REGIONAL VARIATION OF PONDEROSA PINE THE FIVE-YEAR RESULT

by Chi-Wu Wang
Robert K. Patee

FOREST, WILDLIFE AND RANGE EXPERIMENT STATION
Director - John H. Ehrenreich Associate Director - A. A. Moslemi

REGIONAL VARIATION OF PONDEROSA PINE, THE FIVE-YEAR RESULT

Chi-Wu Wang and Robert K. Patee

INTRODUCTION

The purpose of this experiment was to obtain basic information on regional variation in the natural population of ponderosa pine as a basis of selection for genetic improvement (Wang 1967). The wide range of among-stand and among-progeny variations in the first 5 -year period indicates that substantial improvement could be expected from the first generation selection.

The region of this study includes six counties in southern Idaho, viz., Adams, Boise, Elmore, Gem, Idaho, and Valley. The materials were 271 half-sib families from 37 natural stands. Each stand was represented by 1 to 10 seed trees, selected at random from the dominant class, with the restrictions that the sample trees were no less than $61 \mathrm{~m}(200 \mathrm{ft})$ apart, and that all trees in a stand were within a 1.609 km (1-mile) radius. Their geographic sources were tabulated in Appendix 1. The 1-year and 2 -year growth and their relationship with seed characteristics were analyzed (Wang and Patee 1974). The progenies were tested in four sites from $1127.8 \mathrm{~m}(3700 \mathrm{ft})$ to $1630.7 \mathrm{~m}(5350 \mathrm{ft})$ within the natural range of ponderosa pine of this region. The 12 -acre plantation at each site includes 10 randomized complete blocks of all the progenies in 4 -tree plots at $5 \mathrm{ft} \times 10 \mathrm{ft}$ spacing.

The four sites were located at (1) Boise County, $1219.2 \mathrm{~m}(4000 \mathrm{ft}$), Idaho City, U.S. Bureau of Land Management plantation (2) Adams County, $1447.8 \mathrm{~m}(4750 \mathrm{ft}$), Boulder Creek, New Meadows, Payette National Forest plantation (3) Valley County, $1630.7 \mathrm{~m}(5350 \mathrm{ft})$, Jack's Creek, Idaho State Department of Public Lands, plantation and (4) Ada County, 1127.8 m (3700 ft), Holcomb, Boise National Forest plantation. This is a report of the 5 -year progeny variations, their correlation with seed, seed-tree and seedling characteristics, and the progeny x site interaction.

[^0]COVER PHOTO: This Ponderosa pine progeny test seed orchard is located at the low elevation 1127.8 m $(3700 \mathrm{ft})$ Boise National Forest plantation at Holcomb.

AMONG-STAND AND WITHIN-STAND VARIATION

The analysis of variance in the four sites showed that the among-stand and among-progeny 5-year height differences are highly significant (Table 1). The five fastest growing stands as indicated by the average 5 -year height on the four sites were (a) stand no. 47, Garden Valley, BNF, 79.58 cm (31.33 inch), (b) 21 A, Hazard Creek, BLM, 79.22 cm (31.19 inch), (c) 42, Trail Creek, BNF, 77.65 cm (30.57 inch), (d) 54, Zena Creek, PNF, 76.61 cm (30.16 inch), and (e) 21 B , Scriver Creek, BLM, 75.09 cm (29.56 inch).

Table 1. Analysis of Variance of 5-year Ponderosa Pine height at four test sites.

S.O.V.	D.F.	F.	S.O.V.	D.F.	F.
SITE	3	$238.62^{* *}$	SITE	3	$424.96^{* *}$
BLOCK	36	$44.57^{* *}$	BLOCK	36	$66.16^{* *}$
STAND	36	$3.75^{* *}$	PROGENY	270	$3.87^{* *}$
SXS	108	$2.84^{* *}$	SXP	810	$2.45^{* *}$
ERROR	1296		ERROR	5906	
TOTAL	1479			TOTAL	7025

The five slowest growing stands by four-site mean height were (a) stand no. $5,58.83 \mathrm{~cm}$ (23.16 inch), (b) $50,62.62 \mathrm{~cm}(24.65$ inch), (c) $26,62.84 \mathrm{~cm}(24.74$ inch), (d) $16,62.87 \mathrm{~cm}$ (24.75 inch), and (e) 18, 63.73 cm (25.09 inch).

For the analysis of within-stand variation, sample trees within each stand are divided into substands according to age at 10-year intervals. Age of parent trees is given in Appendix 2. The within-stand among-substand differences in 5-year height are not significant (Table 2). Variance components attributable to within-stand among-substand variations are mostly negligible (Table 3).

VARIANCE COMPONENTS AND POPULATION STRUCTURE

At site $1,48.65$ percent of total variance anc site $4,58.19$ percent of total variance in 5-year hei were associated with stands; 25.20 percent (site and 19.51 percent (site 4) of the total variance w associated with progeny families. The among-prog differences were highly significant (Tables 2, 3).

However, the analysis of variance of 5 -year p genies within each individual stand indicated that within-stand among-progeny differences were sign cant only in 3 to 8 of the 35 multi-progeny stat (Table 4). This was a drastic change by comparison w the 1 -year and 2-year seedlings. At the 1-year stage, within-stand among-progeny differences were sign cant in 31 of the 35 multi-progeny stands, and at 2-year stage the among-progeny differences were sig ficant in 32 stands. (Table 2, Wang and Patee 197

At this early stage of 5-year seedling height devel ment, a distinct pattern of population structure came evident. There was more variation among star than there was variation among mother trees witl stand (Table 3). There was no significant differer among progenies from different age classes of tri superimposed upon the same stand by natural reg eration (Table 2). And in a relative sense, the progen from a common stand, i.e., a small panmictic popi tion, were essentially uniform (Table 4). Simi results were obtained from among physiographic regic and within-stand studies of loblolly pine (LaFarge 19 Barber 1966, and Wells and Switzer 1971).

CORRELATION WITH SEEDLING, SEED, AND SEED TREE

Partial correlation analysis of 5 -year proge height was made with 1 -year seedling height, se characteristics, and seed tree sources (Table 5). T partial correlation with 1 -year seedling height

Table 2: Analysis of variance of 5-year Ponderosa Pine Height at Each of the Four Test Sites.
Site 1

S.O.V.	D.F.	F.	D.F.	F.	D.F.	F.	D.F.	F.
STAND	36	2.14^{*}	36	$2.47^{* *}$	35	1.03	36	1.25
SUBSTAND	73	0.71	73	0.89	70	1.40	72	1.12
PROGENY	152	$1.96^{* *}$	158	$1.85^{* *}$	153	$1.42^{* *}$	155	$1.67^{* *}$
INDIVIDUAL	1875		1891		712		1462	
TOTAL	2136		2158		970		1725	

O.V.	Site 1	Site 2	Site 3	Site 4
ND	48.65	58.19	0	14.79
UBSTAND	0	0	32.22	9.00
ROGENY	25.20	19.51	20.54	30.81
VDIVIDUAL	26.15	22.30	47.24	45.40
OTAL	100.00	100.00	100.00	100.00

The geographic origin of the seed trees has an Ititudinal range of $1005.84 \mathrm{~m}(3300 \mathrm{ft})$ from stand No. 32 (New Meadows), 975.36 m (3200 ft), to stand No. 41 (Cottonwood, Boise), $1981.2 \mathrm{~m}(6500 \mathrm{ft}$), and latitudinal range of 200 miles from stand No. 11 Mountain Home) to stand No. 43 A (White Bird). The -year seedling height, as that of the 2 -year seedling, vas inversely correlated with altitude and not ignificantly correlated with latitude.

The four sites for the progeny tests plantations vere in the granitic region of average site quality. They vere selected to represent the altitudinal range in which ponderosa pine was to be planted. The nvironmental influence of the test sites was reflected n progeny growth and the plantation means. The progeny site interaction of the 271 half-sib families vas highly significant(Table 1). The plantation mean height of the four sites were (1) $65.76 \mathrm{~cm}(25.89$ nch), elevation $1219.2 \mathrm{~m}(4000 \mathrm{ft})$; (2) 77.95 cm 30.68 inch) at $1447.8 \mathrm{~m}(4750 \mathrm{ft})$; (3) 70.03 cm (27.57 inch) at $1630.7 \mathrm{~m}(5350 \mathrm{ft})$; and (4) 64.74 cm $25.49 \mathrm{inch})$ at $1127.8 \mathrm{~m}(3700 \mathrm{ft})$.

In addition to their altitudinal range, there were other distinct differences between the four sites. Sites 3 and 4 were seriously affected by severe site condition, and site 2 by heavy snow. In view of the strong site influence, both the over-all performance of their progenies at the four sites and their site interaction should be taken into consideration in the selection of superior seed trees.

DISCUSSION

Theoretically speaking it is logical to infer that greater genetic gain can be expected from among-stand selection than from within-stand among-progeny selection. The 5 -year result proved the veracity of this approach.

Mean height growth was used as an indication of vigor and general adaptability of the progeny families. The 5 -year result indicated that this desirable character was not distributed at random. In the natural population, desirable parent trees were found to be concentrated in certain local populations. Of the 20 best half-sib families, 8 families were from the best two stands, and 14 families from the best five stands.

Table 4. Analysis of Variance of 5-Year Progeny Height of Each Stand at the Four Test Sites.

Stand	$\begin{gathered} \text { Site } 1 \\ F \end{gathered}$	$\begin{gathered} \text { Site } 2 \\ F \end{gathered}$	Site 3 F	Site 4 F
1	2.02*	1.76	0.94	1.26
2	1.35	1.29	1.70	0.42
5	1.68	1.95	0.98	1.73
6	1.07	1.97	2.09	4.35**
9	1.74	1.65	2.14	4.10**
11	1.37	1.71	1.41	1.32
14	1.70	1.38	1.40	0.73
15	1.06	1.68	1.76	1.88
16	1.77	5.35**	0.71	1.31
17	(a)	(a)	(a)	(a)
18	1.09	1.51	2.39	1.31
19	$3.14 * *$	2.61*	1.25	1.41
20A	1.83	1.28	0.99	1.45
20 B	2.67*	1.38	0.20	2.22
21 A	0.98	1.28	0.72	1.70
21B	$6.27 * *$	0.09	0.26	0.81
22	0.10	0.81	0.05	0.59
23	3.62*	1.78	0.85	0.70
24	1.33	1.41	1.39	0.47
25	0.28	1.75	0.98	1.22
26	0.30	0.66	1.11	$3.74 *$
27	1.35	1.80	5.50*	0.31
28	1.88	3.66 * *	1.42	0.77
29	1.25	0.41	3.92**	2.43*
35	1.35	1.58	0.66	0.96
38	2.80**	1.47	2.16	2.03
39	0.28	1.72	1.04	0.51
41	1.65	2.31*	4.85**	0.72
42	0.63	3.12*	1.56	1.00
43A	1.46	1.07	0.47	1.98
43B	2.74*	1.98	0.59	2.05
46	1.08	1.47	1.33	1.29
47	$2.44 *$	2.30*	2.67	0.56
50	2.43	0.15	1.96	0.91
51	(b)	(b)	(b)	(b)
53	2.17	0.73	0.27	1.42
54	1.58	1.05	1.47	2.70^{*}

[^1]The best progenies and their stand origin are: (a) Stand No. 47, (progeny $244,246,250,251$), (b) 21A (112, $1.13,114,132)$, (c) $42(215,216)$, (d) $54(265,266$, 270), and (e) 21B (166).

The slow growing progenies showed a similar pattern. Of the 20 worst progeny families of the four sites, 8 families were from the four most slow-growing stands. The worst progenies and their stand origin are: (a) Stand No. 5 (progeny 21, 25, 27), (b) 26 (143, 144), (c) 16 (73), and (d) 1 (1, 8). Stand and family means at the four sites are tabulated in Appendix 2.

Table 5. Partial correlation of 2 -year and 5 -year height with 1-year height, seed characteristics and seed tree sources.

	2-Year Height	5-Year
	$0.31506^{* *}$	$0.25474^{* *}$
1-Year Height	0.00242	-0.10032
Seed Length	-0.01728	-0.00421
Seed Width	0.07948	0.09689
Seed Weight	$0.39600^{* *}$	0.07548
Germination Capacity	-0.03273	0.03554
Mother Height	-0.02204	$-0.16825^{* *}$
Mother Age	$-0.24874^{* *}$	$-0.16905^{* *}$
Altitude	0.06736	0.00005
Latitude	$0.67496^{* *}$	$0.48464^{* *}$
Multiple Correlation		

From the practical point of view, natural stc are better units for initial field selection 1 individual trees, especially in the case of ponde pine, which generally regenerates in group-wise pat and mostly in site conditions of great topograph diversity. The naturally regenerated stand is in fac natural progeny test stand of nearby seed sour Furthermore, the seed trees included in the prog test were sample trees of the natural stand; they w pollinated mostly by neighboring trees. Results of progeny test confirmed the essential uniformity of progeny parents, including the seed parents and pollen parents, within each natural stand. For purpose of early production of superior seed, c crops can be readily collected from the superior tr and from other trees of the superior stands immediate use in bushel quantities.

The results further indicated that parent trees desirable characters were concentrated in certain stan and possibly in the general areas where the super stands were located. For the second generation st orchard, additional sample trees from the super stands and from additional phenotypically desira stands in their vicinity were included in the materials for further evaluation and selection.

LITERATURE CITED

Barber, J.C. 1966. Variation among half-sib families from three loblolly pine stands in Georgia. Ga. Forest Res. Counc. Res. Pap. 37. 5pp.
LaFarge, T. 1974. Genetic variation among and within three loblolly pine stands in Georgia. Forest Science 20: 272-275.
Wang, C.W. 1967. The genetic improvement of ponderosa pine in Idaho. University of Idaho, Forest, WildI. and Range Exp. Sta., Sta. Note No. 7.8 pp.
Wang, C.W. and R.K. Patee. 1974. Variation in seed characteristics, and seedling growth of open pollinated ponderosa pine progenies. University of Idaho, Forest, WildI. and Range Exp. Sta., Sta. Pap. No. 15. 12pp.
Wells, O.O. and Switzer. 1971. Variation in rust resistence in Mississippi loblolly pine. 11th South. Conf. Forest Tree Improv. Proc. 1971:25-30.

APPENDIX I

Stand	Tree	Alt.	Sol1	Lat. S.	Land	* ${ }^{\text {c }}$	county	т	*	s	Yote
(I)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(II)	(12)
1	10	\$000	8	46:33	,	Councti A	Adasen	148	\%	16	Andersor
2	10	4500	8	46:26	P	Councti ${ }^{\text {a }}$	Adam*	13s	π	13.23	4114 creek
,	,	6000	${ }^{6}$	44:36	s	cascade	valley	19x	\%	30	camp creek
*	10	4800	c	46:32	8	cascade	valley	16\%	4	21	Crawfore
9	10	\$000	6	43:51	8		Boise	6N	3t	20	Warn Sprim;
11	10	6000	${ }^{6}$	43:36	B	ML. Home	E1more	3x	95	4.9	Lester $\mathrm{C}=$
16	10	\$200	8	46:21	B	treett	Cen	12s	24	33	Sazetien
15	10	4100	1	44:24	8	temett	Cee	123	18	14	Thire Fer-
16	6	3800	c	46:47	\%	meCall	valley	${ }^{178}$	38	20	Povellson Cr.
17	(a)	4200	${ }^{6}$	45:03	p	Sev Meads -	Adams	20s	25	19	
18	6	6000	6	43:55	${ }^{3}$	Loman	Boise	7s	${ }^{2}$	14	Bear Creek
19	10	4800	6	43:46	state	taxpley	Bolse	5*	68		
200	8	4200	6	43:46	state	taramity $^{\text {a }}$	Boise	$6 \times$	of		
208	8	4200	G	43:52	state	${ }^{\text {Idangity }}$	Boise	6s	5		
${ }^{214}$	1	3500	8	45:09	BLA	${ }^{\text {Kigsin* }}$	takhe	218	12	1	Hazard Creek
218	3	4300	c	46:09	BLM	crouch	Boise	10 N	48	29	Scriver Creek
22	4	4000	c	44:05	${ }^{8}$	Lovman	Solse	9N	${ }^{88}$	33	S. Fk. ${ }_{\text {Payette }}$
2)	s	4100	3	46:40	P	Weiser	valley	15s	${ }^{40}$	6	M111 Creek
24	7	3800	3	44:41	${ }^{p}$	Weiser	valley	16 N	${ }^{6}$	20	Pine Creek
25	10	6400	c	43:49	B	${ }^{1 \text { daherity }}$	Botse	3N	68	3	Rabbit Creek
26	5	5000	B	46:36	${ }^{\text {c }}$	Weiser	Adama	15N	2 E	17	Mice Creek
27	4	4500	B	44:38	${ }^{\text {c }}$	Weiser	Adam	158	2 E	7	Cabin Creek
28	10	5000	8	45:03	P	Mex	Adasa	20N	18	19	Mud Creek
29	9	3200	B	66:53	${ }^{7}$	New resdors,	Adans	18N	1*	8	Ralph Creek
35	9	5000	c	43:48	8	Botse	E1sore	ON	$9 E$		Dutch Creek
38	,	4000	${ }^{6}$	45:03	P	Sev Megis	$1{ }^{\text {a }}$ Aemes	20s	22	19	circle C
39	4	4000	3	44:49	*	Sev Mestis	$\mathrm{i}^{\text {Adenss }}$	198	28	16	3-mile Creek
41	8	6500	c	43:44	B	Botes	Elsore	5\%	${ }^{81}$	25	Dutch Creek
42	6	3900	c	43:37	B	301.0	Elsore	3	68	9	Trall Creek
43n	,	4700	3	43:47	State	Inteestrd	d teaho	2 ns	14	12	Rice Creek
438	8	4300	6	46:03	state	Horsepkes	8 Bolse	8 s	3	16	Fleming cree
4 n	10	4480	c	44:18	3	Ensett	soise	188	st	4.5	West Fork Rc.
47	8	3400	6	44:06	1	Eneett	soise	85	4 E	1	Garden valley
so	5	4300	6	43:37	s	Shakgreek	${ }^{\text {Elmore }}$	3N	112	13,18	Bausgartner
81	1	4300	c	43:37	s	shakgreek	${ }^{\text {Elmure }}$	3s	10 E	11	Barker culcn
53	6	4000	*	46:52	P	Krassel	valley	183	${ }^{6}$	is	Camp Creek
\$.	8	5000	c	45:05	*	Krassel	valtey	20N	${ }^{6}$	21	zena Creek

Geographic Sources of the Progeny Test Parent Trees

Column: (1) stand number, (2) parent trees, (3) altitude, ft , (4) soil types: B-basaltic, G-Granitic, (5) approximate latitude, (6) Land: B-Boise National Forest, BC-Boise Cascade Corp., BLM-Bureau of Land Management, P-Payette National Forest, S-Sawtooth National Forest, State-Idaho State Department of Public Lands, (7) RD: Ranger District of National Forest or location, (8) County, (9) Township, (10) Range, (11) Section, (12) note, (a) stand 17 seed source is bulked seed from Circle C seed production area adjacent to stand 38 .

Five-Year Progeny and Stand Performance
Column: (1) stand number, (2) progeny number, (3) mother tree height, ft , (4) DBH, 0.1 inch, (5) age, (6) germination capacity, percent (7) site 1, 5 -year progeny and stand mean height, cm, (8) site $2,(9)$ site $3,(10)$ site 4 , (11) four-site mean

APPENDIX 2 Cont.

Column: (1) stand number, (2) progeny number, (3) mother tree height, ft , (4) DBH, 0.1 inch , (5) age, (6) germination capacity, percent, (7) site 1,5 -year progeny and stand mean height, $\mathrm{cm},(8)$ site $2,(9)$ site 3 , (10) site 4 , (11) four-site mean.

WANG, Chi-Wu and PATEE, Robert K. (1976)
Regional Variation of Ponderosa Pine, the 5-Year Result Univ. Idaho Forest, WildI. \& Range Exp. Sta. Bull. 10.8 pp .
Progeny tests at four sites showed that the among-stand and amongprogeny 5 -year height differences were highly significant. There was no significant difference among substands. In two of the test sites, 48.65 to 58.19 percent of the total variance was attributable to variation among stands, and 19.51 to 25.20 percent of the total variance was attributable to half-sib families within substands.

The 5 -year progeny height was significantly correlated with 1 -year seedling height and inversely correlated with age and altitude of mother tree, but not correlated with seed characteristics including seed weight, seed size, and germination capacity.

KEY WORDS: Progeny test, Seed Orchard, Seed, Pinus ponderosa

Oxford Number 165.3

ABSTRACT

WANG, Chi-Wu and PATEE, Robert K. (1976)
Regional Variation of Ponderosa Pine, the 5-Year Result Univ. Idaho Forest, WildI. \& Range Exp. Sta.

Bull. 10.8 pp .

Progeny tests at four sites showed that the among-stand and amongprogeny 5 -year height differences were highly significant. There was no significant difference among substands. In two of the test sites, 48.65 to 58.19 percent of the total variance was attributable to variation among stands, and 19.51 to 25.20 percent of the total variance was attributable to half-sib families within substands.

The 5 -year progeny height was significantly correlated with 1-year seedling height and inversely correlated with age and altitude of mother tree, but not correlated with seed characteristics including seed weight, seed size, and germination capacity.

WANG, Chi-Wu and PATEE, Robert K. (1976)
Regional Variation of Ponderosa Pine, the 5 -Year Result Univ. Idaho Forest, WildI. \& Range Exp. Sta. Bull. 10.8 pp .
Progeny tests at four sites showed that the among-stand and amongprogeny 5 -year height differences were highly significant. There was no significant difference among substands. In two of the test sites, 48.65 to 58.19 percent of the total variance was attributable to variation among stands, and 19.51 to 25.20 percent of the total variance was attributable to half-sib families within substands.

The 5 -year progeny height was significantly correlated with 1 -year seedling height and inversely correlated with age and altitude of mother tree, but not correlated with seed characteristics including seed weight, seed size, and germination capacity.

KEY WORDS: Progeny test, Seed Orchard, Seed, Pinus ponderosa
Oxford Number 165.3

ABSTRACT

WANG, Chi-Wu and PATEE, Robert K. (1976)
Regional Variation of Ponderosa Pine, the 5-Year Result Univ. Idaho Forest, WildI. \& Range Exp. Sta. Bull. 10.8 pp .
Progeny tests at four sites showed that the among-stand and amongprogeny 5 -year height differences were highly significant. There was no significant difference among substands. In two of the test sites, 48.65 to 58.19 percent of the total variance was attributable to variation among stands, and 19.51 to 25.20 percent of the total variance was attributable to half-sib families within substands.

The 5-year progeny height was significantly correlated with 1-year seedling height and inversely correlated with age and altitude of mother tree, but not correlated with seed characteristics including seed weight, seed size, and germination capacity.

KEY WORDS: Progeny test, Seed Orchard, Seed, Pinus ponderosa
Oxford Number 165.3

KEY WORDS: Progeny test, Seed Orchard, Seed, Pinus ponderosa
Oxford Number 165.3

[^0]: This study was conducted in cooperation with the Idaho Department of Public Lands, U.S. Bureau of Land Management, U.S. Forest Service, and the Southern Idaho Forestry Association. It was partially supported by the McIntire-Stennis fund, and was published with approval of the Director, Forest, Wildlife and Range Experiment Station, as Contribution No. 21, University of Idaho, Moscow.

 Chi-Wu Wang is a professor in the College of Forestry, Wildlife and Range Sciences, University of Idaho, Moscow, Idaho. Robert K. Patee is Regional Geneticist, Region 4, U.S. Forest Service, Ogden, Utah.

[^1]: (a) Bulked seed

