

GIS & Spatial Machine Learning: Transforming Our Planet's Pulse to Action

Orhun Aydin, PhD Senior Researcher

oaydin@esri.com @orhun_sow

Geographer's Guide to Galaxy (and this Keynote)

ΟN

The Way We Think & Create

Need for Interoperable GIS

Outline for Today

Data Science in GIS Spatial Data Science Machine Learning Deep Learning

Artificial Intelligence

Our Planet's Memory

Citizen Science

Living Atlas

Integration with Platforms

Integration for Machine Learning

Integration for Data Science

Artificial Intelligence Data Science Machine Learning Deep Learning

Caffe	Object Track	ing CNT	< Obje	ect Detection	
	Arti	ficial Intelli	gence		
				scikit-learn I Networks Natural Language	
Ra	ndom Forest	Machine Learning			
Computing	Tens	sorFlow	TONE	Processing	
	GeoAl	Deep Learning	I-SNE	Keras	
	Dimensionality R	Support Vector Machines			

Artificial Intelligence

Machine Learning

> Deep Learning

Artificial Intelligence: Pre-Machine Learning

- Programs with common sense¹ (McCarthy, 1960) → Set of **predefined** logical operators is (GIS Day, Nov 13th), in (Nov 13th, today) → in (GIS, today!)
- Complex and extensive representations of human knowledge- Knowledgebases
 - CYC²

May 30, 1739

• SenticNet (1, 2, 3, 4, 5)³

- 1. McCarthy, J. (1960). Programs with common sense (pp. 300-307). RLE and MIT computation center.
- 2. Lenat, D. B., Guha, R. V., Pittman, K., Pratt, D., & Shepherd, M. (1990). Cyc: toward programs with common sense. Communications of the ACM, 33(8), 30-49.
- 3. Cambria, E., Speer, R., Havasi, C., & Hussain, A. (2010, November). Senticnet: A publicly available semantic resource for opinion mining. In AAAI

Artificial Intelligence: Machine Learning

- Learn rules and patterns from data
- Data is represented explicitly, knowledge is NOT
 - Data-driven
- Explicit rules do NOT exist, instead inferred from data

esri

1. Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37), 870-877.

Machine Learning in ArcGIS

Machine Learning in ArcGIS

Data-driven algorithms and techniques that automate tasks such as **prediction**, **classification** and **clustering**

Traditional Machine Learning

- Useful to solve a wide range of spatial problems
- Geography often acts as the 'key' for disparate data

Spatial Machine Learning

- Incorporate geography in their computation
- Shape, density, contiguity, spatial distribution, or proximity

Machine Learning Tools in ArcGIS

Classification

- Maximum Likelihood
 Classification
- Random Trees
- Support Vector Machine

Clustering

- Spatially Constrained Multivariate Clustering
- Multivariate Clustering
- Density-based Clustering
- Image Segmentation
- Hot Spot Analysis
- Cluster and Outlier Analysis Space Time Pattern Mining Time Series Clustering

Prediction

- Empirical Bayesian Kriging
 Areal Interpolation
- EBK Regression Prediction
- Ordinary Least Squares
 Regression and
- Exploratory Regression
- Geographically Weighted Regression
- Forest Based Prediction

Solving Spatial Problems

ArcGIS the Scientific Workbench

Prediction

Exploring Relationships Between Variables via Regression

Use Case: Understanding house price drivers in King County, WA from a rich dataset on house condition.

In ArcGIS: Forest Based Classification and Regression, Geographically Weighted Regression, Ordinary Least Squares Regression

Prediction

Using the known to estimate the unknown

Use Case: Accurately predict impacts of climate change on local temperature using global climate model data

In ArcGIS: Empirical Bayesian Kriging, Areal Interpolation, EBK Regression Prediction, Ordinary Least Squares Regression and Exploratory Regression, Geographically Weighted Regression

Clustering

The grouping of observations based on similarities of values or locations

Use Case: Given the nearly 50,000 reports of traffic between 5pm and 6pm in Los Angeles (from Traffic Alerts by Waze), where are traffic zones that can be used to elicit feedback from current drivers in the area?

In ArcGIS: Spatially Constrained Multivariate Clustering, Multivariate Clustering, Density-based Clustering, Image Segmentation, Hot Spot Analysis, Cluster and Outlier Analysis, Space Time Pattern Mining

Classification

The process of deciding to which category an object should be assigned based on a training dataset

Use Case: Classify impervious surfaces to help effectively prepare for storm and flood events based on the latest high-resolution imagery

In ArcGIS: Maximum Likelihood Classification, Random Trees, Support Vector Machine

Interoperability with External Frameworks

Working in ArcGIS and Further

Open and Interoperable Platform for Science

Open Standards and Formats

XLSForm	GML	SQL	SLD	SOAP	WMTS	KML	LAS	INSPIRE	Shap	oefiles
IMDF	WCS	IFC	Web Sce	ene (I3S)	LERC	CSW	WPS	REST	OneGe	eology
WFS	WMS	0	PeNDAP	JSON	l Wat	erML	netCDF	GeoPa	ckage	CityGML

Direct Product Integration

MS Office	SQI	Server	SharePo	int Azure	Power BI	Ν	letezza	SAP HA	NA
Adobe	Creati	ve Cloud	Jupyter	Notebook	Teradata	R	AWS	Altibase	Python
0	racle	AutoCAD	Revit	PostgreSQL	Dameng	S	QLite	Spark	Hadoop

Open Software Architecture

Open Data Access	Open APIs & S	DKs Open	-Source Int	egration
Open-Source Cont	ributions E	xtensible Archite	cture	Embeddable

... Successfully Integrated Into Thousands of Systems

OGC"

Certifications

Many

Machine Learning Integration with External Frameworks

ArcGIS Notebooks

- Performing analysis
 - Spatial analysis
 - Spatial data science
 - Machine learning
 - Deep learning
- Automating analytic and administrative workflows related to GIS
- Operationalizing data science models

ArcGIS Notebooks

Deep Learning Integration

What is the #1 Challenge?

Getting Everyone to <u>SEAMLESSLY</u> work together

Imagery AI Capabilities in ArcGIS

Deploy Models on Portal As dlpk items

Examples for other Imagery AI Workflows

Object Detection, Instance Segmentation, Land Cover, Change Detection..

Damaged Structures

Roads

Swimming Pools

Oil Pads

Road Cracks

Land Cover

Cars

Palm Trees

Pipeline Encroachment

End to End GeoAl Life Cycle with Imagery

Imagery Access

Data

Labelling

Imagery Prep

Deploy Models to Production

Train & Consume Models

Run Inference

at SCALE

000

Feedback Loop

Take Action

1. Imagery Access & Preparation

Imagery Processing & Building Image Mosaic

2. Prepare Training Data

This is what we need to train a Deep Learning Model: Image Chips (Training Data)

ArcGIS has tools that can help with generating Training Data

Training Sample Manager

For easily labelling objects of interest

Export Training Data for Deep Learning

Geoprocessing	↓ □ ×
Export Training Data For Deep Lea	arning 🔳
Parameters Environments	?
* Input Raster	~
* Output Folder	
Input Feature Class Or Classified Raster	

Bounding Boxes

3. Train Model

Model Training using ArcGIS.Learn

Train SingleShotDetector Model

from arcgis.learn import SingleShotDetector

ssd = SingleShotDetector(data, grids=[9], zooms=[1.0], ratios=[[

The **arcgis.learn** module in ArcGIS API for Python enable GIS analysts and data scientists to easily adopt and apply deep learning in their workflows. It enables training state-of-the-art deep learning models with a simple, intuitive API. In [8]: ssd.fit(10, lr=slice(1e-3, 1e-2))

Total time: 15:56

epoch	train_loss	valid_loss
1	629.015869	250.982254
2	400.904327	181.745972
3	315.588318	163.946136
4	268.519928	155.258881
5	234.541077	133.495728
6	209.463257	116.552231
7	189.608063	104.452789
8	172.239929	98.530197
9	157.103226	91.969261
10	146.046310	91.620415

4. Add Model to Portal

Upload Model to Portal as DLPK item So it's accessible to different people in the organization

Content	Add an item from my computer • X File:
• Add Item • Create From my computer • M	Choose File TreeDetection_DLPackage.dipk Title:
From the web An application An An Application An Application	Tags: add tags me Gallery Map Scene Groups Content Organization
n admin	

🥒 Edit Thumbnail

Add a brief summary about the item.

 Deep Learning Package by admin

Created: Jan 28, 2019 Updated: Jan 28, 2019 Number of Downloads: 0

S

Description

Add an in-depth description of the item.

5. Consume Model

Detect Objects Using Deep Learning

Model (emd file)

Detected Objects GP Tool

Geoprocessing	▼ +⊐ X			
E Detect Objects Using Deep Learning				
Parameters Environments				
* Input Raster				
	- 🧰			
* Output Detected Objects				
* Model Definition				
Arguments				
Name Value				

Detected Objects

Model Definition File

- .emd extension with json formatted content
- describes the deep learning model to ArcGIS
 - deep learning framework
 - model
 - model type
 - model configuration
 - model inputs
 - model outputs
 - classes
 - if not using out-of-the-box model
 - optional Python Raster Function path
 - optional model parameters

Image Scientist must understand and edit

'Framework': 'TensorFlow',	
'InferenceFunction': 'D:\\raster-deep-learning\\python_raster_functions\\ImageClassifier.py'	,
'Model File': '. \\fracen granh h'	
"ModelTue': 'Imagel assistation'.	
'ExtractBands': [0.1.2].	
'ImageWidth':513,	
'ImageHeight':513,	
'Classes': [
'Value':0,	
'Name': 'Evergreen Forest',	
Color':[0, 51, 0]	
1.	
'Value':1.	
'Name':'Grassland/Herbaceous',	
'Color': [241, 185, 137]	
<u>}</u> ,	
Value:2,	
'Color': [236, 236, 0]	
}.	
'Value':3,	
'Name': 'Open Water',	
'Color':[0, 0, 11/]	
<i>{</i> ,	
'Value':4.	
Name': 'Scrub/Shrub'	
'Color': [102, 102, 0]	
*Namo: *Tmnarvious Surface*	
Color: [236, 236, 236]	
}	

6. Analysis

Selecting only NEW Buildings within the Pipelines' Buffer

7. Feedback Loop

Image Visit App could be used as a QC tool to check model's output

8. Action: Information Products

Workforce App to assign Inspection Tasks

Field Apps for Inspection and Data Collection

Operations Dashboard to view Inspection Results in Real-Time

End to End GeoAl Life Cycle with Imagery

Imagery Access

Data

Labelling

Imagery Prep

Deploy Models to Production

Train & Consume Models

Run Inference

at SCALE

000

Feedback Loop

Take Action

Introducing the R-ArcGIS Bridge

The R-ArcGIS Bridge

 The R-ArcGIS bridge allows you to connect ArcGIS to R and enables the seamless transfer of data back and forth, along with the ability to integrate R and ArcGIS functionality.

Patterns of Working with R

Living Data – Living Atlas

Spatial Memory of Our Planet

Living Atlas of the World Open Data, Maps, and Apps from 1000s of Contributers + Esri

livingatlas.arcgis.com

Population

Sea Temperature

Thousands of Ready-to-Use Maps and Datasets

Basemaps Soils

Agriculture Topo Maps Ecology Sentinel Earthquakes Traffic Geology Vegetation Roads Imagery Land Cover Scientific Stream Landsat Species NAIP Planes Lifestyle MODIS Biology Elevation POIs Demographics Protected Areas Hazards Climate DigitalGlobe Floodplains Weather Maps Landscape Oceans Stream Forecasts

Wildfires

Boundaries OSM

Railroads

Millions of Maps and Layers Shared by Users

The Foremost Collection of Global Geographic Information A Living Atlas for the Planet

Citizen Science

esriurl.com/citizens

ArcGIS & Citizen Science Citizen Science R					sources 🖪 У 🖉	esri		
	Introduction	Collect Observations	Monitor Collection	Analyze Data	Communicate	Additional Resources		
Citizen Science Introduction								

Overview

The ArcGIS platform supports citizen science and crowdsourcing initiatives from data collection, analysis, monitoring, visualization and communication.

Photo: Citizen scientist sampling in Rocky Mountain National Park. <u>NPS Photo</u>

Spatial Storytelling

The Power of Storytelling

Science Communication is a growing movement among researchers, educators

Story Maps as an Effective Social Medium for Data Synthesis, Communication, and Dissemination

IN33B-3773

Dawn J. Wright, Matt Artz, Robby Deming, Environmental Systems Research Institute (Esri), Redlands, CA, USA, dwright@esri.com; Anna Verrill, NOAA Office for Coastal Management, Charleston, SC, USA

esriurl.com/agustories

Get Involved

Learn more at esriurl.com/geoai2018
Esri Applied Data Science Initiative

- Oregon State University
- EPA AirNow
- Conservation Intl
- USDOT Natl Highway Traffic Safety Admin
- Virginia Commonwealth U
- UC-Riverside
- DOE Natl Energy Technology Lab