GIS Day at University of Idaho

GIS on the Palouse

Using GIS to Optimize Soil Moisture Sensor Deployment and Plot Delineation in Cambitch Farm

Robel Alemayehu alem0101@vandals.uidaho.edu

November 19, 2025

Department of Chemical and Biological Engineering

University of Idaho

How We Define Palouse Topography?

- Complex topography and highly variable soil moisture patterns
- Rolling hills with visible color contrasts
- Green and yellow patches, Spatial Heterogeneity SM

Iniversity of Idaho

- Water doesn't infiltrate or Redistribute uniformly
- Localized zones of water stress and yield variability

Research Objectives

 Evaluate biochar effects on water- and nutrientholding capacity

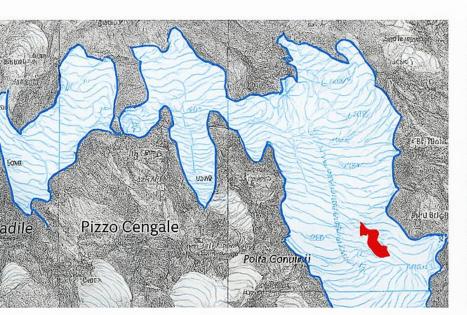
- Use GIS to minimize spatial variability
- Optimize sensor deployment for accurate treatment comparison

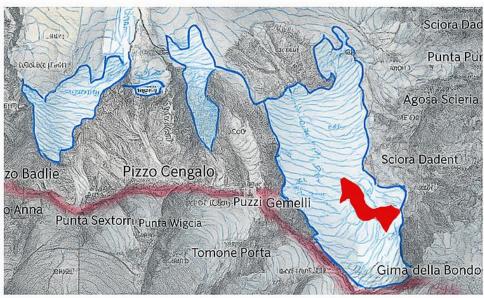
How Does GIS Helped me then?

North Face Units location map

- Use GIS to minimize spatial variability
- Snow Depth spatial Variability
- Setting Up the Experimental Units

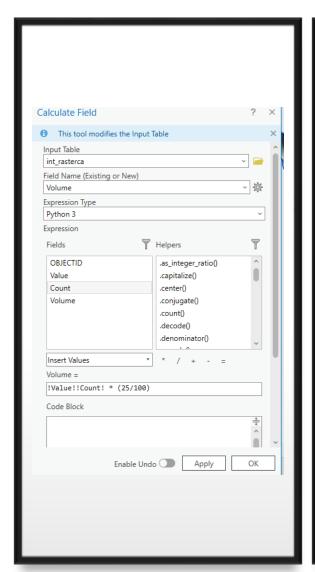
An analysis of the Bondo landslide, Graubünden, Switzerland

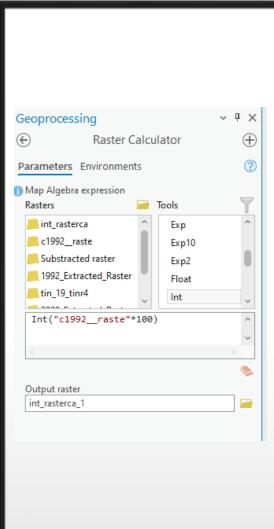

Robel Alemayehu


November 16, 2023

University of Idah

Glacier Retreat Analysis: 1992 vs. 2020




1992	2020

Glaciers year	Glaciated Area (squarekm)
1992	2.246
2020	1.4915

Table 2: Summarized area of Glaciers

"Thank You"