Two-year Growth Response to Multi-nutrient Fertilizer Application on Boise Cascade Lands in Northeast Oregon

Peter G. Mika

Intermountain Forest Tree Nutrition Cooperative University of Idaho

October 29, 1996

In spring of 1995 two fertilizer trials were installed on Boise Cascade lands in northeast Oregon, one at Clear Creek in a young Ponderosa pine plantation, the other at Noregaard in a natural mixed conifer stand. Six growth monitoring plots were established at each site, three of which were treated with a multi-nutrient fertilizer; the other three plots remained untreated for use as experimental controls. Plot sizes of 0.05 and 0.1 acres were used at the Clear Creek and Noregaard installations, respectively. The elemental rates of the multi-nutrient fertilizer are shown in Table I.

Nutrient	Rate (lbs/a)	Source	Rate (lbs/a)
Nitrogen	200	Urea	387
		Ammonium Phosphate	193
Potassium	170	Potassium Sulfate	400
Phosphorus	100	Ammonium Phosphate	
Sulfur	90	Potassium Sulfate	
		Copper Sulfate	40
Boron	10	Borate FG	69
Copper	10	Copper Sulfate	
Zinc	10	Blu-Min-Zinc	55
Molybdenum	1	Sodium Molybdate	2.5

Table I. Nutrient element rates for the multi-nutrient fertilizer.

Foliage collections were made in fall of 1995 and again in fall of 1996. Analysis of the initial foliar chemistry data was presented by Terry Shaw (1996). The 1996 collections have not yet undergone chemical analysis.

At the time of establishment all growth plot trees were examined for condition and measured for diameter at breast height and total height. Measurements were taken on 71 and 132 trees and Clear Creek and Noregaard, respectively. Summaries of this information were presented by Shaw (1996). Average stand conditions at the start of the experiment for the two installations are shown in Table II.

In fall of 1996, two growing seasons after fertilizer application, all growth plot trees were measured for diameter at breast height. Tree condition was also recorded. From this data and information collected at the time of plot establishment, per acre values of stand size, density, and volume were calculated. Summaries of this information for the two installations are presented in Appendix A.

Characteristic	Clear Creek	Noregaard
Trees (stems/acre)	237	220
Basal Area (ft²/a)	22.6	57.1
Total Volume (ft³/a)	143	751
Crown Competition Factor	22.8	71.8
Quadratic Mean Diameter (in)	4.19	6.90
Relative Density (Curtis)	11.1	21.7
Species Composition (% of Basal A Ponderosa Pine Grand Fir Douglas-fir Engelmann Spruce Western Larch Lodgepole Pine	Area) 99.5 0.0 0.0 0.3 0.1 0.1	3.2 31.3 29.0 19.7 15.7 1.0

Table I. Average initial stand conditions for the two multinutrient fertilizer installations.

Analysis Methods

Analysis of fertilizer effects on tree growth was made by comparing growth rates of control and treated plots using analysis of variance techniques. Two-year basal area growth and change in quadratic mean diameter were both examined. Basal area growth was calculated as the difference between initial and two-year total basal area on each plot; similar calculations were made for mean diameter change. As no mortality had yet occurred on any of the plots, there was no need to calculate separate values for gross and net growth.

Fertilizer effects on basal area growth were estimated using a randomized block analysis of covariance model. The particular model fit was (after Federer, 1955):

Results

Analysis of variance results for two-year basal area growth are shown in Table III. The overall model was highly significant (p=0.0035), accounted for 80% of the total variation in basal area growth, and had a coefficient of variation of 9.6%. The initial basal area covariate was extremely useful in reducing variation. After adjusting plots to a common basal area of 39.9 ft²/a, the multi-nutrient fertilizer was estimated to produce an increase of 2.4 ft₂/a over control plot growth rates; this response was highly significant (p=0.0063).

Table II. Analysis of covariance table with parameter estimates and least squares means for two-year basal area growth by treatment adjusting for differences in initial basal area.

Dependent Variab	ole: BAGROW 2	? year ba gro	wth (sq.ft/	a)		
Source	DF Sum	n of Squares	Mean	Square	F Value	Pr > F
Model	3	38.87171404	12.95	723801	10.82	0.0035
Error	8	9.58239860	1.19	779983		
Corrected Total	11	48.45411264				
F	R-Square	C.V.	Rc	ot MSE	BAG	ROW Mean
C	0.802238	9.609135	1.09	444042	11.	38958275
Source	DF	Type I SS	Mean	Square	F Value	Pr > F
Installation	1	1.08824246	1.08	824246	0.91	0.3684
Treatment	1	6.07152357	6.07	152357	5.07	0.0544
Initial BA	1	31.71194801	31.71	194801	26.48	0.0009
Source	DF	Type III SS	Mean	Square	F Value	Pr > F
Installation	1	32.72978295	32.72	978295	27.32	0.0008
Treatment	1	16.09691309	16.09	691309	13.44	0.0063
Initial BA	1	31.71194801	31.71	194801	26.48	0.0009
		T f	for HO:	Pr > T	Std Err	or of
Parameter	Estimate	e Para	meter=0		Estim	ate
INTERCEPT	-10.73421671	В	-2.43	0.0411	4.413	49285
Install 1	14.51822413	3 В	5.23	0.0008	2.777	37202
2	0.0000000) В				
Treatment 0	-2.42370341	В	-3.67	0.0063	0.661	15045
1	0.0000000) В	•		•	
Initial BA	0.40322165	5	5.15	0.0009	0.078	36543
		Least Squar	es Means			
Treatmer	nt BAGROW	Std Err	Pr > 1	' P.	r > T H0:	
	LSMEAN	LSMEAN	H0:LSMEAN	I=0 LSM	EAN1=LSMEAN	2
0	10.1777310	0.4572709	0.00	01	0.0063	
1	12.6014345	0.4572709	0.00	01		

Because the two stands were so different in terms of species composition and initial size and density, additional analysis was conducted to see if relationships varied for the two sites. This was accomplished by including installation X treatment and installation X basal area terms in the analysis of covariance model. Results, shown in Table IV, indicate that basal area response did not vary significantly between the two sites; the installation X treatment term was non-significant (p=0.6030) and any differences by treatment in covariate adjustment were marginal (p=0.1463). These trends can be seen in the plot data shown in Figure 1. For both sites, two-year growth rises as initial basal area increases. The trend may be steeper for the Clear Creek installation, but not to a significant extent.

CC control CC multi + NG control NG multi

Figure 1. Two-year basal area growth versus initial basal area. Values on the left represent plots at Clear Creek (CC) while those on the right are from Noregaard (NG).

Two-year basal area growth and response are summarized in Figure 2. Using the parameter estimates given in Table IV, basal area growth was adjusted to a common initial basal area of 23 ft²/a for Clear Creek and 57 ft²/a for Noregaard. At those starting conditions, estimated average control two-year growth was quite similar for the two sites, 10.6 and 10.1 ft²/a for Clear Creek and Noregaard, respectively (Figure 2a). The Clear Creek site showed better growth on the fertilized plots, averaging 13.2 ft²/a versus 12 ft²/a for the Noregaard site. Values for the average were obtained from parameter estimates given in Table III using an average initial basal area of 40 ft²/a.

Table III. Analysis of covariance table with parameter estimates and least squares means for two-year basal area growth by installation and treatment adjusting for differences in initial basal area.

Dependent Vari	able:	BAGROW	2 year ba	a growth	(sq.ft/	a)			
Source		DF	Sum of S	Squares	Mean	Square	ΕV	alue	Pr > F
Model		5	41.90	0839998	8.38	168000		7.68	0.0138
Error		6	6.54	1571266	1.09	095211			
Corrected Tota	ıl	11	48.45	5411264					
_	_								
F	R-Squa:	re)	C.V.	Root I	MSE		BAGR	.OW Mean
Ĺ	.8649	09	9.1/()543	1.04448	653		11.3	8958275
Source		DF	Туре	e I SS	Mean	Square	ΕV	alue	Pr > F
Installation		1	1.088	324246	1.08	824246		1.00	0.3565
Treatment		1	6.071	L52357	6.07	152357		5.57	0.0564
Initial BA		1	31.711	L94801	31.71	194801	2	9.07	0.0017
Install X Trea	atment	1	0.000	02263	0.00	002263		0.00	0.9965
Installation X	KВА	1	3.036	566331	3.03	666331		2.78	0.1463
Source		DF	Tvpe 1	III SS	Mean	Square	ΕV	alue	Pr > F
Installation		1	0.026	515103	0.02	615103		0.02	0.8820
Treatment		1	13.547	701264	13.54	701264	1	2.42	0.0125
Initial BA		1	18.295	518137	18.29	518137	1	6.77	0.0064
Install X Trea	atment	1	0.328	351654	0.32	851654		0.30	0.6030
Installation X	KВA	1	3.036	566331	3.03	666331		2.78	0.1463
				T fo	~ UO.	Pr >	τι	Q+	d Error of
Parameter		Feti	mato	Param	a + ar = 0	гц / I	ΤI	JU	Estimato
INTERCEPT		0 47500	3480 B	raram	0 06	0 95	42		7 93267983
Installation	1	1 64482	4014 B		0.00	0.93	72		8 17652246
indealideion	2	0 00000	0000 B		0.20	0.01	, 2		0.17002210
Treatment	0	-1.90185	9879 B		-2.05	•	68		• 0.92971159
1100000000	1	0.00000	0000 B		2.00		00		
Initial BA	-	0.20243	5533 B		1.43	0.20	30		0.14170100
Install*Treat	1 0	-0.70158	6393 B		-0.55	0.60	30		1.27851369
	1 1	0.00000	0000 B						
	2 0	0.00000	0000 B						
	2 1	0.00000	0000 в			•			
Install*BA	1	0.27834	9984 в		1.67	0.14	63		0.16683829
	2	0.00000	0000 B		•				•
			I coot (Sanaroc	Moang				
			Least 3	Jyuares	means				

Inst	Trt	BAGROW	Std Err	Pr > T	Pr	> T H	0: LSMEA	N(i)=LSM	EAN(j)
		LSMEAN	LSMEAN	H0:LSMEAN=0	i/	j 1	2	3	4
1	0	18.6854092	1.5391367	0.0001	1	•	0.0251	0.0082	0.0111
1	1	21.2888555	1.7316759	0.0001	2	0.0251		0.0038	0.0047
2	0	6.6442944	2.6985359	0.0490	3	0.0082	0.0038	•	0.0868
2	1	8.5461543	2.3391425	0.0107	4	0.0111	0.0047	0.0868	•

Figure 2a. Two-year basal area growth by site and fertilizer treatment (control, multi-nutrient) adjusted to the average initial basal area for each site.

Figure 2b. Two-year basal area response by site. Response is the difference between treated and control.

Two-year basal area response, shown in Figure 2b, averaged 2.6 ft²/a at Clear Creek, but only 1.9 ft²/a at Noregaard, a 27 % reduction in treatment effect although statistically non-significant. Because the Noregaard site was growing at a slower rate, differences between relative responses to fertilization (Figure 2c) at the two sites were smaller: 24.5 % at Clear Creek versus 18.8 % at Noregaard. Averaged across the two sites, multi-nutrient fertilizers produced a 23.5 % increase in basal area growth.

Analysis of variance results for two-year mean diameter growth, given in Table V were similar, but stronger; the model was highly significant (p=0.0001), accounted for 98% of the variation in diameter growth, and had a low coefficient of variation of 3.4%. Note that a covariate was not included, as all tested showed lack of significance. The data plotted in Figure 3 clearly shows the lack of need for any covariate adjustment for initial diameter: the trend in growth versus initial diameter is flat for both sites.

Figure 3. Two-year mean diameter growth versus initial mean diameter. Values on the left come from plots at Clear Creek (CC) while those on the right are from Noregaard (NG).

Table IV. Analysis of variance table with parameter estimates and least squares means for two-year mean diameter growth by treatment.

Dependent	Variable	: DBHGROW	2 year c	hange in	n mean dbł	n (in)		
Source Model Error Corrected	Total	DF 2 9 11	Sum of Squ 0.3812 0.0068 0.3880	ares 1563 0072 1635	Mean Sc 0.1906 0.0007	quare 50782 75564	F Value 252.2	e Pr > F 5 0.0001
	R-Square		c.v.		Root	MSE	DI	BHGROW Mean
	0.982473		3.403479		0.02748	3883		0.80766841
Source	DI	<u>-</u>	Type I S	S	Mean Sc	quare	F Value	e Pr > F
Installat	ion 2	L	0.3250219	3	0.3250)2193	430.13	3 0.0001
Treatment		L	0.0561937	1	0.0561	L9371	74.3	7 0.0001
Source	DI	7	Type III S	S	Mean So	quare	F Value	e Pr > F
Installat	ion :	1	0.3250219	3	0.3250)2193	430.1	3 0.0001
Treatment		L	0.0561937	1	0.0561	L9371	74.3	7 0.0001
				T for	нO•	Dr >	ן דין ו	Std Error of
Parameter		Est	imate	Paramet	ter=0	11 /	1-1	Estimate
INTERCEPT		0.71152	37670 в		51.77	0.0	001	0.01374441
Install	1	0.329153	13980 в	2	20.74	0.0	001	0.01587068
	2	0.00000	ООООО В					
Treatment	0	136862	21024 в	-	-8.62	0.0	001	0.01587068
	1	0.00000	ООООО В					
			Least S	quares N	Means			
Tre	eatment	DBHGROW	Std E	rr l	?r > T	Pr	: > T]	H0:
		LSMEAN	LSME	AN HO	LSMEAN=0	LSME	AN1=LSM	EAN2
0	0.	73923736	0.011222	27	0.0001		0.0001	
1	0.8	37609947	0.011222	27	0.0001			

Possibilities of between-site variation in relationships of growth to treatment were again tested by examining a model including an installation X treatment effect: results, shown in Table VI, indicate a difference in response between the two sites (p=0.0223).

Table V. Analysis of variance table with parameter estimates and least squares means for two-year mean diameter growth by installation and treatment.

Dependent Variable:	DBHGROW 2 yea	ar change in	n mean dbh (in)	
Source	DF Sum of	Squares	Mean Squa	re FVa	lue Pr > F
Model	3 0.3	38461305	0.128204	35 301	.36 0.0001
Error	8 0.0	0340330	0.000425	41	
Corrected Total	11 0.3	38801635			
R-Square	C.V.		Root MSE	D	BHGROW Mean
0.991229	2.553713	3	0.02062553		0.80766841
Source	DF Typ	pe I SS	Mean Squa	re FVa	lue Pr > F
Installation	1 0.32	2502193	0.325021	93 764	.02 0.0001
Treatment	1 0.05	5619371	0.056193	71 132	.09 0.0001
Install*Treatment	1 0.00)339742	0.003397	42 7	.99 0.0223
_					
Source	DF Type	III SS	Mean Squa	re FVa	lue Pr > F
Installation	1 0.32	2502193	0.325021	93 764	.02 0.0001
Treatment	1 0.05	5619371	0.056193/1		0.0001
Install*Treatment	1 0.00)339742	0.003397	42 7	0.0223
		T for	н0: Р	r > T	Std Error of
Parameter	Estimate	e Parame	eter=0		Estimate
INTERCEPT	0.6946976448	3 В	58.34	0.0001	0.01190816
Installation 1	0.3628036420	5 В	21.54	0.0001	0.01684067
2	0.000000000) в		•	•
Treatment 0	1032098578	3 В	-6.13	0.0003	0.01684067
1	0.000000000) в		•	•
Install*Treat 1 0	0673044893	LВ	-2.83	0.0223	0.02381631
1 1	0.000000000) в	•		•
2 0	0.000000000) в		•	•
2 1	0.000000000) в			
		~			
	Least	: Squares Me	eans		
Inst Trt DBHGROW	Std Err	Pr > T	Pr > T H	0: LSMEAN	(i)=LSMEAN(j)
LSMEAN	I LSMEAN H	H0:LSMEAN=0	i/j 1	2	3 4
1 0 0.88698694	0.01190816	0.0001	1.	0.0001	0.0001 0.0001
1 1 1.05750129	0.01190816	0.0001	2 0.0001		0.0001 0.0001

Two-year change in mean diameter (Figure 4a) on untreated plots averaged 0.89 inches at Clear Creek but only 0.59 inches at Noregaard, a 33% reduction. With application of multi-nutrient fertilizer these changes increased to 1.06 at Clear Creek and 0.69 at Noregaard. Average change in mean diameter across the two sites, obtained from the model in Table V, was 0.74 inches on

0.0001 3 0.0001 0.0001 . 0.0003 0.0001 4 0.0001 0.0001 0.0003 .

2 0 0.59148779 0.01190816

2 1 0.69469764 0.01190816

Figure 4a. Two-year change in mean diameter by site and fertilizer treatment (control, multi-nutrient).

Figure 4b. Two-year mean diameter response by site. Response is the difference between treated and control.

controls and 0.88 inches on treated plots. While response to the multi-nutrient fertilizer was significant at both sites, the average response (Figure 4b) at Clear Creek of 0.17 inches in two

years was significantly greater than the 0.1 inch response at Noregaard; this corresponds to a 41% reduction in absolute response. When expressed as percentages of control change in mean diameter, the difference in response between the sites is greatly reduced (Figure 4c): Clear Creek showed a 19.1 % response in mean diameter while Noregaard showed a 16.9 % response, a reduction of only 2.2 %.

Figure 4c. Two-year mean diameter % response by site. Response is the difference between treated and control expressed as a percentage of control change in mean diameter.

The two sites differed greatly in species composition which could explain some of the differences in response to fertilization. As Ponderosa pine made up 99 % of the Clear Creek stand but was generally absent from the Noregaard site, a direct comparison of species-specific response between the sites was not possible. However, possible differences in species response could be checked at Noregaard. Analysis of covariance indicated that basal area growth rates did differ significantly (p=0.0074) among species, with western larch showing slower growth, but there was no evidence that responses to fertilizer were different (p=0.4736). Results for mean diameter growth were similar.

References

- Federer, W. T. 1955. Experimental Design: Theory and Application. The Macmillan Co., New York, USA
- Shaw, Terry M. 1996. Foliar nutrient characteristics after mixed fertilizer application on Boise Cascade lands in northeast Oregon. Unpublished report, Intermountain Forest Tree Nutrition Cooperative, Univ. of Idaho, Moscow

Appendix A

Plot Mensurational Characteristics

Boise Cascade Multi-nutrient Trials Plot Summary Report

Installation 1 Clear Creek Region: Northeast Oregon Ownership: Boise Cascade Legal Description: T03N R41E Section 4 Meridian: Willamette 1 2 3 4 5 6 Plot Number ----- ----- ----- -----Treatment (1994) Cont Cont Cont Multi Multi Multi Mensurational Characteristics: At Time of Treatment (Spring, 1995) Stand Age = NA -----Live Trees per Acre280280160280180240Live Basal Area (sq.ft/a)28.527.315.626.519.218.6Live Total Volume (cu.ft/a)18917698164122109Crown Competition Factor292716271919Relative Density Index13.713.37.613.09.19.6Mean Diameter (in)4.34.24.24.24.43.8Site Height (feet)17.716.917.516.815.815.5 Species Composition (% of BA) 0.00.00.00.00.00.00.00.00.00.00.00.9 Grand Fir Western Larch 0.6 0.0 0.0 0.0 0.0 99.4 100.0 100.0 100.0 98.0 99.1 0.0 0.0 0.0 0.0 2.0 0.0 Lodgepole Pine 0.6 0.0 0.0 0.0 0.0 0.0 Ponderosa Pine Engelmann Spruce 2 Years After Treatment (Fall, 1996) -----Live Trees per Acre 280 280 160 280 180 240 Live Trees per Acre280280160280160240Live Basal Area (sq.ft/a)41.739.922.741.629.930.1Crown Competition Factor403922402830Relative Density Index18.217.610.018.212.713.8Mean Diameter (in)5.25.15.15.25.54.8Dead Trees per Acre000000Dead Basal Area (sq.ft/a)0.00.00.00.00.00.0Dead Total Volume (cu.ft/a)000000

Plot Summary Report Installation 2 Noregaard Region: Northeast Oregon Ownership: Boise Cascade Legal Description: T03N R41E Section 2&11 Meridian: Willamette 1 2 3 4 5 6 Plot Number ----- ----- ----- -----Treatment (1994) Cont Cont Cont Multi Multi Multi Mensurational Characteristics: At Time of Treatment (Spring, 1995) Stand Age = NA -----Live Trees per Acre200230240150260240Live Basal Area (sq.ft/a)58.160.257.052.253.861.5Live Total Volume (cu.ft/a)773790668826666781Crown Competition Factor657671648075Relative Density Index21.522.922.218.521.723.5Mean Diameter (in)7.36.96.68.06.26.9Site Height (feet)41.535.235.345.738.738.9 Species Composition (% of BA) 42.815.314.611.218.367.38.940.333.645.458.95.6 Douglas-fir Grand Fir 18.5 2.6 20.8 23.6 21.7 9.4 Western Larch Lodgepole Pine0.05.80.00.00.0Ponderosa Pine0.00.019.20.00.0Engelmann Spruce29.935.911.919.71.1 2 Years After Treatment (Fall, 1996) -----Live Trees per Acre 200 230 240 150 260 240 Live Trees per Acre200230240150260240Live Basal Area (sq.ft/a)67.771.167.661.866.974.1Crown Competition Factor768883749788Relative Density Index24.125.925.221.025.527.0Mean Diameter (in)7.97.57.28.76.97.5Dead Trees per Acre000000Dead Basal Area (sq.ft/a)0.00.00.00.00.00.0Dead Total Volume (cu.ft/a)000000

Boise Cascade Multi-nutrient Trials