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DISAGGRBGATIIlG STAND VOLOKB GROWTH TO INDIVIDUAL TREES

ABSTRACT

A disaggregation function, relative size-growth (RSG)

function, is proposed and developed to distribute stand volume

growth to a list of individual trees. The relative size-growth

(RSG) function is formulated as a quadratic equation relating

relative tree growth to relative tree size in a stand. The shape

of the RSG function is linear, convex, or concave depending on

initial stand conditions and structure. A recursive system of

equations is developed to predict the three coefficients of the

RSG function using initial stand density, mean tree size and

coefficient of variation of tree size distribution as predictor

variables. This disaggregation function determines within-stand

growth of individual trees and simulates stand development and

dynamics. The RSG function provides a biologically based link

between whole-stand and individual tree resolution models •

ADDITIONAL KEY WORDS: frequency distribution of tree size, stand

dYnamics, relative tree qrowth, Pseudof;suga menziesii yare

glauca, inland Northwest.
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:INTRODUCT:ION

Forest growth and yield models of varying degrees of

complexity and detail have been developed to fulfill the

different information requirements for decision making. In

practice forest managers may be concerned with inconsistent

growth and yield estimates from models of different resolution

levels, each used for a specific set of decisions, or be forced

to sacrifice efficiency and flexibility by using a single model

for all projections. A number of researchers have attempted to

unify modeling approaches or link whole stand models and

size-class models or individual tree models. Two general

approaches have been developed: (i) aggregating diameter

distribution or individual tree characters to stand yield

estimates (e.g. Daniels, 1981; Daniels and Burkhart, 1988; Strub

and Burkhart, 1975), and (ii) disaggregating overall stand

attributes into more detailed models such as individual tree

models and/or size-class models (e.g. Burk and Newberry, 1984;

Dahms, 1983; Harrison and Daniels, 1987; Knoebel et al., 1986;

smith and Brand, 1987). The disaggregation approach has the
o

advantage that volumes at all levels are conditioned on whole

stand volume which is mathematically more tractable than

size-class or individual tree volumes (Burkhart, 1987).

However, most classical approaches are based on the

assumption that the distribution of tree sizes in a stand can be

adequately characterized by a probability density function (pdf) •
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Some pdf's, such as Weibull, have been applied only because they

are flexible enough to fit a relatively broad spectrum of

distribution shapes and are easily integrated, not because they

are based on any biological principles. Additionally, after the

parameters of a pdf have been estimated, it is difficult to

incorporate the influences and changes in stand density and/or

structure due to silvicultural treatments.

Therefore, the objective of this study is to develop a new

approach to disaggregate stand volume growth to a list of

individual trees. This disaggregation function, relative size­

growth (RSG) function, is based on general concepts about

competition among individual trees and dynamics of stand

structure, without assuming that the distribution of tree size

follows any particular probability density function.

BACKGROUND

The frequency distribution of plant weight is the link

between the individual and the popUlation biomass (Hozumi et al.,

1968). Many authors have studied the relationships between the
o

frequency distribution of plant size and competitive interactions

for many plant species inclUding trees. Skewness is commonly

found in stem size distributions of even-aged monocultures (Bliss

and Reinker, 1964; Ford, 1975; Ford and Newbould, 1970; Gates,

1982; Harper, 1967; Koyama and Kira, 1956; west and Borough,

1983). Mohler et ale (1978) found that maximum positive skewness
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occurs at the time self-thinning begins.

Hara (1984a, 1984b) and Kohyama and Hara (1989) proposed a

stochastic model to investigate the dynamics of stand structure.

The model describes the changes in size distribution with time as

a function of mean growth rate, variance of growth rate, and

mortality. The mean growth rate and variance of growth rate can

be expressed as quadratic functions of plant size. They found

that plant height, stem diameter, and individual plant weight

each have specific size-dependent growth patterns.

Westoby (1982, 1984) introduced the concept of a

distribution modifying function (DMF). The DMF represents the

growth at a point in time of all individuals alive in a

population. He proposed a polynomial equation to describe DMF in

which plant size increment is a dependent variable and plant size

is an independent variable. The dynamics of a stand can be

delineated by a series of DMFs, and the shapes of DMF determine

changes in the shape of the frequency distribution of plant size

(Figure 1). Westoby (1984) also pointed out that most DMFs are of

the quadratic form, which produce skewed frequency distributions

of plant size. The above relationship can be related to the

dynamics of an even-aged, single species stand illustrated by

Long and Smith (1984). The concepts and ideas introduced by Hara

(1984a, 1984b) and Westoby (1982, 1984) were used in this study

as the basis of formulating the disaggregation function.
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DATA AND ANALYSXS METHODS

X. Da~a Base for Hodel DevelopmeD~

Data used in this study represent single species, second­

qrowth, managed, even-aged Douglas-fir (Pseudotsuqa menziesii

var. qlauca (Beissn) Franco) stands (> 65% Douglas-fir by basal

area) in the inland Northwest of the united states. The data were

collected from 107 installations (sites) which were primarily

established for thinning and fertilization experiments throughout

six geographic regions (northern Idaho, western Montana, central

Idaho, northeast Oregon, central Washington, and northeast

Washington). A total of 206 control and/or thinning plots were

utilized from four sources: the University of Idaho·s

McIntire-Stennis stUdy, Intensive Timber CUlture (a cooperative

stUdy between the University of Idaho and the Forest Service,

USDA, Intermountain Forest and Range Experiment Station),

Potlatch corporation, and the Intermountain Forest Tree Nutrition

cooperative (IFTNC). Plot size ranged from 0.1 to 0.2 acre. No

fertilized plots were used in the analysis. All trees were

measured for both height (to the nearest 1 foot) and diameter (to

the nearest 0.01 inch) at various qrowth periods (from 4 years to

14 years). Tree volume was calculated using the individual tree

cubic foot volume equation for Douglas-fir in the Stand Prognosis

Model (Wykoff et al., 1982). A majority of the stands had been

oper~tionally thinned at least five years prior to the growth

·... {UMmAJt..!i"n . .c.x.J. 3.MM.4A . ,u::V.((i•.C.<..o.i. ..dN t Q.Q.QQ.O;:.h •. .'i.'i.QO.:;:::<:<'.'.I .. ...... dJ((I(E¥J .. t ( 12 i"':·
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period used in this study. Some stands were thinned mechanically,

and others were thinned from above and below to various residual

densities.

Since ninety percent of the data had a common growth period

of six years, six years was used for data analysis and model

development. All data sets were converted to this specific growth

period, e.g. a 14-year period was divided into two 6-year periods

(year 0 to year 6 and year 8 to year 14), if the measurements at

year 8 were available, resulting in the addition of 12 growth

periods to the data base. Some mensurational attributes of the

218 Douglas-fir plots at the beginning of the 6-year growth

period are summarized in Table 1.

II. ADalysis Methods

Ordinary least squares regression was utilized to estimate

the parameters for linear models. Residual analysis and

mUlticollinearity diagnostics (e.g. variance inflation factors

(VIF» were conducted to examine the adequacy of the models and

to test for violations of statistical assumptions. For nonlinear

models, nonlinear least squares regression was employed for

parameter estimation. Residual analysis was conducted to detect

model under-specification, departure from statistical

assumptions, and existence of suspect data points. In addition,

local minimum problems were checked by using different starting

values for parameter estimates to ensure correct convergence.
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KODEL DEVELOPMENT

x. Definition of The Relative Size-Growth Function

We assume that overall development of even-aged stands

follows a self-thinning process mathematically described by the

-3/2 power "lawtl. The dynamics of stand structure is affected by

competitive interactions among individuals. Further, the growth

of an individual tree is size-dependent. The contribution of an

individual tree's growth to stand total growth is proportional to

that tree's relative size in the stand. Relative tree growth

(RTG) is defined as the ratio of individual tree volume growth to

stand total volume growth (i.e. the sum of the individual trees)

on a unit area. Relative tree size (RTS) is defined as the ratio

of individual tree volume to stand total volume on a unit area.

Relative tree growth is expressed as a function of relative tree

size. The following general quadratic function was used to

describe the relative size-growth (RSG) relationship:

RTG= Po + P1 *RTS+ P2 *RTS2
I

(1)

where ~o' Pl' and ~2 are coefficients to be estimated for each

plot.

xx. Characteristics of The Relative Size-Growth Function

The relative size-growth (RSG) function (equation (1» was



8

fit to 6-year growth data from each of 218 Douglas-fir plot

observations using ordinary least squares regression. The three

coefficients, ~o, ~1' and ~2' and associated statistics of the

regression models, such as coefficient of determination (R2),

were used to characterize the RSG function.

The regression analysis showed a strong relationship between

initial relative tree size and SUbsequent relative tree growth.

Most plot regressions (93%) produced R2 larger than 0.60. Sixty­

three percent of the 218 regressions had R2 larger than 0.80.

Since the RSG function is a quadratic equation, the signs and

magnitudes of the coefficients of the function determine the

degrees and shapes of curvature. The constant coefficient ~o

represents the level of the curve. The linear coefficient ~1

delineates the rate of change, either positive or negative

depending on the sign of ~1. The quadratic coefficient ~2

reflects the shape of the curve. A positive ~2 indicates that the

curve is convex and a negative ~2 defines a concave curve. The

slopes of the RSG function were always positive since all the

linear coefficients ~1 had positive values. Sixty-seven percent

of the 218 RSG functions had quadratic coefficients ~2 not

significantly different than zero (a=0.05). This indicates that

the relationship between RTG and RTS is usually linear. Of the

seventy-two RSG functions (33%) with estimates of ~2

significantly different from zero, twelve plots had a positive ~2

producing convex curves and sixty plots had a negative ~2

representing a concave relationship.
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Pearson's correlation coefficients between pairs of the

three parameters were -0.90 (Ro versus R1), 0.63 (Ro versus R2 ),

and -0.88 (R1 versus R2 ). Generally, when R1 equals one, both Ro

and R2 are nearly equal to zero resulting in a straight line

through the origin. When the linear coefficient Rl is less than

one, both Ro and R2 are positive producing a convex curve with a

positive intercept. In contrast, when R1 is larger than one, both

Ro and R2 have negative values which produce a concave curve with

a negative intercept (Figures 2(a), (b), and (c». ThUS, three

basic shapes for the RSG function exist: linear, convex, and

concave. According to Westoby (1982, 1984), three basic DMF

functions determine the frequency distribution of plant size to

be normal, positively and negatively skewed, respectively.

III. Prediction Models for the Coefficients of The Relative

size-Growth Function

The relationship among Ro, R1 and R2 of the relative size­

growth (RSG) function implies that the linear coefficient R1

plays the most important role among the three coefficients. When

R1 is determined, the curvature and level of the RSG function are

then defined. Therefore, a recursive system of equations was

developed for predicting the three coefficients of the RSG

function as functions of initial stand variables. Since within­

stand distribution of tree growth can be influenced by the stage

of stand development, stand density and structure (Pienaar and
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Harrison, 1984; stage, 1969), prediction models for ~o, ~l and Pz

of the RSG function can be developed accordingly as follows:

(1). Stand density affects the rate and variability of tree

growth and consequently the dYnamics of stand structure.

(2). Mean tree size is an expression of the growth stages

of even-aged stand development. The interaction of mean tree size

and surviving number of trees in a stand can be expressed as a

measure of relative stand density which influences the

relationship between tree volume growth and tree volume.

(3). Common statistics used to describe a frequency

distribution are the mean, standard deviation, and skewness.

Ecological studies showed that coefficient of variation is also a

useful measure of inequality of plant population or "size

hierarchy", which provides a robust indicator of density effects

on growth and traces the effects of size-selective mortality

(Bendel et al., 1989; Knox and Peet, 1989).

Several stand variables and the first four moments of the

tree volume distribution were evaluated as predictors. Number of

trees (N), quadratic mean tree diameter (D) and the coefficient

of variation of tree volume distribution (CV) were found to be

the most statistically significant and biologically meaningful

predictor variables. The recursive system is formulated as

follows:

Pl = feN, D, CV),

Pz = f(P 1 , N, D, CV),

Po = f(P1 , Pz, N, D, CV).
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Borders (1989) outlined systems of related equations and

suggested that ordinary least squares (OLS) can be used to obtain

parameter estimates if there is no cross-equation correlation

between error components of the system equations. The situation

he described is a recursive system, a special case of

simultaneous equation systems. If the coefficient matrix of the

endogenous variables in the system is triangular and the

variance-covariance matrix of the equations in the system is

diagonal, the simultaneous equation system is called a diagonally

recursive system (Kmenta, 1971) or simple recursive system (Fomby

et al., 1984). In this case, OLS provides an optimal estimating

technique (Johnston, 1972; pindyck and Rubinfeld, 1976; Theil,

1971), and the application of OLS to each of the structural

equations leads to unbiased, consistent and aSYmptotically

efficient estimates (Kmenta, 1971). To confirm that we had a

diagonally recursive system, we applied the Lagrange mUltiplier

test (Judge et al., 1988) to determine that the error components

for the three equations in the system are pairwise uncorrelated.

The variance-covariance matrix of the equations in the system was

estimated using the 6-year Douglas-fir growth data. The Lagrange

mUltiplier statistic was calculated based on the estimated

variance-covariance matrix and equaled 5.16, which was less than

the 5% critical value (7.81) from the X2-distribution with 3

degrees of freedom. Thus, the variance-covariance matrix of the

equations in the recursive system is diagonal. Therefore, each

equation in this simple recursive system is appropriately
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estimated by the OLS procedures we employed.

(1). Pre4iction m04el for tbe coefficient PI

Nonlinear relationships between the coefficient PI and

three stand variables (N, D, CV) were observed. After evaluating

different nonlinear equation forms in terms of model fitting,

residual analysis and biological interpretation, the following

prediction model for PI resulted:

-O.02C6 .D

Pl = N* (1- e cv ).

The aSYmptotic error of the estimated parameter was

(2)

0.0007967. A slight trend in the residual plot versus the

predicted PI existed. Adding an intercept to the equation (2)

eliminated the trend in the residual plot. However, the estimated

intercept was nearly equal to one, resulting in a predicted PI

always larger than one and consequent poor model behavior.

Therefore, we selected the equation (2) as the prediction model

(2). Pre4iction m04el for tbe coefficient P2

The prediction model for the quadratic coefficient P2 was

developed using the coefficient PI and two stand variables, D and

CV, as independent variables. Number of trees (N) was

statistically nonsignificant in the analysis, unlike the
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prediction equation for Pl. The resultinq model was:

P2 = 5.9978 -10.4822 * P1 +2.1194 * log (D)

1-61.9929 * ( cv) .
(3)

All independent variables were statistically siqnificant

(a=0.05). The R2 of the model was 0.75 and the root mean squared

error was 2.61. The collinearity diaqnostics indicated that no

mUlticollinearity problems amonq the three independent variables

were found (VIFs for the three variables were less than 1.2). The

plot of residuals aqainst the predicted values of P2 showed a

random pattern around zero with no detectable trend.

(3). Prediction model for the coefficient Po

The coefficient Po was related to both linear coefficient Pl

and quadratic coefficient P2 of the RSG function, as well as to

the three stand variables. The model was:

Po =0.02765 - 0.03782 * Pl - 0.001559 * P2

+0.002393 * ( 1~0 ) 2 +0.004277 * log (D)

+0.1176* (....!..)
CV

(4)

All independent variables were statistically siqnificant

(a=0.05). The R2 of the model was 0.91 and tne root mean squared

error was 0.0032. No mUlticollinearity problems amonq the five

independent variables were diaqnosed (VIFs for PI and P2 were 4.1

.. %i==.tt.t.55.i I , ......t.t .. awe. c , ,~, ~ :;C • .'! ,c ......J:;.d .....i.t._ .. ... Amii5& tuNAI.66.t. t .iJ. :'
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and 4.0, respectively; VIFs were 1.5 for H2 , 1.5 for 10g(D), and

1.3 for (l/CV». The residual analysis did not show a detectable

pattern.

HODEL EVALUA'1'ION AND YERIPICA'1'ION

Often model evaluation and verification are performed on

data not used in model fitting process (i.e. independent data).

Although using independent data has several positive aspects, we

chose to test the relative size-growth (RSG) function differently

for three reasons. First, we felt that the amount of data used in

the model fitting process was somewhat limited. Therefore, we

wanted to use all the data for model development. Second,

independent data evaluations are most helpful when selecting

between various model forms. In this situation, an independent

data evaluation might give us some idea of "real" error levels

when the model is used for prediction. However, with the limited

data, the resulting error estimates would be questionable. Last,

what we really wanted to show with the evaluation and

verification is how the model responds to various stand and tree

size composition structures. This, we believe, is more important

than testing against independent data for the model.

I. Evaluation of the Relative Size-Growth Function

Eight plots were selected from the Douglas-fir growth data
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to illustrate four stand development phases.given two different

stand structures for each density class. The initial stand

attributes, number of trees, quadratic mean diameter, coefficient

of variation of tree volume, and relative density index (Drew and

Flewelling, 1979), for each example plot are provided in Table 2.

The three stand variables were used to predict the

coefficient ~1 of the RSG function using equation (2). Then the

predicted ~1 and observed stand variables were input into

equation (3) to predict the coefficient ~2. Finally the

coefficient ~o was obtained by equation (4) using the predicted

~1' ~2 and observed three stand variables. The predicted

coefficients of the RSG function are given in Table 3 with

corresponding coefficients estimated from regressions fit to

actual Douglas-fir growth data. The behavior of the predicted RSG

function was compared with that of the regression models, as well

as a plot of observed data for each plot.

Two low density stands are illustrated in Figure 3. Plot

50-3 is a uniform stand with little variation in tree size and

represents plantation conditions (Figure 3(a». Before crown

closure « 0.15 relative density according to Drew and Flewelling

(1979» the trees are growing as a collection of individuals

without inter-tree competition. The observed and predicted RSG

function reflect this condition as a line with little slope, i.e.

all trees contribute about the same relative growth. Plot 257-6

(Figure 3(b» is also a low density stand prior to crown closure.

However, this plot shows more variation in tree size primarily
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due to the presence of one much larger individual, likely part of

an older residual age class. The observed RSG relationship is

linear and each tree1s relative growth is approximately

proportional to its initial relative size. The predicted RSG

function is non-linear indicating that the very large individual

would attain growth more than proportional to its relative size.

It is noteworthy that most of the uncommon large disagreements

between observed and predicted RSG functions occurred in this

type of situation with a few much larger residual trees in a

stand. There was no particular bias apparent for these larger

trees (i.e. on the average the predictions agreed with the

observed) but the variation was high. Actual large trees grew

more or less efficiently, as expressed by the RTG/RTS ratio, than

smaller trees, with the shape and curvature of the actual RSG

function depending on plot specific conditions such as age,

species and condition of the large residual trees. This type of

variation in stand dynamics is not completely accounted for given

the level of detail in our current modeling approach. However, it

appears that this approach has promise for modeling multi-storied

or uneven-aged conditions.

Relative size-growth relationships for two stands with

relative densities just past crown closure are shown in Figure 4.

Plot 250-5 (Figure 4(a» is a uniform stand. Both the observed

and predicted relationship is linear with a steeper slope than

for open-grown stands (Plot 50-3 in Figure 3(a». Each tree1s

relative growth is nearly proportional to its relative size (the
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.slope is about one) suggesting that inter-tree competition and

crown differentiation has begun. Plot 224-4 is about the same

density as 250-5 but has more variation in tree size (Figure

4(b», again primarily due to one much larger individual (17% of

the initial total volume in this one tree). The result for this

plot is similar to that illustrated in Figure 3(b). The predicted

RSG function is more non-linear than the observed.

Two stands of moderate density are shown in Figure 5. The

RSG relationship is linear for plot 262-3 (Figure 5(a», and the

predicted and fitted curves are nearly coincident. Crown

differentiation, but not substantial density dependent mortality,

has begun in this stand and the slope of the RSG function is

steeper than for lower relative densities. Plot 13-6 (Figure

5(b» has large variation in tree size, again due to a few larger

individuals. The RSG relationship, given higher density than the

previous plots, is predicted to be linear even with high

variation in tree size. The observed RSG function shows that the

largest trees were growing less efficiently than the smaller

trees. For example, the largest tree comprised about 14.5 percent

of the initial volume but contributed only about 9 percent to

growth.

Two high density plots near the assumed lower limit of the

self-thinning zone are shown in Figure 6. The RSG relationships

remain nearly linear for both stands and the observed and

predicted relationships are almost identical. The relative

variation (CV) in tree sizes for these plots were larger than
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average, typically high density stands had higher CVs.

overall, the predicted RSG functions match the observed

patterns of within-stand growth well. In addition, RSG function

behavior conforms to findings and observations about density

effects on stand growth dynamics by Hara (1984a, 1984b), Westoby

(1982, 1984), and Drew and Flewelling (1979). Our results also

suggest that stand structure affects growth distribution within a

stand in addition to density effects. This was particularly true

in low density stands where unusually large trees often attained

proportionally even more growth than their initial relative size

would indicate.

In summary, increasing stand density and mean tree size

results in the RSG function changing from convex to straight,

then to concave. Larger CV reduces the value of the predicted Pl

(steepness of the curve), but increases the value of the

predicted Pz (degree of curvature). Different stand structure,

density and tree size impact the shape of the RSG function,

consequently, influence relative tree growth within the stand. If

the RSG function is linear, the relative growth of individual

trees is proportional to their relative sizes. If the RSG

function is a convex curve, larger trees in the stand have larger

relative growth than smaller trees. In contrast, if the RSG

function is concave, smaller trees are more efficient than larger

trees.
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II. Verifica~ion of the Relative Size-Growth Function

Six plots with a 6-year growth period from year 2 to year 8

were selected from the Douglas-fir growth data to verify the

behavior of the RSG function. These six plots comprised partially

independent data because the growth period (from year 2 to year

8) was not directly used in model fitting process, thus providing

a set of initial conditions somewhat different than those used in

model development. Stand variables at year 2 of the six plots are

shown in Table 4. These plots were selected to cover a relatively

broad range of stand conditions, e.g. stand density ranged from

260 to 1420 trees per acre, quadratic mean tree diameter from 4.4

to 10.7 inches, and stand total volume from 1447 to 6825 cubic

feet per acre. Three of the plots (i.e. plots 13-4, 13-8, and 30­

4) had been thinned at year 0, the rest were unthinned (i.e.

plots 13-2, 13-6 and 30-6).

The stand variables at year 2 were input into equations (2),

(3), and (4) to predict the three parameters of the RSG function

for each plot. Relative tree growth (RTG) was calculated for each

alive tree during the 6-year growth period according to its

relative tree size (RTS), applying the plot-specific RSG

function. Predicted tree volume growth was obtained by

multiplying the actually observed 6-year stand volume growth of

each plot by each tree's RTG. Predicted 6-year tree volume growth

was compared with the corresponding observed 6-year tree volume

growth. Prediction error was defined as the difference between
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observation and prediction. Positive values of error are under­

prediction and negative values over-prediction.

Prediction errors for the 6-year volume growth were

calculated for each tree and then averaged for each plot. Since

the distributions of the observed tree volume growth and

prediction error for some plots were asymmetric, median

prediction error may be a better measure for central tendency.

Table 5 shows the means and medians of the observed 6-year volume

growth and prediction error for the six plots. Overall mean and

median were also calculated over the six plots. The results

indicated that across all six plots, the RSG function over­

predicted tree volume growth by 0.0235 cubic feet, which was

about 1.1% of the observed mean tree volume growth in 6 years

(2.20 cubic feet). If median terms were used, the RSG function

over-predicted tree volume growth by 0.16 cubic feet (8.8% of the

observed median tree volume growth).

The performance of the RSG function across diameter classes

within a stand was also examined. For each of the six plots, the

predicted and observed 6-year volume growth of individual trees

were categorized into 2-inch diameter classes for initial tree

DBH. A cumulative frequency distribution of the predicted tree

volume growth was plotted and compared with that for the observed

tree volume growth (Figure 7). For most plots the distributions

of the predicted volume growth are nearly identical to the

distributions of the observed tree volume growth in both levels

and shapes which varies from near linear to sigmoid. For plot 13-
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6 (Figure 7(c», the RSG function over-predicts tree volume

growth for small diameter classes, but under-predicts tree volume

growth for diameter classes larger than 6 inches even though the

overall curve shapes are similar. The reason may be that this

plot has a number of small trees and large variation in tree size

(CV is 190), due to a few larger individuals. This stand is

approaching a storied condition, a situation that is relatively

uncommon in the development data. The similarities in shapes

between the observed and predicted volume growth distributions

indicated that the RSG function reasonably represents the

different patterns of within-stand volume growth across diameter

classes.

CONCLUSIONS

The relative size-growth (RSG) function developed in this

study provides a biologically meaningful way to represent stand

dynamics and development. The characteristic shape of the RSG

function is determined by initial stand density, mean tree size

and stand structure and describes the distribution of tree growth

within a stand. Therefore, the RSG function can be used as a link

between a whole-stand model and individual tree model. Stand

volume growth predicted from a whole-stand model can be

distributed among a list of individual trees if the tree list is

available as input (Zhang, 1990). ThUS, consistent growth and

yield estimates can be obtained at whole-stand or individual tree



22

levels as desired to fulfill different decision making. Further,

this disaggregation approach should also apply to other stand

attributes (such as stand basal area growth), other tree species

and/or geographic areas, and with appropriate modifications may

apply to more complex stand structures.

silvicultural interventions, such as thinning, directly

alter the variables used for predicting the coefficients of the

RSG function. Further, the RSG function performed equally well

for thinned and unthinned stands. Therefore, we feel that the

disaggregation function should reasonably represent the effects

of density management manipulations on stand dynamics.
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Table 1. Averages and ranges of stand attributes at the
beginning of a 6-year growth period for 218 Douglas-fir plots

Attribute Mean Min Max

OF site index (ft @ 50 Yr) 70 39 105
Stand total age (year) 61 11 100
Number of trees (trees/ac) 318 90 1640
Top height (feet) 73 12 118
Basal area (ft2/ac) 140 3 370
Quadratic mean diameter (in. ) 9.8 1.2 16.9
Total volume (ft3 /ac) 3669 33 9416
Mean tree volume (ft3 ) 15 0.1 59
Relative density index 0.20 <0.01 0.84
Coefficient of variation 66 25 224

of tree volume distribution

Relative density index represents Drew-Flewelling's relative
density index

- ....iJi;" . .w4i .... .1!M ( ,n ( .£.$.J&&.t.t.h.t..n.WA . ( , .. .e.g.. ~M1.iii ( iQiUO ..Oiwlw:t.d.t.tS.K.49A .. . JJt. ..4WWkJ . .t (tli!I:"



Table 2. Stand variables and example stand conditions
for eight plots used in evaluation of the relative size
-growth function

Stand Variables

Number Quadratic Coefficient Relative
of Mean of Density

Plot Trees Diameter Variation Index

50-3 470 1.16 54 0.01
257-6 93 14.63 73 0.09
250-5 350 8.23 61 0.17
224-4 100 16.94 94 0.19
262-3 350 9.52 66 0.32
13-6 1640 3.96 223 0.34
14-2 1020 6.18 110 0.51

288-1 300 12.73 81 0.51
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Table 3. Estimated coefficients from regressions and predicted coefficients
from the prediction models of the relative size-growth function for eight
example plots

flo fJ 1 fJ 2

Regression Prediction Regression Prediction Regression Prediction
Plot model model model model model model

50-3 0.013 0.018 0.384 0.248 2.566 2.566
257-6 0.003 0.014 0.914 0.455 0.433 6.074
250-5 -0.001 -0.001 1.203 1.156 -3.894 -2.669
224-4 0.001 0.014 1.013 0.442 -0.303 6.707
262-3 -0.002 -0.002 1.125 1.234 -1.348 -3.091

13-6 0.001 0.012 1.088 0.714 -3.224 1.158
14-2 -0.002 -0.006 1.207 1.412 -1.866 -5.513

288-1 -0.006 -0.001 1.272 1.159 -1.996 -1.528
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Table 4. Stand variables at year 2 for the six plots used
in verification of the relative size-qrowth function

Number Quadratic Coefficient Total
of Mean of Volume

Plot Thinned Trees Diameter Variation (ft3 /a)

13-2 No 1420 4.40 120 2950
13-4 Yes 520 5.45 69 1523
13-6 No 1340 4.44 190 3093
13-8 Yes 260 6.90 71 1447
30-4 Yes 300 10.69 58 5230
30-6 No 620 8.53 102 6825



Table 5. Mean and median prediction errors of 6-year volume
growth of individual trees for the six verification plots

30

Mean Volume Median Volume Mean Error Median Error
Plot Growth eft3

) Growth eft3
) eft3

) eft3
)

13-2 1.292 0.715 -0.0013 -0.06
13-4 1.925 1.715 +0.0006 -0.06
13-6 1.340 0.740 +0.0003 -0.26
13-8 3.985 3.900 +0.0000 -0.19
30-4 3.034 3.070 -0.0067 -0.11
30-6 1.611 0.790 -0.1344 -0.30
---------------------------------------------------------
Overall 2.198 1.822 -0.0235 -0.16
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LIST 01' I'IGURES

Figure 1: Distribution modifying function (DMF) and their
effects on the shape of size frequency distribution
(after Westoby, 1984).

Figure 2: Relationships between the coefficients of the relative
size-growth function: (a) Po versus P1 , (b) P1 versus

PH (c) Po versus Pz•

Figure 3: Behavior of the relative size-growth function for two
low-density stands: (a) with no, and (b) with a few
relatively large individual trees.

Figure 4: Behavior of the relative size-growth function for two
stands just after approximate crown closure: (a) with
no, and (b) with a few relatively large individual
trees.

Figure 5: Behavior of the relative size-growth function for two
moderate-density stands: (a) with no, and (b) with a
few relatively large individual trees.

Figure 6: Behavior of the relative size-growth function for two
high-density stands: (a) with no, and (b) with a few
relatively large individual trees.

Figure 7: Cumulative frequency distribution of the predicted and
observed 6-year tree volume growth by diameter class at
year 2 for (a) plot 13-2, (b) plot 13-4, (c) plot 13-6,
(d) plot 13-6, (e) plot 30-4, and (f) plot 30-6.
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(b) Plot 288-1
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(e) Plol 30-4
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(f) Plot 30-6
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