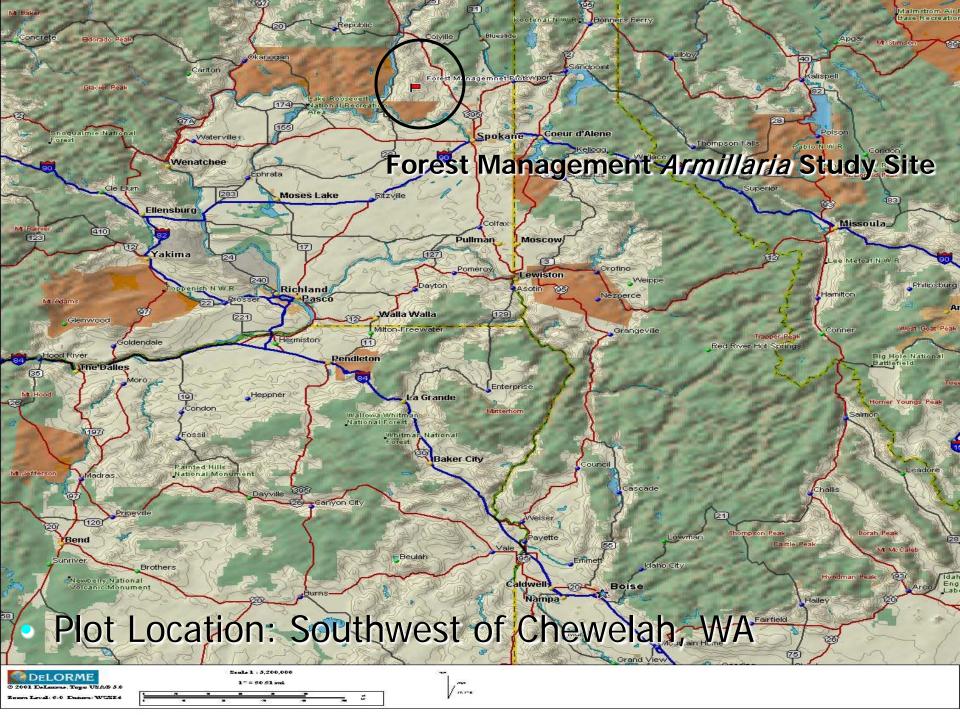
Relationship of *Armillaria* genets and species distribution with habitat type and forest management practices

MEE-SOOK KIM<sup>1</sup>, John W. Hanna<sup>1,2</sup>, Ned B. Klopfenstein<sup>2</sup>, Phil Cannon<sup>3</sup>, and Geral I. McDonald<sup>2</sup>


<sup>1</sup>Dept. of Forest Resources, University of Idaho, Moscow, ID 83844 <sup>2</sup>USDA Forest Service, RMRS, 1221 S. Main St. Moscow, ID 83843 <sup>3</sup>BOISE<sup>®</sup>, 1111 W. Jefferson St. Boise, ID 83728

#### The expression of Armillaria root disease results from the interactions among the genet, its host, and surrounding environmental factors.

• It is essential to identify and characterize *Armillaria* genets and species to understand interactions with host and environmental factors.

## Forest Management – Armillaria Study

- The effect of forest management practices on genets and species diversity of *Armillaria*
- The relationships between habitat types and Armillaria genets/species distribution
- The identification of genetic markers from *Armillaria* genets/species correlated to their host species, habitat types, and other environmental factors



- Plot selection
  - Wetness of the site
  - Pre-commercial thinning (PCT)
  - Fertilization

#### Wetness of the site



VS.



Western hemlock, Western redcedar – Queencup beadlily, Twinflower Grand fir – Ninebark

#### • CONTROL <u>WET</u> - established 1920's.

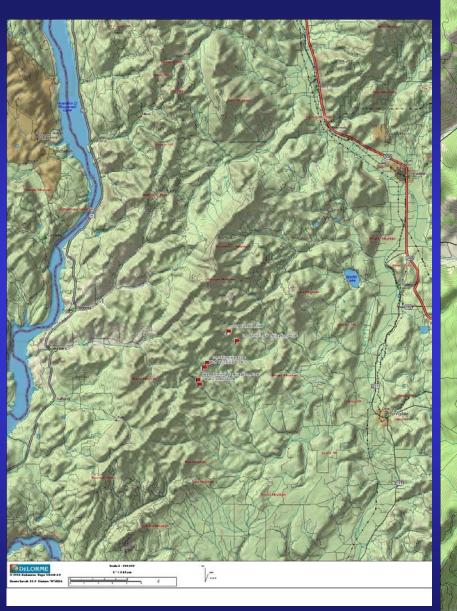
DRY - established 1930's

#### THINNED

harvested by over-story removal in 1978, PCT in 1987, selectively harvested in 1987.

#### <u>DRY</u>

<u>WET</u>


WET

harvested by over-story removal in 1985, PCT in 1986

# THINNED & FERTILIZED

PCT in 1987 and fertilized in 1999 (nitrogen, potassium) DRY

PCT in 1978 and fertilized in 1995 (nitrogen, potassium, sulfur, boron)



Dry control

- Dry, thinned, fertilized

• Wet, thinned, fertilized Wet, thinned, fertilized Wetcontrol

| DELORME                       |
|-------------------------------|
| © 2001 DeLemme. Tops USAD 5.0 |
| Zoom Level: 11-0 Datam: W5324 |

/...

2

Scale 1 : 100,000 1" = 1.55 mi tle Ridg

# Armillaria Plots

- Control wet (redcedar-hemlock/clintonia-twin flower) undisturbed sites (3 plots)
- Control dry (grand fir/ninebark) undisturbed sites (3 plots)
- Wet PCT with no fertilization (3 plots)
- Dry PCT with no fertilization (3 plots)
- Wet PCT with fertilization (3 plots)
- Dry PCT with fertilization (3 plots)

Total: 6 treatments x 3 plots/treatment = 18 plots

# Armillaria Plots

- Plot size: 0.04 ha (20 x 20 meters)
- Each plot was mapped using GPS, and individual trees were mapped with a laser range finder and angle encoder.
- Within each plot, three individuals (three different diameter classes) for <u>every tree</u> and hardwood shrub species present were surveyed for the occurrence of *Armillaria* (rhizomorphs, mycelial fans, or wood decay) and pathogenic colonization by *Armillaria* (e.g., resinosis)
  - Host information
  - Ecological information associated with Armillaria isolates
- Plant communities
- Topography, elevation, slope, aspect, and landform



Ν Boise Cascade Wet Control #1 ROAD-GPS-POINT-VC CORNER-1-VC1 CORNER-2-WC1 BOTTOM-CENTER-POINT-VC1 THPL3-WC1 SALIX2-WC1 ABGB1-VC1 PSME1-WC1 LAOCI-VCI ABGR2-WUPL2-WC1 ABGB3-VC1 THPL1-VC1 PSMESMESTWC1 PICQ1-VC1 SALIX1-WC1 34 TSHE1-WC1 PICO3-VC1 CORNER-4-VC1 TSHER WRUI PICO2-WC1 CORNER-3-WC1 Scale = 1 : 19.93(inch:feet)







## An Example of Somatic-Incompatibility Test

118

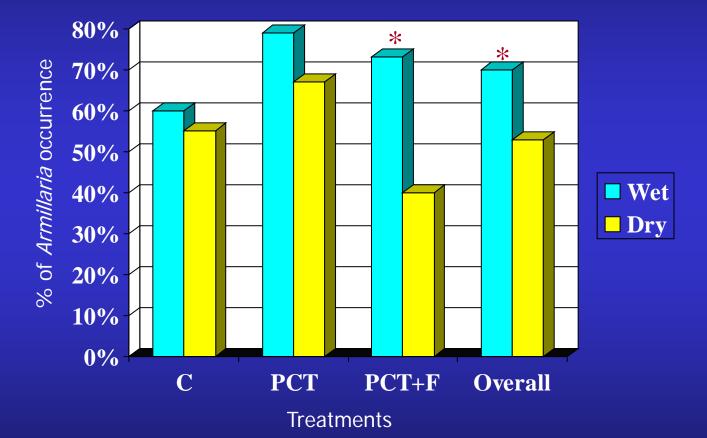
Occurrence of *Armillaria* on conifers and shrubs growing on two different habitat types in eastern Washington

|                       | <i>Armillaria</i><br>occurrence | No <i>Armillaria</i><br>occurrence | $\chi^2$ |
|-----------------------|---------------------------------|------------------------------------|----------|
| Habitat Type          | # of trees                      | # of trees                         |          |
| WET                   | 95 (70% <b>)</b>                | 41 (30%)                           | 6.36*    |
| (TSHE-THPL/CLUN-LIBO) |                                 |                                    |          |
| DRY                   | 48 (53% <b>)</b>                | 42 (47%)                           |          |
| (ABGR/PHMA)           |                                 |                                    |          |

\*df = 1,  $\alpha$  = 0.05, p < 0.05; TSHE: Western hemlock, THPL: Western redcedar, CLUN: queencup beadlily, LIBO: Twinflower, ABGR: Grand fir, PHMA: Ninebark

# Occurrence of *Armillaria* on conifers and shrubs growing on <u>WET</u> habitat type

| Wet habitat type<br>(TSHE-THPL/CLUN-LIBO) | <i>Armillaria</i><br>occurrence<br># of trees | No Armillaria<br>occurrence<br># of trees | $\chi^2$           |
|-------------------------------------------|-----------------------------------------------|-------------------------------------------|--------------------|
| Wet, Control                              | 32 (60%)                                      | 21 (40%)                                  | 4.13 <sup>ns</sup> |
| Wet, Thinned                              | 34 (79%)                                      | 9 (21%)                                   |                    |
| Wet, Thinned, Fertilized                  | 29 (73%)                                      | 11 (27%)                                  |                    |


<sup>ns</sup> df = 2,  $\alpha$  = 0.05, p = 0.13; TSHE: Western hemlock, THPL: Western redcedar, CLUN: queencup beadlily, LIBO: Twinflower

# Occurrence of *Armillaria* on conifers and shrubs growing on <u>DRY</u> habitat type

| Dry habitat type<br>(ABGR/PHMA) | Armillaria<br>occurrence<br># of trees | No Armillaria<br>occurrence<br># of trees | $\chi^2$           |
|---------------------------------|----------------------------------------|-------------------------------------------|--------------------|
| Dry, Control                    | 18 (55%)                               | 15 (45%)                                  | 4.09 <sup>ns</sup> |
| Dry, Thinned                    | 18 (67%)                               | 9 (33%)                                   |                    |
| Dry, Thinned, Fertilized        | 12 (40%)                               | 18 (60%)                                  |                    |

\* df = 2,  $\alpha$  = 0.05, p = 0.13; ABGR: Grand fir, PHMA: Ninebark

#### Occurrence of *Armillaria* on conifers and shrubs growing on two different habitat types in eastern Washington



C: Control, T: Pre commercially thinned (PCT), PCT+F: Pre commercially thinned and Fertilized, \*df = 1,  $\alpha$  = 0.05,  $\rho$  < 0.05

# Incidence of culturally verified *Armillaria* on conifers within WET (TSHE-THPL/CLUN-LIBO) /DRY (ABGR/PHMA) habitat types

| Conifer species     | # of plants<br>inspected | # with<br><i>Armillaria</i> | Proportion with<br>Armillaria | $\chi^2$ |
|---------------------|--------------------------|-----------------------------|-------------------------------|----------|
| Ponderosa pine      | 18                       | 6                           | 33%                           | 47.17*   |
| Lodgepole pine      | 9                        | 1                           | 11%                           |          |
| Douglas-fir         | 44                       | 29                          | 66%                           |          |
| Grand fir           | 44                       | 39                          | 87%                           |          |
| Western larch       | 37                       | 26                          | 70%                           |          |
| Western redcedar    | 20                       | 4                           | 20%                           |          |
| Western hemlock     | 10                       | 8                           | 80%                           |          |
| Shrubs <sup>1</sup> | 42                       | 29                          | 69%                           |          |

<sup>1</sup>Oceanspray, Serviceberry, Ninebark, Rocky Mountain Maple, Salix, Redstem ceanothus, Pacific yew, Buffaloberry, Blue elderberry \*df = 6,  $\alpha$  = 0.05, p < 0.05; TSHE: Western hemlock, THPL: Western redcedar, CLUN: queencup beadlily, LIBO: Twinflower, ABGR: Grand fir, PHMA: Ninebark

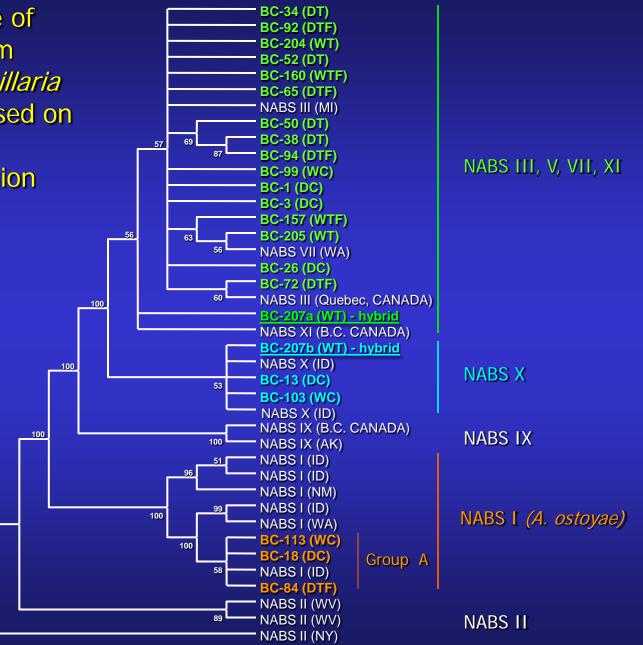
# Incidence of culturally verified *Armillaria* on conifers within <u>WET</u> (TSHE-THPL/CLUN-LIBO) habitat types

| Conifer species  | <pre># of plants inspected</pre> | # with<br><i>Armillaria</i> | Proportion with<br>Armillaria | $\chi^2$ |
|------------------|----------------------------------|-----------------------------|-------------------------------|----------|
| Ponderosa pine   | 2                                | 2                           | 100%                          | 45.35*   |
| Lodgepole pine   | 7                                | 1                           | 14%                           |          |
| Douglas-fir      | 16                               | 12                          | 75%                           |          |
| Grand fir        | 32                               | 30                          | 94%                           |          |
| Western larch    | 27                               | 22                          | 81%                           |          |
| Western redcedar | 20                               | 4                           | 20%                           |          |
| Western hemlock  | 10                               | 8                           | 80%                           |          |

\*df = 6,  $\alpha$  = 0.05, p < 0.05; TSHE: Western hemlock, THPL: Western redcedar, CLUN: queencup beadlily, LIBO: Twinflower

#### Incidence of culturally verified *Armillaria* on conifers within <u>DRY</u> (ABGR/PHMA) habitat types

| Conifer species | # of plants<br>inspected | # with<br><i>Armillaria</i> | Proportion with<br>Armillaria | $\chi^2$ |
|-----------------|--------------------------|-----------------------------|-------------------------------|----------|
| Ponderosa pine  | 16                       | 4                           | 25%                           | 10.69*   |
| Lodgepole pine  | 2                        | 0                           | 0%                            |          |
| Douglas-fir     | 28                       | 17                          | 61%                           |          |
| Grand fir       | 12                       | 9                           | 75%                           |          |
| Western larch   | 10                       | 4                           | 40%                           |          |


\* df = 4,  $\alpha$  = 0.05,  $\rho$  < 0.05; ABGR: Grand fir, PHMA: Ninebark



# List of *Armillaria* genets from northeastern WA identified by somatic incompatibility test

| Habitat types<br>Treatments | <i>Armillaria</i> genets        | Total # of<br>genets |
|-----------------------------|---------------------------------|----------------------|
| Wet, Control                | BC99, BC103, BC113              | 3                    |
| Wet, Thinned                | BC204, BC205, 207               | 3                    |
| Wet, Thinned, Fertilized    | BC157, BC160                    | 2                    |
| Dry, Control                | BC1, BC3, BC13, BC18F,<br>BC26  | 5                    |
| Dry, Thinned                | BC34, BC38, BC50, BC52          | 4                    |
| Dry, Thinned, Fertilized    | BC65, BC72, BC84, BC92,<br>BC94 | 5                    |

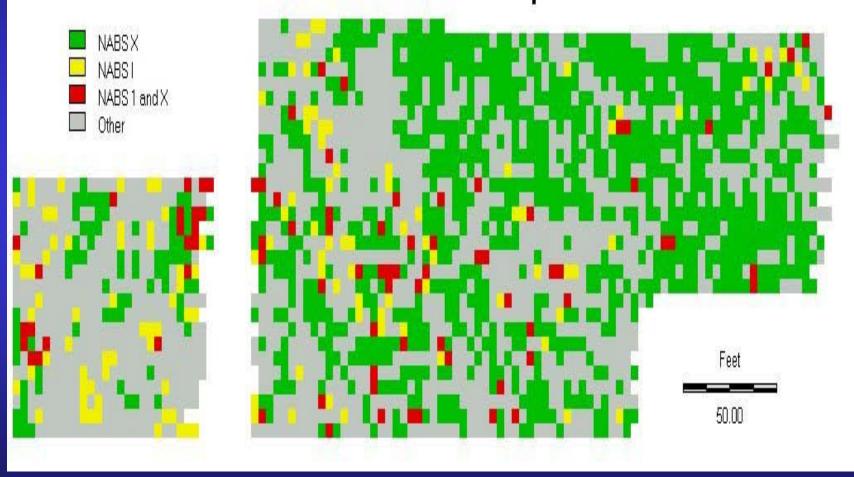
Neighbor-joining tree of *Armillaria* genets from eastern WA and *Armillaria* reference species based on DNA sequences of intergenic spacer region



WC: Wet, Control WT: Wet, Thinned WTF: Wet, Thinned, Fertilized DC: Dry, Control DT: Dry, Thinned DTF: Dry, Thinned, Fertilized

# Current status of *Armillaria* genets and species derived from northeastern WA

| Treatment                | # of genets | # of species | Species ID                                      |
|--------------------------|-------------|--------------|-------------------------------------------------|
| Wet, Control             | 3           | 3            | <i>A. ostoyae</i><br>NABS III, V, VII<br>NABS X |
| Dry, Control             | 5           | 3            | <i>A. ostoyae</i><br>NABS III, V, VII<br>NABS X |
| Wet, Thinned             | 3           | 2            | NABS III, V, VII<br>NABS X (hybrid)             |
| Dry, Thinned             | 4           | 1            | NABS III, V, VII                                |
| Wet, Thinned, Fertilized | 2           | 1            | NABS III, V, VII                                |
| Dry, Thinned, Fertilized | 5           | 2            | <i>A. ostoyae</i><br>NABS III, V, VII           |


## **Preliminary Observation - I**

- Armillaria occurrence was higher in the wet habitat type (TSHE-THPL/CLUN-LIBO) than the dry habitat type (ABGR-PHMA).
- No differences in *Armillaria* occurrence were found within habitat type (control vs. thinned vs. thinned and fertilized).
- Incidence of *Armillaria* was different among conifer species.
- A total of 22 genets were recovered from 289 isolates using somatic incompatibility tests.
- Three Armillaria species were identified from 22 genets using DNA sequences of intergenic spacer region.
   A. ostoyae, NABS III-V-VII-XI complex, NABS X

## Preliminary Observation - II

- The dry habitat type contained more genets than the wet habitat type (14 vs. 8).
- Undisturbed control plots (both wet and dry) have more diverse Armillaria spp. than disturbed plots.
- <u>NABS X</u>, which is a potential protector against pathogenic *A*. ostoyae, did not occur in disturbed plots (WT – hybrid NABS X).

# Armillaria NABS I (A. ostoyae), X, and mixed I and X on the Ida Creek plantation



G.I. McDonald et al.

#### Hybridization within and among *Armillaria* spp. <u>An example from BC-207 (NABS X hybrid)</u>

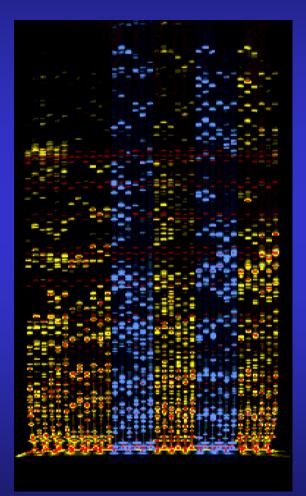
• A selected NABS XI isolate exhibited compatibility with a selected NABS X isolate, and selected NABS V isolates were individually compatible with selected isolates of NABS X and NABS XI in culture (Kim et al. 2001, *Mycological Research*).

• We found inter- and intra-specific hybridization occurring within and among *Armillaria* spp. derived from <u>nature</u>.

- intra-specific: A. ostoyae, NABS X

- inter-specific: between *A. ostoyae* and *A. gemina* (NABS II) between NABS X and NABS VII

• The possible pathogenicity of NABS X hybrids is under investigation at the USDA Forest Service, RMRS, Forestry Sciences Lab, Moscow, ID.


## Forest Management – Armillaria Study

- The effect of forest management practices on genets and species diversity of *Armillaria*
- The relationships between habitat types and Armillaria genets/species distribution

• The identification of genetic markers from *Armillaria* genets/species correlated to their host species, habitat types, and other environmental factors

# **AFLP**

### (<u>Amplified</u> <u>Fragment</u> <u>Length</u> <u>Polymorphism</u>)



 Prepare DNA extraction and generate genetic markers from 22 BCC Armillaria genets

- Complete analyses of genetic marker data on the basis of geographic and selected environmental parameters
- Integrate genetic marker data with GIS based systems

AFLP gel image of *Armillaria* sinapina and X genets

Develop predictive models for *Armillaria* occurrence based on pathogenicity, soil nutrition, plant factors, and other available environmental information

Armillaria genets from

- Preexisting plots located 11 western states
- IFTNC Forest Health Study sites
- Boise Cascade lands

Plots and Armillaria Isolate Collection USDA Forest Service, Rocky Mountain Research Station, Forestry Sciences Lab, Moscow, ID

- ca. 300 plots in the 11 western states
- Samples from 50 locations in Wisconsin, Iowa, Tennessee, and Nebraska
- 10,000 isolates belonging to 1,100 genets from *A. gallica*, *A. ostoyae*, *A. sinapina*, *A. mellea*, *A. nabsnona*, *A. cepistipes*, and NABS X

# **Armillaria Collection**

at the USDA Forest Service, RMRS, Forestry Sciences Lab, Moscow, Idaho





- Location
- Host information
- Habitat typing
- Ecological info. of Armillaria isolates
- Physical data Light Temperature Soil data Stand data

# Advantages of this novel experimental approach

These studies allow application at the landscape level by integrating two rapidly developing, highly informative technologies:

- Molecular biology
- Remotely sensed data analysis (Geographic Information Systems)

This integrative approach should provide insights into critical forest-management issues within a few years. Traditional studies would require decades to address similar issues.

## **Applications to Management**

- Determine appropriate management practices for specific sites
  - species selection
  - thinning and harvest methods
  - site preparation
  - manipulation of soil nutrition
  - management of soil water relations
  - prescribed burns, etc.
- Increase beneficial effects of saprophytic *Armillaria* spp. and minimize effects of pathogenic *Armillaria* spp.

### Acknowledgments

University of Idaho James A. Moore Steven J. Brunsfeld Terry M. Shaw Raini C. Rippy

BOISE<sup>®</sup> Mike Brown Phil Anderson USDA Forest Service James B. Donley Joanne Tirocke Bryce A. Richardson Jill A. Hoff Jonalea R. Tonn Kwan-Soo Woo