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The Effect of Nitrogen Fertilization and Rock Type on Individual Tree Mortality

ABSTRACT. An individual tree mortality model for nitrogen fertilized Douglas-fir

(Pseudolsuga menzies;; var. gIauca (Beissn.) Franco) stands was developed using data from

pennanent research plots located throughout the inland Northwest. The proposed linear logistic

model included the following independent variables: a set of dummy variables for the 5 rock

types, a set ofdummy variables for the 3 nitrogen fertilizer treatments, diameter at breast height,

crown ratio, number of trees per hectare, and relative rank of tree size, defined by basal area in

larger trees over basal area per ha. The results show that nitrogen fertilization and rock type

significantly affect individual tree mortality. Trees growing on granitic and meta-sedimentary

rocks exhibited greater probabilities of mortality than did those growing on other rocks. The

probabilities of mortality for trees growing on sedimentary rocks were very low. The

probabilities of tree monality increased with increasing nitrogen fertilizer application rates.

Finally. nitrogen fertilization response ratios for annual probability of tree mortality were

estimated based on the mortality model. The response ratios were nearly constant (about 1.54)

across a range of tree diameters for all rock types with the 224 kg N treatment. The response

ratios were also nearly constant (about ~.50) across a range of tree diameters for all rock types

with the 448 kg N treatment.

Additional Key Words: PseudOl.wga mt.!ll:it:.\"ii var. g/allca. logistic function. mortality

prediction.
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Interior Douglas-fir (Pseudotsuga menzies;; var. g/auca (Beissn.) Franco) is important in

a wide range of forest types for a wide array ofnon-timber values, and also plays a critical role in

local and regional economies as a raw material for wood and paper products in the inland

Northwest. Therefore, forest managers apply intennediate silvicultural treatments, such as

cleaning, thinning, and fertilization, to Douglas-frr stands to achieve specific management goals.

In the inland Northwest, forest fertilization research began in the early 1960's

(Loewenstein and Pitkin 1963, Loewenstein and Pitkin 1971). Early work focused on growth

response of grand fir (Ab;es grand;s (Doug1.) Lindl.) and Douglas-frr stands to thinning and

nitrogen fertilization in northern Idaho (Olson 1981, Scanlin and Loewenstein 1981, Shafii et

al.1989). Recently, considerable research (Mika and Moore 1991, Shafii et al.1990, Stage et a1.

1990. Mika and Vander Ploeg 1991. Moore et al.1991, Mika et al.1992, Moore et al.1994, Mital

1995. Avila 1997) has shown that nitrogen fertilization can significantly increase basal area or

volume growth. Larger trees in a stand showed greater diameter growth response to nitrogen

fertilization than smaller trees, and individual trees in low-density stands exhibited more

fertilization response than those growing in high-density stands (Shafii et al. 1990). Furthermore.

rock type proved to be an important factor affecting stand-level growth response to N

fertilization (Mika et a1. 1992. Mital 1995). as well as the pattern of individual tree growth

response within a stand (Shen et al. 2000). Forest habitat type (Daubenmire and Daubenmire

1968) and rock type are now used to guide operational fertilization programs in the region

(Moore et al. 1998). However, there are no published individual tree mortality models that relate

the probability of mortality to nitrogen fertilizer treatment, rock type, stand attributes, and tree

attributes and that are compatible with growth simulation models, such as FVS (Wykoff et a1.

1982), used in the region.
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Informed forest management decisions need accurate growth and yield models that

provide reliable growth information. A typical growth and yield model usually includes three

components: survivor growth, ingrowth. and mortality. Mortality is the most difficult of these

components to predict accurately. The causes for tree mortality are complicated and the key for a

tree's survival is its genetic makeup and its environment (Spurr and Barnes 1980, Monserud and

Rehfledt 1990). Lee (1971) distinguished between regular and irregular tree mortality. Regular

mortality can be defined as the mortality due to competition for scarce resources. or due to tree

age, insects, and diseases at endemic levels. On the other hand, irregular mortality is caused by

some catastrophic event, for instance, fire, windthrow, or epidemic insect levels. These two

classes of tree mortality may not always be independent ofeach other (Dobbertin and Biging

1998). This situation causes many growth and yield models to have large variability associated

with their predictions; furthermore. the contribution to total variability due to the mortality

component increases as the projection period increases (Gertner 1989). In our study, only regular

tree mortality was considered.

Current mortality-modeling approaches can be grouped into two categories: classical

statistical methods and computer-intensive statistical methods. For classical statistical methods.

parameters of a flexible non-linear function bound by 0 and I are estimated using a maximum

likelihood estimation procedure or other procedures. The probability of a tree dying within the

next growing period. given the individual tree and stand characteristics. is computed in terms of

this function. Conceptually. any nonlinear function (eg. a cumulative distribution function),

which is implicitly defined on the range of 0 to 1. can be used to model individual tree mortality.

However. only a few functions have been used to model individual tree mortality. These

functions include the negative exponential function (Moser 1972), the logistic function
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(Hamilton 1974), the normal or probit function (Monserud 1976), the Weibull function (Somer et

aI. 1980), the Richard's function (Buford and Hafley 1985), the gamma function (Kobe and

Coates 1997). Ofthese functions, the logistic function is the most widely employed (Hamilton

1974, 1980, 1986, 1990, Hamilton and Wendt 1975, Hamilton and Edwards 1976, Monserud

1976, Buchman 1979, Buchman et al. 1983, Hann 1980, Lowell and Mitchell 1987, Vanclay

1991a, 1991 b, 1995, Avila and Burkhart 1992, Zhang et a1. 1997, Monserud and Sterba 1999).

Its widespread application is probably due to its biologically preferable shape (Hamilton and

Edwards 1976).

Two computer-intensive statistical methods: classification and regression trees (CART)

(Breiman et a1. 1984) and neural networks (Hertz et a1. 1991) have been used to model individual

tree mortality. In classification trees, a decision tree classifier recursively partitions the space of

explanatory variables into locally constant regions. often hypercubes parallel to the variables'

axes. There are many different schemes for estimating trees. The basic idea is to recursively

choose a variable or combination of variables and to split the variable's space on a carefully

chosen value. These schemes differ in allowing multiway splits or restricting binary splits and in

deciding how the best split is computed. Classification trees have been increasingly applied to

model individual tree mortality (Verbyla J987. Byler et al. 1990, LeMay 1995. Dobbertin and

Biging 1998). In neural networks. supervised feed-forward single hidden layer neural networks

with a logistic output activation function are very general and have been shown by many authors

that any continuous function can be approximated by these networks for sufficiently large

numbers of hidden units. Such networks have been used to model individual tree mortality (Guan

and Gertner 1991b, 1995). Guan and Gertner (1991a) built a two hidden-layered neural network

with a logistic output activation function to model individual tree mortality. Neither
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classification trees nor neural networks have led to significant improvement in our ability to

predict mortality over analyzes that use logistic regression methods (Hasenauer and Merkl 1997.

Monserud and Sterba 1999). Furthermore, tests ofhypotheses can not be performed easily based

on computer-intensive statistical mortality models. Therefore, the logistic function was chosen to

model individual tree mortality in this study since our primary objective was to develop an

individual tree mortality model and assess the effect ofnitrogen fertilization and rock type on

tree mortality.

Data

Data used in this study was obtained from Intermountain Forest Tree Nutrition

Cooperative (IFTNC) study sites. The study area includes six geographic regions: northern

Idaho, western Montana, central Idaho. northeast Oregon, central Washington, and northeast

Washington. From 1980 to 1982. the IFTNC established a total of94 fertilizer trials

(installations) throughout the six regions.

Installations were located in second-growth. even-aged, managed Douglas-fir stands.

Most stands had been thinned 5 to 12 years prior to plot establishment: a few stands were

unthinned. but naturally well spaced. Stands were selected to represent a range of stand density,

tree age and size. and site productivity. The stands were dominated by Douglas-fir and only

Douglas-fir tree mortality was modeled.

Each installation contained six square plots ranging from 0.04 to 0.08 ha in size. The plot

size was determined based on average tree size and stand density so that each plot contained at

least ten Douglas-fir sample trees. The plots were selected to minimize between-plot variation in

terrain. vegetation composition. tree stocking, and tree size at a site. Plots were grouped into two
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blocks ofthree plots based on similarity of these features to further reduce variation. Three

fertilizer treatments - 0, 224, and 448 kg/ha ofnitrogen - were randomly assigned to the plots

within each block. Nitrogen in the fonn of urea was applied in the late fall utilizing handheld

spreaders.

All live trees were measured for height (to the nearest 0.03 m) and diameter (to the

nearest 0.025 cm) at the initiation of the experiment. Every plot was revisited six years after

experiment establishment, and any incidence of tree mortality along with probable cause was

noted. A total of 12590 Douglas-fir trees, of which 12145 trees were classified as live and 445

(3.53%) were classified as dead, located on 564 plots across 94 installations, were used in this

analysis. Thus, each tree was observed over a 6-year period. Habitat was detennined on site for

each plot and each plot was assigned to one of five habitat type categories: grand fir (Abies

grandis), dry Douglas-fir (Pseudotsuga menziesii), moist Douglas-fir, western redcedar (Thuja

Plicata). and western hemlock (Tsuga helerophylla). Since there were limited observations

within selected habitat types on some rock types. in our analysis, habitat type was specified at

two levels. The moist level included grand fir. moist Douglas-fir, western redcedar. and western

hemlock habitat types and the dry level included dry Douglas-fir habitat types. Moist Douglas-fir

types occur in a region ofnonh central \\"ashington where grand fir is completely absent in its

geographic distribution. Thus. there can be no sites classified as grand fir habitat types in this

geographic sub-region (Williams and Lillybridge 1983). The moist Douglas-fir sites in our study

are similar to grand fir types elsewhere and we included them in the moist site category in our

analysis. Rock samples were collected at each location and, after examination by a geologist.

each installation was assigned to one of five rock type categories: granite, basalt. meta-sediment.

sediment, and mixed -glacial till. Individual tree records were checked for species codes,
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diameter at breast height, crown class codes, condition codes, crown ratio, and height, and l
individual plot records were compiled for habitat type codes, rock type codes, treatment codes,

slope, aspect, elevation, stand age, and Douglas-fir site index (Monserud 1984). Selected

'""1
!
,

Douglas-fir stand and tree attributes are summarized in Table 1. In order to test the mortality l
model on an independent data set, the data set was randomly split into two data sets. Two-thirds

of the data, a total of8394 Douglas-fir trees ofwhich 295 (3.51%) trees were classified as dead,
i

j

were used as the estimation data and the other one third of the data, a total of4196 Douglas-fir

trees ofwhich 150 (3.57%) tress were classified as dead, were used as the validation data.

Analysis

l
l
l

Mortality Model '1
Model development in our study was based on both biological and statistical

logistic regression model for binary data by the method of maximum likelihood, was used to

considerations. The SAS PROC LOGISTIC procedure (SAS Institute 1989), which fits the linear

model individual tree mortality as a logistic function of site. tree size, and competition following

'l
j

l
l
l
l
l
l
l

(1)

(2)

(3)

(4)

where:

p= 1
1+ exp(-(bo + SITE + SIZE + CUMP»

P =6-year probability of tree monality

COMP = b-l CR + b5 TPHI/oOO + b6 BAUBA

SIZE = bj DBHI/OO

4 '

SITE = Ib/kRCJ,+ !b~I1T1
.t=l ,.1

the biological rationale of Monserud and Sterba (1999).
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and

RCk = a set ofdummy variables for the 5 rock types

(RCI was coded 1 on granite rocks and 0 otherwise,

RC] was coded 1 on basalt rocks and 0 otherwise,

RCJ was coded 1 on meta-sedimentary rocks and 0 otherwise, and

Ret was coded 1 on sedimentary rocks and 0 otherwise.)

IT, = a set ofvariables for the 3 treatment types

(ITI was coded 1 with the 224 kg NIha treatment and 0 otherwise, and

IT] was coded I with the 448 kg Nlha treatment and 0 otherwise)

DBH =tree diameter at breast height (cm)

CR = tree crown ratio

TPH =number of trees per ha (treeslha)

BAL = basal area in trees larger than the subject tree (m2Iha) (Wykoff et aI. 1982.

Wykoff 1990)

BA = basal area per ha (m2/ha)

bl!. bl/. bl], blJ , bu. bz/. bJz. bJ• bJ • bj. b6 = parameters to be estimated

In the combined site effect (eq. 2). because rock type has been shown to be an important

factor affecting stand-level growth response to N fenilization (Moore et al. 1998) and could

represent differences in the forest nutritional environment (Shen et al. 2000), a set of dummy

variables RC representing rock effects were added to Monserud and Sterba's (1999) original

individual tree monality model. Fenilizer treatment can raise site productivity by adding readily

9
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available sources ofnutrients to increase a site's nutrient capital. Thus, a set ofdummy variables

TT representing treatment effects was added to the mortality model.

Habitat type is a land classification based on expected climax vegetation (Daubenmire

and Daubenmire 1968) and could represent a variety ofmoisture regimes. Interestingly when the

moist habitat type alone stayed in the model, the coefficient associated with the moist habitat

type had a positive sign. indicating that the probability of tree mortality on moist sites is higher

than on dry sites. This is illogical biologically. Habitat type became insignificant when the

number of trees per ha (TPll) was added to the model. Thus, habitat type was not included in the

mortality model. Other site-specific variables were not considered in our analysis to avoid over

fitting the resulting mortality model.

In the size effect (eq. 3). diameter at breast height (DBll) is an important and reliable

measure of a tree's size. Generally. the larger the tree, the greater its chances ofcompeting for

scarce resources. indicating the probability of mortality decreases with increasing DBH. Thus,

many mortality models include this variable (eg. Monserud 1976. Buchman et a1. 1983, Vanclay

1991a. McTague and Stansfield 1994. Monserud and Sterba 1999). Two transformations of

DBH: l/DBH and DBH"l are useful to represent the nonlinear size effect. The l/DBH term allows

the mortality model to estimate accurately the large mortality rates for small trees (Hamilton

1986). The DBH2 term allows the mortality model to represent the increased mortality rates for

the largest and oldest trees. i.e.. th~ sen~scence effect (Buchman 1983. Harcombe 1987.

Monserud and Sterba 1999). However. both transformations were not included in the mortality

model since they were insignificant in the presence of DBH.

In the combined competition effect (eq. 4). tree crown ratio (CR) is a measure of foliage

quantity indicative of tree vigor and is thus an important faclor affecting the probability of
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mortality. Usually, mortality rates decrease with increasing CR. Many mortality models include

this variable (eg. Avila and Burkhart 1992, Zhang et al. 1997, Monserud and Sterba 1999).

Although greatly dependent on tree vigor, the probability of a tree dying within the next growing

period is also conditioned by competition with other trees for scarce resources. Overall stand

density effects were represented in the mortality model by the number of trees per ha (TPH)

rather than the square root of basal area, BAG
•
s (Hamilton 1986), because inclusion of TPH in

\

place ofBAo.s resulted in an decrease of32.9 in the Akaike Infonnation Criterion (AlC), (Akaike

1974), and an decrease of 32.9 in the Schwarz Bayesian Infonnation Criterion (SBIC), (Schwarz

1978). Furthennore, the probability of a tree dying within the next growing period is also

dependent on its competitive status relative to neighboring trees. The BAUBA tenn (Vanclay

1991a), equivalently I-peT (Stage 1973) where PCTis tree's percentile in the stand basal area

distribution, was included in the mortality model in place of BAL (Monserud and Sterba 1999)

because inclusion ofBAUBA resulted in an decrease of4.8 in AIC and an decrease of4.8 in

SBle. Relative rank (BAUBA) allows the effect of relative size to vary with changes in basal

area. Since no interaction tenns were found to be significant for this particular data set. only

main effects were included in the mortality model.

Model Evaluation

Examining the perfonnance of the mortality model on the fit data set and testing the

model on the independent validation data set comprised model evaluation. Logistics models can

be used to produce stochastic or detenninistic predictions of mortality. When regression

predictions are stochastically applied. the predicted probability ofa tree dying within the next

growing period is compared with a random number generated from a unifonn distribution with
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the open interval 0 to 1. The tree is assigned to the predicted mortality class if the random

number is less than the predicted probability ofmortality. Deterministic predictions can be made

in two different ways. The ftrst way is to produce the number ofdead trees per ha each sample

tree represents by multiplying the per-hectare expansion factor by the tree's predicted probability

ofmortality. This method gives the expected values for the stochastic method in any given time

period (Weber et al. 1986). The second way is to convert the logistic probability model

predictions into dichotomous events (Le.• survival and mortality) predictions by using a

threshold. The tree is assigned to the predicted mortality class if the predicted probability of

mortality exceeds the threshold. We used both methods.

Fertilizer Treatment Effect and Rock Type Effect

Three hypotheses: (I) there are no differences among the control and fertilized plots. (2)

there is no difference between plots with the application of224 kg Nlha and plots with the

application of448 kg Nlha. and (3) there are no differences among rock types which were tested

separately based on the mortality model (eq. I). The generalized likelihood ratio test (GLRT)

method (Bain and Engelhardt 1991) was used to test these hypotheses,

Fertilization response estimation

To quantify an individual tree's response to nitrogen fertilization, the response ratio (R)
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= predicted value from the mortality model (eq. 1) with the 224 kg Nlha treatment

r
r
r
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Po

=response ratio for the 224 kg N/ha treatment

= response ratio for the 448 kg N/ha treatment

= predicted value from the mortality model (eq. 1) with the 448 kg Nlha treatment

= predicted value from the mortality model (eq. 1) with no treatment
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Like a multiplier (Hamilton 1994), R measures relative mortality response to fertilization

compared to a no-treatment alternative. When R is equal to 1, annual probability of mortality

remains unchanged with the application of nitrogen fertilizer; when R is greater than 1, annual

probability ofmortality increases due to nitrogen fertilization; when R is less than 1. annual

probability of mortality decreases due to nitrogen fertilization. However, it should be noted that

higher relative response does not necessarily translate into higher absolute probability of

mortality. Absolute probability of monal it)' depends on R and probability of mortality under the

no-treatment alternative as well.

Results

The maximum-likelihood estimates of the parameters. standard errors, Wald Chi-Square

statistics. and p-values of the parameters. from the SAS PROC LOGISTIC procedure. for the

mortality model (eq.l) are listed in Table :!. All coefficients associated with continuous variables

are statistically significant at a =0.05. The coefficients of DBH and CR are negative, indicating

that the probability of mortality will be less as tree diameter and crown ratio increase,

respectively. The coefficients of TPH and BAUBA are positive indicating that the probability of

mortality will be higher as overall stand density and basal area in larger trees increase. Those



14

changes suggest a tree's competitive status is less favorable in the stand. The Wald Chi-Square

Statistics in Table 2 show that ofcontinuous variables, the most important variable is crown ratio

CR; the second most important is number of trees per ha TPH,' the third most important is

diameter DBH; and the fourth most important predictor is relative rank BAVBA.

Predicted and observed mortality rates with respect to rock type, treatment, diameter

class, crown ratio, number of trees per ha, and relative rank (BAVBA) for the fit data set are

examined in Figure 1. The predictions perfectly matched the observed mortality rates for all rock

types and all treatments. The predictions were close to the observed mortality rates across all

diameter classes. The model slightly overestimated the mortality rates in the 0-0.2 and 0.4-0.6

CR classes and slightly underestimated the mortality rates in the 0.2-0.4 CR class. This lack of a

consistent error demonstrates that the model was well-behaved with respect to crown ratio. The

predictions were close to the observed mortality rates for all but the densest TPH class. We

further examined the model and found that predictions in the 1700-1850 trees/ha TPH class

perfectly matched the observed mortality rates (18.3% observed vs. 18.3% predicted mortality

rates) and the model overestimated the mortality rates only in the 1700 treeslha and above TPH

class (10.3% observed vs. 14.4% predicted mortality rates). This lack of a consistent error

indicated that the model performed well with respect to number of trees per ha. Predicted vs.

observed mortality rates with respect to relative rank (BAUBA) were in close agreement.

We also validated the model by simulating mortality using a threshold value. We sorted

the estimated probabilities of mortality from the logistic mortality model (eq.1) for the trees in

the fit data set and used as the threshold value the predicted probability (0.1891) of mortality for

the tree at the 96.49 (l 00-3.51 [the average observed mortality rateD percentile point. Using this
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validation procedure, the model correctly classified 97.4% of the live trees and 27.5% of the

dead trees.

We compared our model predictions with observed mortality rates in the validation data

set. The predicted 6-year mortality (3.65%) is only slightly higher than observed (3.51 %). We

also compared observed with predicted 6-year mortality rates with respect to rock type.

treatment, diameter class. crown ratio. number of tree per ha, and relative rank (BAUBA) in

Figure 2. In general. predictions are close to the observed mortality rates, with no detectable

trend. Mortality is somewhat overestimated in the smallest diameter class. the smallest crown

ratios (CR < 0.2), and the densest stands (TPH > 1700 treeslha). The same threshold value of

0.1891 was also used to simulate mortality in the test data set. In the test data set this procedure

correctly classified 97.0% of the live trees and 28.0% of the dead trees.

The "GLRT Chi-Square" value of 36.080 is statistically significant, for the null

hypothesis that there are no differences among the control and fertilized plots with two degrees

of freedom. indicating that nitrogen fertilization will increase the mortality rate as shown in

Table 2. The hGLRT Chi-Square" value of 10.878 is statistically significant, for the null

hypothesis that there is no difference between plots with the application of224 kg Nlha and plots

with the application of448 kg N/ha with one degree of freedom. indicating that the mortality rate

will increase as the nitrogen application rate increases as shown in Table 2. The "GLRT Chi

Square" value of 87.982 is statistically significant. for the null hypothesis that there are no

differences among rock types with four degrees of freedom, indicating that the effect of rock

type on mortality rate is significant. Of the coefficients associated with rock types shown in

Table 2. the coefficient of sedimentary rocks is the smallest. resulting in the lowest mortality rate

on sedimentary rocks. The coefficient ofmeta-sedimentary rocks is the largest. resulting in the
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highest mortality rate on meta-sedimentary rocks. The coefficients ofgranite and basalt rocks are

insignificant, indicating that the effect of granite and basalt rocks on mortality rate is similar to

that ofmixed rocks.

The average Douglas-fir plot fertilization response ratios R for annual mortality rate by

rock type and treatment based on the mortality model (eq. 1 and eq. 5) and the fit data set are

provided in Table 3. The 448 kg Nlha treatment produced greater relative response than 224 kg

Niha treatment. For each combination of treatments and rock types, the result from a rtest

conducted based on the number of plots involved reveals that all responses were significantly

different than the null hypothesis that R = I at a = 0.01.

Discussion

The results of this study are directly useful for qualifying nitrogen fertilizer response of

individual Douglas-fir trees in the region. Equation I is compatible with individual tree growth

simulation models, such as Forest Vegetation Simulator (i.e. FVS, Wykoff et al. 1982), widely

used to forecast growth and yield in the inland Northwest. Alternatively, the parameters provided

in Table 3 could be used as crude individual tree N fertilization response mortality rate

multipliers by those who do not use individual tree simulation models formulated similar to the

FVS model.

Interestingly. when the moist habitat type alone stayed in the mortality model. the

coefficient associated with the moist habitat type had a positive sign. indicating that the

probability of tree mortality on moist sites is higher than on dry sites. This is counterintuitive.

and we feel different stand densities on these two habitats induced this phenomenon. On average,

there were 733 treeslha on moist sites and 586 treeslha on dry sites. Therefore in our data set
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(and in many others) density and habitat type are confounded since many more trees naturally

become established and subsequently persist throughout stand development. Furthermore.

foresters maintain higher densities on better sites during intermediate stand density management

treatments. We did not include habitat type in the predictive modeL

The quantitative insights into the relationships between individual tree mortality and

competition across a variety ofmineral nutrient (i.e. rock type) environments were developed by

evaluating the individual tree mortality (eq. I) and the response ratio (eq. 5) for three treatment

levels (control, 224 kg Nlba, and 448 kg Nlba) and five rock types (granite, basalt, meta

sedimentary, sedimentary, and mixed) across a range of tree diameters from 6 t078 cm, and

BAUBA from 0 to I with the values of other independent variables being held constant at their

means.

As expected, suppressed trees (i.e. those of small diameter with high BAUBA) showed

higher probability ofmortality over a 6-year period than did dominant trees (Le. those of large

diameter with low BAUBA) growing in the same stand (Figure 3). Two interesting features were

revealed in Figure 3. The first is associated with the shapes of the mortality surfaces across a

variety of mineral nutrient environments. The granite and meta-sedimentary rocks tend to

weather to sandy soils. with low cation-exchange holding capacities (Buot et a1. 1989). Thus, the

inter-tree competition for scarce resources is acute. resulting in the obviously upward-sloping

shape of the mortality surface for granite;: and meta-sedimentary rocks. Soils derived from

basaltic and mixed rocks. on the other hand. have a clayey texture with a high nutrient holding

capacity. As a result, the inter-tree competition for scarce resources is less, resulting in the

slightly upward-sloping shape of the mortality surface for basaltic and mixed rocks. Sedimentary

soils tend to be richer in clay minerals and have a higher nutrient holding capacity. Thus, the
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mortality due to competition for resources is very low, resulting in the nearly flat shape of the

mortality surface for sedimentary rocks. We propose that lower K availability on granite and

meta-sedimentary rocks explains the higher mortality rates on unfertilized plots for these rock

types. Mika and Moore (1991) showed that sites with low foliar K levels prior to fertilization

incurred substantially higher stand level mortality than those sites with adequate foliar K. The

work of Shaw et al. (1998) suggests a biological explanation for these results. They found that

Douglas-fir seedlings grown in a low K environment had significantly lower phenolic and tannin

concentrations and lower ratios of these compounds to sugars in their roots than did seedlings

with high K supplied. Further, Entry et a1. (1991) demonstrated that low root phenol/sugar ratios

were associated with higher incidence ofArmillaria infection. Our results indicate that rock type

represents broad differences in the nutrient environment where trees grow. We suggest that rock

type. or a conceptually similar characteristic. should be useful for explaining variation in

individual tree mortality in other geographic regions.

The second interesting feature is associated with the shapes of the mortality surfaces

associated with the different nitrogen application rates. The degree of upward-sloping for the

monality surface increases with increasing the nitrogen application rate. This indicates that

nitrogen fenilization changes individual tree mortality. with higher probabilities ofmonality

associated with heavier nitrogen application. We feel there are three plausible reasons. First.

nitrogen fenilization increases individual tree gro\\1h. As trees become larger. fewer trees can be

supponed per hectare. Thus. an acceleration of growth due to nitrogen fenilization can produce

dense stands. resulting in increasing competition and monality (Binkley 1986). Second. nitrogen

only fenilization may create nutrient imbalances. and thus create nutrient stress, such as for K

discussed above. and therefore increase monality (Binkley 1986). Adding other limiting
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nutrients in the fertilizer blend may reduce mortality levels observed in our study. Third. nitrogen

fertilization may decrease the resistance of trees to wind, snow. and pathogens such as root rot

(Mika and Vander Ploeg 1991, Mika et aI. 1992). Thus. the mortality due to wind. snow. and

root rot increases as the nitrogen application rate increases.

The response ratios (eq. 5) for annual probability of tree mortality across a range of tree

diameters for all rock types for each fertilizer treatment are almost identical (Table 3). However.

the average response ratio of the 448 kg N treatment (about 2.50) is much greater than that of the

224 kg N treatment (about 1.54).

Conclusions

This study quantifies the effect of rock type and nitrogen fertilization on tree mortality.

Trees growing on soils developed from granite and meta-sedimentary rocks exhibited greater

probabilities of mortality than did those growing on other rocks. The probabilities of mortality

for trees growing on sedimentary rocks were very low. The probabilities of tree mortality

increased with increasing nitrogen fertilizer application rates. Furthennore, the response ratios

were nearly constant (about 1.54) across a range of tree diameters for all rock types with the 224

kg N treatment. The response ratios were also nearly constant (about 2.50) across a range of tree

diameters for all rock types with the 448 kg t\ treatment. Therefore, our study quantitatively

demonstrates differences in tree mortality across broad differences in the nutrient environment

represented by different rock types. The mortality equations were formulated to be compatible

with individual tree distance independent simulation models. Incorporating these new equations

into growth and yield simulators. such as FVS. would provide better representation ofnitrogen

fertilization effects on tree mortality and resultant stand development dynamics.
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Table 1. Summary statistics of selected Douglas-fir stand and tree attributes at the beginning of

the 6-year growth period.

Attribute Mean SD Minimum Maximum

Site index· (m @ 50 yr) 19.2 3.2 13.1 27.7

Age (yr) 65 17 27 100

Number of trees (treeslha) 658 308 210 2002

Mean tree height (m) 18.9 3.8 8.7 31.2

Top height (m) 20.4 4.3 8.9 36.9

Basal area (m2/ha) 32.3 10.6 7.3 77.0

Crown competition factor·· 157 48 45 329

Quadratic mean diameter (cm) 26.14 5.92 13.26 49.00

Diameter at breast height (cm) 24.15 8.94 5.89 77.27

Total height (m) 18.4 5.0 4.5 40.5

Crown ratio 0.45 0.14 0.10 0.99

* Monserud (1984).

** Wykoff et a1. (1982).



Table 2. Parameter estimates for the mortality model (eq. 1) using the maximum likelihood

estimation method.
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Variable Estimate Std error Wald Chi-Square .P > Chi-Square

Constant -3.1157 0.9062 11.8216 0.0006

RC, 0.3313 0.1962 2.8508 0.0913

RCz -0.2605 0.1853 1.9767 0.1597

RC3 0.8164 0.1716 22.6219 0.0001

RC., -2.3389 0.5964 15.3785 0.0001

IT, 0.4382 0.1721 6.4875 0.0109

IT] 0.9220 0.1593 33.5130 0.0001

DBHII00 -4.5682 1.8703 5.9659 0.0146

CR -4.6037 0.5542 69.0180 0.0001

TPHII000 1.1847 0.1979 35.8542 0.0001

BAUBA 1.1708 0.5345 4.7976 0.0285
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Table 3. Average plot response ratios R for annual mortality rate by rock type and treatment

based on the mortality model (eq. 1).

Treatment

Rock type 224 kgN/ha 448 kg N/ha

Granite 1.53250 2.44120

Basalt 1.54076 2.47469

Meta-sediment 1.5193"1 2.38890

Sediment 1.54913 2.50927

Mixed 1.53693 2.45867
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Figure 1. Observed vs. predicted 6-year mortality rate by rock type, treatment, diameter (DBB)

class, crown ratio (CR), number of trees per ha (TPH), and basal area in larger trees over basal

area per ha (BAUBA) for the fit data set.
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Figure 2. Observed vs. predicted 6-year mortality rate by rock type. treatment, diameter (DBH)

class. crown ratio (CR). number of trees per ha (TPH). and basal area in larger trees over basal

area per ha (BAUBA) for the test data set.
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Figure 3. Six-year probability of tree mortality (eq. I) by tree diameter (DBH) and basal area in

larger trees over basal area per ha (BAUBA) for five rock types and three treatments.
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