24 to 35 million.

In 1965 the U. S. Bureau of the Census, recognizing the key variable in the number of children per woman, produced the following four alternative population projections up to the year 2000

		Population in Millions				
Projection	Children per Woman					
		1970	1980	1990	2000	
A	3.35	208.9	249.4	298.1	356.1	
B	3.10	207.1	241.9	284.4	331.6	
C	2.77	205.5	233.6	268.8	304.4	
D	2.45	204.1	226.0	254.0	280.1	

Forecasts in late 1969 suggest that the 1970 Census may pass 205 million with a forecast for the year 2000 at 304 million - an increase of 100 million people in the United States in the next thirty years. This includes an estimated average annual immigration of 400,000 which will not greatly affect the projection. Extending this forecast to 2050, only 80 years away, we reach 470 million - unless people change their behavior, values and ideology fast throughout America.

WORLD POPULATION FORECASTS

In mid-1965, the United Nations estimated the world population at 3.25 billion with a 1968 estimate of 3.5 billion and an annual increase of 2.0% or 70 million. Assuming constant fertility with declining mortality, it could reach 7.5 billion by 2000 . The U. N. high forecast is 7 billion, their medium forecast is 6.2 billion and their low forecast is 5.4 billion. The most optimistic forecast was by demographer D. J. Bogue in 1967, who predicted a population of 4.5 billion for the year 2000. A 1969 report published by the National Academy of Sciences forecast 6.1 billion in the year 2000 and 10.3 billion for the year 2050 .

Long and Short Range Planning

Most individuals concerned with resource management espouse the policy of long range general planning and short range specific planning. In truth, almost all planning being done is merely catching up with the present. Rarely has man been involved with long range planning. At best he is willing to think only about 15 years ahead. Even today he is not ready to take adequate legislative steps to prevent our national population from reaching 304 million in 2000 or 470 million by 2050 . He glibly goes along talking about the impending population problems in his own country. If he were the conscientious resource manager, he would insist that this country aim to achieve a zero annual population increase and that no resource be exploited if it will result in degradation of the environment.
In terms of energy, it would appear that man should concentrate on solar, tidal, fuel cell and nuclear energy and that he should terminate the burning of fossil fuels, saving them for their constructive chemical uses. In summary, there is virtually no long range planning under way in the United

States relative to people, resources and the quality of the future environment.

Population Distribution

Through design and promotion, urban areas have become the population magnets of the world. Large cities dominate the economies of the nations. The major urbanization trend in the 20th century was in western Europe and North America and since the 1930's has been proceeding at a faster rate in the underdeveloped nations. A number of countries have recognized the undesirable consequences of unrestricted internal migration to urban areas and have attempted to control it unsuccessfully by various laws.

Unless there is a rapid and dramatic reversal of present trends, the bulk of the additional 100 million Americans who will be on the scene by the year 2000 will concentrate in existing metropolitan regions where they will blend with other millions migrating from rural America. A few new cities will be built. There is adequate evidence that the metropolitan city is most efficient "for utilizing resources in most types of production, distribution, consumption". Here "efficiency" in production is favored by low cost of assembly, low cost of distribution, economies through large plants or massing of small plants, and economies in combining the factors of production, three of which - labor, capital and management are more easily secured in urban concentrations. A key factor in accessibility is the focusing of transport on cities - "The metropolis, in its variety, affords a wider selection of economic opportunities to the individual than any other form of human settlement; an individual has his choice of many types of work without changing his residence or of many types of housing without changing his job". . "The city is also a center of intellectual contacts stimulating cross-fertilization of ideas, recognition of opportunities and facilities for research - all conducive to progress in increasing future productivity." ${ }^{\prime}$

Human Values

Against this mass of evidence, it seems inappropriate to challenge the logic. However, there do seem to be some questionable attributes to the city when viewed from a humanistic value system. Is the production, distribution, and consumption efficiency worth the built-in structural anonymity, alienation and indifference? Here in the nexus of transportation and communication there is little or no communication between individuals other than that required for daily needs. The sense of community is gone. Forced integration carries with it the heavy imprint of hate, antagonism and distrust. Does this price get cranked into the efficiency judgment? Have the cities been human-social successes?

Tomorrow

What happens to the forests in America during the next 70 years will not be determined by professional foresters but by the chain of events that starts nightly in the bedrooms of urban and suburban America. One hundred million more Americans in 30 years seems inevitable and the possibility of 265 million more in 70 years seems likely.

What the Future Should BeStrong Medicine - One Man's View

1. Full scale legal, legislative, religious, medical, social, and educational efforts to create a zero percent population increase by the year 2000 .
2. Establish town houses or high-rise apartments using neighborhood heating, cooling and waste removal systems.
3. Create neighborhoods with a maximum population of 7000 focused on a cluster of schools, community buildings and neighborhood shopping.
4. Develop neighborhood parks.
5. Create high density pre-planned districts in satellite cities to justify rapid transit systems linking satellite cities to their metropolitan center.
6. Prohibit gasoline-driven cars, open burning and private incinerators.
7. Take legal steps to insure that newsprint and magazines be devoted to disseminating literature or information and not wasted for advertising.
8. Prohibit multiple packaging that wastes time and resources while it creates additional pollutants first in production and finally in the destruction of the waste material.

These proposals will result in a phasing out of the production ethic and its replacement with a new human-social ethic set against an awareness of an increasingly fragile and finite environment. We have been trapped by an obsession with economic growth and the Gross National Product. We should have geared our growth to the needs of our people their skills and happiness and the quality of our land.

Best Wishes

FROM

H. G. Chickering, Jr. \& Associates

Consulting Photogrammetrist, Inc.

1190 Seventh Ave. West
Eugene, Oregon 97402

Aerial Surveys-Photomaps-Topographic Maps
Forest Type Maps A Specialty

CURRENT OPERATING AREA
THE FIVE NORTHWESTERN STATES
AND S. E. ALASKA

What This Means to Forests

We need management by people primarily concerned with society and people, ecologic balance, esthetics and a sense of awareness that the earth and its resources are finite. In this frame of reference, some fragile forest lands will be managed mainly for looking, others primarily for watersheds or plant and animal habitats, and some of the best lands will be used for trees as a crop. To maximize production these forests will all be planted, using high-yield disease-resistant strains, irrigation, fertilizers, and biological control of insect pests. For the entire forest structure, the total environment would have a higher priority than short-term financial profit. Grazing would be permitted only under highly-controlled conditions.

What kind of training will best fit the land manager for this changing world? At the very least there will be a decreased emphasis on the production commitment and on the role of the trained forester specialist. A multi-discipline background and training in decision-making will be prime requisites.

What Probably Will Be

1. Failure to take necessary steps to stop the population explosion.
2. Failure to curb wasteful personal, communal, or industrial practices.
3. Focus on profits at the expense of society because a majority of the power elite are stockholders.
4. Retention of values and outlooks of the 19 th and 20 th century and their misapplication to the 21st century.
5. Perennial concern about irrelevant moral and political issues while ignoring the engulfing major environmental issues.
6. Unwillingness to undertake forced curtailment of consumption-oriented advertising, the waste of paper for advertising or the waste of excessive packaging.
7. Unwillingness to give up the traditional approach of the production-oriented forester.

Immediate Consequences

1. Steady increases in the allowable cut.
2. Annual battles between ecologists and productionoriented groups as to the use of each piece of forest land.

What Went Wrong?

Ours is a nation whose behavior has been trapped by economic, political and even religious slogans that we repeat with increasing fervor and conviction. They dominate our political selection process, our economic and personal philosophies and even the selection of our friends, neighbors, and ideas.

Once we bought the idea that Bigger Is Better, we used it to judge everything - basketball players, busts, production comparisons with the U.S.S.R., family size, sales volume, city comparisons, schools, lanes of traffic, family status based on income, bedrooms, bathrooms, and even lot sizes. From this has grown federal-state matching legislation and the Chamber of Commerce spirit. From the Bigger Is Better slogan alone we have become trapped into a logic geared to the perpetuation of that strange economic myth. When will we face up to the uncomfortable truths of our society and the challenging environmental problems? Time is running out.

[^0]
'New Zealand—A Biological Battleground"

Dr. Kenneth E. Hungerford
Professor of Wildlife Management
University of Idaho

(Dr. Hungerford was on sabbatical leave in New Zealand from February to August, 1969 studying the impact of introduced mammals on native forest.)

Man is becoming increasingly concerned about the impact he creates on his environment. A series of conflicting biological forces beginning with evolution, accelerated by man, give New Zealand a unique set of land management problems.

Forces of Evolution

New Zealand is particularly interesting because of the way in which its native fauna and flora have evolved. Being beyond the normal routes of travel via ancient land bridges, New Zealand escaped colonization by mammals migrating to most the rest of the world. New Zealand is about 1300 miles from Australia, a barrier too great for all but a few species of bats. A wide variety of birds, plant life and insect populations have developed in New Zealand, but it was originally without mammals or poisonous reptiles. As a consequence the trees, shrubs, grasses, and other plants developed without acquiring protection from grazing mammals such as undesirable taste, thorns, poisons, or the ability to continue growing under heavy grazing.

Many New Zealand birds have evolved to fill niches normally occupied by mammals. An example is the Kiwi which forages only at night on insects and grubs, much like a mole or a shrew. Long ago the Kiwi lost the power of flight. The Moa was another, a bird 6 to 8 feet tall, essentially a grazer. They occupied a niche more typical of deer or antelope.

The Forces of Man

The earliest human migrants to New Zealand hunted the flightless Moa birds and eventually exterminated them. Later migrations from Polynesia brought the Maoris, the war-like natives who occupied New Zealand at the time of its discovery by Europeans. Two hundred years ago, Captain Cook, the famed British explorer, made the first comprehensive exploration of New Zealand. He continued the process of environmental impact by producing pigs, sheep, domestic fowl, and by planting garden vegetables and food plants hoping to have a food supply on his later trips. New Zealand rapidly became an important stop for whalers and a base for seal hunters. Then settlers began to arrive.
Both the Maoris and the early settlers commonly used fire to clear the land of its native timber and to make way for grass pastures and grazing management. Along with this development the Europeans brought not only their bands of sheep, but also many wild mammals. More than fifty species of mammals have been introduced into New Zealand. The resulting environmental impact is a notable feature of the New Zealand problem.
Sheep grazing in New Zealand is handled on an entirely different basis than in America. New Zealand sheep normally wander and graze pretty much at will. Large sheep runs average only two musters per year. The lack of poisonous

Part of the Avoca River Watershed, New Zealand. The Avoca River in the foreground is choked with the erosion products from the hills beyond. The wide gravel filled bed is typical of many New Zealand streams. The forests on the slopes in the area background originally went nearly to the snow line. Above that was a zone of scrub (dwarf trees and shrubs), above that was the alpine grassland. The fringe of trees remaining is made up primarily of Mountain Beech (Nothofagus) which is one of the species more resistant to grazing pressure. In this area there is still use by domestic sheep, there are smaller populations of red deer, and the Chamois are found in the rocky sites about halfway up the mountain slope.
plants and the absence of predatory animals eliminate the need for day to day herding. At the same time, the Marino sheep, well adapted to the high mountains, tend to go to the upper steep country where grazing and trampling can and does result in major damage to watersheds (see photo).

In addition to the sheep, more than thirty of the fifty species of mammals introduced into New Zealand have adapted successfully. Only a few have expanded their populations to the point where their impact is of major concern. These are the Opossum from Australia; the Thar from the Himalayas of Asia; the Red Deer, the Chamois and the Hare, all from Europe. The impact of these introduced wild mammals is often combined with the effects of sheep grazing but in some locations is proceeding independently of livestock use.

Geological Limitations

Of great importance is the nature of the underlying geological formations and the context in which the land use and animal impact originates. My main experience was in the south island of New Zealand in the central part of the southern Alps. Here most problems are found on a rather sterile type of parent material classified as "greywacke." This material is easily shattered, and when broken down by weathering it erodes readily. It supports an excellent stand of native vegetation, but when the vegetation is removed and the soil mantle disturbed, severe watershed damage may result. Another problem location is in the north island where parent materials called "mudstones" are raised in steep mountainous sections. These are sedimentary materials quite easily shattered and subject to rapid erosion and consequent watershed damage. Both sections of New Zealand lie within a major fault line and are frequently subjected to rather violent earthquakes which intensify land management problems.

Past burning practices, sheep use in the high country, over-use by introduced mammals on native vegetation in sectors where the parent material is quite unstable-all these add up to major watershed problems in certain areas of New Zealand. These problem areas are in the steep country, generally in the region of timber-line which occurs near $3,000 \mathrm{ft}$.

Pasture and Forest Management

A continuing battle has been waged against the "bush", or native forest. The Moa hunters, the Maoris, and the Europeans have all used fire, much as we have in North America, to clear the land and make way for domestic livestock. This has worked well in the lower elevations in New Zealand where pasture management is extremely effective. New Zealanders are among the world leaders in the use of fertilizers on pasture land. Generally both the fertilizer and the seed are applied from the air.

At lower elevations the planted Monterey pine, Scotch pine, and other introduced varieties of timber-producing trees make up the bulk of the New Zealand forest products industry. These species are better adapted than many of the native New Zealand trees because of the quality of the wood they produce as well as the fact that they are relatively immune to the pressure brought to bear by the introduced grazing mammals.

The Wild Mammal Problem

While the battle against the New Zealand forest goes on, it is not so much carried out today by livestock and humans as it is by the introduced mammals. These introductions began about 100 years ago. The Opossum from Australia is particularly important in eliminating the old growth trees. Once the forests are opened up even slightly, Red Deer move in and begin working on tree reproduction and the understory vegetation. Finally, when the forest is fairly open, the European Hare joins the battle and continues to prevent re-establishment of the native forest which is so susceptible to the onslaughts of herbivorous mammals.

New Zealanders have mounted monumental efforts toward the control of their introduced mammal populations. Intensive control programs have been and still are being waged against the European Hare and the Australian Opossum. Also, intensive efforts to control the European Red Deer have been under way for many years, including shooting programs and, more recently, commercial hunting. Commercial hunting is of ever-growing importance and is quite effective in much of the high country where helicopters are used as both a shooting platform and as a means for transporting the carcasses to processing plants. They are then shipped to Europe and other markets in refrigerator ships.

Forestry Graduates and Students: You are invited to join thousands of foresters and woodland operators and find "What you need-when you need it" at:

Forestry Suppliers, Inc.

Box 8397, 205 West Rankin Street

Jackson, Mississippi 39202

Quality Forestry, Engineering, and
 Industrial SuppliesSHIPPED WORLDWIDE

Seeking Solutions

The livestock industry is the back-bone of the New Zealand economy. Their most important exports are wool and wool products, mutton, lamb and dairy products. Another important export is the timber produced in their planted forests. New Zealand desperately needs a diversification of industry and economy, but currently their economy is tied to these products of the land.

Many New Zealanders are well aware of their problems and there are action agencies and research agencies that are well on the way toward solutions. However, the solutions will cost money. With a tightly controlled livestock economy, these solutions are even more difficult.

One of the most promising programs to come trom recent research activity is the fencing of the high country on sheep runs to allow the higher land to be managed strictly for watershed. Along with this goes a government subsidy to develop more productive pastures on the lower lands through fertilizing and other modern management approaches.

There are some enlightened New Zealanders who know specifically what is happening to their environment. They know much better than any foreign observer the specific mechanisms involved. On the other hand, they are limited by the constraints of their economic system, their governmental organizations, and even their political structures. Because the backbone of the New Zealand economy is sheep raising, it would be fruitless to suggest the introduction of predators to help in the battle against the introduced herbivores. It would also be fruitless to suggest banning the Marino sheep which damage steep land areas, since there is a special demand for their high-quality wool on the world market. Meanwhile, New Zealand remains a most interesting battleground of conflicting biological, economic and political forces.

Industrial Forest Management 1970

Russell Hudson, Block Forester
St. Regis Paper Company, Libby, Montana

Industrial forest management has been regulated almost universally by the wood supply available. An abundance of God-given, old growth timber usually results in an extensive forest management program. Management activities under these conditions usually are directed toward an orderly development of access and salvage of as much timber mortality as possible. Intensive forest management is generally the result of identifying a future wood supply shortage. The foresight to see this in advance and be prepared for it may be the difference between failure and success in the business world.

The St. Regis Paper Company operation at Libby, Montana, manages some 200,000 acres of fee timberland in northwest Montana. This land provides 20% to 30% of annual \log requirements of over 200 million board feet for our manufacturing complex. The Libby operation has two large sawmills, dry kilns and planer, a large studmill, plywood plant and a chemical extraction plant. The balance of the wood supply comes from sales on lands administered by the U.S. Forest Service, State of Montana, and private owners.

The present St. Regis operation was formerly the J. Neils Lumber Company which started operating in Libby in 1919 and merged with St. Regis in 1956. In the early years, most of the timberland was liquidated. In 1939, the concept of sustained yield was considered by the owners and selective logging was initiated in certain stands that could possibly respond. With the change from railroad logging to trucks, emphasis was placed on access road development and salvage logging.

With compilation of a good resource inventory in 1957, a management plan was developed and harvest cutting systems were initiated in 1958. During this past decade, the forest management program at Libby crossed the threshold into intensive forest management. The thesis of intensive forest management means spacing control in all operations dealing with the younger stands.

Natural timber stands are usually classified into one of the three following stand conditions for silvicultural treatment: (1) heavy volume, old growth saw timber needing conversion to reproduction; (2) light volume stands that are suitable for overstory removal and thinning; (3) small saw timber or poles suitable for thinning.

The three major species under management are ponderosa pine, western larch, and Douglas fir, with an admixture of associated species.

Conversion of old-growth stands into reproduction of desirable species with proper spacing may be accomplished by either artificial or natural means. Artificial restocking is employed after clear-cutting stands that are not suitable for natural regeneration. The clearcuts may be rather large to eliminate the invasion of an undesirable seed source and lower the unit costs of all treatments. Slash hazard reduction and site preparation are usually accomplished by broadcast burning or dozer piling, depending upon slash and terrain conditions. Sod areas must be scalped to assure any regeneration establishment. A variety of methods is used to establish the seedlings, depending upon the site conditions of each area.
Our own tree nursery provides over 100,000 seedlings each year for machine planting and hand planting. Many acres
are directly seeded, either by hand or by helicopter. All direct seeding operations must have a program of rodent control. Usually, the artificially established stands have a good spacing of desirable species but are rather costly to accomplish. Not all commercial forest land can bear the cost of artificial regeneration, nor is it necessary that is should.

Many areas can be regenerated by one of several silvicultural methods untilizing natural seed fall. On favorable sites, five to six seed trees per acre will suffice if they are some of the best trees from the original stand. Usually only ponderosa pine or western larch are used for seed trees. These two species are very fire resistant, wind firm on our soils, highest in value, and being intolerant, reproduce well in the open conditions created by logging.

On less favorable sites, a heavy seed tree or shelterwood system is used. Site preparation under these systems is accomplished by sawing or dozer lay-down of the undesirable advance reproduction, brush and cull trees. The better sites are usually broadcast burned by narrow strip headfires under the seed trees. The poorer sites usually are not burned. Dead slash and brush will provide shade and we try for more mechanical scarification.

Seed tree cuttings are usually 200 to 1,000 acres in size, to eliminate the unwanted seed source from untreated perimeters. Seed trees must be promptly removed once a desirable stocking of seedlings is established. This is usually done on a heavy snow cover. Four hundred well-spaced seedlings per acre are considered adequate; establishment usually takes about five years to accomplish. The low cost of utilizing these systems provides for the cheapest regeneration, but they may not be as prompt as the artificial methods.

Light volume saw timber stands with a good ingrowth understory are usually the result of old wildfires or early day logging. It is usually a simple matter to carefully \log off all of the overstory without damaging the ingrowth stand. If some of

the younger stand is merchantable, a commercial thinning is also made. These stands and the pole-sized stands are going to produce the future \log requirements when the present saw timber stands are depleted. Therefore, a considerable effort is expended to get them in good growing condition.

Chinning offers the greatest opportunity for a return on investment of any cultural operation. In general, the younger a stand is, the better the response of thinning will be. One cleaning-thinning operation in plantations and stands resulting from harvest cuts before age 20 should result in being able to start commercial thinnings at age 40 on the better sites. Natural pole-sized stands may be thinned to shorten the time necessary until commercial thinning may begin. Currently we are attempting to thin or clean 3,000 acres annually.

All cultural operations tend to favor a mixed stand of intolerant ponderosa pine and larch because they do not tend to develop an understory problem such as the tolerant species do. Many of the natural young stands contain a high proportion of tolerant Douglas fir because of man's effective effort to control wildfire.

In 1962 we collected seed from some of the finest ponderosa pine on our forest lands. The seedlings from these trees were outplanted in 1964 on a five-acre test site. This progeny test at present looks very promising. We are very active in the cooperative Inland Empire Ponderosa Pine Tree Improvement Program and have hopes of being able to increase the yields from our future forests.

Our management objectives should enable our forests to continue to contribute a good share of the raw materials needed to operate our manufacturing facilities. The benefits seem very large for the modest investments being made.

THE START OF SOMETHING GOOD
 Subscribe to 1971 IDAHO FORESTER

$\$ 2.00$ per copy

 send no money We will bill younext year

Send name \& address to:
IDAHO FORESTER
College of Forestry
Wildlife \& Range Sciences
Moscow, Idaho 83843

Conservation

 IS EVERYBODY'S BUSINESS. . and the Washington Water Power Co. has been at it since the turn of the century.

By the careful use and propagation of the natural resources that bless this region, we provide the generations to come.

It's another way in which

THE WASHINGTON WATER POWER CO.
 Helps Build the Area it Serves

Range Management Overseas

Dr. Edwin W. Tisdale
Professor of Range Management
University of Idaho

Our ideas of a land resource are shaped by experience in our own country, or more likely, just one part of our country. For this reason, it is mind opening, and sometimes startling to see similar resources in other parts of the world, and to find how they are used. It can also be revealing to find how people are being educated to manage these resources.

Four years ago, I had the opportunity to spend about 7 months studying range resources and problems in 10 countries of the Middle East, North and East Africa and the Eastern Mediterranean. The countries were Iran, Syria, Lebanon, Kenya, Sudan, Egypt, Tunisia, Israel, Turkey and Greece. I made this trip while on sabbatical leave from the University of Idaho, and with additional financial support from the Drylands Research Institute of the University of California at Riverside.

While the time spent in each country was quite limited, this approach had the advantage of enabling me to make direct comparisons of resource conditions and problems.

The area chosen for study is not as diverse as the list of countries might suggest. First, grazing land constitutes an important natural resource, and in fact is the predominant land use category in many of these countries. Second, the whole region has long been occupied by man and his grazing arimals. Civilizations have existed in much of the region for thousands of years, and land use has been intensive for most or all of this time. Third, all of the countries lie in relatively dry zones, and drought is a frequent problem in land use. Fourth, most of these countries are in the "developing" class, that is, they operate on a lower plane economically than countries of Western Europe or North America. Fifth, educationally, a high percentage of illiteracy exists in many countries. Education in land management, and especially in the management of grazing lands is just getting started.

What are some of the outstanding features, resource-wise, of the region visited? It is difficult to condense the great variety of impressions, but here are a few that seem most meaningful from a land manager's view point.

First, the overall menace of drought. The greater part of the study area averages less than 12 inches of precipitation annually. Most of this moisture comes in a few months of the year, in the winter or equivalent "rainy season". A dry and usually hot period of 4 to 6 months or more follows the moist period. In addition, the total amounts of precipitation vary greatly from year to year.

The effects of drought on grazing animals and rangelands are intensified by the fact that reserves of feed are rarely accumulated to help during the dry periods. The common practice is to sell large numbers of animals (at depressed prices) or to allow many to die. Either method helps the ranges somewhat, but creates poverty and great instability in the grazing enterprise. In those countries where wildlife is abundant (Kenya, part of Sudan) they too can be seriously affected by drought.

Second, the population explosion and overstocking. We are accustomed to hearing about the population explosion in humans and its dire consequences, but few people realize that
an even greater increase in livestock numbers has occurred during the past 3-4 decades. This increase results from a combination of factors, including increased demand for livestock products, increased political stability (barring occasional upsets) and control of diseases and pests. It is a sad fact that disease control measures, supposedly one of the greatest gifts brought by the advanced countries, have resulted in disastrous increases of both people and livestock. A further contributing factor to overstocking of the ranges is the fact that large areas have been converted to grain production. Most of this land is submarginal for cultivation, so the net effect is to destroy much grazing land in return for low and sporadic yields of grain, often accompanied by accelerated soil erosion.

Third, lack of control of grazing. Most of the rangeland in the countries studied is either government owned or the common property of a tribal or village group. Grazing and other uses of these lands are largely uncontrolled. In some cases, a reasonable pattern of use by one tribe or village has disintegrated under pressure from adjoining users. In the case of strictly government lands, laws governing use have been passed in some countries, but in most cases proper grazing plans and means for enforcing them do not exist. The situation
resembles that which existed in the western U.S.A. prior to passage of the Taylor Grazing Act, but intensified by a heavier rate of stocking and by the poverty of most livestock owners.

Four, lack of integrated land use. We know that here in the U.S.A. our efforts to achieve multiple use and a mutual understanding of different land uses are imperfect, but at least these are considered desirable goals. In most of the countries studied, such integration of uses is scarcely considered, except by a few professional land managers. For instance, there is little cooperation between stock raising and grain farming. As a result, livestock suffer from lack of supplemental feed that could be raised on cultivated lands, while these same lands deteriorate under a system of continued grain cropping alternating with periods of bare fallow.

Five, deficiencies in education for land management. University trained people make up only a tiny fraction of the population of most of the countries studied, and land management is a small and often neglected part of the academic establishment. In most cases higher education is moving ahead, helped by the international programs of more advanced countries and by private foundations such as Rockefeller and Ford, but the road ahead is a long one.

Research on land management problems is small in amount in most of these countries, and what exists is supported in large measure by outside agencies. There is a great lack of information about the extent, nature and present condition of wildlands generally, and especially of range lands.

Six, shortage of suitably trained land managers. One of the bottlenecks for both higher education and research in land management is a lack of well qualified personnel. Foreign staff often lack a suitable background for work in a developing country, while few qualified native professionals are available. The latter usually have to attend schools in more advanced countries for their graduate training, and often find conditions and salaries unattractive when they return home. In addition the kind of graduate training offered in many American
universities is too specialized and remote from the realities of on-the-ground management to be suitable for students from developing countries.

A particular problem in the forestry and range fields is the dominance of European trained professionals in many of the countries studied. These people tend to be either strictly "tree foresters", or agronomists, both lacking an appreciation of the
multiple uses of wildlands. In addition, they have been raised and educated in relatively humid areas and generally lack an understanding of land management under arid or semi-arid conditions. In range, the most desirable foreign staff are considered to be those from North America and Australia, where dryland problems are a normal part of the resource scene.

L. D. McFARLAND COMPANY

Sandpoint, Idaho

MANUFACTURERS \& TREATERS
9F
WESTERN RED CEDAR - COAST DOUGLAS FIR WESTERN LARCH - LODGEPOLE PINE POLES

Congratulations

 1970 Forestry Graduates
Address Unknown

AKINS BURTON
ANORICK JOHN O
ANHEL ARTHUR B BAILEETH ROLAND balder oalene g BALDEIN KENNETH Barclay gilliam BEEMAN ROBERT O BENDER PHILIP H BENTON VINCENT L best richard k BLACK JOHN R boder jack o BOLLES VARREN H BOSS ALLAN BOVER JOMN BOYD HUFFORD BRAZELL ALBERT GRIGHI IILAERT A brover claude G BRONN MAROLO G BRUCKNER RICHARD A BRUINS FRANKLIN B BUCKINGHAM ARTHUR BURCHARD WILLIAM JR burgeit laurence m CAMETTI THOMAS B CAMPBELL RICHARD L CARLSON STUART F CASE ROBERT J CHADYICK MOYARD CHAPIN JAMES D CHARKE YILLIAM COFFEY BOYCE B COLLARD ERNEST B CONARD JAY G coombes allen o crabs warren F

CRANOALL JOHN A CROSS KENNETH, J OELEAU DARYL DERUS OAN L DEWS OAN L DIDRIKSEN RALPH G DIERKEN RICHARD H DOMERTY ROBERT A OUBBELS LOWELL G ELFERING LAWRENCE C ENGLISH ROBERT 8 Eving yilliam a FARGO EDEIN FARRELL JAMES FEENEY RICHARD L FINLAY GEOFFREY H FISMBURN EARL FITCH JAMES H FITTS LORNE A FLEMMING milliam FOLKER ROBERT V FORE ORLANDO FORGEY LYLE FOUCAR KENNETH A FREECE HERBERT FREY HOBERT E FRITZ JOHN L froERER AHTHUR GARLAND CRAIG GEORGE FERDINAND GERKE MENRY J GIBSON NELSON GODDARD WILFRED D goenne frederick GRANADA VICTOR M green everett c

GREER MORRIS C GREGORY CHARLES A GROSCH RILLIAN C GUSTAD ORVIS C HALL ARTHUR C Hall pluyo h HARBERD JAMES MARRIS JOHN G MAUSSMANN JOSEPH G heaney samuel HEFFEL RICHARO F HEINER MOWARD R ENDERSON RONALO L HODGINS JOMN R MOPFIN MILLIAM JACKSON TOM jacobson ira JENSEN RALPH JOHNSON ALFRED C Johnson donald 6 junnson robert c Johnson robert hola KARSTAD OVEN F EENE EOYARO L KESSLER JOMN A KEUCHMANN JAMES H
Kiner alvaro r
KLEPINGER FRANKL IN KOYALSKY STEPHEN I KULM DAVIO L LEE GEORGE E LEMTO Vilho a Light ELLIOT N Lindsar davio o Lounik edmard c LUND JENS M

```
TAKI RICHARO L
MALANY MERBERT S
ARSH ALFRED H
MARSHALL FREDERIC
MaRTIN GERALO
GASTIN RICHARD J
MASTIN RICHARD J
MCGEE JAMES E
MCGILL tmomas F
CGINNIS FRANK T
CKEE BILL E
MCNAIR JOHN
EARS JCHN S
MELICK HARVEY I
MENGES PHILIP E
MENNRILL RAYMOND H
MICHELSON CHRISTIAN E
midoendorf james F
miller raymond l
miller Spencer a
HILLER \arREN G
MONTGOMERY ALLAN C
moomar james C
MOORE JON E
MOSS VIRGIL D
NAGLE MILLIAM
NEEL ROBERT N
NELSON NORMAN I
NELSON WILLIAM E
NELSEET ROBERT L
NISEET ROBERTORG F
novak CLYLE A
\mathrm{ DEERMEYER JACK}
OEHMCKE BOB G
OLIVER JOHN P
OLNEY WARREN *
```

SONNICHSEN ROBERT * SPEEDY ROAERT P STAML MALCOLM K STAIRS WILLIAM D stevens arthur * Stordahl james h straxn charles C STYFFE MOHART TAGAEA TOM α TAYLOR CYPRIAN D TAYLOR MILLIAM TOACKER DALE JAMES TOOLE ARLIE * TULLEY MARLAN N VAN CAMP RICHARO ? VAN KLEECK ROMERT vander poel centmn a volland leonard a WAML JOSEPH D walker guy s walker keith WATSON HAL A -EBR JAMES L IENTVORTH IRVIN aHEELER JOF B wILLIAMS GEORGE illliams guy v williams rohert e villiaks terry l - illows claudf e -ILSON DAVID G wood Charles wOOG ALAN H YOOLEY SAMUEL A WRAY SYDNEY E WEAGHT LOREN H YOOER YINCENT S ZORE GOROON

Alumni Directory

107 N SECOND ST ROUTE $=1$
e0x 503
723 n 4 tm
RM A230S AGR ELOG $\begin{array}{llll}\text { RM A230 S AGR BLOG AASHINGTON D C } & 20250 \\ 710 \text { NE HOLLADAY PORTLANO } 12 \text { OREGON } 97230\end{array}$ noRTMERN REGION FIOLAMPANG THAILANC Ex 133 avery rga Stavery IDAHG
969 CRESCENT ST PLACERVILLE CALIF 969 CRESCENT ST PLACERVILLE CAL
311 N YASHINGTCN STCENTRALIA BII N NASMINGTCN STCENTRAL
OEDT NAT RES BX ABOFORKS $\begin{array}{ll}\text { BOX } 62 & \text { GORDONSVILLETENNESSEES3S563 } \\ \text { BOX } 4043 & \text { IDAMO CITY IOAHO B6361 } \\ \text { BOX }\end{array}$
Box 4043
1182 E 3100 Box 523
RT 3 BOX 1
PO BOX 546 212 ELM AVENUE 806 PECAN ST
3510 IBTH STREET BOX 72
114 NORTH TDAHO
RANGE CONSERV SCS 711 NORTH FOREST
605 G ST SY 605 G ST S
PO POX 30
CLEAR CRK CIV CONS
BOX SA
37 BLACKROCK RGR STA 1660 BROOKHURST ST
BOX 143
201 © 4 STH ST RT $=1$
2784 GRIFFIN CK RD B8B S ORANGE GROVE
WASH ST DEPT GAME 725 EAST E ST
BOX 802 82582
$80 x 153$

$80 x$ 1435 RT 2 1625
 1435 RT 2 1625

PO BOX 2570
1020 EAST F
105 PRINCESS APTS
ZOOLOGY DEPT YSU ZOOLOGY DEPT
PO BOX 2285 PO BOX 2285
RT 2 BOX 63
EXT FOR 4 407 PROSPECT AVE 2519 COLLEGE AVE
518 N MAIN STREET 735 N 3RD STREET
2036 THORNBURG DR
STEPMEN ORIVE 80 STEPHEN DRI
2825 NT $35 T H$ 2825 NM 35 TH PO ROX 245
330 ALTURAS DRIVE
BOX 4460 BTX REGIS R ST REGIS R ${ }^{\circ}$
358 AMHERST 1800 SHEPARD AVE
ROUTE I BOX 201 324 MOBLEY DRIVE OEPT BOTANY U OF
G914 SIESTA DRIVE C/O SOIL CONS SER
5230 IABTH ST SK 5230 148TH ST SV
CHALLIS NAT FOR
 DEPT OF NAT RES
CIO COLERA MINING $1631-27 T H$ ST DEPT NAT RES
2037 VESTA WAY
2512 REDEAY RD 4SI CASSEL MAN GS
FOREST RES LAB OSU FOREST RES LAR OSU
DEPT OF FOR MSU
363 PARK AVENUE PO BLDG USF BLDG FIRE STAFF
IOUS ENCINO ST APARTADOPOSTAL ABSIGUAYAOUIL ECUADOR $\begin{array}{lll}\text { BOX } 2111 & \text { POCATELLO IDAHO } & 83201 \\ \text { CAMPUS COURT } 26 \text { OSUCORVALLIS ONEGON } & 97330\end{array}$ NATL TAIEAN UNIV PO E0X 5767
209 FERRY ST
1800 AVE OF STARS 103 E 3RO ST
201 SOUTH WAIN ST ROUTE A
STATE U COLL OF FO $\begin{array}{llll}\text { QT } & \text { BOX } & 772 \\ \text { RT } & 3 & \text { eox } 38\end{array}$

9029 FASHION DR O BOX 8669 ENSLEY PO BOX 245
LL" BMRNETT OR QOOQ BURNETT OR BOISE
BX 63 PINE GROV INNVINCHESTER

4310 GHARRETT RT 3 MISSOULA NONTANA SSMOO
BOX 62
GOROONSVILLETENNESSEE 385631 $\begin{array}{lll}\text { COL OF FOR U OF } 1 \text { MOSCON } & \text { MOINES IONA } & \text { SO311 } \\ \text { COAHO } & \text { B3A43 }\end{array}$

S006
86046
83401
$y .823$ 48823
93860 83868
50265

81802 81802 95667 98531 331 $\begin{array}{lll}\text { IDAMO CITY } & \text { TOAHO } & \text { R6361 } \\ \text { IDAHO CITY } & \text { IDAHO } & \text { e3631 } \\ \text { OGDEN } & \text { UTAH } & 34404\end{array}$ OGDEN CITY OREGON 97360 GUBAES NEURGD MEXICO $\begin{array}{lll}\text { COEUR DALENEIDAHO } & \text { e3814 } \\ \text { CROSSETT } & \text { ARK } & 71635 \\ \text { LEMISTON } & \text { IDAHO } & 83501\end{array}$ $\begin{array}{lll}\text { LEMISTON } & \text { IDAHO } & 83501 \\ \text { AVERY } & \text { IOAHO } & 83802\end{array}$ $\begin{array}{lll}\text { aVERY } & \text { TDAHO } & \text { e3802 } \\ \text { GRANGEVILLE TDAHO } & \text { B3530 }\end{array}$ POST TEXAS
SANOPOINT TEAS SANOPOINT TOAM
WASHINGTOND
CASCADE CASCADE IDAHO CARSON CITY NEV
WARMSPRINGS ORE
WEBSTER GROVMISSOURI 89701
97761
63110 $\begin{array}{lll}\text { MORAN } & \text { WYO } & 83013 \\ \text { MEDFORD } & \text { OREG } & 97501 \\ \text { MCCALL } & \text { IDAHO } & 83638 \\ \text { VACO }\end{array}$ $\begin{array}{lll}\text { MCCALL } & \text { OREG } & 97501 \\ \text { MOAHO } & 83638 \\ \text { VANCOUVER } & \text { WASH } & 98665 \\ \text { MISSOULA } & \text { MONT } & 5980\end{array}$ $\begin{array}{lll}\text { MISSOULA } & \text { NONT } & \text { S9801 } \\ \text { MEDFORD } & \text { OREGON } & 97501\end{array}$ $\begin{array}{lll}\text { PASADENA } & \text { CALIF } & 97501 \\ \text { MT VERNCN } & \text { WASH } & 98273 \\ \text { MOSCOE }\end{array}$ moscon tor $\begin{array}{ll}\text { ITTSEORO } & \text { NAK } \mathrm{C} \\ \text { KENTON } & \text { MICH } \\ \text { ASH FLAT } & \text { ARKANSAS }\end{array}$ OMAK
MISSOULA
MANCHESTER MCKINLEYVICAL aSheVILLE NC
MOSCON IDAMO POCATELLO TOAHO
PULLMAN TASH
SUSANYILLE CALIF $\begin{array}{ll}\text { SUSANVILLE CALIF } \\ \text { RIGEY } & \text { IOAMO }\end{array}$ moscow

NORTH IALES PA	19454
BERKELEY CALIF	94303
CLINTON	

LARAMIE WYOMING 82070
PLEASANTVLLENY Y PLEASANTVLLEN Y $\quad 10570$ OKLAHOMA OKLAHOMA 73112 $\begin{array}{lll}\text { OLRELEY } & \text { CALIF } & 94704 \\ \text { TVIN FALLS } & \text { IDAHC } & 83301 \\ \text { TUCSON } & \text { ARI2ONA } & \text { B5717 }\end{array}$ $\begin{array}{lll}\text { TUCSON } & \text { ARIZZNA } & \text { E5717 } \\ \text { ST REGIS } & \text { MONTANA } & 59866 \\ \text { LAVERNE } & \text { CALIFA } & 91750\end{array}$ $\begin{array}{lll}\text { MAVEAREL CALIF } & 21750 \\ \text { MT CONN } & 06518\end{array}$
 BOISE
ORONO

CATHLAMLT	VASH	98612
CAORTM FORK	IDAHO	83466
NOGDEN	UTAH	84403
OGANC		
YANCOUVER	YASH	98660

$\begin{array}{lll}\text { VANCOUVER VASH } & 98660 \\ \text { SACRANENTO CALIF }\end{array}$

SACRANENTO CALIF | CORVALLIS OREGON | 92010 |
| :--- | :--- |
| 9331 | | $\begin{array}{ll}\text { EAST LANSINGMICH } & 48823 \\ \text { E HARTFORD CONN } & 06106 \\ \text { PROVO }\end{array}$ $\begin{array}{lll}\text { PROVO } & \text { UTAH } & 84601 \\ \text { BAKER } & \text { OREGON } & 97314\end{array}$ TAIPEI TATVAM EENATCHEE WASH SOR Sa801 $\begin{array}{lll}\text { LOS ANGELES CALIF } & 90067 \\ \text { COSMOPOLIS VASH } & 98537 \\ \text { FREMONT } & \text { NEROASKA } & 68025\end{array}$ FREMONT

SPARTA

QUINCY
DEER DA
AVERY SACRAMENTO CALIF SARMINGHAM ALA ICHLAND
EDFORD vas
ORE ORE
TDAHO IDAHO

MCELVAIN KAYE F
MCEMEN HAROLD MCFREOERICK JACK
MCGRATH CHAD L
MCGRATH PATRICK
CILVATN BILLY ${ }^{6}$
CKKENDRICK JAY ${ }^{\text {Co }}$
MCLAUGMLIN RAOBERT:
CMANAMCN DONALO -
MCMILLAN ETLLIAM :
chaughton finley m
wCNEILL GARY a
MEDFORD RULON
weisner gary e
weneely james f
aerrick conamo
WESKE THEODORE
MEYLEN RETMALER CMARLIE,
ILES RALPH O
ILLER CHAPLES
MILER EANIEL
MILLER LIONEL ?
MLLER LOAFN E
ILLER =ILLIA
hinter robert f
MITCHELL ROAERT C
MITCHELL WALTEH P
wizuKI james h
moe larry G
WOLAN JOSFPH M
MONDICH PETEA L
montgomery milliam C
OONEY JOHN
coore russell
MORGANHOTH EARL,
wrese richaho n
MORTON ALLEN L
MOUNTJOY JAMES T
vueller valoeamar
MUNTHE EERT P
UNTHEM GERNARD C
MYERS EUNARD D
wreas robert L
GYSTER TMOMAS
NaDEAU LEON a
NAUGHTON VINGENT,
NEAL RICHARD H
NEEF THEODDRE C
NEGUS FREORICK
NELLIS CARL
Nelson devon o
NELSON MARVEY f
NELSON JACK R
NELSON LTJGO G
NELSON WILBUR T
NERO PALMER
NERS EOMARO
NEW DOUGLAS K
NEWCOMB LAMRENCE S
NEWCOMG RUSSELL L
NEECOMB RUSSELL
NEWCOMER FRED R
NE VELL MARVIN E
NEWMAN RULON,
NICKLE OR WILLIAM
WIELSEN EUGCNE
NIETZOLO GEORGE E
NIGH JOHN *
NOBLE CLARK B
NORLE EDKARD
NOKES DR HERALD
NORD OR EAMOR
NORMAN DENNIS
noaman dennis E
nugues beanaro
NUGUES BEANARO
obonner geralo
DDOM FRANK L
ODONNELL JANES F
OGLE RICHARD A
ons charles
olaso LCuIS B
LIEU max a
olson aichard
OLSON RDBERT
opie roeert 5
ORMISTON JOMN
OSBORN FORREST G
OTTENFELO BRUCE B
OTTER FLOYD L
OVEN ROBERT C
achotikarn somphong
Pageler donald
PATNE LEE A
PALISIN JAMES
Parmer james jat
Parker james
Parker jomin K
abker john :
arker richaro d
PaRKIN KENNETH
PARKS HOMER :
PARR WILLIAM H JR
PARSONS DAVIAD E

\begin{tabular}{|c|c|c|c|}
\hline parsons donald o \& B0X 600 \& port orford oregon \& 97465 \\
\hline parsons patrick \(J\) \& \& deary toamo \& 83823 \\
\hline passmore robert m \& 418 SONnY ST \& blackfoot toamo \& 83221 \\
\hline patrie carthon r \& 1800 OTM AVE NX \& seattle was \& 7 \\
\hline patton robert－ \& univ of wisconstn \& madison wisc \& 53706 \\
\hline paulson anton m \& 620 flest St \& moouian nash \& 98550 \\
\hline payne gene f \& antmal science msu \& bozeman montana \& 59715 \\
\hline pearson davio e \& 4321 fortuma way \& salt lake cruta \& \\
\hline pearson marshall p \& sman Lk ranger sta \& AIGFOGK MONT \& 59911 \\
\hline pechanec josepm F \& 3129 polx ave \& ogoen uta \& 94403 \\
\hline peck cmarles 5 \& b0x 236 \& fatrfielo nebraska \& 68938 \\
\hline pederson milliam l \& b0x 223 \& Clark forkidaho \& 83811 \\
\hline pence dan t \& Us forest service \& salmon toaho \& 83467 \\
\hline pence fred c \& briogeport a s \& priogeport calif \& 93515 \\
\hline pence lewis L \& soil conserv ser \& pocatello toaho \& 83201 \\
\hline pence ned n \& 470 MAple \& emmett ioaho \& e3617 \\
\hline penney john \(g\) \& cox 187 route \& omak＊ash \& 98841 \\
\hline pereira ronaldo a \& saojosatrptracticaba \& basao paulc erazil \& \\
\hline perez geralo s \& INT FOR EXP STA \& bozeman mont \& 59715 \\
\hline perez ronald c \& 41 mlymouth st \& movtclatr nj \& 07048 \\
\hline petersen arthur \& selt ooerlin \& Seattle wash \& 98105 \\
\hline petersen cmarles m \& isos laurel staret \& eotse ioamo \& 83704 \\
\hline petersen leror r \& 2301 wuy 41 \& sturtevant wisc \& 53177 \\
\hline peterson donalo E \& u s forest service \& new meacous toamo \& e3654 \\
\hline peterson theocore \& SOz n novea \& sanopotat ioamo \& 83864 \\
\hline petiak itlliak \& toa dept pue los \& samopoint ioaho \& 83864 \\
\hline pfilf richard \& CLEARYATER NAT FOR \& orofino ioamo \& 83544 \\
\hline prillips thomas v \& hox 37 STAR ate \& superior mont \& 59er？ \\
\hline pickell milliam L \& route a box 53 \& moautam nash \& 28350 \\
\hline pieper rex o \& \(n\) a state univ \& Las Cruces n mexico \& 88001 \\
\hline pierson walter＊ \& Geme del \& Council toaho \& 83612 \\
\hline pinheiro jayme v \& merto flor rioclaro \& oest s paul \& \\
\hline pinnock john h \& \& piger ioa \& 83442 \\
\hline pistorius oarrel g \& 1024 anncrof t \& coevr daleneidaho \& 83814 \\
\hline pitkin franklin m \& univ of toaho \& moscor idaho \& 83843 \\
\hline pizel robert e \& caeeot rgh oist \& creede colorado \& 91130 \\
\hline Platz boebie j \& 902 INOTAN URIVE \& olympia un \& وesol \\
\hline playfatr robert L \& box 248 \& lame deer montana \& 59043 \\
\hline plymale garvin v \& 34052 Sist ave s \& auburn wn \& 98002 \\
\hline polara mereert a \& 6521 butte \& borse toanc \& 63704 \\
\hline porter oonalo m \& \& memington indiana \& －7977 \\
\hline potter oale r \& toass ratnier ave \& sseattle nash \& 98178 \\
\hline potter grant b \& 785 saginay \& dimuea calif \& 93618 \\
\hline potter josepm a \& 629 n Sherionn \& eaukegan thl \& \\
\hline poulton charles \& oregon state univ \& corvallis oregon \& \(973 \times 1\) \\
\hline poutrs richaro L \& sula ranger station \& nsula montara \& S9a71 \\
\hline prater james o \& chown zellea corp \& catmamet＊a \& 98012 \\
\hline presar atcharo \& Route I \& viola toamo \& 83872 \\
\hline price elvin h \& murfau of land vgm \& trlag nevada \& 99901 \\
\hline price goroons \& 1113 s maves \& moscor idamo \& 83643 \\
\hline pridmoar domalo C \& cox 27 \& richfielo toamo \& 83542 \\
\hline pringle illliam l \& canad expt station \& nheaverlooge alta \& \\
\hline pritcheit johm a \& qoute i nox 173 \& moscoutiono \& \({ }^{\text {ase43 }}\) \\
\hline procopio richard \& box 319 \& superior mont \& 59872 \\
\hline pugh lasaence r \& 93i college ave \& St martes toamo \& \({ }^{93061}\) \\
\hline pyke ronald＊ \& 1959 DIAMOND ST \& sandtegn calif \& 97109 \\
\hline pyrah ouane e \& box 292 \& Lenistoen mont \& 59457 \\
\hline oufen marin \({ }^{\text {aut }}\) \& 2716 NE 97 TH \& Seatte vash \& 98115 \\
\hline ougener geray \& Route 1 box 75 \& noscor toaro \& 83843 \\
\hline quesmel clinton C \& \& salmon toamo \& e3467 \\
\hline ancely george J \& 130 Btrch ro \& kalispell mont \& 59901 \\
\hline atgan reed e \& ioamo drug company \& RIGEY idamo \& 83442 \\
\hline ahleigh robert F \& 5809226 TH Place \& seattle wasm \& 98403 \\
\hline ranoolph teray a \& mener ranger dist \& heeer utah \& 44032 \\
\hline gankinen richard \& 100 west main road \& conneaut omio \& 44030 \\
\hline ratmbun james for \& 1112 LINCOLN ST \& materloo toma \& So703 \\
\hline gatliff donald E \& qoute i box 333 \& corvallis ore \& 97330 \\
\hline paubach robert t \& 324 chenault ave \& hooutam masm \& 985s0 \\
\hline ravenscroft vernon \& mox 5 \& tutte toamo \& A3354 \\
\hline GAYSON LILAS L \& 637 S Grant \& pocatello toamo \& 83201 \\
\hline aear opavio e \& \& rachats ore \& 97498 \\
\hline quetizke keith A \& \& Horseshoe ioaho
Grante Fallwinn \& 83629
56241 \\
\hline reoman elliot e \& colville nf \& COLVILLE MASH \& 99114 \\
\hline rees michate c \& 80x 1343 \& orofino toamo \& 93544 \\
\hline REED ROBERT B \& 3738 oanwoio \& Riverside calif \& 92506 \\
\hline RETO RALPM \(R\) \& \& MYDE PARK UTAM \& \({ }^{84318}\) \\
\hline aenshar emera \& 1022 S LYNNate \& SPOKANE YASH \& \({ }^{983203}\) \\
\hline 俍TIG EDVIN C \& 1309 OTH AVE \& LEwiston ionto \& a3843
a3s01 \\
\hline qeveley tromas L \& 1914 wavealy st \& philadelphpa \& 19146 \\
\hline heynolos gray o \& Cariaou nf \({ }_{\text {S }} \mathrm{Sa}\) coeva dalene \& pocatello idaho \& 83201 \\
\hline \begin{tabular}{l}
RICHARDS MORACE JR \\
RICHELSON PAUL N
\end{tabular} \& S 358 coeve dalene
po box 39 \& SPOKANE VASH MONTPELIER IDAMO \& \(\xrightarrow{99204}\) \\
\hline нichmono robert＊ \& usps \& Libson no \& seose \\
\hline pickero james＊ \& 2114 ELLIOTH St \& toledo ohio \& 43006 \\
\hline riecken hugo－ \& 2800 cottage may \& sacranento calit \& 95825 \\
\hline giedeman henay \& elm \& burley toamo \& 93315 \\
\hline aingoara john a \& 9610 S 240 m \& KENT Nash \& \({ }^{98081}\) \\
\hline Rince ruor \({ }_{\text {R }}\) \& eox 01
countr courtmouss \& anerican flsioarg \& 83211
83702
83801 \\
\hline Risse valter m \& scs \& klakath fallore \& \({ }_{97601}\) \\
\hline aitchie maent． \& moute 2 \& meriotan toamo \& 4364？ \\
\hline qobel houert， \& kansas st univ \& manhatten kan \& 60502 \\
\hline puegats madley a \& 745 bono st \& eeno ore \& 97701 \\
\hline \& Po ecx 386 \& council toamo \& 83812 \\
\hline mobertson marolo \& 1803 Avenut． \& MILLINGS MONT \& 59102
92502 \\
\hline Mobinetie Miliard L \& eweka po mox 3031 \& （Riversice calif \& \\
\hline mobins charles m \& P02sb davis st \& fremont calif \& \\
\hline gooinson loren E \& E 12721 12th ave \& spokane vasm \& 99216 \\
\hline moainscn malter L \& 102 dixie lane \& Longviex vash \& 98632 \\
\hline oche pen \(F\) \& usu pange mgmt \& pullman mash \& 99163 \\
\hline RODGERS JAMES 6 \& 30x 35 CULAEPMOUSE \& CASTLE ROCK VASH \& 98611
72401 \\
\hline Rogers George \({ }^{\text {L }}\) \& 1223 culaearouse
Po gox 343 \& \& 72401
59750

Sel

\hline root george A \& 2981 lavael ro loder \& Longiler wash \& 98637

\hline rosenkannce lester \& 2000 CUaLE ORIVE \& doaho falls ioamo \& e3401

\hline rosenthal james， \& 24 couchman ave recter \& nochester itn r \& 14617

\hline Rosine Prilip e \& Route 3 ase \& galeseurg tllinots \& 61401

\hline Ross culver of \& ${ }_{1383} 3 \mathrm{BO}$ \& ogoen utar \& 84.04

\hline \& USFS FOR SUPERVISORE \& elko nevada \& 89801
59701

\hline momes james L \& 916 E BTM E \& ELLENSQURG＊ASH \& 93926

\hline RUEISCH Kurt a \& faverbach brening mation \& madison vis \& 53701

\hline RUMPS JOMR J ${ }_{\text {RUPES }}$ \& 315 OIXON AVE E \& aakersfielo calif \& 93304

\hline \& RFD E \& ε balozin me \& 04024

\hline RUPERS thomas \& Rfo ocean st en \& \& 04024

\hline SACHECK RIERIAMA \& 111
OTI OCEAN STM Stace \& MYANIS ${ }_{\text {anchorage }}^{\text {Mass }}$ ALASKA \& 02601
99504

\hline sachis ofan m \& po mox 347 ¢ \& elko nevada \& 89801

\hline SAJOR VALENTIN SALING WALLACE \& | 101 KANLAON ST |
| :--- |
| 397 EAST 3RD SOUTH | \& QUEZOM CITY PHIL is pleasant grvutah \&

\hline
\end{tabular}

703 KOOTENAI $=3$	motse toa		
608 LEx15	billings		
eox 3737	portlano ore		
SOIL Cons			
po ecx 433	Shoshone ioaro		
post office	fairfielo toamo		
1331 R1p			
UTE			
	ausable chsmex york	12911	
．			
250 Jan	meoford oregon		
c／o A tule		73055	
¢ 924 37TM	Spokane		
mesa manger			
318 marcy ave	－montesano	23563	
$19551 / 2$ fatc	Sherioan	32801	
Route 3 box 126			
913 netilson st	almany	。	
Sos E Franklin			
US forest			
oregon for res ctr			
eox 207	JaCKSON COLFAX	1	
qоute			
2019 noaman	Moise igato	37	
6LM po box 37			
110 tackequan	Fi menningea		
1597 moollano a	palo alto calif		
1145 NORTH STM	coos ear ore		
201 N SUwnt			
2709 ALLV	belmont		
6907 HUNMEL	borse milvaukee	337	
4572 N 715			
no4	nosconx		
houte a	Sandpotnt		
440 aoutla couer	omara	81	
17% civil line			
1640 palisades	APPLETO		
71H SOUTM Scovill	oak oadk		
2t I box			
960 van euren			
ao ${ }^{\text {a }}$ nump			
eox 355	eupexa		
105 meadounar	oxelso		
wn St fore	KELSO		
po mex 1	\％axatusa		
$n 23$ Penn ave	COEUR OALENE 10amo		
1305 Ella			
211 ouckhout lae	UNIY PA－K PEN		
nrs CCllegr of FOR	SYRacust 10 NH GRANTS pass chegon		
23．ne outinox			
po max	DOQtLano one		
	cofur dalenctioame ballfntine montava		
1235 ALL	ateat ride colo		
27 N efstrite ave			
4os loch lamono cr	bakersfitle calif		
345 midnlefielo 9o	nenlo padk calif haugf sund normay		
Po	haugr sund normay LA gQande orf		
a0es mount ave	NISSOULA	59801	
3605 Stavford	dECATUR TAPROSPECT		
patisphct panger stap			
1301 stn	Fort cellinscale	1	
151 tast botse			
ate 2 enx 296a			
xantissu nf box	Sandpoint toahc		
Sulshint stan a	$\underset{\text { Krlloge }}{\text { carnota }}$	83×37	
1215 Jas		98501	
cox 404	CAREIFLI		
010 worstff la	helfna	598	
70s linden	LFFISTON TOAHOCMAMANERRASKA		
3616 franklin			
5avtooth nat for	FAIPFIELD IOAMO coevr calenetoaho		
a15 fostrr ave caid		83814	
120\％CEDARMILL DR			
621 logan			
3215 Hona stae	uaxlano calif	1	
Stevensville rgr ots	otstevevisvillevont	10，	
1119 sprtnger road	ad olrmata pash man	1	
Gpo mox ar		00936	
1911 oentle	SAndr Soringeo	20860	
porox 24		94701	
santa fe			
моute	crorineOROFINo	e3544	
aiversiof		83548	
mox 593	OROFINOPALISAOESOSPURN	83437	
mox 21 Os		ค3849	
2507 xoruale lane ，		20715	
mox 502 cos	OROFinoSacranento toaCal	83544	
4460 durer pkx Sacher		95823	
511 12TM AVE Nater	NAMPA	83651	
5 usher moad	medfnat ss mass	02155	
mox bos max	MAMILTON MONT	53830	
mox 432	bonners fry loar genfset toar	3805	
anlaut st Gent		83832	
eox 527 \％	gaker	${ }^{\text {a }}$	
ate canig or a	fi eenntagceritos	31705	
isozo piuma ave ciader		90701	
11 chener st s	CERRITOS	－ 40	
1239 wicks lane e		59101	
960 oatsr drive p		\＃3201	
3074 N 550 EAST N	pocatello idaho no oguen UTAh	84	
eas lacuesta drive	ive nenlo park	94025	
po pex 1306 a	hlbuqueroue n		
－ 0 nox s5s		析	
2515 N 315 T S	SPRINGFIELD CRE 469 mOSCO toarco	97477	
VnQ SCI LAA ROX 46ow		83843	
$\bigcirc 00081197$		83814	
mox 193 ＊		8364	
S30 south state cifer		94015	
127 EAST RAY OR N	Clearficlo uta	97459	
US thmigant serv oun USFS FED OLOG		98230	
usfe FED BLOG＊		01	
ASST OIST RANGER K		83839	
3200 colgate d	dallas texas		
317 S SECOND AVE Sild			
${ }^{4109}$ TOAMO ST ${ }^{\text {S }}$			
3005 Carnegie or po			
ROUTE 1 HOX 17 Cot			
2203 SpRING ST，Cat			

Stross raymond	909 Clay	ST CHARLES	MISSOURI	63301
STROUP STANLEY *	blue rioge r s	HAPPY JACK	AR12	86024
SUllivan jomen e	4318 granala St	alexandria	VA	22309
summerside george *	Kootenat nat foresti	TLieby	nontana	59923
SUNDOUIST CARL L	925 vork ave	reno	NEV	89502
SUOMINEN ROY A	CONSCL NATER P \& P	Phillips	vis	54555
SUTHERLANO CHARLES F	221 N GTH ST	Corvallis	ORE	97330
SUTRICK JOhn S	703 E THOMPSON	Sapulpa	oklamoma	74006
SUTTON VERNON C	B0x 43	OLA	ioamo	83657
Stanson robert e	payne road	toamo falls	idamo	83401
Swarne allen P	430 pend ave	ETOMAM	tene	37331
Sweer donalo m	B0X 428 BLM	Cozur oalenei	cioamo	83814
TALBOY DEAN :	738 HILLCREST WAY	REDWOOD CITYCA	ycalif	94062
TANAKA RICHARD M	E0X 673	SHOSHONE	IUAHC	83352
TANK ROBERT E	FIRE CONTRLL BLM	idaho falls	idaho	83401
tanner dale l	2017 POwERS	LEwiston	10aho	83501
TAUBMAN JAMES H	forest service	valhalla	No	58282
TAYLOR ABE H	145 NE ASH ST	sherioan	ORE	97378
TAYLOR ERYAN E	fox 343	NEPPORT	*ASM	99156
TAYLOR ERNEST H	3119 CAROLINA NE	al buoueroue	$\mathrm{N} \boldsymbol{\mu}$	87110
TAYLOR MARRY J JR	PO B0X 432	Yreka	Calif	96097
TAYLOR John L	1316 VILOER	helena	Mont	59601
taylor laurent	511 E CLIFF DRIVE	EL PASO	texas	79902
taylor peter *	2533 INGLE YOOD OR	eotse toa	amo	83705
TAYLOR ROBERT E	STAR MOUTE	Granite falleas	*A5H	98252
taylor william D	MARINE COAPS BASE	CMP PENDLETNC	calif	92055
TAYLOR BILLIAM R	80x 738	AROOKINGS	oregon	97415
TAYNTON ROGER	S78 E 1700 N	OGDEN	UTAH	84404
TEILMANN HARRY A	305 SE GTH	ENTERPRISE	ORE	97828
TEMPLE DONALD J	US FOREST SERVICE	MUNGRY MORSEN	mont	59919
TERRILL ROBERT $\%$	MONTT-TA SAL N FOR	Price	Utah	84501
thackaberry joseph J	6713 ASMLAND DRIVE	boISE	10aho	83705
thaldori lyne h	Box 114	botse	10amo	83701
thiemens jimo	weyermaeuser co	NORTH REND	OREGCN	97459
Thilenius john F	US FOR RGR EXPT STANA	amapio City	50	57701
THOMAS GERALD *	380527 TH	Luebock	TEXAS	79409
THOMAS HAROLD E	RT 1 vest himay 20	botse	10AHO	83702
thomas james L	Thorne bay alaska	KETCHIKAN	alaska	89501
THOMPSON ALLEN R	2906 MADISON	BOISE	toamo	83703
TMOMPSON ERNEST L	3124 CAROLINA NE	alenoueroue	\cdots	87110
thompson james m	401 S MASHINGTON	CENTRALIA	vash	38351
thompson william L	c/o atlanta stage	eoise	icame	83701
THOMSON MAROLO K	IS East ath avenue	fmporia	kansas	66001
THORNBER MERRILL S	RTE 11 B0X 121	PARKER	COLO	80134
THRAPP HILTON	ROUTE ? ROX 725	INDEPENDENCEN		64056
THRUPP ADRIAN C	4032 NE 57 TH ST	Seattle *as	\times * 5 H	98105
TIDO ROBERT L	B0X 126	San carlos	A 12	85550
tiedemann polano K	134 drakf avenue	STATEN IS IAN	N ${ }^{\text {r }}$	10314
TILTON MILLIAM M	SO6 N GARFIELD	moscow	toamo	$83 e 43$
tinsley selden l	Scs	UPPER DAREY	PA	19084
TIPPETTS VAUGHN	PO B0X 338	AFTON	-YOMING	83110
TIPPLE NICHOLAS E	RD $=1$	GHENT	N Y	12075
TISDALE ELDON O	712 SHAYNE DRIVE	boise	toamo	53705
TKACH JOHN 6	8806 FILLIA ER LA	annandale	va	22003
TOMLINSON NORMAN E	silver lake road	newtome	OENV	18940
TONSETH HENRY M	UsFs	Deno ciel	CNE	97701
TOWN SHERMAN D	PO ROX A 11	vale O	ore	97714
TOWNS EILLIAM L	620 peachiree teloga	atlanta ga		30323
townsend laurence g	IDA DEPT OF pahks	boise	toanc	88707
trameek oayto e	FU3231368 80X 8407	GCODFELLOVTFX	xas	76901
TROJANOESKI CAPT JANES	106.000 ST	PDRTALE *	-is	53901
TROJANOWSKI JOMN *	$105=000$	portage	VISCONSIN	\$3901
tschanz donalo e	80x 217	Shertoan	cre	9737 F
turner george T	1008 MEADQVBRCOK DRF	fort collinsc	Cclo	e0521
TURNIPSEED RUSSELL D	1411 SWISMER ROAC POC	pocatello	ioame	83201
Twitchell ${ }^{\text {a }}$ T	EIFC HOUTE 3	doise I	icahc	83705
UD-DIN ZAFAR	bmamkar for oiv	mianevah *	- PAKISTN	
ULLEVAALSETER REIDAR O	nordmataka	oslo No	norvar	
UNDEREOOD ALAN O	DANIEL GOONE NF	*inchester x	$\times 1$	40931
UNDERMOLD JOMN F	301 boulder St	nevada city cal	CALIf	95959
UNDEREICOD VERNON L	1707 SUNSET DRIVE	PACIFIC Grove	Calif	93950
UPSON U LAYton	632 EASSvood	RICHLAND	vash	99352
VAIL DAVID A	5234 STATE ST	motse ita	IOAHC	A3703
Vail delmar d	60x 135	CCOAR CITY UTA	UTAH	94720
van lear davio m	525 COMMCRCIAL ST	CLIFTON FORGV	virginia	24422
VANCE EDEARD P	SCs	wases lakt *	*ASH	28837
VANDENEUAG JOHNS JR	80x 292	Ponners fay 1	10ano	63805
VANIER STEPHEN C	13600 S\% PAC MY $=12 \mathrm{~T}$	tigaro of	cregon	97223
VANSANT RUSSELL H	SHERWIN NILLIANS COC	chicago	ILL	60601
VARS HARRY ${ }^{\text {T }}$	Route i	WHITFFISH	MONT	50937
VARSEVELD FRANK a	973 GALE DPIVE LA	LADNER A	A C	
VENISMNTCK JOSEPH C	4025 OOVER S	SANDPOINT I	toamo	83864
verdal gustav a	USFS	coevr dalenei	10amo	83814:
VERNER ROY S	USFS RET	rexuurg i	idamo	83440
VILKItIS JAmes R	4942 MARTIN DET	DETROIT	$N \mathrm{NH}$	48210
VINCENT OYAIN *	3417 CRESCFNT RIN	coise t	toaho	83704
VITCLINS AUGUSTS	Qt 1	Salmon t	idamo	83467
VOGT marry a	scs mos	moscor t	toamo	83843

VUn EARGEN Jo
VISEN HAROLO
VALDRON MARVEY
WALES KRISTIAN L
WALKER ALFRED
WALKLEE ROBERT
WALL HAROLD G
WALLLACE MOWARO A
WALLACE WILLIAM WALLACE villia
wal TER JOMN 5 MAMBOLT CAR
-ard day l
weatherhead donalo
vEAB ORRIN
WEDDLE ARTMUR JJR
WEGELE PEN MARKY
wELKER LORINJ,
WELLNER CHARLES
WELLS NADE G 11
velsh Thomas l
WEMHOFF LESLIE
EENzEL OTIS 6
WESTMAVER BABRY L
METZEL BARTON O
wEYERMANN GEORGE F
WHEATLEY THOMAS
WHEATON RODGERS WHITE MENAY A WHITNEY CLARIOON O
WHITT CHARLES A WHITT CHARLES A WHITTIG JERRY F
WIEGAND DAVID a
WIESHUEGEL ER=IN G
WILCOX JOHNT
wILKINS DALE R
シILKINSCN LYLE
WILLIAMS EDGAR
WILLIARS ROGER
WILLIAMS THOMAS B
IILLIAMSON DARRELL
-ILIAMSON REX p
-ILSON CARL C
HILSON DENNIS
GILSON OONALD O
VILSON GEORGE R
vilson ROY
wilson tmomas
vindLe john C
VINDLE LEAFORD
ving LARAT O
$\begin{array}{ll}\text { IISDOM MAROLO } & 172 \text { TAJUIL UAB } \\ \text { ITIL }\end{array}$
WITIERS RANDALL L
WOLFE VINSTON C
woo john Y
WOOD DONALD K
WOOD ROBERT E
wood robert E
wooos pave T
YOOLYINE PHIL
wren charles c
MRIGhT jonath
wyKert pall v
GYLLIE JOSEPH
YAKOVAC CARL S
Yates oonalo
YEARY GLENN A
YINGLING GLENN
YINGST DONOVAN
YOST NATMAN
YOUNG JOMN L
YOUNG LARRY
YOUNGELDOD GLEN E
YOUREE EARNARD G
ZAPPETTINI GEORGE
ZIELINSKI EDWARD C
ZIELINSKI EDWARD
ZIMMERMANE JACK
ZOBELL REX
ZUBERBUHLER RUDOLPH U
ZWIRTZ ROBERT,

CHIPPEWA NF	Cass lake	vinn	500
Star route	CLARK FORK	idaho	83511
PC B0X 468	BEND	cat	7701
$404 \times 24 \mathrm{TH}$	spokane	VASH	89203
USFS	Twin falls	ivamo	83301
510 FIFTH S	NELSON	e c	
USFS	cedar city	UTAH	
1426 E BOMMAN ST	SOUTH BEND	Indian	46613
7009 INOIANA	vancouver	\#ASH	98664
B0x 764	Bonners fra	idaho	e3805
ROUTE 1	twin falls	idamo	83301
eox 1512	alturas	CALIF	96101
6541287 HE	SEATTLE	MASH	98155
701 E TACOMA	ellensmurg	-ASH	98926
	grangeville	toaho	
307 N GAK	UKIAH	CALIP	954
5608 arckey	vaxima	$\pm A$	890?
OIST MGR ULM	PRICE	uta	84501
1370 LARK CIR	ogoen		84403
117 PEASLEY ST	EOISE ID	ahoo	83703
30×647	nccall	idamo	-
MRS RONALU WENH	cottonmood	ioaho	83522
$12505 E$ NELLFSLEY 6	6SpOKANT	*a	89216
630 SANSOME ST	SAN FRAN	Calt	'4111
615 EAST 16 TH ST	N VANCOUVER		
flathead agency	$61 \times 0 \mathrm{~N}$	nuntana	59.31
13320 NK NORT	PORTLANE	K	97279
2580 BOMMAN ROAD	hteospent	ORE	46%
6609 N LAKF DR	*ilvaukee	wisc	3217
60 SANTA RITA DRT	-alnut cr	Ecalif	94596
655 NOHTH OTH ST	parette	toxatid	83661
2313 GARLAND OR	missoula	mont	5>801
RT 12 POX 7294200 Gr AVE APT 2100	curmpia	*ASH	98501
	desmoine	1A	50312
Pox 196	NOREIS	TENT	37828
O4 E MINOR165 E 3RDS	- innemucca	Nev	89445
	MANT 1	UTAR	8464 ?
707 E PINE RT	VERIDIAN	toanc	83642
for 253	tror	10a	83871
814 Naybelle	roscow	10 A	83843
2824 Gran	e015F	toa	83700
550 - FORT ST R	5sorse	toan	83702
RT 1 P0X 9024	heaumant	Xas	77706
4142 ROUND TOP DR	honolulu	Hakait	96822
779 APACHE THAIL	riversice	CALIF	S0
34 MODEL AVE	OPEVELL	$\mathrm{N} J$	08525
US FOREST SERVICE	OGOEN	UTAM	8440
	coeve	IDahe	83814
ROUTE I RIVERVIE*	CROFINO	idaho	354
hoff lumber co	HORSESMC	IOAHC	362
RT 1 ROX 538	SANDPOINT	toa	83864
	MELBA	toar	83641
1607 EOITH DR	BELEN	$\mathrm{N} \times$	8700
COL OF FOR U ICMA	IOAA CITY 10	Amo	22
172 TAJUIL UAB NILARIO PIEDROS P RICO			
2826 EAST MAY	REDDING	CALIF	96001
AOX 403	hungry moase	cmontana	59919
RFD 2 BOX 5	Pullman	WASH	99163
MED BOV NATL FOR	ENCAMPMENT	-ro	232
$1237274 T H$ PLACE NEKIMKLAN		FASH	
COL OF FOR U OF -	Seattle	*ASH	98100
587 FOX LANE 92646 PALAICAI ST	VORTHINGTON	Chio	43085
	Ewa meach	MAEAIt	96706
20 buchanan or	sausalito cal	ALf	94965
3687 HICHBRIAR CIR	NASHVILLE	TENN	37211
2034 YUMA TRAIL CKE	oxemos	MICHIGA	48864
PO BOX 124P	ESTES PARK	COLO	80157
1403 Franiklin en	Botse	10arc	83702
B0x 8714827 FOREST	SALMON	inamo	83467
	mercer isle	*A	98040
A0x 166	twin falls	10ar	83301
Houte 1	UNICN ERIOC		21791
9110 St Pinebriok	tigapo	ORE	97223
1412 ALMOND ST	St paul mi	INn	55108
POUTE 1 ROISE		IDAMC	83702
EDV HINES LUMEER COMINES		anegon	97730
BLM	equse.	IOAmO	83702
250e reoway road	poise	Itanc	83704
41557 TH	pocatelle	10ahc	83201
190 ARMONHFAD DA	Canson city	NEV	89701
			12308
2505 VAN VGANKEN SCHENECTAOY NS33 WiSCONSIN AVEMILEAUKEE MISC			53203
35204 m ST SO FISC RAPIOWISC			54.494
2613 CHESTNUT DH	CHEYENNE	vro	82001
\#ATERSHEO OEPT-CSU	ft collins	COLO	80521
$324-25 \mathrm{TH}$ ST	ogden	Uran	84401
9345 CCDAR	hellfioner	CAL	9070

Deceased

AHLSKOG RALPH H
ALLEGHETTI JOSEPH
BAILEY FILLIAN E
BAKER LOREN K
BAREETT JAMES
BAUMERT BRENT,
boy GLENN L
BOY GLENN L
BREON EUGENE E
BROCK JOKN E
Callender milltam
Carlman robert a
CARLSON OSCAR
CLARK ELMOR D

CLARKE STANLEY C
CRAIFORD CHARLES R
CURTIS FLOYD C
DANIELS ALBERT S
DAY NEIL J
DECKER ARLIE D
OOYLE TVAN
DRISSEN JOHN P
EASTMAN VIRGIL H
EPPERSON PAULL
EAICKSON EDYARD JR
EVANS JEROME
FAVRE CLARENCE E
FENN LLOYDA
FISHER GEORGE M
FITZGERALD WILLIAM K

PARSONS RUSSELL M PIERSON ROYALE K PIKE GALEN
POLZ ERNESTA PRAFKE VERLON E RANDALL EARREN READ FILLTAM V SNYDER ERNEST P SPENCE LITER E SPEnCER ben o STANTON EDGAR * STAPLES HOWARD" STOUFFER DAVID TUMELSON FLOYO O WAOSVORTH H A
WALRATH FAIRLY *ALRATH FAIRLY EHITE MAROLD 2 WIGGINS EDVAHO
WILSON ALLAN S wilson donalo a
 YOUNGS HOMER

LET'S TAKE A HARD LOOK AT PRODUCTIVE FOREST LANDS

The professional forester in the next few decades will not have an easy job. Right now, America has only 508 million acres of productive timberland left. The number of useful forest acres is not increasing, but the number of people making demands upon these acres is. More people want the opportunity to enjoy nature-to picnic in a quiet grove-to ski, sightsee, camp, hike, hunt and fish. And each year our society takes more land for city expansion, airports, super highways, power lines, reservoirs, housing, schools and shopping centers. Yet more people need the products these limited timberlands provide. More and better homes, thousands of other wooden products, paper products and chemicals. The same land must also provide grazing for cattle and sheep to feed and clothe America; watershed control, and still replenish itself on a sustained yield basis.

It is unreasonable to permit a small emotional segment of the population to lock up timberlands in endless wilderness parks limited to a single use. The answer lies in establishing a working balance of commercial and recreational needs - a multiple use of the forest.

Tomorrow's professional forester will have the responsibility of making unpopular decisions and will need skill and courage to carry them out. It won't be an easy job. But then, nothing that is reasonable and far reaching is ever easy.

At Georgia-Pacific, we have done a lot about multiple use of our timberlands. If you would like an opportunity to evaluate our ideas for yourself, please write to the Public Relations Department, GeorgiaPacific Corporation, P.O. Box 311, Portland, Oregon 97207.

[^0]: ${ }^{1}$ Quotes from Chauncy D. Harris "The Pressure of Residential-Industrial Land Use" in Man's Role in Changing the Face of the Earth, 1956, p. 885.

