USER'S MANUAL FOR

PROGRAM HOME RANGE

:OREST, WILDLIFE AND RANGE EXPERIMENT STATION

USER'S MANUAL FOR

PROGRAM HOME RANGE

by
Michael D. Samuel
D. John Pierce
Edward O. Garton
Louis J. Nelson
Kenneth R. Dixon (Univ. Maryland)

The material in this report has received internal processing through the Wildlife Resources program and is issued as a non-refereed publication of the Forest Wildlife and Range Experiment Station, University of Idaho, Moscow.

Contribution No. 259
Forest, Wildlife and Range Experiment Station
University of Idaho
Moscow, Idaho 83843

88e. TH218Y400
isumsé a lestoik
ACKNOWLEDGEMENTS iv
INTRODUCTION 1
Program application 5
PROGRAM OVERVIEW 10
PROGRAM OPTIONS 11
Utilization Contours 11
Weighted Non-circular Home Range 11
Core Areas 12
Outliers 12
Non-circular Home Range 13
Bivariate Distribution Test 13
Convex Polygon 14
PROGRAM CONTROL 15
Title Card 15
Selection Card 15
Scale Card 18
Method Card 19
Offset Card 20
Contour Cards 21
DATA INPUT 22
Format Card 22
Data Cards 22
Method Options 22
DATA OUTPUT 25
Grid Locations File (22) 25
Harmonic Mean File (25) 26
EXAMPLES 27
Example 1 28
Input 28
output 30
Plot 38
Example 2 39
Input 39
output 40
Plot 42
Example 3 43
Input 43
output 44
Plot 48
Example 4 49
Input 49
output 50
Plot 55
Example 5 56

Input 56
Plot 57

JCL EXAMPLES 58

PROGRAM DETAILS 59
Program Size 59
Dimension Limitations 59
Run Costs 59
Availability 60
Ellipse Routine 61

LITERATURE CITED 62

ACKNOWLEDGEMENTS

Initial versions of the main program and several subroutines were developed or modified at the University of Maryland by K. Orhelein. Computer routines to draw contours were originally developed by J.S. Crowell. Development of several statistical procedures benefited from discussions with R.K. Steinhorst and C. Potratz at the University of Idaho. Computer time for this project was provided by the Computer Center, University of Idaho.

INT RODUCTION

Home range has been defined as the area utilized by an individual during its normal activities such as food gathering, mating, and caring for young (Burt 1943). The methods for calculating this area can be classified as statistical or non-statistical (Dixon and Chapman 1980). A variety of methods have been commonly used in the literature including convex polygon (Hayne 1949) and non-circular home range (Jennrich and Turner 1969). Recent papers have identified several problems with these commonly used techniques (Schoener 1981. Anderson 1982). Other techniques employ the concept of calculating a utilization distribution based on frequency of animal locations (Anderson 1982, Ford and Krumme 1979). The HOME RANGE program was developed to provide home range estimates based on an extension of the harmonic mean measure of activity (Dixon and Chapman 1980) and other commonly used methods, and to test the assumptions of these methods.

HOME RANGE differs from the original program of Dixon and Chapman (1980) in several important ways: 1) animal observations are relocated to a mean distance from the nearest grid point, 2) this distance is the mean radius of the grid and thus harmonic calculations depend on the grid size, 3) a utilization distribution is produced from the harmonic mean measure at grid points, 4) utilization contours may be estimated as percentiles of this
distribution, 5) biases resulting from changes of scaling factors have been minimized, 6) density of grid points for harmonic mean calculations may be increased. 7) outlier locations are identified, and 8) core areas are identified and plotted. In addition, the program computes the minimum convex polygon, non-circular home range, and a robust non-circular home range (Samuel and Garton in prep) for comparison. Animal locations may be tested for bivariate normality using a two-dimensional Kolmogorov goodness-of-fit test. The robust non-circular home range uses maximum likelihood type estimators to identify possible outliers and calculate home range. This weighted distribution may also be tested for bivariate normality.

Dixon and Chapman (1980) recommended that observations within one unit of distance to a grid point should be biased by adding one. This procedure has several disadvantages. First, the bias is not independent of scale. The addition of one unit may be appropriate for small harmonic values, but inappropriate for animals with large home ranges. Second, if observations are close to a grid point the use of a small bias causes the bias factor to overwhelm the harmonic calculation. A more suitable tias should incorporate the scale of the home range being estimated. HOME RANGE relocates all observations to a mean distance from the nearest grid point. This distance is the radius that encompasses half the area of the grid. Thus,
the bias automatically changes with grid size and scale variations.

The determination of a utilization distribution requires estimating the probability of use at any location in the home range. The harmonic values at each grid point may be used to calculate a utilization distribution. All grid points with harmonic values that exceed the maximum for any animal location are considered to be outside the home range. These are excluded from the utilization distribution. The potential utilization (observations/area) is estimated at each grid point by dividing the total number of animal locations by the squared harmonic value at the grid point. Potential utilization is summed over all grid points within the home range and scaled to 1.0 to create a utilization distribution. Percentages of the utilization distribution are determined from the ordered sum of grid points.

The concept of core areas has recieved considerable use in the ecological literature. The idea has generally teen used to denote central areas of consistent or intense use (Kaufmann 1962:170). However, a quantitative definition is noticably absent. Core areas in the HOME RANGE program are defined as the maximum area where the observed utilization distribution exceeds a uniform utilization distribution. The uniform distribution is used as the null model since it indicates a lack of preference for areas within the home range. A Kolmogorov test $(\mathrm{D}+\mathrm{p}=.05)$ is used to determine
if observed use is significantly greater than expected. The test is made on the ordered cumulative distribution of the observed data and the uniform model. Test criteria that correct for sample size (Stephens 1974) are used in the program. An illustration of the statistical test and further description of the methods is presented in Samuel et al. (in prep.).

PROGRAM APPLICATION

Determination of an animal's activity patterns is an iterative process. The nature of the location data, sampling intensity, and scope of the home range analysis deserve careful consideration. The delineation of activity areas separate from the home range boundary necessitate a more detailed consideration of sampling biases and limitations. We have identified two areas where inappropriate data can strongly influence the size and shape of estimated activity areas.

One concern is the data collection proceedure. Only those locations that meet the implied assumptions should be included in the analysis. The first assumption requires that locations be independent from each other. This assumption is frequently violated when data are collected by repeated observations seperated by relatively short time intervals. This problem is especially critical when sampling efforts are not equally distributed through time. For example: an animal was radio-located on two consecutive days. On the first day the researcher spent the entire day with the animal recording locations every hour. At the end of the day 10 relocations were collected. On the second day the researcher only located the animal once in the morning and once in the evening; the rest of the day was spent locating other individuals. If all data were entered 12 relocations would define the animal's home range for those
two days. The data from the first day would weight the importance of use on that area heavier than that for the area used on the second day, when in fact an equal amount of time (one day) was spent in each area.

A second related assumption is that the probability of detecting an animal in any part of its home range is proportional to the amount of time the animal spends in that area. This assumption may be frequently violated when data is collected wile radio tracking from the ground in relatively inaccessible areas. Data collected from animals with large home ranges are also susceptible to violating this assumption. When biologists are more apt to locate animals that are close to roads or trails the estimate of potential use for these accessible areas will be biased. This should not be a significant problem with data collected from an airplane. Similarly researchers may be tempted to oversample areas where animals are easiest to locate (e.g. nest or denning sites). The usual approach is to locate an animal as many times as possible. While many relocations are obviously desirable, effort must be tempered by techniques that reduce the biases associated with sampling procedures.

Locations which violates these assumptions cause areas of high potential use to be identified, reflecting data collection proceedures and not animal behavior. It is extremely important that the user attempting to describe activity areas identify sources of bias and remove
inappropriate data from the analysis. If not results from the HOME RANGE program may be totally misleading.

Extreme locations is the second area where inappropriate data dramatically affects home range estimates. Outliers frequently represent transiticnal locations between seasonal use areas or one time excursions to areas beyond the boundaries of the normal home range. Outliers influence home range estimates using convex polygon, nonweighted probability ellipse, and harmonic mean techniques. The inclusion of outlying points results in a substantial area included in the home range boundary which may be outside areas normally used by the individual. The HOME RANGE program helps to identify these outliers through three different procedures: 1) a binomial test of observation density, 2) a weighted bivariate normal technique, and 3) a list of points with large harmonic values. We suggest that these procedures be used to identify data errors and to assist in the identification of observations that are outside the normal use area.

If the biologist is interested in identifying the area in which an animal repeatedly confines it's daily activities, outlying points should be excluded from the home range analysis. By this definition occassional excursions outside the "normal" area of use is not considered part of the home range (see Burt 1943). If on the other hand the goal is to define total areas of potential use outliers should remain in the analysis. This latter approach was used
to describe total seasonal use areas of moose by combining data from multiple years (Pierce 1983). In this case the objective was to identify yearly shifts of activity centors within the total area of potential use.

Contours that are chosen based upon the utilization distribution define areas that encompass a percentage of the total potential use. Outlying points have a dramatic affect on the large percentage contours (e.g. 95\%), but usually have smaller influence on the selection of lower percentage contours (e.g. 75\%). Outliers tend to have less of an influence with large sample sizes than with small sample sizes, especially for the harmonic mean technique. Outliers also affect the selection of core use areas.

Once the user decides which data to include in the analysis he/she must determine the scale and grid density that will be used when calculating harmonic mean home range estimates. Decreasing the grid density or increasing the number of units/inch on the X, Y axes (i.e. scale) results in locations being concentrated around fewer grid points. The result is a reduced ability to distinguish between areas of different potential use. Separate centers of activity become increasingly difficult to distinguish by this effect. Convsersely, the points may become so widely separated that the observations have no influence on each other (see Anderson 1982: fig. 1). As a general rule, we feel that scale, units per inch, should first be selected to result in a large dispersion of locations without exceeding the limit
of the plotter boundaries and at a convient scale for transfer to habitat maps or aerial photos. Next, grid density should be selected to achieve an average of one observation per grid point. This can be accomplished by the following algorithm.
a) calculate the number of effective points (EP) from the total points (TP) and the number of points defining the perimeter of the convex polygon home range.

$$
E P=(T P-P P)+.25(P P)
$$

b) calculate the average area per grid point (AVG) from the minimum convex polygon (MCP) area and the number of effective points.

$$
A V G=M C P \text { area / EP }
$$

c) calculate the grid width (GW) per point by

$$
G W=S Q R T(A V G)
$$

d) no. of grid points on the X axis is (units per inch / GW) * 24
e) no. of grid points on the Y axis is

$$
\text { (units per inch / GW) * } 10.5
$$

The results are rounded to the lower integer value and input on the program selection card (page 14). Also see example 4.

Five sections of program input and output occur during a run: program control, data input, print output, data output, and plot output. Program control consists of six subsections that provide a title for the run, select program options, provide scale information to the program, report the method used for entering animal locations, choose the plot offset, and determine the values of contours to be plotted. Data input contains format specifications and animal locations, according to the method selected in program control. Printed output summarizes the options selected, lists animal locations for verification, provides data on harmonic values, and shows home range estimates for the methods selected. Data output is designed for use in secondary analysis of home range calculations. Two computer files may be produced. One file contains the grid point coordinates rescaled in inches from the plot origin. The second file contains the harmonic values calculated at each grid point. The final output is a plot of animal locations and selected home range estimates. Each input and output phase is described in the following sections.

PROGRAM OPTIONS

The HOME RANGE program features seven basic options for calculating various aspects of home range use patterns. These features may be selected in total or in subsets as specified on the SELECT card. The options chosen may vary depending upon the quantity and quality of data acquired, user objectives, and interpretational insight. A brief discussion of each option and pertinent literature sources follows to aid in the selection process.

Utilization_Contours

These contours are based on the harmonic means calculated at grid points systematically located throughout the animal's home range. Harmonic means are one of several areal distributions described in detail by Neft (1966). The advantages and applications of harmonic means as a measure of activity are discussed by Dixcn and Chapman (1980). The contours may be chosen as a specified harmonic value (Dixon and Chapman 1980) or as a specified percentage of the animal's utilization distribution. The concept of utilization distribution is discussed by Van winkle (1975) and Anderson (1982).

Weighted_№n=circular_Home_Range

This technique is a variation of the standard
non-circular home range approach developed by Jennrich and Turner (1969). A bivariate normal distribution of animal locations is assumed, but loci that are far removed from the geometric center have a reduced influence on the home range ellipse. The home range estimate uses the weighting procedure reported by Randles et al. (1978). Details of the procedure and an example of the influence of outlying points on the size and orientation of the home range estimate is given in Samuel and Garton (in prep.).

Core_Areas

The existance of core areas within an animal's home range was formalized by Kaufmann (1962). Ewer (1968) provides additional description of these areas of intense use. HOME RANGE identifies core areas by comparing the utilization distribution from harmonic mean calculations with a uniform use model (Samuel et al. in prep.). The identification of core areas is an effort to describe the "internal anatomy" of home ranges (Adams and Davis 1967, Leuthold 1977).

Outliers

Extreme locations may have a substantial influence on the home range determination. Outlier locations are identified (but not excluded from analysis) by a statistical confidence interval test. The test compares a relative measure of location density between progressively less
extreme locations in the data. Significant changes in the relative density are used to identify potential outliers. Exclusion of these points from the input data set is required to remove their influence on the home range estimates.
№n=Cinçular_Hone Ranqe
This is the traditional bivariate normal approach to home range analysis developed by Jennrich and Turner (1969). Schoener (1981) and anderson (1982) provide some valuable critiques on the method.

Bivariate_Distribution_Test

Animal locations may be tested for bivariate normality or uniformity using a Kolmogorov goodness-of-fit test. The two dimensional test is accomplished by transforming the loci into principal component scores (Koeppl et al. 1975, Morrison 1976: Chapter 8, Smith 1983). See Saunders and Laud (1980) for a discussion of the appropriatness of using the Kolmogorov test in a multidimensional context. Critical values for the test are calculated using the more powerful EDF procedures (Stephens 1974) rather than a chi-squared test (Smith 1983). The traditional D statistic and a Kuiper V statistic are calculated to test bivariate distributions. A detailed example of the test and its application is presented in Samuel and Garton (in prep.).

Convex_Polygon

The final home range calculation uses the convex polygon estimator (Hayne 1949). The program reports the area and perimeter points for this method. The home range may be plotted by connecting the perimeter points.

PROGRAM CONTROL

Abstract

Program control is comprised of six input sections that direct program execution and options. Cards must be ordered in the sequence of title card, selection card, scale card, method card, offset card, and contour cards.

Title_Card

The title card is an alphanumeric string of 40 characters that will be displayed on print and plot output. Format (A5,5X,5A8) Col 1-10 TITLE Col 11 - 50 Title

Col_1=10. 'TITLE'
Col_11-5ㅇ. Alphanumeric string to be displayed on plot out put.

Selection_Card

The selection card indicates those options and calculations that should be performed.

Format (A6,4X,7I1,2I5)
Col 1-10 SELECT
Col 11 '0' Only plot animal locations
-1' To plot contours
*2' Suppress harmonic mean calculation
Col 12 '1' to plot weighted non-circular home range

Col 13	'1' To plot core areas
Col 14	'1' To identify outliers
Col 15	'1' To plot non-circular home range
Col 16	'1' To test for bivariate normality
Col 17	"1. To estimate minimum convex polygon
$\operatorname{Col} 18-22$	No. of grid points on X axis
$\operatorname{Col} 23-27$	No. of grid points on Y axis

Col _1-10. 'SELECT'

Col _11. Animal locations are always plotted. When col $11=$ '11 the contours specified by the contour cards are also plotted. Core areas will not be plotted if contours are not selected. When Col $11=2$ the animal locations are plotted, but calculation of harmonic means at each grid point is suppressed. Contours and animal locations are plotted in black ink.

Col _12. If Col $12=11$ then the 95% robust non-circular home range is plotted in red ink. The robust non-circular home range will be calculated when Col $12=11$ ' or col $16=1{ }^{\prime \prime}$. Weighted points are identified.

Col _13. The maximum area that meets the definition of a core area will be plotted. No plot will occur if the area is not significantly different from uniform $(p=.10)$. Core areas are added to the list of contours to be plotted. Core areas will not be estimated unless the contour cards specify values less than 1.0 for all selected contours.

Col _14. When Col $14=$ '1' animal observations that may be outliers are identified. Outliers are tested using a
binomial model of the percentage of error polygons containing observations. Observations are tested in decreasing harmonic mean order. A one-tailed 95% confidence interval test is made to identify significant changes in the precent of error polygons with observations. outlier points are not removed from harmonic mean calculations. Outliers will be identified only when all contours are percentiles of the utilization distribution (contour values less than 1.0).

Col_15. If Col $15=11$ then the 95% non-circular home range is plotted in green ink. The non-circular home range wil be calculated when Col $15=11$ or Col $16=11^{\prime}$.

Col_16. A test for bivariate normality is made on both the robust and non-circular home ranges when $\operatorname{col} 16=11^{\prime}$. For the robust test a 90% truncated distribution is compared to the unweighted observed distribution. A test for bivariate uniform distribution is also calculated.

Col_1.7. The minimum convex polygon area is estimated when Col $17=11^{\prime}$. The area and perimeter points are calculated. The area is not plotted, but may be easily drawn from the perimeter points.

Col_18-22. The number of grid points on the x-axis is set to 48 if this value is zero. A higher or lower grid point density may be specified. Higher grid densities will facilitate location of the harmonic mean center and more accurate ploting of contour levels. It will also result in an increase in $C P U$ time necessary to make the calculaticns. Changes from the default of 48 must be accompanied by a
corresponding ratio change in the Y-axis. If the X-axis is set at 72. Y must be set at 32 , a 50% increase in both axes (see Col 23-27 below). The maximum number of grid points on the X-axis is 72.

Col_23-27. Same as Col 18-22, but for the Y-axis. The default is 21 grid points. A change in grid density along the Y-axis must be accompanied by a proportional change in grid density on the x-axis. The maximum number of grid points on the Y-axis is 32.

Scale_Card

The scale card supplies information on the units of data measurement, the number of units per plot inch, and the error polygon size.

Format (A5,5X,2A6,1X,F7.4,1X,F10.5)
Col 1-10 SCALE
Col 11-22 Units of measurement of X and Y coordinates (ex. meters, kilometers)

Col 24-30 No. of units per plot inch
Col 32-41 Min. distance between observations
Col_1210: ${ }^{\prime}$ SCALE'
Coll $11=22$. The dimension for the scale of the units of measurement (eg., feet, meters, or kilometers). Areas reported in the program output are in these units squared (square feet, square meters, or square kilometers).

Col_24-30. Number of measurement units per plot inch. This parameter scales the length of the X and Y axes. The
axes are 24 and 10 inches respectively. Data should be input so that the greatest range in the data occurs along the X-axis. Users should make the scale as large as possible, but still include all observations and contours on the plot.

Col_32-41. The minimum distance between observations is required to estimate an average error polygon. Error polygons are treated as simple squares with this distance being equal to one side. The distance value must be greater than 3 units, otherwise calculations for the harmonic means will be biased. Distances are the same units of measure as Col 11-22.

Method_Card

The method card indicates the manner in which the animal locations were recorded. One of three different methods must be selected.
Format (A6,4X,A6)

Col 1-10 METHOD Col 11-16 Method of data entry
'ENTER'
${ }^{-}$evil 1'
${ }^{\prime}$ Evil 2^{\prime}
Col _1=10. 'METHOD'
Col _11-16. The method of data entry describes how the animal locations were recorded. The 'ENTER' method indicates that the X, Y coordinates of the animal have
already been calculated. The 'Eval 1" method assumes that the X, Y coordinates of a station, the angle, and distance of each location are recorded. 'EVAL 2' assumes that two stations and angles are recorded for each animal location. See the Data Input section for a discussion of information required for each method.

offset_Card

The offset card provides an option to either center the animal locations in the plot or to of fset the minimum animal location relative to the plot origin.

$$
\text { Format } \quad(A 6,4 X, F 10.2,2 X, F 10.2,2 x, A 6)
$$

Col 1-10 OFFSET
Col 11-20 X offset in same units of data Col 23-32 Y offset in same units of data Col 35 - 40 'CENTER' for automatic centering

Col_1=10. 'OFFSET'
Col_11-20. The number of units from the origin that the location with the minimum X coordinate will be offset.

Con_23-32. The number of units from the origin that the location with the minimum Y coordinate will be offset.

Col_35-4ㅇ. If center is specified the animal locations are centered on the plot. X and Y axis offsets are ignored when centering is specified. The centering option requires an interative procedure that increases run cost.

Contour_Cards

The first contour card defines the number of utilization contours to be plotted. A subsequent card is required for each contour level plotted. These cards define the value of the contours. When all contour values are less than 1.0 they are treated as percentages of the utilization distribution. For example, a single value of .95 plots the harmonic mean contour that encloses 95\% of the utilization volume. Any value greater than or equal to 1.0 causes the contours to be plotted as actual harmonic mean values. Thus, specific harmonic mean contours may be requested, i.e. 20 , 40 , and 60. A maximum of 100 contours are allowed.

Contour_Card_1.
Format (A7,3X,I3)
Col 1 - 10 CONTOUR
Col 11-13 No. of contour levels
Coll_1-10. ${ }^{\circ}$ CONTOUR'
Col_11-13. Number of contour levels to be plotted.
Subseguent_contour_cards. As many cards as idicated in Col 11-13 of previous card.

Format (F10.4)
Col 1 - 10 Contour level

DATA INPUT

Data cards immediately follow the last contour card. The first input card is a format of the observations that follow. A maximum of 1000 animal locations are allowed. The number of elements contained on each data card is determined by the program control method card.

Format_Card

This card specifies the format for reading all subsequent data cards.

$$
\begin{aligned}
& \text { Format }(A 6,12 A 6) \\
& \text { Col } 1-6 \text { FOBMAT } \\
& \text { Col } 7-78 \text { Format of data to be entered } \\
& \text { Col_1-6. FORMAT. } \\
& \text { Col_7-78. Format for data input (see examples). }
\end{aligned}
$$

Data_Cards

One card for each animal location. Up to 1000 locations.

Format (Defined by format card)

Method_Options

The three methods of data entry are described in the program control section (Methods Card). Each method requires a different number of data elements that are described below. Data elements should be input in the order
specified. ID's are not used in any program computations and are designed for user convience only. an iD element must be entered, but it may be a blank field.

ENTER_option. This option assumes that tho grid coordinates of the animal locations have already been calculated. Data elements are input as follows:

1) X coordinate
2) Y coordinate
3) observation ID

EVAL1_option. This option assumes that the X, Y coordinates of a station, the angle, and the distance to the animal's location are known. Trigonometric functions are used to find the X, Y grid coordinates of animal locations. Data elements are input as follows:

1) X coordinate
2) Y coordinate
3) angle (in degrees) measured counter-clockwise from the positive x-axis
4) distance
5) observation ID

EVAL2_option. This option assumes that two stations are used in determining animal locations. Each station is assumed to triangulate to the animal location. Data is input in the following order:

1) X coordinate of first station
2) Y coordinate of first station
3) angle (in degrees) measured counter-clockwise
from the positive x-axis
4) X coordinate of second station
5) Y coordinate of second station
6) angle (in degrees) measured counter-clockwise from fositive X-axis
7) observation ID

Print output and plot output are described below in the Examples section. This section covers the computer generated data sets that are available from the program. The first output data file (22) provides a list of the grid locations scaled in inches and the same points translated to the plot origin. A second file (25) reports the calculated harmonic values at each grid location. The grid point harmonic values lower than the maximum observation may be squared and inverted (TOTAL OBSERVATIONS/H**2) to determine the relative utilization volume associated with each grid.

Grid_Locations_File_(22)

The first card reports the plotter inches per grid point.

Format (21X,F9.4, 8x,F9.4)

$$
\begin{array}{ll}
\text { Col } 22-30 & \text { No. of plot inches per X-axis grid point } \\
\text { Col 39-47 No. of plot inches per Y-axis grid point }
\end{array}
$$

Subsequent cards list the X, Y coordinate values.

```
Format (2X,I2,2X,I2,3X,F9.4,3X,F9.4)
Col 3-4 I index
Col 7 - 8 J index
Col 12-20 X(I,J) coordinate value in inches
Col 24-32 Y(I,J) coordinate value in inches
```


Hargmonic_Mean_File_(25)

Each output card lists the harmonic means for each grid location.

Format (1X,F10.2,1X,F10.2,1X,F3.0,1X,F3.0,1X,F10.3)
Col 2-11 $X(I, J)$ coordinate
Col 13-22 Y(I,J) coordinate
Col 24-26 I index
Col 28 - 30 J index
Col 32-41 Harmonic (I, J) value

The harmonic mean file may be used to generate a 3-dimensional plot of the utilization distribution. Example 5 shows the SAS/GRAPH procedures necessary to produce a utilization plot.

EXAMPLES

Abstract

Four examples are shown to illustrate the options available in the HOME RANGE program. All the examples are based on the home range estimate of a single animal (moose 33) during the summer. Data for the relocations are listed in example 1, but deleted from all other examples. The data from example 1 should to used to check proper implementation of the home range program. The year and julian date are used as the observation id. The first example illustrates the bivariate normal and minimum convex polygon approach. The second example shows the use of a single contour to encompass a percentage of the relocations. Example 3 chooses contours based on percentages of the activity distribution. Example 4 follows example 3, but shows the home range by choosing the grid density recommended in the program overview section. Example 5 uses the SAS/GRAPH procedure G3D (Council and Helwig 1981) to show the utilization distribution in 3-dimensions.

Input

5077600	622200	79159
5076200	622000	79162
5076000	622600	79163
5081200	624600	80125
5080600	624600	80128
5081200	624200	80129
5081800	625200	80160
5081700	625700	80167
5079600	625400	79136
5077800	622800	79142
5077800	623800	79151
5077600	623200	79156
5076000	622600	79164
5087800	621600	80138
5086900	621400	80147
5082300	624400	80156
5082000	625400	80167
5088400	620600	81126
5086800	623200	81133
5080600	622700	81147
5083900	624700	81152
5083900	624700	81155
5084400	625000	81162

* This section displays the control cards for *
* example 1. The relocation data for moose 33 *
* follows the format card. The data are *
* recorded in UTM grid coordinates. The X *
* coordinate is recorded first, followed by the* * Y coordinate, and location id. The location * * id represents the year and julian date of the* * observation. Note: the listing* * of the relocation data has been deleted from * * all subsequent examples.

Output

```
ENTER TITLE
TITLE IS MOOSE 33 - SUMMER
ENTER OPTIONS FOR CONTOURS, WEIGHTED NON-CIRCULAR HOME RANGE, CORE AREA ,
    OUTLIER OBSERVATIONS, NON-CIRCOLAR HOME RANGE, BIVARIATE NORMAL TEST,
    AND MINIMUM CONVEX POLYGON AREA
ANSWER WAS O 1 0 0 1 1 1
    WEIGHTED NON-CIRCULAR HOME RANGE WILL BE PLOTTED
    NON-CIRCULAR HCME RANGE WILL BE PLOTTED
    LOCATIONS WILL BE TESTED FOR BIVARIATE NORMALITY
    MINIMUM CONVEX POLYGON WILL EE ESTIMATED
    NUMBER OF GRID POINTS ON X AND Y AXIS ARE 48 21
    ENTER ONITS , PLOT INCH SCALE, AND MIN. DISTANCE BETWEEN OBSERVATIONS
    2000.00 METERS = 1 INCH CN PLOTTER OR
    1 METERS = 0.0005 INCHES ON PLOTTER
    MINIMUM MEASURED DISTANCE BETWEEN OBSERVATIONS = 200.00000 METERS
ENTER METHOD (ENTER, EVAL 1, EVAL 2)
METHOD IS ENTER
ENTER OFFSET AND CENTERING OPTION
X OFFSET IS 10000.00 Y OFFSET IS 3000.00
    WITH NO AOTOMATIC CENTERING
ENTER NUMBER OF CONTOURS
THERE ARE 2 CONTOURS wHICH ARE
```

```
0.7500
0.9500
```

CONTOUR LEVELS ARE TREATED AS PERCENTILES OF THE ANINAL JTILIZATION DISTRIBUTION

```
**********************************************
    This portion of the output describes the *
* input control cards that were specified to *
* execute Example 1.
```



```
X AND Y COORDINATES AND IDS ARE READ IN WITH THE
    FOLLOWING FORMAT (F7.0.2X,F6.0.2X,A5)
```

THE DATA VALUES ARE
OBSR X COORD Y COORD ID


```
* The x,y coordinates and id for each
* relocation are listed in the order of input*
* The minimum and maximum for each axis is *
* calculated. The location and harmonic *
* value of the center of activity is shown. *
* Note: this portion of the output has *
* been deleted from all subsequent examples.*
**********************************************
```

GRID POINT HARMONIC MEAN BY CBS
OBSR $\quad X-C O R D \quad Y-C O R D \quad$ H-MEAN

1	5082400.00	624600.00	1208.432
2	5082500.00	623600.00	1579.580
3	5082400.00	623600.00	1579.580
	\cdot	\bullet	$\dot{*}$
59	5083900.00	624700.00	1640.992
60	5084400.00	625000.00	1640.992

```
* The relocation coordinates and calculated *
* harmonic values are listed in the same *
* sequence as the previous section. *
* Note: this section of output has been *
* deleted from Example 3.
```

SORTED HARMONIC MEANS

OBSR	$X-C O R D$	$Y-C O R D$	H-MEAN
	-		
1	5082400.00	624600.00	1208.432
2	5082400.00	625000.00	1208.432
3	5082200.00	625000.00	1208.432
	$:$	-	-
59	5074800.00	619000.00	5913.523
60	5073200.00	620400.00	6314.781

* Relocations are displayed in harmonic *
* mean ascending order. Harmonic values *
* represent average distance between points.*
* Lower harmonic values are close to the *
* center of activity. Large harmonic values*
* should be reviewed for extreme locations. *
* Subsequent reference to observations is *
* based on the order of this sorted list. *

ESTIMATED PERCENTILE CONTOUR LEVELS

1	3992.903	0.750
2	5763.356	0.950

* Two contour levels were input to the
* program. However, since the contour option *
* was not chosen, the contours were not drawn *

WEIGHTED NON-CIRCULAR HOME RANGE AREA

```
    75% = 21441248.64
    95% = 46443137.85
    SQRT DET S = 2463884.95
    XMEAN = 5081650.70
    YMEAN = 624575.78
    SXX/SYY = 3.194
    SXY = 1785826.44
```

 LIST OF WEIGHTED POINTS
 $X-C O R D$
5076000.00
5076000.00
5077600.00
5076200.00
5087400.00
5086800.00
5085000.00
5086900.00
5087800.00
5088400.00
5074800.00
5073200.00
$\mathrm{Y}-\mathrm{CORD}$

$622600.00 \quad 0.97082$
$622600.00 \quad 0.81663$
$622600.00 \quad 0.81663$
$622200.00 \quad 0.98982$
$622000.00 \quad 0.80681$
$623200.00 \quad 0.50502$
$623200.00 \quad 0.54736$
$628000.00 \quad 0.75217$
$621400.00 \quad 0.38700$
$621600.00 \quad 0.36853$
$620600.00 \quad 0.30512$
$619000.00 \quad 0.45963$
$620400.00 \quad 0.51279$

WEIGHTED NON-CIRCULAR HOME RANGE HAS BEEN PLOTTED
bIVARIATE NORMALITY TEST FOR GOODNESS OF FIT TEST USES K/S DMAX PROCEDURE (ALPHA=.1)

$$
\text { DMAX }=0.173 \quad \text { CRITICAL VALUE }=0.118
$$

TEST USES KUIPER STATISTIC (ALPHA=.1)

$$
V=0.302 \quad \text { CRITICAL } V A L U E=0.197
$$

home range significantly different than bivariate normal CRITICAL DMAX VALUES FOR ALPHA $=.05 . .025 . .01 \mathrm{ARE}$ $0.128 \quad 0.137 \quad 0.148$

CRITICAL V VALUES FOR ALPHA $=.05, .025, .01$ ARE $0.212 \quad 0.226 \quad 0.241$

* The 75% and 95% robust bivariate home range * * areas are estimated. The 95\% area is 46 sq *
* km. The SQRT DET S may be used to produce *
* other percent estimates (see Jennrich and *
* Turner 1969).
* The observations are tested for bivariate *
* normality. Weighted points are removed and a *
* truncated distribution is tested. Critical *
* test statistics are set for alpha=0.1. The *
* observations were found to be significantly *
* different from robust bivariate normal. *
* additional critical values are provided for *
* other alpha levels. It is recommended that *
* alpha $=.10$ be used for samples smaller than *
* 30 locations and alpha $=.05$ be used for *
* samples greater than 30.

JENNRICH/TURNER NON-CIRCULAR HOME RANGE AREA

```
75% = 43049356.86
95% = 93247704.39
SQRT DET S = 4946944.29
XMEAN = 5081736.00
YMEAN = 624348.75
SXX/S YY = 3.304
SXY = 1807639.83
```

NON-CIRCULAR HOME RANGE HAS EEEN PLOTTED

BIVARIATE NORMALITY TEST FOR GOODNESS OF FIT TEST USES K/S DMAX PROCEDURE (ALPHA=. 1)

```
DMAX = 0.175
CRITICAL VALUE = 0. 104
TEST USES KUIPER STATISTIC (ALPHA=. 1)
```

$V=0.328 \quad$ CRITICAL VALUE $=0.175$
FOR 60 OBSERVATIONS
HOME RANGE SIGNIFICANTLY DIFFERENT THAN BIVARIATE NOBMAI
CRITICAL DMAX VALIJES FOR ALPHA $=.05$. . 025,. 01 ARE $0.114 \quad 0.122 \quad 0.132$

CRITICAL V VALUES FOR ALPHA $=.05, .025 . .01 \mathrm{ARE}$ $0.188 \quad 0.2010 .214$

* The 75% and 95% home range areas for the *
* bivariate normal method are estimated. The *
* 95% home range area is 93 sq km . The *
* observations are tested for bivariate *
* normality. Both Dmax and V tests exceed the *
* critical test values. Other critical values *
* are also provided.

BIVARIATE UNIFORM TEST FOR GOODNESS OF FIT TEST USES K/S DMAX PROCEDURE (ALPHA=.1)

DMAX $=0.225$ CRITICAL VALUE $=0.155$
TEST USES KلIPER STATISTIC (ALPHA=.1)
$V=0.419 \quad$ CRITICAL VALDE $=0.204$
FOR 60 OBSERVATIONS
HOME RANGE SIGNIFICANTLY DIFEERENT THAN UNIFORM DISTRIBUTION
CRITICAL DMAX VALUES FOR ALPHA $=.05, .025, .01 \mathrm{ARE}$ $0.172 \quad 0.188 \quad 0.207$

CRITICAL V VALUES FOR ALPHA $=.05 .0 .25 . .01$ ARE $0.220 \quad 0.235 \quad 0.252$

```
* A test for bivariate uniform distribution * * is performed on the data. A bivariate uniform* * distribution is rejected for both test * * statistics.
```

CONVEX POLYGON HOME RANGE

```
    THERE ARE & POINTS DEFINING THE PERIMETER OF THIS HCME RANGE.
    f
    NO. INDEX X Y
    -------------------------------------------------
    2 53 5087400.00 623200.00
    3 58 5088400.00 620600.00
    4 59 5074800.00 619000.00
    5 60 5073200.00 620400.00
    6 49 5076000.00 622600.00
    7 43 5079600.00 625400.00
    8 55 5085000.00 628000.00
```

 NOTE: 1. POINTS ARE LISTED CLOCK日ISE.
 2. THIS POLYGON ENCLOSES ALL 60 POINTS, I.E., NO OUTLIERS
 WERE EXCLUDED.
 3. FIRST AND LAST POINTS ARE THE SAME TO CLOSE THE POLYGON.
 THE AREA OF THIS CONVEX POLYGON HCME RANGE IS:
ENCLOSED AREA $=73320035.93$ SQUARE UNITS
TOTAL AREA WITHIN CONTOUR $=73320035.93$ SQUARE UNITS

The minimum convex polygon (MCP) home range *

* is calculated from the cbservations. The *
* observation number and coordinates for each *
* point on the MCP perimeter are identified. *
* The home range is 73 sq km . *

THE GRID COORDINATES ARE

X	COORD	(1)	$=$	9.600	Y	COORD	(1)	$=$	4.300
X	COORD	1	2)	$=$	9.600	Y	COORD	1	2)	$=$	4.500
X	COORD	(3)	$=$	9.500	Y	COCRD	(3)	$=$	4.500
X	COORD	1	4)	$=$	9.300	Y	COORD	(4)	$=$	4.600
					-						
X	COORD	1	59)	$=$	5.800	Y	COORD	1	5)	$=$	1.500
	COORD	1	60)	$=$	5.000	Y	COORD	(6)	$=$	2.200

* The observations are plotted by relative * * scale (inches) from the $x, y(0,0)$ plot origin.
* Note: this output is omitted from subsequent* * examples.

Plot

Input

```
TITLE MOOSE 33 - SUMMER
SELECT 1000000
SCALE METERS
    2000.0 200.0
METHOD ENTER
OFFSET 10000. 3000.0
CONTOUR 001
5750.
FORMAT (F7.0,2X,F6.0,2X,A5)
```

**

* Input control cards for Example 2. The *
* observation data (listed in Example 1) has been*
* deleted.
**

Output

```
ENTER TITLE
TITLE IS MOOSE 33 - SUMMER
```

ENTER OPTIONS FOR CONTOURS, WEIGHTED NON-CIRCULAR HOME RANGE, CORE AREA,
OUTLIER OBSERVATIONS, NON-CIRCULAR HOME RANGE, BIVARIATE NORMAL TEST,
and minimum convex polygon area
ANSWER WAS 1000000
CONTOURS WILL BE PLOTTED
NUMBER OF GRID POINTS ON X AND Y AXIS ARE 48
Enter units , plot inch scale, and min. distance between observations
2000.00 METERS $\quad 1$ INCH ON PLOTTER OR
1 METERS $=0.0005$ INCHES ON PLOTTER
MINIMUM MEASURED DISTANCE BETWEEN OBSERVATIONS $=200.00000$ METERS
ENTER METHOD (ENTER, EVAL 1, EVAL 2)
METHOD IS ENTER
ENTER OFFSET AND CENTERING OPTION
X OFFSET IS 10000.00 Y OFFSET IS $\mathbf{3 0 0 0 . 0 0}$
WITH NO AUTOMATIC CENTERING
ENTER NUMBER OF CONTOURS
THERE ARE 1 CONTOURS WHICH ARE
5750.0000

The input control cards for Example 2 are

* listed. One contour at 5750 will be plotted.

```
CONTOUR LEVEL = 1 M MEAN = 5750.000
```

```
THE FOLLOWING LINES WOULD BE DRAWN
```

LINES $=$	122	
MOVE TO	6.000	2.479
DRAW TO	5.990	2.490
•	.	.
DRAW TO	6.185	2.315
DRAW TO	6.000	2.479

ENCLOSED AREA $=117197087.16$ SQUARE UNITS
TOTAL AREA WITHIN CONTOUR $=117197087.16$ SQUARE UNITS

* The 5750 contour is plotted with the
* preceeding plotter pen instructions. Locations*
* are given in inches from the flot origin. Area*
* within the coutour is estimated using the *
* cartographers formula.

Plot

Example_3

Input

TITLE	MOOSE 33 - SUMMER	
SELECT	1011000	
SCALE	METERS	2000.0
METHOD	ENTER	
OFFSET	10000.	3000.0
CONTO UR	002	
0.75		
0.95		
FORMAT	(F7.0, 2	, 2X, A5)

```
****************************************************
* The input control cards for Example 3 are *
* listed. Two contours encompassing 75% and 95% *
* of the activity use will be drawn. The *
* observation data is listed in Example 1. *
```


output

```
ENTER TITLE
TITLE IS MOOSE 33 - SUMMER
```

ENTER OPTIONS FOR CONTOURS, WEIGHTED NON-CIRCULAR HOME RANGE, CORE AREA,
OUTLIER OBSERVATIONS, NON-CIRCULAR HOME RANGE, BIVARIATE NORMAL TEST,
AND MINIMUM CONVEX POLYGON AREA
ANSWER WAS 10011000
CONTOURS WILL BE PLOTTED
CORE AREAS WILL BE PLOTTED
OUTLIERS WILL BE IDENTIFIED
NUMBER OF GRID POINTS ON X AND Y AXIS ARE 21
ENTER UNITS, PLOT INCH SCALE, AND MIN. DISTANCE BETWEEN OBSERVATIONS
2000.00 METERS $\quad=1$ INCH CN PLOTTER OR
1 METERS $=0.0005$ INCHES ON PLOTTER
MINIMUM MEASURED DISTANCE BETWEEN OBSERVATIONS $=200.00000$ METERS
ENTER METHOD (ENTER, EVAL 1, EVAL 2)
METHOD IS ENTER
ENTER OFFSET AND CENTERING OPTION
X OFFSET IS 10000.00 Y OFFSET IS 3000.00
WITH NO AUTOMATIC CENTERING
ENTER NUMBER OF CONTOURS
THERE ARE 2 CONTOURS WHICH ARE
0.7500
0.9500

CONTOUR LEVELS ARE TREATED AS PERCENTILES OF THE ANIMAL UTILIZATION DISTRIBUTION

* The input control cards read by the program * * are displayed with the options chosen. * **

SORTED HARMONIC MEANS

OBSR	$\mathrm{X}-\mathrm{CORD}$	Y-CORD	H-MEAN		
1	5082400.00	624600.00	1208.432		
2	5082400.00	625000.00	1208.432		
	.	.	.		
59	5074800.00	619000.00	5913.523		
60	5073200.00	620400.00	6314.781		
POINT	5086900.00	621400.00	WAS CLASSIfIEd	AS A	an outlier
POINT	5087800.00	621600.00	WAS CLASSIFIED		an outlier
POINT	5088400.00	620600.00	WAS CLASSIFIED	AS A	an outlier
POINT	5074800.00	619000.00	WAS CLASSIFIED	AS A	AN OUTLIER
POINT	5073200.00	620400.00	WAS CLASSIFIED	AS A	an outlier

[^0]```
ESTIMATED PERCENTILE CCNTOUR LEVELS
```

| 1 | 3992.903 | 0.750 |
| :--- | :--- | :--- |
| 2 | 5763.356 | 0.950 |

3318.868 ESTIMATED CORE AREA WITH 24.6 PFRCENT OF AREA AND 61.3 PERCENT OF UTILIZATION VOLIME

## ***********************************れ*************

* The $75 \%$ and $95 \%$ activity contours will be *
* plotted at the indicated harmonic values. A *
* significant core area was found and will be *
* plotted. The estimated percent of area and *
* use volume are estimated for the core area. *


$$
\text { CONTOUR LEVEL }=1 \text { H MEAN }=3992.903
$$

THE FOLLOWING LINES WCULD BE DRAWN

| LINES $=$ | 98 |  |
| :--- | :---: | :---: |
| MOVE TO | 6.500 | 2.861 |
| DRAW TO | 6.419 | 2.919 |
| - | $\cdot$ | 0 |
| DRAW TO | 6.500 | 2.861 |
| ENCLOSED AREA $=$ | 54593444.82 | SQUARE UNITS |
| TOTAL AREA WITHIN CONTOUR $=$ | 54593444.82 SQUARE UNITS |  |

```
**
* The pen instructions are listed to show the *
* contour chosen and the enclosed area. This *
* list illustrates the 75% contcur. *
**
```

```
CONTOUR LEVEL = 2 H MEAN = 5763.356
```

THE FOLLOWING LINES WOULD BE DRAWN

| LINES $=$ | 124 |  |
| ---: | :---: | :---: |
| MOVE TO | 6.000 | 2.467 |
| DRAW TO | 5.983 | 2.483 |
| • | • |  |
| DRAW TO | 6.000 | 2.467 |

ENCLOSED AREA $=117705572.13$ SQUARE UNITS

TOTAL AREA WITHIN CONTOUR $=117705572.13$ SQUARE UNITS

```
* The 95% percent contour is shown.
```

$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
CONTOUR LEVEL $=3 \quad 3$ MEAN $=3318.868$
THE FOLLOWING LINES WOULD BE DRAWN

| LINES $=$ | 70 |  |
| ---: | :---: | :---: |
| MOVE TO | 7.000 | 3.074 |
| DRAW TO | 6.752 | 3.252 |
| • | $\bullet$ | . |
| DRAW TO | 7.000 | 3.074 |

ENCLOSED AREA $=34200988.77$ SQUARE UNITS
TOTAL AREA WITHIN CONTOUR $=34200988.77$ SQUARE UNITS

Plot


Input

| TITLE | MOOSE 33 | SUMMER |  |
| :--- | :--- | :---: | ---: |
| SELECT | 1011000 | 41 | 18 |
| SCALE | METERS | 2000.0 | 200.0 |
| METHOD | ENTER |  |  |
| OFFSET | 10000 | 3000.0 |  |
| CONTOUR | 002 |  |  |
| O.75 |  |  |  |
| O.90 |  |  |  |
| FORMAT | (F7.0.2X,F6.0.2X,A5) |  |  |




## Output

```
ENTER TITLE
TITLE IS MOOSE 33 - SUMMER
```

ENTER OPTIONS FOR CONTOURS, WEIGHTED NON-CIRCULAR HOME RANGE, CORE AREA ,
OUTLIER OBSERVATIONS, NON-CIRCULAR HOME RANGE, BIVARIATE NORMAL TEST,
and minimum Convex polygon area
ANSWER WAS 10011000
CONTOURS WILL BE PLOTTED
CORE AREAS WILL BE PLOTTED
OUTLIERS WILL BE IDENTIFIED
NUMBER OF GRID POINTS ON X AND Y AXIS ARE 418
ENTER UNITS , PLOT INCH SCALE, AND MIN. DISTANCE BETWEEN OBSERVATIONS
2000.00 METERS $=1$ INCH ON PLOTTER OR
1 METERS $=0.0005$ INCHES ON PLOTTER
MINIMUM MEASURED DISTANCE BETWEEN OBSERVATIONS $=200.00000$ METERS
ENTER METHOD (ENTER, EVAL 1, EVAL 2)
METHOD IS ENTER

ENTER OFFSET AND CENTERING OPTION

```
X OFFSET IS 10000.00 Y OFFSET IS 3000.00
 WITH NO AUTOMATIC CENTERING
```

    ENTER NUMBER OF CONTOURS
    THERE ARE 2 CONTOURS WHICE ARE
    0.7500
    0.9000
    CONTOUR LEVELS ARE TREATED AS PERCENTILES OF THE ANIMAL UTILIZATION DISTRIBUTION

```

* This section recaps the options selected.
* See previous examples.
```

GRID POINT HARMONIC MEAN BY CBS


| 1 | 5082400.00 | 624600.00 | 1559.568 |
| :---: | :---: | :---: | :---: |
| 2 | 5082500.00 | 623600.00 | 2323.177 |
| 3 | 5082400.00 | 623600.00 | 2323.177 |
|  | $\bullet$ | $\bullet$ | $\cdot$ |
| 59 | 5083900.00 | 624700.00 | 2171.275 |
| 60 | 5084400.00 | 625000.00 | 1827.098 |

## ************************************************

* The harmonic mean values for each location * * are listed. Note: these values are slightly* * different from those in example 3 due to the * * change in grid density.


## SORTED HARMONIC MEANS

```
OBSR X-CORD Y-CORD H-MEAN

\begin{tabular}{cccc}
1 & 5082000.00 & 625800.00 & 1224.862 \\
2 & 5082400.00 & 625000.00 & 1224.862 \\
3 & 5081400.00 & 625600.00 & 1224.862 \\
& \(\bullet\) & \(\bullet\) & \(\bullet\)
\end{tabular}
\(60 \quad 5073200.00 \quad 620400.00 \quad 6057.500\)
POINT 5086900.00 621400.00 WAS CLASSIFIED AS, AN OUTLIER
POINT 5087800.00
621600.00 WAS CLASSIPIED AS AN OUTLIER
```

POINT $5073200.00 \quad 620400.00$ WAS CLASSIFIED AS AN OUTLIER

```
The sorted harmonic values for each location *
* are listed and outliers are identified. See *
* example 3 for more discussion.
**
```

    ESTIMATED PERCENTILE CONTOUR LEVELS
    | 1 | 3914.618 | 0.750 |
| :--- | :--- | :--- |
| 2 | 5651.121 | 0.950 |

3256.425 ESTIMATED CORE AREA WITH 24.7 PERCENT OF AREA
AND 60.2 PEBCENT OF UTILIZATION VOLUME

```
 The contours for 75% and 95% of the activity *
* distribution are estimated. A core area contour*
* is also estimated. Note: these contours are *
* slightly different than example 3 due to changes*
* in grid density.

```

CONTOUR LEVEL =
1
H MEAN =
3914.618

| THE FOLLOWING LINES WOULD |  |  |
| :---: | :---: | :---: |
| LINES $=$ | 78 |  |
| MOVE TO | 6.439 | 2.926 |
| - | - |  |
| MOVE TO | 6.438 | 2.927 |

ENCLOSED AREA $=51674224.85$ SQUARE UNITS
TOTAL AREA WITHIN CONTOUR $=51690368.65$ SQUARE UNITS
**************************************************

* The contour for the $75 \%$ activity area is *
* shown with area estimation. *
**************************************************

$$
\text { CONTOUR LEVEL }=2 \text { H MEAN }=5651.121
$$

THE FOLLOWING LINES WOULD BE DRAWN

| LINES $=$ | 104 |  |
| ---: | :---: | :---: |
| MOVE TO | 5.854 | 2.777 |
| DRAK TO | 5.778 | 2.851 |
| - | - | . |
| - | DRAW TO | 5.854 |
| DR | 2.777 |  |

ENCLOSED AREA $=113107732.77$ SQUARE UNITS
TOTAL AREA WITHIN CONTOUR $=113107732.77$ SQUARE UNITS

```
CONTOUR LEVEL = 3 H MEAN = 3256.425
```

THE FOLLOWING LINES WOULD BE DRAWN
LINES= 62
MOVE TO $7.024 \quad 3.240$
DRAW TO $6.868 \quad 3.356$
$\bullet$ •
MOVE TO $10.537 \quad 3.512$
ENCLOSED AREA $=31115875.24$ SQUARE UNITS
DRAW TO $10.537 \quad 3.512$
- • .
- • •
DRAW TO $10.537 \quad 3.512$
ENCLOSED AREA $=\quad 915.53$ SQUARE UNITS
TOTAL AREA WITHIN CONTOUR $=31116882.32$ SQUARE UNITS

* The core area contour is shown.
*************************************************

Plot


## Example_s

This example illustrates the use of data from the harmonic mean file (25) to produce a 3-dimensional picture of the utilization distribution. The SAS/GRAPH procedure G3D (Council and Helwig) is used to produce the plot on a Tektronics 4662.

Input

```
DATA PLOT;
 RETAIN CUT 6058.0;
 INPUT X Y NX NY HMEAN;
 IF HMEAN GT CUT THEN HMEAN = 0.0;
 ELSE HMEAN = ((1 / HMEAN) ** 2);
 CARDS:
5063200.00 616000.00 1. 1. 19802.879
5063200.00 617170.69 1. 2. 19333.383
5063200.00 618341.44 1. 3. 18933.066
5063200.00 619512.19 1. 4. 18607.141
5110029.00 633560.94 41. 16. 29490.410
5110029.00 634731.69 41. 17. 29880.391
5110029.00 635902.44 41. 18. 30310.992
PROC G3D DATA=PLOT;
 PLOT Y*X = HMEAN / ROTATE=15 NOAXES;
TITLE .C=BLACK . F=TITALIC . H=2 UTILIZATION DISTRIBUTION;
FOOTNOTE .C=BLACK . F=TITALIC .H=2 MOOSE 33 - SUMMER;
GOPTIONS DEVICE=TEK4662;
```

**************************************x***********

* The value assigned to CuT is slightly above *
* the largest harmonic value of all observations.*
* This causes all grids with greater harmonic *
* values to be set to zero. Input data is from *
* the harmonic mean file (25).

Plot
 NOILIAGIYLSIG NOILUZITILA

JCL EXAMPLES

The first example illustrates a FORTRAN compilation of the HOME RANGE program. A load module is created and stored for subsequent execution. Some JCL and system library conventions may be unique to the $U$ of $I$ computer system.

```
//JHOMRAN JOB (USERID, 123-45-6789). NAME
//STEP1 EXEC FORTGCL
//FORT.SYSIN DD *
 Home range program code
/*
//LKED.SYSLIB DD
// DD DSN=SYS1. PLOTLIB,DISP=SHR
//SYSLMOD DD DSN=WLSAMUEL.HOMRAN(HOMER),SPACE=(TRK, (20,5,2),RLSE),
// DCB=SYS1.LINKLIB,DISP=(NEW,CATLG),UNIT=DISK
//
```

The second example illustrates the JCL requirements for program execution. This example assumes that a load module has been previously created (see previous example).
//JSAMPLE JOB (USERID, 123-45-6789). NAME
//STEP1 EXEC PGM=HOMER
//STEPLIB DD DSN=WLSAMUEL.HOMRAN, DISP=SHR
//PT13F001 DD DSN=PTAPE, UNIT=TAPE, DISP=(, KEEP) ,
// $D C B=(R E C F M=U, B L K S I Z E=512, D E N=2), L A B E L=(, N L)$
$/ / \mathrm{FT06F001}$ DD SYSOUT=A
//FT07F001 DD SYSCUT=B
//FT22F001 DD DUMMY
//FT25F001 DD DUMMY
//FT05F001 DD *
Program control cards Data input cards
//

## PROGRAM DETAILS

## Proqrant_Size

The program consists of a main routine and 16 subroutines excluding standard FCRTRAN intrinsic functions and required plot routines. The program contains approximately 2300 cards, including numerous comment cards to aid in following program flow. Execution requires approximately 300 K for the code without overlay structure on an IBM system OS/VS 1.

## Dímension_Limitations

Program array dimensions allow a maximum of 1000 animal locations to be processed, up to 100 contour levels may be specified, and the number of grid points cannot exceed 72 on the X-axis and 32 on the $Y$-axis. The majority of program arrays and arithemetic operations are in IBM single precision with approximately 7 decimal digits of accuracy.

## Run_Costs

Run costs vary by the number of animal locations and the options selected. A typical cost with most options in effect and 40 locations is approximately $\$ 5.00$ on the University of Idaho IBM 4341 OS/VS 1 system and requires 30 seconds of CPU time.

The costs of individual runs may be controlled by judicious selection of program options on the SELECT card.

A substantial amount of program time may be required to compute the harmonic means at each grid point. This calculation should be suppressed when only convex polygon or bivariate home range estimates are required. The centering option, while convenient, requires additional computer time. This cost may be avioded by determining appropriate $X, Y$ values for the opfSET card. Finally, it may be possbile to reduce $I / 0$ costs by not writting to files 22 and 25 (see JCL example 2) or not plotting the output tape.

## Availability

The program is written in IBM FORTRAN IV level G so that it should function on most brands of digital computers with minor or no modifications. Plotter capabilities are required. The program is designed to produce CALCOMP plotter instructions on an output file (13). Conversion of plot instructions will be required for different plot devices. A software routine (ELIPS) available for CALCOMP plotters was used to produce bivariate probability ellipses. A substitute routine developed at oregon State University is listed in the next section to accommodate users without equivalent software.

## Ellipsse_zoutine

The following generalized ellipse routine was developed
by Eric Rexstad and Scott Lutz at oSU.

C
C REPLACEMENT OF CALCOMP 'ELIPS* ROUTINE. GENERALLY BORROWED

```
 ROTAT = ANGLE* 3.1415926 / 180.
```

    SINROT \(=\) SIN (ROTAT )
    COSROT \(=\operatorname{COS}(\) ROTAT \()\)
    C
C USE POLAR COORDINATES TO GENERATE 200 POINTS ON EERIMETER
C
C
DO 400 THETA $=0 ., 6.2831853,0.0314159$
$X=$ RMAJ * COS (THETA)
$Y=$ RMIN * SIN (THETA)

$Y P T=X * S I N R O T * Y * \operatorname{COSROT}+(Y M E A N-Y M I N) * X S C A L E$
C ,
C IF THIS IS FIRST POINT GENERATED, LIFT PEN TO PERIMETER OF
C ELLIPSE
C
IF (THETA.EQ. 0.) THEN
CALL PLCT (XPT, YPT, 0,0 )
ELSE
CALL PLOT (XPT, YPT, 1, 0)
END IF
400 CONTINUE

## LITERATURE CITED

Adams, L. and S.D. Davis. 1967. The internal anatomy of home range. J. Mammal. 48: 529-536.

Anderson. D.J. 1982. The home range: a new nonparametric estimation technique. Ecology 63:103-112.

Burt. W.H. 1943. Territorality and home range concepts as applied to mammals. Journal of Mammalogy 24:346-352. Council. K.A. and J.T. Helwig (eds.). 1981. SAS/GRAPH user's guide. SAS Institute Inc.

Dixon, K.R. and J.A. Chapman. 1980. Harmonic mean measure of animal activity areas. Ecology 61: 1040-1044.

Ewer. R.F. 1968. Ethology of mammals. Legos Press, London, England.

Ford, R.G. and D.W. Krumme. 1979. The analysis of space use patterns. Journal of Theoretical Biology 76:125-155.

Hayne. D.W. 1949. Calculation of size of home range. Journal of Mammalogy 39:190-206.

Jennrich, R.I. and F.B. Turner. 1969. Measurement of non-circular home range. Journal of Theoretical Biology 22:227-237.

Kaufmann, J.H. 1962. Ecology and social behavior of the coati, Nasuag_niricica on Earro Colorado Island, Panama. Univ. of Calif. Publ. Zool. 60:95-222.

Koeppl. J.W., N.A. Slade, R.S. Hoffmann. 1975. A bivariate home range model with possible application to ethological data analysis. J. Mammal. 56:81-90.

Leuthold. W. 1977. African ungulates: a comparative review of their ethology and behavioral ecology. Springer-Verlag, New York.

Morrison, D.F. 1976. Multivariate statistical methods. Mcgraw-Hilł, New York.

Neft, D.S. 1966. Statistical analysis for areal distributions. Monograph Series Number 2. Regional Science Research Institute, Fhiladelphia, Pennsylvania, USA.

Pierce, D.J. 1983. Food habits. movements, habitat selection and population parameters of moose in northcentral Idaho and relationship to forest management. Univ. of Idaho. Unpublished masters thesis.

Randles, R.H., J.D. Brofitt, J.S. Romberg, and R.V. Hogg. 1978. Generalized linear and quadratic discriminate functions using robust estimates. J. Am. Statist. Assoc. 73:564-568.

Samuel, M.D. and E.O. Garton. (In prep). Home range: a robust bivariate normal estimate and tests of underlying assumptions.

Samuel, M.D., D.J. Pierce and E.O. Garton. (In prep). Identifying areas of concentrated use within the home range.

Saunders, R. and P. Laud. 1980. The multidimensional Kolmogorov goodness-of-fit test. Biometrika 67:237. Schoener, T.W. 1981. An empirically based estimate of home range. Theoretical Population Biology 20:281-325.

Smith, W.P. 1983. A bivariate normal test for elliptical home-range models: biological implications and recommendations. J. Wildl. Manage. 47:613-619.

Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons. J. Amer. Stat. Assoc. 69:730-737.

Van Winkle, W. 1975. Comparison of several probabilistic home-range models. J. Wildl. Manage. 39:118-123.


[^0]:    **************************************************

    * The harmonic values for each observation are *
    * listed. A bivariate test comparing the density*
    * of observations is used to identify potential *
    * outliers. This list may be used to review *
    * points that may be extreme locations or data *
    * errors. These points should not be arbitrarily*
    * removed.

