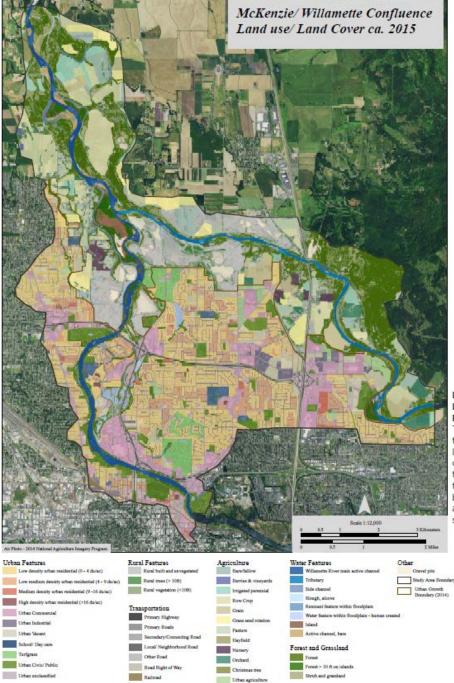
Evaluating Sustainability Competencies through Green Infrastructure Design

The purpose:


To provide a systematic approach for evaluating student learning within a LANDSCAPE ARCHITECTURE STUDIO with **two forms of evidence of learning**:

SELF-REPORTED EVIDENCE Questionnaires SPATIALLY EXPLICIT EVIDENCE Designs via GIS

This approach may provide educators (including myself) with guidance for developing instructional courses to aid student learning.

Land Use/Land Cover Representation

Step 1

Instruct

R

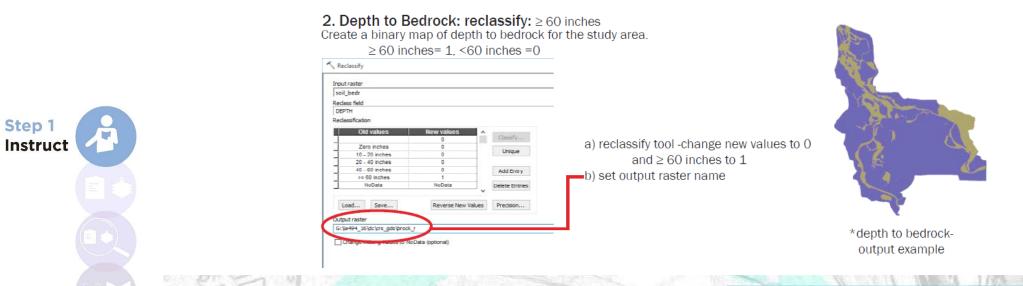
Land Use/ Land Cover Representation. The representation depicts the land use and land cover representation model that was used for both the Studio and the Workshop.

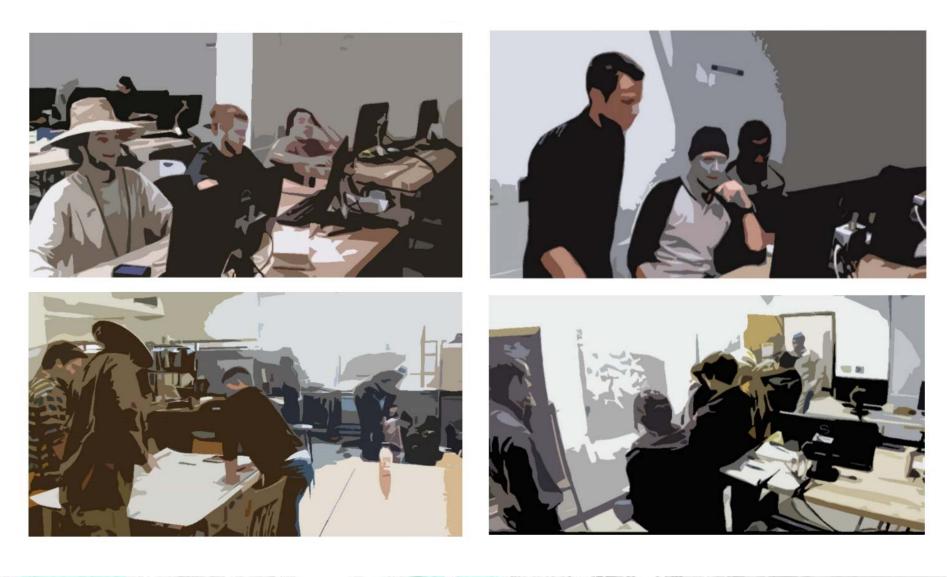
2.3 Site Suitability Criteria

Table 2-4 shows a site suitability criteria matrix and is populated with default criteria that you can change to your preference or local knowledge. The default criteria in the tool are derived from two EPA reports (USEPA 2004a, 2004b). You can modify these criteria using the Siting Tool interface.

BMP type	Drainage area (acre)	Drainage slope (%)	Impervious (%)	Hydrologic soil group	Water table depth (ft)	Road buffer (ft)	Stream buffer (ft)	Building buffer (ft)
Bioretention	< 2	< 5%	> 0%	A-D	>2	< 100	> 100	-
Cistem			-	-		-	-	< 30
Constructed Wetland	> 25	< 15%	> 0%	A-D	> 4	-	> 100	
Dry Pond	> 10	< 15%	> 0%	A-D	> 4	-	> 100	-
Grassed Swale	< 5	< 4%	> 0%	A-D	>2	< 100	-	
Green Roof	-	-	-	-	-	-	-	-
Infiltration Basin	< 10	< 15%	> 0%	A-B	> 4	-	> 100	
Infiltration Trench	< 5	< 15%	> 0%	A–B	>4	-	> 100	-
Porous Pavement	< 3	< 1%	> 0%	A-B	>2	-	-	-
Rain Barrel				-		-		< 30
Sand Filter (non- surface)	< 2	< 10%	> 0%	A-D	>2	-	> 100	-
Sand Filter (surface)	< 10	< 10%	> 0%	A-D	>2	-	> 100	-
Vegetated Filterstrip	=	< 10%	> 0%	A-D	>2	< 100	-	
Wet Pond	> 25	< 15%	> 0%	A-D	>4	-	> 100	

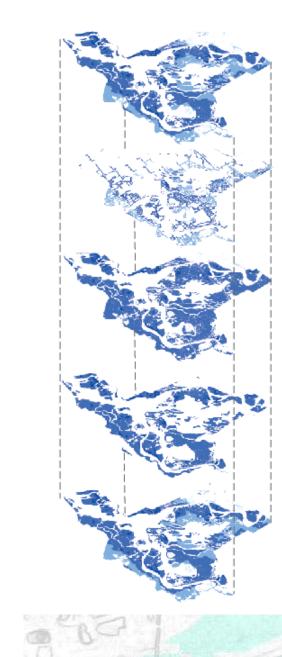
Table 2-4. Default criteria for BMP suitable locations used in BMP Siting Tool




1. Slope: reclassify

Step 1

Reclass field		- -	
VALUE			
Reclassification			
Old values	New values		
0-6	1	Classify	
6 - 15	1	10 loss	
15 - 52	0	Unique	
52 - 127	0		
127 - 750	0	Add Entry	
NoData	NoData		
	Ý	Delete Entries	
Load Save	Reverse New Values	Precision	
Output raster			
G:\la494_16\dc\crs_gds\sl			11
o: kouse_to korkus_des ke	ope_re		1
	o NoDeta (optional)		



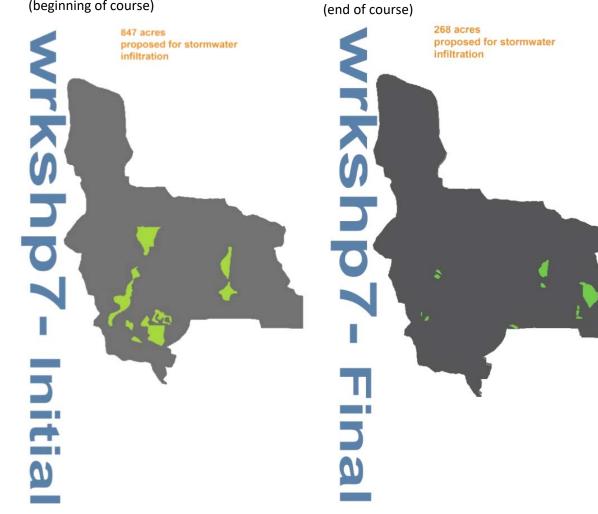
Daniel Cronan University of Idaho GIS Day, November 15, 2017

Step 1 Instruct

Step 1 Instruct

wet pond dry pond constructed wetland

vegetated filterstrip grassed swale bioretention


sandfilter nonsurface

infiltration trench

vegetated filterstrip

Initial Design

(beginning of course)

Daniel Cronan University of Idaho GIS Day, November 15, 2017

Final Design

STEP 2) ASSESS:

GATHERING EVIDENCE OF LEARNING BY RELEVANT FACTOR:

Questionnaires and GIS tools addressing the following factors:

SYSTEM FACTORS: 1) Terrain 2) Impervious Cover 3) Land Use

RUNOFF FACTORS:

4) Reduction and mitigation of Runoff

FLOODING FACTORS:

5) Flooding and Design Storms

Step 2 Assess

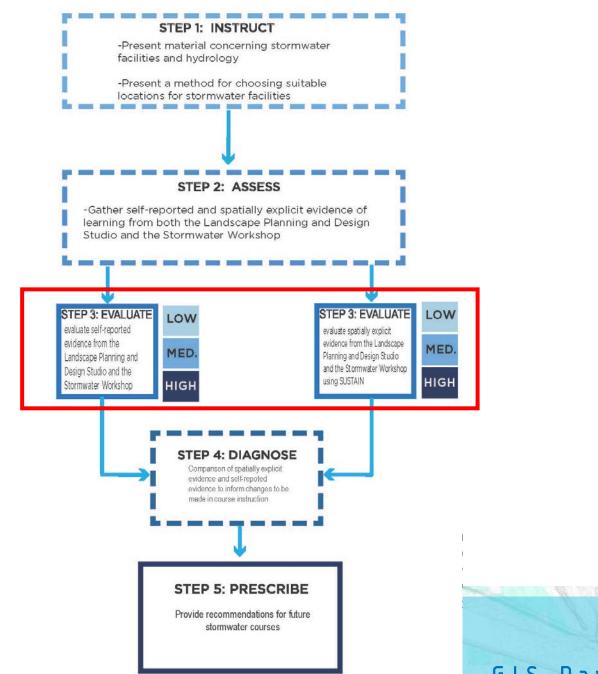
E

			ect the data. All layers are ust be in the same projecti			ris
elect Raster Data						-
levation grid	elevation	~ 🔚	Elevation units	Feet	~	
and use grid	nlod_pr	~ 🖬	Land use lookup table	nicd_tble	~ 🖬	
ercent impervious grid	per_imp	~ 🔀]			
elect Vector Data						
Stream shapefile	stims_p	~ 🔀	Road shapefile	roads	~ 🖾	
Irban land use shapefile	urb_lulc_15	~ 🗖	Groundwater depth shapefile	wt_depth	~ 🖬	1
ioil shapefile	solis_a2d	~ 🖬	Soil lookup table	mukey5	~ 🖬	
and ownership shapefile	pubs	~ 🖂				88 - E

Step 2

Assess

E

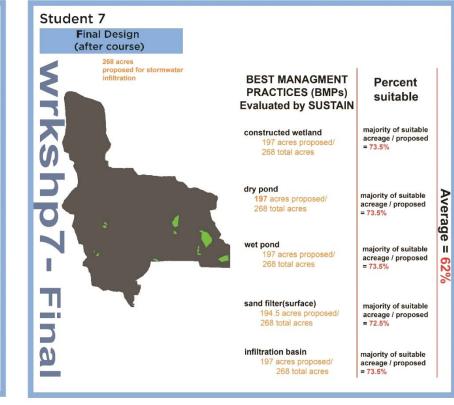

в	Select BMP Type	BMP Footp	BMP Footprint Siting Criteria				
	Bioretention	Drainage Area (ac)	2				
		Slope (%)	<5				
	Burg Carrow and	Imperviousness (%)	<100				
	-	Hydrologic Soil Groups	A-D				
		Watertable Depth (ft)	>2				
3	ALL AR SHE	Road Buffer (ft)	<100				
1		Stream Buffer (ft)	>100				
		Building Buffer (ft)	NA				
		Land Ownership	Public				
		Land Use Suitability	đ.				

2.3 Site Suitability Criteria

Table 2-4 shows a site suitability criteria matrix and is populated with default criteria that you can change to your preference or local knowledge. The default criteria in the tool are derived from two EPA reports (USEPA 2004a, 2004b). You can modify these criteria using the Siting Tool interface.

Table 2-4. Default criteria for BMP suitable locations used in BMP Siting Tool

BMP type	Drainage area (acre)	Drainage slope (%)	Impervious (%)	Hydrologic soil group	Water table depth (ft)	Road buffer (ft)	Stream buffer (ft)	Building buffer (ft)
Bioretention	< 2	< 5%	> 0%	A-D	>2	< 100	> 100	-
Cistem		-		-	-	-	-	< 30
Constructed Wetland	> 25	< 15%	> 0%	A-D	> 4		> 100	=
Dry Pond	> 10	< 15%	> 0%	A-D	>4	-	> 100	
Grassed Swale	< 5	< 4%	> 0%	A-D	>2	< 100	-	-
Green Roof		-		-	-	-	-	
Infiltration Basin	< 10	< 15%	> 0%	A-B	>4	-	> 100	-
Infiltration Trench	< 5	< 15%	>0%	A–B	>4	-	> 100	-
Porous Pavement	< 3	< 1%	> 0%	A-B	>2	-	-	-
Rain Barrel				-	-	-		< 30
Sand Filter (non- surface)	< 2	< 10%	> 0%	A–D	>2	-	> 100	-
Sand Filter (surface)	< 10	< 10%	> 0%	A-D	>2	-	> 100	-
Vegetated Filterstrip	1776	< 10%	> 0%	A-D	>2	< 100	=	
Wet Pond	> 25	< 15%	> 0%	A-D	>4	-	> 100	

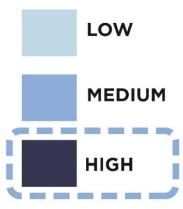


Daniel Cronan University of Idaho GIS Day, November 15, 2017

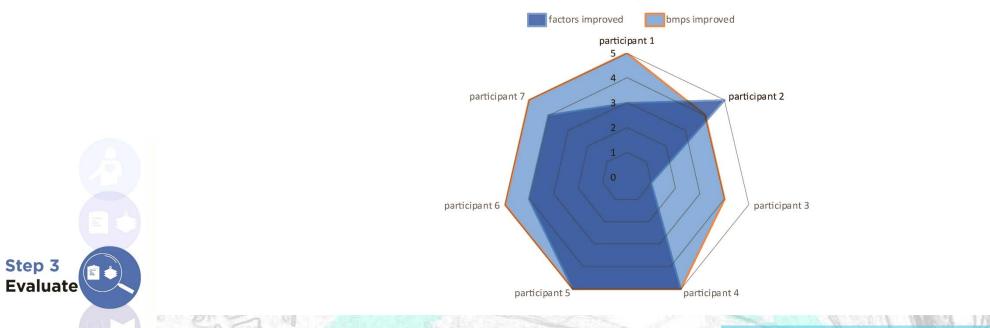
Step 3 Evaluate

Student 7 Initial Design (beginning of course)			
847 acres proposed for stormwater infiltration	BEST MANAGMENT PRACTICES (BMPs) Evaluated by SUSTAIN	Percent suitable	
RSSD Values	constructed wetland 336.5 acres proposed/ 847 total acres	majority of suitable acreage / proposed = 40%	
b y	dry pond 336.5 acres proposed/ 847 total acres	majority of suitable acreage / proposed = 40%	Average
	wet pond 336.5 acres proposed/ 847 total acres	majority of suitable acreage / proposed = 40%	je = 34%
Initi	sand filter(surface) 311 acres proposed/ 847 total acres	majority of suitable acreage / proposed = 37%	
a	infiltration basin 336 acres proposed/ 847 total acres	majority of suitable acreage / proposed = 40%	

Step 3 Evaluate



BMPs improved


if < 2 improved =LOW 2-3 improved = MEDIUM >4 improved = HIGH

WORKSHC	P					
	Self-Reported			Spatially Explicit		Learning
	positive change	no change	negative	pos.	no change negative	•
student 1	3 factors improved			5 BMPs improved		Medium to High
student 2	5 factors improved			4 BMPs improved		Medium to High
student 3	1 factor improved			4 BMPs improved		Low to Medium
student 4	5 factors improved			5 BMPs improved		High
student 5	5 factors improved			5 BMPs improved		High
student 6	4 factors improved			5 BMPs improved		Medium to High
student 7	4 factors improved			5 BMPs improved		Medium to High

Workshop Results

DIAGNOSIS:

Step 4

Diagnose

a) INTRINSIC LOAD:

too much information + not enough time

= too little processing

b) **EXTRANEOUS LOAD**:

the material was not activated adequately within an exercise

c) **GERMANE LOAD**:

a method of organization was not presented to Student 7

DIAGNOSIS:

a) **INTRINSIC LOAD**:

too much information + not enough time
= too little processing

b) **EXTRANEOUS LOAD**:

the material was not activated adequately within an exercise

c) **GERMANE LOAD**:

a method of organization was not presented to Student 7

PRESCRIBE:

a) REDUCE INTRINSIC LOAD

-Adding discussion topics and a particular case study focused solely around reduction of runoff -an exercise to be completed on Student 7's own time

b) REDUCE EXTRANEOUS LOAD:

an exercise using the EPA's stormwater calculator to show the benefits of using stormwater facilities to reduce runoff

c) REDUCE GERMANE LOAD: an exercise to explain a method for runoff reduction

Daniel Cronan University of Idaho GIS Day, November 15, 2017

Step 5 Prescribe