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The use of principal components analysis to study tree stem profiles was critically analyzed during 1085 destructively 
sampled Douglas-fir trees and 1260 simulated trees with known geometric shapes. Interpretation about the meaning 
of each principal component is provided and contrasted with others in the forestry literature. Nearly identical results 
with both the destructively sampled and simulated trees, along with certain theoretical consideratons, indicate that 
the principal components are related to tree form as opposed to tree profile or taper. Therefore, principal components 
analysis is a useful analytical tool for stratifying trees into different form groups. 

REAL, P. L., MOORE, J. A., et NEWBERRY, J. D. 1989. Principal components analysis of tree stem profiles. 
Can. J. For. Res. 19 : 1538-1542. 

L'utilisation de l'analyse en composantes principales pour etudier Ie profil de la tige des arbres a ete evaluee apartir 
de 1085 tiges coupees de Sapin Douglas et de 1260 arbres simules avec des formes geometriques connues. La significa­
tion de chaque composante principale est interpretee et comparee avec d'autres interpretations mentionnees dans la 
litterature forestiere. Des resultats presque identiques avec les tiges coupees et simutees de meme que certaines con­
siderations theoriques indiquent que les composantes principales sont reliees ala forme plutat qu'au frofil ou au defile­
ment des arbres. Par consequent, l'analyse en composantes principales est utile pour stratifier les arbres en differentes 
classes de forme. 

[Traduit par la revue] 

Introduction	 ferent stem profiles. The key to using PCA for this purpose 
is attaching a biological or physical meaning to each prin­The use of principal components analysis (PCA) for the 
cipal component. Although there has been some consistency study of tree stem profiles was first reported by Fries (1965). 
in attaching meaning to the principal components in these Fries studied birch and pine in Sweden and British Columbia 
studies, they are not uniform and have not been adequately using PCA and concluded, based on analysis of the first 
justified, in our opinion. Therefore, we chose to further eigenvector, that both species have similar form in both loca­
explore the principal components obtained from tree pro­tions. A similar analysis indicated that trees with shorter 
files and attempted to attach justifiable meaning to them.crowns showed less taper than those having longer crowns. 

We explored PCA in three ways. First, certain theoretical Fries and Matern (1966) developed, with PCA, a system of 
aspects of PCA were considered. Next, analysis of data fromtaper equations for birch in Sweden. They interpreted the 
simulated trees was conducted. The simulated trees allowed first principal component as the taper curve of the average 
us to control sources of variation influencing the stem pro­tree, the second component as an indication of basal swel.. 
file. Finally, Douglas-fir stem analysis data were analyzed ling, and the third component as an expression of form. Liu 
so that conclusions reached from the theoretical considera­and Keister (1978) also used PCA to develop taper equa­
tions and simulated data could be verified with actual data. tion systems for loblolly pine and slash pine in Louisiana, 

They regarded the first principal component as defining the 
mean stem profile. The profiles of trees with differem	 Data 
characteristics were also compared. Little difference among Sample trees 
profiles was noted after examining the elements of the The development of a taper equation system (Real and 
eigenvectors associated with the first principal component, Moore 1988) for second-growth Douglas-fir (Pseudotsuga 

In these studies, PCA has been used to either build taper menziesii (Mirb.) Franco) in the Inland Northwest of the 
equation systems or explore differences in the profiles of United States provided the actual stem analysis data used 
different tree populations. As was concluded by Kozak and in this study. A total of 1085 trees were destructively sampled 
Smith (1966), we believe other methods of developing taper by the Intermountain Forest Tree Nutrition Cooperative. 
equations are preferrable to PCA. However, PCA appears These trees were measured in 94 second-growth, even-aged 
to be a useful tool for differentiating among trees with dif.- stands of Douglas-fir (Moore 1984), which cover a broad 

range of ages, stand densities, sites, stand conditions, and 
'Submitted as contribution No. 477 of the University of Idaho, geographic regions within the Inland Northwest. The dis­

College of Forestry, Wildlife and Range Sciences Experiment tribution of the sample trees by diameter at 1.37 m (dbh) 
Station. and total height is given in Table 1. The following variables 
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TABLE 1. Distribution (number) of the sample trees by diameter heights were assumed to be normally distributed with a mean 
(dbh) and total height classes equal to the estimate from the height-diameter model and 

dbh class 
(em) < 15 

Total height class (m) 

15-21 21-27 27-34 >34 Total 

12.7-25.4 
25.4-38.1 
38.1-50.8 
>50.8 

54 
14 

164 
387 
20 

9 
259 
75 
4 

13 
69 
7 

1 
2 
7 

227 
674 
166 

18 

Total 68 571 347 89 10 1085 

were measured for each tree: stump diameter (0.3 m), dbh, 
total height, diameter and height at the live crown base, and 
a variable number (between three and seven) of diameters 
and heights along the bole. 

A matrix of diameters at the same position on each tree 
is needed for PCA. Because relative position is typically used 
for stem taper analysis and our trees were different heights, 
diameters at 3, 5, and 10070 intervals to 90% of total height 
were estimated by quadratic interpolation from the actual 
diameters. A matrix of 1085 trees by 11 diameters was 
created with this procedure. 

Simulated trees 
The simulated trees used in this study were based on the 

following general model: 
tree stem profile = f(tree form, tree taper) 

+ random variation 
where tree form is the characteristic shape of the tree profile, 
tree taper is the rate of narrowing in diameter relative to 
increasing height along a tree stem for a given form 
(Gray 1956), and random variation is any other factor 
unrelated to form or taper. The specific model used to 
generate the simulated stem profile	 data is 

131 
[1] d = (3 D I H - h o H - BH 1 

where d is the diameter at height h, Dis dbh, H is total tree 
height, h is any height along the tree bole, BH is breast 
height, and (30, and (31 are parameters related to taper and 
form, respectively. Ormerod (1973) introduced a model very 
similar to [1] for modeling stem profile for several tree 
species in British Columbia. Reed and Byrne (1985) used 
Ormerod's model as the basis for developing a variable-form 
stem profile system for red pine, jack pine, and white spruce 
in the upper Great Lakes region. Equation 1 was used by 
Newberry and Burkhart (1986) to construct variable-form 
and taper stem profile equations for loblolly pine. This 
model has parameters that are directly related to stem form 
and taper and has been shown to account for most of the 
variation in stem profile in the situations described above. 
Since we believe form and taper account for the vast major­
ity of the variation in stem profile, we constructed the 
simulated tree data with [1] so that they varied in both form 
and taper. 

A height-diameter model fitted to the sample trees was 
used to generate total heights for 2.5 cm diameter classes 
(12.7 to 63.5 cm or 5 to 25 in.). Twenty trees were con­
structed for each diameter class. Four different diameters 
for each diameter class were randomly obtained by assum­
ing a uniform distribution over each class. For each of the 
four diameters, five different heights were assigned. The 

a variance equal to the variance of prediction of the height­
diameter model. Once the simulated tree diameters and 
heights were determined, each diameter and height pair was 
tripled and assigned one of three geometric shapes: cone, 
paraboloid, or neiloid. Equation 1 was then used to generate 
stem diameters at the same relative stem positions used with 
the actual sample trees. Thus, a matrix of 420 trees by 
11 diameters was created for each geometric shape. 

Methods and results 

Theoretical aspects 
Chatfield and Collins (1980) indicate that when all the 

original variables are positively correlated, the first principal 
component is a measure of "average size" or shape. Since 
diameters along a tree bole are, in most cases, positively cor­
related, the eigenvector associated with the first principal 
component gives the "average" profile of the trees being 
studied. 

Two results from matrix algebra are also useful. First, 
the number of nonzero eigenvalues for the variance­
covariance matrix is equal to the rank of the observation 
matrix (Graybill 1976; Morrison 1967). Second, the number 
of principal components is equal to the number of nonzero 
eigenvalues in the variance-covariance matrix (Morrison 
1967). If we consider these results along with the stem pro­
file model [1], further theoretical interpretations can be made 
about principal components of stem profile. If trees with 
a single stem form but different taper are considered, the 
stem profiles for these trees are linearly dependent, since 
each is a simple linear transformation (based on dbh) of the 
appropriate form. Therefore, the rank of the matrix of dia­
meters from trees with a single form and different taper is 
equal to one. If, however, multiple tree forms are con­
sidered, those profiles from trees with the same form are 
linearly dependent, and hence, the rank of the diameter 
matrix in this case would be equal to the number of stem 
forms present. Since the number of principal components 
is equal to the rank of the diameter matrix, the number of 
principal components is equal to the number of stem forms 
in the population of trees. 

From this, two points seem evident. First, the first prin­
cipal component is the measure of average stem form. 
Second, the number of principal components is equal to the 
number of stem forms present in the tree population given 
model [1]. 

Simulated trees 
Principal components analysis was applied to each of the 

three simulated tree data sets. The first principal compo­
nent explains 100% of the total variance in each of the 
simulated diameter matrices. Therefore, each diameter 
matrix with one stem form has only one nonzero principal 
component. The plot of the eigenvector associated with the 
first principal component versus relative height for each 
geometric shape is given in Fig. 1. For clarity, the elements 
of each eigenvector have been joined by line segments and 
the value zero assigned to 100% of total height. Each figure 
duplicates the geometric shape of the diameter matrix from 
which they were derived. 

Next, PCA was applied to a diameter matrix made up of 
all three geometric shapes. The results are provided in 
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eigenvectors 0.8 r=-ei~gc.::.e:.-=-nv:...:e:...::c-=..:to:.-=-rs-=---- _
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relative height [(h/H)x100] 

........ cone --.-- paraboloid -0- nelloid
 

FIG. 1. Elements of the first eigenvectors versus relative height 
for simulated trees of three geometric shapes. 

Table 2. There are three nonzero principal components 
associated with this diameter matrix. The fIrst principal com­
ponent is by far the most important since it alone explains 
approximately 98070 of the variation in diameter. A plot of 
the eigenvectors associated with the three principal com­
ponents versus relative height is shown in Fig. 2. The plot 
of the first eigenvector appears to be a combination of the 
three shapes included in this data set. The plots of the other 
two principal components do not have an easily interpretable 
pattern. The correlations between the elements of these 
eigenvectors and the stem diameters for the simulated trees 
are given in Table 3. The elements of the fIrst eigenvector 
show strong correlations with all diameters aong the tree 
stem. The highest correlations are between 10 and 40% of 
total height. The elements of the second eigenvector are not 
as highly correlated with the stem diameters as are the 
elements of the first eigenvector. The highest correlations 
with the elements of the second eigenvector are associated 
with diameters near the top of the tree. The elements of the 
third eigenvector are only weakly correlated with diameters 
along the tree stem. 

Sample trees 
The results of PCA applied to the 1085 sample Douglas­

fir trees are summarized in Tables 4 and 5. The first com­
ponent is by far the most important, as it was with the 
simulated trees, since it alone explains 95.4% of the total 
variation. The second component accounts for 3.5% of the 
variation, and the remaining components account for about 
1% of the variation. The elements of the first eigenvector 
show a similar correlation structure with sample tree bole 
diameters as was shown with the simulated trees. Again all 
the correlations are positive and the highest correlations are 
associated with bole diameters between 10 and 40% of tree 
height. The elements of the second eigenvector show a 
weaker correlation structure with bole diameters than the 
elements of the first eigenvector. The pattern of correlations 
is similar to the simulated trees, although the similarity is 
not as strong as with the fIrst eigenvectors. The strongest 
correlations again are in the upper portion of the tree stem. 
The elements of the third eigenvector also show the same 
correlation pattern as did the elements of the third eigen­
vector from the simulated trees. Again the correlations are 
very weak. 

A plot of the elements of the fIrst three eigenvectors versus 
relative height is shown in Fig. 3. Clearly, the plot of the 
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FIG. 2. Elements of the first three eigenvectors versus relative 
height for simulated trees of three geometric shapes equally divided 
in the same data set. 

first eigenvector resembles the form of a tree. The plots of 
the second and third eigenvectors closely resemble the plots 
of the second and third eigenvectors from the simulated 
data. 

Discussion and conclusion 
Principal components analysis applied to the simulated 

and the Douglas-fIr sample tree data sets gave results that 
are very similar. The plots of the elements of the fIrst three 
eigenvectors from both data sets show almost identical 
patterns. The elements themselves are also very similar. 
Correlations between the elements of the eigenvectors and 
tree stem diameters are approximately the same in both sign 
and magnitude. We did not expect the results between the 
two data sets to be identical for two reasons: first, there is 
variation in the Douglas-fir data set that is not found in the 
simulated trees and second, the neiloid form included in the 
simulated data is not generally a form associated with 
Douglas-fIr. Results from a combined cone-paraboloid data 
set were in many ways closer to the Douglas-fir data than 
the simulated data we presented here. We purposely chose 
the three-form data set so that there would be three non­
zero eigenvalues. Based on the similarities between the two 
data sets, we contend that interpretations made about prin­
cipal components based on theoretical considerations and 
the simulated data are applicable to the Douglas-fir sample 
trees. We also believe, because the simulated data are not 
species specific, these results are also applicable to other 
species with excurrent boles. 

Therefore, based on the results of our analysis, the first 
principal component should be interpreted as a measure of 
average tree stem form. The second principal component 
indicates the variation in tree stem form not explained by 
the first component. The correlation analysis of both data 
sets with stem diameters indicates most of the variation in 
form occurs in the upper portion of the tree bole. The third 
component is not readily interpretable. Given the results of 
the correlation analysis, we are unsure as to the signifIcance 
of this component. Here it is important to note that none 
of the eigenvectors appears to be related to stem taper as 
we define it, given the similarities between the simulated and 
real profile data. 

These results are different from those previously reported 
in the literature. Previous studies have defined the first prin­
cipal component as form (Fries 1965), taper curve of the 
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TABLE 2. Eigenvalues and percentage of the variance explained for each principal 
component for selected combinations of shapes (simulated trees) 

070 variance 
Component Eigenvalue explained Cumulative Shapes 

First 1568.45 99.14 99.14 Cone-paraboloid 
Second 13.64 0.86 100.00 Cone-paraboloid 
First 1273.67 99.57 99.57 Cone-neiloid 
Second 5.43 0.43 100.00 Cone-neiloid 
First 1447.18 97.65 97.65 Paraboloid-neiloid 
Second 34.86 2.35 100.00 Paraboloid-neiloid 
First 1423.15 98.30 98.30 Cone-paraboloid-neiloid 
Second 24.43 1.69 99.99 Cone-paraboloid-neiloid 
Third 0.16 0.01 100.00 Cone-paraboloid-neiloid 

TABLE 3. Correlations of the elements of the eigenvectors for the 
first three principal components with bole diameters for the 

simulated trees 

Relative 
height" Eigenvector 1 Eigenvector 2 Eigenvector 3 

3 0.4388 (0.97) -0.3250 (-0.05) 0.2803 (0.01) 
5 0.4300 (0.97) -0.2905 (-0.03) 0.2142 (0.00) 

10 0.4083 (0.98) - 0.2076 ( - 0.03) 0.0760 (0.00) 
20 0.3652 (0.99) -0.0532 (-0.15) - 0.1476 ( - 0.02) 
30 0.3227 (0.99) 0.0849 (0.29) - 0.2833 (- 0.03) 
40 0.2808 (0.97) 0.2046 (0.43) - 0.3364 (- 0.04) 
50 0.2393 (0.93) 0.3028 (0.55) -0.2911 (-0.04) 
60 0.1982 (0.87) 0.3762 (0.67) -0.1613 (-0.03) 
70 0.1571 (0.79) 0.4195 (0.76) 0.0598 (0.00) 
80 0.1153 (0.71) 0.4213 (0.84) 0.3455 (0.04) 
90 0.0710 (0.61) 0.3581 (0.89) 0.6487 (0.11) 

NOTE: Correlation coefficients are in parentheses. 
aCalculated as (hIH) x 100. 

TABLE 4. Eigenvalues and percentage of variance 
explained for each principal component (sample trees) 

0J0 variance 
Component Eigenvalue explained Cumulative 

First 43.197 95.42 95.42 
Second 1.581 3.49 98.91 
Third 0.318 0.70 99.61 

average tree (Fries and Matern 1966) and mean stem pro­
file (Liu and Keister 1978). Our results show that the first 
component is the average tree stem form and not profile or 
taper. The association of basal swelling with the second prin­
cipal component (Fries and Matern 1966) is not supported 
by this analysis. The second component is most highly 
related to upper stem diameters in both the simulated and 
Douglas-fir sample tree data sets. Fries and Matern (1966) 
indicate the third component is an expression of stem form. 
We cannot interpret the third component in the context of 
stem profiles and are unsure about its significance. However, 
we do not believe it is an expression of stem form since the 
first component indicates form. 

There are many analyses where it may be important to 
partition tree profiles into form and taper separately, since 
various biotic (for example, species, stand density, crown 
characteristics) and abiotic (for example, elevation, slope, 
soil substrate) factors may differentially affect stem form 
and taper. By stratifying trees into different groups, run-

TABLE 5. Correlations of the elements of the eigenvectors for the 
first three principal components with bole diameters for the sample 

trees 

Relative 
height" Eigenvector 1 Eigenvector 2 Eigenvector 3 

3 0.4343 (0.98) -0.3836 (-0.16) 0.4941 (0.10) 
5 0.3975 (0.98) -0.3456 (-0.16) 0.2327 (0.05) 

10 0.3842 (0.99) - 0.1926 ( - 0.09) - 0.1098 (- 0.03) 
20 0.3476 (0.99) - 0.0660 ( - 0.04) - 0.3963 (- 0.10) 
30 0.3275 (0.99) 0.0486 (0.03) - 0.4012 ( - 0.10) 
40 0.3039 (0.99) 0.1828 (0.11) -0.3044 (-0.08) 
50 0.2732 (0.97) 0.3160 (0.22) -0.1316 (-0.04) 
60 0.2335 (0.94) 0.4177 (0.32) 0.0848 (0.03) 
70 0.1854 (0.90) 0.4397 (0.41) 0.2760 (0.12) 
80 0.1307 (0.86) 0.3718 (0.46) 0.3411 (0.19) 
90 0.0690 (0.80) 0.2242 (0.50) 0.2487 (0.25) 

NOTE: Correlation coefficients are in parentheses.
 
aCalculated as (hiH) x 100.
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FIG. 3. Elements of the first three eigenvectors versus relative 
height for the actual trees. 

ning PCA on the groups, and studying the first two com­
ponents, groups with less form variation can be found. 
Based on our results, PCA is a useful analytical tool for 
grouping trees into different form strata, but is not useful 
for taper analysis. 
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