High-resolution lidar from unmanned aerial vehicles for forestry applications

Anthony J. Martinez^{1*}, Arjan J.H. Meddens¹, Carlos A. Silva², Lee A. Vierling¹, & Jan U.H. Eitel¹

¹University of Idaho, Department of Natural Resources and Society, Moscow, ID 83844, USA

²Biosciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

*ajmartinez@uidaho.edu

1. Introduction

- Unmanned aerial vehicles (UAVs) have increased the potential for environmental monitoring
- Lidar remote sensing has improved the characterization of vegetation and topographical attributes of landscapes
- The use of unmanned aerial vehicle (UAV) with a lidar sensor onboard provides unprecedented options for many environmental and forestry applications
- Here we report on an ongoing research project using an UAV lidar acquisition

Objectives

- 1. Identification of tree seedling with high resolution UAV lidar (see preliminary results)
- 2. Improvement of fuel estimation within the wildland urban interface
- Estimating individual tree species and forest growth

2a. Methods

Study area: Two locations on Moscow Mountain:

- 1. University of Idaho Experimental Forest, Flat Creek unit (**UIEF**)
- 2. Across a private property within the wildland urban interface (PP)

Field observations: 24 forest inventory plots across high, medium, and low biomass. In addition, heights, location, and crown dimensions of 40 seedlings

Fig. 1: Locations of UAV lidar acquisitions on Moscow Mountain, northeast of Moscow, ID.

2b. Methods

UAV lidar collection

Equipment (Fig. 2):

- UAV: Matrice 600 UAV
- Lidar sensor: Velodyne HDL-32E
- Points per second: ~700k
- Accuracy: ± 2 cm

Dataset

- Acquisition date: September 2nd, 2017
- Area
 - PP: 20 ha
 - UIEF: 100 ha
- Point density ~522 points/m² (Fig. 3)

10 points m⁻²

 1 m^2

University of Idaho

Velodyne[®]

Fig. 2: The Matrice 600 UAV with the Velodyne HDL-32E LIDAR sensor.

Fig. 3: Illustration of typical aerial lidar point density (left) and UAV lidar point density collected for this study.

3a. Preliminary results I

• Automated detection of seedlings/saplings (trees < 1.2m) from the digital surface model using a local maxima detection algorithm was moderately successful (40% or 16 out of 40 seedlings were correctly identified; figs. 4 & 5).

Fig. 4: Example of point cloud profile and histogram from UAV lidar.

3b. Preliminary results II

 The difference in height between the correctly predicted seedlings and their sampled counterparts was ~30cm.

Science & Engineering, Inc.

Fig. 5: Comparison of predicted tree locations and sampled tree locations on top of the digital surface model. Field sampled seedling locations are indicated with a star and correctly identified locations with a circle.

4. Next steps

- Run local maxima algorithm on the canopy height model to improve seedling detection rate
- Use the UAV lidar dataset for precise quantification of fuel loads within the UIEF and PP.
- Detection of forest growth and tree species classification (Fig. 6).

Fig. 6: Illustration of the UAV lidar point cloud.

Acknowledgements: This research was supported by the NASA Idaho Space Grant Consortium and the University of Idaho College of Natural Resources. We thank Alta Science & Engineering, Inc. for the data collection.