Using multi-temporal LiDAR to assess fire impacts on tree growth

Aaron M. Sparks

University of Idaho | College of Natural Resources

Department of Forest, Rangeland, and Fire Sciences | Moscow, Idaho

Research Motivation

Why is monitoring forest growth important?

- Forest monitoring essential for management planning
- Timber activities vital part of Idaho/PNW economy (jobs, revenue)
- We rely on numerous wood products every single day

A little history...

Forest inventory: what – and how much – is out there?

- Sub-sampling of forest conditions using field plots
- Re-measured over time to capture growth/change

Moving from spatially incomplete inventory to spatially complete inventory

❖ Airborne LiDAR (aka airborne laser scanning - ALS)

Source: Eagle Mapping

LiDAR (Light Detection And Ranging)

- Produces 3D 'point clouds' of target landscapes
 - 'Digital Forests'

LiDAR – Going Beyond 2D characterization

Each point within point cloud has x and y location
 and z height + other information

Stored in '.las' file format:

х	у	Z	Gps time	Intensity	Return #	# of Returns	Class
604906.9	4893536	10	346674	109	1	1	2
604906.6	4893536	10.1	346674	77	1	1	2

Individual tree detection

Moving from samples to census: *Identification and segmentation of individual trees*

Individual tree growth

Multi-temporal LiDAR
+ individual tree identification
= individual tree growth

Study design

- ❖ 3 forest stands, half of each burned in 2014
- Fire intensity measured via in situ infrared radiometers
- ❖ Increment cores collected ~2 years post-fire
- ❖ ALS data collected in 2019, 2020, 2022

Results

Radial growth reduction for burned vs nonburned trees

This reduction varies with remotely sensed fire intensity!

Preliminary Results

Long-lasting height growth reduction with increasing fire intensity

- No-fire
- Low intensity surface fire
- Moderate intensity surface fire
- High intensity surface fire

Importance and application:

- Better understanding of size and species dependent fire effects
- Guide for managers on Rx burn intensity
- Fire-productivity relationships could inform forest growth and earth system models
- ***** ...

Thanks for your attention!

Where to find our latest research:

ResearchGate: researchgate.net/profile/Aaron-Sparks

Twitter: @double_A_RON

